Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ash content varying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Lead contents of coal, coal ash and fly ash  

Science Journals Connector (OSTI)

Flameless atomic absorption spectrometry is applied for the determination of Pb in coal, coal ash and fly ash. Lead concentrations in coal and coal ash ranging from respectively 7 to 110 µg...?1 and 120 to 450 µg...

C. Block; R. Dams

1975-12-01T23:59:59.000Z

2

E-Print Network 3.0 - ashes total contents Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fly ash content for normal concrete... contained fly ash up to a maximum of 35% of clean-coal ... Source: Wisconsin-Milwaukee, University of - Department of Civil Engineering and...

3

Extracting Coal Ash Content from Laser-Induced Breakdown Spectroscopy (LIBS) Spectra by Multivariate Analysis  

Science Journals Connector (OSTI)

Laser-induced breakdown spectroscopy (LIBS) combined with partial least squares (PLS) analysis has been applied for the quantitative analysis of the ash content of coal in this...

Yao, Shunchun; Lu, Jidong; Dong, Meirong; Chen, Kai; Li, Junyan; Li, Jun

2011-01-01T23:59:59.000Z

4

Characterization of the Thermal Transport Through a Temporally-Varying Ash Layer.  

E-Print Network [OSTI]

??Ash deposits in commercial coal-fired boilers frequently pose serious maintenance challenges and decrease thermal efficiency. A better understanding of fundamental thermal transport properties in ash… (more)

Cundick,Darron Palmer 1979-

2008-01-01T23:59:59.000Z

5

Ash content prediction of coarse coal by image analysis and GA-SVM  

Science Journals Connector (OSTI)

Abstract Ash content is one of the most important indexes of coal quality, and fast prediction of ash content is urgent and important for coal processing industry. The aim of this paper is to propose a method of ash content prediction of coarse coal by the use of image analysis and GA-SVM. Coal particles on the surface were randomly selected to measure the ash content, and a semi-automatic local-segmentation algorithm was proposed to identify the corresponding coal particle regions. Thirty-eight features were extracted, and selected by GA. Ash content prediction model was established by SVM, and K-CV method is used to determine the hyper-parameters (c, g) of SVM. RMSE and R-square were used to measure the prediction effects of ash content. Results indicated that the prediction effects of narrow size fractions are better than wide size fraction, and larger size fraction is more accurate than smaller size fraction in ash content prediction.

Zelin Zhang; Jianguo Yang; Yuling Wang; Dongyang Dou; Wencheng Xia

2014-01-01T23:59:59.000Z

6

E-Print Network 3.0 - ash content Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: ash content Page: << < 1 2 3 4 5 > >> 1 Eltra dok nr. 147024, sag 1991 Eltra PSO project no....

7

Assessment of the effect of high ash content in pulverized coal combustion  

SciTech Connect (OSTI)

The existing literature on CFD-based coal combustion modelling is applicable mainly for coals of low ash content and the calculations are done on an ash-free basis. In Indian coals, the ash content may be significantly higher, up to 40% or more. Studies reported in the literature show that the mineral matter in the coal may have a number of effects on the combustion characteristics. In the present study, a sensitivity analysis is performed, using the CFD code CFX of AEA Technology, on the likely effect of ash content on the char reactivity, oxygen diffusion rate for char combustion and on the radiative heat transfer parameters. The results show that the effect of enhanced char reactivity is negligible whereas reduced oxygen diffusion rates due to a thicker ash layer may result in a significant reduction in char oxidation rates with a resultant decrease in the peak temperature in the furnace. The global parameters such as the peak temperature and the flue gas temperature remain relatively insensitive to the presence of high ash content. These results are consistent with the experimental observations of Kurose et al. . Kurose, M. Ikeda, H. Makino, Combustion characteristics of high ash coal in pulverized coal combustion, J. Fuel 80 (2001) 1447-1455).

Jayanti, S.; Maheswaran, K.; Saravanan, V. [Indian Institute of Technology, Madras (India). Dept. of Chemical Engineering

2007-05-15T23:59:59.000Z

8

Thermal treatment modifies the calorific value and ash content in some wood species  

Science Journals Connector (OSTI)

Abstract Thermo-treated wood is a new material that has recently been introduced to the market. Thus, the increase in the amount of treated wood in the wood industry and in the interior of buildings creates demands for the evaluation of its fire risk. However, few evidences have yet been published on the calorific evaluation and fire load, required in case of building code, for thermo-treated wood products. The main goal of this research was to evaluate how different treatments affect the calorific values and the relative ash content for three cases of thermo-treated woods (Norway spruce, Common ash, and Turkey oak). Norway spruce and Common ash were thermally treated at 190 °C for two hours. Turkey oak logs were initially steamed at 110 °C for 24 h, dried until the 0% of moisture content and then thermo treated at 160 °C for three hours. Low and High calorific values (LCV, HCV) and ash content were evaluated. Ash content and HCV are related to dry mass. After thermo-treatment, the LCV and HCV increased, while the ash content changed significantly in Turkey oak.

Luigi Todaro; Angelo Rita; Paola Cetera; Maurizio D’Auria

2015-01-01T23:59:59.000Z

9

Sintering and fouling characterization of ashes with high calcium oxide content  

SciTech Connect (OSTI)

This research work has taken into consideration the behavior of Estonian oil shale ash with high calcium oxide content under typical FB conditions while focusing the main attention on bed agglomeration and fireside deposits. The different types of ashes tested included: (1) ash collected from the cyclone of a PF oil shale boiler, (2) ash collected from the electrostatic precipitator of the same boiler, and (3) oil shale ash prepared by standard laboratory procedures. The ashes were tested for their compression strength, a sintering test under laboratory conditions. First, cylindrical pellets were made from the ash samples. Then the pellets were exposed for four hours to various atmospheres, and various temperatures in the range 300--1,050 C, in a tube furnace. After the exposure, the pellets were tested for compression strength, and the pellet crushing stress was taken as an indicator for the degree of sintering. The compression tests were complemented with chemical analyses of heat treated ash pellets. Changes of mass and dimensions of the heat treated pellets were also recorded. Some experiments were also made to simulate the impact energy of different ash particles, to investigate the buildup of ash deposits on the heat transfer surfaces of boilers. The tests showed that significant sintering occurred under most of the conditions tested. The sintering of the oil shale ash was found to be dependent on both heat treatment temperature and gas atmosphere. Higher pressure at pellet making resulted in some cases in increased sintering. Based on these results, it was concluded that bed sintering would probably not be a problem in a FBC, but fouling of the heat transfer surfaces after the fluidized bed combustor could be a potential problem, in particular, at flue gas temperatures in the range 600 to 900 C.

Ots, A.; Parve, T. [Tallinn Technical Univ. (Estonia); Skrifvars, B.J.; Hupa, M. [Abo Akademi, Turku (Finland)

1995-12-31T23:59:59.000Z

10

LEACHING BEHAVIOR OF PETROLEUM CONTAMINATED SOILS STABILIZED WITH HIGH CARBON CONTENT FLY ASH  

E-Print Network [OSTI]

1 LEACHING BEHAVIOR OF PETROLEUM CONTAMINATED SOILS STABILIZED WITH HIGH CARBON CONTENT FLY ASH the stabilization of petroleum- contaminated soils (PCSs) using another recycled material, high carbon content fly; however, the level of petroleum contamination has a significant effect on the leaching properties

Aydilek, Ahmet

11

Remediation of Petroleum-Contaminated Groundwater Using High Carbon Content Fly Ash  

E-Print Network [OSTI]

1 Remediation of Petroleum-Contaminated Groundwater Using High Carbon Content Fly Ash M. Melih for retardation of petroleum contaminants in barrier applications. Sorbed amounts measured in batch scale tests on remediation efficiency. INTRODUCTION Remediation of groundwater contaminated with petroleum-based products has

Aydilek, Ahmet

12

Changes in trace element contents in ashes of oil shale fueled PF and CFB boilers during operation  

Science Journals Connector (OSTI)

Abstract Two oil shale combustion technologies, pulverized firing (PF) and circulated fluidized bed (CFB) were compared with respect to partitioning of selected elements (Ba, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Rb, Sb, Sn, Sr, Th, Tl, U, V, and Zn) in the ashes along the flue gas ducts. The ash samples were characterized by high-resolution ICP-MS. The average contents of toxic heavy metals in fly ash samples from the CFB boiler are lower compared to the PF boiler. Main differences in trace element contents between combustion technologies were as follows: Cd content in the fly ash samples of PF boiler was up to 0.9 mg/kg while in CFB boiler it remained below 0.1 mg/kg in all analyzed ash samples; Hg was observed in the ashes of electrostatic precipitator (ESP) of CFB boiler while in the PF boiler it was close to or below detection limit. In the PF boiler content of Sn was detected only in the ashes of ESPs, while in CFB boiler it was evenly distributed between bottom and fly ash samples. Highest content among heavy metals in ash samples was observed for Pb in the last field of ESP of the PF boiler (142 mg/kg).

Janek Reinik; Natalya Irha; Eiliv Steinnes; Gary Urb; Jekaterina Jefimova; Eero Piirisalu; Jüri Loosaar

2013-01-01T23:59:59.000Z

13

Chemical composition and some trace element contents in coals and coal ash from Tamnava-Zapadno Polje Coal Field, Serbia  

SciTech Connect (OSTI)

The chemical compositions and trace element contents (Zn, Cu, Co, Cr, Ni, Pb, Cd, As, B, Hg, Sr, Se, Be, Ba, Mn, Th, V, U) in coal and coal ash samples from Tamnava-Zapadno Polje coal field in Serbia were studied. The coal from this field belongs to lignite. This high volatility coal has high moisture and low S contents, moderate ash yield, and high calorific value. The coal ash is abundant in alumosilicates. Many trace elements such as Ni > Cd > Cr > B > As > Cu > Co > Pb > V > Zn > Mn in the coal and Ni > Cr > As > B > Cu > Co = Pb > V > Zn > Mn in the coal ash are enriched in comparison with Clarke concentrations.

Vukasinovic-Pesic, V.; Rajakovic, L.J. [University of Montenegro, Podgorica (Montenegro)

2009-07-01T23:59:59.000Z

14

Improving clay content measurement in oxidic and volcanic ash soils of Hawaii by increasing dispersant concentration and ultrasonic energy levels  

Science Journals Connector (OSTI)

Abstract Quantifying clay content is a fundamental step in predicting and managing soil behaviors such as nutrient and water retention. However, clay measurements are underestimated when using standard methods of dispersion in soils rich in oxides and volcanic ash-derived non-crystalline minerals. Increasing levels of the chemical dispersant and ultrasonic energy are two simple techniques found to increase dispersion and clay measurements in temperate soils, but their effects are less known for oxidic and volcanic ash soils. In this study we investigated the effects of increasing dispersion concentration and ultrasonic energy on clay measurements for a range of oxidic and volcanic ash soils from Hawaii. While doubling and tripling the standard sodium hexametaphosphate concentration of 0.441 g L? 1 did not increase estimates of clay content, increasing levels of ultrasonic energy up to 1600 J mL? 1 significantly increased measured clay content for all oxide and volcanic ash soils. The response to ultrasonication was dependent on soil carbon, oxide content, and surface charge, with more energy needed to disperse soils higher in carbon, oxides, and positive charge. Scanning electron microscopy revealed damage to the sand fraction in some soils when ultrasonicated, but the extent of this damage was viewed as negligible. Porous sand-sized particles resembling pumice grains were also observed in some soils, suggesting that conventional particle size analysis and clay interpretations may not adequately describe surface related behaviors.

Joshua H.S. Silva; Jonathan L. Deenik; Russell S. Yost; Gregory L. Bruland; Susan E. Crow

2015-01-01T23:59:59.000Z

15

Ash, calcium, phosphorus and magnesium content of the metacarpus of hereford cows under different nutritional and physiological conditions  

E-Print Network [OSTI]

of hone is (plant Ltntivc Jy expl essed as lr~ &3 p0/ )2]3 ~ CnOOq. Other su ncrals besides calcium mhich are present in bone are phosphorus, magnesium' odium, chlorine and fluorine. The skeletal system is the main. depot for calcium, phosphorus...ASH, CALCIUM, PHOSPHORUS AND MAGNESIUM CONTENT OF THE METACARPUS OF HEREFORD COWS UNDER DIFFERENT NUTRITIONAL AND PHYSIOLOGICAL CONDITIONS A Thesis By MOZAMMEL HAQUE Submitted to the Graduate College of the Texas A&M University in partial...

Haque, Mozammel

2012-06-07T23:59:59.000Z

16

Ash Research from Palm Coast, Florida to Banff, Canada: Entry of Biomass in Modern Power Boilers  

Science Journals Connector (OSTI)

Six laboratories participated, and each performed five analyses, on three bituminous coal samples, focusing on their content of calcite, kaolinite, pyrite, and quartz. ... CCSEM of these ashes revealed that the fly ashes and deposits contained high quantities of salts, especially KCl, and varying quantities of K- and Ca-silicates, whereas the bottom ashes consisted of a mixture of quartz, K-, Ca-, and Al-silicates. ... Wang and Baxter(134) presented a work that systematically investigated the performance of biomass fly ash concrete, including mixtures of biomass fly ash and calcium hydroxide, with respect to strength, kinetics, and durability. ...

Flemming J. Frandsen

2009-04-23T23:59:59.000Z

17

System and method for constructing filters for detecting signals whose frequency content varies with time  

DOE Patents [OSTI]

A system and method for constructing a bank of filters which detect the presence of signals whose frequency content varies with time. The present invention includes a novel system and method for developing one or more time templates designed to match the received signals of interest and the bank of matched filters use the one or more time templates to detect the received signals. Each matched filter compares the received signal x(t) with a respective, unique time template that has been designed to approximate a form of the signals of interest. The robust time domain template is assumed to be of the order of w(t)=A(t)cos{2.pi..phi.(t)} and the present invention uses the trajectory of a joint time-frequency representation of x(t) as an approximation of the instantaneous frequency function {.phi.'(t). First, numerous data samples of the received signal x(t) are collected. A joint time frequency representation is then applied to represent the signal, preferably using the time frequency distribution series (also known as the Gabor spectrogram). The joint time-frequency transformation represents the analyzed signal energy at time t and frequency .function., P(t,f), which is a three-dimensional plot of time vs. frequency vs. signal energy. Then P(t,f) is reduced to a multivalued function f(t), a two dimensional plot of time vs. frequency, using a thresholding process. Curve fitting steps are then performed on the time/frequency plot, preferably using Levenberg-Marquardt curve fitting techniques, to derive a general instantaneous frequency function .phi.'(t) which best fits the multivalued function f(t), a trajectory of the joint time-frequency domain representation of x(t). Integrating .phi.'(t) along t yields .phi.(t), which is then inserted into the form of the time template equation. A suitable amplitude A(t) is also preferably determined. Once the time template has been determined, one or more filters are developed which each use a version or form of the time template.

Qian, Shie (Austin, TX); Dunham, Mark E. (Los Alamos, NM)

1996-01-01T23:59:59.000Z

18

System and method for constructing filters for detecting signals whose frequency content varies with time  

DOE Patents [OSTI]

A system and method are disclosed for constructing a bank of filters which detect the presence of signals whose frequency content varies with time. The present invention includes a novel system and method for developing one or more time templates designed to match the received signals of interest and the bank of matched filters use the one or more time templates to detect the received signals. Each matched filter compares the received signal x(t) with a respective, unique time template that has been designed to approximate a form of the signals of interest. The robust time domain template is assumed to be of the order of w(t)=A(t)cos(2{pi}{phi}(t)) and the present invention uses the trajectory of a joint time-frequency representation of x(t) as an approximation of the instantaneous frequency function {phi}{prime}(t). First, numerous data samples of the received signal x(t) are collected. A joint time frequency representation is then applied to represent the signal, preferably using the time frequency distribution series. The joint time-frequency transformation represents the analyzed signal energy at time t and frequency f, P(t,f), which is a three-dimensional plot of time vs. frequency vs. signal energy. Then P(t,f) is reduced to a multivalued function f(t), a two dimensional plot of time vs. frequency, using a thresholding process. Curve fitting steps are then performed on the time/frequency plot, preferably using Levenberg-Marquardt curve fitting techniques, to derive a general instantaneous frequency function {phi}{prime}(t) which best fits the multivalued function f(t). Integrating {phi}{prime}(t) along t yields {phi}{prime}(t), which is then inserted into the form of the time template equation. A suitable amplitude A(t) is also preferably determined. Once the time template has been determined, one or more filters are developed which each use a version or form of the time template. 7 figs.

Qian, S.; Dunham, M.E.

1996-11-12T23:59:59.000Z

19

Ray Penetration Window Technology of Mining Explosion-Proof Instrument for Measuring Ash Content of Coal  

Science Journals Connector (OSTI)

In order to improve the extraction rate and reduce the gangue content in coal ... control the top-coal caving. The ray penetration window technology breaks through the rules of ... and effectively solves the prob...

Wen-qing Wang

2012-01-01T23:59:59.000Z

20

Study of the correlation between the coal calorific value and coal ash content using X-ray fluorescence analysis  

Science Journals Connector (OSTI)

In this paper we have studied the possibility of determining the chemical elements in coal samples using X-ray fluorescence analysis and have found a relationship between the coal calorific value and its ash cont...

D. Bolortuya; P. Zuzaan; M. V. Gustova…

2013-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "ash content varying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Fly ash carbon passivation  

DOE Patents [OSTI]

A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

La Count, Robert B; Baltrus, John P; Kern, Douglas G

2013-05-14T23:59:59.000Z

22

Influence of Particle Morphology on the Hydraulic Behavior of Coal Ash and Sand  

Science Journals Connector (OSTI)

Residues of thermo electrical power plants are generically known as ashes, and can be classifies as slag, bottom ash and fly ash. Slag has a high content of unburned ... %) and coarse grains or clods. Bottom ash ...

Karla Salvagni Heineck; Rosemar Gomes Lemos…

2010-07-01T23:59:59.000Z

23

Fly ash chemical classification based on lime  

SciTech Connect (OSTI)

Typically, total lime content (CaO) of fly ash is shown in fly ash reports, but its significance is not addressed in US specifications. For certain applications a low lime ash is preferred. When a class C fly ash must be cementitious, lime content above 20% is required. A ternary S-A-C phase diagram pilot is given showing the location of fly ash compositions by coal rank and source in North America. Fly ashes from subbituminous coal from the Powder River Basin usually contain sufficient lime to be cementitious but blending with other coals may result in calcium being present in phases other than tricalcium aluminate. 9 refs., 1 fig.

Fox, J. [BASF Construction Chemicals, LLC (United States)

2007-07-01T23:59:59.000Z

24

Reburning Characteristics of Residual Carbon in Fly Ash from CFB Boilers  

Science Journals Connector (OSTI)

The content of residual carbon in fly ash of CFB boilers is a litter high especially when ... of fly ash through collection, recirculation in CFB furnace or external combustor is a possibly ... ash and correspond...

S. H. Zhang; H. H. Luo; H. P. Chen…

2010-01-01T23:59:59.000Z

25

Experimental Study on Ash-Returned Reactor of CFB Atmospheric Air Gasifier  

Science Journals Connector (OSTI)

In an attempt to improve the gasification efficiency and decrease the carbon content in fly ash of atmospheric air CFB gasifiers, an innovatory equipment by name ash-returned ... ash, and hence the coal conversio...

Zhang Shihong; Tian Luning; Zhou Xianrong…

2010-01-01T23:59:59.000Z

26

High carbon fly ash finds uses in highway construction  

SciTech Connect (OSTI)

The beneficial use of high carbon fly ash in a highway construction project is discussed. The fly ash also had a relatively high content of mercury and some other heavy metals. 1 fig., 4 photos.

Wen, H.; Patton, R. [University of Wisconsin at Madison, Madison, WI (United States). Recycled Materials Resources Center

2008-07-01T23:59:59.000Z

27

The effect of fly ash content and types of aggregates on the properties of pre-fabricated concrete interlocking blocks (PCIBs)  

E-Print Network [OSTI]

. Construction waste is mainly composed of concrete waste. Eguchi et al. [5] reported that construction industry power plants, causes environmental pollution while the cost of storage of fly ash is very high, processing and polishing stages with obvious impact on the environment. A huge quantity of construction waste

North Texas, University of

28

Characterization of ash cenospheres in fly ash from Australian power stations  

SciTech Connect (OSTI)

Ash cenospheres in fly ashes from five Australian power stations have been characterized. The experimental data show that ash cenosphere yield varies across the power stations. Ash partitioning occurred in the process of ash cenosphere formation during combustion. Contradictory to conclusions from the literature, iron does not seem to be essential to ash cenosphere formation in the cases examined in the present work. Further investigation was also undertaken on a series of size-fractioned ash cenosphere samples from Tarong power station. It is found that about 70 wt% of ash cenospheres in the bulk sample have sizes between 45 and 150 {mu}m. There are two different ash cenosphere structures, that is, single-ring structure and network structure. The percentage of ash cenospheres of a network structure increases with increasing ash cenosphere size. Small ash cenospheres (in the size fractions {lt}150 {mu}m) have a high SiO{sub 2}/Al{sub 2}O{sub 3} ratio, and the majority of the ash cenospheres are spherical and of a single-ring structure. Large ash cenosphere particles (in the size fractions of 150-250 {mu}m and {gt}250 {mu}m) have a low SiO{sub 2}/Al{sub 2}O{sub 3} ratio, and a high proportion of the ash cenospheres are nonspherical and of a network structure. A novel quantitative technique has been developed to measure the diameter and wall thickness of ash cenospheres on a particle-to-particle basis. A monolayer of size-fractioned ash cenospheres was dispersed on a pellet, which was then polished carefully before being examined using a scanning electron microscope and image analysis. The ash cenosphere wall thickness broadly increases with increasing ash cenosphere size. The ratios between wall thickness and diameter of ash cenospheres are limited between an upper bound of about 10.5% and a lower bound of about 2.5%, irrespective of the ash cenosphere size. 52 refs., 9 figs., 4 tabs.

Ling-ngee Ngu; Hongwei Wu; Dong-ke Zhang [Curtin University of Technology, Perth, WA (Australia). Centre for Fuels and Energy and Department of Chemical Engineering

2007-12-15T23:59:59.000Z

29

Effect of fuel properties on the bottom ash generation rate by a laboratory fluidized bed combustor  

SciTech Connect (OSTI)

The range of fuels that can be accommodated by an FBC boiler system is affected by the ability of the fuel, sorbent, and ash-handling equipment to move the required solids through the boiler. Of specific interest is the bottom ash handling equipment, which must have sufficient capacity to remove ash from the system in order to maintain a constant bed inventory level, and must have sufficient capability to cool the ash well below the bed temperature. Quantification of a fuel's bottom ash removal requirements can be useful for plant design. The effect of fuel properties on the rate of bottom ash production in a laboratory FBC test system was examined. The work used coal products ranging in ash content from 20 to 40+ wt. %. The system's classification of solids by particle size into flyash and bottom ash was characterized using a partition curve. Fuel fractions in the size range characteristic of bottom ash were further analyzed for distributions of ash content with respect to specific gravity, using float sink tests. The fuel fractions were then ashed in a fixed bed. In each case, the highest ash content fraction produced ash with the coarsest size consist (characteristic of bottom ash). The lower ash content fractions were found to produce ash in the size range characteristic of flyash, suggesting that the high ash content fractions were largely responsible for the production of bottom ash. The contributions of the specific gravity fractions to the composite ash in the fuels were quantified. The fuels were fired in the laboratory test system. Fuels with higher amounts of high specific gravity particles, in the size ranges characteristic of bottom ash, were found to produce more bottom ash, indicating the potential utility of float sink methods in the prediction of bottom ash removal requirements.

Rozelle, P.L.; Pisupati, S.V.; Scaroni, A.W. [Penn State University, University Park, PA (United States). Dept. of Energy & Geoenvironmental Engineering

2007-06-15T23:59:59.000Z

30

CONTENTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Operations Office RPD relative percent difference RSD relative standard deviation TIC tentatively identified compound DOERL-96-68, HASQARD Table of Contents, Rev. 3 Volume...

31

CONTENTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3.0 - CRITICAL, SPECIAL, & ENGINEERED LIFTS March 21, 2013 Rev 1 Page 1 CHAPTER 3.0 TABLE OF CONTENTS 3.0 CRITICAL LIFTS ......

32

CONTENTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

assurancecontrol) 3. Responsible operations manager 4. Equipment custodian 5. Cognizant engineer. *Reviewapproval is mandatory. 18.3.3 Hostile Environment Plan Contents The plan...

33

CONTENTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CONTENTS CONTENTS Introduction ........................................................................................................3 ON THE HORIZON: Promising Research Efforts Currently Underway A Smarter Charge .........................................................................................4 Unlocking Fire Ice .........................................................................................5 CRISP Crunches Cyber Threats ....................................................................6 Gel Zeroes in on Cancer ...............................................................................7 Liquid Solvent: A Solid Solution for CO 2 .....................................................8 Real-time Grid Stability ................................................................................9

34

Fly ash and concrete: a study determines whether biomass, or coal co-firing fly ash, can be used in concrete  

SciTech Connect (OSTI)

Current US national standards for using fly ash in concrete (ASTM C618) state that fly ash must come from coal combustion, thus precluding biomass-coal co-firing fly ash. The co-fired ash comes from a large and increasing fraction of US power plants due to rapid increases in co-firing opportunity fuels with coal. The fly ashes include coal fly ash, wood fly ash from pure wood combustion, biomass and coal co-fired fly ash SW1 and SW2. Also wood fly ash is blended with Class C or Class F to produce Wood C and Wood E. Concrete samples were prepared with fly ash replacing cement by 25%. All fly ash mixes except wood have a lower water demand than the pure cement mix. Fly ashes, either from coal or non coal combustion, increase the required air entraining agent (AEA) to meet the design specification of the mixes. If AEA is added arbitrarily without considering the amount or existence of fly ash results could lead to air content in concrete that is either too low or too high. Biomass fly ash does not impact concrete setting behaviour disproportionately. Switch grass-coal co-fired fly ash and blended wood fly ash generally lie within the range of pure coal fly ash strength. The 56 day flexure strength of all the fly ash mixes is comparable to that of the pure cement mix. The flexure strength from the coal-biomass co-fired fly ash does not differ much from pure coal fly ash. All fly ash concrete mixes exhibit lower chloride permeability than the pure cement mixes. In conclusion biomass coal co-fired fly ash perform similarly to coal fly ash in fresh and hardened concrete. As a result, there is no reason to exclude biomass-coal co-fired fly ash in concrete.

Wang, Shuangzhen; Baxter, Larry

2006-08-01T23:59:59.000Z

35

Utilization of CFB fly ash for construction applications  

SciTech Connect (OSTI)

Disposal in landfills has been the most common means of handling ash in circulating fluidized bed (CFB) boiler power plants. Recently, larger CFB boilers with generating capacities up to 300 MWe are currently being planned, resulting in increased volumes and disposal cost of ash by-product. Studies have shown that CFB ashes do not pose environmental concerns that should significantly limit their potential utilization. Many uses of CFB ash are being investigated by Foster Wheeler, which can provide more cost-effective ash management. Construction applications have been identified as one of the major uses for CFB ashes. Typically, CFB ash cannot be used as a cement replacement in concrete due to its unacceptably high sulfur content. However, CFB ashes can be used for other construction applications that require less stringent specifications including soil stabilization, road base, structural fill, and synthetic aggregate. In this study, potential construction applications were identified for fly ashes from several CFB boilers firing diverse fuels such as petroleum coke, refuse derived fuel (RDF) and coal. The compressive strength of hydrated fly ashes was measured in order to screen their potential for use in various construction applications. Based on the results of this work, the effects of both ash chemistry and carbon content on utilization potential were ascertained. Actual beneficial uses of ashes evaluated in this study are also discussed.

Conn, R.E.; Sellakumar, K.; Bland, A.E.

1999-07-01T23:59:59.000Z

36

Thermal behavior of spiral fin-and-tube heat exchanger having fly ash deposit  

SciTech Connect (OSTI)

This research investigates the effect of fly-ash deposit on thermal performance of a cross-flow heat exchanger having a set of spiral finned-tubes as a heat transfer surface. A stream of warm air having high content of fly-ash is exchanging heat with a cool water stream in the tubes. In this study, the temperature of the heat exchanger surface is lower than the dew point temperature of air, thus there is condensation of moisture in the air stream on the heat exchanger surface. The affecting parameters such as the fin spacing, the air mass flow rate, the fly-ash mass flow rate and the inlet temperature of warm air are varied while the volume flow rate and the inlet temperature of the cold water stream are kept constant at 10 l/min and 5 C, respectively. From the experiment, it is found that as the testing period is shorter than 8 h the thermal resistance due to the fouling increases with time. Moreover, the deposit of fly-ash on the heat transfer surface is directly proportional to the dust-air ratio and the amount of condensate on heat exchange surface. However, the deposit of fly-ash is inversely proportional to the fin spacing. The empirical model for evaluating the thermal resistance is also developed in this work and the simulated results agree well with those of the measured data. (author)

Nuntaphan, Atipoang [Thermal Technology Research Laboratory, Mae Moh Training Center, Electricity Generating Authority of Thailand, Mae Moh, Lampang 52220 (Thailand); Kiatsiriroat, Tanongkiat [Department of Mechanical Engineering, Chiang Mai University, Chiang Mai 50200 (Thailand)

2007-08-15T23:59:59.000Z

37

Fusibility and sintering characteristics of ash  

SciTech Connect (OSTI)

The temperature characteristics of ash fusibility are studied for a wide range of bituminous and brown coals, lignites, and shales with ratios R{sub B/A} of their alkaline and acid components between 0.03 and 4. Acritical value of R{sub B/A} is found at which the fusion temperatures are minimal. The sintering properties of the ashes are determined by measuring the force required to fracture a cylindrical sample. It is found that the strength of the samples increases sharply at certain temperatures. The alkali metal content of the ashes has a strong effect on their sintering characteristics.

Ots, A. A., E-mail: aots@sti.ttu.ee [Tallinn University of Technology (Estonia)

2012-03-15T23:59:59.000Z

38

Disposal of boiler ash  

SciTech Connect (OSTI)

As more boilers are converted from oil to solid fuels such as coal, the quantity of ash requiring disposal will increase dramatically. The factors associated with the development of land disposal systems for ash landfills are presented, including ash characterization, site selection procedures, design parameters, and costs.

Atwell, J.S.

1981-08-01T23:59:59.000Z

39

Chemical properties of urban waste ash produced by open burning on the Jos Plateau: implications for agriculture  

Science Journals Connector (OSTI)

Urban centres produce most of the world's waste and between a third and a half goes uncollected. The answer to the problem of waste disposal lies partly in agriculture, as waste can be extremely nutrient-rich. In the last decade there has been a tremendous increase in the developing world in total city area under informal food production and there are many examples of waste recycling onto the urban or peri-urban plots. Farmers on the Jos Plateau, Nigeria, have developed a successful soil fertility management strategy based on the combination of inorganic fertilisers, manure and urban waste ash. This study sought to provide some preliminary data on urban waste ash produced by open burning and used in farming in a developing country. Ash samples were collected from different locations around Jos and tested for C, N, pH, P, Na, K, Ca, Mg, Fe, Mn, Zn, Cu, Ni, Cd and Pb. It was found that ash is an effective liming material (because of the high pH, and high Ca, Mg and K contents), and has the potential to contribute significant quantities of micro-nutrients such as Mn, Zn and Cu. Ash, however, is far from being a homogenous material and its variability means that its fertilising potential will vary between batches and that, even if mean and median levels are low, there is the risk of the formation of localised areas of soil with excessive heavy metal contents (this is particularly the case with Pb). Further research is required to determine the plant-availability of these elements in the ash and to assess the wider environmental and health implications of uncontrolled, open burning of waste as a means of producing ash for agricultural purposes.

M.W. Pasquini; M.J. Alexander

2004-01-01T23:59:59.000Z

40

Coal Ash from Thermal Power Plants in Finland  

Science Journals Connector (OSTI)

This review summarizes formation mechanisms of coal ash, its chemistry and use pattern in the Finnish industry. Coal is composed of organic and inorganic materials. The properties of coal varies from one region t...

Arun B. Mukherjee; Ryunosuke Kikuchi

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ash content varying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Correlation relations between mineralogical components in ash from Kaa-Khem coals  

SciTech Connect (OSTI)

Regression analysis was used to study correlation relations between the mineral components of coals. Regularities in the variability of the concentrations of individual ash-forming elements with changing ash contents of coals and changing seam depth were found. The X-ray diffraction characteristics of coal ashes and the qualitative composition of their mineralogical components are presented.

N.N. Yanchat; L.Kh. Tas-ool [Russian Academy of Sciences, Kyzyl (Russia). Tuvinian Institute for Complex Exploration of Natural Resources

2008-08-15T23:59:59.000Z

42

Determination of Total Solids and Ash in Algal Biomass: Laboratory Analytical Procedure (LAP)  

SciTech Connect (OSTI)

This procedure describes the methods used to determine the amount of moisture or total solids present in a freeze-dried algal biomass sample, as well as the ash content. A traditional convection oven drying procedure is covered for total solids content, and a dry oxidation method at 575?C is covered for ash content.

Van Wychen, S.; Laurens, L. M. L.

