Sample records for ascr supercomputers oak

  1. Supercomputers Drive Discovery of Materials for More Efficient...

    Office of Science (SC) Website

    Supercomputers Drive Discovery of Materials for More Efficient Carbon Capture Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Science Highlights...

  2. Oak Ridge 'Jaguar' Supercomputer is World's Fastest | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Order No.of Energy251NewsEnergyOak Ridge

  3. DOE's Oak Ridge Supercomputer Now World's Fastest for Open Science |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterialsDevelopEnergy Oak Ridge Office and

  4. ASCR Science Network Requirements

    SciTech Connect (OSTI)

    Dart, Eli; Tierney, Brian

    2009-08-24T23:59:59.000Z

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In April 2009 ESnet and the Office of Advanced Scientific Computing Research (ASCR), of the DOE Office of Science, organized a workshop to characterize the networking requirements of the programs funded by ASCR. The ASCR facilities anticipate significant increases in wide area bandwidth utilization, driven largely by the increased capabilities of computational resources and the wide scope of collaboration that is a hallmark of modern science. Many scientists move data sets between facilities for analysis, and in some cases (for example the Earth System Grid and the Open Science Grid), data distribution is an essential component of the use of ASCR facilities by scientists. Due to the projected growth in wide area data transfer needs, the ASCR supercomputer centers all expect to deploy and use 100 Gigabit per second networking technology for wide area connectivity as soon as that deployment is financially feasible. In addition to the network connectivity that ESnet provides, the ESnet Collaboration Services (ECS) are critical to several science communities. ESnet identity and trust services, such as the DOEGrids certificate authority, are widely used both by the supercomputer centers and by collaborations such as Open Science Grid (OSG) and the Earth System Grid (ESG). Ease of use is a key determinant of the scientific utility of network-based services. Therefore, a key enabling aspect for scientists beneficial use of high performance networks is a consistent, widely deployed, well-maintained toolset that is optimized for wide area, high-speed data transfer (e.g. GridFTP) that allows scientists to easily utilize the services and capabilities that the network provides. Network test and measurement is an important part of ensuring that these tools and network services are functioning correctly. One example of a tool in this area is the recently developed perfSONAR, which has already shown its usefulness in fault diagnosis during the recent deployment of high-performance data movers at NERSC and ORNL. On the other hand, it is clear that there is significant work to be done in the area of authentication and access control - there are currently compatibility problems and differing requirements between the authentication systems in use at different facilities, and the policies and mechanisms in use at different facilities are sometimes in conflict. Finally, long-term software maintenance was of concern for many attendees. Scientists rely heavily on a large deployed base of software that does not have secure programmatic funding. Software packages for which this is true include data transfer tools such as GridFTP as well as identity management and other software infrastructure that forms a critical part of the Open Science Grid and the Earth System Grid.

  5. ASCR Requirements Review 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Requirements Review 2015 ASCR Attendees 2015 Previous Reviews Requirements Review Reports Case Studies News & Publications ESnet News Publications and Presentations Galleries ESnet...

  6. ASCR Requirements Review 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP UpdateRefreshAdministration March 2013ASCRRequests ASCR

  7. ASCR-Final

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP UpdateRefreshAdministration MarchASCR Requirements

  8. ASCR-Heroux.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP UpdateRefreshAdministration MarchASCR RequirementsTrilinos

  9. ASCR2017Final

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP UpdateRefreshAdministration MarchASCR RequirementsTrilinos

  10. NERSC/DOE ASCR Requirements Workshop Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    charge to committee January 5, 2011 | Author(s): Yukiko Sekine | Workshop outline, logistics, format January 5, 2011 | Author(s): Harvey Wasserman | ASCR Program Office Research...

  11. NERSC/DOE ASCR Requirements Workshop Agenda

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agenda Workshop Agenda Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research ASCR NERSC Workshop January 5-6, 2011 >> Download and View these...

  12. ASCR Leadership Computing Challenge (ALCC) proposals due February...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (ALCC) proposals due February 1, 2013 ASCR Leadership Computing Challenge (ALCC) proposals due February 1, 2013 January 2, 2013 by Francesca Verdier (0 Comments) DOE's ASCR...

  13. ASCR Leadership Computing Challenge Requests for Time Due February...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Requests for Time Due February 14 ASCR Leadership Computing Challenge Requests for Time Due February 14 November 17, 2011 by Francesca Verdier (0 Comments) The ASCR Leadership...

  14. ASCR Leadership Computing Challenge proposals due February 3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ASCR Leadership Computing Challenge proposals due February 3 ASCR Leadership Computing Challenge proposals due February 3 January 6, 2015 by Francesca Verdier (0 Comments) The...

  15. Supercomputer decommissioning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    submit Roadrunner supercomputer: Rest in pieces Decommissioning a classified computer into hardware "mulch." May 1, 2013 The Roadrunner supercomputer broke the petaflop...

  16. Supercomputer UBiquitously

    E-Print Network [OSTI]

    Furui, Sadaoki

    ranking of energy-efficient supercomputers. The ranks are determined by "gas mileage" in which This is an abbreviation for "power usage effectiveness" . The PUE is determined by the sum total of the power-scale supercomputer that is more energy-efficient than a PC TSUBAME2.0 incorporates a variety of technologies

  17. Supercomputing Challenge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4th New Mexico Supercomputing Challenge April 22, 2014 Modeling Tree Growth and Resource Use with Applications LOS ALAMOS, N.M., April 22, 2014-The dynamic duo of Eli Echt-Wilson...

  18. Supercomputing Challenge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3rd New Mexico Supercomputing Challenge April 23, 2013 Clustering algorithms to find correlations, "meaningful" words, topics LOS ALAMOS, N.M., April 23, 2013-A trio of Albuquerque...

  19. Supercomputing Challenge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manzano High School student wins top award in 22nd New Mexico Supercomputing Challenge April 24, 2012 LOS ALAMOS, New Mexico, April 24, 2012-Jordan Medlock of Albuquerque's Manzano...

  20. ASCR Workshop on Turbulent Flow Simulations at the Exascale:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    experts in turbulent- flow simulation, computational mathematics, and high-performance computing. Building upon previous ASCR workshops on exascale computing, participants...

  1. NERSC/DOE ASCR Requirements Workshop Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gif Directorate -Advanced codeMonitoring NERSCbased onASCR

  2. Supercomputer decommissioning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer. .Energy8 CareerSupercomputer decommissioning

  3. Supercomputers Exhibit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer. .Energy8 CareerSupercomputer

  4. Supercomputing Challenge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer. .Energy8Supercomputing andManzano High School

  5. Supercomputing Challenge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer. .Energy8Supercomputing andManzano High

  6. Supercomputing Challenge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer. .Energy8Supercomputing andManzano High4th New

  7. Throwback Thursdays Celebrate Scientific Supercomputing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Celebrate Scientific Supercomputing A Cray-1 supercomputer arrives at the Magnetic Fusion Energy Computer Center in A Cray-1 supercomputer arrives at the Magnetic Fusion...

  8. Supercomputing Power to the People

    E-Print Network [OSTI]

    Chauhan, Arun

    Supercomputing Power to the People Arun Chauhan Indiana University #12;Supercomputing power. Sadayappan #12;Supercomputing power to the people Indiana University, March 22, 2006 Programming Languages: A Buddhist View #12;Supercomputing power to the people Indiana University, March 22, 2006 Programming

  9. ASCR Leadership Computing Challenge proposals due February 3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related Links FacilitiesER-ARM-0402Department ASCR Leadership

  10. ASCR Leadership Computing Challenge (ALCC) proposals due February 1, 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP UpdateRefreshAdministration March 2013ASCR

  11. ASCR Budget | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe A GrowingASCR Budget

  12. Science and Technology at Oak Ridge National Laboratory

    ScienceCinema (OSTI)

    Mason, Thomas

    2013-02-25T23:59:59.000Z

    ORNL Director Thom Mason explains the groundbreaking work in neutron sciences, supercomputing, clean energy, advanced materials, nuclear research, and global security taking place at the Department of Energy's Office of Science laboratory in Oak Ridge, Tenn.

  13. Green Supercomputing at Argonne

    ScienceCinema (OSTI)

    Pete Beckman

    2010-01-08T23:59:59.000Z

    Pete Beckman, head of Argonne's Leadership Computing Facility (ALCF) talks about Argonne National Laboratory's green supercomputing?everything from designing algorithms to use fewer kilowatts per operation to using cold Chicago winter air to cool the machine more efficiently.

  14. Green Supercomputing at Argonne

    SciTech Connect (OSTI)

    Pete Beckman

    2009-11-18T23:59:59.000Z

    Pete Beckman, head of Argonne's Leadership Computing Facility (ALCF) talks about Argonne National Laboratory's green supercomputing—everything from designing algorithms to use fewer kilowatts per operation to using cold Chicago winter air to cool the machine more efficiently.

  15. Super problems for supercomputers

    SciTech Connect (OSTI)

    Peterson, I.

    1984-01-01T23:59:59.000Z

    This article discusses the ways in which simulations performed on high-speed computers combined with graphics are replacing experiments. Supercomputers ranging from the large, general-purpose Cray-1 and the CYBER 205 to machines designed for a specific type of calculation, are becoming essential research tools in many fields of science and engineering. Topics considered include crystal growth, aerodynamic design, molecular seismology, computer graphics, membrane design, quantum mechanical calculations, Soviet ''nuclear winter'' maps (modeling climate in a post-nuclear-war environment), and estimating nuclear forest fires. It is pointed out that the $15 million required to buy and support one supercomputer has limited its use in industry and universities.

  16. Supercomputers: Super-polluters?

    SciTech Connect (OSTI)

    Mills, Evan; Mills, Evan; Tschudi, William; Shalf, John; Simon, Horst

    2008-04-08T23:59:59.000Z

    Thanks to imperatives for limiting waste heat, maximizing performance, and controlling operating cost, energy efficiency has been a driving force in the evolution of supercomputers. The challenge going forward will be to extend these gains to offset the steeply rising demands for computing services and performance.

  17. Bottleneckology: evaluating supercomputers

    SciTech Connect (OSTI)

    Worlton, J.

    1985-01-01T23:59:59.000Z

    Evaluating supercomputer performance is more difficult than evaluating performance for other types of computers because of the wide range of performances encountered. Depending on the purpose of the evaluation, methods of evaluation can be used that trade off level of effort and accuracy, including rules of thumb, analytical models, testing, and simulation.

  18. Oak Ridge National Laboratory Review

    SciTech Connect (OSTI)

    Krause, C.; Pearce, J.; Zucker, A. (eds.)

    1992-01-01T23:59:59.000Z

    This report presents brief descriptions of the following programs at Oak Ridge National Laboratory: The effects of pollution and climate change on forests; automation to improve the safety and efficiency of rearming battle tanks; new technologies for DNA sequencing; ORNL probes the human genome; ORNL as a supercomputer research center; paving the way to superconcrete made with polystyrene; a new look at supercritical water used in waste treatment; and small mammals as environmental monitors.

  19. Green Supercomputing at Argonne

    ScienceCinema (OSTI)

    Beckman, Pete

    2013-04-19T23:59:59.000Z

    Pete Beckman, head of Argonne's Leadership Computing Facility (ALCF) talks about Argonne National Laboratory's green supercomputing?everything from designing algorithms to use fewer kilowatts per operation to using cold Chicago winter air to cool the machine more efficiently. Argonne was recognized for green computing in the 2009 HPCwire Readers Choice Awards. More at http://www.anl.gov/Media_Center/News/2009/news091117.html Read more about the Argonne Leadership Computing Facility at http://www.alcf.anl.gov/

  20. Green Supercomputing at Argonne

    SciTech Connect (OSTI)

    Beckman, Pete

    2009-01-01T23:59:59.000Z

    Pete Beckman, head of Argonne's Leadership Computing Facility (ALCF) talks about Argonne National Laboratory's green supercomputing—everything from designing algorithms to use fewer kilowatts per operation to using cold Chicago winter air to cool the machine more efficiently. Argonne was recognized for green computing in the 2009 HPCwire Readers Choice Awards. More at http://www.anl.gov/Media_Center/News/2009/news091117.html Read more about the Argonne Leadership Computing Facility at http://www.alcf.anl.gov/

  1. Ice Storm Supercomputer

    ScienceCinema (OSTI)

    None

    2013-05-28T23:59:59.000Z

    "A new Idaho National Laboratory supercomputer is helping scientists create more realistic simulations of nuclear fuel. Dubbed 'Ice Storm,' this 2048-processor machine allows researchers to model and predict the complex physics behind nuclear reactor behavior. And with a new visualization lab, the team can see the results of its simulations on the big screen." For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  2. Albuquerque duo wins Supercomputing Challenge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Challenge Erika DeBenedictis and Tony Huang captured the top prize during the 2008 New Mexico Supercomputing Challenge award ceremony. April 22, 2008 Los Alamos National Laboratory...

  3. Supercomputing Challenge top winners: Los Alamos schools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercomputing Challenge top winners: Los Alamos schools Supercomputing Challenge top winners: Los Alamos schools Cole Kendrick won the top prize for his research project,...

  4. Supercomputing Challenge Expo and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer. .Energy8Supercomputing andManzano High4th6-27

  5. Supercomputing | Computational Engineering | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer.Supercomputing on a Budget AdvancedWorking

  6. Supercomputing | Computer Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer.Supercomputing on a Budget AdvancedWorking

  7. Supercomputing | Data | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer.Supercomputing on a Budget AdvancedWorking

  8. Supercomputing | Facilities | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer.Supercomputing on a Budget AdvancedWorkingHigh

  9. Supercomputing | Facilities | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer.Supercomputing on a Budget

  10. Supercomputing | Facilities | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer.Supercomputing on a BudgetPrimary Systems

  11. Supercomputing | Knowledge Discovery | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer.Supercomputing on a BudgetPrimary Systems

  12. Ultrascalable petaflop parallel supercomputer

    DOE Patents [OSTI]

    Blumrich, Matthias A. (Ridgefield, CT); Chen, Dong (Croton On Hudson, NY); Chiu, George (Cross River, NY); Cipolla, Thomas M. (Katonah, NY); Coteus, Paul W. (Yorktown Heights, NY); Gara, Alan G. (Mount Kisco, NY); Giampapa, Mark E. (Irvington, NY); Hall, Shawn (Pleasantville, NY); Haring, Rudolf A. (Cortlandt Manor, NY); Heidelberger, Philip (Cortlandt Manor, NY); Kopcsay, Gerard V. (Yorktown Heights, NY); Ohmacht, Martin (Yorktown Heights, NY); Salapura, Valentina (Chappaqua, NY); Sugavanam, Krishnan (Mahopac, NY); Takken, Todd (Brewster, NY)

    2010-07-20T23:59:59.000Z

    A massively parallel supercomputer of petaOPS-scale includes node architectures based upon System-On-a-Chip technology, where each processing node comprises a single Application Specific Integrated Circuit (ASIC) having up to four processing elements. The ASIC nodes are interconnected by multiple independent networks that optimally maximize the throughput of packet communications between nodes with minimal latency. The multiple networks may include three high-speed networks for parallel algorithm message passing including a Torus, collective network, and a Global Asynchronous network that provides global barrier and notification functions. These multiple independent networks may be collaboratively or independently utilized according to the needs or phases of an algorithm for optimizing algorithm processing performance. The use of a DMA engine is provided to facilitate message passing among the nodes without the expenditure of processing resources at the node.

  13. Supercomputer debugging workshop 1991 proceedings

    SciTech Connect (OSTI)

    Brown, J.

    1991-01-01T23:59:59.000Z

    This report discusses the following topics on supercomputer debugging: Distributed debugging; use interface to debugging tools and standards; debugging optimized codes; debugging parallel codes; and debugger performance and interface as analysis tools. (LSP)

  14. Supercomputer debugging workshop 1991 proceedings

    SciTech Connect (OSTI)

    Brown, J.

    1991-12-31T23:59:59.000Z

    This report discusses the following topics on supercomputer debugging: Distributed debugging; use interface to debugging tools and standards; debugging optimized codes; debugging parallel codes; and debugger performance and interface as analysis tools. (LSP)

  15. Organized By : Supercomputing Facility for Bioinformatics &

    E-Print Network [OSTI]

    Jayaram, Bhyravabotla

    Organized By : Supercomputing Facility for Bioinformatics & Computational Biology, IIT Delhi Phone Facility for Bioinformatics & Computational Biology, 3rd Floor, Synergy Building, Indian Institute the 10th Anniversary of Supercomputer Facility for Bioinformatics and Computational Biology, IIT Delhi

  16. Mira: Argonne's 10-petaflops supercomputer

    SciTech Connect (OSTI)

    Papka, Michael; Coghlan, Susan; Isaacs, Eric; Peters, Mark; Messina, Paul

    2013-07-03T23:59:59.000Z

    Mira, Argonne's petascale IBM Blue Gene/Q system, ushers in a new era of scientific supercomputing at the Argonne Leadership Computing Facility. An engineering marvel, the 10-petaflops supercomputer is capable of carrying out 10 quadrillion calculations per second. As a machine for open science, any researcher with a question that requires large-scale computing resources can submit a proposal for time on Mira, typically in allocations of millions of core-hours, to run programs for their experiments. This adds up to billions of hours of computing time per year.