2013-12-01T23:59:59.000Z

43

Ash limitation of physical coal beneficiation for medium–high ash coal—A geochemistry perspective  

Science Journals Connector (OSTI)

Abstract Nowadays the industrial coal beneficiation in China could only reduce the ash yield to about 10%, which could not meet the requirement or standard of environment protection. In this work, the possibility of reducing the ash yield was studied from the aspect of geochemistry. The channel samples were collected from two coal seams in Guizhou and Shanxi province, China and then conducted analysis by combining data from coals worldwide. The result reveals that the same coal seam or the coals deposited in the same peat swamp show a significantly positive correlation between ash yield and Al2O3 + SiO2 content, and the intercept of regression equation on the ash axis is always less than 5% (generally 2–5%). Overall, the coal from China is featured with a higher intercept compared with that in the other countries. The intercept of 2–5% on the ash axis indicates an original inorganic component in coal-forming peat. The research result also presents a theoretical limitation of coal ash by coal cleaning, because 2–5% of inorganic components in medium–high quality ash coal could hardly be separated by traditional physical coal beneficiation.

Wenfeng Wang; Weiduo Hao; Simon Xu; Fuchang Qian; Shuxun Sang; Yong Qin

2014-01-01T23:59:59.000Z

44

Classification of carbon in Canadian fly ashes and their implications in the capture of mercury  

Science Journals Connector (OSTI)

Fly ashes produced from Canadian power plants using pulverized coal and fluidized bed combustors were examined for their carbon content to determine their ability to capture mercury. The feed coal used in these power plants were lignite, subbituminous, high and medium volatile bituminous, their blends, and also blends of coal with petroleum coke (Petcoke). The carbon and mercury content of the coals and fly ashes were determined using the ASTM standard method and by the cold vapour atomic absorption spectrometry method. The carbon content of the fly ash was concentrated by strong acid digestion using \\{HCl\\} and HF. The quantitative and qualitative analyses of the carbon concentrate were made by using a reflected light microscope. The results show that the carbon content of fly ash appears to be partially related to depositional environment during coalification and to the rank of the coal. The Hg captured by the fly ash depends on the rank and blend of the feed coals and the type of carbon in the fly ash. The isotropic vitrinitic char is mostly responsible for the capture of most Hg in fly ash. The inadvertent increase in carbon content due to the blending of coal with petroleum coke did not increase the amount Hg captured by the fly ash. The fly ash collected by the hot side electrostatic precipitator has a low Hg content and no relation between the Hg and carbon content of the ash was observed. These results indicate that the quantity of carbon in the fly ash alone does not determine the amount Hg captured. The types of carbon present (isotropic and anisotropic vitrinitic, isotropic inertinitic and anisotropic Petcoke), the halogen content, the types of fly ash control devices, and the temperatures of the fly ash control devices all play major roles in the capture of Hg.

Fariborz Goodarzi; James C. Hower

2008-01-01T23:59:59.000Z

45

Coal fly ash–carbide lime bricks: An environment friendly building product  

Science Journals Connector (OSTI)

Abstract Coal fly ash and carbide lime are industrial by-products of coal combustion in thermal power plants and of manufacture of acetylene gas, respectively, available in profusion in southern Brazil. Research has been carried out to search for possible use of such materials to produce environmental friendly bricks that have high compressive strength. This study aims to evaluate strength controlling parameters of coal fly ash–carbide lime mixtures, as well as to show that porosity/carbide lime (?/Lv) ratio (corresponding to porosity divided by the volumetric carbide lime content) can be used to predict compressive strength (qu). The controlling parameters evaluated here are carbide lime content, porosity, curing temperature, curing time and porosity/carbide lime ratio. A number of unconfined compression tests were carried out. The results show that a power function adapts better the relation qu versus ?/Lv, in which Lv is adjusted by an exponent (in this case 0.11) for all coal fly ash–carbide lime mixtures studied. Equations that control the compressive strength for each curing period and curing temperature examined can be formulated using this unique ratio. Preferred strategies for varying ranges of qu are also proposed based on the energy required for heating, considering distinct curing periods and temperatures.

Nilo Cesar Consoli; Cecília Gravina da Rocha; Rodrigo Beck Saldanha

2014-01-01T23:59:59.000Z

46

Ash chemistry and mineralogy of an Indonesian coal during combustion: Part 1 Drop-tube observations  

Science Journals Connector (OSTI)

The paper reports a systematic and comprehensive laboratory investigation into the ash chemistry and mineralogical changes undergone by a low-rank Indonesian coal during combustion. Combustion experiments conducted in a drop-tube furnace included ash formation experiments (using cyclone and filter arrangement) under closely controlled conditions in the range of 1200–1400 °C and deposition experiments at a probe temperature of 750 °C. Tests conducted with raw coal, coal/additive mixtures and washed coal indicated significant changes in ash characteristics. Of the ash formation and deposit samples examined, the raw coal + bauxite showed the lowest glass content and high contents of corundum indicating low ash deposition propensities. When compared to the ash formation samples, the deposit samples showed even significantly lower glass contents and were enriched in quartz. With the exception of the raw coal + bauxite sample, all are characterized by high silica and iron and moderate aluminium contents. In contrast, the raw coal + bauxite sample have low silica and much higher alumina contents which is in agreement with XRD observations. QEMSCAN™ results showed that the ash particles are sparsely distributed suggesting lack of a deposit initiation layer. Experimental observations suggest that the use of raw coal with bauxite would appear to offer the best performance with respect to handling ash-related issues. Present findings are of practical significance to power utilities employing Indonesian coal as there is no comprehensive work reported in the literature on ash chemistry and mineralogy of such coals.

H.B. Vuthaluru; D. French

2008-01-01T23:59:59.000Z

47

Enhancement of phosphogypsum with high lime fly ash  

E-Print Network [OSTI]

ENHANCEMENT OF PHOSPHOGYPSUM WITH HIGH LIME FLY ASH A Thesis by CHUCK ALAN GREGORY Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1983 Major... Subject: Civil Engineering ENHANCEMENT OF PHOSPHOGYPSUM WITH HIGH'LIME FLY ASH A Thesis by CHUCK ALAN GREGORY Approved as to style and content by: Dr. ona d Saylak (Chairman f Committee) Dr. W. edbetter ( ember) (Member) r. Lloyd Deuel, 3...

Gregory, Chuck Alan

1983-01-01T23:59:59.000Z

48

The Fusibility of Blended Coal Ash  

Science Journals Connector (OSTI)

Ash fusibility temperatures (AFT) of coal ash are found at temperatures below the predicted liquidus temperature and, for ashes from blended coals, are generally nonlinear with respect to the blend proportion. ... ashing. ...

G. W. Bryant; G. J. Browning; H. Emanuel; S. K. Gupta; R. P. Gupta; J. A. Lucas; T. F. Wall

2000-02-25T23:59:59.000Z

49

Coal deposit characterization by gamma-gamma density/percent dry ash relationships  

E-Print Network [OSTI]

: pb = C + Va(pa) Equation 3 where C is a constant. Ash content can therefore be geophysically determined as variations In log-derived bulk density measurements are in direct response to variations in ash content. However, when any of the above... by applying the relationships between geophysi cally-derived gamma-gamma density and laboratory-derived percent dry ash. The linear gamma-gamma density/percent dry ash relationship is dependent upon a constant fuel ratio (percent fixed carbon...

Wright, David Scott

1984-01-01T23:59:59.000Z

50

Hydration and strength development of binder based on high-calcium oil shale fly ash  

SciTech Connect (OSTI)

The properties of high-calcium oil shale fly ash and low-calcium coal fly ash, which are produced in Israeli power stations, were investigated. High-calcium oil shale fly ash was found to contain a great amount of CaO{sub free} and SO{sub 3} in the form of lime and anhydrite. Mixtures of high-calcium oil shale fly ash and low-calcium coal fly ash, termed fly ash binder, were shown to cure and have improved strength. The influence of the composition and curing conditions on the compressive strength of fly ash binders was examined. The microstructure and the composition of fly ash binder after curing and long-term exposure in moist air, water and open air conditions were studied. It was determined that ettringite is the main variable in the strength and durability of cured systems. The positive effect of calcium silicate hydrates, CSH, which are formed by interaction of high-calcium oil shale fly ash and low-calcium coal fly ash components, on the carbonation and dehydration resistance of fly ash binder in open air is pronounced. It was concluded that high-calcium oil shale fly ash with high CaO{sub free} and SO{sub 3} content can be used as a binder for building products.

Freidin, C. [Ben-Gurion Univ. of the Negev, Sede-Boqer (Israel)] [Ben-Gurion Univ. of the Negev, Sede-Boqer (Israel)

1998-06-01T23:59:59.000Z

51

Utilization FLY ASH INFORMATION FROM  

E-Print Network [OSTI]

, quarries, and pits (34%), 6% for temporary stockpile, and 7% landfilled. Fly Ash In Europe, the utilization

Wisconsin-Milwaukee, University of

52

Mutagenicity and genotoxicity of coal fly ash water leachate  

SciTech Connect (OSTI)

Fly ash is a by-product of coal-fired electricity generation plants. The prevalent practice of disposal is as slurry of ash and water to storage or ash ponds located near power stations. This has lain to waste thousands of hectares of land all over the world. Since leaching is often the cause of off-site contamination and pathway of introduction into the human environment, a study on the genotoxic effects of fly ash leachate is essential. Leachate prepared from the fly ash sample was analyzed for metal content, and tested for mutagenicity and genotoxicity. Analyses of metals show predominance of the metals - sodium, silicon, potassium, calcium, magnesium, iron, manganese, zinc, and sulphate. The Ames Salmonella mutagenicity assay, a short-term bacterial reverse mutation assay, was conducted on two-tester strains of Salmonella typhimurium strains TA97a and TA102. For genotoxicity, the alkaline version of comet assay on fly ash leachate was carried in vitro on human blood cells and in vivo on Nicotiana plants. The leachate was directly mutagenic and induced significantconcentration-dependent increases in DNA damage in whole blood cells, lymphocytes, and in Nicotiana plants. The comet parameters show increases in tail DNA percentage (%), tail length (mu m), and olive tail moment (arbitrary units). Our results indicate that leachate from fly ash dumpsites has the genotoxic potential and may lead to adverse effects on vegetation and on the health of exposed human populations.

Chakraborty, R.; Mukherjee, A. [University of Calcutta, Calcutta (India). Dept. of Botany

2009-03-15T23:59:59.000Z

53

Differences in gasification behaviors and related properties between entrained gasifier fly ash and coal char  

SciTech Connect (OSTI)

In the study, two fly ash samples from Texaco gasifiers were compared to coal char and the physical and chemical properties and reactivity of samples were investigated by scanning electron microscopy (SEM), SEM-energy-dispersive spectrometry (EDS), X-ray diffraction (XRD), N{sub 2} and CO{sub 2} adsorption method, and isothermal thermogravimetric analysis. The main results were obtained. The carbon content of gasified fly ashes exhibited 31-37%, which was less than the carbon content of 58-59% in the feed coal. The fly ashes exhibited higher Brunauer-Emmett-Teller (BET) surface area, richer meso- and micropores, more disordered carbon crystalline structure, and better CO{sub 2} gasification reactivity than coal char. Ashes in fly ashes occurred to agglomerate into larger spherical grains, while those in coal char do not agglomerate. The minerals in fly ashes, especial alkali and alkaline-earth metals, had a catalytic effect on gasification reactivity of fly ash carbon. In the low-temperature range, the gasification process of fly ashes is mainly in chemical control, while in the high-temperature range, it is mainly in gas diffusion control, which was similar to coal char. In addition, the carbon in fly ashes was partially gasified and activated by water vapor and exhibited higher BET surface area and better gasification activity. Consequently, the fact that these carbons in fly ashes from entrained flow gasifiers are reclaimed and reused will be considered to be feasible. 15 refs., 7 figs., 5 tabs.

Jing Gu; Shiyong Wu; Youqing Wu; Ye Li; Jinsheng Gao [East China University of Science and Technology, Shanghai (China). Department of Chemical Engineering for Energy Resources and Key Laboratory of Coal Gasification of Ministry of Education

2008-11-15T23:59:59.000Z

54

Energy content of rotifers (Brachionus plicatilis and Brachionus rotundiformis) in relation to temperature  

Science Journals Connector (OSTI)

The effect of temperature on the chemical composition (carbon, nitrogenand ash content) and the energy content of the rotifers Brachionusplicatilis and Brachionus rotundiformis ... populations. Dry weightand carb...

M. Yúfera; G. Parra; E. Pascual

55

ASH EMISSIVITY CHARACTERIZATION AND PREDICTION  

SciTech Connect (OSTI)

The increased use of western subbituminous coals has generated concerns regarding highly reflective ash disrupting heat transfer in the radiant zone of pulverized-fuel boilers. Ash emissivity and reflectivity is primarily a function of ash particle size, with reflective deposits expected to consist of very small refractory ash materials such as CaO, MgO, or sulfate materials such as Na{sub 2}SO{sub 4}. For biomass fuels and biomass-coal blends, similar reflectivity issues may arise as a result of the presence of abundant organically associated calcium and potassium, which can transform during combustion to fine calcium, and potassium oxides and sulfates, which may act as reflective ash. The relationship of reflectivity to ash chemistry is a second-order effect, with the ash particle size distribution and melting point being determined by the size and chemistry of the minerals present in the starting fuel. Measurement of the emission properties of ash and deposits have been performed by several research groups (1-6) using both laboratory methods and measurements in pilot- and full-scale combustion systems. A review of the properties and thermal properties of ash stresses the important effect of ash deposits on heat transfer in the radiant boiler zone (1).

Christopher J. Zygarlicke; Donald P. McCollor; Charlene R. Crocker

1999-12-01T23:59:59.000Z

56

Modeling volcanic ash dispersal  

ScienceCinema (OSTI)

Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

None

2011-10-06T23:59:59.000Z

57

Ashe juniper seed production and germination, seedling dynamics and response of live oak/juniper  

E-Print Network [OSTI]

Germination of Ashe juniper seed were compared in a controlled environment at different levels of fruit maturation, lengths of storage, and seed stratification to determine potential germination. Annual mean germination varied by an order...

Reinecke, Rudolph Klaus

1996-01-01T23:59:59.000Z

58

E-Print Network 3.0 - ash bottom ash Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: of bottom ash, 3 million tons of boiler slag, and 28 million tons of clean-coal ash materials) were produced... CONTAINING CLEAN-COAL ASH AND CLASS F FLY ASH By...

59

Comparing properties of coal ash and alternative-fuel ash  

Science Journals Connector (OSTI)

The results of investigating ash produced in burning alternative kinds of fuel are discussed. Its impact on the environment is evaluated, and possibilities of recovering it are studied.

E. P. Dick; G. A. Ryabov; A. N. Tugov; A. N. Soboleva

2007-03-01T23:59:59.000Z

60

Construction of an embankment with a fly and bottom ash mixture: field performance study  

SciTech Connect (OSTI)

Fly ash and bottom ash are coal combustion by-products (CCBPs) that are generated in large quantities throughout the world. It is often economical to dispose ash as mixtures rather than separately; that notwithstanding, only a few studies have been performed to investigate the behavior of fly and bottom ash mixtures, particularly those with high contents of fly ash. Also, there is very limited data available in the literature on the field performance of structures constructed using ash mixtures. This paper describes the construction and the instrumentation of a demonstration embankment built with an ash mixture (60:40 by weight of fly ash:bottom ash) on State Road 641, Terre Haute, Ind. Monitoring of the demonstration embankment was conducted for a period of 1 year from the start of construction of the embankment. The settlement of the embankment stabilized approximately 5 months after the end of its construction. According to horizontal inclinometer readings, the differential settlement at the top of the embankment is about 5 mm. Results from field quality control tests performed during construction of the demonstration embankment and monitoring data from vertical and horizontal inclinometers and settlement plates indicate that the ash mixture investigated can be considered an acceptable embankment construction material.

Yoon, S.; Balunaini, U.; Yildirim, I.Z.; Prezzi, M.; Siddiki, N.Z. [Louisiana Transportation Research Center, Baton Rouge, LA (United States)

2009-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "ash content varying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Coal Ash Corrosion Resistant Materials Testing  

SciTech Connect (OSTI)

In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a moderate alkali content (0.2% sodium equivalents), thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that aggressive alkali sulfate constituents were present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. Test Section A was removed in November 2001 after about 24 months of service at the desired steam temperature set point, with about 15.5 months of exposure at full temperature. A progress report, issued in October 2002, was written to document the performance of the candidate alloys in that test section. The evaluation described the condition of each tube sample after exposure. It involved a determination of the rate of wall thickness loss for these samples. In cases where there was more than one sample of a candidate material in the test section, an assessment was made of the performance of the alloy as a function of temperature. Test Sections B and C were examined during the November 2001 outage, and it was decided that, due to excessive wastage, certain tube samples needed to be removed and replaced in order to ensure that Test Sections B and C would have a chance of remaining in the boiler for their intended exposure period. These suspect tube samples were replaced and the two remaining test sections were put back into service. The tube samples that were removed from Test Sections B and C were set aside for later analysis at the end of the planned exposure period. Test Sections B and C were again examined approximately six months later. At that time, measured wall thickness losses raised concerns about additional tube samples. These suspect samples were also removed, set aside for later analysis, and replaced. The test sections then went back into service until the end of the second exposure period, which was concluded in May 2003 when, due to evidence of excessive wastage, the valves were opened increasing cooling steam flow and thereby effectively stopping corrosion. In August 2003, Test Sections B and C were removed for closer examination. Section C had experienced about 42 months of service at the desired team temperature set point with 28.5 months at temperature at full temperature. Additional suspect samples were removed from Test Section B, then, it was re-installed into the boiler (at the location originally occupied by Section C), where it remained in service until the end of the program. Due to this removal history, the samples from Test Section B had a total service duration that varied from a minimum of 15.5 months (for samples that performed poorly) to 37 months for samples the survived for the full intended service exposure for Section B. The figure below shows a schematic of Test Section B and indicates the length of service exposure for different locations. This report provides the results of the evaluation of Test Section B, including the samples that remained in the Test Section for the full exposure period as well as those that were removed early. This report also is intended to compare and summarize the results for all three test sections. The analysis of T

D. K. McDonald; P. L. Daniel; D. J. DeVault

2007-12-31T23:59:59.000Z

62

Feasible experimental study on the utilization of a 300 MW CFB boiler desulfurizating bottom ash for construction applications  

SciTech Connect (OSTI)

CFB boiler ash cannot be used as a cement replacement in concrete due to its unacceptably high sulfur content. The disposal in landfills has been the most common means of handling ash in circulating fluidized bed boiler power plants. However for a 300 MW CFB boiler power plant, there will be 600,000 tons of ash discharged per year and will result in great volumes and disposal cost of ash byproduct. It was very necessary to solve the utilization of CFB ash and to decrease the disposal cost of CFB ash. The feasible experimental study results on the utilization of the bottom ashes of a 300 MW CFB boiler in Baima power plant in China were reported in this paper. The bottom ashes used for test came from the discharged bottom ashes in a 100 MW CFB boiler in which the anthracite and limestone designed for the 300 MW CFB project was burned. The results of this study showed that the bottom ash could be used for cementitious material, road concrete, and road base material. The masonry cements, road concrete with 30 MPa compressive strength and 4.0 MPa flexural strength, and the road base material used for base courses of the expressway, the main road and the minor lane were all prepared with milled CFB bottom ashes in the lab. The better methods of utilization of the bottom ashes were discussed in this paper.

Lu, X.F.; Amano, R.S. [University of Wisconsin, Milwaukee, WI (United States). Dept. of Mechanical Engineering

2006-12-15T23:59:59.000Z

63

Development of Artificial Ash Accelerated Accumulation Test ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Artificial Ash Accelerated Accumulation Test Development of Artificial Ash Accelerated Accumulation Test Poster presented at the 16th Directions in Engine-Efficiency and Emissions...

64

EFFECTS OF FLY ASH ON MERCURY OXIDATION DURING POST COMBUSTION CONDITIONS  

SciTech Connect (OSTI)

Tests were performed in simulated flue gas streams using two fly ash samples from the electrostatic precipitators of two full-scale utility boilers. One fly ash was derived from a Powder River Basin (PRB) coal, while the other was derived from Blacksville coal (Pittsburgh No. 8 seam). The tests were performed at temperatures of 120 and 180 C under different gas compositions using whole fly ash samples as well as magnetic and nonmagnetic concentrates from sized fly ash. Only the Blacksville ash contained magnetic phases. The whole and fractionated fly ash samples were analyzed for morphology, chemical composition, mineralogical composition, total organic carbon, porosity, and surface area. Mineralogically, the Blacksville ash was composed predominantly of magnetite, hematite, quartz, and mullite, while the PRB ash contained mostly quartz with lesser amounts of lime, periclase, and calcium aluminum oxide. The iron oxides in the Blacksville ash were concentrated almost entirely in the largest size fraction. As anticipated, there was not a clean separation of magnetic (Fe-rich) and nonmagnetic (aluminosilicate-rich) phases for the Blacksville ash. The Blacksville ash had a significantly higher surface area and a much higher unburned carbon content than the PRB ash. Elemental mercury (Hg) streams were injected into the simulated flue gas and passed over filters (housed in a convection oven) loaded with fly ash. Concentrations of total, oxidized, and elemental Hg downstream from the ash samples were determined by the Ontario Hydro Method. The gas stream composition and whether or not ash was present in the gas stream were the two most important variables. Based on the statistical analyses, the presence of HCl, NO, NO{sub 2}, and SO{sub 2} and all two-way gas interactions were significant. In addition, it appears that even four-factor interactions between those gases are significant. The HCl, NO{sub 2}, and SO{sub 2} were critical gases resulting in Hg oxidation, while the presence of NO appeared to suppress oxidation. The Blacksville fly ash tended to show slightly more catalytic activity than the PRB fly ash, but this could be largely due to the higher surface area of the Blacksville ash. Temperature was not a statistically important factor. The magnetic (Fe-rich) phases did not appear to be more catalytically active than the nonmagnetic phases, and unburned carbon did not appear to play a critical role in oxidation chemistry.

Unknown

2000-10-01T23:59:59.000Z

65

Prickly Ash and Prickly Pear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Prickly Ash and Prickly Pear Prickly Ash and Prickly Pear Nature Bulletin No. 649-A October 1, 1977 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation PRICKLY ASH AND PRICKLY PEAR In the plant kingdom, as among people, there are so-me that we avoid. They have few virtues, if any, and our experiences with them are painful or have unpleasant after effects. Poison ivy is a notorious example. Prickly Ash, a shrub, is another. Although not poisonous it is thickly armed with wicked thorns and has no ornamental, economic or wildlife value. In 1821 when the first section lines were established in Cook County, the surveyor recorded -- for the benefit of land buyers -- the principal kinds of trees and other vegetation observed along each mile. He frequently encountered prickly ash in thickets near the Little Calumet River and also the north and south branches of the Chicago River.

66

A STUDY OF THE EFFECTS OF POST-COMBUSTION AMMONIA INJECTION ON FLY ASH QUALITY: CHARACTERIZATION OF AMMONIA RELEASE FROM CONCRETE AND MORTARS CONTAINING FLY ASH AS A POZZOLANIC ADMIXTURE  

SciTech Connect (OSTI)

The Clean Air Act Amendments of 1990 require large reductions in emissions of NO{sub x} from coal-fired electric utility boilers. This will necessitate the use of ammonia injection, such as in selective catalytic reduction (SCR), in many power plants, resulting in the deposition of ammonia on the fly ash. The presence of ammonia could create a major barrier to fly ash utilization in concrete because of odor concerns. Although there have been limited studies of ammonia emission from concrete, little is known about the quantity of ammonia emitted during mixing and curing, and the kinetics of ammonia release. This is manifested as widely varying opinions within the concrete and ash marketing industry regarding the maximum acceptable levels of ammonia in fly ash. Therefore, practical guidelines for using ammoniated fly ash are needed in advance of the installation of many more SCR systems. The goal of this project was to develop practical guidelines for the handling and utilization of ammoniated fly ash in concrete, in order to prevent a decrease in the use of fly ash for this application. The objective was to determine the amount of ammonia that is released, over the short- and long-term, from concrete that contains ammoniated fly ash. The technical approach in this project was to measure the release of ammonia from mortar and concrete during mixing, placement, and curing. Work initially focused on laboratory mortar experiments to develop fundamental data on ammonia diffusion characteristics. Larger-scale laboratory experiments were then conducted to study the emission of ammonia from concrete containing ammoniated fly ash. The final phase comprised monitoring ammonia emissions from large concrete slabs. The data indicated that, on average, 15% of the initial ammonia was lost from concrete during 40 minutes of mixing, depending on the mix proportions and batch size. Long-term experiments indicated that ammonia diffusion from concrete was relatively slow, with greater than 50% of the initial ammonia content remaining in an 11cm thick concrete slab after 1 month. When placing concrete in an enclosed space, with negligible ventilation, it is recommended that the ammonia concentration in the concrete mix water should not exceed 110 mg NH{sub 3}/L, if the NIOSH exposure limit of 25 ppm in the air is not to be exceeded. If even a modicum of ventilation is present, then the ammonia concentration in the concrete water should be less than 170 mg/L. The maximum level of ammonia in the fly ash can then be calculated using these limits if the concrete mix proportions are known. In general, during the mixing and placement of ammonia-laden concrete, no safety concerns were encountered. The only location where the ammonia concentration attained high levels (i.e. > 25 ppm in the air) was within the concrete mixing drum.

Robert F. Rathbone; Thomas L. Robl

2002-10-30T23:59:59.000Z

67

Simulation of Coal Ash Particle Deposition Experiments  

Science Journals Connector (OSTI)

Simulation of Coal Ash Particle Deposition Experiments† ... Ichikawa et al.(7) measured deposition behavior for ash particles from ashing tests for a series of five coals, using a nominally 1 m tall × 60 mm diameter ash-heating tube that was fitted with a cooled, temperature-controlled particle impact probe oriented at a 30° angle to the atmospheric pressure air flow. ...

Weiguo Ai; John M. Kuhlman

2011-01-20T23:59:59.000Z

68

Insurance coverage for coal ash liabilities  

SciTech Connect (OSTI)

The paper discusses how liability insurance can be a valuable tool for limiting coal ash liabilities.

Elkind, D.L. [Dickstein Shapiro LLP (United States)

2009-07-01T23:59:59.000Z

69

Patterns of energy content in plants from the venezuelan paramos  

Science Journals Connector (OSTI)

Determinations of energy and ash content were made on the organs of some ... Venezuelan páramos. The results indicate differences in energy content among the life forms sampled. Giant rosette ... the roots while ...

Zdravko Baruch

1982-10-01T23:59:59.000Z

70

Effect of Coal Ash Composition on Ash Fusion Temperatures  

Science Journals Connector (OSTI)

Experiments have been conducted in which mixtures of selected coal ashes and SiO2, Al2O3, CaO, Fe2O3, and MgO were subjected to the standard test for ash fusibility. ... One property that specifically gives detail information on the suitability of a coal source [Alpern, B., Nahuys, J., Martinez, L. Mineral matter in ashy and non-washable coals-its influence on chem. ...

Wen J. Song; Li H. Tang; Xue D. Zhu; Yong Q. Wu; Zi B. Zhu; Shuntarou Koyama

2009-08-11T23:59:59.000Z

71

2003 Conference on Unburned Carbon on Utility Fly Ash  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2003 Conference on Unburned Carbon on Utility Fly Ash 2003 Conference on Unburned Carbon on Utility Fly Ash October 28, 2003 Table of Contents Disclaimer Participants List [PDF-31KB] Papers and Presentations Control Measures Predictive Performance Tools (Including Instrumentation) Processing and Utilization of High-LOI Fly Ash Beneficiation of High-LOI Fly Ash Characterization of High-LOI Fly Ash Poster Presentations Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

72

An overview of the behaviour of biomass during combustion: Part II. Ash fusion and ash formation mechanisms of biomass types  

Science Journals Connector (OSTI)

Abstract An extended overview of the phase–mineral transformations of organic and inorganic matter during biomass combustion was conducted in Part I of the present work. The ash fusion and ash formation mechanisms of biomass types and sub-types during combustion are described in the present Part II. For that purpose the identified systematic associations based on the occurrence, content and origin of elements and phases in the biomass ash (BA) system, namely (1) Si–Al–Fe–Na–Ti (mostly glass, silicates and oxyhydroxides); (2) Ca–Mg–Mn (commonly carbonates, oxyhydroxides, glass, silicates and some phosphates and sulphates); and (3) K–P–S–Cl (normally phosphates, sulphates, chlorides, glass and some silicates and carbonates); were used as classification of \\{BAs\\} into four types (“S”, “C”, “K” and “CK”) and six sub-types with high, medium and low acid tendencies and their description was given. Then, topics related to ash fusion behaviour such as: some general considerations and observations about ash melting; ash fusion temperatures (AFTs) of biomass and their comparisons with coal; relationships between \\{AFTs\\} and inorganic composition of biomass and coal; and ash fusion mechanisms of biomass and coal are characterized. Further, issues connected with the ash formation mechanisms of BA types and sub-types are discussed. Subsequently, aspects related to potential applications of ash formation mechanisms for BA types and sub-types, namely some key technological problems (fusion, slagging and fouling predictions, low ash fusion temperatures, co-combustion and application of BA) and environmental risks (volatilization, capture and water leaching of hazardous elements) are described. Finally, it is emphasized that the application of this new classification approach based on combined phase–mineral and chemical composition of biomass and BA has not only fundamental importance, but also has potential applications in prediction of behaviour and properties connected with the innovative and sustainable utilization of biomass and BA. It is also demonstrated that the definitive utilization, technological and environmental advantages and challenges related to biomass and BA associate preferentially with their specific types and sub-types and they could be predictable to some extent by using the above or similar combined chemical and phase–mineral classification approaches.

Stanislav V. Vassilev; David Baxter; Christina G. Vassileva

2014-01-01T23:59:59.000Z

73

Moon Dust and Coal Ash  

Science Journals Connector (OSTI)

... struck by the similarity between the preliminary descriptions of moon dust and that of the ash residue collected from pulverized ... residue collected from pulverized coal-fired boilers (that is, pulverized fuel ...

A. B. HART; E. RAASK

1969-08-16T23:59:59.000Z

74

Sustainable Use of Biofuel by Recycling Ash to Forests:? Treatment of Biofuel Ash  

Science Journals Connector (OSTI)

Sustainable Use of Biofuel by Recycling Ash to Forests:? Treatment of Biofuel Ash ... Ash samples from combustion of biofuels in a circulating fluidized bed and grate-firing combustion plants are studied. ...

Maryam Mahmoudkhani; Tobias Richards; Hans Theliander

2007-04-26T23:59:59.000Z

75

Cast-Concrete Products Made with FBC Ash and Wet-Collected Coal-Ash  

E-Print Network [OSTI]

. DOI: 10.1061/ ASCE 0899-1561 2005 17:6 659 CE Database subject headings: Recycling; Ashes; Concrete et al. 1991 . Fluidized bed combustion FBC ash is the ash produced by an FBC boiler in which the coal

Wisconsin-Milwaukee, University of

76

Transformations and affinities for sulfur of Chinese Shenmu coal ash in a pulverized coal-fired boiler  

SciTech Connect (OSTI)

The self-desulfurization efficiency of Shenmu coal with a high initial Ca/S molar ratio of 2.02 was measured in a 1,025 t/h pulverized coal-fired boiler. It increases from 29% to 32% when the power capacity decreases from 100% to 70%. About 60% of the mineral matter and calcium element fed into the furnace is retained in the fly ash, while less than 10% is retained in the bottom ash. About 70% of the sulfur element fed into the furnace is emitted as SO{sub 2} in the flue gas, while less than 10% is retained in the fly ash and less than 1% is retained in the bottom ash. The mineralogical compositions of feed coal, fly ash, and bottom ash were obtained by X-ray diffraction analysis. It is found that the initial amorphous phase content is 91.17% and the initial CaCO{sub 3} phase content is 2.07% in Shenmu coal. The vitreous phase and sulfation product CaSO{sub 4} contents are, respectively, 70.47% and 3.36% in the fly ash obtained at full capacity, while the retained CaCO{sub 3} and CaO contents are, respectively, 4.73% and 2.15%. However, the vitreous phase content is only 25.68% and no CaSO{sub 4} is detected in the bottom ash obtained at full capacity. When the power capacity decreases from 100% to 70%, the vitreous phase content in fly ash decreases from 70.47% to 67.41% and that in bottom ash increases from 25.68% to 28.10%.

Cheng, J.; Zhou, J.H.; Liu, J.Z.; Cao, X.Y.; Cen, K.F. [Zhejiang University, Hangzhou (China)

2009-07-01T23:59:59.000Z

77

Long duration ash probe  

DOE Patents [OSTI]

A long duration ash probe includes a pressure shell connected to a port in a combustor with a sample coupon mounted on a retractable carriage so as to retract the sample coupon within the pressure shell during sootblowing operation of the combustor. A valve mounted at the forward end of the pressure shell is selectively closeable to seal the sample coupon within the shell, and a heating element in the shell is operable to maintain the desired temperature of the sample coupon while retracted within the shell. The carriage is operably mounted on a pair of rails within the shell for longitudinal movement within the shell. A hollow carrier tube connects the hollow cylindrical sample coupon to the carriage, and extends through the carriage and out the rearward end thereof. Air lines are connected to the rearward end of the carrier tube and are operable to permit coolant to pass through the air lines and thence through the carrier tube to the sample coupon so as to cool the sample coupon.

Hurley, John P. (Grand Forks, ND); McCollor, Don P. (Grand Forks, ND); Selle, Stanley J. (Grand Forks, MN)

1994-01-01T23:59:59.000Z

78

Long duration ash probe  

DOE Patents [OSTI]

A long duration ash probe includes a pressure shell connected to a port in a combustor with a sample coupon mounted on a retractable carriage so as to retract the sample coupon within the pressure shell during soot blowing operation of the combustor. A valve mounted at the forward end of the pressure shell is selectively closeable to seal the sample coupon within the shell, and a heating element in the shell is operable to maintain the desired temperature of the sample coupon while retracted within the shell. The carriage is operably mounted on a pair of rails within the shell for longitudinal movement within the shell. A hollow carrier tube connects the hollow cylindrical sample coupon to the carriage, and extends through the carriage and out the rearward end thereof. Air lines are connected to the rearward end of the carrier tube and are operable to permit coolant to pass through the air lines and thence through the carrier tube to the sample coupon so as to cool the sample coupon. 8 figs.

Hurley, J.P.; McCollor, D.P.; Selle, S.J.

1994-07-26T23:59:59.000Z

79

Speciation of Selenium, Arsenic, and Zinc in Class C Fly Ash  

SciTech Connect (OSTI)

A major environmental concern associated with coal fly ash is the mobilization of trace elements that may contaminate water. To better evaluate proper use of fly ash, determine appropriate disposal methods, and monitor postdisposal conditions, it is important to understand the speciation of trace elements in fly ash and their possible environmental impact. The speciation of selenium, arsenic, and zinc was determined in five representative Class C fly ash samples from combustion of sub-bituminous Powder River Basin coal using synchrotron-based X-ray absorption spectroscopy to provide an improved understanding of the mechanisms of trace element association with the fly ash. Selenium in all fly ash samples occurs predominantly as Se(IV), with the exception of one sample, in which there was a minor amount of Se(0). Se(0) is likely associated with the high content of unburned coal in the sample. Arsenic exists in the fly ash as a single phase most consistent with calcium pyroarsenate. In contrast, zinc occurs as two distinct species in the silicate glass matrix of the fly ash. This work demonstrates that residual carbon in fly ash may reduce potential Se mobility in the environment by retaining it as less soluble elemental Se instead of Se(IV). Further, this work suggests that As and Zn in Class C fly ash will display substantially different release and mobilization behaviors in aquatic environments. While As release will primarily depend upon the dissolution and hydrolysis of calcium pyroarsenate, Zn release will be controlled by the dissolution of alkaline aluminosilicate glass in the ash.

Luo, Yun; Giammar, Daniel E.; Huhmann, Brittany L.; Catalano, Jeffrey G. (WU)

2011-11-17T23:59:59.000Z

80

Measurement of natural radioactivity and radon exhalation rate in fly ash samples from a thermal power plant and estimation of radiation doses  

Science Journals Connector (OSTI)

Fly ash produced by coal-burning in thermal power station has become a subject of world wide interest in recent years because of its diverse uses in construction activities and considerable economic and environmental importance. Fly ash is used in the production of bricks, sheets, cement and also in land filling etc. Indian coals used in thermal power plants are found to have high ash contents, resulting in the production of large amount of fly ash. Coal contains radionuclides including uranium (the source of inert gas radon), Th and K. Thus coal combustion results in enhanced concentration of natural radionuclides 226Ra, 232Th and 40K. Since these radionuclides concentration in fly ash plays an important role in health physics it is important to measure radionuclides concentration in fly ash. In the present work enhanced radioactivity and radon exhalation rate from fly ash samples collected from a thermal power plant of NTPC (National Thermal Power Corporation), Dadri (U.P.) India, have been measured. A high resolution gamma ray spectroscopic system has been used for the measurement of natural radioactivity (226Ra, 232Th and 40K). Gamma spectrometric measurements were carried out at Inter-University Accelerator Centre, New Delhi using a coaxial n-type \\{HPGe\\} detector (EG&G, ORTEC, Oak Ridge, USA). Activity concentration of 226Ra varies from 81.8 ± 2.2 to 177.3 ± 10.0 Bq kg?1 with an average value of 118.6 ± 7.4 Bq kg?1 and of 232Th from 111.6 ± 3.2 to 178.5 ± 3.9 Bq kg?1 with an average value of 147.0 ± 3.4 Bq kg?1. 40K activity was found to be below detection limit in some samples while other samples have shown potassium activity to vary from 365.9 ± 4.8 to 495.9 ± 6.2 Bq kg?1 with an average value of 352.0 ± 4.5 Bq kg?1. Surface radon exhalation rates (EA) and Mass exhalation rates (EM) in these samples were measured by “Sealed can technique” using LR-115 type II track detectors. EA is found to vary from 80.1 ± 9.3 to 242.7 ± 16.3 mBq m?2 h?1 with an average value 155.5 ± 12.8 mBq m?2 h?1, while EM varies from 3.1 ± 0.4 to 9.3 ± 0.6 mBq kg?1 h?1 with an average value of 6.0 ± 0.5 mBq kg?1 h?1. Radium equivalent activity (Raeq), related to the external gamma dose and internal dose due to radon and its daughters range from 283.2 to 422.4 Bq kg?1 with an average value of 353.9 Bq kg?1. The calculated values of external hazard index (Hex) vary from 0.77 to 1.87 with an average value of 1.03. Most of the samples show the value of Raeq close to the allowed upper limit of 370 Bq kg?1 and Hex close to unity respectively except in two samples. Annual effective dose varies from 0.15 to 0.23 mSv y?1 with an average value 0.19 mSv y?1.

Mamta Gupta; Ajay Kumar Mahur; Rati Varshney; R.G. Sonkawade; K.D. Verma; Rajendra Prasad

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ash content varying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Effects of wood chip ash fertilization on soil chemistry in a Norway spruce plantation on a nutrient-poor soil  

Science Journals Connector (OSTI)

Abstract Harvest of forest biomass for energy production may lead to export of nutrients from the forest. Recirculation of nutrients from wood chip combustion by ash spreading in forests has been proposed as a means for counteracting the nutrient export. This study was carried out to examine the effect of wood chip ash application on soil chemistry in a 44-year-old Norway spruce (Picea abies) plantation on a nutrient-poor soil in Denmark and to investigate the effect of applying different ash types and doses. Soil samples were collected and analyzed 2.5 years (3 growing seasons) after ash application. This study shows that, regardless of ash formulation, preparation or dose, application of wood ash to forest soil has a liming effect in the O-horizon manifested as an increase in CECe, BS and pH. This effect was not seen in the mineral soil within the time frame of this study. At the same time, an increase in Cd was found in the O-horizon, corresponding to the amount added in the ashes. Generally, no other increase in soil contents of the heavy metals was seen. Hardening of the wood ash did not decrease the chemical impact on the soil chemistry as compared to non-treated ash whereas an increase in ash application dose increases the liming effect.

Morten Ingerslev; Mette Hansen; Lars Bo Pedersen; Simon Skov

2014-01-01T23:59:59.000Z

82

Crystallization of Coal Ash Slags at High Temperatures and Effects on the Viscosity  

Science Journals Connector (OSTI)

The coal samples were ashed in a muffle furnace at 815 °C, according to the Chinese Standard GB/T1574-2007. ... Shenfu and Beisu coals are enriched in glass modifying oxides (CaO + Fe2O3 + MgO > 30%), while the contents of Al2O3 in Baodian coal ash is higher than 30%; therefore, they exhibit the crystalline slag behavior. ... compn. of coals and coal ashes from a wide variety of deposits (41) were studied by a melting test, x-ray diffractometry, light microscopy, differential-thermal, thermogravimetric and chem. ...

Haiping Yuan; Qinfeng Liang; Xin Gong

2012-04-16T23:59:59.000Z

83

Influence of age/size and grazing history on understory relationships of Ashe juniper  

E-Print Network [OSTI]

INFLUENCE OF AGE/SIZE AND GRAZING HISTORY ON UNDERSTORY RELATIONSHIPS OF ASHE JUNIPER A Thesis by SAMUEL DEAN FUHLENDORF Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 1992 Major Subject: Rangeland Ecology and Management INFLUENCE OF AGE/SIZE AND GRAZING HISTORY ON UNDERSTORY RELATIONSHIPS OF ASHE JUNIPER A Thesis by SAMUEL DEAN FUHLENDORF Approved as to style and content by...

Fuhlendorf, Samuel Dean

1992-01-01T23:59:59.000Z

84

Evaluation of lime-fly ash stabilized bases and subgrades using static and dynamic deflection systems  

E-Print Network [OSTI]

EVALUATION OF LIME-FLY ASH STABILIZED BASFS AND SUBGRADES USING STATIC AND DYNAMIC DEFLECTION SYSTEMS A Thesis GARY W. RABA Submitted to the Graduate College of Texas AIIM University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 1982 Major Subject: Civil Engineering EVALUATION OF LIME-FLY ASH STABILIZED BASES AND SUBGRADES USING STATIC AND DYNAMIC DEFLECTION SYSTEMS A Thesis by Gary Nl. Raba Approved as to style and content by: !Chairman...

Raba, Gary W.

1982-01-01T23:59:59.000Z

85

Factors influencing plant succession following fire in Ashe juniper woodland types in Real County, Texas  

E-Print Network [OSTI]

FACTORS INFLUENCING PLANT SUCCESSION FOLLOWING FIRE IN ASHE JUHIPER WOODLAND TYPES IN REAL COUNTY& TEXAS By DONAID L. RUSS Approved as to style end content by: ~c-". '~ Z). 4:-. = Chairman of Committee Bead of Depantme Nay l954. LIBgARV A... A M GOLLEGL OF TEXAS FACTORS INFLUENCING PLANT SUCCESSION FOLLOWING FIRE IN ASHE JUNIPER WO(NILAND TIPES IN REAL COUNTI, TEUIS Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment oi...

Huss, Donald Lee

1954-01-01T23:59:59.000Z

86

Coal Ash Corrosion Resistant Materials Testing  

SciTech Connect (OSTI)

In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a reasonably high alkali content, thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was well within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that the aggressive alkali-iron-trisulfate constituent was present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. This report provides the results of the evaluation of Test Section C, including the samples that remained in the Test Section for the full exposure period as well as those that were removed early. The analysis of Test Section C followed much the same protocol that was employed in the assessment of Test Section A. Again, the focus was on determining and documenting the relative corrosion rates of the candidate materials. The detailed results of the investigation are included in this report as a series of twelve appendices. Each appendix is devoted to the performance of one of the candidate alloys. The table below summarizes metal loss rate for the worst case sample of each of the candidate materials for both Test Sections A and C. The body of this report compares these for all of the samples in the test section. The 'Coal Ash Corrosion Resistant Materials Testing Program' is being conducted by The Babcock & Wilcox Company (B&W), the U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) at Reliant Energy's Niles plant in Niles, Ohio to provide full-scale, in-situ testing of recently developed boiler superheater materials. Fireside corrosion is a key issue for improving efficiency of new coal fired power plants and improving service life in existing plants. In November 1998, B&W began development of a system to permit testing of advanced tube materials at metal temperatures typical of advanced supercritical steam temperatures (1100 F and higher) in a boiler exhibiting coal ash corrosive conditions. Several materials producers including Oak Ridge National Laboratory (ORNL) contributed advanced materials to the project. In the spring of 1999 a system consisting of three identical sections, each containing multiple segments of twelve different materials, was installed. The sections are cooled by reheat steam, and are located just above the furnace entrance in Niles Unit No.1, a 110 MWe unit firing high sulfur Ohio coal. In November 2001 the first section was removed for thorough metallurgical evaluation after 29 months of operation. The second section was removed in August of 2003. Its evaluation has been completed and is the subject of this report. The final section remains in service and is expected to be removed in the spring of 2005. This paper describes the program; its importance, the design, fabrication, installation and operation of the test system, materials utilized, and experience to date. This report briefly reviews the results of the evaluation of the first section and then presents the results of the evaluation of the second section.

D. K. McDonald; P. L. Daniel; D. J. DeVault

2003-08-31T23:59:59.000Z

87

Investigation of the relationship between particulate-bound mercury and properties of fly ash in a full-scale 100 MWe pulverized coal combustion boiler  

SciTech Connect (OSTI)

The properties of fly ash in coal-fired boilers influence the emission of mercury from power plants into the environment. In this study, seven different bituminous coals were burned in a full-scale 100 MWe pulverized coal combustion boiler and the derived fly ash samples were collected from a mechanical hopper (MH) and an electrostatic precipitator hopper (ESP). The mercury content, specific surface area (SSA), unburned carbon, and elemental composition of the fly ash samples were analyzed to evaluate the correlation between the concentration of particulate-bound mercury and the properties of coal and fly ash. For a given coal, it was found that the mercury content in the fly ash collected from the ESP was greater than in the fly ash samples collected from the MHP. This phenomenon may be due to a lower temperature of flue gas at the ESP (about 135{sup o}C) compared to the temperature at the air preheater (about 350{sup o}C). Also, a significantly lower SSA observed in MH ash might also contribute to the observation. A comparison of the fly ash samples generated from seven different coals using statistical methods indicates that the mercury adsorbed on ESP fly ashes has a highly positive correlation with the unburned carbon content, manganese content, and SSA of the fly ash. Sulfur content in coal showed a significant negative correlation with the Hg adsorption. Manganese in fly ash is believed to participate in oxidizing volatile elemental mercury (Hg{sup 0}) to ionic mercury (Hg{sup 2+}). The oxidized mercury in flue gas can form a complex with the fly ash and then get removed before the flue gas leaves the stack of the boiler.

Sen Li; Chin-Min Cheng; Bobby Chen; Yan Cao; Jacob Vervynckt; Amanda Adebambo; Wei-Ping Pan [Western Kentucky University, Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology

2007-12-15T23:59:59.000Z

88

Cosmology with varying constants  

Science Journals Connector (OSTI)

...with a varying constant, say c, one can always, by a suitable rede nition of units of measurement, transform it into another theory...it follows that all we have to do is carry out appropriate rede nitions of our units of length, time and energy. Again, these...

2002-01-01T23:59:59.000Z

89

Leaching of boron from coal ash  

Science Journals Connector (OSTI)

Leaching of boron from coal ash ... First High-Resolution 11B Nuclear Magnetic Resonance (NMR) Spectra of Coal Fly Ash by Satellite-Transition Magic Angle Spinning (STMAS) NMR ... First High-Resolution 11B Nuclear Magnetic Resonance (NMR) Spectra of Coal Fly Ash by Satellite-Transition Magic Angle Spinning (STMAS) NMR ...

James A. Cox; Gary L. Lundquist; Andrzej Przyjazny; C. David Schmulbach

1978-06-01T23:59:59.000Z

90

Pollen Influx and Volcanic Ash  

Science Journals Connector (OSTI)

...Artemisia) blooms in the fall and a dis-proportionate percentage...were recorded. The five pollen groups plotted in Fig. 5 were selected...expected to occur during the fall and perhaps winter months...probability of an initial ash-fall in late summer. Certain acid-resist-ant...

Peter J. Mehringer Jr.; Eric Blinman; Kenneth L. Petersen

1977-10-21T23:59:59.000Z

91

Coal Ash and Clean Coal  

Science Journals Connector (OSTI)

... IT is the normal view that the incombustible part of coal is not only a useless but even objectionable diluent. At times in the past, ... , familiar with the theory of contact catalysis of gas reactions, have speculated that the ash constituents might well play an active role in the processes of carbonisation and combustion. ...

H. J. HODSMAN

1926-09-04T23:59:59.000Z

92

Petrographic characterization of economizer fly ash  

SciTech Connect (OSTI)

Policies for reducing NOx emissions have led power plants to restrict O{sub 2}, resulting in high-carbon fly ash production. Therefore, some potentially useful fly ash, such as the economizer fly ash, is discarded without a thorough knowledge of its composition. In order to characterize this type of fly ash, samples were collected from the economizer Portuguese power plant burning two low-sulfur bituminous coals. Characterization was also performed on economizer fly ash subsamples after wet sieving, density and magnetic separation. Analysis included atomic absorption spectroscopy, loss-on-ignition, scanning electron microscopy/energy-dispersive X-ray spectroscopy, optical microscopy, and micro-Raman spectroscopy.

Valentim, B.; Hower, J.C.; Soares, S.; Guedes, A.; Garcia, C.; Flores, D.; Oliveira, A. [University of Porto, Oporto (Portugal). Center of Geology

2009-11-15T23:59:59.000Z

93

Characterization of fly ashes from circulating fluidized bed combustion (CFBC) boilers cofiring coal and petroleum coke  

SciTech Connect (OSTI)

The chemistry, mineralogy, morphology, and particle size distribution were investigated in fly ashes from the burning of Datong (ShanXi, China) bituminous coal and the cofiring of Mideast high-sulfur petroleum coke (PC) with 30:70 (cal %) and 50:50 (cal %) blends of Datong bituminous coal in two commercial CFBC boilers. With the exception of CaO, the amounts of major oxides in the fly ashes from cofiring PC and coal were close to those of the common coal fly ashes. The PC-coal fly ashes were enriched in Ni, V, and Mo, implying these trace elements were mainly derived from PC. Ni and V, along with several other elements, such as Cr, Cu, Se, Pb, U, Th, and possibly As and Cd, increased in content with a decrease in temperature of the electrostatic precipitator (ESP). The results of chemistry, mineralogy, and morphology studies suggested that the desulfurization rate of the CFBC boilers at current conditions was low, and the PC tends to coarsen the fly ash particles and increase the loss on ignition (LOI) values, making these fly ashes unsuitable for use as a cement additive or a mineral admixture in concrete. Further studies on the combustion status of the CFBC boilers are needed if we want to be able to increase the desulfurization rate and produce high-quality fly ashes for broader and full utilization. 22 refs., 4 figs., 4 tabs.

Feihu Li; Jianping Zhai; Xiaoru Fu; Guanghong Sheng [Nanjing University, Nanjing (China). State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment

2006-08-15T23:59:59.000Z

94

ACAA fly ash basics: quick reference card  

SciTech Connect (OSTI)

Fly ash is a fine powdery material created when coal is burned to generate electricity. Before escaping into the environment via the utility stacks, the ash is collected and may be stored for beneficial uses or disposed of, if necessary. The use of fly ash provides environmental benefits, such as the conservation of natural resources, the reduction of greenhouse gas emissions and eliminating the needed for ash disposal in landfills. It is also a valuable mineral resource that is used in construction and manufacturing. Fly ash is used in the production of Portland cement, concrete, mortars and stuccos, manufactured aggregates along with various agricultural applications. As mineral filler, fly ash can be used for paints, shingles, carpet backing, plastics, metal castings and other purposes. This quick reference card is intended to provide the reader basic source, identification and composition, information specifically related to fly ash.

NONE

2006-07-01T23:59:59.000Z

95

Ash chemistry and mineralogy of an Indonesian coal during combustion: Part II — Pilot scale observations  

Science Journals Connector (OSTI)

This paper reports on combustion experiments carried out in a pilot scale furnace as a follow-up to research previously carried out using a drop-tube furnace to investigate the combustion behaviour of an Indonesian coal, in particular the effects of additives on ash chemistry, mineralogy and ash deposit formation. Combustion experiments were carried out in a pilot scale furnace to test the effectiveness of bauxite addition in reducing ash build-up. Samples collected from deposits on the slagging panels and fouling probe tubes, electrostatic precipitator fly ash, the furnace ash and tunnel ash were fully characterized using various analytical techniques. Experimental results substantiated earlier drop-tube observations suggesting that the use of raw coal with an addition of 3 wt.% bauxite would appear to offer the best performance with respect to slagging and fouling propensity in comparison to use of the raw coal alone. Observations on the reduction in glass content resulting from the addition of bauxite during PSF test runs support the earlier findings of the drop-tube tests. The reduction in glass content found in the slagging panel and fouling probe samples is comparable to that found in ash formation experiments conducted at 1400 °C despite the observed differences in mineralogy. Although deposits are still likely to form as indicated by the PSF runs they appear to be more friable and hence amenable to removal by conventional methods such as frequent soot blowing. These findings demonstrate how the results of laboratory experiments can be combined with those of pilot scale trials to provide data for full-scale trials on the effects of additives in the remediation of ash problems associated with the firing low-rank coals.

H.B. Vuthaluru; D. French

2008-01-01T23:59:59.000Z

96

Ultrasonic ash/pyrite liberation  

SciTech Connect (OSTI)

The objective of this project was to develop a coal preparation concept which employed ultrasonics to precondition coal prior to conventional or advanced physical beneficiation processes such that ash and pyrite separation were enhanced with improved combustible recovery. Research activities involved a series of experiments that subjected three different test coals, Illinois No. 6, Pittsburgh No. 8, and Upper Freeport, ground to three different size fractions (28 mesh [times] 0, 200 mesh [times] 0, and 325 mesh [times] 0), to a fixed (20 kHz) frequency ultrasonic signal prior to processing by conventional and microbubble flotation. The samples were also processed by conventional and microbubble flotation without ultrasonic pretreatment to establish baseline conditions. Product ash, sulfur and combustible recovery data were determined for both beneficiation processes.

Yungman, B.A.; Buban, K.S.; Stotts, W.F.

1990-06-01T23:59:59.000Z

97

The fluidized bed combustion ash management puzzle  

SciTech Connect (OSTI)

As the electric and industrial power generation industry upgrades and expands, the amount of coal and other solid fuels also expands. With increased environmental controls, the introduction of a competitive market for power, and the increased interest in opportunity fuels will increase the usage of Fluidized Bed Combustion (FBC) boilers in the power industry. The combustion of these solid fuels will generate combustion ashes. Power generators, including FBC boilers owners, have traditionally looked to landfills for the disposal of their ash. With the tighter environmental controls being placed on landfills at the federal and state level, power generators are beginning to see constantly escalating tipping fees which now make the landfill option less attractive. In some instances, landfills are beginning to refuse to accept ash regardless of the tipping fee. In view of this, the power generators are now struggling to find a place to store or dispose of the ash that is produced by their power boiler. Other disposal alternatives such as backhaul to the mine and beneficial reuse are now being considered. Either alternative presents its own set of technical and environmental variables to be considered in developing an effective ash management plan. To be effective, these plans need to incorporate an aggressive, yet realistic, role to support beneficial reuse of the ash. Many applications exist for reuse of the various types of ash. The applications for conventional ashes such as those from pulverized coal boilers and stoker fired boilers are mature and more commonplace. The uses for FBC ash are not as well researched and demonstrated and therefore the marketing opportunities for FBC ash continue to require development. FBC boiler owners and operators must be willing to accept the challenges posed in developing these reuse applications for FBC ash for the market to accept the applications for FBC ash and allow the full value of the FBC ash to be realized.

Fitzgerald, H.B. [ReUse Technology, Inc., Kennesaw, GA (United States)

1996-12-31T23:59:59.000Z

98

Energy content of rotifers (Brachionus plicatilis and Brachionus rotundiformis) in relation to temperature  

Science Journals Connector (OSTI)

The effect of temperature on the chemical composition (carbon, nitrogen and ash content) and the energy content of the rotifers Brachionus plicatilis and Brachionus rotundiformis (formerly B. plicatilis...L- and ...

M. Yúfera; G. Parra; E. Pascual

1997-01-01T23:59:59.000Z

99

Energy content, storage substances, and construction and maintenance costs of Mediterranean deciduous leaves  

Science Journals Connector (OSTI)

At monthly intervals water content, crude fibre, total and protein nitrogen, sugars, starch, total lipids, ash content and calorific total energy were measured throughout the lifespan of the...Pistacia terebinthu...

S. Diamantoglou; S. Rhizopoulou; U. Kull

1989-12-01T23:59:59.000Z

100

Cement Additives from Fly Ash Opportunity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Device and Method for Separating Minerals, Carbon and Device and Method for Separating Minerals, Carbon and Cement Additives from Fly Ash Opportunity Research is currently active on the patented technology "Device and Method for Separating Minerals, Carbon, and Cement Additives from Fly Ash." The technology is available for licensing and/or further collaborative research from the U.S. Depart- ment of Energy's National Energy Technology Laboratory (NETL). Overview This invention includes a device, along with a method, to recover and use fly ash as a source of high purity carbon, ash, and minerals. The device and associated method can isolate components of the fly ash based on size and electrical charge. By improving beneficiation and usage methods, fly ash can be transformed from a waste material to a valuable by-product. Recent shifts to low nitrogen

Note: This page contains sample records for the topic "ash content varying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Volcanic ash impacts on critical infrastructure  

Science Journals Connector (OSTI)

Volcanic eruptions can produce a wide range of hazards. Although phenomena such as pyroclastic flows and surges, sector collapses, lahars and ballistic blocks are the most destructive and dangerous, volcanic ash is by far the most widely distributed eruption product. Although ash falls rarely endanger human life directly, threats to public health and disruption to critical infrastructure services, aviation and primary production can lead to significant societal impacts. Even relatively small eruptions can cause widespread disruption, damage and economic loss. Volcanic eruptions are, in general, infrequent and somewhat exotic occurrences, and consequently in many parts of the world, the management of critical infrastructure during volcanic crises can be improved with greater knowledge of the likely impacts. This article presents an overview of volcanic ash impacts on critical infrastructure, other than aviation and fuel supply, illustrated by findings from impact assessment reconnaissance trips carried out to a wide range of locations worldwide by our international research group and local collaborators. ‘Critical infrastructure’ includes those assets, frequently taken for granted, which are essential for the functioning of a society and economy. Electricity networks are very vulnerable to disruption from volcanic ash falls. This is particularly the case when fine ash is erupted because it has a greater tendency to adhere to line and substation insulators, where it can cause flashover (unintended electrical discharge) which can in turn cause widespread and disruptive outages. Weather conditions are a major determinant of flashover risk. Dry ash is not conductive, and heavy rain will wash ash from insulators, but light rain/mist will mobilise readily-soluble salts on the surface of the ash grains and lower the ash layer’s resistivity. Wet ash is also heavier than dry ash, increasing the risk of line breakage or tower/pole collapse. Particular issues for water supply managers include: monitoring turbidity levels in raw water intakes, and if necessary increasing chlorination to compensate for higher turbidity; managing water demand; and communicating monitoring results with the public to allay fears of contamination. Ash can cause major damage to wastewater disposal systems. Ash deposited onto impervious surfaces such as roads and car parks is very easily washed into storm drains, where it can form intractable masses and lead to long-term flooding problems. It can also enter wastewater treatment plants (WWTPs), both through sewer lines and by direct fallout. Damage to modern \\{WWTPs\\} can run into millions of dollars. Ash falls reduce visibility creating hazards for ground transportation. Dry ash is also readily remobilised by vehicle traffic and wind, and dry and wet ash deposits will reduce traction on paved surfaces, including airport runways. Ash cleanup from road and airports is commonly necessary, but the large volumes make it logistically challenging. Vehicles are vulnerable to ash; it will clog filters and brake systems and abrade moving parts within engines. Lastly, modern telecommunications networks appear to be relatively resilient to volcanic ash fall. Signal attenuation and interference during ash falls has not been reported in eruptions over the past 20 years, with the exception of interference from ash plume-generated lightning. However, some telecommunications equipment is vulnerable to airborne ash, in particular heating, ventilation and air-conditioning (HVAC) systems which may become blocked from ash ingestion leading to overheating. This summary of volcanic ash impacts on critical infrastructure provides insight into the relative vulnerability of infrastructure under a range of different ashfall scenarios. Identifying and quantifying these impacts is an essential step in building resilience within these critical systems. We have attempted to consider interdependencies between sectors in a holistic way using systems thinking. As modern society becomes increasingly complex and interdependent this

Thomas M. Wilson; Carol Stewart; Victoria Sword-Daniels; Graham S. Leonard; David M. Johnston; Jim W. Cole; Johnny Wardman; Grant Wilson; Scott T. Barnard

2012-01-01T23:59:59.000Z

102

COAL ASH RESOURCES RESEARCH CONSORTIUM  

SciTech Connect (OSTI)

The Coal Ash Resources Research Consortium (CARRC, pronounced ?cars?) is the core coal combustion by-product (CCB) research group at the Energy & Environmental Research Center (EERC). CARRC focuses on performing fundamental and applied scientific and engineering research emphasizing the environmentally safe, economical use of CCBs. CARRC member organizations, which include utilities and marketers, are key to developing industry-driven research in the area of CCB utilization and ensuring its successful application. CARRC continued the partnership of industry partners, university researchers, and the U.S. Department of Energy (DOE) addressing needs in the CCB industry through technical research and development projects. Technology transfer also continued through distribution and presentation of the results of research activities to appropriate audiences, with emphasis on reaching government agency representatives and end users of CCBs. CARRC partners have evolved technically and have jointly developed an understanding of the layers of social, regulatory, legal, and competition issues that impact the success of CCB utilization as applies to the CCB industry in general and to individual companies. Many CARRC tasks are designed to provide information on CCB performance including environmental performance, engineering performance, favorable economics, and improved life cycle of products and projects. CARRC activities from 1993?1998 included a variety of research tasks, with primary work performed in laboratory tasks developed to answer specific questions or evaluate important fundamental properties of CCBs. The tasks summarized in this report are 1) The Demonstration of CCB Use in Small Construction Projects, 2) Application of CCSEM (computer-controlled scanning electron microscopy) for Coal Combustion By-Product Characterization, 3) Development of a Procedure to Determine Heat of Hydration for Coal Combustion By-Products, 4) Investigation of the Behavior of High-Calcium Coal Combustion By-Products, 5) Development of an Environmentally Appropriate Leaching Procedure for Coal Combustion By-Products, 6) Set Time of Fly Ash Concrete, 7) Coal Ash Properties Database (CAPD), 8) Development of a Method for Determination of Radon Hazard in CCBs, 9) Development of Standards and Specifications, 10) Assessment of Fly Ash Variability, and 11) Development of a CCB Utilization Workshop. The primary goal of CARRC is to work with industry to solve CCB-related problems and promote the environmentally safe, technically sound, and economical utilization and disposal of these highly complex materials. CARRC 1993?1998 accomplishments included: C Updating the CAPD to a user-friendly database management system, and distributing it to CARRC members. C ASTM standard preparation for a guide to using CCBs as waste stabilization agents. C Preliminary identification of specific mineral transformations resulting from fly ash hydration. C Limited determination of the effects of fly ash on the set time of concrete. C Statistical evaluation of a select set of fly ashes from several regional coal-fired power plants. C Development and presentation of a workshop on CCB utilization focused on government agency representatives and interested parties with limited CCB utilization experience. C Participation in a variety of local, national, and international technical meetings, symposia, and conferences by presenting and publishing CCB-related papers.

NONE

1998-12-01T23:59:59.000Z

103

Effect of environment atmosphere on the sintering of Thai lignite fly ashes  

SciTech Connect (OSTI)

Sintering of ash particles, related to deposit formation in a pulverized coal-fired boiler, was investigated for two lignite fly ashes obtained from Mae Moh and Bangpudum coal seams. The tests involved measuring the compressive strength of cold sintered pellets at varying sintering temperature, both under oxidizing (air) and non-oxidizing atmospheres (CO{sub 2}). Under ambient air condition, Mae Moh fly ash which contained higher amount of glassy phase gave significantly higher sinter strength than Bangpudum fly ash. The role of glassy phase was confirmed by the lowering of sinter strength when HF-extracted fly ash was tested. Sintering under CO{sub 2} environment resulted in larger strength development than sintering in air. Under this non-oxidizing condition, the pellet color turned black, indicating that most of the iron was in the reduced state and could form additional low melting-point glassy phase, hence facilitated sintering rate. In addition, blending of the two ashes yielded intermediate maximum strength, under both air and CO{sub 2} environments. This observation substantiates the important role of glassy phase in the sintering process and indicates the possibility of lowering deposit strength by judicious mixing of different raw coal feeds.

Tangsathitkulchai, C.; Tangsathitkulchai, M. [Suranaree Univ. of Technology, Nakhon Ratchasima (Thailand)

1996-12-31T23:59:59.000Z

104

Distribution of polycyclic aromatic hydrocarbons in fly ash during coal and residual char combustion in a pressurized fluidized bed  

SciTech Connect (OSTI)

To investigate the distribution of polycyclic aromatic hydrocarbons (PAHs) in fly ash, the combustion of coal and residual char was performed in a pressurized spouted fluidized bed. After Soxhlet extraction and Kuderna-Danish (K-D) concentration, the contents of 16 PAHs recommended by the United States Environmental Protection Agency (U.S. EPA) in coal, residual char, and fly ash were analyzed by a high-performance liquid chromatography (HPLC) coupled with fluorescence and diode array detection. The experimental results show that the combustion efficiency is lower and the carbon content in fly ash is higher during coal pressurized combustion, compared to the residual char pressurized combustion at the pressure of 0.3 MPa. Under the same pressure, the PAH amounts in fly ash produced from residual char combustion are lower than that in fly ash produced from coal combustion. The total PAHs in fly ash produced from coal and residual char combustion are dominated by three- and four-ring PAHs. The amounts of PAHs in fly ash produced from residual char combustion increase and then decrease with the increase of pressure in a fluidized bed. 21 refs., 1 fig., 4 tabs.

Hongcang Zhou; Baosheng Jin; Rui Xiao; Zhaoping Zhong; Yaji Huang [Nanjing University of Information Science and Technology, Nanjing (China)

2009-04-15T23:59:59.000Z

105

Treatment of fly ash for use in concrete  

DOE Patents [OSTI]

A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with a quantity of spray dryer ash (SDA) and water to initiate a geopolymerization reaction and form a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 40%, and in some cases less than 20%, of the foam index of the untreated fly ash. An optional alkaline activator may be mixed with the fly ash and SDA to facilitate the geopolymerization reaction. The alkaline activator may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

Boxley, Chett (Park City, UT)

2012-05-15T23:59:59.000Z

106

Application of Coal Fly Ash in Air Quality Management  

Science Journals Connector (OSTI)

Application of Coal Fly Ash in Air Quality Management ... It has been found from the literature that fly ash possesses potential application in the management of air quality. ... Application of Zeolite Synthesized from Fly Ash in Air Quality Management ...