  17. Mira: Argonne's 10-petaflops supercomputer

    ScienceCinema (OSTI)

    Papka, Michael; Coghlan, Susan; Isaacs, Eric; Peters, Mark; Messina, Paul

    2014-06-05T23:59:59.000Z

    Mira, Argonne's petascale IBM Blue Gene/Q system, ushers in a new era of scientific supercomputing at the Argonne Leadership Computing Facility. An engineering marvel, the 10-petaflops supercomputer is capable of carrying out 10 quadrillion calculations per second. As a machine for open science, any researcher with a question that requires large-scale computing resources can submit a proposal for time on Mira, typically in allocations of millions of core-hours, to run programs for their experiments. This adds up to billions of hours of computing time per year.

  18. Oak Ridge 'Jaguar' Supercomputer is World's Fastest | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse to Time-BasedDecember 23,Misc CasesOUO Review Ridge

  19. Oak Ridge to acquire next generation supercomputer | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access to scienceScientific andBusinessoso/about/jobs/SHARE Media

  20. DOE's Oak Ridge Supercomputer Now World's Fastest for Open Science |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0and Transparency, and MoreEnergyof EnergyDepartment of Energy DOE's

  1. An assessment of worldwide supercomputer usage

    SciTech Connect (OSTI)

    Wasserman, H.J.; Simmons, M.L.; Hayes, A.H.

    1995-01-01T23:59:59.000Z

    This report provides a comparative study of advanced supercomputing usage in Japan and the United States as of Spring 1994. It is based on the findings of a group of US scientists whose careers have centered on programming, evaluating, and designing high-performance supercomputers for over ten years. The report is a follow-on to an assessment of supercomputing technology in Europe and Japan that was published in 1993. Whereas the previous study focused on supercomputer manufacturing capabilities, the primary focus of the current work was to compare where and how supercomputers are used. Research for this report was conducted through both literature studies and field research in Japan.

  2. Tutorial: Parallel Simulation on Supercomputers

    SciTech Connect (OSTI)

    Perumalla, Kalyan S [ORNL

    2012-01-01T23:59:59.000Z

    This tutorial introduces typical hardware and software characteristics of extant and emerging supercomputing platforms, and presents issues and solutions in executing large-scale parallel discrete event simulation scenarios on such high performance computing systems. Covered topics include synchronization, model organization, example applications, and observed performance from illustrative large-scale runs.

  3. ASCR Committees of Visitors | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe A GrowingASCR

  4. ASCR SBIR-STTR | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe APresentationsRecoveryASCR

  5. About the ASCR Computer Science Program | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX14 SciDAC 2About the ASCR

  6. TOP500 Supercomputers for June 2004

    SciTech Connect (OSTI)

    Strohmaier, Erich; Meuer, Hans W.; Dongarra, Jack; Simon, Horst D.

    2004-06-23T23:59:59.000Z

    23rd Edition of TOP500 List of World's Fastest Supercomputers Released: Japan's Earth Simulator Enters Third Year in Top Position MANNHEIM, Germany; KNOXVILLE, Tenn.;&BERKELEY, Calif. In what has become a closely watched event in the world of high-performance computing, the 23rd edition of the TOP500 list of the world's fastest supercomputers was released today (June 23, 2004) at the International Supercomputer Conference in Heidelberg, Germany.

  7. TOP500 Supercomputers for June 2005

    SciTech Connect (OSTI)

    Strohmaier, Erich; Meuer, Hans W.; Dongarra, Jack; Simon, Horst D.

    2005-06-22T23:59:59.000Z

    25th Edition of TOP500 List of World's Fastest Supercomputers Released: DOE/L LNL BlueGene/L and IBM gain Top Positions MANNHEIM, Germany; KNOXVILLE, Tenn.; BERKELEY, Calif. In what has become a closely watched event in the world of high-performance computing, the 25th edition of the TOP500 list of the world's fastest supercomputers was released today (June 22, 2005) at the 20th International Supercomputing Conference (ISC2005) in Heidelberg Germany.

  8. Why the Nuclear Stockpile Needs Supercomputers | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Why the Nuclear Stockpile Needs Supercomputers Why the Nuclear Stockpile Needs Supercomputers April 28, 2011 - 5:20pm Addthis NNSA supercomputers are a key part of our ability to...

  9. Predicting Hurricanes with Supercomputers | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Predicting Hurricanes with Supercomputers Share Description Hurricane Emily, formed in the Atlantic Ocean on July 10, 2005, was the strongest hurricane ever to form before August....

  10. Green supercomputing at Argonne | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Green supercomputing at Argonne Share Description Pete Beckman, head of Argonne's Leadership Computing Facility (ALCF) talks about Argonne National Laboratory's green...

  11. NERSC, Cray, Intel Announce Next-Generation Supercomputer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC, Cray, Intel Announce Next-Generation Supercomputer NERSC, Cray, Intel to Collaborate on Next-Generation Supercomputer April 29, 2014 | Tags: NERSC Contact: Jon Bashor,...

  12. Supercomputers Fuel Global High-Resolution Climate Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercomputers Fuel Global High-Resolution Climate Models Supercomputers Fuel Global High-Resolution Climate Models Berkeley Lab Researcher Says Climate Science is Entering New...

  13. Trinity: supercomputing into the future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program The NIF andPointsThrustTrinityTrinity: supercomputing

  14. Oak Ridge National Laboratory Review. Volume 25, No. 1, 1992

    SciTech Connect (OSTI)

    Krause, C.; Pearce, J.; Zucker, A. [eds.

    1992-10-01T23:59:59.000Z

    This report presents brief descriptions of the following programs at Oak Ridge National Laboratory: The effects of pollution and climate change on forests; automation to improve the safety and efficiency of rearming battle tanks; new technologies for DNA sequencing; ORNL probes the human genome; ORNL as a supercomputer research center; paving the way to superconcrete made with polystyrene; a new look at supercritical water used in waste treatment; and small mammals as environmental monitors.

  15. supercomputers

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby Dietrich57/%2A0/%2A1/%2A en/%2A

  16. supercomputing

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby Dietrich57/%2A0/%2A1/%2A en/%2A

  17. Introducing Mira, Argonne's Next-Generation Supercomputer

    SciTech Connect (OSTI)

    None

    2013-03-19T23:59:59.000Z

    Mira, the new petascale IBM Blue Gene/Q system installed at the ALCF, will usher in a new era of scientific supercomputing. An engineering marvel, the 10-petaflops machine is capable of carrying out 10 quadrillion calculations per second.

  18. 20th New Mexico Supercomputing Challenge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Melrose High trio named top team in 20th New Mexico Supercomputing Challenge April 27, 2010 Student research project modeled behavior of wildfire LOS ALAMOS, New Mexico, April 27,...

  19. Supercomputing and the search for supernovae

    SciTech Connect (OSTI)

    Nugent, Peter

    2013-10-31T23:59:59.000Z

    Berkeley Lab's Peter Nugent discusses "Supercomputing and the search for supernovae" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

  20. Supercomputing and the search for supernovae

    ScienceCinema (OSTI)

    Nugent, Peter

    2014-06-23T23:59:59.000Z

    Berkeley Lab's Peter Nugent discusses "Supercomputing and the search for supernovae" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

  1. TOP500 Supercomputers for November 2004

    SciTech Connect (OSTI)

    Strohmaier, Erich; Meuer, Hans W.; Dongarra, Jack; Simon, Horst D.

    2004-11-08T23:59:59.000Z

    24th Edition of TOP500 List of World's Fastest Supercomputers Released: DOE/IBM BlueGene/L and NASA/SGI's Columbia gain Top Positions MANNHEIM, Germany; KNOXVILLE, Tenn.; BERKELEY, Calif. In what has become a closely watched event in the world of high-performance computing, the 24th edition of the TOP500 list of the worlds fastest supercomputers was released today (November 8, 2004) at the SC2004 Conference in Pittsburgh, Pa.

  2. A training program for scientific supercomputing users

    SciTech Connect (OSTI)

    Hanson, F.; Moher, T.; Sabelli, N.; Solem, A.

    1988-01-01T23:59:59.000Z

    There is need for a mechanism to transfer supercomputing technology into the hands of scientists and engineers in such a way that they will acquire a foundation of knowledge that will permit integration of supercomputing as a tool in their research. Most computing center training emphasizes computer-specific information about how to use a particular computer system; most academic programs teach concepts to computer scientists. Only a few brief courses and new programs are designed for computational scientists. This paper describes an eleven-week training program aimed principally at graduate and postdoctoral students in computationally-intensive fields. The program is designed to balance the specificity of computing center courses, the abstractness of computer science courses, and the personal contact of traditional apprentice approaches. It is based on the experience of computer scientists and computational scientists, and consists of seminars and clinics given by many visiting and local faculty. It covers a variety of supercomputing concepts, issues, and practices related to architecture, operating systems, software design, numerical considerations, code optimization, graphics, communications, and networks. Its research component encourages understanding of scientific computing and supercomputer hardware issues. Flexibility in thinking about computing needs is emphasized by the use of several different supercomputer architectures, such as the Cray X/MP48 at the National Center for Supercomputing Applications at University of Illinois at Urbana-Champaign, IBM 3090 600E/VF at the Cornell National Supercomputer Facility, and Alliant FX/8 at the Advanced Computing Research Facility at Argonne National Laboratory. 11 refs., 6 tabs.

  3. Blue oak enhance soil quality in California oak woodlands

    E-Print Network [OSTI]

    Dahlgren, Randy; Horwath, William; Tate, Kenneth W; Camping, Trina

    2004-01-01T23:59:59.000Z

    Kay BL 1987. The effect of blue oak re- moval on herbaceousmitigate habitat loss in blue oak woodlands. In: Standifordremoval in California blue oak woodlands. In: Standiford RB,

  4. Blue oak enhance soil quality in California oak woodlands

    E-Print Network [OSTI]

    Dahlgren, Randy A.; Horwath, William R.; Tate, Kenneth W.; Camping, Trina J.

    2003-01-01T23:59:59.000Z

    Kay BL 1987. The effect of blue oak re- moval on herbaceousmitigate habitat loss in blue oak woodlands. In: Standifordremoval in California blue oak woodlands. In: Standiford RB,

  5. Oak Poisoning in Livestock. 

    E-Print Network [OSTI]

    Dollahite, J. W.; Housholder, G. T.; Camp, B. J.

    1966-01-01T23:59:59.000Z

    April 1966 r Oak Poisoning *. . TEXAS A&M UNIVERSITY Texas Agricultural Experiment Station R. E. Patterson, Director, College Station, Texas Summary Oak poisoning is a major problem in the production of livestock in areas where oak occurs.... The blossoms, buds, young leaves and acorns are poisonous. Cattle, sheep, goats, swine, rabbits and guinea pigs are susceptible to oak poisoning. A gallotannin isolated from oak has been demonstrated to be poisonous. Calcium hydroxide is an antidote...

  6. Helmets Designed by Supercomputers Help Warfighters at Home

    Broader source: Energy.gov [DOE]

    These supercomputing applications are helping protect warfighters from the blast waves produced by explosions that cause traumatic brain injury (TBI).

  7. GPUs: An Oasis in the Supercomputing Desert

    E-Print Network [OSTI]

    Kamleh, Waseem

    2012-01-01T23:59:59.000Z

    A novel metric is introduced to compare the supercomputing resources available to academic researchers on a national basis. Data from the supercomputing Top 500 and the top 500 universities in the Academic Ranking of World Universities (ARWU) are combined to form the proposed "500/500" score for a given country. Australia scores poorly in the 500/500 metric when compared with other countries with a similar ARWU ranking, an indication that HPC-based researchers in Australia are at a relative disadvantage with respect to their overseas competitors. For HPC problems where single precision is sufficient, commodity GPUs provide a cost-effective means of quenching the computational thirst of otherwise parched Lattice practitioners traversing the Australian supercomputing desert. We explore some of the more difficult terrain in single precision territory, finding that BiCGStab is unreliable in single precision at large lattice sizes. We test the CGNE and CGNR forms of the conjugate gradient method on the normal equa...

  8. TOP500 Supercomputers for November 2002

    SciTech Connect (OSTI)

    Strohmaier, Erich; Meuer, Hans W.; Dongarra, Jack; Simon, Horst D.

    2002-11-15T23:59:59.000Z

    20th Edition of TOP500 List of World's Fastest Supercomputers Released MANNHEIM, Germany; KNOXVILLE, Tenn.;&BERKELEY, Calif. In what has become a much-anticipated event in the world of high-performance computing, the 20th edition of the TOP500 list of the world's fastest supercomputers was released today (November 15, 2002). The Earth Simulator supercomputer installed earlier this year at the Earth Simulator Center in Yokohama, Japan, is with its Linpack benchmark performance of 35.86 Tflop/s (trillions of calculations per second) retains the number one position. The No.2 and No.3 positions are held by two new, identical ASCI Q systems at Los Alamos National Laboratory (7.73Tflop/s each). These systems are built by Hewlett-Packard and based on the Alpha Server SC computer system.

  9. TOP500 Supercomputers for June 2002

    SciTech Connect (OSTI)

    Strohmaier, Erich; Meuer, Hans W.; Dongarra, Jack; Simon, Horst D.

    2002-06-20T23:59:59.000Z

    19th Edition of TOP500 List of World's Fastest Supercomputers Released MANNHEIM, Germany; KNOXVILLE, Tenn.;&BERKELEY, Calif. In what has become a much-anticipated event in the world of high-performance computing, the 19th edition of the TOP500 list of the worlds fastest supercomputers was released today (June 20, 2002). The recently installed Earth Simulator supercomputer at the Earth Simulator Center in Yokohama, Japan, is as expected the clear new number 1. Its performance of 35.86 Tflop/s (trillions of calculations per second) running the Linpack benchmark is almost five times higher than the performance of the now No.2 IBM ASCI White system at Lawrence Livermore National Laboratory (7.2 Tflop/s). This powerful leap frogging to the top by a system so much faster than the previous top system is unparalleled in the history of the TOP500.

  10. Edison - A New Cray Supercomputer Advances Discovery at NERSC

    ScienceCinema (OSTI)

    Dosanjh, Sudip; Parkinson, Dula; Yelick, Kathy; Trebotich, David; Broughton, Jeff; Antypas, Katie; Lukic, Zarija, Borrill, Julian; Draney, Brent; Chen, Jackie

    2014-06-06T23:59:59.000Z

    When a supercomputing center installs a new system, users are invited to make heavy use of the computer as part of the rigorous testing. In this video, find out what top scientists have discovered using Edison, a Cray XC30 supercomputer, and how NERSC's newest supercomputer will accelerate their future research.

  11. Edison - A New Cray Supercomputer Advances Discovery at NERSC

    SciTech Connect (OSTI)

    Dosanjh, Sudip; Parkinson, Dula; Yelick, Kathy; Trebotich, David; Broughton, Jeff; Antypas, Katie; Lukic, Zarija, Borrill, Julian; Draney, Brent; Chen, Jackie

    2014-02-06T23:59:59.000Z

    When a supercomputing center installs a new system, users are invited to make heavy use of the computer as part of the rigorous testing. In this video, find out what top scientists have discovered using Edison, a Cray XC30 supercomputer, and how NERSC's newest supercomputer will accelerate their future research.

  12. Supercomputers Take a Cue From Microwave Ovens

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer. .Energy8 CareerSupercomputerSupercomputers

  13. A Model for Moldable Supercomputer Jobs

    E-Print Network [OSTI]

    Cirne, Walfredo

    critical to evaluate how supercomputer schedulers perform in practice. There has been much written survey and good analytical models. Our model can serve as the basis for the development of performance of the system in practice. When workloads are not available or do not represent the real usage of the parallel

  14. A FRAMEWORK FOR MEASURING SUPERCOMPUTER PRODUCTIVITY1

    E-Print Network [OSTI]

    Bader, David A.

    A FRAMEWORK FOR MEASURING SUPERCOMPUTER PRODUCTIVITY1 10/30/2003 Marc Snir2 and David A. Bader3 Abstract We propose a framework for measuring the productivity of High Performance Computing (HPC) systems, based on common economic definitions of productivity and on Utility Theory. We discuss how

  15. Roadrunner Supercomputer Breaks the Petaflop Barrier

    ScienceCinema (OSTI)

    Los Alamos National Lab - Brian Albright, Charlie McMillan, Lin Yin

    2010-01-08T23:59:59.000Z

    At 3:30 a.m. on May 26, 2008, Memorial Day, the "Roadrunner" supercomputer exceeded a sustained speed of 1 petaflop/s, or 1 million billion calculations per second. The sustained performance makes Roadrunner more than twice as fast as the current number 1

  16. An Explanation of Global Warming without Supercomputing

    E-Print Network [OSTI]

    An Explanation of Global Warming without Supercomputing (revised version) K. Miyazaki E that the anthropogenic global warming is severely limited because the Earth is a water planet. 1 Introduction Now,2,3] on this anthropogenic global warming (AGW) is essentially based on the results of elaborate and enormous computer

  17. An Explanation of Global Warming without Supercomputing

    E-Print Network [OSTI]

    An Explanation of Global Warming without Supercomputing K. Miyazaki E-mail: miyazakiro that the climate sensitivity never exceeds 6 C. Consequently, the anthropogenic global warming is severely limited be calculated in simple terms. Global warming is like that." However, there will be not a few physicists who do

  18. Adventures in Supercomputing: An innovative program

    SciTech Connect (OSTI)

    Summers, B.G.; Hicks, H.R.; Oliver, C.E.