M. Ahmaruzzaman; V.K Gupta

2012-11-05T23:59:59.000Z

107

Radioactivity of coals and ashes from Çatalazi coal-fired power plant in Turkey  

Science Journals Connector (OSTI)

......CFPPs installed in Turkey uses lignite, the catalagz CFPP uses the...basin, Turkey. The total reserve of the basin is estimated as...contents in feed coals from lignite-fired power plants in Western...equilibrium in the ashes produced in lignite-fired power plants. J......

Hüseyin Aytekin; Ridvan Baldik

2012-04-01T23:59:59.000Z

108

Radioactivity of coals and ashes from Çatalazi coal-fired power plant in Turkey  

Science Journals Connector (OSTI)

......research-article Notes Radioactivity of coals and ashes from catalagzi coal-fired...radioactivity contents in feed coals from lignite-fired power plants...Geological Survey of Canada, Economic Geology Report. 14 Aytekin...influence of an underground coal mine in Zonguldak basin, Turkey......

Hüseyin Aytekin; Ridvan Baldik

2012-04-01T23:59:59.000Z

109

Rheological Behavior of Polyamide 11 with Varying Initial Moisture Content  

E-Print Network [OSTI]

moisture levels and that the plant en- vironment conditions should be under strict control. Knowledge is often used in flexible pipe applications for offshore oilfield exploration. Because of the high

110

Detailed Characterization of Lubricant-Derived Ash-Related Species...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Characterization of Lubricant-Derived Ash-Related Species in Diesel Exhaust and Aftertreatment Systems Detailed Characterization of Lubricant-Derived Ash-Related Species in Diesel...

111

The Development of a Small Engine Based Accelerated Ash Loading...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Accelerated Ash Loading Protocol The Development of a Small Engine Based Accelerated Ash Loading Protocol Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan....

112

Uncovering Fundamental Ash-Formation Mechanisms and Potential...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

illustrate ash particle growth and formation pathways, and influence of lubricant chemistry and exhaust conditions on fundamental ash properties deer12kamp.pdf More Documents...

113

Reducing Lubricant Ash Impact on Exhaust Aftertreatment with...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lubricant Ash Impact on Exhaust Aftertreatment with a Oil Conditioning Filter Reducing Lubricant Ash Impact on Exhaust Aftertreatment with a Oil Conditioning Filter Under the test...

114

Minimizing Lubricant-Ash Requirement and Impact on Emission Aftertreat...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lubricant-Ash Requirement and Impact on Emission Aftertreatment Systems via an Oil Conditioning Filter Minimizing Lubricant-Ash Requirement and Impact on Emission...

115

Utilization of Coal Ash As Recycling Material Options in View Point of Geoenvironment  

Science Journals Connector (OSTI)

Disposed coal ash is result from the residual of coal refinery processes and become environmentalimportant issues. Coal ash consists of bottom ash and fly ash. The number of coal ash production is abundant, and c...

Ahmad Rifa’I; Noriyuki Yasufuku; Kiyoshi Omine…

2010-01-01T23:59:59.000Z

116

Settlement of footing on compacted ash bed  

SciTech Connect (OSTI)

Compacted coal ash fills exhibit capillary stress due to contact moisture and preconsolidation stress due to the compaction process. As such, the conventional methods of estimating settlement of footing on cohesionless soils based on penetration tests become inapplicable in the case of footings on coal ash fills, although coal ash is also a cohesionless material. Therefore, a method of estimating load-settlement behavior of footings resting on coal ash fills accounting for the effect of capillary and preconsolidation stresses is presented here. The proposed method has been validated by conducting plate load tests on laboratory prepared compacted ash beds and comparing the observed and predicted load-settlement behavior. Overestimation of settlement greater than 100% occurs when capillary and preconsolidation stresses are not accounted for, as is the case in conventional methods.

Ramasamy, G.; Pusadkar, S.S. [IIT Roorkee, Roorkee (India). Dept. of Civil Engineering

2007-11-15T23:59:59.000Z

117

Leaching of mixtures of biochar and fly ash  

SciTech Connect (OSTI)

Increasing atmospheric levels of greenhouse gases, especially CO2, and their effects on global temperature have led to interest in the possibility of carbon storage in terrestrial environments. Both the residual char from biomass pyrolysis (biochar) and fly ash from coal combustion have the potential to significantly expand terrestrial sequestration options. Both biochar and fly ash also have potentially beneficial effects on soil properties. Fly ash has been shown to increase porosity, water-holding capacity, pH, conductivity, and dissolved SO42-, CO32-, Cl- and basic cations. Adding biochar to soil generally raises pH, increases total nitrogen and total phosphorous, encourages greater root development, improves cation exchange capacity and decreases available aluminum. A combination of these benefits likely is responsible for observed increases in yields for crops such as corn and sugarcane. In addition, it has been found that soils with added biochar emit lower amounts of other greenhouse gases (methane and nitrous oxide) than do unamended soils. Biochar and fly ash amendments may be useful in promoting terrestrial carbon sequestration on currently underutilized and degraded lands. For example, about 1% of the US surface lands consist of previously mined lands or highway rights-of-way. Poorly managed lands could count for another 15% of US area. Biochar and fly ash amendments could increase productivity of these lands and increase carbon storage in the soil. Previous results showed minimal leaching of organic carbon and metals from a variety of fly ashes. In the present study, we examined the properties of mixtures of biochar, fly ash, and soil and evaluated the leaching of organic carbon and metals from these mixtures. The carbon sorption experiments showed release of carbon from biochar, rather than sorption, except at the highest concentrations in the Biochar HW sample. Similar results were obtained by others for oxidative leaching of bituminous coal, in which more C was released as dissolved C than was oxidized to CO2 by the oxygen in water. We confirmed that both fly ash and two types of biochar (oak char [OKEB], and hardwood [HW] char) exhibited minimal leaching of heavy metals including Cr, Ni, Zn, Ga, and Ag, and no detectable leaching of Pb or Cd (data not shown) under the conditions tested. The Biochar HW had a slightly higher C/N ratio (334) and pH (7.7) than did the Biochar OKEB (284 and 6.5). There was no toxicity exhibited by the fly ash (not shown) or biochar leachates as measured by the Microtox© assay under the conditions tested. In previous results no toxicity was reported in testing the fly ash samples except for one high-pH sample. The most notable leachate component from both types of biochar, but not the fly ash, was organic carbon with the HW biochar leaching less organic carbon than the OKEB biochar (5.71 ppm vs. 59.3 ppm). Alone (in batch sorption experiments), or in mixtures of 90% soil and 10% biochar (column studies), we noted significant loss of carbon from the biochar into soluble components. However, when we added fly ash to the column experiments (80% soil, 10% fly ash, and 10% biochar) we observed significant decreases in the amounts of C leached (20% for HW, and 47% for OKEB). The results indicate that applying a combination of fly ash and biochar may result in maximizing the amount of carbon sequestration in soil while also increasing beneficial soil properties and fertility. The lower amount of carbon leached from the HW biochar compared to the OKEB biochar is likely due to the more recalcitrant form of the carbon in the HW char, due to its preparation at a higher temperature (600 ºC) than the OKEB biochar (450 ºC). High heat treatment temperatures during biochar preparation increase both the total carbon content of the biochar and the proportion of the carbon that is present in fused aromatic rings resistant to chemical and physical degradation.

Palumbo, Anthony V.; Porat, Iris; Phillips, Jana R.; Amonette, James E.; Drake, Meghan M.; Brown, Steven D.; Schadt, Christopher W.

2009-06-22T23:59:59.000Z

118

Treatment of fly ash for use in concrete  

DOE Patents [OSTI]

A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

Boxley, Chett (Park City, UT); Akash, Akash (Salt lake City, UT); Zhao, Qiang (Natick, MA)

2012-05-08T23:59:59.000Z

119

Treatment of fly ash for use in concrete  

DOE Patents [OSTI]

A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

Boxley, Chett; Akash, Akash; Zhao, Qiang

2013-01-08T23:59:59.000Z

120

Comparative analysis of methods for determination of arsenic in coal and coal ash  

SciTech Connect (OSTI)

In this paper the comparative analysis of different methods for the preparation and analysis of arsenic content in coal and coal ash have been presented. The suggested method is coal digestion method, i.e., coal ash digestion using the mixture of acids: nitric and sulphuric in presence of vanadium-pentoxide as catalyzer. The comparative analysis of different recording techniques (AAS-GH, AAS-GF and ICP-AES) has also been presented. For arsenic recording the suggested technique is AAS-GF technique. The obtained results show that the method of high precision, high sensitivity and high reproductivity has been obtained.

Vukasinovic-Pesic, V.L.; Blagojevic, N.Z.; Rajakovic, L.V. [University of Montenegro, Podgorica (Montenegro)

2009-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "ash content varying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Effect coal ash on some refractory properties of alumino-silicate (Kankara) clay for furnace lining  

Science Journals Connector (OSTI)

Abstract The work aimed on the improving the refractory properties of Kankara clay (alumino-silicate) found in Kankara Village, Katsina State, Nigeria by blending with coal ash for the production of refractory bricks was investigated. Coal ash additions were varied from 5 to 25 wt% in the blend. Refractory properties such as: linear shrinkage, apparent porosity, bulk density, cold crushing strength and thermal shock resistance were tested. The results were compared with standard refractory properties for fireclay bricks. All the values obtained from the blends are within the recommended values for medium fireclay bricks. Hence, addition of coal ash to Kankara clay enhanced the refractory properties; the bricks were used in the production of heat treatment furnace with good thermal resistance.

S.B. Hassan; V.S. Aigbodion

2014-01-01T23:59:59.000Z

122

Relationship of fly ash composition, refractive index, and density to in-stack opacity. Final report, June 1981-May 1982  

SciTech Connect (OSTI)

The report gives results of an investigation of the refractive index, density, and composition of fly ash from coal-fired boilers, aimed at determining: (1) the interrelationship of refractive index and composition, and (2) the significance of ash properties on in-stack plume opacity. A survey was made of 14 ash samples representing a wide range of coals. Light absorption was measured using the Integrating Plate Method, which compares light absorption through a clean filter to that through a filter with a single layer of aerosol. Only absorption is measured, while scattered light is integrated equally for both cases. This technique requires fine particles (volume absorbers) for easy interpretation of results. The technique was calibrated using an aerosol, methylene blue, with known absorption characteristics. The real part of the refractive index was measured by an oil immersion technique. The real refractive index and density were found to be highly correlated with composition with a multilinear regression equation. The absorbing refractive index was well correlated with ash carbon content. The modeling of in-stack opacity showed a weak dependence on ash optical properties for the range of ashes studied. The effect of the real part of the refractive index on opacity tends to be counterbalanced by particle density effects. Furthermore, most fly ash absorbs relatively little light.

Cowen, S.J.; Ensor, D.S.

1985-02-01T23:59:59.000Z

123

Characterization, decontamination and health effects of fly ash from waste incinerators  

SciTech Connect (OSTI)

The aims of the present work are (a) to investigate the physical and chemical properties of incinerator ash which are of importance for its utilization and environmental impact; (b) to evaluate the occupational exposure of incinerator workers to trace metals; and (c) to develop a novel technology for the conversion of contaminated fly-ash from incinerators into a material which can be disposed of cheaply or used in the construction industry. The discussion is illustrated by results obtained through experiments. Morphologically, fly-ash consists of irregularly shaped material, of widely varying sizes. Some minerals are identified using powder X-ray diffraction, i.e., calcite, pyrite, halite and maghemite. The chemical composition of ash samples examined consist of Ca, Al, Si, K, Ti, Mg, Fe, K, Na and Mn as the major and minor elements. Trace elements such as Pb, Co, Cr, Ni, Cu, Se, Mo and Cd are also found. The samples tested are rich in Cl, Cr, Zn, Sn, and Pb, as compared to the earth`s crust values. About 50% of the fly-ash particles are smaller than 5.5 {micro}m. These particles can play an important role in transferring toxic metals into the human blood stream by inhalation, deposition and absorption.

Lee, P.H.; Delay, I.; Nasserzadeh, V.; Swithenbank, J.; McLeod, C.; Argent, B.B. [Sheffield Univ. (United Kingdom); Goodfellow, J. [Dyson-Hotwork Limited, Dewsbury (United Kingdom)

1998-12-31T23:59:59.000Z

124

Ash Deposition Behavior of Upgraded Brown Coal and Bituminous Coal  

Science Journals Connector (OSTI)

Ash Deposition Behavior of Upgraded Brown Coal and Bituminous Coal ... Ash with a low melting point causes slagging and fouling problems in pulverized coal combustion boilers. ... The ash composition in coal and operational conditions in boilers such as heat load greatly affect the ash deposition behavior. ...

Katsuya Akiyama; Haeyang Pak; Toshiya Tada; Yasuaki Ueki; Ryo Yoshiie; Ichiro Naruse

2010-07-22T23:59:59.000Z

125

Rocky Flats ash test procedure (sludge stabilization)  

SciTech Connect (OSTI)

Rocky Flats Ash items have been identified as the next set of materials to be stabilized. This test is being run to determine charge sizes and soak times to completely stabilize the Rocky Flats Ash items. The information gathered will be used to generate the heating rampup cycle for stabilization. This test will also gain information on the effects of the glovebox atmosphere (moisture) on the stabilized material. This document provides instructions for testing Rocky Flats Ash in the HC-21C muffle furnace process.

Winstead, M.L.

1995-09-14T23:59:59.000Z

126

On-line carbon-in-ash monitors: Survey and demonstration  

SciTech Connect (OSTI)

Fly ash unburned carbon (UBC) level is an important consideration for combustion efficiency as well as ash marketing. The presence of unburned carbon in fly ash has been shown to be a function of furnace design, coal quality, the ability of the pulverizer to grind the coal, and heat release rate. Boilers are designed to take these factors into consideration. However, the Clean Air Act Amendments of 1990 drove many utilities to switch coal supplies and install low NO{sub x} burners. Higher carbon-in-ash levels have been the result of these changes in coal quality and the staged combustion characteristics associated with low NO{sub x} burners. Over the past few years, several instruments for the on-line determination and monitoring of the unburned carbon content of ash samples have been developed. However, to date they have not been deployed widely in the U.S. despite potential uses for combustion optimization and as an aid in fly ash marketing. Based on the lack of publicly available performance and operation data available for the current CIAM (carbon-in-ash monitor) commercial offerings, Southern Company initiated a demonstration of several commercial technologies on its coal-fired units. As part of a DOE Clean Coal Project demonstrating advanced wall-fired combustion techniques for the reduction on NO{sub x} emissions from coal-fired boilers, the CAM, SEKAM and FOCUS systems were installed at Georgia Power Company`s Plant Hammond Unit 4. CAM and M&W instruments were also placed at Alabama Power Company`s Plant Gaston Unit 4. The testing of the instruments was conducted from November 1995 through August 1996.

Sorge, J.; Larrimore, L.

1998-02-01T23:59:59.000Z

127

Fluidized bed gasification ash reduction and removal process  

DOE Patents [OSTI]

In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

Schenone, Carl E. (Madison, PA); Rosinski, Joseph (Vanderbilt, PA)

1984-12-04T23:59:59.000Z

128

Fluidized bed gasification ash reduction and removal system  

DOE Patents [OSTI]

In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

Schenone, Carl E. (Madison, PA); Rosinski, Joseph (Vanderbilt, PA)

1984-02-28T23:59:59.000Z

129

Fly ash system technology improves opacity  

SciTech Connect (OSTI)

Unit 3 of the Dave Johnston Power Plant east of Glenrock, WY, USA had problems staying at or below the opacity limits set by the state. The unit makes use of a Lodge Cottrell precipitator. When the plant changed to burning Power River Basin coal, ash buildup became a significant issue as the fly ash control system was unable to properly evacuate hoppers on the unit. To overcome the problem, the PLC on the unit was replaced with a software optimization package called SmartAsh for the precipitator fly ash control system, at a cost of $500,000. After the upgrade, there have been no plugged hoppers and the opacity has been reduced from around 20% to 3-5%. 2 figs.

NONE

2007-06-15T23:59:59.000Z

130

Aqueous alteration of municipal solid waste ash  

SciTech Connect (OSTI)

Municipal solid waste (MSW) ash is composed largely of amorphous oxides and approximately 20% minerals including halite, magnetite, hematite, quartz, gypsum, calcite, and rutile. It is also enriched in toxic trace metals by up to three orders of magnitude over average soil. The thermodynamic stabilities and rates of dissolution of the minerals and glasses in MSW ash will determine whether the ash is an environmental problem. The authors have used batch reactors at 20, 40, and 60 C over time periods up to 60 days to simulate longer reaction times for ash under cooler landfill conditions. Soluble salts are most quickly dissolved, giving solutions dominated by Ca[sup 2+], Na[sup +], K[sup +], SO[sub 2][sup 2[minus

Kirby, C.S.; Rimstidt, J.D. (Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States))

1992-01-01T23:59:59.000Z

131

Carbonation of FBC ash by sonochemical treatment  

Science Journals Connector (OSTI)

This work explores the sonochemical-enhanced carbonation of FBC ash for direct disposal in landfills. Tests have been conducted using four ashes originating from three commercial CFBC boilers. Experiments with additives such as NaCl and seawater have also been carried out. Tests were performed at low (20°, 40 °C) and high (60°, 80 °C) temperatures. Sonicated samples were analyzed using TGA, TGA–FTIR and XRD techniques to determine the influence of other calcium compounds (OCC). The particle size reduction brought about by sonication was quantified using wet sieving. The ash reactivity displays a strong temperature dependency with almost complete carbonation achieved in minutes at higher temperatures. Additives were found to increase the level of hydration of the ashes, in line with previous work; however, carbonation levels were unaffected. TGA, TGA–FTIR and XRD analysis of the samples indicated participation of OCC, which were also formed during hydration.

A. Rao; E.J. Anthony; L. Jia; A. Macchi

2007-01-01T23:59:59.000Z

132

Rocky Flats Ash test procedure (sludge stabilization)  

SciTech Connect (OSTI)

Rocky Flats Ash items have been identified as the next set of materials to be stabilized. This test is being run to determine charge sizes and soak times to completely stabilize the Rocky Flats Ash items. The information gathered will be used to generate the heating rampup cycle for stabilization. The test will provide information to determine charge sizes, soak times and mesh screen sizes (if available at time of test) for stabilization of Rocky Flats Ash items to be processed in the HC-21C Muffle Furnace Process. Once the charge size and soak times have been established, a program for the temperature controller of the HC-21C Muffle Furnace process will be generated for processing Rocky Flats Ash.

Funston, G.A.

1995-06-14T23:59:59.000Z

133

Hydrothermal reactions of fly ash. Final report  

SciTech Connect (OSTI)

The emphasis of the work done has been to determine the reactivities of two ashes believed to be representative of those generated. A bituminous ash and a lignitic ash have been investigated. The reactions of these ashes undergo when subjected to mild hydrothermal conditions were explored. The nature of the reactions which the ashes undergo when alkaline activators, calcium hydroxide and calcium sulfate are present was also investigated. It was determined that calcium silicate hydrate, calcium aluminate hydrate, and the calcium sulfoaluminate hydrate ettringite form under these conditions. It appears 3CaO{center_dot}Al{sub 2}O{sub 3}{center_dot}3CaSO{sub 4}{center_dot}32H{sub 2}O (ettringite) formation needs to be considered in ashes which contain significant amounts of sulfate. Therefore the stability region for ettringite was established. It was also determined that calcium silicate hydrate, exhibiting a high internal surface area, will readily form with hydrothermal treatment between 50{degrees} and 100{degrees}C. This phase is likely to have a significant capacity to take up heavy metals and oxyanions and this ability is being explored.

Brown, P.W.

1995-12-31T23:59:59.000Z

134

Flue gas desulfurization gypsum and fly ash  

SciTech Connect (OSTI)

The Cumberland Fossil Plant (CUF) is located in Stewart County, Tennessee, and began commercial operation in 1972. This is the Tennessee Valley Authority`s newest fossil (coal-burning) steam electric generating plant. Under current operating conditions, the plant burns approximately seven million tons of coal annually. By-products from the combustion of coal are fly ash, approximately 428,000 tons annually, and bottom ash, approximately 115,000 tons annually. Based on historical load and projected ash production rates, a study was initially undertaken to identify feasible alternatives for marketing, utilization and disposal of ash by-products. The preferred alternative to ensure that facilities are planned for all by-products which will potentially be generated at CUF is to plan facilities to handle wet FGD gypsum and dry fly ash. A number of different sites were evaluated for their suitability for development as FGD gypsum and ash storage facilities. LAW Engineering was contracted to conduct onsite explorations of sites to develop information on the general mature of subsurface soil, rock and groundwater conditions in the site areas. Surveys were also conducted on each site to assess the presence of endangered and threatened species, wetlands and floodplains, archaeological and cultural resources, prime farmland and other site characteristics which must be considered from an environmental perspective.

Not Available

1992-05-01T23:59:59.000Z

135

E-Print Network 3.0 - ash technical progress Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and economic benefits. (1) Fly ash... of coal in conventional and or advanced clean coal technology combustors. These include fly ash, bottom... ash, boiler slag, and flue...

136

E-Print Network 3.0 - ash blended cement Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CLSM mixture utilized... . CHARACTERIZATION AND APPLICATION OF CLASS F FLY ASH AND CLEAN-COAL ASH FOR CEMENT-BASED MATERIALS 2 The major... investigation. Two additional ash ......

137

Enhanced Ethanol Production from De-Ashed Paper Sludge by Simultaneous Saccharification and Fermentation and Simultaneous Saccharification and Co-Fermentation  

SciTech Connect (OSTI)

A previous study demonstrated that paper sludges with high ash contents can be converted to ethanol by simultaneous saccharification and fermentation (SSF) or simultaneous saccharification and co-fermentation (SSCF). High ash content in the sludge, however, limited solid loading in the bioreactor, causing low product concentration. To overcome this problem, sludges were de-ashed before SSF and SSCF. Low ash content in sludges also increased the ethanol yield to the extent that the enzyme dosage required to achieve 70% yield in the fermentation process was reduced by 30%. High solid loading in SSF and SSCF decreased the ethanol yield. High agitation and de-ashing of the sludges were able to restore the part of the yield loss caused by high solid loading. Substitution of the laboratory fermentation medium (peptone and yeast extract) with corn steep liquor did not bring about any adverse effects in the fermentation. Fed-batch operation of the SSCF and SSF using low-ash content sludges was effective in raising the ethanol concentration, achieving 47.8 g/L and 60.0 g/L, respectively.

Kang, L.; Wang, W.; Pallapolu, V. R.; Lee, Y. Y.

2011-11-01T23:59:59.000Z

138

Scale-Up and Demonstration of Fly Ash Ozonation Technology  

SciTech Connect (OSTI)

The disposal of fly ash from the combustion of coal has become increasingly important. When the fly ash does not meet the required specification for the product or market intended, it is necessary to beneficiate it to achieve the desired quality. This project, conducted at PPL's Montour SES, is the first near full-scale ({approx}10 ton/day), demonstration of ash ozonation technology. Bituminous and sub bituminous ashes, including two ash samples that contained activated carbon, were treated during the project. Results from the tests were very promising. The ashes were successfully treated with ozone, yielding concrete-suitable ash quality. Preliminary process cost estimates indicate that capital and operating costs to treat unburned carbon are competitive with other commercial ash beneficiation technologies at a fraction of the cost of lost sales and/or ash disposal costs. This is the final technical report under DOE Cooperative Agreement No.: DE-FC26-03NT41730.

Rui Afonso; R. Hurt; I. Kulaots

2006-03-01T23:59:59.000Z

139

Characteristics and distribution of potential ash tree hosts for emerald ash borer  

Science Journals Connector (OSTI)

The emerald ash borer (EAB) (Agrilus planipennis) is a recently discovered (July 2002) exotic insect pest, which has caused the death of millions of ash trees (Fraxinus spp.) in Detroit, MI, USA and has also spread into other areas of Michigan, isolated locations in Indiana, Ohio, Maryland and Virginia, and nearby Windsor, Ont., in Canada. Ash trees occur in many different forest ecosystems in North America, are one of the more widely planted trees in urban areas, and are a valuable commercial timber species. If emerald ash borer populations are not contained and eventually eradicated, the ash resource in North America could be devastated. The destruction caused by EAB and its rate of spread are likely to be strongly influenced by the spatial distribution and status of the ash tree host, but general information regarding the abundance, health and distribution of ash trees is diffused throughout the literature. Here, we summarize what is currently known regarding the characteristics and potential spatial distribution of various species of Fraxinus in natural and planted ecosystems in North America and evaluate this information with specific regard to assessing the relative risk of ash populations to EAB.

David W. MacFarlane; Shawna Patterson Meyer

2005-01-01T23:59:59.000Z

140

Utilization of ash from fluidized bed boilers  

SciTech Connect (OSTI)

Combustion ash from a fluidized bed combustion (FBC) boiler contains not only carbon, but also silica alumina, quicklime as a sorbent, and a calcium sulfate by-product. These substances react chemically during fluidized bed combustion, and with the addition of water, they start an ettringite reaction and solidify. We determined the conditions necessary for producing hard solids through the study of the composition, curing methods, and characteristics of the solidified ash. We then used two types of road base material, crushed stone and solidified ash from an FBC boiler, to construct a test road at a site with a great deal of heavy traffic. Construction began in 1985, and since then, periodic tests have been performed to evaluate the performance of the road base materials. The testing of the manufacturing techniques centered on the amount and manner that water was added to the mixture and the curing methods of the mixture. Additional testing focused on the handling of the ash powder, the mixtures, and the solidified ash. Since 1991, under the sponsorship of MITI, the Center for Coal Utilization, in conjunction with Naruto Salt Mfg., Ltd., Nippon Hodo Co., Ltd., and Kawasaki Heavy Industries, Ltd., has used the referenced results to undertake a joint research and development project aimed at the eventual practical application of the technology. In 1993, a pilot facility to solidify ash with the fluidized bed boiler of 75 t/h capacity was completed. At present, all the discharged ash from the pilot facility is being solidified, and experiments on solidification and road base application techniques are underway. Actual road base tests are also in progress, and we are continuing research to meet the national certification requirements for road base materials.

Takada, Tomoaki [Kawasaki Heavy Industries Co., Ltd., Akashi (Japan)

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "ash content varying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Use of solid waste for chemical stabilization: Adsorption isotherms and {sup 13}C solid-state NMR study of hazardous organic compounds sorbed on coal fly ash  

SciTech Connect (OSTI)

Adsorption of hazardous organic compounds on the Dave Johnston plant fly ash is described. Fly ash from Dave Johnston and Laramie River power plants were characterized using elemental, x-ray, and {sup 29}Si NMR; the Dave Johnston (DJ) fly ash had higher quartz contents, while the Laramie River fly ash had more monomeric silicate anions. Adsorption data for hydroaromatics and chlorobenzenes indicate that the adsorption capacity of DJ coal fly ash is much less than that of activated carbon by a factor of >3000; but it is needed to confirm that solid-gas and solid-liquid equilibrium isotherms can indeed be compared. However, for pyridine, pentachlorophenol, naphthalene, and 1,1,2,2-tetrachloroethane, the DJ fly ash appears to adsorb these compounds nearly as well as activated carbon. {sup 13}C NMR was used to study the adsorption of hazardous org. cpds on coal fly ash; the nuclear spin relaxation times often were very long, resulting in long experimental times to obtain a spectrum. Using a jumbo probe, low concentrations of some hazardous org. cpds could be detected; for pentachlorophenol adsorbed onto fly ash, the chemical shift of the phenolic carbon was changed. Use of NMR to study the adsorption needs further study.

Netzel, D.A.; Lane, D.C.; Rovani, J.F.; Cox, J.D.; Clark, J.A.; Miknis, F.P.

1993-09-01T23:59:59.000Z

142

Ash aerosol formation from oxy-coal combustion and its relation to ash deposit chemistry  

Science Journals Connector (OSTI)

Abstract Ash aerosol and ash deposit formation during oxy-coal combustion were explored through experiments in a self-sustained 100 kW rated down-fired oxy-fuel combustor. Inlet oxidant conditions consisted of 50% inlet oxygen with CO2 (hereafter denoted as OXY50 conditions). A Berner low pressure impactor (BLPI), a scanning mobility particle sizer (SMPS), and an aerodynamic particle sizer (APS) were used to obtain size segregated ash aerosol samples and to determine the particle size distributions (PSD). A novel surface temperature controlled ash deposition probe system that allowed inside and outside deposits to be separated was used to collect the ash deposits. The ash aerosol \\{PSDs\\} given by the BLPI and those produced by SMPS/APS were consistent with each other. Data suggested that oxy-coal combustion under these conditions did not change the formation mechanisms controlling the bulk ash aerosol composition, but it did increase the formation of ultra-fine particles initially formed through metal vaporization, due to increased vaporization of silicon at the higher combustion temperature. The smaller particles contained within the deposits had higher Si and lower Na and S concentrations under OXY50 conditions than for air combustion. Moreover, the ash aerosol composition for particle sizes less than 2.4 ?m was related to the composition of the inside deposits. A higher Na in the ash aerosol resulted in higher Na in inside deposits with comparable absolute Na concentrations in both those aerosol particles and those inside deposits particles. The contribution of S and Si to the inside deposits showed that S in the vaporization modes together with Si in the ultrafine vaporization mode, contributed significantly to the composition of the inside deposits. These results provided direct evidence that prediction of the chemistry of the initial deposit layer (but not of the bulk deposits) required knowledge of the size segregated chemistry of the ash aerosol.

Zhonghua Zhan; Andrew Fry; Yanwei Zhang; Jost O.L. Wendt

2014-01-01T23:59:59.000Z

143

Coal ash behavior in reducing environments  

SciTech Connect (OSTI)

This project is a four-year program designed to investigate the transformations and properties of coal ash in reducing environment systems. This project is currently midway through its third year. The work to date has emphasized four areas of research: (1) the development of quantitative techniques to analyze reduced species, (2) the production of gasification-type samples under closely controlled conditions, (3) the systematic gasification of specific coals to produce information about their partitioning during gasification, and (4) the study of the physical properties of ashes and slags under reducing atmospheres. The project is organized into three tasks which provide a strong foundation for the project. Task 1, Analytical Methods Development, has concentrated on the special needs of analyzing samples produced under a reducing atmosphere as opposed to the more often studied combustion systems. Task 2, Inorganic Partitioning and Ash Deposition, has focused on the production of gasification-type samples under closely controlled conditions for the study of inorganic partitioning that may lead to deposition. Task 3, Ash and Slag Physical Properties, has made large gains in the areas of sintering and strength development of coal ashes under reducing atmospheres for the evaluation of deposition problems. Results are presented for all three tasks.

Benson, S.A.; Erickson, T.A.; Brekke, D.W.; Folkedahl, B.C.; Tibbetts, J.E.; Nowok, J.W.

1994-10-01T23:59:59.000Z

144

Influence of a Modification of the Petcoke/Coal Ratio on the Leachability of Fly Ash and Slag Produced from a Large PCC Power Plant  

Science Journals Connector (OSTI)

Influence of a Modification of the Petcoke/Coal Ratio on the Leachability of Fly Ash and Slag Produced from a Large PCC Power Plant ... This study is focused on identifying the changes in the environmental quality of co-fired fly ash and slag induced by a modification of the petcoke/coal ratio. ... Petcoke was found to increase the leachable content of V and Mo and to enhance the mobility of S and As. ...

Maria Izquierdo; Oriol Font; Natalia Moreno; Xavier Querol; Frank E. Huggins; Esther Alvarez; Sergi Diez; Pedro Otero; Juan Carlos Ballesteros; Antonio Gimenez

2007-06-28T23:59:59.000Z

145

Leaching of elements from bottom ash, economizer fly ash, and fly ash from two coal-fired power plants  

Science Journals Connector (OSTI)

To assess how elements leach from several types of coal combustion products (CCPs) and to better understand possible risks from CCP use or disposal, coal ashes were sampled from two bituminous-coal-fired power plants. One plant located in Ohio burns high-sulfur (about 3.9%) Upper Pennsylvanian Pittsburgh coal from the Monongahela Group of the Central Appalachian Basin; the other in New Mexico burns low-sulfur (about 0.76%) Upper Cretaceous Fruitland Formation coal from the San Juan Basin, Colorado Plateau. The sampled \\{CCPs\\} from the Ohio plant were bottom ash (BA), economizer fly ash (EFA), and fly ash (FA); the sampled \\{CCPs\\} from the New Mexico plant were BA, mixed FA/EFA, FA, and cyclone-separated coarse and fine fractions of a FA/EFA and FA blend. Subsamples of each ash were leached using the long-term leaching (60-day duration) component of the synthetic groundwater leaching procedure (SGLP) or the toxicity characteristic leaching procedure (TCLP, 18-hour duration). These ashes were all alkaline. Leachate concentrations and leachabilities of the elements from the \\{CCPs\\} were similar between corresponding CCP types (BA, EFA, and FA) from each plant. The leachabilities of most elements were lowest in BA (least leachable) and increased from EFA to FA (most leachable). Ca and Sr were leached more from EFA than from either BA or FA. Leachability of most elements also increased as FA particle size decreased, possibly due in part to increasing specific surface areas. Several oxyanion-forming elements (As, Mo, Se, U, and V) leached more under SGLP than under TCLP; the opposite was true for most other elements analyzed.