    1995-06-01T23:59:59.000Z

    Within the realm of education, seldom does an innovative program become available with the potential to change an educator`s teaching methodology and serve as a spur to systemic reform. The Adventures in Supercomputing (AiS) program, sponsored by the Department of Energy, is such a program. Adventures in Supercomputing is a program for high school and middle school teachers. It has helped to change the teaching paradigm of many of the teachers involved in the program from a teacher-centered classroom to a student-centered classroom. ``A student-centered classroom offers better opportunities for development of internal motivation, planning skills, goal setting and perseverance than does the traditional teacher-directed mode``. Not only is the process of teaching changed, but evidences of systemic reform are beginning to surface. After describing the program, the authors discuss the teaching strategies being used and the evidences of systemic change in many of the AiS schools in Tennessee.

  19. Supercomputing Sheds Light on the Dark Universe

    SciTech Connect (OSTI)

    Salman Habib

    2012-11-15T23:59:59.000Z

    At Argonne National Laboratory, scientists are using supercomputers to shed light on one of the great mysteries in science today, the Dark Universe. With Mira, a petascale supercomputer at the Argonne Leadership Computing Facility, a team led by physicists Salman Habib and Katrin Heitmann will run the largest, most complex simulation of the universe ever attempted. By contrasting the results from Mira with state-of-the-art telescope surveys, the scientists hope to gain new insights into the distribution of matter in the universe, advancing future investigations of dark energy and dark matter into a new realm. The team's research was named a finalist for the 2012 Gordon Bell Prize, an award recognizing outstanding achievement in high-performance computing.

  20. GPUs: An Oasis in the Supercomputing Desert

    E-Print Network [OSTI]

    Waseem Kamleh

    2012-12-19T23:59:59.000Z

    A novel metric is introduced to compare the supercomputing resources available to academic researchers on a national basis. Data from the supercomputing Top 500 and the top 500 universities in the Academic Ranking of World Universities (ARWU) are combined to form the proposed "500/500" score for a given country. Australia scores poorly in the 500/500 metric when compared with other countries with a similar ARWU ranking, an indication that HPC-based researchers in Australia are at a relative disadvantage with respect to their overseas competitors. For HPC problems where single precision is sufficient, commodity GPUs provide a cost-effective means of quenching the computational thirst of otherwise parched Lattice practitioners traversing the Australian supercomputing desert. We explore some of the more difficult terrain in single precision territory, finding that BiCGStab is unreliable in single precision at large lattice sizes. We test the CGNE and CGNR forms of the conjugate gradient method on the normal equations. Both CGNE and a modified form of CGNR (with restarts) provide reliable convergence for quark propagator calculations in single precision.

  1. Sandia uses supercomputer simulations to improve helmets | National...

    National Nuclear Security Administration (NNSA)

    to improve helmets NNSA Blog Supercomputer simulations of blast waves on the brain are being compared with clinical studies of veterans suffering from mild traumatic...

  2. Special Feature: Energy - The Spark that Ignited DOE Supercomputing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Department of Energy's (DOE's) first unclassified supercomputer center-the Controlled Thermonuclear Research Computer Center (CTRCC), established in 1974 at the Lawrence...

  3. ORNL study uses neutron scattering, supercomputing to demystify...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Morgan McCorkle Communications and Media Relations 865.574.7308 ORNL study uses neutron scattering, supercomputing to demystify forces at play in biofuel production This graphical...

  4. Press Conference: DOE announces next-gen supercomputer Aurora...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with Argonne, Intel, and Cray to announce a 200 million investment to deliver a next-generation supercomputer, known as Aurora, to the Argonne Leadership Computing Facility....

  5. PPPL physicists win supercomputing time to simulate key energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PPPL physicists win supercomputing time to simulate key energy and astrophysical phenomena By John Greenwald January 8, 2013 Tweet Widget Google Plus One Share on Facebook A...

  6. Oak Poisoning in Livestock.

    E-Print Network [OSTI]

    Dollahite, J. W.; Housholder, G. T.; Camp, B. J.

    1966-01-01T23:59:59.000Z

    ..-.......----------- - .............................. 3 . . Cllnlcal Signs and Lesions 4 . . Recent Studies on Oak Toxicity 4 Evaluations of Possible Antidotes ................................................................ 5 Methods of Chemical Control of Oak 8 Conclusions... this figure. Oak Poisoning in Livestock In 1936, Boughton and Hardy (3) reported severe losses among cattle and sheep eating Q. d?~~-u~dii var breviloba in the Edwards Plateau region of Texas. Q. gumbellii was reported by Marsh et al. (16) to be toxic...

  7. Chinese supercomputer stays No. 1, Titan at ORNL still No. 2...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chinese supercomputer stays No. 1, Titan at ORNL still No. 2 November 18, 2014 For the fourth consecutive time, Tianhe-2, a supercomputer developed by China's National University...

  8. Integration of PanDA workload management system with Titan supercomputer at OLCF

    E-Print Network [OSTI]

    Panitkin, Sergey; The ATLAS collaboration; Klimentov, Alexei; Oleynik, Danila; Petrosyan, Artem; Schovancova, Jaroslava; Vaniachine, Alexandre; Wenaus, Torre

    2015-01-01T23:59:59.000Z

    The PanDA (Production and Distributed Analysis) workload management system (WMS) was developed to meet the scale and complexity of LHC distributed computing for the ATLAS experiment. While PanDA currently uses more than 100,000 cores at well over 100 Grid sites with a peak performance of 0.3 petaFLOPS, next LHC data taking run will require more resources than Grid computing can possibly provide. To alleviate these challenges, ATLAS is engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF). Current approach utilizes modified PanDA pilot framework for job submission to Titan's batch queues and local data management, with light-weight MPI wrappers to run single threaded workloads in parallel on Titan's multi-core worker nodes. It also gives PanDA new capability to collect, in real tim...

  9. Supercomputing & Computation | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer. .Energy8Supercomputing and Computation SHARE

  10. Supercomputing & Computation | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer. .Energy8Supercomputing and Computation

  11. Supercomputing & Computation | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer. .Energy8Supercomputing and

  12. Supercomputing Challenge April 21-22

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer. .Energy8Supercomputing andManzano High4th

  13. Supercomputing Challenge Expo and Awards Ceremony

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer. .Energy8Supercomputing andManzano

  14. Supercomputing Challenge top winners: Los Alamos schools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solid ...Success Stories TouchingSupercomputing Challenge top

  15. Secretary Moniz Dedicates New Supercomputer at the National Energy...

    Broader source: Energy.gov (indexed) [DOE]

    efficient-at the National Energy Technology Laboratory (NETL). The high-performance computer for energy and the environment is not only one of the top 100 supercomputers in the...

  16. Towards Efficient Supercomputing: A Quest for the Right Metric

    E-Print Network [OSTI]

    Freeh, Vincent

    of the thermal power envelope of these supercomputers, a small fortune must be spent to cool them and more complex machine rooms and even new buildings. Further, because of the thermal enve- lope

  17. STATEMENT OF CONSIDERATIONS New York Blue Supercomputer User...

    Broader source: Energy.gov (indexed) [DOE]

    New York Blue Supercomputer User Facility Class Waiver for Non-Proprietary and Proprietary Research W(C)-2008-007 This class waiver is intended to provide for the disposition of...

  18. High Performance Computing Managing world-class supercomputing centers

    E-Print Network [OSTI]

    - 1 - High Performance Computing Managing world-class supercomputing centers Read caption Leader The High Performance Computing (HPC) Division supports the Laboratory mission by managing world high performance computing, storage, and emerging data-intensive information science production systems

  19. Oak Leaf Roller and Springtime Defoliation of Live Oak Trees

    E-Print Network [OSTI]

    Drees, Bastiaan M.

    2004-03-26T23:59:59.000Z

    This publication explains how to minimize damage to live oak trees by the oak leaf roller and an associated caterpillar species, which occur throughout Texas but are most damaging in the Hill Country and South Texas....

  20. Towards Efficient Supercomputing: A Quest for the Right Metric.

    SciTech Connect (OSTI)

    Hsu, C.-H. (Chung-Hsing); Feng, W. C. (Wu-Chun); Archuleta, J. S. (Jeremy S.)

    2005-01-01T23:59:59.000Z

    Over the past decade, we have been building less and less efficient supercomputers, resulting in the construction of substantially larger machine rooms and even new buildings. In addition, because of the thermal power envelope of these supercomputers, a small fortune must be spent to cool them. These infrastructure costs coupled with the additional costs of administering and maintaining such (unreliable) supercomputers dramatically increases their total cost of ownership. As a result, there has been substantial interest in recent years to produce more reliable and more efficient supercomputers that are easy to maintain and use. But how does one quantify efficient supercomputing? That is, what metric should be used to evaluate how efficiently a supercomputer delivers answers? We argue that existing efficiency metrics such as the performance-power ratio are insufficient and motivate the need for a new type of efficiency metric, one that incorporates notions of reliability, availability, productivity, and total cost of ownership (TCO), for instance. In doing so, however, this paper raises more questions than it answers with respect to efficiency. And in the end, we still return to the performance-power ratio as an efficiency metric with respect to power and use it to evaluate a menagerie of processor platforms in order to provide a set of reference data points for the high-performance computing community.

  1. Melrose High trio named top team in 20th New Mexico Supercomputing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    named top team in Supercomputing Challenge Melrose High trio named top team in 20th New Mexico Supercomputing Challenge Each student receives a check for 1,000. The team also...

  2. Dense LU Factorization on Multicore Supercomputer Nodes

    SciTech Connect (OSTI)

    Lifflander, Jonathan [University of Illinois, Urbana-Champaign] [University of Illinois, Urbana-Champaign; Miller, Phil [University of Illinois, Urbana-Champaign] [University of Illinois, Urbana-Champaign; Venkataraman, Ramprasad [University of Illinois, Urbana-Champaign] [University of Illinois, Urbana-Champaign; Arya, Anshu [University of Illinois, Urbana-Champaign] [University of Illinois, Urbana-Champaign; Jones, Terry R [ORNL] [ORNL; Kale, Laxmikant V [University of Illinois, Urbana-Champaign] [University of Illinois, Urbana-Champaign

    2012-01-01T23:59:59.000Z

    Dense LU factorization is a prominent benchmark used to rank the performance of supercomputers. Many implementations, including the reference code HPL, use block-cyclic distributions of matrix blocks onto a two-dimensional process grid. The process grid dimensions drive a trade-off between communication and computation and are architecture- and implementation-sensitive. We show how the critical panel factorization steps can be made less communication-bound by overlapping asynchronous collectives for pivot identification and exchange with the computation of rank-k updates. By shifting this trade-off, a modified block-cyclic distribution can beneficially exploit more available parallelism on the critical path, and reduce panel factorization's memory hierarchy contention on now-ubiquitous multi-core architectures. The missed parallelism in traditional block-cyclic distributions arises because active panel factorization, triangular solves, and subsequent broadcasts are spread over single process columns or rows (respectively) of the process grid. Increasing one dimension of the process grid decreases the number of distinct processes in the other dimension. To increase parallelism in both dimensions, periodic 'rotation' is applied to the process grid to recover the row-parallelism lost by a tall process grid. During active panel factorization, rank-1 updates stream through memory with minimal reuse. In a column-major process grid, the performance of this access pattern degrades as too many streaming processors contend for access to memory. A block-cyclic mapping in the more popular row-major order does not encounter this problem, but consequently sacrifices node and network locality in the critical pivoting steps. We introduce 'striding' to vary between the two extremes of row- and column-major process grids. As a test-bed for further mapping experiments, we describe a dense LU implementation that allows a block distribution to be defined as a general function of block to processor. Other mappings can be tested with only small, local changes to the code.

  3. Taking ASCI supercomputing to the end game.

    SciTech Connect (OSTI)

    DeBenedictis, Erik P.

    2004-03-01T23:59:59.000Z

    The ASCI supercomputing program is broadly defined as running physics simulations on progressively more powerful digital computers. What happens if we extrapolate the computer technology to its end? We have developed a model for key ASCI computations running on a hypothetical computer whose technology is parameterized in ways that account for advancing technology. This model includes technology information such as Moore's Law for transistor scaling and developments in cooling technology. The model also includes limits imposed by laws of physics, such as thermodynamic limits on power dissipation, limits on cooling, and the limitation of signal propagation velocity to the speed of light. We apply this model and show that ASCI computations will advance smoothly for another 10-20 years to an 'end game' defined by thermodynamic limits and the speed of light. Performance levels at the end game will vary greatly by specific problem, but will be in the Exaflops to Zetaflops range for currently anticipated problems. We have also found an architecture that would be within a constant factor of giving optimal performance at the end game. This architecture is an evolutionary derivative of the mesh-connected microprocessor (such as ASCI Red Storm or IBM Blue Gene/L). We provide designs for the necessary enhancement to microprocessor functionality and the power-efficiency of both the processor and memory system. The technology we develop in the foregoing provides a 'perfect' computer model with which we can rate the quality of realizable computer designs, both in this writing and as a way of designing future computers. This report focuses on classical computers based on irreversible digital logic, and more specifically on algorithms that simulate space computing, irreversible logic, analog computers, and other ways to address stockpile stewardship that are outside the scope of this report.

  4. Clock Agreement Among Parallel Supercomputer Nodes

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jones, Terry R.; Koenig, Gregory A.

    This dataset presents measurements that quantify the clock synchronization time-agreement characteristics among several high performance computers including the current world's most powerful machine for open science, the U.S. Department of Energy's Titan machine sited at Oak Ridge National Laboratory. These ultra-fast machines derive much of their computational capability from extreme node counts (over 18000 nodes in the case of the Titan machine). Time-agreement is commonly utilized by parallel programming applications and tools, distributed programming application and tools, and system software. Our time-agreement measurements detail the degree of time variance between nodes and how that variance changes over time. The dataset includes empirical measurements and the accompanying spreadsheets.

  5. Clock Agreement Among Parallel Supercomputer Nodes

    SciTech Connect (OSTI)

    Jones, Terry R.; Koenig, Gregory A.

    2014-04-30T23:59:59.000Z

    This dataset presents measurements that quantify the clock synchronization time-agreement characteristics among several high performance computers including the current world's most powerful machine for open science, the U.S. Department of Energy's Titan machine sited at Oak Ridge National Laboratory. These ultra-fast machines derive much of their computational capability from extreme node counts (over 18000 nodes in the case of the Titan machine). Time-agreement is commonly utilized by parallel programming applications and tools, distributed programming application and tools, and system software. Our time-agreement measurements detail the degree of time variance between nodes and how that variance changes over time. The dataset includes empirical measurements and the accompanying spreadsheets.

  6. A Cure for the Valentine's Blues? Livermore Supercomputer Seeks to Mend Broken Hearts

    Broader source: Energy.gov [DOE]

    Cupid's arrows may help you find love, but an Energy Department supercomputer is working to help cure broken hearts.

  7. Oak Ridge National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeeding access(SC) Oak Ridge Leadership

  8. Oak Ridge EM Program DOE Oak Ridge Environmental Management Program

    Energy Savers [EERE]

    materials from federal operations in Oak Ridge. 2004 Shipments begin of more than 6,000 depleted uranium hexafluoride cylinders from ETTP to Ports- mouth, Ohio, for disposition....

  9. ASCR Science Network Requirements

    E-Print Network [OSTI]

    Dart, Eli

    2010-01-01T23:59:59.000Z

    next generation, high-performance computing architectures.Division. 3.2 High Performance Computing and Networkfacilities: High Performance Computing (HPC) Facility and

  10. ASCR Open Funding Opportunities

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development1USummer in theWeb

  11. ASCR Science Highlights

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development1USummer in theWebhighlights/ The Office

  12. ASCR Research Priorities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP UpdateRefreshAdministration March 2013ASCRRequests

  13. Supercomputers grow industry's imaging abilities by leaps and bounds

    E-Print Network [OSTI]

    . In a synopsis, officials there also said that newer systems being developed today let them process seismic data, for instance, will be able to manage 1,000 trillion calculations each second while shaving energy consumption in supercomputing first hit a turning point around 2004, but now it's really starting to heat up. Though

  14. Oak Ridge City Center Technology Demonstration Project

    Broader source: Energy.gov (indexed) [DOE]

    Oak Ridge City Center Technology Demonstration Project David Thrash, Principal Investigator Oak Ridge City Center, LLC Track Name May 18, 2010 This presentation does not contain...

  15. Oak Ridge Office

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment ofDepartment640OrderOREMJanuary 20149Oak Ridge OPEIU 2001

  16. Oak Ridge Office

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment ofDepartment640OrderOREMJanuary 20149Oak Ridge OPEIU 2001 I

  17. Oak Ridge Office

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment ofDepartment640OrderOREMJanuary 20149Oak Ridge OPEIU 2001 I-

  18. Oak Ridge Office

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment ofDepartment640OrderOREMJanuary 20149Oak Ridge OPEIU 2001

  19. Oak Ridge Office

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment ofDepartment640OrderOREMJanuary 20149Oak Ridge OPEIU 2001Ms.

  20. Oak Ridge Office

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment ofDepartment640OrderOREMJanuary 20149Oak Ridge OPEIU 2001Ms.1

  1. Oak Ridge Site Specific

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment ofDepartment640OrderOREMJanuary 20149Oak RidgeSite Specific

  2. Oak Ridge Universities

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona,Site Operations Guide Doc. No.GS05:or _^rOak Ridge

  3. Oak Ridge O

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeeding access(SC) Oak RidgeCenterMaterialsO ffice P.O.

  4. Oak Ridge Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeeding access(SC) Oak RidgeCenterMaterialsO ffice

  5. Oak Ridge Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeeding access(SC) Oak RidgeCenterMaterialsO fficeP.O.

  6. Oak Ridge Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeeding access(SC) Oak RidgeCenterMaterialsO

  7. Oak Ridge Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeeding access(SC) Oak RidgeCenterMaterialsOOctober 1,

  8. Oak Ridge Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeeding access(SC) Oak RidgeCenterMaterialsOOctober

  9. Oak Ridge Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeeding access(SC) Oak RidgeCenterMaterialsOOctober22,

  10. Oak Ridge Reservation Annual Site

    E-Print Network [OSTI]

    Pennycook, Steve

    ....................................................................................................................xix Units of Measure and Conversion Factors Project coordinator Sharon Thompson Department of Energy project manager and Oak Ridge Office coordinator, for the Department of Energy under Contract DE-AC05-00OR22725 and by the Y-12 National Security Complex Oak Ridge, TN

  11. Oak Ridge Reservation Annual Site

    E-Print Network [OSTI]

    Pennycook, Steve

    ....................................................................................................................xix Units of Measure and Conversion Factors Thompson Department of Energy project manager and Oak Ridge Office coordinator Katatra Vasquez Technical, Oak Ridge, TN 37831-2008 Managed by UT-Battelle, LLC, for the Department of Energy under Contract DE

  12. Small Business Manager Oak Ridge National Laboratory

    E-Print Network [OSTI]

    Keith Joy Small Business Manager Oak Ridge National Laboratory: Past, Present, and Future #12;2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Overview_0604 ORNL in 1943 The Clinton Pile the Manhattan Project 2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Overview_0604 #12;3 OAK RIDGE

  13. Department of Energy to Provide Supercomputing Time to Run NOAA...

    Energy Savers [EERE]

    world's top five most powerful computers - the Argonne National Laboratory's 557 TF IBM Blue GeneP and Oak Ridge National Laboratory's 263 TF Cray XT4. NOAA researchers will also...

  14. AEC and Oak Ridge Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which reported to the Manager of Oak Ridge Operations. These area offices include: 1. Paducah, KY 2. Portsmouth, OH 3. Cincinnati, OH 4. St. Louis, MO 5. New Brunswick, NJ 6....

  15. DOE Oak Ridge Operations managers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    As the last few articles have shown, the period immediately following the end of World War II was one of constant and continuing change for Oak Ridge. The contractor changes...

  16. Oak Ridge Site Specific Advisory ...

    Office of Environmental Management (EM)

    Ridge Site Specific Advisory Board * P.O. Box 2001, EM-91, Oak Ridge, TN 37831 Phone: 865-241-4583, 865-241-4584, 1-800-382-6938 * Fax: 865-574-3521 * Internet:...

  17. Exclosure size affects young blue oak seedling growth

    E-Print Network [OSTI]

    Phillips, Ralph L.; McDougald, Neil K.; Atwill, Edward R.; McCreary, Doug

    2007-01-01T23:59:59.000Z

    in?uences rodent damage to blue oaks. Oaks ’N Folks tat.Exclosure size affects young blue oak seedling growth byR. Atwill and Doug McCreary Blue oak, a tree native only to

  18. Bringing ATLAS production to HPC resources - A use case with the Hydra supercomputer of the Max Planck Society

    E-Print Network [OSTI]

    Kluth, Stefan; The ATLAS collaboration; Mazzaferro, Luca; Walker, Rodney

    2015-01-01T23:59:59.000Z

    Bringing ATLAS production to HPC resources - A use case with the Hydra supercomputer of the Max Planck Society

  19. Supercomputers: Extreme Computing at the National Labs | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for|Idaho |Energy Supercomputers: Extreme Computing

  20. Supercomputing: Eye-Opening Possibilities in Imaging | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE'sSummary SpecialFactories |Supercomputing Our Way to a

  1. Supercomputing Challenge Expo at Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer. .Energy8Supercomputing andManzanoshowcase

  2. Supercomputing and Advanced Computing at the National Labs | Department of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer. .Energy8SupercomputingEnergy

  3. Supercomputing with Livermore National Lab | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer.Supercomputing on a Budget AdvancedWorking

  4. Oak Ridge National Laboratory Science & Technology Highlights

    E-Print Network [OSTI]

    Pennycook, Steve

    & Technology Highlights Oak Ridge National Laboratory ORNL Works to Bring Zero-Energy Housing to the Masses

  5. Calibrating Building Energy Models Using Supercomputer Trained Machine Learning Agents

    SciTech Connect (OSTI)

    Sanyal, Jibonananda [ORNL] [ORNL; New, Joshua Ryan [ORNL] [ORNL; Edwards, Richard [ORNL] [ORNL; Parker, Lynne Edwards [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Building Energy Modeling (BEM) is an approach to model the energy usage in buildings for design and retrofit purposes. EnergyPlus is the flagship Department of Energy software that performs BEM for different types of buildings. The input to EnergyPlus can often extend in the order of a few thousand parameters which have to be calibrated manually by an expert for realistic energy modeling. This makes it challenging and expensive thereby making building energy modeling unfeasible for smaller projects. In this paper, we describe the Autotune research which employs machine learning algorithms to generate agents for the different kinds of standard reference buildings in the U.S. building stock. The parametric space and the variety of building locations and types make this a challenging computational problem necessitating the use of supercomputers. Millions of EnergyPlus simulations are run on supercomputers which are subsequently used to train machine learning algorithms to generate agents. These agents, once created, can then run in a fraction of the time thereby allowing cost-effective calibration of building models.

  6. High Performance Computing Facility Operational Assessment, FY 2010 Oak Ridge Leadership Computing Facility

    SciTech Connect (OSTI)

    Bland, Arthur S Buddy [ORNL; Hack, James J [ORNL; Baker, Ann E [ORNL; Barker, Ashley D [ORNL; Boudwin, Kathlyn J. [ORNL; Kendall, Ricky A [ORNL; Messer, Bronson [ORNL; Rogers, James H [ORNL; Shipman, Galen M [ORNL; White, Julia C [ORNL

    2010-08-01T23:59:59.000Z

    Oak Ridge National Laboratory's (ORNL's) Cray XT5 supercomputer, Jaguar, kicked off the era of petascale scientific computing in 2008 with applications that sustained more than a thousand trillion floating point calculations per second - or 1 petaflop. Jaguar continues to grow even more powerful as it helps researchers broaden the boundaries of knowledge in virtually every domain of computational science, including weather and climate, nuclear energy, geosciences, combustion, bioenergy, fusion, and materials science. Their insights promise to broaden our knowledge in areas that are vitally important to the Department of Energy (DOE) and the nation as a whole, particularly energy assurance and climate change. The science of the 21st century, however, will demand further revolutions in computing, supercomputers capable of a million trillion calculations a second - 1 exaflop - and beyond. These systems will allow investigators to continue attacking global challenges through modeling and simulation and to unravel longstanding scientific questions. Creating such systems will also require new approaches to daunting challenges. High-performance systems of the future will need to be codesigned for scientific and engineering applications with best-in-class communications networks and data-management infrastructures and teams of skilled researchers able to take full advantage of these new resources. The Oak Ridge Leadership Computing Facility (OLCF) provides the nation's most powerful open resource for capability computing, with a sustainable path that will maintain and extend national leadership for DOE's Office of Science (SC). The OLCF has engaged a world-class team to support petascale science and to take a dramatic step forward, fielding new capabilities for high-end science. This report highlights the successful delivery and operation of a petascale system and shows how the OLCF fosters application development teams, developing cutting-edge tools and resources for next-generation systems.

  7. An inter-realm, cyber-security infrastructure for virtual supercomputing

    SciTech Connect (OSTI)

    Al-Muhtadi, J. (Jalal); Feng, W. C. (Wu-Chun); Fisk, M. E. (Mike E. )

    2001-01-01T23:59:59.000Z

    Virtual supercomputing, (ise ., high-performance grid computing), is poised to revolutionize the way we think about and use computing. However, the security of the links interconnecting the nodes within such an environment will be its Achilles heel, particularly when secure communication is required to tunnel through heterogeneous domains. In this paper we examine existing security mechanisms, show their inadequacy, and design a comprehensive cybersecurity infrastructure that meets the security requirements of virtual supercomputing. Keywords Security, virtual supercomputing, grid computing, high-performance computing, GSS-API, SSL, IPsec, component-based software, dynamic reconfiguration.

  8. Non-preconditioned conjugate gradient on cell and FPCA-based hybrid supercomputer nodes

    SciTech Connect (OSTI)

    Dubois, David H [Los Alamos National Laboratory; Dubois, Andrew J [Los Alamos National Laboratory; Boorman, Thomas M [Los Alamos National Laboratory; Connor, Carolyn M [Los Alamos National Laboratory

    2009-03-10T23:59:59.000Z

    This work presents a detailed implementation of a double precision, Non-Preconditioned, Conjugate Gradient algorithm on a Roadrunner heterogeneous supercomputer node. These nodes utilize the Cell Broadband Engine Architecture{trademark} in conjunction with x86 Opteron{trademark} processors from AMD. We implement a common Conjugate Gradient algorithm, on a variety of systems, to compare and contrast performance. Implementation results are presented for the Roadrunner hybrid supercomputer, SRC Computers, Inc. MAPStation SRC-6 FPGA enhanced hybrid supercomputer, and AMD Opteron only. In all hybrid implementations wall clock time is measured, including all transfer overhead and compute timings.

  9. Non-preconditioned conjugate gradient on cell and FPGA based hybrid supercomputer nodes

    SciTech Connect (OSTI)

    Dubois, David H [Los Alamos National Laboratory; Dubois, Andrew J [Los Alamos National Laboratory; Boorman, Thomas M [Los Alamos National Laboratory; Connor, Carolyn M [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    This work presents a detailed implementation of a double precision, non-preconditioned, Conjugate Gradient algorithm on a Roadrunner heterogeneous supercomputer node. These nodes utilize the Cell Broadband Engine Architecture{sup TM} in conjunction with x86 Opteron{sup TM} processors from AMD. We implement a common Conjugate Gradient algorithm, on a variety of systems, to compare and contrast performance. Implementation results are presented for the Roadrunner hybrid supercomputer, SRC Computers, Inc. MAPStation SRC-6 FPGA enhanced hybrid supercomputer, and AMD Opteron only. In all hybrid implementations wall clock time is measured, including all transfer overhead and compute timings.

  10. Mapping the Arnold web with a GPU-supercomputer

    E-Print Network [OSTI]

    A. Seibert; S. Denisov; A. V. Ponomarev; P. Hänggi

    2011-12-21T23:59:59.000Z

    The Arnold diffusion constitutes a dynamical phenomenon which may occur in the phase space of a non-integrable Hamiltonian system whenever the number of the system degrees of freedom is $M \\geq 3$. The diffusion is mediated by a web-like structure of resonance channels, which penetrates the phase space and allows the system to explore the whole energy shell. The Arnold diffusion is a slow process; consequently the mapping of the web presents a very time-consuming task. We demonstrate that the exploration of the Arnold web by use of a graphic processing unit (GPU)-supercomputer can result in distinct speedups of two orders of magnitude as compared to standard CPU-based simulations.

  11. Mapping the Arnold web with a GPU-supercomputer

    E-Print Network [OSTI]

    Seibert, A; Ponomarev, A V; Hänggi, P

    2011-01-01T23:59:59.000Z

    The Arnold diffusion constitutes a dynamical phenomenon which may occur in the phase space of a non-integrable Hamiltonian system whenever the number of the system degrees of freedom is $M \\geq 3$. The diffusion is mediated by a web-like structure of resonance channels, which penetrates the phase space and allows the system to explore the whole energy shell. The Arnold diffusion is a slow process; consequently the mapping of the web presents a very time-consuming task. We demonstrate that the exploration of the Arnold web by use of a graphic processing unit (GPU)-supercomputer can result in distinct speedups of two orders of magnitude as compared to standard CPU-based simulations.

  12. Benchmark of the Convex C-1 mini supercomputer

    SciTech Connect (OSTI)

    Simmons, M.L.; Lubeck, OlM.

    1986-01-01T23:59:59.000Z

    In July 1985, we benchmarked the Convex C-1 computer at the Convex plant in Richardson, Texas. The machine is marketed as a mini-supercomputer executing a UNIX operating system. The architecture includes vector functional units, 16-million 64-bit words of physical memory and 64 kbytes of set-associative cache between main memory and the CPU. The standard one-processor Los Alamos benchmarks were executed and timed in both single-precision (32-bit) and double-precision (64-bit) floating-point mode. Subsequent to the July benchmark, the machine architecture was changed to expand the cache bypass for vector memory accesses. The benchmarks were redone in October 1985 to include the significant architecture modification. The results in this paper are from the latest benchmark.

  13. Brush Control and Range Improvement: In the Post Oak-Blackjack Oak Area of Texas. 

    E-Print Network [OSTI]

    Darrow, Robert A.; McCully, Wayne G.

    1959-01-01T23:59:59.000Z

    1st Texas Timbers -. - stn ............. Post Oak IVoody Plant Control Xfe Factors in the Selecti Control Measure ... 'echanical Girdlin Cutting Koot pl oat Grazi letnical C Basal ' Soil In "A atump Frill SI Trunk Fnliacr~ "A... in the post oak-blackjack oak area of Texas by inte. grating brush control into a range management program. The acreage occupied by post oak-blackjack oak in the East and West . Cross Timbers, the Central Basin and the East Texas post oak belt, a portion...

  14. Massively-parallel electrical-conductivity imaging of hydrocarbons using the Blue Gene/L supercomputer

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    OF HYDROCARBONS USING THE BLUE GENE/L SUPERCOMPUTER M.of the sail lines (red and blue) and 23 detector locations (detector arrays marked in blue. Figure 3. Six selected plots

  15. Two PPPL-led teams win increased supercomputing time to study...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two PPPL-led teams win increased supercomputing time to study conditions inside fusion plasmas By John Greenwald January 9, 2014 Tweet Widget Google Plus One Share on Facebook...

  16. EA-1044: Melton Valley Storage Tanks Capacity Increase Project- Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to construct and maintain additional storage capacity at the U.S. Department of Energy's Oak Ridge National Laboratory, Oak Ridge,...

  17. Enterprise Assessments, Oak Ridge National Laboratory Irradiated...

    Energy Savers [EERE]

    and Health Assessments conducted an independent assessment of the safety-significant ventilation systems at the Oak Ridge National Laboratory (ORNL) Irradiated Fuels...

  18. Blue oak seedling age influences growth and mortality

    E-Print Network [OSTI]

    Phillips, Ralph L.; McDougald, Neil K.; McCreary, Doug D.; Atwill, Edward R.

    2007-01-01T23:59:59.000Z

    1997b. Stand- level status of blue oak sapling recruitment1991. Soil water effects on blue oak seedling establishment.NK, Standiford RB, Frost WE. 1996. Blue oak seedlings may be

  19. 2013 Annual Workforce Analysis and Staffing Plan Report - Oak...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Annual Workforce Analysis and Staffing Plan Report - Oak Ridge Office of Environmental Management 2013 Annual Workforce Analysis and Staffing Plan Report - Oak Ridge Office of...

  20. Vehicle Technologies Office: 2008 Oak Ridge Transportation Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak Ridge Transportation Technology Program Annual Report Vehicle Technologies Office: 2008 Oak Ridge Transportation Technology Program Annual Report ornlttpreportfy08.pdf More...

  1. CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope...

    Broader source: Energy.gov (indexed) [DOE]

    Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR...

  2. CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope...

    Broader source: Energy.gov (indexed) [DOE]

    Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C to DOE G...

  3. CHP Research and Development - Presentation by Oak Ridge National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Development - Presentation by Oak Ridge National Laboratory, June 2011 CHP Research and Development - Presentation by Oak Ridge National Laboratory, June 2011...

  4. PIA - Oak Ridge Institute for Science and Education Program Applicant...

    Office of Environmental Management (EM)

    Oak Ridge Institute for Science and Education Program Applicant and Participant Status System (APSS) PIA - Oak Ridge Institute for Science and Education Program Applicant and...

  5. CRAD, Quality Assurance - Oak Ridge National Laboratory TRU ALPHA...

    Broader source: Energy.gov (indexed) [DOE]

    Quality Assurance - Oak Ridge National Laboratory TRU ALPHA LLWT Project CRAD, Quality Assurance - Oak Ridge National Laboratory TRU ALPHA LLWT Project November 2003 A section of...

  6. Energy Department, Oak Ridge National Lab Officials to Celebrate...

    Office of Environmental Management (EM)

    Department, Oak Ridge National Lab Officials to Celebrate First of its Kind Carbon Fiber Facility Energy Department, Oak Ridge National Lab Officials to Celebrate First of its Kind...

  7. 2011 Annual Workforce Analysis and Staffing Plan Report - Oak...

    Energy Savers [EERE]

    Office 2012 Annual Workforce Analysis and Staffing Plan Report - Oak Ridge Office 2013 Annual Workforce Analysis and Staffing Plan Report - Nuclear Energy Oak Ridge Site Office...

  8. 2012 Annual Workforce Analysis and Staffing Plan Report - Oak...

    Office of Environmental Management (EM)

    Staffing Plan Report - Oak Ridge Office of Environmental Management 2013 Annual Workforce Analysis and Staffing Plan Report - Nuclear Energy Oak Ridge Site Office 2012 Annual...

  9. DOE Awards $3 Million Contract to Oak Ridge Associated Universities...

    Office of Environmental Management (EM)

    Million Contract to Oak Ridge Associated Universities for Expert Review of Yucca Mountain Work DOE Awards 3 Million Contract to Oak Ridge Associated Universities for Expert...