Kevin B. Jones; Leslie F. Ruppert; Sharon M. Swanson

2012-01-01T23:59:59.000Z

146

The effect of temperature on the composition of ash deposits in an AFBC system  

SciTech Connect (OSTI)

The major advantage of fluidized bed combustion (FBC) systems is their ability to absorb SO{sub 2} and HCl when limestone is used in the combustor. The combustion of high chlorine coal does generate some concerns about the possibility of chlorine-related corrosion of boiler components at high temperatures. It is believed that molten alkali salts may cause corrosion when they deposit on the surfaces of heat exchanger tubes in a boiler. A better understanding of the effect of temperature on the deposition of alkali chlorides will help find a way to convert them to harmless salts before they condense on the components of an AFBC system. Furthermore, the knowledge of the distribution of sulfur and chlorine in ash under different conditions is necessary not only to understand the principle and efficiency of desulfurization by limestone, but also to evaluate the role of limestone in the capture of HCl. In the study reported in this paper, in order to increase the general knowledge of ash deposits in the combustor, three different fuels with different chlorine, sulfur and alkali contents were burned in a 0.1 MW(th) laboratory scale AFBC system. The effects of coals, temperature, position and exposure times on the composition of ash deposits were investigated. The compounds of the ash were examined by XRD spectroscopy, which showed the major compound in the ash deposits to be CaSO{sub 4}. The concentrations of the major and minor elements in the various ash deposits were determined by ICP-AES spectroscopy. The experimental results show that the operating temperature has a major effect on the condensation of alkali chlorides. The absorption of HCl is favored at lower temperatures.

Xie, W.; Liu, K.; Pan, W.P.; Riley, J.T. [Western Kentucky Univ., Bowling Green, KY (United States)

1998-12-31T23:59:59.000Z

147

Evaluation of an On-Line Ash Analysis System for Low-Grade and Inhomogeneous Greek Lignite  

Science Journals Connector (OSTI)

The possibility of using commercial on-line analysis systems for monitoring the ash content of low-grade lignites was investigated by carrying out numerous bench- and pilot-scale trials in the mines of Public Power Corporation SA, Greece. ... The remaining lignite reserves that are suitable for electricity generation are 3.2 billion tonnes (as of 12/31/2005). ...

Konstantinos V. Kavouridis; Francis F. Pavloudakis

2007-06-07T23:59:59.000Z

148

Extraction of trace metals from fly ash  

DOE Patents [OSTI]

A process is described for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous. The fly ash has a silicate base and contains surface deposits of the trace metals as oxides, chlorides or the like. The process is carried out by contacting the fly ash with AlCl/sub 3/ in an alkali halide melt to react the trace metals with the AlCl/sub 3/ to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

Blander, M.; Wai, C.M.; Nagy, Z.

1983-08-15T23:59:59.000Z

149

Extraction of trace metals from fly ash  

DOE Patents [OSTI]

A process for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous, the fly ash having a silicate base and containing surface deposits of the trace metals as oxides, chlorides or the like, with the process being carried out by contacting the fly ash with AlCl.sub.3 in an alkali halide melt to react the trace metals with the AlCl.sub.3 to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

Blander, Milton (Palos Park, IL); Wai, Chien M. (Moscow, ID); Nagy, Zoltan (Woodridge, IL)

1984-01-01T23:59:59.000Z

150

Grain characteristics and engineering properties of coal ash  

Science Journals Connector (OSTI)

?Ash produced by the coal fired thermal plants is often used as ... the grain characteristics and the engineering properties of coal ash. The results of x-ray diffraction, ... characteristic that may be used for ...

A. Trivedi; V. K. Sud

2002-12-01T23:59:59.000Z

151

The Leaching of Major and Trace Elements from Coal Ash  

Science Journals Connector (OSTI)

Most power stations currently operate wet ash disposal systems. However, this method of ash disposal is being subjected to increasing scrutiny as there is a potential for contamination of surface and groundwat...

D. R. Jones

1995-01-01T23:59:59.000Z

152

Leaching of Selected Elements from Coal Ash Dumping  

Science Journals Connector (OSTI)

Coal ash obtained by coal combustion in the "Nikola Tesla A ... ionic strength of river water, we extracted coal ash with distilled water and 0.002 M–...3. The results show that changes in river water ionic ...

A. Popovic; D. Radmanovic; D. Djordjevic; P. Polic

2005-01-01T23:59:59.000Z

153

Eco-friendly fly ash utilization: potential for land application  

SciTech Connect (OSTI)

The increase in demand for power in domestic, agricultural, and industrial sectors has increased the pressure on coal combustion and aggravated the problem of fly ash generation/disposal. Consequently the research targeting effective utilization of fly ash has also gained momentum. Fly ash has proved to be an economical substitute for expensive adsorbents as well as a suitable raw material for brick manufacturing, zeolite synthesis, etc. Fly ash is a reservoir of essential minerals but is deficient in nitrogen and phosphorus. By amending fly ash with soil and/or various organic materials (sewage sludge, bioprocess materials) as well as microbial inoculants like mycorrhizae, enhanced plant growth can be realized. Based on the sound results of large scale studies, fly ash utilization has grown into prominent discipline supported by various internationally renowned organizations. This paper reviews attempts directed toward various utilization of fly ash, with an emphasis on land application of organic/microbial inoculants amended fly ash.

Malik, A.; Thapliyal, A. [Indian Institute of Technology Delhi, New Delhi (India)

2009-07-01T23:59:59.000Z

154

Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer  

SciTech Connect (OSTI)

In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na{sub 2}SiO{sub 3}) and 10 M sodium hydroxide (NaOH) solutions at mass ratio of Na{sub 2}SiO{sub 3}/NaOH of 1.5 and curing temperature of 65 deg. C for 48 h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0 MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.

Chindaprasirt, Prinya [Department of Civil Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002 (Thailand); Rattanasak, Ubolluk, E-mail: ubolluk@buu.ac.t [Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131 (Thailand)

2010-04-15T23:59:59.000Z

155

POLYVINYLCHLORIDE WASTE WITH OIL SHALE ASH TO CAPTURE  

E-Print Network [OSTI]

alkaline oil shale ash. Solid heat carrier (Galoter process)-type oil shale retorting units, where the

V. Oja; A. Elenurm; I. Rohtla; E. Tearo; E. Tali

156

Measurement of the Sintering Kinetics of Coal Ash  

Science Journals Connector (OSTI)

Measurement of the Sintering Kinetics of Coal Ash ... A new technique has been developed to determine the sintering rate of coal ash based on the measurement of the pressure-drop across a pellet of ash. ... The technique developed in this study shows a good repeatability of the rate of sintering and confirms that viscous flow is the dominant mechanism for sintering of coal ash. ...

A. Y. Al-Otoom; L. K. Elliott; T. F. Wall; B. Moghtaderi

2000-08-16T23:59:59.000Z

157

Coal-ash spills highlight ongoing risk to ecosystems  

Science Journals Connector (OSTI)

Coal-ash spills highlight ongoing risk to ecosystems ... A holding pond for coal ash collapsed, releasing billions of gallons of coal-ash sludge onto nearby farmland and into the waters of the Emory and Tennessee rivers. ... For decades, researchers, environmental advocates, local communities, and even the U.S. EPA have been concerned about the ongoing risks posed by the unregulated management of coal ash. ...

Rhitu Chatterjee

2009-03-25T23:59:59.000Z

158

Behavior of mineral matters in Chinese coal ash melting during char-CO{sub 2}/H{sub 2}O gasification reaction  

SciTech Connect (OSTI)

The typical Chinese coal ash melting behavior during char-CO{sub 2}/H{sub 2}O gasification reaction was studied by using TGA, XRD, and SEM-EDX analysis. It was found that ash melting behavior during char gasification reaction is quite different from that during coal combustion process. Far from the simultaneously ash melting behavior during coal combustion, the initial melting behavior of ash usually occurs at a middle or later stage of char-CO{sub 2}/H{sub 2}O reaction because of endothermic reaction and more reactivity of char gasification reaction as compared with that of mineral melting reactions in ash. In general, the initial melting temperature of ash is as low as 200-300 K below the deformation temperature (T{sub def}) of ash with ASTM test. The initial molten parts in ash are mainly caused by iron bearing minerals such as wustite and iron-rich ferrite phases under gasification condition. Along with the proceeding of ash melting, the melting behavior appears to be accelerated by the presence of calcium to form eutectic mixtures in the FeO-SiO{sub 2}-Al{sub 2}O{sub 3} and CaO-SiO{sub 2}-Al{sub 2}O{sub 3} system. The different states of iron are the dominant reason for different melting behaviors under gasification and combustion conditions. Even under both reducing conditions, the ash fusion temperature (AFT) of coal under char-CO{sub 2} reaction is about 50-100 K lower than that under char-H{sub 2}O reaction condition. The main reason of that is the higher content of CO under char-CO{sub 2} reaction, which can get a lower ratio of Fe{sup 3+}/{Sigma}Fe in NaO-Al{sub 2}O{sub 3}-SiO{sub 2}-FeO melts. 38 refs., 8 figs., 4 tabs.

Xiaojiang Wu; Zhongxiao Zhang; Guilin Piao; Xiang He; Yushuang Chen; Nobusuke Kobayashi; Shigekatsu Mori; Yoshinori Itaya [University of Shanghai for Science & Technology, Shanghai (China). Department of Power Engineering

2009-05-15T23:59:59.000Z

159

The effect of low-NO{sub x} combustion on residual carbon in fly ash and its adsorption capacity for air entrainment admixtures in concrete  

SciTech Connect (OSTI)

Fly ash from pulverized coal combustion contains residual carbon that can adsorb the air-entraining admixtures (AEAs) added to control the air entrainment in concrete. This is a problem that has increased by the implementation of low-NO{sub x} combustion technologies. In this work, pulverized fuel has been combusted in an entrained flow reactor to test the impact of changes in operating conditions and fuel type on the AEA adsorption of ash and NO{sub x} formation. Increased oxidizing conditions, obtained by improved fuel-air mixing or higher excess air, decreased the AEA requirements of the produced ash by up to a factor of 25. This was due to a lower carbon content in the ash and a lower specific AEA adsorptivity of the carbon. The latter was suggested to be caused by changes in the adsorption properties of the unburned char and a decreased formation of soot, which was found to have a large AEA adsorption capacity based on measurements on a carbon black. The NO{sub x} formation increased by up to three times with more oxidizing conditions and thus, there was a trade-off between the AEA requirements of the ash and NO{sub x} formation. The type of fuel had high impact on the AEA adsorption behavior of the ash. Ashes produced from a Columbian and a Polish coal showed similar AEA requirements, but the specific AEA adsorptivity of the carbon in the Columbian coal ash was up to six times higher. The AEA requirements of a South African coal ash was unaffected by the applied operating conditions and showed up to 12 times higher AEA adsorption compared to the two other coal ashes. This may be caused by larger particles formed by agglomeration of the primary coal particles in the feeding phase or during the combustion process, which gave rise to increased formation of soot. (author)

Pedersen, K.H.; Jensen, A.D.; Dam-Johansen, K. [Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, DK-2800 Kgs. Lyngby (Denmark)

2010-02-15T23:59:59.000Z

160

Fractionation and transport of nutrients among coal ash residues and in soil covered with fly ash-amended organic compost  

Science Journals Connector (OSTI)

Coal-fired power plants generate different types of ash residues and discharge small particles and vapors to the atmosphere. The ash residues which account for the major part ... the byproducts are collected and ...

M. P. Menon; K. S. Sajwan; G. S. Ghuman; J. James…

1993-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "ash content varying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Impact of Coal Ash Lagoons Upon the Surrounding Soils  

Science Journals Connector (OSTI)

Ash and slag are the waste products from thermal power stations (TPS). In one Polish TPS, 10,000 Mg of slag, and 48,700 Mg of ash are produced every year. All the slag is utilizedi whereas the ash is tipped of...

E. S. Kempa; A. J?drczak

1990-01-01T23:59:59.000Z

162

Maintaining and Improving Marketability of Coal Fly Ash  

E-Print Network [OSTI]

1 Maintaining and Improving Marketability of Coal Fly Ash John N. Ward Ben Franklin Headwaters;2 A Headline You May Have Seen What is the future of coal fly ash utilization in a mercury controls world? What is produced when coal is consumed by power plants Fly ash can be used beneficially in numerous applications

163

Screening technology reduces ash in spiral circuits  

SciTech Connect (OSTI)

In 2006, the James River Coal Co. selected the Stack Sizer to remove the minus 100 mesh high ash clay fraction from the clean coal spiral product circuits at the McCoy-Elkhorn Bevins Branch prep plant and at the Blue Diamond Leatherwood prep plant in Kentucky. The Stack Sizer is a multi-deck, high-frequency vibrating screen capable of separations as fine as 75 microns when fitted with Derrick Corp.'s patented high open area urethane screen panels. Full-scale lab tests and more than 10 months of continuous production have confirmed that the Stack Sizer fitted with Derrick 100 micron urethane screen panels consistently produces a clean coal fraction that ranges from 8 to 10% ash. Currently, each five-deck Stack Sizer operating at the Bevins Branch and Leatherwood prep plants is producing approximately 33 tons per hour of clean coal containing about 9% ash. This represents a clean coal yield of about 75% and an ash reduction of about 11% from the feed slurry. 3 figs. 2 tabs.

Brodzik, P. [Derrick Corp., Buffalo, NY (United States)

2007-05-15T23:59:59.000Z

164

The effects of ash and maceral composition of Azdavay and Kurucasile (Turkey) coals on coking properties  

SciTech Connect (OSTI)

In this study, investigations were made as to the effect of the maceral compositions and mineral matter content of Azdavay and Kurucasile coals on the coking property. Chemical and maceral analyses and coking properties were determined for the products of the float-sink procedure. The coking properties were established on the basis of free swelling index and Ruhr dilatometer tests. Maceral analyses showed that as the ash content of a coal containing both high and medium volatile matter increases, its effective maceral proportion decreases, and the coking property is affected in an unfavorable way.

Toroglu, I. [Zonguldak Karaelmas University, Zonguldak (Turkey). Faculty of Engineering

2006-07-01T23:59:59.000Z

165

Evaluation of an on-line ash analysis system for low-grade and inhomogeneous Greek lignite  

SciTech Connect (OSTI)

The possibility of using commercial on-line analysis systems for monitoring the ash content of low-grade lignites was investigated by carrying out numerous bench- and pilot-scale trials in the mines of Public Power Corporation SA, Greece. Pilot-scale trials were based on a dual-energy {gamma}-ray transmission analyzer, which was installed on the conveyor belt that transports lignite from the pit to the bunker of Kardia mine, Ptolemais. According to the obtained results, the accuracy of the on-line measurements was not adequate and did not allow lignite quality monitoring in real time. The deterioration of the on-line measurements' accuracy, compared to previous applications in other mining sites, was related to the intense variation of the lignite ash content and ash composition, which distorted the calibration of the analyzer. The latter is based on certain assumptions regarding the average atomic number of the organic and mineral matter contained in the lignite. Further experimental work is needed to investigate solutions for successful implementation of this method to low-grade lignites that exhibit large variation in ash content and composition. 17 refs., 15 figs., 7 tabs.

Konstantinos V. Kavouridis; Francis F. Pavloudakis [Public Power Corporation SA, Athens (Greece). General Division of Mines

2007-08-15T23:59:59.000Z

166

Adsorptive removal of thiophene and benzothiophene over zeolites from Mae Moh coal fly ash  

Science Journals Connector (OSTI)

Zeolites have been hydrothermally synthesized using Thai coal fly ash from Mae Moh Power Plant as silica and alumina sources. The synthesis conditions, i.e., SiO2/Al2O3 ratio, amount of water, amount of base, and aging temperature, were varied to prepare different topologies of zeolitic products. The zeolites attained were sodalite (SOD), gismondine (GIS), and cancrinite (CAN). The zeolites have been applied to adsorption of thiophene and benzothiophene in n-hexane solution. It was found that GIS with higher specific surface area and average pore volume had superior performance to other synthesized materials. Adsorption capacity of our developed zeolites was compared to those of commercial zeolites, i.e. NaY, HUSY, beta, and ZSM-5 obtained via the conventional synthesis methods. The results suggested a potential of zeolites derived from Mae Moh coal fly ash for removal of refractory sulfur compounds, such as benzothiophene.

Chawalit Ngamcharussrivichai; Chatchawan Chatratananon; Sakdinun Nuntang; Pattarapan Prasassarakich

2008-01-01T23:59:59.000Z

167

The variability of fly ash and its effects on selected properties of fresh Portland cement/fly ash mortars  

E-Print Network [OSTI]

fly ash production. Researchers have subsequently had the opportunity to develop a full body of knowledge concerning bitum1nous ash and its applications. The first s1gn1ficant use of b1tuminous fly ash probably occurred 20 in the 1940's when...THE VARIABILITY OF FLY ASH AND ITS EFFECTS ON SELECTED PROPERTIES OF FRESH PORTLAND CEi'1ENT/FLY ASH MORTARS A Thesis by WILLIAM CARLTON MCKERALL Submitted to the Graduate Co11ege of Texas A&M Uni ver s i ty in partia1 fu1fi11ment...

McKerall, William Carlton

1980-01-01T23:59:59.000Z

168

Accuracy and precision of lumbar bone mineral content by dual-energy X-ray absorptiometry in live female monkeys  

Science Journals Connector (OSTI)

Dual-energy X-ray absorptiometry (DXA) was used...in vivo bone mineral content (BMC) of lumbar vertebrae in 20...Macaca fascicularis). The ash weight of the third lumbar vertebra (L3) was compared to the measured...

M. J. Jayo; S. E. Rankin; D. S. Weaver; C. S. Carlson…

1991-01-01T23:59:59.000Z

169

Application of solid ash based catalysts in heterogeneous catalysis  

SciTech Connect (OSTI)

Solid wastes, fly ash, and bottom ash are generated from coal and biomass combustion. Fly ash is mainly composed of various metal oxides and possesses higher thermal stability. Utilization of fly ash for other industrial applications provides a cost-effective and environmentally friendly way of recycling this solid waste, significantly reducing its environmental effects. On the one hand, due to the higher stability of its major component, aluminosilicates, fly ash could be employed as catalyst support by impregnation of other active components for various reactions. On the other hand, other chemical compounds in fly ash such as Fe{sub 2}O{sub 3} could also provide an active component making fly ash a catalyst for some reactions. In this paper, physicochemical properties of fly ash and its applications for heterogeneous catalysis as a catalyst support or catalyst in a variety of catalytic reactions were reviewed. Fly-ash-supported catalysts have shown good catalytic activities for H{sub 2} production, deSOx, deNOx, hydrocarbon oxidation, and hydrocracking, which are comparable to commercially used catalysts. As a catalyst itself, fly ash can also be effective for gas-phase oxidation of volatile organic compounds, aqueous-phase oxidation of organics, solid plastic pyrolysis, and solvent-free organic synthesis. 107 refs., 4 figs., 2 tabs.

Shaobin Wang [Curtin University of Technology, Perth, WA (Australia). Department of Chemical Engineering

2008-10-01T23:59:59.000Z

170

Ash fusibility and compositional data of solid recovered fuels  

Science Journals Connector (OSTI)

Several approaches are established to analyse the fouling and slagging propensities of coal ashes, but the same cannot be said of solid recovered fuel (SRF) ashes. This work has been conducted by using some fouling and slagging indicators, which are commonly applicable to coal ashes, on SRF ashes to ascertain their applicability. In this work, laboratory prepared ashes derived from municipal solid waste (MSW), sewage sludge, demolition wood, shredded rubber tyres, and plastic/paper fluff are analysed for their fusibility leading to fouling and slagging using three approaches; the ash fusibility temperatures (AFT), ternary phase diagrams, and fouling/slagging indices. The results from each approach are examined to determine the inclination of the ashes toward fouling and slagging. A subsequent inter-comparison of the methods was conducted to validate the methods which are in agreement and are applicable to SRF ashes. The study showed that ternary equilibrium phase diagram SiO2–CaO–Al2O3, various fouling and slagging indices, and AFT can be used to complement each other to predict ash fusion properties, fouling and slagging propensities of SRF ashes.

Gregory Dunnu; Jörg Maier; Günter Scheffknecht

2010-01-01T23:59:59.000Z

171

Manufacture of ceramic tiles from fly ash  

DOE Patents [OSTI]

The present invention relates to a process for forming glass-ceramic tiles. Fly ash containing organic material, metal contaminants, and glass forming materials is oxidized under conditions effective to combust the organic material and partially oxidize the metallic contaminants and the glass forming materials. The oxidized glass forming materials are vitrified to form a glass melt. This glass melt is then formed into tiles containing metallic contaminants. 6 figs.

Hnat, J.G.; Mathur, A.; Simpson, J.C.

1999-08-10T23:59:59.000Z

172

Local Varying-Alpha Theories  

E-Print Network [OSTI]

In a recent paper we demonstrated how the simplest model for varying alpha may be interpreted as the effect of a dielectric material, generalized to be consistent with Lorentz invariance. Unlike normal dielectrics, such a medium cannot change the speed of light, and its dynamics obey a Klein-Gordon equation. This work immediately suggests an extension of the standard theory, even if we require compliance with Lorentz invariance. Instead of a wave equation, the dynamics may satisfy a local algebraic relation involving the permittivity and the properties of the electromagnetic field, in analogy with more conventional dielectric (but still preserving Lorentz invariance). We develop the formalism for such theories and investigate some phenomenological implications. The problem of the divergence of the classical self-energy can be solved, or at least softened, in this framework. Some interesting new cosmological solutions for the very early universe are found, including the possibility of a bounce, inflation and expansion with a loitering phase, all of which are induced by early variations in alpha.

John D. Barrow; Joao Magueijo

2014-12-10T23:59:59.000Z

173

Does the Addition of Fly Ash to Concrete Present a Radon Hazard? J. A. Siegel1  

E-Print Network [OSTI]

Street, Suite 450, Austin, Texas, 78701, USA Summary: Fly ash, a waste material from coal-fired power of fly ash [9]. Fly ash is a waste material from coal fired power plants; when added to concrete, fly ashDoes the Addition of Fly Ash to Concrete Present a Radon Hazard? J. A. Siegel1 , M. Juenger1 and J

Siegel, Jeffrey

174

Use of High-Calcium Fly Ash in Cement-Based Construction Materials  

E-Print Network [OSTI]

, total coal ash production in the world was estimated to be 600 million tons, of which 100 million tons with ASTM 618, coal fly ash is classified into two main categories, Class F fly ash (low-calcium) and Class coal, and Class C fly ash is generated from burning of lignite and subbituminous coals. Class F fly ash

Wisconsin-Milwaukee, University of

175

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic...

176

energy content  

Science Journals Connector (OSTI)

energy content, (weight) strength ? Arbeitsvermögen n (im ballistischen Mörser gemessen), Sprengenergie f (im ballistischen Mörser gemessen) [Mit 10 g Sprengstoff ermittelt

2014-08-01T23:59:59.000Z

177

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

178

Factors Controlling the Solubility of Mercury Adsorbed on Fly Ash  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

N:\R&D_Projects_Partial\FlyAsh&CCBs\Meetings\2005_04_WorldOfCoalAsh\AnnKim\HgSol N:\R&D_Projects_Partial\FlyAsh&CCBs\Meetings\2005_04_WorldOfCoalAsh\AnnKim\HgSol ubility_Paper.doc Factors Controlling the Solubility of Mercury Adsorbed on Fly Ash Ann G. Kim 1 and Karl Schroeder 2 1 ORISE Research Fellow, National Energy Technology Laboratory, U.S. Department of Energy, 626 Cochrans Mill Rd., Pittsburgh, PA 15236-0940 2 Research Group Leader, National Energy Technology Laboratory, U.S. Department of Energy, 626 Cochrans Mill Rd., Pittsburgh, PA 15236-0940 KEYWORDS Coal Utilization By-Products, leaching, activated carbon, pH ABSTRACT It is expected that increased controls on Hg emissions will shift the environmental burden from the flue gas to the solid coal utilization by-products (CUB), such as fly ash and flue-gas

179

Influence of a Modification of the Petcoke/Coal Ratio on the Leachability of Fly Ash and Slag Produced from a Large PCC Power Plant  

SciTech Connect (OSTI)

Co-firing of coal with inexpensive secondary fuels such as petroleum coke is expected to increase in the near future in the EU given that it may provide certain economic and environmental benefits with respect to coal combustion. However, changes in the feed fuel composition of power plants may modify the bulk content and the speciation of a number of elements in fly ash and slag. Consequently, leachability of these byproducts also can be modified. This study is focused on identifying the changes in the environmental quality of co-fired fly ash and slag induced by a modification of the petcoke/coal ratio. Petcoke was found to increase the leachable content of V and Mo and to enhance the mobility of S and As. However, with the exception of these elements, the addition of this secondary fuel did not drastically modify the bulk composition or the overall leachability of the resulting fly ash and slag.

Izquierdo,M.; Font, O.; Moreno, N.; Querol, X.; Huggins, F.; Alvarez, E.; Diez, S.; Otero, P.; Ballesteros, J.; Gimenez, A.

2007-01-01T23:59:59.000Z

180

NETL: Utilization Projects - Managing High-Carbon Ash  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Managing High-Carbon Ash Managing High-Carbon Ash Task 1: Effect of Coal Quality The objective of this task is to assess if fuel selection is an important factor determining ash quality. Work on this task will involve each of the three participating organizations. Ash samples from three coals will be generated under identical firing conditions in the pilot furnace at the University of Utah, and the matching ash and coal samples sent to Brown. Additional matching sets of coal and ash will be obtained from commercial-scale firing at Southern Company. The ashes will be characterized for LOI and surfactant adsorption activity under standard conditions and trends with fuel type identified. At the same time, chars will be prepared from the matching coal set under standard conditions in a laboratory furnace and also characterized for surfactant adsorptivity. A variety of standard conditions may need to be explored. The combined data set will be analyzed to determine cross correlations between ash behavior, standard laboratory char behavior, and parent coal properties. Our goal is to be able to anticipate ash behavior either (a) from coal properties directly, or (b) from the properties of chars made by a simple laboratory procedure. Either could be the basis for a coal quality index -- one based on fuel properties and the other based on a simple screening test.

Note: This page contains sample records for the topic "ash content varying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Development of an Accelerated Ash-Loading Protocol for Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ash Loading Protocol Rapid Aging and Poisoning Protocols to AssessFuel and Lube Effects on Diesel Aftertreatment (Agreement 13415) Neutron Imaging of Advanced Engine Technologies...

182

Determination of Ash in Biomass: Laboratory Analytical Procedure...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ash in Biomass Laboratory Analytical Procedure (LAP) Issue Date: 7172005 A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, and D. Templeton Technical Report NREL...

183

Development of an Accelerated Ash-Loading Protocol for Diesel...  

Broader source: Energy.gov (indexed) [DOE]

Accelerated Ash-Loading Protocol for Diesel Particulate Filters Bruce G. Bunting and Todd J. Toops Oak Ridge National Laboratory Adam Youngquist and Ke Nguyen University of...

184

Data Summary Report for Hanford Site Coal Ash Characterization  

SciTech Connect (OSTI)

The purpose of this report is to present data and findings from sampling and analysis of five distinct areas of coal ash within the Hanford Site River Corridor

Sulloway, H. M.

2012-03-06T23:59:59.000Z

185

Soluble arsenic and selenium species in fly ash/organic waste-amended soils using ion chromatography-inductively coupled plasma mass spectrometry  

SciTech Connect (OSTI)

Mixing coal fly ash with an organic waste increases macronutrient content and may make land application of fly ash a viable disposal alternative. However, trace element chemistry of these mixed waste products warrants investigation. Speciation of As and Se in soil solutions of fly ash-, poultry litter- and sewage sludge-amended soils was determined over a 10-day period by ion chromatography coupled to inductively coupled plasma mass spectrometry (IC-ICP-MS). Detection limits were 0.031, 0.028, 0.051, 0.161, 0.497, and 0.660 {micro}g L{sup {minus}1} for dimethylarsinate (DMA), As(III), monomethylarsonate (MMA), As(V), Se(IV), and Se(VI), respectively. Arsenic was highly water-soluble from poultry litter and appeared to be predominantly As(V). Arsenic(V) was the predominant species in soil amended with two fly ashes. Application of fly ash/poultry litter mixtures increased As solubility and led to the prevalence of DMA as the major As species. DMA concentrations of these soil solutions decreased rapidly over the sampling period relative to As(V), suggesting that DMA readily underwent mineralization in the soil solution. Se(VI) was the predominant soluble Se species in all treatments indicating rapid oxidation of Se(IV) initially solubilized from the fly ashes.

Jackson, B.P.; Miller, W.P. [Univ. of Georgia, Athens, GA (United States). Dept. of Crop and Soil Sciences] [Univ. of Georgia, Athens, GA (United States). Dept. of Crop and Soil Sciences

1999-01-15T23:59:59.000Z

186

Utilization of Ash Fractions from Alternative Biofuels used in Power Plants  

E-Print Network [OSTI]

Utilization of Ash Fractions from Alternative Biofuels used in Power Plants PSO Project No. 6356 July 2008 Renewable Energy and Transport #12;2 Utilization of Ash Fractions from Alternative Biofuels)...............................................................................7 2. Production of Ash Products from Mixed Biofuels

187

Arsenic remediation of drinking water using iron-oxide coated coal bottom ash  

E-Print Network [OSTI]

using Iron-oxide Coated Coal Ash. In Arsenic Contaminationarea to volume ratio of coal ash is 200 times greater than1 mm diameters and spherical coal ash particles with 5 ?m

MATHIEU, JOHANNA L.

2010-01-01T23:59:59.000Z

188

Coal Fly Ash as a Source of Iron in Atmospheric Dust. | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal Fly Ash as a Source of Iron in Atmospheric Dust. Coal Fly Ash as a Source of Iron in Atmospheric Dust. Abstract: Anthropogenic coal fly ash aerosols may represent a...

189

Seasonal effects of volatile oils in ashe and redberry juniper on preference and digestibility by goats  

E-Print Network [OSTI]

(qnodon dactylon (L.) Pers.), ashe juniper (Juniperus ashei Buchholz) and live Oak [Quercus virginiana (Small) Sarg. var. fusiformis] during the spring and fall. Angora and Spanish goats were exposed to ashe female, ashe male, redberry female and redberry...

Riddle, Richard R.

1994-01-01T23:59:59.000Z

190

E-Print Network 3.0 - aluminum-fly ash metal Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

extent, bottom ash, contain elevated amounts of heavy metals, and fly ash... . The dioxinsfurans on ash then don't seem to create an environmental problem. Heavy metals are...

191

Arsenic remediation of drinking water using iron-oxide coated coal bottom ash  

E-Print Network [OSTI]

using Iron-oxide Coated Coal Ash. In Arsenic Contaminationwater using  iron?oxide coated coal bottom ash  Johanna L.  using iron-oxide coated coal bottom ash JOHANNA L. MATHIEU

MATHIEU, JOHANNA L.

2010-01-01T23:59:59.000Z

192

Partially sulfated lime-fly ash sorbents activated by water or steam for SO{sub 2} removal at a medium temperature  

SciTech Connect (OSTI)

Laboratory experiments were conducted to investigate the reactivity of partially sulfated lime-fly ash sorbents activated by water or steam for SO{sub 2} removal. Sulfation tests were performed at 550{sup o}C using a fixed bed reactor under conditions simulating economizer zone injection flue gas desulfurization. Activation experiments were conducted with water or steam using a range of temperatures between 100 and 550{sup o}C. The results showed that the reactivity of the sorbents was closely related to the content of Ca(OH){sub 2} formed in the activation process, which varied with the water or steam temperature. The sulfur dioxide capture capacity of Ca(OH){sub 2} in the sorbent is higher than that of CaO at a medium temperature. Water or steam temperatures in the range of 100-200{sup o}C are favorable to the formation of Ca(OH){sub 2} from CaO. 15 refs., 8 figs., 2 tabs.

Liming Shi; Xuchang Xu [Tsinghua University, Beijing (China). Department of Thermal Engineering

2005-12-01T23:59:59.000Z

193

Uncovering Fundamental Ash-Formation Mechanisms and Potential Means to Control the Impact on DPF Performance and Engine Efficiency  

Broader source: Energy.gov [DOE]

Results illustrate ash particle growth and formation pathways, and influence of lubricant chemistry and exhaust conditions on fundamental ash properties

194

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

222014 5:11:47 PM" "Back to Contents","Data 1: U.S. Gasoline and Diesel Retail Prices" "Sourcekey","EMMEPM0PTENUSDPG","EMMEPM0UPTENUSDPG","EMMEPM0RPTENUS...

195

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"1162014 3:08:27 PM" "Back to Contents","Data 1: Missouri Natural Gas Gross Withdrawals from Oil Wells (MMcf)" "Sourcekey","N9012MO2" "Date","Missouri...

196

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"9262014 3:44:37 PM" "Back to Contents","Data 1: Natural Gas Pipeline & Distribution Use " "Sourcekey","N9170US2","NA1480SAL2","NA1480SAK2","NA1480SAZ...

197

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

PM" "Back to Contents","Data 1: Price of Liquefied U.S. Natural Gas Re-Exports to Russia (Dollars per Thousand Cubic Feet)" "Sourcekey","NGMEPG0ERENUS-NRSDMCF"...