  10. Shady Oaks | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey JumpAir JumpCaliforniaGroupEnablingOaks Jump to:

  11. Oak Ridge National Laboratory - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeeding access(SC) Oak RidgeCenter forPhysics TheScience

  12. Voluntary Protection Program Onsite Review, Oak Ridge Associated Universities Oak Ridge Institute for Science and Education- April 2008

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Oak Ridge Associated Universities Oak Ridge Institute for Science and Education is continuing to perform at a level deserving DOE-VPP Star recognition.

  13. Voluntary Protection Program Onsite Review, Oak Ridge Associated Universities, Oak Ridge Institute for Science and Education- October 2011

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Oak Ridge Associated Universities, Oak Ridge Institute for Science and Education is continuing to perform at a level deserving DOE-VPP Star recognition.

  14. Ng_NERSC_ASCR.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2April 2013 ESH&SNextNexus of Energy

  15. Final report for Texas A&M University Group Contribution to DE-FG02-09ER25949/DE-SC0002505: Topology for Statistical Modeling of Petascale Data (and ASCR-funded collaboration between Sandia National Labs, Texas A&M University and University of Utah)

    SciTech Connect (OSTI)

    Rojas, Joseph Maurice [Texas A& M University

    2013-02-27T23:59:59.000Z

    We summarize the contributions of the Texas A\\&M University Group to the project (DE-FG02-09ER25949/DE-SC0002505: Topology for Statistical Modeling of Petascale Data - an ASCR-funded collaboration between Sandia National Labs, Texas A\\&M U, and U Utah) during 6/9/2011 -- 2/27/2013.

  16. Developing and Deploying Advanced Algorithms to Novel Supercomputing Hardware

    E-Print Network [OSTI]

    Robert J. Brunner; Volodymyr V. Kindratenko; Adam D. Myers

    2007-11-21T23:59:59.000Z

    The objective of our research is to demonstrate the practical usage and orders of magnitude speedup of real-world applications by using alternative technologies to support high performance computing. Currently, the main barrier to the widespread adoption of this technology is the lack of development tools and case studies that typically impede non-specialists that might otherwise develop applications that could leverage these technologies. By partnering with the Innovative Systems Laboratory at the National Center for Supercomputing, we have obtained access to several novel technologies, including several Field-Programmable Gate Array (FPGA) systems, NVidia Graphics Processing Units (GPUs), and the STI Cell BE platform. Our goal is to not only demonstrate the capabilities of these systems, but to also serve as guides for others to follow in our path. To date, we have explored the efficacy of the SRC-6 MAP-C and MAP-E and SGI RASC Athena and RC100 reconfigurable computing platforms in supporting a two-point correlation function which is used in a number of different scientific domains. In a brute force test, the FPGA based single-processor system has achieved an almost two orders of magnitude speedup over a single-processor CPU system. We are now developing implementations of this algorithm on other platforms, including one using a GPU. Given the considerable efforts of the cosmology community in optimizing these classes of algorithms, we are currently working to implement an optimized version of the basic family of correlation functions by using tree-based data structures. Finally, we are also exploring other algorithms, such as instance-based classifiers, power spectrum estimators, and higher-order correlation functions that are also commonly used in a wide range of scientific disciplines.

  17. OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY

    E-Print Network [OSTI]

    1 OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY BPWorkshop-2005 - LRB OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY presented by L.R. Baylor in collaboration with P.B. Parks*, S

  18. NREL's Building-Integrated Supercomputer Provides Heating and Efficient Computing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01T23:59:59.000Z

    NREL's Energy Systems Integration Facility (ESIF) is meant to investigate new ways to integrate energy sources so they work together efficiently, and one of the key tools to that investigation, a new supercomputer, is itself a prime example of energy systems integration. NREL teamed with Hewlett-Packard (HP) and Intel to develop the innovative warm-water, liquid-cooled Peregrine supercomputer, which not only operates efficiently but also serves as the primary source of building heat for ESIF offices and laboratories. This innovative high-performance computer (HPC) can perform more than a quadrillion calculations per second as part of the world's most energy-efficient HPC data center.

  19. Brush Control and Range Improvement: In the Post Oak-Blackjack Oak Area of Texas.

    E-Print Network [OSTI]

    Darrow, Robert A.; McCully, Wayne G.

    1959-01-01T23:59:59.000Z

    limited amount of underbrush and such associated species as greenbrier, live oak and mesquite. A distinguishing feature of the fringe area is the abundance of buffalograss. Early settlers in the area report little bluestem as the principal species... produce little palatable forage. Productive bottom- land sites support stands of oaks, elm, pecan and bois d'arc with a forage cover of bluestems, Indiangrass, Canada wildrye and other climax species. EAST CROSS TIMBERS The oak belt characteristic...

  20. Argonne Leadership Computing Facility 2011 annual report : Shaping future supercomputing.

    SciTech Connect (OSTI)

    Papka, M.; Messina, P.; Coffey, R.; Drugan, C. (LCF)

    2012-08-16T23:59:59.000Z

    The ALCF's Early Science Program aims to prepare key applications for the architecture and scale of Mira and to solidify libraries and infrastructure that will pave the way for other future production applications. Two billion core-hours have been allocated to 16 Early Science projects on Mira. The projects, in addition to promising delivery of exciting new science, are all based on state-of-the-art, petascale, parallel applications. The project teams, in collaboration with ALCF staff and IBM, have undertaken intensive efforts to adapt their software to take advantage of Mira's Blue Gene/Q architecture, which, in a number of ways, is a precursor to future high-performance-computing architecture. The Argonne Leadership Computing Facility (ALCF) enables transformative science that solves some of the most difficult challenges in biology, chemistry, energy, climate, materials, physics, and other scientific realms. Users partnering with ALCF staff have reached research milestones previously unattainable, due to the ALCF's world-class supercomputing resources and expertise in computation science. In 2011, the ALCF's commitment to providing outstanding science and leadership-class resources was honored with several prestigious awards. Research on multiscale brain blood flow simulations was named a Gordon Bell Prize finalist. Intrepid, the ALCF's BG/P system, ranked No. 1 on the Graph 500 list for the second consecutive year. The next-generation BG/Q prototype again topped the Green500 list. Skilled experts at the ALCF enable researchers to conduct breakthrough science on the Blue Gene system in key ways. The Catalyst Team matches project PIs with experienced computational scientists to maximize and accelerate research in their specific scientific domains. The Performance Engineering Team facilitates the effective use of applications on the Blue Gene system by assessing and improving the algorithms used by applications and the techniques used to implement those algorithms. The Data Analytics and Visualization Team lends expertise in tools and methods for high-performance, post-processing of large datasets, interactive data exploration, batch visualization, and production visualization. The Operations Team ensures that system hardware and software work reliably and optimally; system tools are matched to the unique system architectures and scale of ALCF resources; the entire system software stack works smoothly together; and I/O performance issues, bug fixes, and requests for system software are addressed. The User Services and Outreach Team offers frontline services and support to existing and potential ALCF users. The team also provides marketing and outreach to users, DOE, and the broader community.

  1. A brief overview of some historical details of Oak Ridge, part...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the national laboratory also resulted in the formation of Oak Ridge Institute for Nuclear Studies, which evolved into the Oak Ridge Associated Universities and Oak Ridge...

  2. Tree shelters and weed control enhance growth and survival of natural blue oak seedlings

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    natural regeneration of blue oaks Initial height Treatmental. 1993. Growth trends of blue oak (Quercus douglasii) in1997. Stand-level status of blue oak sapling recruitment and

  3. AEC and Oak Ridge High School

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High School Last week we noted that the Atomic Energy Commission proudly published the following milestones in 1964 in the AEC Handbook on Oak Ridge Operations: 1. The gates were...

  4. Deer Oaks EAP Services Fact Sheet

    E-Print Network [OSTI]

    Velev, Orlin D.

    and Resources: Log on to www.deeroaks. com to access an extensive topical library containing health and wellness to provide Critical Incident Stress Debriefings for any major company incident. The Deer Oaks Employee

  5. Oak Ridge Site Specific Advisory Board

    Energy Savers [EERE]

    Bruce Hicks, Vice Chair Howard Holmes Jennifer Kasten Belinda Price Mary Smalling Wanda Smith Corkie Staley Others present Dave Adler, DOE-Oak Ridge Office (DOE-ORO), Alternate...

  6. Pipeline Safety Program Oak Ridge National Laboratory

    E-Print Network [OSTI]

    programs prepared by pipeline operators in accordance with Federal pipeline safety regulations, grounding, and interference, · environmentally sensitive areas, · federal pipeline safety regulationsPipeline Safety Program Oak Ridge National Laboratory managed by UT-Battelle, LLC for the U

  7. The isolation and evaluation of endophytic bacteria from live oaks as potential biological control agents for oak wilt in Texas

    E-Print Network [OSTI]

    Brooks, David Stewart

    1989-01-01T23:59:59.000Z

    on in vitro inhibition data, six isolates, three Gram-positive and three Gram-negative, were selected for colonization studies in container-grown red (()nereus texana) and live oak trees. Antibiotic resistant segregants, which allowed isolation on selective... in container-grown oak trees. Two experiments (Exp. i and II) were conducted with live oaks and one experiment with red oaks. In Exp. I, P. denitrificans significantly reduced the number of live oak trees expressing disease symptoms, while P. lucida showed...

  8. Oak Ridge Reservation environmental report for 1989

    SciTech Connect (OSTI)

    Jacobs, V.A.; Wilson, A.R. (eds.)

    1990-10-01T23:59:59.000Z

    This two-volume report, the Oak Ridge Reservation Environmental Report for 1989, is the nineteenth in an annual series that began in 1971. It reports the results of a comprehensive, year-round program to monitor the impact of operations at the three major US Department of Energy (DOE) production and research installations in Oak Ridge on the immediate areas' and surrounding region's groundwater and surface waters, soil, air quality, vegetation and wildlife, and through these multiple and varied pathways, the resident human population. Information is presented for the environmental monitoring Quality Assurance (QA) Program, audits and reviews, waste management activities, land special environmental studies. Data are included for the Oak Ridge Y-12 Plant, Oak Ridge National Laboratory (ORNL), and Oak Ridge Gaseous Diffusion Plant (ORGDP). Volume 1 presents narratives, summaries, and conclusions based on environmental monitoring at the three DOE installations and in the surrounding environs during calendar year (CY) 1989. Volume 1 is intended to be a stand-alone'' report about the Oak Ridge Reservation (ORR) for the reader who does not want an in-depth review of 1989 data. Volume 2 presents the detailed data from which these conclusions have been drawn and should be used in conjunction with Volume 1.

  9. Mira, the ALCF's 10-petaflops supercomputer, opens the door for researchers and industry to analyze

    E-Print Network [OSTI]

    Kemner, Ken

    Mira, the ALCF's 10-petaflops supercomputer, opens the door for researchers and industry to analyze transporting data across long distances. Mira's water-cooling system uses copper tubes to pipe cold water direct access to Mira-generated results. TUKEY NETWORKING The ALCF's data storage system is used

  10. Generating and Rendering Four-Dimensional Polytopes John M. Sullivan, Geometry Supercomputer Project

    E-Print Network [OSTI]

    Sullivan, John M.

    Generating and Rendering Four-Dimensional Polytopes John M. Sullivan, Geometry Supercomputer, and can be rendered in three dimensions in stereographic projection. In this article we construct one with Mathematica graphics, or with a more sophisticated renderer such as RenderMan. Regular Polytopes and Soap

  11. Supercomputers Crack Sixty-Trillionth Binary Digit of Pi-Squared

    Broader source: Energy.gov [DOE]

    The calculation would have taken a single computer processor unit (CPU) 1,500 years to calculate -- but it took just a few months using the "BlueGene/P" supercomputer, which is designed to run continuously at one quadrillion calculations per second.

  12. May 24, 2012 OU Deploys Fastest Academic Supercomputer in Oklahoma History

    E-Print Network [OSTI]

    Oklahoma, University of

    in at a peak speed of roughly 109 trillion calculations per second and supports OU's research initiatives, nanotechnology, groundwater contamination, biofuels, and wireless networks, among many other areas. Henry. "We're extremely proud to expand a great tradition with this fourth generation OU IT supercomputer

  13. J Supercomput (2008) 43: 105106 DOI 10.1007/s11227-007-0127-3

    E-Print Network [OSTI]

    Guo, Minyi

    2008-01-01T23:59:59.000Z

    in the broad area of high performance computing. These pa- pers have been selected as extended and revised for supporting high performance computing in Java. They evaluated their library using a multi-grid applicationJ Supercomput (2008) 43: 105­106 DOI 10.1007/s11227-007-0127-3 Advances in high performance

  14. The development of an aquatic spill model for the White Oak Creek watershed, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Johnson, R.O.

    1996-05-01T23:59:59.000Z

    This study develops an aquatic spill model applicable to the White Oak Creek watershed draining the Oak Ridge National Laboratory. Hazardous, toxic, and radioactive chemicals are handled and stored on the laboratory reservation. An accidental spill into the White Oak Creek watershed could contaminate downstream water supplies if insufficient dilution did not occur. White Oak Creek empties into the Clinch River, which flows into the Tennessee River. Both rivers serve as municipal water supplies. The aquatic spill model provides estimates of the dilution at sequential downstream locations along White Oak creek and the Clinch River after an accidental spill of a liquid containing a radioactively decaying constituent. The location of the spill on the laboratory is arbitrary, while hydrologic conditions range from drought to extreme flood are simulated. The aquatic spill model provides quantitative estimates with which to assess water quality downstream from the site of the accidental spill, allowing an informed decision to be made whether to perform mitigating measures so that the integrity of affected water supplies is not jeopardized.

  15. OAK RIDGE ORNL/TM-200015 MANAGED BY UT-BATTELLE

    E-Print Network [OSTI]

    . Hadder Oak Ridge National Laboratory Oak Ridge, Tennessee - UT-BATTELLE -. ORNL-27 (4.00) #12;II #12;ORNL,Arizona G. R. Hadder OakRidge National Laboratory Oak Ridge, Tennessee November 2000 Preparedfor Office

  16. Oak Ridge Site Specific Advisory Board Contacts | Department...

    Office of Environmental Management (EM)

    Advisory Board Contacts Mailing Address Oak Ridge Site Specific Advisory Board P.O. Box 2001, EM-91 Oak Ridge, TN 37831 Phone Numbers (865) 241-4583, (865) 241-4584 (800) 382-6938,...

  17. action project oak: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    25 Next Page Last Page Topic Index 41 What Is an Oak CiteSeer Summary: Oak savannahs are transitional zones between open prairies of the Great Plains and the more mesic deciduous...

  18. alba white oak: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and 1,200 m Standiford, Richard B. 32 What Is an Oak CiteSeer Summary: Oak savannahs are transitional zones between open prairies of the Great Plains and the more mesic deciduous...

  19. affinis white oak: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and 1,200 m Standiford, Richard B. 28 What Is an Oak CiteSeer Summary: Oak savannahs are transitional zones between open prairies of the Great Plains and the more mesic deciduous...

  20. Oak Ridge: Approaching 4 Million Safe Work Hours

    Broader source: Energy.gov [DOE]

    Workers at URS | CH2M Oak Ridge (UCOR), the prime contractor for EM’s Oak Ridge cleanup, are approaching a milestone of 4 million safe work hours without a lost time away incident.

  1. Screening of contaminants in Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Blaylock, B.G.; Frank, M.L.; Hoffman, F.O.; Hook, L.A.; Suter, G.W.; Watts, J.A.

    1992-07-01T23:59:59.000Z

    Waste Area Grouping 2 (WAG 2) of the Oak Ridge National Laboratory (ORNL) is located in the White Oak Creek Watershed and is composed of White Oak Creek Embayment, White Oak Lake and associated floodplain, and portions of White Oak Creek (WOC) and Melton Branch downstream of ORNL facilities. Contaminants leaving other ORNL WAGs in the WOC watershed pass through WAG 2 before entering the Clinch River. Health and ecological risk screening analyses were conducted on contaminants in WAG 2 to determine which contaminants were of concern and would require immediate consideration for remedial action and which contaminants could be assigned a low priority or further study. For screening purposes, WAG 2 was divided into four geographic reaches: Reach 1, a portion of WOC; Reach 2, Melton Branch; Reach 3, White Oak Lake and the floodplain area to the weirs on WOC and Melton Branch; and Reach 4, the White Oak Creek Embayment, for which an independent screening analysis has been completed. Screening analyses were conducted using data bases compiled from existing data on carcinogenic and noncarcinogenic contaminants, which included organics, inorganics, and radionuclides. Contaminants for which at least one ample had a concentration above the level of detection were placed in a detectable contaminants data base. Those contaminants for which all samples were below the level of detection were placed in a nondetectable contaminants data base.

  2. Cover: PNNL's Photovoltaic array produces electricity for our super-computing facility and adjacent car charging stations. IN THIS REPORT

    E-Print Network [OSTI]

    #12;Cover: PNNL's Photovoltaic array produces electricity for our super-computing facility and adjacent car charging stations. #12;IN THIS REPORT 2 Message From the Director 3 PNNL Overview 5

  3. Geek-Up[09.03.10]-- Innovative Silicon Wafers, Real-Time Power Traders and Petascale & Exascale Supercomputers

    Broader source: Energy.gov [DOE]

    A trillion holes in a silicon wafer the size of a compact disk? Buying when the Columbia River Basin is low, and selling when it's high. And how supercomputers can revolutionize climate science and modeling.

  4. 2013 Annual Planning Summary for the Oak Ridge Office

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the Oak Ridge Office.

  5. 2013 Annual Planning Summary for the Oak Ridge National Laboratory

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the Oak Ridge National Laboratory.

  6. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment ofDepartment640OrderOREMJanuary 20149Oak RidgeSite3Oak Ridge

  7. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment ofDepartment640OrderOREMJanuary 20149Oak RidgeSite3Oak

  8. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment ofDepartment640OrderOREMJanuary 20149Oak RidgeSite3Oak3:

  9. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment ofDepartment640OrderOREMJanuary 20149Oak RidgeSite3Oak3:4:

  10. Oak Ridge National Laboratory Manufacturing Demonstration Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeeding access(SC) Oak RidgeCenter forPhysicsOak

  11. Blue oak seedlings may be older than they look

    E-Print Network [OSTI]

    Standiford, Richard B.

    Blue oak seedlings may be older than they look Ralph L. Phillips u Neil K. McDougald o Richard B. Standiford William E.Frost A 4-year study indicates that na- tive blue oak seedlings are prob- ably much the year of above- average rainfall. Blue oak (Quercusdouglasii)trees are a valuable economic and aesthetic

  12. NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY

    E-Print Network [OSTI]

    McDonald, Kirk

    NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY Rennich, Phil Spampinato (spampinatop@ornl.gov, 865-576-5267) Equipment Decommissioning and Disposition September 1, 2004 Oak Ridge National Laboratory #12;2 NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE

  13. Supercomputer and cluster performance modeling and analysis efforts:2004-2006.

    SciTech Connect (OSTI)

    Sturtevant, Judith E.; Ganti, Anand; Meyer, Harold (Hal) Edward; Stevenson, Joel O.; Benner, Robert E., Jr. (.,; .); Goudy, Susan Phelps; Doerfler, Douglas W.; Domino, Stefan Paul; Taylor, Mark A.; Malins, Robert Joseph; Scott, Ryan T.; Barnette, Daniel Wayne; Rajan, Mahesh; Ang, James Alfred; Black, Amalia Rebecca; Laub, Thomas William; Vaughan, Courtenay Thomas; Franke, Brian Claude

    2007-02-01T23:59:59.000Z

    This report describes efforts by the Performance Modeling and Analysis Team to investigate performance characteristics of Sandia's engineering and scientific applications on the ASC capability and advanced architecture supercomputers, and Sandia's capacity Linux clusters. Efforts to model various aspects of these computers are also discussed. The goals of these efforts are to quantify and compare Sandia's supercomputer and cluster performance characteristics; to reveal strengths and weaknesses in such systems; and to predict performance characteristics of, and provide guidelines for, future acquisitions and follow-on systems. Described herein are the results obtained from running benchmarks and applications to extract performance characteristics and comparisons, as well as modeling efforts, obtained during the time period 2004-2006. The format of the report, with hypertext links to numerous additional documents, purposefully minimizes the document size needed to disseminate the extensive results from our research.

  14. BSMBench: a flexible and scalable supercomputer benchmark from computational particle physics

    E-Print Network [OSTI]

    Bennett, Ed; Jordan, Kirk; Lucini, Biagio; Patella, Agostino; Pica, Claudio; Rago, Antonio

    2014-01-01T23:59:59.000Z

    Benchmarking plays a central role in the evaluation of High Performance Computing architectures. Several benchmarks have been designed that allow users to stress various components of supercomputers. In order for the figures they provide to be useful, benchmarks need to be representative of the most common real-world scenarios. In this work, we introduce BSMBench, a benchmarking suite derived from Monte Carlo code used in computational particle physics. The advantage of this suite (which can be freely downloaded from http://www.bsmbench.org/) over others is the capacity to vary the relative importance of computation and communication. This enables the tests to simulate various practical situations. To showcase BSMBench, we perform a wide range of tests on various architectures, from desktop computers to state-of-the-art supercomputers, and discuss the corresponding results. Possible future directions of development of the benchmark are also outlined.

  15. BSMBench: a flexible and scalable supercomputer benchmark from computational particle physics

    E-Print Network [OSTI]

    Ed Bennett; Luigi Del Debbio; Kirk Jordan; Biagio Lucini; Agostino Patella; Claudio Pica; Antonio Rago

    2014-01-15T23:59:59.000Z

    Benchmarking plays a central role in the evaluation of High Performance Computing architectures. Several benchmarks have been designed that allow users to stress various components of supercomputers. In order for the figures they provide to be useful, benchmarks need to be representative of the most common real-world scenarios. In this work, we introduce BSMBench, a benchmarking suite derived from Monte Carlo code used in computational particle physics. The advantage of this suite (which can be freely downloaded from http://www.bsmbench.org/) over others is the capacity to vary the relative importance of computation and communication. This enables the tests to simulate various practical situations. To showcase BSMBench, we perform a wide range of tests on various architectures, from desktop computers to state-of-the-art supercomputers, and discuss the corresponding results. Possible future directions of development of the benchmark are also outlined.

  16. 17th Edition of TOP500 List of World's Fastest SupercomputersReseased

    SciTech Connect (OSTI)

    Strohmaier, Erich; Meuer, Hans W.; Dongarra, Jack J.; Simon,Horst D.

    2001-06-21T23:59:59.000Z

    17th Edition of TOP500 List of World's Fastest Supercomputers Released MANNHEIM, GERMANY; KNOXVILLE, TENN.; BERKELEY, CALIF. In what has become a much-anticipated event in the world of high-performance computing, the 17th edition of the TOP500 list of the world's fastest supercomputers was released today (June 21). The latest edition of the twice-yearly ranking finds IBM as the leader in the field, with 40 percent in terms of installed systems and 43 percent in terms of total performance of all the installed systems. In second place in terms of installed systems is Sun Microsystems with 16 percent, while Cray Inc. retained second place in terms of performance (13 percent). SGI Inc. was third both with respect to systems with 63 (12.6 percent) and performance (10.2 percent).

  17. Improving the Availability of Supercomputer Job Input Data Using Temporal Replication

    SciTech Connect (OSTI)

    Wang, Chao [ORNL; Zhang, Zhe [ORNL; Ma, Xiaosong [ORNL; Vazhkudai, Sudharshan S [ORNL; Mueller, Frank [North Carolina State University

    2009-06-01T23:59:59.000Z

    Storage systems in supercomputers are a major reason for service interruptions. RAID solutions alone cannot provide sufficient protection as (1) growing average disk recovery times make RAID groups increasingly vulnerable to disk failures during reconstruction, and (2) RAID does not help with higher-level faults such failed I/O nodes. This paper presents a complementary approach based on the observation that files in the supercomputer scratch space are typically accessed by batch jobs whose execution can be anticipated. Therefore, we propose to transparently, selectively, and temporarily replicate 'active' job input data by coordinating the parallel file system with the batch job scheduler. We have implemented the temporal replication scheme in the popular Lustre parallel file system and evaluated it with real-cluster experiments. Our results show that the scheme allows for fast online data reconstruction, with a reasonably low overall space and I/O bandwidth overhead.

  18. Supercomputing Community Dr. William Kramer Blue Waters Director, NCSA @Scale Program Director

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer. .Energy8Supercomputing

  19. SAN DIEGO SUPERCOMPUTER CENTER Glenn K. Lockwood, Ph.D.! User Services Group!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection TechnicalResonantNovember 15RotarySAN DIEGO SUPERCOMPUTER CENTER

  20. EA-1117: Management of Spent Nuclear Fuel on the Oak Ridge Reservation, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal for the management of spent nuclear fuel on the U.S. Department of Energy's Oak Ridge Reservation to implement the preferred alternative...

  1. Proceedings of the Fifth Symposium on Oak Woodlands: Oaks in California's

    E-Print Network [OSTI]

    Standiford, Richard B.

    ...................................................................65 Melvin R. George, Neil K. McDougald, Kenneth W. Tate, and Royce Larsen Changes in Soil Quality Due in Streamflow from California Oak Woodland Watersheds.............. 107 David J. Lewis, Kenneth W. Tate, Randy A

  2. 2006 DOE INCITE Supercomputing Allocations Proposal Title: "Development and Correlations of Large Scale Computational Tools for

    E-Print Network [OSTI]

    Knowles, David William

    ; Todd Michal, The Boeing Company Scientific Discipline: Engineering Physics INCITE allocation: Site: Ronald Waltz Affiliation: General Atomics Co-Investigators: Jeff Candy, General Atomics; Mark Fahey, Oak: "Molecular dynamics of molecular motors" Principal Investigator: Martin Karplus Affiliation: Harvard

  3. #LabChat: Supercomputing Our Way to the Future, Sept. 19 at 1...

    Broader source: Energy.gov (indexed) [DOE]

    from @OakRidgeLabNews. Turner builds simulation tools for large-scale, high-performance computing solutions for the nation's energy generation and storage. He runs virtual...

  4. Building more powerful less expensive supercomputers using Processing-In-Memory (PIM) LDRD final report.

    SciTech Connect (OSTI)

    Murphy, Richard C.

    2009-09-01T23:59:59.000Z

    This report details the accomplishments of the 'Building More Powerful Less Expensive Supercomputers Using Processing-In-Memory (PIM)' LDRD ('PIM LDRD', number 105809) for FY07-FY09. Latency dominates all levels of supercomputer design. Within a node, increasing memory latency, relative to processor cycle time, limits CPU performance. Between nodes, the same increase in relative latency impacts scalability. Processing-In-Memory (PIM) is an architecture that directly addresses this problem using enhanced chip fabrication technology and machine organization. PIMs combine high-speed logic and dense, low-latency, high-bandwidth DRAM, and lightweight threads that tolerate latency by performing useful work during memory transactions. This work examines the potential of PIM-based architectures to support mission critical Sandia applications and an emerging class of more data intensive informatics applications. This work has resulted in a stronger architecture/implementation collaboration between 1400 and 1700. Additionally, key technology components have impacted vendor roadmaps, and we are in the process of pursuing these new collaborations. This work has the potential to impact future supercomputer design and construction, reducing power and increasing performance. This final report is organized as follow: this summary chapter discusses the impact of the project (Section 1), provides an enumeration of publications and other public discussion of the work (Section 1), and concludes with a discussion of future work and impact from the project (Section 1). The appendix contains reprints of the refereed publications resulting from this work.

  5. Department of Energy Oak Ridge Office

    E-Print Network [OSTI]

    -basedcontract through which the work is conducted, and is compliant with the joint DOD and DOE MOA. UT-Battelle, LLC, manages and operates the governrnent-owned Oak Ridge National Laboratory (ORNL) on behalf of DOE) as specified in FAR 35.017. DOE'S management and operating (M&O) contractors are financially integrated

  6. Major Oak Diseases and Their Control.

    E-Print Network [OSTI]

    Johnson, Jerral D.; Appel, David N.

    1984-01-01T23:59:59.000Z

    Station, Texas (Blaok Page bl-?OriglulBidletial? / . , ,;..,' ,- ; ~ ~ " trees of Texas and are also... important components of forests and rangelands. They are normally long-lived, possess the ability to withstand adverse weather and have been considered disease resistant. During the drought in the mid 1950s large expanses of oak trees began dying...

  7. Doing Business with Oak Ridge National

    E-Print Network [OSTI]

    Doing Business with Oak Ridge National Laboratory Presented at the WM10 Symposia Keith S. Joy Director ORNL Small Business Programs Phoenix, AZ March 3, 2010 #12;· Generates $5.2 billion annually Businesses · We manage the machinery of scientific discovery and innovation through Global Laboratory

  8. Oak Ridge Reservation Waste Management Plan

    SciTech Connect (OSTI)

    Turner, J.W. [ed.

    1995-02-01T23:59:59.000Z

    This report presents the waste management plan for the Oak Ridge Reservation facilities. The primary purpose is to convey what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year.

  9. Genetic variation in post-epidemic and pre-epidemic live oak populations subject to oak wilt

    E-Print Network [OSTI]

    Bellamy, Brenda Kay

    1992-01-01T23:59:59.000Z

    when challenged by the oak wilt pathogen. White oaks are known to be more resistant to oak Journal used for style and format is Phytopathology. wilt, and rarely die from the disease, presumably due to differences in anatomy and/or responses... in an effort to characterize the genetic variation present in both pre- epidemic and post-epidemic live oak populations (Q. s 11 d/ Q ml Oaks: The Sub-Genus {}uestion Considerable controversy exists with respect to t y of th g g . 0 f th significant...

  10. Visualization on supercomputing platform level II ASC milestone (3537-1B) results from Sandia.

    SciTech Connect (OSTI)

    Geveci, Berk (Kitware, Inc., Clifton Park, NY); Fabian, Nathan; Marion, Patrick (Kitware, Inc., Clifton Park, NY); Moreland, Kenneth D.

    2010-09-01T23:59:59.000Z

    This report provides documentation for the completion of the Sandia portion of the ASC Level II Visualization on the platform milestone. This ASC Level II milestone is a joint milestone between Sandia National Laboratories and Los Alamos National Laboratories. This milestone contains functionality required for performing visualization directly on a supercomputing platform, which is necessary for peta-scale visualization. Sandia's contribution concerns in-situ visualization, running a visualization in tandem with a solver. Visualization and analysis of petascale data is limited by several factors which must be addressed as ACES delivers the Cielo platform. Two primary difficulties are: (1) Performance of interactive rendering, which is most computationally intensive portion of the visualization process. For terascale platforms, commodity clusters with graphics processors(GPUs) have been used for interactive rendering. For petascale platforms, visualization and rendering may be able to run efficiently on the supercomputer platform itself. (2) I/O bandwidth, which limits how much information can be written to disk. If we simply analyze the sparse information that is saved to disk we miss the opportunity to analyze the rich information produced every timestep by the simulation. For the first issue, we are pursuing in-situ analysis, in which simulations are coupled directly with analysis libraries at runtime. This milestone will evaluate the visualization and rendering performance of current and next generation supercomputers in contrast to GPU-based visualization clusters, and evaluate the performance of common analysis libraries coupled with the simulation that analyze and write data to disk during a running simulation. This milestone will explore, evaluate and advance the maturity level of these technologies and their applicability to problems of interest to the ASC program. Scientific simulation on parallel supercomputers is traditionally performed in four sequential steps: meshing, partitioning, solver, and visualization. Not all of these components are necessarily run on the supercomputer. In particular, the meshing and visualization typically happen on smaller but more interactive computing resources. However, the previous decade has seen a growth in both the need and ability to perform scalable parallel analysis, and this gives motivation for coupling the solver and visualization.

  11. White Oak Creek watershed: Melton Valley area Remedial Investigation report, at the Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 2, Appendixes A and B

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    This document contains Appendixes A ``Source Inventory Information for the Subbasins Evaluated for the White Oak Creek Watershed`` and B ``Human Health Risk Assessment for White Oak Creek / Melton Valley Area`` for the remedial investigation report for the White Oak Creek Watershed and Melton Valley Area. Appendix A identifies the waste types and contaminants for each subbasin in addition to the disposal methods. Appendix B identifies potential human health risks and hazards that may result from contaminants present in the different media within Oak Ridge National Laboratory sites.

  12. Hydrologic data summary for the White Oak Watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee, October 1990--December 1991

    SciTech Connect (OSTI)

    Borders, D.M.; Gregory, S.M.; Clapp, R.B.; Frederick, B.J.; Watts, J.A.

    1992-06-01T23:59:59.000Z

    This report summarizes for the 15-month period of October 1990-- December 1991 the available dynamic hydrologic data collected, primarily on the White Oak Creek (WOC) watershed, along with information collected on the surface flow systems that affect the quality or quantity of surface water. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to: (1) characterize the quantity and quality of water in the flow systems; (2) assist with the planning and assessment of remedial action activities; and, (3) provide long-term availability of data and quality assurance. Characterization of the hydrology of the WOC watershed is critical for understanding the processes that drive contaminant transport in the watershed. Identification of spatial and temporal trends in hydrologic parameters and mechanisms that affect the movement of contaminants supports the development of interim corrective measures and remedial restoration alternatives. In addition, hydrologic monitoring supports long-term assessment of the effectiveness of remedial actions in limiting the transport of contaminants across Waste Area Grouping (WAG) boundaries and ultimately to the off-site environment. For these reasons, it is of paramount importance to the Environmental Restoration Program (ERP) to collect and report hydrologic data activities that contribute to the Site Investigations component of the ERP. (White Oak Creek is also referred to as Whiteoak'' Creek).

  13. Hydrologic data summary for the White Oak Watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee, October 1990--December 1991

    SciTech Connect (OSTI)

    Borders, D.M.; Gregory, S.M.; Clapp, R.B.; Frederick, B.J.; Watts, J.A.

    1992-06-01T23:59:59.000Z

    This report summarizes for the 15-month period of October 1990-- December 1991 the available dynamic hydrologic data collected, primarily on the White Oak Creek (WOC) watershed, along with information collected on the surface flow systems that affect the quality or quantity of surface water. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to: (1) characterize the quantity and quality of water in the flow systems; (2) assist with the planning and assessment of remedial action activities; and, (3) provide long-term availability of data and quality assurance. Characterization of the hydrology of the WOC watershed is critical for understanding the processes that drive contaminant transport in the watershed. Identification of spatial and temporal trends in hydrologic parameters and mechanisms that affect the movement of contaminants supports the development of interim corrective measures and remedial restoration alternatives. In addition, hydrologic monitoring supports long-term assessment of the effectiveness of remedial actions in limiting the transport of contaminants across Waste Area Grouping (WAG) boundaries and ultimately to the off-site environment. For these reasons, it is of paramount importance to the Environmental Restoration Program (ERP) to collect and report hydrologic data activities that contribute to the Site Investigations component of the ERP. (White Oak Creek is also referred to as ``Whiteoak`` Creek).