198

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:04:55 PM" "Back to Contents","Data 1: Natural...

199

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:03 PM" "Back to Contents","Data 1: Texas...

200

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:04:41 PM" "Back to Contents","Data 1: Natural...

Note: This page contains sample records for the topic "ash content varying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:11:23 PM" "Back to Contents","Data 1:...

202

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:32:23 PM" "Back to Contents","Data 1:...

203

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:04 PM" "Back to Contents","Data 1: Virginia...

204

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:26:30 PM" "Back to Contents","Data 1: Alabama...

205

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:01 PM" "Back to Contents","Data 1: Rhode...

206

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:04:58 PM" "Back to Contents","Data 1: Natural...

207

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:04:23 PM" "Back to Contents","Data 1: Vermont...

208

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:01:10 PM" "Back to Contents","Data 1:...

209

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:00 PM" "Back to Contents","Data 1: Oregon...

210

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:01:53 PM" "Back to Contents","Data 1: Utah...

211

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:06:23 PM" "Back to Contents","Data 1: Michigan...

212

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:01:30 PM" "Back to Contents","Data 1: New...

213

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:04:52 PM" "Back to Contents","Data 1: Natural...

214

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:24:23 PM" "Back to Contents","Data 1: Kansas...

215

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:07 PM" "Back to Contents","Data 1: U.S....

216

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:02 PM" "Back to Contents","Data 1: South...

217

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:03 PM" "Back to Contents","Data 1: Tennessee...

218

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:01:23 PM" "Back to Contents","Data 1: Montana...

219

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:01:32 PM" "Back to Contents","Data 1: New...

220

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:04:54 PM" "Back to Contents","Data 1: Natural...

Note: This page contains sample records for the topic "ash content varying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:04 PM" "Back to Contents","Data 1: Utah...

222

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:04:31 PM" "Back to Contents","Data 1: Natural...

223

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:00 PM" "Back to Contents","Data 1: Oklahoma...

224

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:08:23 PM" "Back to Contents","Data 1: Illinois...

225

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:06:23 PM" "Back to Contents","Data 1: Maryland...

226

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:01:23 PM" "Back to Contents","Data 1: Percent...

227

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:01 PM" "Back to Contents","Data 1:...

228

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:01:54 PM" "Back to Contents","Data 1: Virginia...

229

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:08 PM" "Back to Contents","Data 1: U.S....

230

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:04:51 PM" "Back to Contents","Data 1: Natural...

231

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:05:23 PM" "Back to Contents","Data 1: Natural...

232

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:05 PM" "Back to Contents","Data 1:...

233

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:07 PM" "Back to Contents","Data 1: Wyoming...

234

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:05 PM" "Back to Contents","Data 1: Vermont...

235

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:01:57 PM" "Back to Contents","Data 1:...

236

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:07 PM" "Back to Contents","Data 1: West...

237

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:00:57 PM" "Back to Contents","Data 1: Iowa...

238

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:01:45 PM" "Back to Contents","Data 1: South...

239

E-Print Network 3.0 - ash cenospheres composites Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Composites Addition of fly ash cenospheres to polymer matrix influences all... , polyethylene, etc.). The effects of addition of fly ash cenospheres on polymer composites...

240

E-Print Network 3.0 - ash slag silica Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering ; Materials Science 91 By-Products Utilization Summary: pozzolans include coal fly ash, blast furnace slag, silica fume, and other combustion ashes. When...

Note: This page contains sample records for the topic "ash content varying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

E-Print Network 3.0 - ash deposition propensities Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ash, fouling, co-combustion 1... ;5 relative compositions of major ash species in coal, ... Source: Hawaii Natural Energy Institute Collection: Renewable Energy 51...

242

E-Print Network 3.0 - ash deposits part Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Reading Collection: Geosciences 24 Research Summary RECOAL: Reintegration of coal ash disposal sites and mitigation Summary: being used for coal ash deposits....

243

E-Print Network 3.0 - ash char deposits Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ash, fouling, co-combustion 1... ;5 relative compositions of major ash species in coal, ... Source: Hawaii Natural Energy Institute Collection: Renewable Energy 86...

244

E-Print Network 3.0 - ash nasal lavage Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to the people of North America for thousands of years. Of the nine ash... species, white ash (Fraxinus americana L.) and green ... Source: USDA, Forestry Service, Northern Research...

245

E-Print Network 3.0 - ash intranasal instillation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combustion Residue: Origins, Fate and Potential for Treatment Summary: in the form of ash (Liberti et al. 2005). The management of this ash presents a unique challenge... or...

246

E-Print Network 3.0 - ash disposal area Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering ; Materials Science 83 Use of fly ash as an admixture for electromagnetic interference shielding Jingyao Cao, D.D.L. Chung* Summary: combustion 1. Fly ash is...

247

E-Print Network 3.0 - ashe higher education Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

higher abrasion... Center for By-Products Utilization RECENT ADVANCES IN RECYCLING CLEAN- COAL ASH By Tarun R. Naik... -Strength Materials (CLSM); 232, Fly Ash and Natural...

248

E-Print Network 3.0 - ash quarterly technical Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Utilization Summary: Center for By-Products Utilization RECENT ADVANCES IN RECYCLING CLEAN- COAL ASH By Tarun R. Naik... -Strength Materials (CLSM); 232, Fly Ash and Natural...

249

E-Print Network 3.0 - ash paving demonstration Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AND DEMONSTRATION... Center for By-Products Utilization RECENT ADVANCES IN RECYCLING CLEAN- COAL ASH By Tarun R. Naik... -Strength Materials (CLSM); 232, Fly Ash and Natural...

250

E-Print Network 3.0 - ash penurunan kadar Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Utilization Summary: Center for By-Products Utilization RECENT ADVANCES IN RECYCLING CLEAN- COAL ASH By Tarun R. Naik... -Strength Materials (CLSM); 232, Fly Ash and Natural...

251

E-Print Network 3.0 - ashes Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Utilization Summary: Center for By-Products Utilization RECENT ADVANCES IN RECYCLING CLEAN- COAL ASH By Tarun R. Naik... -Strength Materials (CLSM); 232, Fly Ash and Natural...

252

E-Print Network 3.0 - ash ahto lobjakas Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Utilization Summary: Center for By-Products Utilization RECENT ADVANCES IN RECYCLING CLEAN- COAL ASH By Tarun R. Naik... -Strength Materials (CLSM); 232, Fly Ash and Natural...

253

E-Print Network 3.0 - ash based gepolymer Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Utilization Summary: . CHARACTERIZATION AND APPLICATION OF CLASS F FLY ASH AND CLEAN-COAL ASH FOR CEMENT-BASED MATERIALS 2 The major... large amounts of conventional or...

254

E-Print Network 3.0 - ash Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Utilization Summary: Center for By-Products Utilization RECENT ADVANCES IN RECYCLING CLEAN- COAL ASH By Tarun R. Naik... -Strength Materials (CLSM); 232, Fly Ash and Natural...

255

E-Print Network 3.0 - ash projekt vaendoera Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Utilization Summary: Center for By-Products Utilization RECENT ADVANCES IN RECYCLING CLEAN- COAL ASH By Tarun R. Naik... -Strength Materials (CLSM); 232, Fly Ash and Natural...

256

Study of ash deposition during coal combustion under oxyfuel conditions  

Science Journals Connector (OSTI)

This paper presents a comparative study on ash deposition of two selected coals, Russian coal and lignite, under oxyfuel (O2/CO2) and air combustion conditions. The comparison is based on experimental results and subsequent evaluation of the data and observed trends. Deposited as well as remaining filter ash (fine ash) samples were subjected to XRD and ICP analyses in order to study the chemical composition and mineral transformations undergone in the ash under the combustion conditions. The experimental results show higher deposition propensities under oxyfuel conditions; the possible reasons for this are investigated by analyzing the parameters affecting the ash deposition phenomena. Particle size seems to be larger for the Russian coal oxy-fired ash, leading to increased impaction on the deposition surfaces. The chemical and mineralogical compositions do not seem to differ significantly between air and oxyfuel conditions. The differences in the physical properties of the flue gas between air combustion and oxyfuel combustion, e.g. density, viscosity, molar heat capacity, lead to changes in the flow field (velocities, particle trajectory and temperature) that together with the ash particle size shift seem to play a role in the observed ash deposition phenomena.

L. Fryda; C. Sobrino; M. Glazer; C. Bertrand; M. Cieplik

2012-01-01T23:59:59.000Z

257

The recycling of the coal fly ash in glass production  

SciTech Connect (OSTI)

The recycling of fly ash obtained from the combustion of coal in thermal power plant has been studied. Coal fly ash was vitrified by melting at 1773 K for 5 hours without any additives. The properties of glasses produced from coal fly ash were investigated by means of Differential Thermal Analysis (DTA), X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques. DTA study indicated that there was only one endothermic peak at 1003 K corresponding to the glass transition temperature. XRD analysis showed the amorphous state of the glass sample produced from coal fly ash. SEM investigations revealed that the coal fly ash based glass sample had smooth surface. The mechanical, physical and chemical properties of the glass sample were also determined. Recycling of coal fly ash by using vitrification technique resulted to a glass material that had good mechanical, physical and chemical properties. Toxicity characteristic leaching procedure (TCLP) results showed that the heavy metals of Pb, Cr, Zn and Mn were successfully immobilized into the glass. It can be said that glass sample obtained by the recycling of coal fly ash can be taken as a non-hazardous material. Overall, results indicated that the vitrification technique is an effective way for the stabilization and recycling of coal fly ash.

Erol, M.M.; Kucukbayrak, S.; Ersoy-Mericboyu, A. [Istanbul Technical University, Istanbul (Turkey). Dept. of Chemical Engineering

2006-09-15T23:59:59.000Z

258

Reactivity of fly ashes in a spray dryer FGD process  

SciTech Connect (OSTI)

During the period 1981-1982, a study was performed to determine the ability of various fly ashes to retain sulfur dioxide in a pilot plant spray dryer/fabric filter flue gas desulfurization system. This knowledge would provide design engineers with the necessary data to determine whether the fly ash from a particular utility could be used as an effective supplement or substitute for slaked lime in a spray dryer system. The study commenced with the collection of 22 fly ashes from lignite, subbituminous, and bituminous eastern and western coals. The ashes were contacted with the flue gas entering the pilot plant by two different techniques. In the first, the ashes were slurried in water and injected into the spray dryer through a spinning disk atomizer. In the second, the ashes were injected as a dry additive into the flue gas upstream of the spray dryer. Analyses were conducted to determine the ability of each ash to retain sulfur dioxide in the system followed by statistical correlations of the sulfur retention with the physical/chemical properties of each ash. 17 references, 32 figures, 19 tables.

Davis, W.T.; Reed, G.D.

1983-05-01T23:59:59.000Z

259

IN HARM'S WAY: Lack Of Federal Coal Ash  

E-Print Network [OSTI]

IN HARM'S WAY: Lack Of Federal Coal Ash Regulations Endangers Americans And Their Environment 2010 Thirty-nine New Damage Cases of Contamination from Improperly Disposed Coal Combustion Waste, Editor and Contributing Author #12;IN HARM'S WAY: Lack of Federal Coal Ash Regulations Endangers

Short, Daniel

260

Ashe County - Wind Energy System Ordinance | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ashe County - Wind Energy System Ordinance Ashe County - Wind Energy System Ordinance Ashe County - Wind Energy System Ordinance < Back Eligibility Agricultural Commercial Industrial Institutional Investor-Owned Utility Local Government Multi-Family Residential Municipal Utility Nonprofit Residential Rural Electric Cooperative Schools State Government Tribal Government Utility Savings Category Wind Buying & Making Electricity Program Info State North Carolina Program Type Solar/Wind Permitting Standards Provider Ashe County Planning Department In 2007 Ashe County adopted a wind ordinance to regulate the use of wind-energy systems in unincorporated areas of the county and to describe the conditions by which a permit for installing such a system may be obtained. This policy was adopted in the context of an ongoing debate over

Note: This page contains sample records for the topic "ash content varying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Purple traps yield Reservation's first detection of Emerald Ash Borer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

traps yield Reservation's first detection of Emerald Ash Borer traps yield Reservation's first detection of Emerald Ash Borer The question of whether or not DOE's forests are infested with Emerald Ash Borer (EAB) has been answered. On May 10, a trap on Highway 95 at the Highway 58 interchange produced the first instance of the destructive non-native insect in Roane County. Five days later, a second trap on Bethel Valley Road near the East Portal turned up the first capture in Anderson County. "Unfortunately, these finds signal the beginning of a decline of ash species throughout the reservation" according to Greg Byrd, forester with the ORNL Natural Resources Program. "Dieback will become more prominent as the insect populations expand. Native ash trees have little defense against this pest, which was

262

State Waste Discharge Permit application: 200-E Powerhouse Ash Pit  

SciTech Connect (OSTI)

As part of the Hanford Federal Facility Agreement and Consent Order negotiations, the US Department and Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. This document constitutes the State Waste Discharge Permit application for the 200-E Powerhouse Ash Pit. The 200-E Powerhouse Ash Waste Water discharges to the 200-E Powerhouse Ash Pit via dedicated pipelines. The 200-E Ash Waste Water is the only discharge to the 200-E Powerhouse Ash Pit. The 200-E Powerhouse is a steam generation facility consisting of a coal-handling and preparation section and boilers.

Atencio, B.P.

1994-06-01T23:59:59.000Z

263

State Waste Discharge Permit application: 200-W Powerhouse Ash Pit  

SciTech Connect (OSTI)

As part of the Hanford Federal Facility Agreement and Consent Order negotiations; the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. This document constitutes the State Waste Discharge Permit application for the 200-W Powerhouse Ash Pit. The 200-W Powerhouse Ash Waste Water discharges to the 200-W Powerhouse Ash Pit via dedicated pipelines. The 200-W Powerhouse Ash Waste Water is the only discharge to the 200-W Powerhouse Ash Pit. The 200-W Powerhouse is a steam generation facility consisting of a coal-handling and preparation section and boilers.

Atencio, B.P.

1994-06-01T23:59:59.000Z

264

STRATEGIES AND TECHNOLOGY FOR MANAGING HIGH-CARBON ASH  

SciTech Connect (OSTI)

The overall objective of the present project is to identify and assess strategies and solutions for the management of industry problems related to carbon in ash. Specific research issues to be addressed include: (1) the effect of parent fuel selection on ash properties and adsorptivity, including a first ever examination of the air entrainment behavior of ashes from alternative (non-coal) fuels; (2) the effect of various low-NOx firing modes on ash properties and adsorptivity; and (3) the kinetics and mechanism of ash ozonation. This data will provide scientific and engineering support of the ongoing process development activities. During this fourth project period we completed the characterization of ozone-treated carbon surfaces and wrote a comprehensive report on the mechanism through which ozone suppresses the adsorption of concrete surfactants.

Robert Hurt; Eric Suuberg; John Veranth; Xu Chen

2003-05-20T23:59:59.000Z

265

STRATEGIES AND TECHNOLOGY FOR MANAGING HIGH-CARBON ASH  

SciTech Connect (OSTI)

The overall objective of the present project is to identify and assess strategies and solutions for the management of industry problems related to carbon in ash. Specific research issues to be addressed include: (1) the effect of parent fuel selection on ash properties and adsorptivity, including a first ever examination of the air entrainment behavior of ashes from alternative (non-coal) fuels; (2) the effect of various low-NOx firing modes on ash properties and adsorptivity; and (3) the kinetics and mechanism of ash ozonation. This data will provide scientific and engineering support of the ongoing process development activities. During this fourth project period we completed the characterization of ozone-treated carbon surfaces and wrote a comprehensive report on the mechanism through which ozone suppresses the adsorption of concrete surfactants.

Robert Hurt; Eric Suuberg; John Veranth; Xu Chen

2002-09-10T23:59:59.000Z

266

Distribution of hazardous air pollutant trace elements, total sulfur, and ash in coals from five Tertiary basins in the Rocky Mountain Region  

SciTech Connect (OSTI)

Arithmetic mean values of the contents of hazardous air pollutant (HAP) trace elements named in the 1990 Clean Air Act Amendments (antimony, arsenic, beryllium, cadmium, chromium, cobalt, lead, manganese, mercury, nickel, selenium, and uranium), ash, and total sulfur were statistically compared on a whole-coal basis for Paleocene coals from five Tertiary basins in the Rocky Mountain Region. The study of proximate and elemental analyses indicate a relationship between trace element contents and paleogeography.

Ellis, M.S.; Stricker, G.D.; Flores, R.M. [Geological Survey, Denver, CO (United States)

1994-12-31T23:59:59.000Z

267

Desulfurization and de-ashing of a mixture of subbituminous coal and gangue minerals by selective oil agglomeration  

SciTech Connect (OSTI)

The aim of this study was to investigate desulfurization and de-ashing of a mixture of subbituminous coal and gangue minerals by the agglomeration method. For this purpose, experimental studies were conducted on a mixture containing subbituminous coal, pyrite, quartz and calcite. The effects of some parameters that markedly influence the effectiveness of selective oil agglomeration, such as solid concentration, pH, bridging liquid type and concentration, and depressant type and amount, were investigated. Agglomeration results showed that the usage of various depressants (Na{sub 2}SiO{sub 3}, FeCl3, corn starch, wheat starch) in the agglomeration medium has a positive effect on the reduction of ash and total sulfur content of agglomerates. It was found that an agglomerate product containing 3.03% total sulfur and 25.01% ash with a total sulfur reduction of 56.71% was obtained from a feed that contained 7% total sulfur and 43.58% ash when FeCl{sub 3} was used in the agglomeration medium.

Ayhan, F.D. [Dicle University, Diyarbakir (Turkey). Dept. of Mining Engineering

2009-11-15T23:59:59.000Z

268

CEDR Content  

Broader source: Energy.gov (indexed) [DOE]

CEDR Content" CEDR Content" "The Consolidated Energy Data Report (CEDR) consists of 27 worksheets that should be completed by each site, as applicable, and included as part each site's SSP in a MS Excel electronic format. The CEDR is due to the SPO no later than December 9th." "Worksheet",,"Overview","Action" 1.1,"Content","Stand-alone overview of the CEDR tabs.","None" 2.1,"Funds, Meters, Training","Collects information on energy and water spending, and metering status.","If applicable, complete cells highlighted in orange. Edited and new data cells should be highlighted in light blue." 3.1,"BTU & Gal Key","Reference tab containing all factors and dropdown menu information for all tabs starting with ""3"". If you need to divide up the CEDR, please keep all tabs starting with ""3"" together to ensure calculation links are not broken. ","None"

269

A study of the trophodynamic relationships among zooplankton groups in the Gulf of Mexico utilizing biomass determined by dry weight and ash-free dry weight analyses  

E-Print Network [OSTI]

A STUDY OF THE TROPHODYNAMIC RELATIONSHIPS AMONG ZOOPLANKTON GROUPS IN THE GULF OF MEXICO UTILIZING BIOMASS DETERMINED BY DRY WEIGHT AND ASH-FREE DRY WEIGHT ANALYSES A Thesis by ALAN YAUTAK KWOK Submitted to the Graduate College of Texas A... WEIGHT AND ASH-FREE DRY WEIGHT ANALYSES A Thesis by ALAN YAUTAK KWOK Approved as to style and content by: '7 (Chairman of Committee) )l&z J( ii (Member) ember) (Head of Department) May 1980 ABSTRACT A Study of the Trophodynamic Relat1onships...

Kwok, Alan Yautak

1980-01-01T23:59:59.000Z

270

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Workbook Contents" Workbook Contents" ,"U.S. State-to-State capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","Units of Measurement","Frequency","Updated Date" ,"Pipeline State-to-State Capacity","State-to-State capacity","Million cubic feet per day (MMcf/d)","Quarterly","application/vnd.ms-excel" ,"State Inflow Capacity","Inflow capacity from other States","Million cubic feet per day (MMcf/d)","Quarterly","application/vnd.ms-excel" ,"State Outflow Capacity","Outflow capacity to other States","Million cubic feet per day (MMcf/d)","Quarterly","application/vnd.ms-excel"

271

Concordant plutonium-241-americium-241 dating of environmental samples: results from forest fire ash  

SciTech Connect (OSTI)

We have measured the Pu, {sup 237}Np, {sup 241}Am, and {sup 151}Sm isotopic systematics for a set of forest fire ash samples from various locations in the western U.S. including Montana, Wyoming, Idaho, and New Mexico. The goal of this study is to develop a concordant {sup 241}Pu (t{sub 1/2} = 14.4 y)-{sup 241}Am dating method for environmental collections. Environmental samples often contain mixtures of components including global fallout. There are a number of approaches for subtracting the global fallout component for such samples. One approach is to use {sup 242}/{sup 239}Pu as a normalizing isotope ratio in a three-isotope plot, where this ratio for the nonglobal fallout component can be estimated or assumed to be small. This study investigates a new, complementary method of normalization using the long-lived fission product, {sup 151}Sm (t{sub 1/2} = 90 y). We find that forest fire ash concentrates actinides and fission products with {approx}1E10 atoms {sup 239}Pu/g and {approx}1E8 atoms {sup 151}Sm/g, allowing us to measure these nuclides by mass spectrometric (MIC-TIMS) and radiometric (liquid scintillation counting) methods. The forest fire ash samples are characterized by a western U.S. regional isotopic signature representing varying mixtures of global fallout with a local component from atmospheric testing of nuclear weapons at the Nevada Test Site (NTS). Our results also show that {sup 151}Sm is well correlated with the Pu nuclides in the forest fire ash, suggesting that these nuclides have similar geochemical behavior in the environment. Results of this correlation indicate that the {sup 151}Sm/{sup 239}Pu atom ratio for global fallout is {approx}0.164, in agreement with an independent estimate of 0.165 based on {sup 137}Cs fission yields for atmospheric weapons tests at the NTS. {sup 241}Pu-{sup 241}Am dating of the non-global fallout component in the forest fire ash samples yield ages in the late 1950's-early 1960's, consistent with a peak in NTS weapons testing at that time. The age results for this component are in agreement using both {sup 242}Pu and {sup 151}Sm normalizations, although the errors for the {sup 151}Sm correction are currently larger due to the greater uncertainty of their measurements. Additional efforts to develop a concordant {sup 241}Pu-{sup 241}Am dating method for environmental collections are underway with emphasis on soil cores.

Goldstein, Steven J [Los Alamos National Laboratory; Oldham, Warren J [Los Alamos National Laboratory; Murrell, Michael T [Los Alamos National Laboratory; Katzman, Danny [Los Alamos National Laboratory

2010-12-07T23:59:59.000Z

272

Categorical Exclusion 4566, Ash Removal Project  

Broader source: Energy.gov (indexed) [DOE]

FOrnI FOrnI Project Title: Ash Removal Project (4566) Program or Program Office: Y -12 Site Office Location: Oak Ridge Tennessee Project Description: This work scope is to split, containerize, package, transport and disposition one hundred and two (102) cans of mixed waste. General Administration/Management OA I - Routine business actions OA2 * Administrative contract amendments OA4 - Interpretations/rulings for existing regulations OA5 - Regulatory interpretations without environmental effect OA6 - Procedural rule makings upgrade OA 7 - Transfer of property, use unchanged OA8 . Award of technical supportlM&O/personal service contracts OA9 - Info gathering, analysis, documentation, dissemination, and training OA 10 - Reports on non-DOE legislation OA II -

273

Coal Ash Corrosion Resistant Materials Testing Program  

SciTech Connect (OSTI)

The "Coal Ash Corrosion Resistant Materials Testing Program" is being conducted by The Babcock & Wilcox Company (B&W), the U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) at Reliant Energy?s Niles plant in Niles, Ohio to provide full-scale, in-situ testing of recently developed boiler superheater materials. Fireside corrosion is a key issue for improving efficiency of new coal fired power plants and improving service life in existing plants. In November 1998, B&W began development of a system to permit testing of advanced tube materials at metal temperatures typical of advanced supercritical steam temperatures (1100°F and higher) in a boiler exhibiting coal ash corrosive conditions. Several materials producers including Oak Ridge National Laboratory (ORNL) contributed advanced materials to the project. In the spring of 1999 a system consisting of three identical sections, each containing multiple segments of twelve different materials, was installed. The sections are cooled by reheat steam, and are located just above the furnace entrance in Niles? Unit #1, a 110 MWe unit firing high sulfur Ohio coal. In November 2001 the first section was removed for thorough metallurgical evaluation after 33 months of operation. The second and third sections remain in service and the second is expected to be removed in the fall of 2003; the last is tentatively planned for the fall of 2004. This paper describes the program; its importance; the design, fabrication, installation and operation of the test system; materials utilized; experience to date; and results of the evaluation of the first section.

McDonald, D.K.

2003-04-22T23:59:59.000Z

274

Distribution of arsenic and mercury in lime spray dryer ash  

SciTech Connect (OSTI)

The partitioning of As and Hg in various components of lime spray dryer (LSD) ash samples from a coal-fired boiler was characterized to better understand the form and fate of these elements in flue gas desulfurization byproducts. LSD ash samples, collected from the McCracken Power Plant on the Ohio State University campus, were separated by a 140-mesh (106 {mu}m) sieve into two fractions: a fly-ash-/unburned-carbon-enriched fraction (> 106 {mu}m) and a calcium-enriched fraction (< 106 {mu}m). Unburned carbon and fly ash in the material > 106 {mu}m were subsequently separated by density using a lithium heteropolytungstate solution. The concentrations of As and Hg were significant in all fractions. The level of As was consistently greater in the calcium-enriched fraction, while Hg was evenly distributed in all components of LSD ash. Specific surface area was an important factor controlling the distribution of Hg in the different components of LSD ash, but not for As. Comparing the LSD ash data to samples collected from the economizer suggests that As was effectively captured by fly ash at 600{sup o}C, while Hg was not. Leaching tests demonstrated that As and Hg were more stable in the calcium-enriched fraction than in the fly-ash- or carbon-enriched fractions, potentially because of the greater pH of the leachate and subsequently greater stability of small amounts of calcium solids containing trace elements in these fractions. 37 refs., 8 figs., 2 tabs.

Panuwat Taerakul; Ping Sun; Danold W. Golightly; Harold W. Walker; Linda K. Weavers [Ohio State University, Columbus, OH (United States). Department of Civil and Environmental Engineering and Geodetic Science

2006-08-15T23:59:59.000Z

275

A STUDY OF THE EFFECTS OF POST-COMBUSTION AMMONIA INJECTION ON FLY ASH QUALITY: CHARACTERIZATION OF AMMONIA RELEASE FROM CONCRETE AND MORTARS CONTAINING FLY ASH AS A POZZOLANIC ADMIXTURE  

SciTech Connect (OSTI)

Work completed in this reporting period focused on the measurement of the rate of ammonia loss from mortar and concrete, and the measurement of ammonia gas in the air above the materials immediately after placement. The majority of mortar experiments have been completed, and testing has begun on concrete. The mortar experiments indicate that the rate of ammonia loss is greater in mortars prepared using a higher water content and water:cement (W:C) ratio, although the higher rate is primarily observed within the first 2 days, after which the loss rates are nearly the same. The source of low-calcium (Class F) fly ash exerted a negligible influence on the loss rate. However, mortar prepared using a higher-calcium fly ash evolved ammonia at a slightly slower rate than the Class F ash mortars. The data also indicate that an increase in ventilation increases the ammonia loss rate from mortar, and suggest that a well-ventilated space could substantially increase the loss of ammonia from mortar and, by inference, a concrete slab. Analysis of ammonia concentrations in the air above freshly-placed mortars in an enclosed space indicate that the fly ash ammonia concentration should not exceed 100 mg N/kg ash in confined space applications. For most other applications with some ventilation the maximum acceptable concentration would be approximately 200 mg/kg. Early results from experiments on concrete suggest that, under similar conditions, ammonia diffusion from concrete occurs at a higher rate than in mortar. In addition, increasing the slump of concrete through the use of chemical admixtures has only a minor effect on the ammonia loss rate.

Robert F. Rathbone; Thomas L. Robl

2001-10-11T23:59:59.000Z

276

Thermomechanical Analysis of Coal Ash:? The Influence of the Material for the Sample Assembly  

Science Journals Connector (OSTI)

Although the proposed temperatures were low compared to conventional AFTs, especially for iron-rich samples, the use of TMA appeared to be an excellent tool for routine characterization of ash fusibility of various coals. ... BN, C, and Al2O3 assemblies are not suitable in studying the thermal behavior of coal ashes due to reactions with components of the ash. ... ashing. ...

G. W. Bryant; G. J. Browning; S. K. Gupta; J. A. Lucas; R. P. Gupta; T. F. Wall

2000-02-25T23:59:59.000Z

277

Environmental hazard assessment of coal fly ashes using leaching and ecotoxicity tests  

E-Print Network [OSTI]

Environmental hazard assessment of coal fly ashes using leaching and ecotoxicity tests V. Tsiridis t The environmental hazard of six coal fly ash samples collected from various coal incineration plants were examined- bustion, considerable amounts of coal fly ash are still produced. Although coal fly ash can be moderately

Short, Daniel

278

Recovery of iron oxide from coal fly ash  

DOE Patents [OSTI]

A high quality iron oxide concentrate, suitable as a feed for blast and electric reduction furnaces is recovered from pulverized coal fly ash. The magnetic portion of the fly ash is separated and treated with a hot strong alkali solution which dissolves most of the silica and alumina in the fly ash, leaving a solid residue and forming a precipitate which is an acid soluble salt of aluminosilicate hydrate. The residue and precipitate are then treated with a strong mineral acid to dissolve the precipitate leaving a solid residue containing at least 90 weight percent iron oxide.

Dobbins, Michael S. (Ames, IA); Murtha, Marlyn J. (Ames, IA)

1983-05-31T23:59:59.000Z

279

Effect of freeze–thaw cycles on the strength and physical properties of cement-stabilised soil containing recycled bassanite and coal ash  

Science Journals Connector (OSTI)

Abstract Earth materials deteriorate physically under freeze–thaw cycling. It is thus important to determine how freeze–thaw cycling affects their properties of new man-made materials in areas experiencing seasonal frost. The effect of variable freeze–thaw cycling on the durability of cement-stabilised soils containing bassanite and coal ash was quantified to promote the use of bassanite in earthwork project in seasonal frost areas. For this purpose, very soft clay was stabilised with 5% cement content by weight of dry soil, and bassanite and coal ash were mixed with it in differing proportions. These stabilised soil samples were subjected to differing numbers of freeze–thaw cycles (up to five cycles), after curing for 28 days. Unconfined compressive strength and several physical properties were investigated after freeze–thaw cycling. The results show that the addition of both bassanite and coal ash improves the strength and durability of stabilised soils significantly, whereas the addition of coal ash alone has a negative effect on strength improvement. Unconfined compressive strength increases with increased bassanite and coal ash contents. With respect to freezing and thawing durability, the first or second cycles of freeze–thaw action markedly decrease the unconfined compressive strength of both treated and untreated cement-stabilised soils, but further cycles have little additional influence. The use of both additives improves durability, and retains 65–85% strength compared to corresponding non-frozen stabilised soils; if either additive is used, the strength is 55–65%; and if no additives are used, about 50%. The effects of freeze–thaw cycling on water content and dry density are negligible compared to those of additive contents. Volume after freezing increased slightly with increase in the number of freeze–thaw cycles, although volume after thawing fell slightly and reached minimum at the first thawing process.

Toshihide Shibi; Takeshi Kamei

2014-01-01T23:59:59.000Z

280

Evaluation of the Performance of Air Dense Medium Fluidized Bed (ADMFB) for Low-Ash Coal Beneficiation. Part 2: Characteristics of the Beneficiated Coal  

Science Journals Connector (OSTI)

Evaluation of the Performance of Air Dense Medium Fluidized Bed (ADMFB) for Low-Ash Coal Beneficiation. ... The slagging and fouling decrease the efficiency of heat-exchange surfaces in conventional coal-firing furnaces, while in slagging gasifiers, where ash is intentionally converted into liquid slag (better operation, control particulate matter emission, and trap trace elements and heavy metals in a unleachable glass phase), to achieve free flux toward the bottom of the gasifier (tapping system), the higher slagging propensity and lower viscosity at the operating temperature are required. ... These samples include two clean coal products, which exhibited minimum ash content (B and C), two tests that offered maximum organic material recovery (D and E) from the middle particle size fraction, and two tests with fine and coarse particle sizes (A and F, respectively). ...

Ebrahim Azimi; Shayan Karimipour; Moshfiqur Rahman; Jozef Szymanski; Rajender Gupta

2013-08-13T23:59:59.000Z

Note: This page contains sample records for the topic "ash content varying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

System Identification: Time Varying and Nonlinear Methods  

E-Print Network [OSTI]

that the choice of the generalized time varying ARX model (GTV-ARX) can be set to realize a time varying dead beat observer. Methods to use the developed algorithm(s) in this research are then considered for application to the identification of system models...

Majji, Manoranjan

2010-07-14T23:59:59.000Z

282

Fractal analysis of time varying data  

DOE Patents [OSTI]

Characteristics of time varying data, such as an electrical signal, are analyzed by converting the data from a temporal domain into a spatial domain pattern. Fractal analysis is performed on the spatial domain pattern, thereby producing a fractal dimension D.sub.F. The fractal dimension indicates the regularity of the time varying data.