  14. ORNL (Oak Ridge National Laboratory) 89

    SciTech Connect (OSTI)

    Anderson, T.D.; Appleton, B.R.; Jefferson, J.W.; Merriman, J.R.; Mynatt, F.R.; Richmond, C.R.; Rosenthal, M.W.

    1989-01-01T23:59:59.000Z

    This is the inaugural issues of an annual publication about the Oak Ridge National Laboratory. Here you will find a brief overview of ORNL, a sampling of our recent research achievements, and a glimpse of the directions we want to take over the next 15 years. A major purpose of ornl 89 is to provide the staff with a sketch of the character and dynamics of the Laboratory.

  15. Oak Ridge National Laboratory Waste Management Plan

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  16. Oak Ridge National Laboratory - Global Security Directorate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeeding access(SC) Oak Ridge

  17. Oak Ridge National Laboratory - ORNL Corporate Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeeding access(SC) Oak Ridge

  18. Supercomputing: A Toolbox to Simulate the Big Bang and Beyond | Department

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for|Idaho |Energy Supercomputers: Extreme

  19. Supercomputing on a Budget | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer.Supercomputing on a Budget Advanced Scientific

  20. Supercomputing on a Budget | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer.Supercomputing on a Budget Advanced

  1. A supercomputer installed to crunch numbers for the National Atmospheric and Oceanic Administration (NOAA) and its research partners has begun climate simulations at Oak Ridge

    E-Print Network [OSTI]

    's most powerful computing complex, to three. This next-generation HPC system is liquid-cooled using Cray is significantly more energy- efficient than the air-cooling systems typically found in other leading-edge HPC systems. Other elements of the Climate Modeling and Research System (CMRS) anchored by Gaea include two

  2. Independent Oversight Review, Oak Ridge Transuranic Waste Processing...

    Office of Environmental Management (EM)

    of Safety Systems at the Oak Ridge Transuranic Waste Processing Center and Associated Feedback and Improvement Processes. This report documents the results of an independent...

  3. OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

    E-Print Network [OSTI]

    Deiterding, Ralf

    of the Department of Energy under subcontract No. B341492 of DOE contract W-7405-ENG-48. #12;2 OAK RIDGE NATIONAL

  4. OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

    E-Print Network [OSTI]

    Deiterding, Ralf

    of Energy under subcontract No. B341492 of DOE contract W-7405-ENG-48. #12;3 OAK RIDGE NATIONAL LABORATORY U

  5. Food and Drug Administration White Oak Campus Environmental Stewardshi...

    Office of Environmental Management (EM)

    Stewardship and Cost Savings FEMP ESPC Success Story on water conservation and green energy at the Food and Drug Administration (FDA) White Oak Campus....

  6. Union Carbides Last 20 Years in Oak Ridge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Research and Development AdministrationDepartment of Energy's Oak Ridge, Paducah and Portsmouth facilities, how about the last 20 years of Union Carbide's tenure here...

  7. Oak Ridge Site Specific Advisory Board Meetings | Department...

    Office of Environmental Management (EM)

    Available for Download March 6, 2015 ORSSAB Meeting - March 2015 Discussion about the FY 2017 Oak Ridge Environmental Management Program Budget and Prioritization. February 4,...

  8. Oak Ridge National Laboratory Evaluation for Drum Characterization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation for Drum Characterization and Source Term Report Oak Ridge National Laboratory Evaluation for Drum Characterization and Source Term Report This document was used to...

  9. Oak Ridge Site Specific Advisory Board Annual Meeting

    Broader source: Energy.gov (indexed) [DOE]

    an ORSSAB website on the new Internet platform that the Oak Ridge Environmental Management Program is now using. The new website will provide improved functionality and...

  10. High Performance Computing at the Oak Ridge Leadership Computing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Performance Computing at the Oak Ridge Leadership Computing Facility Go to Menu Page 2 Outline * Our Mission * Computer Systems: Present, Past, Future * Challenges Along the...

  11. DOE's Oak Ridge and Lawrence Berkeley National Labs Join with...

    Office of Environmental Management (EM)

    that Oak Ridge National Laboratory (ORNL) and Lawrence Berkeley National Laboratory (LBNL) have joined with Dow Chemical Company as part of a Cooperative Research and...

  12. Oak Ridge National Laboratory Carbon Fiber Technology Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oak Ridge National Laboratory Carbon Fiber Technology Facility Low-Cost Carbon Fiber | Proposal Guidelines Proposal Guidelines Proposals should be no more than 5 single spaced...

  13. Independent Oversight Review, Oak Ridge Transuranic Waste Processing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ensure that adequate controls have been implemented to reduce the risk resulting from a fire or explosion at nuclear facilities. Independent Oversight Review, Oak Ridge...

  14. Recommendation 169: Establishment of an Oak Ridge Oral History Program

    Broader source: Energy.gov [DOE]

    The ORSSAB recommends DOE-ORO fully endorse the establishment of an Oak Ridge Oral History Program and provide necessary assistance.

  15. Oak Ridge Removes Laboratory's Greatest Source of Groundwater...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Removes Laboratory's Greatest Source of Groundwater Contamination Oak Ridge Removes Laboratory's Greatest Source of Groundwater Contamination May 1, 2012 - 12:00pm Addthis Workers...

  16. ORO Verification of Employment Tracking System(VETS) PIA, Oak...

    Office of Environmental Management (EM)

    System and Visitor Control System PIA, Oak Ridge Operations Office Occupational Medicine - Assistant PIA, Idaho National Laboratory Freedom of Information and Privacy Act...

  17. Transuranic Waste Processing Center Oak Ridge Site Specific...

    Office of Environmental Management (EM)

    Transuranic Waste Processing Update Oak Ridge Site Specific Advisory Board May 14, 2014 Laura Wilkerson, Portfolio Federal Project Director Karen Deacon, Deputy Federal Project...

  18. Oak Ridge National Laboratory Analysis of Waste Isolation Pilot...

    Office of Environmental Management (EM)

    Isolation Pilot Plant Samples: Integrated Summary Report Oak Ridge National Laboratory Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report This document...

  19. Blue oak stump sprouting evaluated after firewood harvest in northern Sacramento Valley

    E-Print Network [OSTI]

    Standiford, Richard B.; McCreary, Douglas D.; Barry, Sheila J; Forero, Larry C.

    2011-01-01T23:59:59.000Z

    TABLE 4. Inventory data for blue oak thinning project in8. Standiford RB. 1997. Growth of blue oak on California’s2008. Stump sprouting of blue oaks 19 years after harvest.

  20. Federal Market Information Technology in the Post Flash Crash Era: Roles for Supercomputing

    SciTech Connect (OSTI)

    Bethel, E. Wes; Leinweber, David; Ruebel, Oliver; Wu, Kesheng

    2011-09-16T23:59:59.000Z

    This paper describes collaborative work between active traders, regulators, economists, and supercomputing researchers to replicate and extend investigations of the Flash Crash and other market anomalies in a National Laboratory HPC environment. Our work suggests that supercomputing tools and methods will be valuable to market regulators in achieving the goal of market safety, stability, and security. Research results using high frequency data and analytics are described, and directions for future development are discussed. Currently the key mechanism for preventing catastrophic market action are “circuit breakers.” We believe a more graduated approach, similar to the “yellow light” approach in motorsports to slow down traffic, might be a better way to achieve the same goal. To enable this objective, we study a number of indicators that could foresee hazards in market conditions and explore options to confirm such predictions. Our tests confirm that Volume Synchronized Probability of Informed Trading (VPIN) and a version of volume Herfindahl-Hirschman Index (HHI) for measuring market fragmentation can indeed give strong signals ahead of the Flash Crash event on May 6 2010. This is a preliminary step toward a full-fledged early-warning system for unusual market conditions.

  1. Supercomputer Assisted Generation of Machine Learning Agents for the Calibration of Building Energy Models

    SciTech Connect (OSTI)

    Sanyal, Jibonananda [ORNL] [ORNL; New, Joshua Ryan [ORNL] [ORNL; Edwards, Richard [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    Building Energy Modeling (BEM) is an approach to model the energy usage in buildings for design and retrot pur- poses. EnergyPlus is the agship Department of Energy software that performs BEM for dierent types of buildings. The input to EnergyPlus can often extend in the order of a few thousand parameters which have to be calibrated manu- ally by an expert for realistic energy modeling. This makes it challenging and expensive thereby making building en- ergy modeling unfeasible for smaller projects. In this paper, we describe the \\Autotune" research which employs machine learning algorithms to generate agents for the dierent kinds of standard reference buildings in the U.S. building stock. The parametric space and the variety of building locations and types make this a challenging computational problem necessitating the use of supercomputers. Millions of En- ergyPlus simulations are run on supercomputers which are subsequently used to train machine learning algorithms to generate agents. These agents, once created, can then run in a fraction of the time thereby allowing cost-eective cali- bration of building models.

  2. Visualization at Supercomputing Centers: The Tale of Little Big Iron and the Three Skinny Guys

    SciTech Connect (OSTI)

    Bethel, E. Wes; van Rosendale, John; Southard, Dale; Gaither, Kelly; Childs, Hank; Brugger, Eric; Ahern, Sean

    2010-12-01T23:59:59.000Z

    Supercomputing Centers (SC's) are unique resources that aim to enable scientific knowledge discovery through the use of large computational resources, the Big Iron. Design, acquisition, installation, and management of the Big Iron are activities that are carefully planned and monitored. Since these Big Iron systems produce a tsunami of data, it is natural to co-locate visualization and analysis infrastructure as part of the same facility. This infrastructure consists of hardware (Little Iron) and staff (Skinny Guys). Our collective experience suggests that design, acquisition, installation, and management of the Little Iron and Skinny Guys does not receive the same level of treatment as that of the Big Iron. The main focus of this article is to explore different aspects of planning, designing, fielding, and maintaining the visualization and analysis infrastructure at supercomputing centers. Some of the questions we explore in this article include:"How should the Little Iron be sized to adequately support visualization and analysis of data coming off the Big Iron?" What sort of capabilities does it need to have?" Related questions concern the size of visualization support staff:"How big should a visualization program be (number of persons) and what should the staff do?" and"How much of the visualization should be provided as a support service, and how much should applications scientists be expected to do on their own?"

  3. ASCI Red -- Experiences and lessons learned with a massively parallel teraFLOP supercomputer

    SciTech Connect (OSTI)

    Christon, M.A.; Crawford, D.A.; Hertel, E.S.; Peery, J.S.; Robinson, A.C. [Sandia National Labs., Albuquerque, NM (United States). Computational Physics R and D Dept.

    1997-06-01T23:59:59.000Z

    The Accelerated Strategic Computing Initiative (ASCI) program involves Sandia, Los Alamos and Lawrence Livermore National Laboratories. At Sandia National Laboratories, ASCI applications include large deformation transient dynamics, shock propagation, electromechanics, and abnormal thermal environments. In order to resolve important physical phenomena in these problems, it is estimated that meshes ranging from 10{sup 6} to 10{sup 9} grid points will be required. The ASCI program is relying on the use of massively parallel supercomputers initially capable of delivering over 1 TFLOPs to perform such demanding computations. The ASCI Red machine at Sandia National Laboratories consists of over 4,500 computational nodes with a peak computational rate of 1.8 TFLOPs, 567 GBytes of memory, and 2 TBytes of disk storage. Regardless of the peak FLOP rate, there are many issues surrounding the use of massively parallel supercomputers in a production environment. These issues include parallel I/O, mesh generation, visualization, archival storage, high-bandwidth networking and the development of parallel algorithms. In order to illustrate these issues and their solution with respect to ASCI Red, demonstration calculations of time-dependent buoyancy-dominated plumes, electromechanics, and shock propagation will be presented.

  4. Comprehensive integrated planning: A process for the Oak Ridge Reservation, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    The Oak Ridge Comprehensive Integrated Plan is intended to assist the US Department of Energy (DOE) and contractor personnel in implementing a comprehensive integrated planning process consistent with DOE Order 430.1, Life Cycle Asset Management and Oak Ridge Operations Order 430. DOE contractors are charged with developing and producing the Comprehensive Integrated Plan, which serves as a summary document, providing information from other planning efforts regarding vision statements, missions, contextual conditions, resources and facilities, decision processes, and stakeholder involvement. The Comprehensive Integrated Plan is a planning reference that identifies primary issues regarding major changes in land and facility use and serves all programs and functions on-site as well as the Oak Ridge Operations Office and DOE Headquarters. The Oak Ridge Reservation is a valuable national resource and is managed on the basis of the principles of ecosystem management and sustainable development and how mission, economic, ecological, social, and cultural factors are used to guide land- and facility-use decisions. The long-term goals of the comprehensive integrated planning process, in priority order, are to support DOE critical missions and to stimulate the economy while maintaining a quality environment.

  5. Oak Ridge Reservation environmental report for 1991

    SciTech Connect (OSTI)

    Mucke, P.C. (ed.)

    1992-10-01T23:59:59.000Z

    The first two volumes of this report present data and supporting narratives regarding the impact of the US Department of Energy's (DOE's) Oak Ridge Reservation (ORR) on its surrounding environs and the public during 1991. Volume 1 includes all narrative descriptions, summaries, and conclusions and is intended to be a stand-alone'' report for the reader who does not want to review in detail all of the 1991 data for the ORR. This volume, Volume 2, includes the detailed data formats that ensure all the environmental data are represented. Narratives are not included. The information in Vol. 2 is addressed and analyzed in Vol. 1.

  6. Oak Ridge Leadership Computing Facility Position Paper

    SciTech Connect (OSTI)

    Oral, H Sarp [ORNL] [ORNL; Hill, Jason J [ORNL] [ORNL; Thach, Kevin G [ORNL] [ORNL; Podhorszki, Norbert [ORNL] [ORNL; Klasky, Scott A [ORNL] [ORNL; Rogers, James H [ORNL] [ORNL; Shipman, Galen M [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    This paper discusses the business, administration, reliability, and usability aspects of storage systems at the Oak Ridge Leadership Computing Facility (OLCF). The OLCF has developed key competencies in architecting and administration of large-scale Lustre deployments as well as HPSS archival systems. Additionally as these systems are architected, deployed, and expanded over time reliability and availability factors are a primary driver. This paper focuses on the implementation of the Spider parallel Lustre file system as well as the implementation of the HPSS archive at the OLCF.

  7. Oak Ridge Office of Environmental Management

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment ofDepartment640OrderOREMJanuary 20149Oak Ridge OPEIU

  8. Oak Ridge Office of Environmental Management

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment ofDepartment640OrderOREMJanuary 20149Oak Ridge OPEIUMr. David

  9. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment ofDepartment640OrderOREMJanuary 20149Oak RidgeSite

  10. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment ofDepartment640OrderOREMJanuary 20149Oak RidgeSite January

  11. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment ofDepartment640OrderOREMJanuary 20149Oak RidgeSite January

  12. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment ofDepartment640OrderOREMJanuary 20149Oak RidgeSite January9,

  13. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment ofDepartment640OrderOREMJanuary 20149Oak RidgeSite

  14. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment ofDepartment640OrderOREMJanuary 20149Oak RidgeSite3 Annual

  15. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment ofDepartment640OrderOREMJanuary 20149Oak RidgeSite3

  16. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment ofDepartment640OrderOREMJanuary 20149Oak

  17. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment ofDepartment640OrderOREMJanuary 20149Oak4 Annual Meeting

  18. Oak Ridge OPEIU 2001 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Order No.ofUse | Department ofFCTO T2MOak RidgeOak

  19. Oak Ridge Site | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Order No.ofUse | Department ofFCTO|theServices »Oak

  20. Oak Ridge National Laboratory | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake YourDepartment ofC T O B E R 2of EnergySourceOak

  1. Oak Ridge Office of Environmental Management

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake YourDepartment ofC T O B E R 2ofResourses Management Oak

  2. Oak Ridge ARI Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse to Time-BasedDecember 23,Misc CasesOUO Review RidgeOak

  3. Lester C. Oakes | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest Newsbiomass to fuel CelluloseLester C. Oakes

  4. Blue Oak Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022 |BleckleyMotion Energy Jump to:Ng Jump to:Oak Energy

  5. Oak Ridge National Laboratory - Airport Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeeding access(SC) Oak Ridge LeadershipSearch There are

  6. Oak Ridge National Laboratory - Global Security Directorate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeeding access(SC) Oak Ridge LeadershipSearch There

  7. Oak Ridge National Laboratory - Global Security Directorate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeeding access(SC) Oak Ridge LeadershipSearch ThereDARPA

  8. Oak Ridge National Laboratory - Global Security Directorate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeeding access(SC) Oak Ridge LeadershipSearch

  9. Oak Ridge National Laboratory - Physical Sciences Directorate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeeding access(SC) Oak RidgeCenter for Nanophase

  10. Oak Ridge National Laboratory - Physical Sciences Directorate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeeding access(SC) Oak RidgeCenter for NanophaseChemical

  11. Oak Ridge National Laboratory - Physical Sciences Directorate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeeding access(SC) Oak RidgeCenter for

  12. Oak Ridge National Laboratory - Physical Sciences Directorate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeeding access(SC) Oak RidgeCenter forPhysics The

  13. Oak Ridge National Laboratory - User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeeding access(SC) Oak RidgeCenter forPhysics

  14. The Oak Ridge National Laboratory Mentor-Protg Program

    E-Print Network [OSTI]

    1 The Oak Ridge National Laboratory Mentor-Protégé Program Oak Ridge National Laboratory is managed Ridge National Laboratory (ORNL) Mentor-Protégé Program is a U.S. Department of Energy (DOE) initiative for obtaining subcontracts. While participating in the program, companies should take the advice of the mentor(s

  15. Oak Ridge ReseRvatiOn DOE/ORO/2379

    E-Print Network [OSTI]

    Pennycook, Steve

    .....................................................................................................................xix Units of Measure and Conversion Factors Project coordinator Sharon Thompson Department of Energy Project manager and Oak Ridge Office coordinator.O. Box 2008, Oak Ridge, TN 37831-2008 Managed by UT-Battelle, LLC, for the Department of Energy under

  16. Department of Energy (DOE) Oak Ridge Office (ORO) Project Life

    E-Print Network [OSTI]

    Regulation (FAR) Subpart 17.500. #12;OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY 7 The IADepartment of Energy (DOE) Oak Ridge Office (ORO) Project Life Cycle Reimbursable Funding OF ENERGY 2 Briefing Outline Secretary of Energy Legal Authority How Federal Agencies Do Reimbursable Work

  17. OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

    E-Print Network [OSTI]

    Price and Economic Growth, 1970-2001 -4% -2% 0% 2% 4% 6% 8% 1970 1975 1980 1985 1990 1995 2000 AnnualOAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Oak Ridge National Laboratory David L. S. DEPARTMENT OF ENERGY Charter · The Engineering Science and Technology Division, National

  18. assessment rfa oak ridge: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    assessment rfa oak ridge First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Oak Ridge Reservation Annual...