Vo-Dinh, Tuan (Knoxville, TN); Sadana, Ajit (Oxford, MS)

2002-01-01T23:59:59.000Z

283

Relationship between selenium body burdens and tissue concentrations in fish exposed to coal ash at the Tennessee Valley Authority Kingston spill site  

SciTech Connect (OSTI)

In December 2008, 4.1 million m3 of coal ash were released into the Emory and Clinch Rivers by the Tennessee Valley Authority (TVA) Kingston Fossil Plant. Coal ash contains several contaminants, including the bioaccumulative metalloid selenium (Se). Because Se is predominantly accumulated in aquatic organisms through dietary, rather than aqueous exposure, tissue-based toxicity thresholds for Se are currently being considered. The proposed threshold concentrations range between 4-9 g/g Se (dry wt.) in whole body fish, with a proposed fillet threshold of 11.8 g/g. In the present study we examined the spatial and temporal trends in Se bioaccumulation and examined the relationship between the Se content in fillets and in whole bodies of fish collected around the Kingston spill site to determine whether Se bioaccumulation was a significant concern at the ash spill site. While Se concentrations in fish (whole bodies and fillets) were elevated at sampling locations affected by the Kingston ash spill relative to reference locations, concentrations do not appear to be above risk thresholds and have not been increasing over the five year period since the spill. Our results are not only relevant to guiding the human health and ecological risk assessments at the Kingston ash spill site, but because of current national discussions on appropriate guidelines for Se in fish as well for the disposal of coal combustion wastes, our results are also relevant to the general understanding of Se bioaccumulation in contaminated water bodies.

Mathews, Teresa J [ORNL; Fortner, Allison M [ORNL; Jett, Robert T [ORNL; Peterson, Mark J [ORNL; Carriker, Neil [Tennessee Valley Authority (TVA); Morris, Jesse G [ORNL; Gable, Jennifer [Environmental Standards, Inc.

2014-01-01T23:59:59.000Z

284

The Development of a Small Engine Based Ash Loading Protocol  

Broader source: Energy.gov [DOE]

When 5% lubrication oil is added to diesel fuel in a small engine test, ash increases linearly and at the back of a filter, the amount depending on the differences in substrate and wash-coat type.

285

Determination of Total Solids and Ash in Algal Biomass: Laboratory...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solids and Ash in Algal Biomass Laboratory Analytical Procedure (LAP) Issue Date: December 2, 2013 S. Van Wychen and L. M. L. Laurens Technical Report NRELTP-5100-60956 December...

286

Transcending Portland Cement with 100 percent fly ash concrete  

SciTech Connect (OSTI)

The use of concrete, made with 100% fly ash and no Portland cement, in buildings at the Transportation Institute in Bozeman, MT, USA, is described. 3 refs., 7 figs.

Cross, D.; Akin, M.; Stephens, J.; Cuelh, E. [Montana State University, MT (United States)

2009-07-01T23:59:59.000Z

287

Coal ash composition of Australian low rank coals  

Science Journals Connector (OSTI)

The iron-containing phases in nine precipitator ashes of widely differing composition have been analyzed by57Fe Mössbauer spectroscopy. The importance of the relative proportion of calcium ferrite to magnesioferr...

L. J. Brown; J. D. Cashion; R. C. Ledger

1992-04-01T23:59:59.000Z

288

INAA multielemental analysis of Nigerian bituminous coal and coal ash  

Science Journals Connector (OSTI)

Instrumental neutron activation analysis (INAA) was used to analyzed Nigerian bituminous coal and ash. Good statistical agreement (p...?0.05) between the literature and reported elemental values of USGS AGV-1 sam...

V. O. Ogugbuaja; W. D. James

1995-03-01T23:59:59.000Z

289

The mild hydrothermal synthesis of hydrogrossular from coal ash  

Science Journals Connector (OSTI)

In this study, an attempt was made to synthesize hydrogrossular, a group of garnet minerals, under hydrothermal conditions at temperatures below 180°C, using coal ash, which is the solid waste from thermal...

Satoru Fujita; Kenzi Suzuki; Yasuo Shibasaki

2002-04-01T23:59:59.000Z

290

Ultimate bearing capacity of footings on coal ash  

Science Journals Connector (OSTI)

Coal ash is recognized as an alternative fill material to the conventional natural soils near a coal fired thermal power station where its large ... This paper presents experimental investigations on footings on

Ashutosh Trivedi; Vijay Kumar Sud

2005-11-01T23:59:59.000Z

291

Recovery Act Workers Complete Environmental Cleanup of Coal Ash Basin  

Broader source: Energy.gov [DOE]

The Savannah River Site (SRS) recently cleaned up a 17-acre basin containing coal ash residues from Cold War operations. The American Recovery and Reinvestment Act project was safely completed at a...

292

Optical properties of fly ash. Volume 2, Final report  

SciTech Connect (OSTI)

Research performed under this contract was divided into four tasks under the following headings: Task 1, Characterization of fly ash; Task 2, Measurements of the optical constants of slags; Task 3, Calculations of the radiant properties of fly ash dispersions; and Task 4, Measurements of the radiant properties of fly ash dispersions. Tasks 1 and 4 constituted the Ph.D. research topic of Sarbajit Ghosal, while Tasks 2 and 3 constituted the Ph.D. research topic of Jon Ebert. Together their doctoral dissertations give a complete account of the work performed. This final report, issued in two volumes consists of an executive summary of the whole program followed by the dissertation of Ghosal and Ebert. Volume 2 contains the dissertation of Ebert which covers the measurements of the optical constants of slags, and calculations of the radiant properties of fly ash dispersions. A list of publications and conference presentations resulting from the work is also included.

Self, S.A.

1994-12-01T23:59:59.000Z

293

Guide to Using Wood Ash as an Agricultural Soil Amendment  

E-Print Network [OSTI]

wastes Increases soil pH Add plant nutrients Low cost #12;UNH COOPERATIVE EXTENSION Food & Agriculture and scab-susceptible potatoes varieties thrive in acid soils, and should not be supplemented with wood ash

New Hampshire, University of

294

Evaluation of fly ash from co-combustion of coal and petroleum coke for use in concrete  

SciTech Connect (OSTI)

An investigation of fly ash (FA) produced from various blends of coal and petroleum coke (pet coke) fired at Belledune Generating Station, New Brunswick, Canada, was conducted to establish its performance relative to FA derived from coal-only combustion and its compliance with CSA A3000. The FA samples were beneficiated by an electrostatic separation process to produce samples for testing with a range of loss-on-ignition (LOI) values. The results of these studies indicate that the combustion of pet coke results in very little inorganic residue (for example, typically less than 0.5% ash) and the main impact on FA resulting from the co-combustion of coal and up to 25% pet coke is an increase in the unburned carbon content and LOI values. The testing of FA after beneficiation indicates that FA produced from fuels with up to 25% pet coke performs as good as FA produced from the same coal without pet coke.

Scott, A.N.; Thomas, M.D.A.

2007-01-15T23:59:59.000Z

295

Effects of Sediment Containing Coal Ash from the Kingston Ash Release on Embryo-Larval Development in the Fathead Minnow, Pimephales promelas (Rafinesque, 1820)  

Science Journals Connector (OSTI)

The largest environmental release of coal ash in US history occurred in December 2008 ... Plant in East Tennessee. A byproduct of coal-burning power plants, coal ash is enriched in metals and metalloids such ... ...

Mark S. Greeley Jr.; Logan R. Elmore…

2014-02-01T23:59:59.000Z

296

Use of Biomass Gasification Fly Ash in Lightweight Plasterboard  

Science Journals Connector (OSTI)

In addition, the overall environmental benefit of waste gasification plus ash utilization of a difficult fly ash makes the overall process attractive. ... Only the Autonomous Government of Catalonia has established regional regulations for waste management, including limited recycling for some wastes considered as byproducts. ... viability of gasifying untreated olive stone, also called "orujillo", a byproduct of the olive oil industry that comprises both olive stone and pulp. ...

C. Leiva; A. Gómez-Barea; L. F. Vilches; P. Ollero; J. Vale; C. Fernández-Pereira

2006-11-24T23:59:59.000Z

297

STRATEGIES AND TECHNOLOGY FOR MANAGING HIGH-CARBON ASH  

SciTech Connect (OSTI)

The overall objective of the present project is to identify and assess strategies and solutions for the management of industry problems related to carbon in ash. Specific research issues to be addressed include: the effect of parent fuel selection on ash properties and adsorptivity, including a first ever examination of the air entrainment behavior of ashes from alternative (non-coal) fuels; the effect of various low-NOx firing modes on ash properties and adsorptivity; and the kinetics and mechanism of ash ozonation. This data will provide scientific and engineering support of the ongoing process development activities. This first project period, experiments were carried out to better understand the fundamental nature of the ozonation effect on ash. Carbon surfaces were characterized by surfactant adsorption, and by X-ray Photoelectron Spectroscopy before and after oxidation, both by air at 440 C and by ozone at room temperature. The results strongly suggest that the beneficial effect of ozonation is in large part due to chemical modification of the carbon surfaces.

Robert Hurt; Eric Suuberg; John Veranth

2001-12-26T23:59:59.000Z

298

Ash level meter for a fixed-bed coal gasifier  

DOE Patents [OSTI]

An ash level meter for a fixed-bed coal gasifier is provided which utilizes the known ash level temperature profile to monitor the ash bed level. A bed stirrer which travels up and down through the extent of the bed ash level is modified by installing thermocouples to measure the bed temperature as the stirrer travels through the stirring cycle. The temperature measurement signals are transmitted to an electronic signal process system by an FM/FM telemetry system. The processing system uses the temperature signals together with an analog stirrer position signal, taken from a position transducer disposed to measure the stirrer position to compute the vertical location of the ash zone upper boundary. The circuit determines the fraction of each total stirrer cycle time the stirrer-derived bed temperature is below a selected set point, multiplies this fraction by the average stirrer signal level, multiplies this result by an appropriate constant and adds another constant such that a 1 to 5 volt signal from the processor corresponds to a 0 to 30 inch span of the ash upper boundary level. Three individual counters in the processor store clock counts that are representative of: (1) the time the stirrer temperature is below the set point (500.degree. F.), (2) the time duration of the corresponding stirrer travel cycle, and (3) the corresponding average stirrer vertical position. The inputs to all three counters are disconnected during any period that the stirrer is stopped, eliminating corruption of the measurement by stirrer stoppage.

Fasching, George E. (Morgantown, WV)

1984-01-01T23:59:59.000Z

299

STRATEGIES AND TECHNOLOGY FOR MANAGING HIGH-CARBON ASH  

SciTech Connect (OSTI)

The overall objective of the present project was to identify and assess strategies and solutions for the management of industry problems related to carbon in ash. Specific issues addressed included: (1) the effect of parent fuel selection on ash properties and adsorptivity, including a first ever examination of the air entrainment behavior of ashes from alternative (non-coal) fuels; (2) the effect of various low-NOx firing modes on ash properties and adsorptivity based on pilot-plant studies; and (3) the kinetics and mechanism of ash ozonation. This laboratory data has provided scientific and engineering support and underpinning for parallel process development activities. The development work on the ash ozonation process has now transitioned into a scale-up and commercialization project involving a multi-industry team and scheduled to begin in 2004. This report describes and documents the laboratory and pilot-scale work in the above three areas done at Brown University and the University of Utah during this three-year project.

Robert Hurt; Eric Suuberg; John Veranth; Xu Chen; Indrek Kulaots

2004-02-13T23:59:59.000Z

300

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ngm_epg0_fgc_sky_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_fgc_sky_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:59:11 AM" "Back to Contents","Data 1: Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (MMcf) " "Sourcekey","NGM_EPG0_FGC_SKY_MMCF" "Date","Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (MMcf) "

Note: This page contains sample records for the topic "ash content varying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Solar mass-varying neutrino oscillations  

E-Print Network [OSTI]

We propose that the solar neutrino deficit may be due to oscillations of mass-varying neutrinos (MaVaNs). This scenario elucidates solar neutrino data beautifully while remaining comfortably compatible with atmospheric neutrino and K2K data...

Marfatia, Danny; Huber, P.; Barger, V.

2005-11-18T23:59:59.000Z

302

Note on Varying Speed of Light Cosmologies  

E-Print Network [OSTI]

The various requirements on a consistent varying speed of light (`VSL') theory are surveyed, giving a short check-list of issues that should be satisfactorily handled by such theories.

George F R Ellis

2007-03-29T23:59:59.000Z

303

Prediction of the digestible and metabolizable energy content of wheat milling by-products for growing pigs from chemical composition  

Science Journals Connector (OSTI)

Abstract Thirty samples of wheat milling by-products (wheat bran, wheat middlings, wheat shorts, wheat red dog, wheat feed flour), collected from 11 flour mills, were fed to growing pigs to determine their digestible energy (DE) and metabolizable energy (ME) content and to establish equations for predicting their DE and ME content based on chemical analysis. The basal diet was based on corn and soybean meal while the other 30 experimental diets contained 290.4 g/kg wheat milling by-products added at the expense of corn and soybean meal. The 31 diets were fed to 96 growing pigs (BW = 61.9 ± 3.2 kg) according to a completely randomized design during two successive periods. During each period, the 30 experimental diets were fed to three pigs and the basal diet was fed to six pigs, resulting in 6 replications per experimental diet and 12 replications for the basal diet over the two periods. The chemical composition of the 30 samples was variable, and starch and fiber content had a strong negative correlation (r = ?0.96 to ?0.99 for CF and ADF, respectively). The DE content of wheat feed flour, wheat red dog, wheat shorts, wheat middlings and wheat bran averaged 17.4, 16.9, 15.2, 12.5 and 12.0 MJ/kg DM, respectively. From the stepwise regression analysis, a series of DE and ME prediction equations were generated. The best fit equations for wheat milling by-products were: DE (MJ/kg DM) = 19.2 ? (0.016×aNDF) with R2 = 0.94, RSD = 0.58 and Pcontent varied substantially and various correlated single predictors (aNDF, ash, CF, starch, etc.) can be used to accurately predict the DE and ME content when fed to growing pigs.

Q. Huang; C.X. Shi; Y.B. Su; Z.Y. Liu; D.F. Li; L. Liu; C.F. Huang; X.S. Piao; C.H. Lai

2014-01-01T23:59:59.000Z

304

3D-Printing Spatially Varying BRDFs  

Science Journals Connector (OSTI)

A new method fabricates custom surface reflectance and spatially varying bidirectional reflectance distribution functions (svBRDFs). Researchers optimize a microgeometry for a range of normal distribution functions and simulate the resulting surface's ... Keywords: Three-dimensional displays,Printing,Fabrication,Computational modeling,Solid modeling,Printers,Face recognition,computer graphics,bidirectional reflectance distribution function,BRDF,spatially varying bidirectional reflectance distribution function,svBRDF,3D printing,normal distribution function,NDF,microgeometry,surface reflectance

Olivier Rouiller; Bernd Bickel; Wojciech Matusik; Marc Alexa; Jan Kautz

2013-11-01T23:59:59.000Z

305

Soil solution chemistry of a fly ash-, poultry litter-, and sewage sludge-amended soil  

SciTech Connect (OSTI)

Mixing coal fly ash (FA) with organic wastes to provide balanced soil amendments offers a potential viable use of this industrial by-product. When such materials are land-applied to supply nutrients for agronomic crops, trace element contaminant solubility must be evaluated. In this study, major and trace element soil solution concentrations arising from application of fly ash, organic wastes, and mixtures of the two were compared in a laboratory incubation. Two fly ashes, broiler poultry litter (PL), municipal sewage sludge (SS), and mixtures of FA with either PL or SS were mixed with a Cecil sandy loam (fine, kaolinitic, thermic Typic Kanhapludult) at rates of 32.3, 8.1, and 16.1 g kg{sup {minus}1} soil for FA, PL, and SS, respectively. Treatments were incubated at 22 C at 17% moisture content and soil solution was periodically extracted by centrifugation over 33 d. Initial soil solution concentrations of As, Mo, Se, and Cu were significantly greater in FA/OL treatments than the respective FA-only treatments. For Cu, increased solution concentrations were attributable to increased loading rates in FA/PL mixtures. Solution Cu concentrations were strongly correlated with dissolved C (R{sup 2} > 0.96) in all PL treatments. Significant interactive effects for solution Mo and Se concentrations were observed for the FA/PL and may have resulted from the increased pH and competing anion concentrations of these treatments. Solution As concentrations showed a significant interactive effect for one FA/PL mixture. For the individual treatments, As was more soluble in the Pl treatment than either FA treatment. Except for soluble Se from on FA/SS mixture, trace element solubility in the FA/SS mixtures was not significantly different than the respective FA-only treatment.

Jackson, B.P.; Miller, W.P.

2000-04-01T23:59:59.000Z

306

The impact of weathering and aging on a LIMB ash stockpile material  

SciTech Connect (OSTI)

A 1,500 ton temporary storage pile of water conditioned LIMB (Lime Injected Multistage Burner) ash by-product from the Ohio Edison Edgewater plant Lorain, OH was constructed in July, 1991 at a coal company near New Philadelphia, Ohio. This stockpile was created for dry FGD by-product material to be held in reserve for a land application uses field demonstration. High volume, beneficial uses of dry FGD by-products, such as for mine reclamation and embankment stabilization, will require temporary stockpiling of the by-product. Purpose for constructing this pile was to study changes with time in the LIMB by-product material when exposed to weathering. This by-product material was studied over a 2 1/2 year period. The water to control fugitive dust was added in the ash conditioner at the power plant while being loaded into dump trucks. Amount of water normally added in the conditioning process is close to the optimum moisture content of 40--50 % (dry weight basis), to construct a compacted road embankment or road base. Four environmental operating permits required for construction of the storage pile were obtained, three from Ohio EPA (air, water and solid waste), and one from the Ohio Division of Reclamation (revised reclamation area permit). There was no significant environmental impacts from storm runoff or leachate water from the LIMB ash stockpile during the initial 18 month period through December, 1992. After 2 1/2 years of storage, the potential value of the LIMB material for use as a road embankment material or soil conditioner has declined significantly. Ettringite formation occurs. Aging allows the expansive reaction to take place before its potential use as compacted structural fill or embankment.

Beeghly, J.H. [Dravo Lime Co., Pittsburgh, PA (United States); Bigham, J.M. [Ohio State Univ., Columbus, OH (United States). Dept. of Natural Resources; Dick, W.A.; Stehouwer, R.C. [Ohio State Univ., Wooster, OH (United States). Dept. of Natural Resources; Wolfe, W.B. [Ohio State Univ., Columbus, OH (United States). Dept. of Civil Engineering

1995-03-01T23:59:59.000Z

307

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010pa2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010pa2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:52 PM" "Back to Contents","Data 1: Pennsylvania Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010PA2" "Date","Pennsylvania Natural Gas Residential Consumption (MMcf)" 24653,279817 25019,285978 25384,295027 25749,297022 26114,304327

308

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Bcf)" Bcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Dry Natural Gas Production (Bcf)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9070us1m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9070us1m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:33:14 PM" "Back to Contents","Data 1: U.S. Dry Natural Gas Production (Bcf)"

309

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1504_nus_4m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1504_nus_4m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:46:14 PM" "Back to Contents","Data 1: U.S. Natural Gas % of Total Residential - Sales (%)" "Sourcekey","NA1504_NUS_4" "Date","U.S. Natural Gas % of Total Residential - Sales (%)" 37271,98.3 37302,98.5 37330,98.4 37361,98.1

310

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5050us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5050us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:29:09 PM" "Back to Contents","Data 1: U.S. Total Natural Gas Injections into Underground Storage (MMcf)" "Sourcekey","N5050US2" "Date","U.S. Total Natural Gas Injections into Underground Storage (MMcf)" 26679 26710 26738 26769 26799

311

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010hi2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010hi2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:19 PM" "Back to Contents","Data 1: Hawaii Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010HI2" "Date","Hawaii Natural Gas Residential Consumption (MMcf)" 29402,1416 29767,1289 30132,1197 30497,1121 30863,1048 31228,625 31593,579 31958,591

312

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010tx2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010tx2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:59 PM" "Back to Contents","Data 1: Texas Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010TX2" "Date","Texas Natural Gas Residential Consumption (MMcf)" 24653,201407 25019,211763 25384,220728 25749,232189 26114,237387 26480,240662

313

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040nd2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040nd2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:40 AM" "Back to Contents","Data 1: North Dakota Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040ND2" "Date","North Dakota Natural Gas Vented and Flared (MMcf)" 35079,232 35110,193 35139,232 35170,176 35200,230 35231,258 35261,269

314

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010de3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010de3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:15 PM" "Back to Contents","Data 1: Delaware Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010DE3" "Date","Delaware Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

315

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020fl2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020fl2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:29 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Florida (MMcf)" "Sourcekey","N3020FL2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Florida (MMcf)"

316

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020ct2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ct2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:23 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Connecticut (MMcf)" "Sourcekey","N3020CT2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Connecticut (MMcf)"

317

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020az2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020az2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:17 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Arizona (MMcf)" "Sourcekey","N3020AZ2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Arizona (MMcf)"

318

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020ca2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ca2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:19 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in California (MMcf)" "Sourcekey","N3020CA2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in California (MMcf)"

319

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020dc2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020dc2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:24 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in the District of Columbia (MMcf)" "Sourcekey","N3020DC2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in the District of Columbia (MMcf)"

320

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020co2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020co2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:21 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Colorado (MMcf)" "Sourcekey","N3020CO2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Colorado (MMcf)"

Note: This page contains sample records for the topic "ash content varying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010md2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010md2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:30 PM" "Back to Contents","Data 1: Maryland Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010MD2" "Date","Maryland Natural Gas Residential Consumption (MMcf)" 24653,77130 25019,79015 25384,84406 25749,86811 26114,87617 26480,89042

322

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040or2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040or2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:43 AM" "Back to Contents","Data 1: Oregon Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040OR2" "Date","Oregon Natural Gas Vented and Flared (MMcf)" 35079 35110 35139 35170 35200 35231 35261 35292 35323 35353 35384 35414 35445,0

323

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010wv3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010wv3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:07 PM" "Back to Contents","Data 1: West Virginia Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010WV3" "Date","West Virginia Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

324

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010la2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010la2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:28 PM" "Back to Contents","Data 1: Louisiana Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010LA2" "Date","Louisiana Natural Gas Residential Consumption (MMcf)" 24653,74386 25019,77762 25384,82965 25749,86148 26114,79893 26480,82847

325

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010al3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010al3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:07 PM" "Back to Contents","Data 1: Alabama Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010AL3" "Date","Alabama Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

326

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010nm3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010nm3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:45 PM" "Back to Contents","Data 1: New Mexico Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010NM3" "Date","New Mexico Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

327

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010id2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010id2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:22 PM" "Back to Contents","Data 1: Idaho Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010ID2" "Date","Idaho Natural Gas Residential Consumption (MMcf)" 24653,6179 25019,6545 25384,6980 25749,7711 26114,8455 26480,10887 26845,9947 27210,9652

328

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010wa2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010wa2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:05 PM" "Back to Contents","Data 1: Washington Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010WA2" "Date","Washington Natural Gas Residential Consumption (MMcf)" 24653,23160 25019,26342 25384,30479 25749,31929 26114,33934 26480,38631

329

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ok2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ok2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:42 AM" "Back to Contents","Data 1: Oklahoma Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040OK2" "Date","Oklahoma Natural Gas Vented and Flared (MMcf)" 35079 35110 35139 35170 35200 35231 35261 35292 35323 35353 35384 35414 35445,0

330

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9132us3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9132us3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 2:23:27 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas Pipeline Exports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9132US3" "Date","Price of U.S. Natural Gas Pipeline Exports (Dollars per Thousand Cubic Feet)" 35445,4.08

331

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040nm2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040nm2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:40 AM" "Back to Contents","Data 1: New Mexico Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040NM2" "Date","New Mexico Natural Gas Vented and Flared (MMcf)" 24653,5992 25019,5987 25384,4058 25749,2909 26114,2823 26480,5696 26845,3791 27210,1227

332

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040sd2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040sd2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:43 AM" "Back to Contents","Data 1: South Dakota Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040SD2" "Date","South Dakota Natural Gas Vented and Flared (MMcf)" 24653,0 25019,0 25384,0 25749,0 26114,0 26480,0 26845,0 27210,0 27575,4 27941,5

333

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040co2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040co2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:33 AM" "Back to Contents","Data 1: Colorado Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040CO2" "Date","Colorado Natural Gas Vented and Flared (MMcf)" 24653,2656 25019,1514 25384,1326 25749,7126 26114,2843 26480,4758 26845,3008 27210,2957

334

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035us4a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035us4a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:25:09 PM" "Back to Contents","Data 1: Percent of Industrial Natural Gas Deliveries in U.S. Total Represented by the Price (%)" "Sourcekey","N3035US4" "Date","Percent of Industrial Natural Gas Deliveries in U.S. Total Represented by the Price (%)"

335

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ny2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ny2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:41 AM" "Back to Contents","Data 1: New York Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040NY2" "Date","New York Natural Gas Vented and Flared (MMcf)" 33253,0 33284,0 33312,1 33343,0 33373,0 33404,0 33434,0 33465,0 33496,0

336

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ma2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ma2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:29 PM" "Back to Contents","Data 1: Massachusetts Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010MA2" "Date","Massachusetts Natural Gas Residential Consumption (MMcf)" 24653,73471 25019,74919 25384,78451 25749,82646 26114,83434 26480,86171

337

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040mt2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040mt2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:39 AM" "Back to Contents","Data 1: Montana Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040MT2" "Date","Montana Natural Gas Vented and Flared (MMcf)" 35079,32 35110,38 35139,34 35170,40 35200,43 35231,27 35261,63 35292,59 35323,60

338

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040us2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040us2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:45 AM" "Back to Contents","Data 1: U.S. Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040US2" "Date","U.S. Natural Gas Vented and Flared (MMcf)" 13331,392528 13696,526159 14061,649106 14426,677311 14792,655967 15157,630212 15522,626782 15887,684115

339

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040mi2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040mi2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:38 AM" "Back to Contents","Data 1: Michigan Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040MI2" "Date","Michigan Natural Gas Vented and Flared (MMcf)" 35079,277 35110,277 35139,277 35170,277 35200,277 35231,277 35261,277

340

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1997" Annual",2012,"6/30/1997" ,"Data 2","Futures Prices",4,"Annual",2012,"6/30/1993" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","ng_pri_fut_s1_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_pri_fut_s1_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:13 PM" "Back to Contents","Data 1: Spot Price" "Sourcekey","RNGWHHD","NGM_EPG0_PLC_NUS_DMMBTU" "Date","Henry Hub Natural Gas Spot Price (Dollars per Million Btu)","U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

Note: This page contains sample records for the topic "ash content varying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9012us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9012us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:55:55 AM" "Back to Contents","Data 1: U.S. Natural Gas Gross Withdrawals from Oil Wells (MMcf)" "Sourcekey","N9012US2" "Date","U.S. Natural Gas Gross Withdrawals from Oil Wells (MMcf)" 33253,475614 33526,500196 33984,513068 34015,462218

342

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ne2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ne2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:40 AM" "Back to Contents","Data 1: Nebraska Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040NE2" "Date","Nebraska Natural Gas Vented and Flared (MMcf)" 33253,0 33284,0 33312,0 33343,0 33373,0 33404,0 33434,0 33465,0 33496,0

343

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040pa2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040pa2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:43 AM" "Back to Contents","Data 1: Pennsylvania Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040PA2" "Date","Pennsylvania Natural Gas Vented and Flared (MMcf)" 33253,0 33284,0 33312,0 33343,0 33373,0 33404,0 33434,0 33465,0

344

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9050us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9050us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:57:04 AM" "Back to Contents","Data 1: U.S. Natural Gas Marketed Production (MMcf)" "Sourcekey","N9050US2" "Date","U.S. Natural Gas Marketed Production (MMcf)" 26679,1948000 26710,1962000 26738,1907000 26769,1814000 26799,1898000 26830,1839000

345

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

mbbl_a.xls" mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_crd_crpdn_adc_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/27/2013 9:07:23 AM" "Back to Contents","Data 1: Crude Oil Production" "Sourcekey","MCRFPUS1","MCRFPP11","MCRFPFL1","MCRFPNY1","MCRFPPA1","MCRFPVA1","MCRFPWV1","MCRFPP21","MCRFPIL1","MCRFPIN1","MCRFPKS1","MCRFPKY1","MCRFP_SMI_1","MCRFPMO1","MCRFPNE1","MCRFPND1","MCRFPOH1","MCRFPOK1","MCRFPSD1","MCRFPTN1","MCRFPP31","MCRFPAL1","MCRFPAR1","MCRFPLA1","MCRFPMS1","MCRFPNM1","MCRFPTX1","MCRFP3FM1","MCRFPP41","MCRFPCO1","MCRFPMT1","MCRFPUT1","MCRFPWY1","MCRFPP51","MCRFPAK1","MCRFPAKS1","MANFPAK1","MCRFPAZ1","MCRFPCA1","MCRFPNV1","MCRFP5F1"

346

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020al2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020al2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:11 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Alabama (MMcf)" "Sourcekey","N3020AL2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Alabama (MMcf)"

347

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9100us3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9100us3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 3:53:51 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas Imports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9100US3" "Date","Price of U.S. Natural Gas Imports (Dollars per Thousand Cubic Feet)" 31228,3.21 31593,2.43 31958,1.95 32324,1.84

348

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngc1a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngc1a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:41 PM" "Back to Contents","Data 1: Natural Gas Futures Contract 1 (Dollars per Million Btu)" "Sourcekey","RNGC1" "Date","Natural Gas Futures Contract 1 (Dollars per Million Btu)" 34515,1.934 34880,1.692 35246,2.502 35611,2.475 35976,2.156 36341,2.319

349

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9130us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9130us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 2:23:23 PM" "Back to Contents","Data 1: U.S. Natural Gas Exports (MMcf)" "Sourcekey","N9130US2" "Date","U.S. Natural Gas Exports (MMcf)" 26679,5808 26710,6079 26738,4021 26769,8017 26799,8741 26830,4131 26860,5744 26891,8726 26922,6403 26952,5473

350

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ks3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ks3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:26 PM" "Back to Contents","Data 1: Kansas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010KS3" "Date","Kansas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

351

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ca2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ca2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:33 AM" "Back to Contents","Data 1: California Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040CA2" "Date","California Natural Gas Vented and Flared (MMcf)" 35079,97 35110,103 35139,109 35170,107 35200,107 35231,104 35261,108

352

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9103us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9103us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 3:54:17 PM" "Back to Contents","Data 1: U.S. Liquefied Natural Gas Imports (MMcf)" "Sourcekey","N9103US2" "Date","U.S. Liquefied Natural Gas Imports (MMcf)" 35445,9977 35476,7667 35504,2530 35535,2557 35565,5007 35596,5059 35626,5026 35657,7535

353

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040mt2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040mt2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:39 AM" "Back to Contents","Data 1: Montana Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040MT2" "Date","Montana Natural Gas Vented and Flared (MMcf)" 24653,5022 25019,12551 25384,26458 25749,5203 26114,4917 26480,4222 26845,3691 27210,3901

354

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040tx2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040tx2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:44 AM" "Back to Contents","Data 1: Texas Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040TX2" "Date","Texas Natural Gas Vented and Flared (MMcf)" 33253,2478 33284,2147 33312,2113 33343,2353 33373,3203 33404,2833 33434,3175

355

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9130us3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9130us3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 2:23:24 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas Exports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9130US3" "Date","Price of U.S. Natural Gas Exports (Dollars per Thousand Cubic Feet)" 31228,4.77 31593,2.81 31958,3.07 32324,2.74

356

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ny2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ny2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:41 AM" "Back to Contents","Data 1: New York Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040NY2" "Date","New York Natural Gas Vented and Flared (MMcf)" 24653,0 25019,0 25384,0 25749,0 26114,0 26480,0 26845,0 27210,0 27575,0 27941,0 28306,0 28671,0

357

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ks2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ks2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:35 AM" "Back to Contents","Data 1: Kansas Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040KS2" "Date","Kansas Natural Gas Vented and Flared (MMcf)" 24653,2630 25019,2529 25384,2666 25749,2713 26114,2669 26480,2681 26845,2377 27210,889 27575,846

358

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ar2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ar2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:32 AM" "Back to Contents","Data 1: Arkansas Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040AR2" "Date","Arkansas Natural Gas Vented and Flared (MMcf)" 33253,23 33284,13 33312,12 33343,7 33373,13 33404,28 33434,28 33465,30

359

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010de2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010de2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:15 PM" "Back to Contents","Data 1: Delaware Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010DE2" "Date","Delaware Natural Gas Residential Consumption (MMcf)" 24653,6844 25019,7068 25384,7475 25749,7843 26114,8172 26480,8358 26845,7514

360

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

mbblpd_a.xls" mbblpd_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_crd_crpdn_adc_mbblpd_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/27/2013 9:07:25 AM" "Back to Contents","Data 1: Crude Oil Production" "Sourcekey","MCRFPUS2","MCRFPP12","MCRFPFL2","MCRFPNY2","MCRFPPA2","MCRFPVA2","MCRFPWV2","MCRFPP22","MCRFPIL2","MCRFPIN2","MCRFPKS2","MCRFPKY2","MCRFP_SMI_2","MCRFPMO2","MCRFPNE2","MCRFPND2","MCRFPOH2","MCRFPOK2","MCRFPSD2","MCRFPTN2","MCRFPP32","MCRFPAL2","MCRFPAR2","MCRFPLA2","MCRFPMS2","MCRFPNM2","MCRFPTX2","MCRFP3FM2","MCRFPP42","MCRFPCO2","MCRFPMT2","MCRFPUT2","MCRFPWY2","MCRFPP52","MCRFPAK2","MCRFPAKS2","MANFPAK2","MCRFPAZ2","MCRFPCA2","MCRFPNV2","MCRFP5F2"

Note: This page contains sample records for the topic "ash content varying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ngm_epg0_fgc_sky_mmcfm.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_fgc_sky_mmcfm.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:59:11 AM" "Back to Contents","Data 1: Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (MMcf) " "Sourcekey","NGM_EPG0_FGC_SKY_MMCF" "Date","Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (MMcf) "

362

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020hi3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020hi3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:34 PM" "Back to Contents","Data 1: Hawaii Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3020HI3" "Date","Hawaii Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)"

363

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

poe2_dcu_nus-z00_a.xls" poe2_dcu_nus-z00_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_move_poe2_dcu_nus-z00_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/12/2013 6:58:44 PM" "Back to Contents","Data 1: U.S. Total Exports " "Sourcekey","N9132US2","N9132US3","N9133US2","N9133US3" "Date","U.S. Natural Gas Pipeline Exports (MMcf)","Price of U.S. Natural Gas Pipeline Exports (Dollars per Thousand Cubic Feet)","Liquefied U.S. Natural Gas Exports (MMcf)","Price of Liquefied U.S. Natural Gas Exports (Dollars per Thousand Cubic Feet)"

364

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ms2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ms2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:38 AM" "Back to Contents","Data 1: Mississippi Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040MS2" "Date","Mississippi Natural Gas Vented and Flared (MMcf)" 24653,7098 25019,5910 25384,8097 25749,7233 26114,5090 26480,3672 26845,10767 27210,10787

365

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ok3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ok3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:50 PM" "Back to Contents","Data 1: Oklahoma Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010OK3" "Date","Oklahoma Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

366

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010nd3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010nd3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:40 PM" "Back to Contents","Data 1: North Dakota Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010ND3" "Date","North Dakota Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

367

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040or2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040or2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:42 AM" "Back to Contents","Data 1: Oregon Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040OR2" "Date","Oregon Natural Gas Vented and Flared (MMcf)" 35246 35611,0 35976,0 36341,0 36707,0 37072,0 37437,0 37802,0 38168,0 38533,0 38898,0 39263,0

368

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ky2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ky2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:27 PM" "Back to Contents","Data 1: Kentucky Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010KY2" "Date","Kentucky Natural Gas Residential Consumption (MMcf)" 24653,69542 25019,75824 25384,83815 25749,86473 26114,84197 26480,85881

369

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9160us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9160us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:33:48 PM" "Back to Contents","Data 1: U.S. Natural Gas Lease and Plant Fuel Consumption (MMcf)" "Sourcekey","N9160US2" "Date","U.S. Natural Gas Lease and Plant Fuel Consumption (MMcf)" 29235,93000 29266,87000 29295,93000 29326,85000

370

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9030us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9030us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:28 AM" "Back to Contents","Data 1: U.S. Nonhydrocarbon Gases Removed from Natural Gas (MMcf)" "Sourcekey","N9030US2" "Date","U.S. Nonhydrocarbon Gases Removed from Natural Gas (MMcf)" 26679 26710 26738 26769 26799 26830 26860 26891

371

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010mi3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010mi3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:33 PM" "Back to Contents","Data 1: Michigan Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010MI3" "Date","Michigan Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

372

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9070us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9070us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:57:08 AM" "Back to Contents","Data 1: U.S. Dry Natural Gas Production (MMcf)" "Sourcekey","N9070US2" "Date","U.S. Dry Natural Gas Production (MMcf)" 35445,1617923 35476,1465907 35504,1627602 35535,1551268 35565,1610527 35596,1525325

373

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9102us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9102us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 3:53:55 PM" "Back to Contents","Data 1: U.S. Natural Gas Pipeline Imports (MMcf)" "Sourcekey","N9102US2" "Date","U.S. Natural Gas Pipeline Imports (MMcf)" 35445,268310 35476,232878 35504,254455 35535,235621 35565,236725 35596,227059 35626,230567

374

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010wy2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010wy2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:08 PM" "Back to Contents","Data 1: Wyoming Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010WY2" "Date","Wyoming Natural Gas Residential Consumption (MMcf)" 24653,11939 25019,12592 25384,16592 25749,17984 26114,19463 26480,22242 26845,13868

375

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020ak2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ak2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:09 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Alaska (MMcf)" "Sourcekey","N3020AK2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Alaska (MMcf)"

376

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:00 PM" "Back to Contents","Data 1: U.S. Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010US2" "Date","U.S. Natural Gas Residential Consumption (MMcf)" 26679,843900 26710,747331 26738,648504 26769,465867 26799,326313

377

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010mt2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010mt2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:38 PM" "Back to Contents","Data 1: Montana Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010MT2" "Date","Montana Natural Gas Residential Consumption (MMcf)" 24653,19756 25019,19711 25384,21463 25749,24794 26114,25379 26480,23787 26845,24923

378

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9103us3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9103us3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 3:54:18 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas LNG Imports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9103US3" "Date","Price of U.S. Natural Gas LNG Imports (Dollars per Thousand Cubic Feet)" 35445,3 35476,3

379

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9132us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9132us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 2:23:27 PM" "Back to Contents","Data 1: U.S. Natural Gas Pipeline Exports (MMcf)" "Sourcekey","N9132US2" "Date","U.S. Natural Gas Pipeline Exports (MMcf)" 35445,6424 35476,6846 35504,10601 35535,8211 35565,6284 35596,5741 35626,6380 35657,10101

380

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035us4m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035us4m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:25:10 PM" "Back to Contents","Data 1: Percent of Industrial Natural Gas Deliveries in U.S. Total Represented by the Price (%)" "Sourcekey","N3035US4" "Date","Percent of Industrial Natural Gas Deliveries in U.S. Total Represented by the Price (%)"

Note: This page contains sample records for the topic "ash content varying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010wi3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010wi3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:06 PM" "Back to Contents","Data 1: Wisconsin Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010WI3" "Date","Wisconsin Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

382

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040al2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040al2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:31 AM" "Back to Contents","Data 1: Alabama Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040AL2" "Date","Alabama Natural Gas Vented and Flared (MMcf)" 35079,194 35110,200 35139,140 35170,132 35200,106 35231,82 35261,205 35292,152

383

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040wv2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040wv2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:46 AM" "Back to Contents","Data 1: West Virginia Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040WV2" "Date","West Virginia Natural Gas Vented and Flared (MMcf)" 33253,0 33284,0 33312,0 33343,0 33373,0 33404,0 33434,0 33465,0

384

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013","1/15/1993" Monthly","9/2013","1/15/1993" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_pct_dc_nus_pct_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_pct_dc_nus_pct_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:23:48 AM" "Back to Contents","Data 1: U.S. Refinery Yield" "Sourcekey","MLRRYUS3","MGFRYUS3","MGARYUS3","MKJRYUS3","MKERYUS3","MDIRYUS3","MRERYUS3","MNFRYUS3","MOTRYUS3","MNSRYUS3","MLURYUS3","MWXRYUS3","MCKRYUS3","MAPRYUS3","MSGRYUS3","MMSRYUS3","MPGRYUS3"

385

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:23:36 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in the U.S. (MMcf)" "Sourcekey","N3020US2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in the U.S. (MMcf)"

386

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:45 AM" "Back to Contents","Data 1: U.S. Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040US2" "Date","U.S. Natural Gas Vented and Flared (MMcf)" 26679 26710 26738 26769 26799 26830 26860 26891 26922 26952 26983 27013 27044 27075 27103

387

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","11/2013","1/15/1997" Monthly","11/2013","1/15/1997" ,"Data 2","Futures Prices",4,"Monthly","11/2013","12/15/1993" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","ng_pri_fut_s1_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_pri_fut_s1_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:17 PM" "Back to Contents","Data 1: Spot Price" "Sourcekey","RNGWHHD","NGM_EPG0_PLC_NUS_DMMBTU"

388

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010pa3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010pa3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:52 PM" "Back to Contents","Data 1: Pennsylvania Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010PA3" "Date","Pennsylvania Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

389

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ut3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ut3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:02 PM" "Back to Contents","Data 1: Utah Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010UT3" "Date","Utah Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

390

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010dc2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010dc2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:13 PM" "Back to Contents","Data 1: District of Columbia Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010DC2" "Date","District of Columbia Natural Gas Residential Consumption (MMcf)" 29402,13730 29767,13686 30132,13041 30497,13007

391

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010tx3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010tx3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:00 PM" "Back to Contents","Data 1: Texas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010TX3" "Date","Texas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

392

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1993" Annual",2012,"6/30/1993" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_stoc_typ_d_nus_skn_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_stoc_typ_d_nus_skn_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:41:29 AM" "Back to Contents","Data 1: U.S. Natural Gas Processing Plant " "Sourcekey","MAOSNUS1","MPPSNUS1","MLPSNUS1","METSNUS1","MPRSNUS1","MBNSNUS1","MBISNUS1"

393

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040az2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040az2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:32 AM" "Back to Contents","Data 1: Arizona Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040AZ2" "Date","Arizona Natural Gas Vented and Flared (MMcf)" 26114,347 26480,367 26845,277 27210,26 27575,47 27941,32 29036,101 29402,143 29767,106 30132,162

394

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020ca3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ca3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:20 PM" "Back to Contents","Data 1: California Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3020CA3" "Date","California Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)"

395

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010oh3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010oh3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:49 PM" "Back to Contents","Data 1: Ohio Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010OH3" "Date","Ohio Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

396

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020fl3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020fl3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:30 PM" "Back to Contents","Data 1: Florida Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3020FL3" "Date","Florida Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)"

397

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ks2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ks2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:36 AM" "Back to Contents","Data 1: Kansas Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040KS2" "Date","Kansas Natural Gas Vented and Flared (MMcf)" 35079,63 35110,63 35139,63 35170,61 35200,62 35231,57 35261,57 35292,55 35323,56

398

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040nv2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040nv2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:41 AM" "Back to Contents","Data 1: Nevada Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040NV2" "Date","Nevada Natural Gas Vented and Flared (MMcf)" 33253,0 33284,0 33312,0 33343,0 33373,0 33404,0 33434,0 33465,0 33496,0 33526,0

399

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ms2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ms2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:38 AM" "Back to Contents","Data 1: Mississippi Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040MS2" "Date","Mississippi Natural Gas Vented and Flared (MMcf)" 35079,217 35110,199 35139,223 35170,219 35200,237 35231,234 35261,239

400

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9103us3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9103us3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 3:54:18 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas LNG Imports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9103US3" "Date","Price of U.S. Natural Gas LNG Imports (Dollars per Thousand Cubic Feet)" 31228,4.6 31593,4.62 32324,2.71

Note: This page contains sample records for the topic "ash content varying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9130us3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9130us3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 2:23:24 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas Exports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9130US3" "Date","Price of U.S. Natural Gas Exports (Dollars per Thousand Cubic Feet)" 32523,2.69 32554,2.4

402

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040tx2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040tx2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:44 AM" "Back to Contents","Data 1: Texas Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040TX2" "Date","Texas Natural Gas Vented and Flared (MMcf)" 24653,129403 25019,124584 25384,111499 25749,100305 26114,70222 26480,59821 26845,36133 27210,34431

403

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010al2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010al2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:07 PM" "Back to Contents","Data 1: Alabama Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010AL2" "Date","Alabama Natural Gas Residential Consumption (MMcf)" 24653,45543 25019,51708 25384,54804 25749,55779 26114,54867 26480,53397 26845,55685

404

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010mi2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010mi2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:33 PM" "Back to Contents","Data 1: Michigan Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010MI2" "Date","Michigan Natural Gas Residential Consumption (MMcf)" 24653,302472 25019,315694 25384,333264 25749,340033 26114,343773 26480,355266

405

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010co3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010co3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:12 PM" "Back to Contents","Data 1: Colorado Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010CO3" "Date","Colorado Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

406

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010wa3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010wa3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:05 PM" "Back to Contents","Data 1: Washington Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010WA3" "Date","Washington Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

407

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ak2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ak2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:05 PM" "Back to Contents","Data 1: Alaska Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010AK2" "Date","Alaska Natural Gas Residential Consumption (MMcf)" 24653,1958 25019,2293 25384,4573 25749,6211 26114,6893 26480,8394 26845,5024

408

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ar2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ar2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:08 PM" "Back to Contents","Data 1: Arkansas Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010AR2" "Date","Arkansas Natural Gas Residential Consumption (MMcf)" 24653,52777 25019,56346 25384,58322 25749,59792 26114,48737 26480,47387

409

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2010 Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ok2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ok2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:42 AM" "Back to Contents","Data 1: Oklahoma Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040OK2" "Date","Oklahoma Natural Gas Vented and Flared (MMcf)" 24653,126629 25019,129408 25384,130766 25749,129629 26114,39799 26480,38797 26845,36411

410

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020us4m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020us4m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:23:38 PM" "Back to Contents","Data 1: Percent of Commercial Natural Gas Deliveries in U.S. Total Represented by the Price (%)" "Sourcekey","N3020US4" "Date","Percent of Commercial Natural Gas Deliveries in U.S. Total Represented by the Price (%)"

411

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ak3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ak3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:06 PM" "Back to Contents","Data 1: Alaska Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010AK3" "Date","Alaska Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

412

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ca3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ca3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:11 PM" "Back to Contents","Data 1: California Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010CA3" "Date","California Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

413

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040la2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040la2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:37 AM" "Back to Contents","Data 1: Louisiana Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040LA2" "Date","Louisiana Natural Gas Vented and Flared (MMcf)" 33253,1788 33284,1684 33312,1571 33343,1593 33373,1807 33404,1690 33434,2042

414

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040tn2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040tn2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:44 AM" "Back to Contents","Data 1: Tennessee Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040TN2" "Date","Tennessee Natural Gas Vented and Flared (MMcf)" 33253,0 33284,0 33312,0 33343,0 33373,0 33404,0 33434,0 33465,0 33496,0

415

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010wi2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010wi2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:06 PM" "Back to Contents","Data 1: Wisconsin Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010WI2" "Date","Wisconsin Natural Gas Residential Consumption (MMcf)" 24653,90994 25019,93425 25384,101124 25749,105208 26114,109758 26480,104648

416

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020us4a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020us4a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:23:38 PM" "Back to Contents","Data 1: Percent of Commercial Natural Gas Deliveries in U.S. Total Represented by the Price (%)" "Sourcekey","N3020US4" "Date","Percent of Commercial Natural Gas Deliveries in U.S. Total Represented by the Price (%)"

417

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010nh3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010nh3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:43 PM" "Back to Contents","Data 1: New Hampshire Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010NH3" "Date","New Hampshire Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

418

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010in2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010in2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:24 PM" "Back to Contents","Data 1: Indiana Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010IN2" "Date","Indiana Natural Gas Residential Consumption (MMcf)" 24653,139519 25019,145955 25384,156699 25749,158699 26114,162747 26480,169267

419

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020ct3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ct3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:23 PM" "Back to Contents","Data 1: Connecticut Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3020CT3" "Date","Connecticut Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)"

420

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010mo3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010mo3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:36 PM" "Back to Contents","Data 1: Missouri Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010MO3" "Date","Missouri Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

Note: This page contains sample records for the topic "ash content varying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040la2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040la2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:36 AM" "Back to Contents","Data 1: Louisiana Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040LA2" "Date","Louisiana Natural Gas Vented and Flared (MMcf)" 24653,161849 25019,166439 25384,158852 25749,154089 26114,103564 26480,63667 26845,102091

422

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ut2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ut2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:46 AM" "Back to Contents","Data 1: Utah Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040UT2" "Date","Utah Natural Gas Vented and Flared (MMcf)" 34592,646 34834,696 34865,4590 34895,4767 34926,4382 34957,4389 34987,4603 35018,4932

423

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010az2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010az2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:09 PM" "Back to Contents","Data 1: Arizona Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010AZ2" "Date","Arizona Natural Gas Residential Consumption (MMcf)" 24653,25376 25019,26681 25384,28426 25749,29679 26114,32619 26480,34259 26845,36280

424

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ak3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ak3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:06 PM" "Back to Contents","Data 1: Alaska Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010AK3" "Date","Alaska Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

425

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9132us3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9132us3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 2:23:27 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas Pipeline Exports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9132US3" "Date","Price of U.S. Natural Gas Pipeline Exports (Dollars per Thousand Cubic Feet)" 31228,3.92 31593,2.35

426

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010id3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010id3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:23 PM" "Back to Contents","Data 1: Idaho Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010ID3" "Date","Idaho Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

427

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010me2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010me2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:32 PM" "Back to Contents","Data 1: Maine Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010ME2" "Date","Maine Natural Gas Residential Consumption (MMcf)" 24653,3967 25019,3571 25384,4910 25749,5247 26114,5591 26480,6036 26845,6027 27210,6174

428

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ne3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ne3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:42 PM" "Back to Contents","Data 1: Nebraska Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010NE3" "Date","Nebraska Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

429

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040wy2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040wy2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:47 AM" "Back to Contents","Data 1: Wyoming Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040WY2" "Date","Wyoming Natural Gas Vented and Flared (MMcf)" 24653,1498 25019,13038 25384,17632 25749,18419 26114,3860 26480,8376 26845,6618 27210,6102

430

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010mn3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010mn3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:34 PM" "Back to Contents","Data 1: Minnesota Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010MN3" "Date","Minnesota Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

431

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ca2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ca2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:10 PM" "Back to Contents","Data 1: California Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010CA2" "Date","California Natural Gas Residential Consumption (MMcf)" 24653,522122 25019,517636 25384,562127 25749,552544 26114,630998 26480,637289

432

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040sd2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040sd2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:43 AM" "Back to Contents","Data 1: South Dakota Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040SD2" "Date","South Dakota Natural Gas Vented and Flared (MMcf)" 33253,384 33284,350 33312,382 33343,380 33373,382 33404,376 33434,405

433

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040nm2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040nm2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:41 AM" "Back to Contents","Data 1: New Mexico Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040NM2" "Date","New Mexico Natural Gas Vented and Flared (MMcf)" 35079,236 35110,220 35139,240 35170,230 35200,241 35231,229 35261,217

434

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010co2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010co2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:11 PM" "Back to Contents","Data 1: Colorado Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010CO2" "Date","Colorado Natural Gas Residential Consumption (MMcf)" 24653,75351 25019,78371 25384,81068 25749,82595 26114,84864 26480,89187

435

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Daily","12/17/2013" Daily","12/17/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngc2d.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngc2d.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:40 PM" "Back to Contents","Data 1: Natural Gas Futures Contract 2 (Dollars per Million Btu)" "Sourcekey","RNGC2" "Date","Natural Gas Futures Contract 2 (Dollars per Million Btu)" 34346,2.13 34347,2.072 34348,2.139 34351,2.196 34352,2.131

436

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ar3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ar3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:08 PM" "Back to Contents","Data 1: Arkansas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010AR3" "Date","Arkansas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

437

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040mo2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040mo2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:38 AM" "Back to Contents","Data 1: Missouri Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040MO2" "Date","Missouri Natural Gas Vented and Flared (MMcf)" 33253,0 33284,0 33312,0 33343,0 33373,0 33404,0 33434,0 33465,0 33496,0

438

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Daily","12/17/2013" Daily","12/17/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngc4d.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngc4d.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:29 PM" "Back to Contents","Data 1: Natural Gas Futures Contract 4 (Dollars per Million Btu)" "Sourcekey","RNGC4" "Date","Natural Gas Futures Contract 4 (Dollars per Million Btu)" 34323,1.894 34324,1.83 34325,1.859 34326,1.895 34330,1.965

439

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9010us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9010us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:55:17 AM" "Back to Contents","Data 1: U.S. Natural Gas Gross Withdrawals (MMcf)" "Sourcekey","N9010US2" "Date","U.S. Natural Gas Gross Withdrawals (MMcf)" 26679 26710 26738 26769 26799 26830 26860 26891 26922 26952 26983 27013 27044 27075 27103

440

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ut2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ut2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:45 AM" "Back to Contents","Data 1: Utah Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040UT2" "Date","Utah Natural Gas Vented and Flared (MMcf)" 24653,3000 25019,2906 25384,2802 25749,2852 26114,2926 26480,5506 26845,7664 27210,5259 27575,1806

Note: This page contains sample records for the topic "ash content varying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ak2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ak2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:06 PM" "Back to Contents","Data 1: Alaska Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010AK2" "Date","Alaska Natural Gas Residential Consumption (MMcf)" 32523,1793 32554,2148 32582,1566 32613,1223 32643,858 32674,638

442

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040nd2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040nd2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:39 AM" "Back to Contents","Data 1: North Dakota Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040ND2" "Date","North Dakota Natural Gas Vented and Flared (MMcf)" 24653,25795 25019,22050 25384,22955 25749,19862 26114,2686 26480,20786 26845,22533

443

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010al3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010al3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:07 PM" "Back to Contents","Data 1: Alabama Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010AL3" "Date","Alabama Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

444

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ar3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ar3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:09 PM" "Back to Contents","Data 1: Arkansas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010AR3" "Date","Arkansas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

445

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010va2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010va2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:02 PM" "Back to Contents","Data 1: Virginia Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010VA2" "Date","Virginia Natural Gas Residential Consumption (MMcf)" 24653,41495 25019,43582 25384,46663 25749,49554 26114,49488 26480,55427

446

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040co2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040co2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:33 AM" "Back to Contents","Data 1: Colorado Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040CO2" "Date","Colorado Natural Gas Vented and Flared (MMcf)" 35079,112 35110,77 35139,78 35170,91 35200,100 35231,89 35261,100 35292,106

447

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ga2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ga2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:17 PM" "Back to Contents","Data 1: Georgia Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010GA2" "Date","Georgia Natural Gas Residential Consumption (MMcf)" 24653,80322 25019,84072 25384,87878 25749,87359 26114,88319 26480,85256 26845,86191

448

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020hi2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020hi2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:33 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Hawaii (MMcf)" "Sourcekey","N3020HI2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Hawaii (MMcf)"

449

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020ga2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ga2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:31 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Georgia (MMcf)" "Sourcekey","N3020GA2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Georgia (MMcf)"

450

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020ar2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ar2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:14 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Arkansas (MMcf)" "Sourcekey","N3020AR2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Arkansas (MMcf)"

451

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ct2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ct2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:12 PM" "Back to Contents","Data 1: Connecticut Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010CT2" "Date","Connecticut Natural Gas Residential Consumption (MMcf)" 24653,26177 25019,26437 25384,29048 25749,31187 26114,31878 26480,32879

452

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010dc3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010dc3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:14 PM" "Back to Contents","Data 1: District of Columbia Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010DC3" "Date","District of Columbia Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

453

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ri3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ri3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:54 PM" "Back to Contents","Data 1: Rhode Island Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010RI3" "Date","Rhode Island Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

454

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010sd3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010sd3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:56 PM" "Back to Contents","Data 1: South Dakota Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010SD3" "Date","South Dakota Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

455

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020de2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020de2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:26 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Delaware (MMcf)" "Sourcekey","N3020DE2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Delaware (MMcf)"

456

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010tn3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010tn3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:58 PM" "Back to Contents","Data 1: Tennessee Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010TN3" "Date","Tennessee Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

457

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ny3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ny3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:48 PM" "Back to Contents","Data 1: New York Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010NY3" "Date","New York Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

458

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010or2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010or2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:51 PM" "Back to Contents","Data 1: Oregon Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010OR2" "Date","Oregon Natural Gas Residential Consumption (MMcf)" 24653,13427 25019,15126 25384,20507 25749,19742 26114,21217 26480,23331 26845,22271

459

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9140us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9140us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:33:47 PM" "Back to Contents","Data 1: U.S. Natural Gas Total Consumption (MMcf)" "Sourcekey","N9140US2" "Date","U.S. Natural Gas Total Consumption (MMcf)" 36906,2676998 36937,2309464 36965,2246633 36996,1807170 37026,1522382 37057,1444378

460

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Daily","12/17/2013" Daily","12/17/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngc1d.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngc1d.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:45 PM" "Back to Contents","Data 1: Natural Gas Futures Contract 1 (Dollars per Million Btu)" "Sourcekey","RNGC1" "Date","Natural Gas Futures Contract 1 (Dollars per Million Btu)" 34347,2.194 34348,2.268 34351,2.36 34352,2.318 34353,2.252

Note: This page contains sample records for the topic "ash content varying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010fl3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010fl3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:16 PM" "Back to Contents","Data 1: Florida Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010FL3" "Date","Florida Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

462

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:25:08 PM" "Back to Contents","Data 1: U.S. Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035US2" "Date","U.S. Natural Gas Industrial Consumption (MMcf)" 36906,686540 36937,640026 36965,664918 36996,622054 37026,576532 37057,536820

463

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040fl2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040fl2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:34 AM" "Back to Contents","Data 1: Florida Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040FL2" "Date","Florida Natural Gas Vented and Flared (MMcf)" 26114,355 26480,284 27941,837 28306,607 29402,677 29767,428 30132,435 30497,198 30863,34

464

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ok2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ok2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:50 PM" "Back to Contents","Data 1: Oklahoma Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010OK2" "Date","Oklahoma Natural Gas Residential Consumption (MMcf)" 24653,67395 25019,74782 25384,75310 25749,77460 26114,75238 26480,77608

465

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ar2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ar2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:31 AM" "Back to Contents","Data 1: Arkansas Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040AR2" "Date","Arkansas Natural Gas Vented and Flared (MMcf)" 24653,997 25019,895 25384,1326 25749,226 26114,1734 26480,2649 26845,1947 27210,1716 27575,1318

466

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010me3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010me3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:32 PM" "Back to Contents","Data 1: Maine Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010ME3" "Date","Maine Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

467

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3060us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3060us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:27:25 PM" "Back to Contents","Data 1: Natural Gas Delivered to Consumers in the U.S. (MMcf)" "Sourcekey","N3060US2" "Date","Natural Gas Delivered to Consumers in the U.S. (MMcf)" 36906,2505011 36937,2156873 36965,2086568 36996,1663832

468

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010us2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010us2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:00 PM" "Back to Contents","Data 1: U.S. Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010US2" "Date","U.S. Natural Gas Residential Consumption (MMcf)" 11139,295700 11504,294406 11870,298520 12235,283197 12600,288236 12965,313498 13331,343346

469

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010in3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010in3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:25 PM" "Back to Contents","Data 1: Indiana Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010IN3" "Date","Indiana Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

470

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9011us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9011us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:55:36 AM" "Back to Contents","Data 1: U.S. Natural Gas Gross Withdrawals from Gas Wells (MMcf)" "Sourcekey","N9011US2" "Date","U.S. Natural Gas Gross Withdrawals from Gas Wells (MMcf)" 33253,1482053 33526,1363737 33984,1452098 34015,1305490

471

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020us3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020us3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:23:37 PM" "Back to Contents","Data 1: U.S. Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3020US3" "Date","U.S. Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)"

472

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010nv3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010nv3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:46 PM" "Back to Contents","Data 1: Nevada Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010NV3" "Date","Nevada Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

473

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9133us3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9133us3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 2:23:31 PM" "Back to Contents","Data 1: Price of Liquefied U.S. Natural Gas Exports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9133US3" "Date","Price of Liquefied U.S. Natural Gas Exports (Dollars per Thousand Cubic Feet)"

474

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010sc3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010sc3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:55 PM" "Back to Contents","Data 1: South Carolina Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010SC3" "Date","South Carolina Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

475

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010vt2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010vt2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:03 PM" "Back to Contents","Data 1: Vermont Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010VT2" "Date","Vermont Natural Gas Residential Consumption (MMcf)" 29402,1301 29767,1290 30132,1278 30497,1252 30863,1352 31228,1456 31593,1595

476

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Weekly","12/13/2013","1/10/1997" Weekly","12/13/2013","1/10/1997" ,"Data 2","Futures Prices",4,"Weekly","12/13/2013","12/24/1993" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","ng_pri_fut_s1_w.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_pri_fut_s1_w.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:18 PM" "Back to Contents","Data 1: Spot Price" "Sourcekey","RNGWHHD" "Date","Weekly Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"

477

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040in2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040in2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:35 AM" "Back to Contents","Data 1: Indiana Natural Gas Vented and Flared (Million Cubic Feet)" "Sourcekey","N9040IN2" "Date","Indiana Natural Gas Vented and Flared (Million Cubic Feet)" 33253,0 33284,0 33312,0 33343,0 33373,0

478

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020ga3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ga3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:32 PM" "Back to Contents","Data 1: Georgia Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3020GA3" "Date","Georgia Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)"

479

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010hi3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010hi3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:20 PM" "Back to Contents","Data 1: Hawaii Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010HI3" "Date","Hawaii Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

480

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ks2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ks2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:26 PM" "Back to Contents","Data 1: Kansas Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010KS2" "Date","Kansas Natural Gas Residential Consumption (MMcf)" 24653,84912 25019,89372 25384,94320 25749,97317 26114,98644 26480,100720 26845,96468

Note: This page contains sample records for the topic "ash content varying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9100us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9100us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 3:53:50 PM" "Back to Contents","Data 1: U.S. Natural Gas Imports (MMcf)" "Sourcekey","N9100US2" "Date","U.S. Natural Gas Imports (MMcf)" 26679,92694 26710,83870 26738,91581 26769,88407 26799,85844 26830,79121 26860,79428 26891,84400 26922,81157

482

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ga3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ga3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:18 PM" "Back to Contents","Data 1: Georgia Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010GA3" "Date","Georgia Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

483

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9133us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9133us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 2:23:31 PM" "Back to Contents","Data 1: Liquefied U.S. Natural Gas Exports (MMcf)" "Sourcekey","N9133US2" "Date","Liquefied U.S. Natural Gas Exports (MMcf)" 35445,5604 35476,5596 35504,5675 35535,5660 35565,3812 35596,3786 35626,3756 35657,7532

484

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9170us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9170us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:33:48 PM" "Back to Contents","Data 1: U.S. Natural Gas Pipeline & Distribution Use (MMcf)" "Sourcekey","N9170US2" "Date","U.S. Natural Gas Pipeline & Distribution Use (MMcf)" 36906,76386 36937,65770 36965,63626 36996,50736

485

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1504_nus_4a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1504_nus_4a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:46:13 PM" "Back to Contents","Data 1: U.S. Natural Gas % of Total Residential - Sales (%)" "Sourcekey","NA1504_NUS_4" "Date","U.S. Natural Gas % of Total Residential - Sales (%)" 32689,99.9 33054,99.2 33419,99.2 33785,99.1 34150,99.1 34515,99.1

486

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ct3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ct3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:13 PM" "Back to Contents","Data 1: Connecticut Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010CT3" "Date","Connecticut Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

487

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010us3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010us3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:01 PM" "Back to Contents","Data 1: U.S. Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010US3" "Date","U.S. Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

488

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040fl2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040fl2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:34 AM" "Back to Contents","Data 1: Florida Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040FL2" "Date","Florida Natural Gas Vented and Flared (MMcf)" 35079 35110 35139 35170 35200 35231 35261 35292 35323 35353 35384 35414 35445,0

489

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040mi2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040mi2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:37 AM" "Back to Contents","Data 1: Michigan Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040MI2" "Date","Michigan Natural Gas Vented and Flared (MMcf)" 24653,1861 25019,1120 25384,808 25749,809 26480,1032 26845,1117 27210,1268 27575,1612

490

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ar2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ar2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:08 PM" "Back to Contents","Data 1: Arkansas Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010AR2" "Date","Arkansas Natural Gas Residential Consumption (MMcf)" 32523,6774 32554,7118 32582,6736 32613,3835 32643,1927 32674,1402

491

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010la3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010la3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:29 PM" "Back to Contents","Data 1: Louisiana Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010LA3" "Date","Louisiana Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

492

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9100us3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9100us3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 3:53:51 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas Imports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9100US3" "Date","Price of U.S. Natural Gas Imports (Dollars per Thousand Cubic Feet)" 32523,1.72 32554,1.88

493

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ne2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ne2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:40 AM" "Back to Contents","Data 1: Nebraska Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040NE2" "Date","Nebraska Natural Gas Vented and Flared (MMcf)" 24653,0 25019,0 25384,0 25749,0 26114,1558 26480,1263 26845,834 27210,2137 27575,1398 27941,797

494

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9020us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9020us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:13 AM" "Back to Contents","Data 1: U.S. Natural Gas Repressuring (MMcf)" "Sourcekey","N9020US2" "Date","U.S. Natural Gas Repressuring (MMcf)" 26679 26710 26738 26769 26799 26830 26860 26891 26922 26952 26983 27013 27044 27075 27103 27134 27164

495

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2010 Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040pa2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040pa2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:43 AM" "Back to Contents","Data 1: Pennsylvania Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040PA2" "Date","Pennsylvania Natural Gas Vented and Flared (MMcf)" 24653,0 25019,0 25384,0 25749,0 26114,0 26480,0 26845,0 27210,98 27575,96 27941,99

496

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010oh2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010oh2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:48 PM" "Back to Contents","Data 1: Ohio Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010OH2" "Date","Ohio Natural Gas Residential Consumption (MMcf)" 24653,442360 25019,444964 25384,456414 25749,459972 26114,460820 26480,478331 26845,439212

497

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ca2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ca2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:32 AM" "Back to Contents","Data 1: California Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040CA2" "Date","California Natural Gas Vented and Flared (MMcf)" 24653,3565 25019,2780 25384,3074 25749,2499 26114,575 26845,1999 27210,1560 27575,1537

498

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010us3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010us3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:01 PM" "Back to Contents","Data 1: U.S. Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010US3" "Date","U.S. Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

499

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","11/2013" Monthly","11/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngc1m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngc1m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:41 PM" "Back to Contents","Data 1: Natural Gas Futures Contract 1 (Dollars per Million Btu)" "Sourcekey","RNGC1" "Date","Natural Gas Futures Contract 1 (Dollars per Million Btu)" 34349,2.347 34380,2.355 34408,2.109 34439,2.111 34469,1.941

500

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010az3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010az3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:09 PM" "Back to Contents","Data 1: Arizona Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010AZ3" "Date","Arizona Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"