  19. area oak ridge: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    area oak ridge First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Appendix B. Climate Overview of the Oak...

  20. The Science and Technology Facilities Council's (STFC) Hartree Centre has provided local SME ACAL Energy with the supercomputing

    E-Print Network [OSTI]

    Zharkova, Valentina V.

    The Science and Technology Facilities Council's (STFC) Hartree Centre has provided local SME ACAL Energy with the supercomputing capability they required to gain a better insight into their fuel cell technology, enabling them to solve a technical performance problem. Work with us The Science and Technology

  1. Radical Supercomputing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press Releases 2014 2013 2012 2011QualityImportantRadical

  2. Supercomputing challenge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer.

  3. EA-1779: Proposed Changes to the Sanitary Biosolids Land Application Program on the Oak Ridge Reservation, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to amend (e.g., by changing setback requirements from surface water features and potential channels to groundwater) the Sanitary Biosolids Land Application Program at the Oak Ridge Reservation in Oak Ridge, Tennessee.

  4. Oak Ridge National Laboratory Waste Management Plan

    SciTech Connect (OSTI)

    Not Available

    1991-12-01T23:59:59.000Z

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  5. A Framework for HI Spectral Source Finding Using Distributed-Memory Supercomputing

    E-Print Network [OSTI]

    Westerlund, Stefan

    2014-01-01T23:59:59.000Z

    The latest generation of radio astronomy interferometers will conduct all sky surveys with data products consisting of petabytes of spectral line data. Traditional approaches to identifying and parameterising the astrophysical sources within this data will not scale to datasets of this magnitude, since the performance of workstations will not keep up with the real-time generation of data. For this reason, it is necessary to employ high performance computing systems consisting of a large number of processors connected by a high-bandwidth network. In order to make use of such supercomputers substantial modifications must be made to serial source finding code. To ease the transition, this work presents the Scalable Source Finder Framework, a framework providing storage access, networking communication and data composition functionality, which can support a wide range of source finding algorithms provided they can be applied to subsets of the entire image. Additionally, the Parallel Gaussian Source Finder was imp...

  6. Improving the performance of MARS reservoir simulator on Cray-2 supercomputer

    SciTech Connect (OSTI)

    Li, K.G.; Dogru, A.H.; McDonald, A.E.; Merchant, A.R.; Al-Mulhem, A.A.; Al-Ruwaili, S.B.; Sobh, N.A.; Al-Sunaidi, H.A.

    1995-10-01T23:59:59.000Z

    The computational efficiency of a reservoir simulator-MARS-that is heavily used in Saudi Aramco, was significantly enhanced by improving the vectorization, parallelization and a key algorithm of the simulator. In particular, a state-of-the-art parallel linear equation solver was developed and implemented in the simulator. This new solver ran three to five times faster than the existing solvers. With the new solver and the other improvements in the simulator, the optimized code ran 1.3 to 1.8 times faster than the original code on a single processor and more than four times faster on four processors of Cray-2 supercomputer for typical Saudi Aramco reservoir models. This translates into great savings for the company since it, in effect, creates additional computational resources at no additional cost and improves the reservoir engineer`s productivity by shortening the job turnaround time.

  7. Palacios and Kitten : high performance operating systems for scalable virtualized and native supercomputing.

    SciTech Connect (OSTI)

    Widener, Patrick (University of New Mexico); Jaconette, Steven (Northwestern University); Bridges, Patrick G. (University of New Mexico); Xia, Lei (Northwestern University); Dinda, Peter (Northwestern University); Cui, Zheng.; Lange, John (Northwestern University); Hudson, Trammell B.; Levenhagen, Michael J.; Pedretti, Kevin Thomas Tauke; Brightwell, Ronald Brian

    2009-09-01T23:59:59.000Z

    Palacios and Kitten are new open source tools that enable applications, whether ported or not, to achieve scalable high performance on large machines. They provide a thin layer over the hardware to support both full-featured virtualized environments and native code bases. Kitten is an OS under development at Sandia that implements a lightweight kernel architecture to provide predictable behavior and increased flexibility on large machines, while also providing Linux binary compatibility. Palacios is a VMM that is under development at Northwestern University and the University of New Mexico. Palacios, which can be embedded into Kitten and other OSes, supports existing, unmodified applications and operating systems by using virtualization that leverages hardware technologies. We describe the design and implementation of both Kitten and Palacios. Our benchmarks show that they provide near native, scalable performance. Palacios and Kitten provide an incremental path to using supercomputer resources that is not performance-compromised.

  8. Oak Ridge Health Studies phase 1 report, Volume 1: Oak Ridge Phase 1 overview

    SciTech Connect (OSTI)

    Yarbrough, M.I.; Van Cleave, M.L.; Turri, P.; Daniel, J.

    1993-09-01T23:59:59.000Z

    In July 1991, the State of Tennessee initiated the Health Studies Agreement with the United States Department of Energy to carry out independent studies of possible adverse health effects in people living in the vicinity of the Oak Ridge Reservation. The health studies focus on those effects that could have resulted or could result from exposures to chemicals and radioactivity released at the Reservation since 1942. The major focus of the first phase was to complete a Dose Reconstruction Feasibility Study. This study was designed to find out if enough data exist about chemical and radionuclide releases from the Oak Ridge Reservation to conduct a second phase. The second phase will lead to estimates of the actual amounts or the ``doses`` of various contaminants received by people as a result of off-site releases. Once the doses of various contaminants have been estimated, scientists and physicians will be better able to evaluate whether adverse health effects could have resulted from the releases.

  9. Source document for waste area groupings at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Osborne, P.L.; Kuhaida, A.J., Jr.

    1996-09-01T23:59:59.000Z

    This document serves as a source document for Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and other types of documents developed for and pertaining to Environmental Restoration (ER) Program activities at Oak Ridge National Laboratory (ORNL). It contains descriptions of the (1) regulatory requirements for the ORR ER Program, (2) Oak Ridge Reservation (ORR) ER Program, (3) ORNL site history and characterization, and (4) history and characterization of Waste Area Groupings (WAGS) 1-20. This document was created to save time, effort, and money for persons and organizations drafting documents for the ER Program and to improve consistency in the documents prepared for the program. By eliminating the repetitious use of selected information about the program, this document will help reduce the time and costs associated with producing program documents. By serving as a benchmark for selected information about the ER Program, this reference will help ensure that information presented in future documents is accurate and complete.

  10. Site descriptions of environmental restoration units at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Kuhaida, A.J. Jr.; Parker, A.F.

    1997-02-01T23:59:59.000Z

    This report provides summary information on Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) sites as listed in the Oak Ridge Reservation Federal Facility Agreement (FFA), dated January 1, 1992, Appendix C. The Oak Ridge National Laboratory was built in 1943 as part of the World War II Manhattan Project. The original mission of ORNL was to produce and chemically separate the first gram-quantities of plutonium as part of the national effort to produce the atomic bomb. The current mission of ORNL is to provide applied research and development in support of the U.S. Department of Energy (DOE) programs in nuclear fusion and fission, energy conservation, fossil fuels, and other energy technologies and to perform basic scientific research in selected areas of the physical, life, and environmental sciences. ER is also tasked with clean up or mitigation of environmental impacts resulting from past waste management practices on portions of the approximately 37,000 acres within the Oak Ridge Reservation (ORR). Other installations located within the ORR are the Gaseous Diffusion Plant (K-25) and the Y-12 plant. The remedial action strategy currently integrates state and federal regulations for efficient compliance and approaches for both investigations and remediation efforts on a Waste Area Grouping (WAG) basis. As defined in the ORR FFA Quarterly Report July - September 1995, a WAG is a grouping of potentially contaminated sites based on drainage area and similar waste characteristics. These contaminated sites are further divided into four categories based on existing information concerning whether the data are generated for scoping or remedial investigation (RI) purposes. These areas are as follows: (1) Operable Units (OU); (2) Characterization Areas (CA); (3) Remedial Site Evaluation (RSE) Areas; and (4) Removal Site Evaluation (RmSE) Areas.

  11. Site descriptions of environmental restoration units at the Oak Ridge K-25 Site, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Goddard, P.L.; Legeay, A.J.; Pesce, D.S.; Stanley, A.M.

    1995-11-01T23:59:59.000Z

    This report, Site Descriptions of Environmental Restoration Units at the Oak Ridge K-25 Site, Oak Ridge, Tennessee, is being prepared to assimilate information on sites included in the Environmental Restoration (ER) Program of the K-25 Site, one of three major installations on the Oak Ridge Reservation (ORR) built during World War III as part of the Manhattan Project. The information included in this report will be used to establish program priorities so that resources allotted to the K-25 ER Program can be best used to decrease any risk to humans or the environment, and to determine the sequence in which any remedial activities should be conducted. This document will be updated periodically in both paper and Internet versions. Units within this report are described in individual data sheets arranged alphanumerically. Each data sheet includes entries on project status, unit location, dimensions and capacity, dates operated, present function, lifecycle operation, waste characteristics, site status, media of concern, comments, and references. Each data sheet is accompanied by a photograph of the unit, and each unit is located on one of 13 area maps. These areas, along with the sub-area, unit, and sub-unit breakdowns within them, are outlined in Appendix A. Appendix B is a summary of information on remote aerial sensing and its applicability to the ER program.

  12. Comprehensive Integrated Planning Process for the Oak Ridge Operations Sites

    SciTech Connect (OSTI)

    Bechtel Jacobs Company LLC; Lockheed Martin Energy Research Corporation; Lockheed Martin Energy Systems, Inc.

    1999-09-01T23:59:59.000Z

    This plan is intended to assist the U.S. Department of Energy (DOE) and contractor personnel in implementing a comprehensive integrated planning process consistent with DOE Order 430.1A, "Life Cycle Asset Management," and Oak Ridge Operations (ORO) Order 430 on sites under the jurisdiction of DOE-ORO. Those sites are the Oak Ridge Reservation, in Oak Ridge, Tennessee; the Paducah Gaseous Diffusion Plant, in Paducah, Kentucky; and the Portsmouth Gaseous Diffusion Plant, in Piketon, Ohio. DOE contractors at these sites are charged with developing and producing this plan, which is referred to as simply the Comprehensive Integrated Plan.

  13. Oak Ridge Reservation environmental report for 1989

    SciTech Connect (OSTI)

    Jacobs, V.A.; Wilson, A.R. (eds.)

    1990-10-01T23:59:59.000Z

    The first two volumes of this report are devoted to a presentation of environmental data and supporting narratives for the US Department of Energy's (DOE's) Oak Ridge Reservation (ORR) and surrounding environs during 1989. Volume 1 includes all narrative descriptions, summaries, and conclusions and is intended to be a stand-alone'' report for the ORR for the reader who does not want to review in detail all of the 1989 data. Volume 2 includes the detailed data summarized in a format to ensure that all environmental data are represented in the tables. Narratives are not included in Vol. 2. The tables in Vol. 2 are addressed in Vol. 1. For this reason, Vol. 2 cannot be considered a stand-alone report but is intended to be used in conjunction with Vol. 1. 16 figs., 194 tabs.

  14. Oak Ridge Reservation Environmental report for 1990

    SciTech Connect (OSTI)

    Wilson, A.R. (ed.)

    1991-09-01T23:59:59.000Z

    The first two volumes of this report are devoted to a presentation of environmental data and supporting narratives for the US Department of Energy's (DOE's) Oak Ridge Reservation (ORR) and surrounding environs during 1990. Volume 1 includes all narrative descriptions, summaries, and conclusions and is intended to be a stand-alone'' report for the ORR for the reader who does not want to review in detail all of the 1990 data. Volume 2 includes the detailed data summarized in a format to ensure that all environmental data are represented in the tables. Narratives are not included in Vol. 2. The tables in Vol. 2 are addressed in Vol. 1. For this reason, Vol. 2 cannot be considered a stand-alone report but is intended to be used in conjunction with Vol. 1.

  15. 01-Gerber-ASCR_Review_Overview.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    torage" - Not p urged - Usually b acked u p ( feasible i nto t he f uture?) - Somewhat l ess p erformant - Maybe s harable - Center---wide a ccess - Default q uotas: 10s G B (...

  16. NERSC/DOE ASCR Requirements Workshop Participants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Manager Alok Choudhary Northwestern University Parallel IO Erich Strohmaier LBNL Computer Science & Performance Evaluation Esmond Ng LBNL Math Software Arie Shoshani...

  17. NERSC/DOE ASCR Requirements Workshop Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study: IO Software January 5, 2011 | Author(s): Alok Choudhary | Workshop outline, logistics, format January 5, 2011 | Author(s): Harvey Wasserman | NERSC Role in Advanced...

  18. NERSC/DOE ASCR Requirements Workshop Logistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Logistics Workshop Logistics Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research January 5-6, 2011 Location The workshop will be held at...

  19. NERSC/DOE ASCR Requirements Workshop Agenda

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVAPlayedNERSC'sJune 2012JuneAgenda Workshop

  20. NERSC/DOE ASCR Requirements Workshop Logistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVAPlayedNERSC'sJune 2012JuneAgenda

  1. NERSC/DOE ASCR Requirements Workshop Participants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVAPlayedNERSC'sJuneParticipants

  2. NERSC/DOE ASCR Requirements Workshop Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove

  3. Sandia Energy - Advanced Scientific Computing Research (ASCR)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn theTreatmentSRSSafetyAdvancedAdvanced

  4. Byna-NERSC-ASCR-2017.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy,EnvelopeJeffersonBusinessPracticesByRequirements f

  5. NERSC/DOE ASCR Requirements Workshop Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gif Directorate -Advanced codeMonitoring NERSCbased on DFTCase

  6. NERSC/DOE ASCR Requirements Workshop Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gif Directorate -Advanced codeMonitoring NERSCbased on

  7. NERSC_ASCR_Requirements_Review-1.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gif Directorate -Advanced codeMonitoringAtomicCALENDAR Linear A

  8. Bethel-ASCR-Requirements-CaseStudy.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find MoreLawrence Berkeley Industrial8Bethany SparnVisual

  9. 25420_ESNet_ASCR_Cover_Final2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartment ofAugustDecember 201420thSciencesNetwork

  10. ASCR NERSC Requirement presentation.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP UpdateRefreshAdministration March 2013ASCRRequests

  11. YS-ASCR-NERSCWorkshopPresen.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhatY-12 recognized for ...

  12. ascr_workshop_Jan2011.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhatY-12ZeroVariations of TropicalAssessment5asc

  13. Screening of contaminants in Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Blaylock, B.G.; Frank, M.L.; Hoffman, F.O.; Hook, L.A.; Suter, G.W.; Watts, J.A.

    1992-07-01T23:59:59.000Z

    Waste Area Grouping 2 (WAG 2) of the Oak Ridge National Laboratory (ORNL) is located in the White Oak Creek Watershed and is composed of White Oak Creek Embayment, White Oak Lake and associated floodplain, and portions of White Oak Creek (WOC) and Melton Branch downstream of ORNL facilities. Contaminants leaving other ORNL WAGs in the WOC watershed pass through WAG 2 before entering the Clinch River. Health and ecological risk screening analyses were conducted on contaminants in WAG 2 to determine which contaminants were of concern and would require immediate consideration for remedial action and which contaminants could be assigned a low priority or further study. For screening purposes, WAG 2 was divided into four geographic reaches: Reach 1, a portion of WOC; Reach 2, Melton Branch; Reach 3, White Oak Lake and the floodplain area to the weirs on WOC and Melton Branch; and Reach 4, the White Oak Creek Embayment, for which an independent screening analysis has been completed. Screening analyses were conducted using data bases compiled from existing data on carcinogenic and noncarcinogenic contaminants, which included organics, inorganics, and radionuclides. Contaminants for which at least one ample had a concentration above the level of detection were placed in a detectable contaminants data base. Those contaminants for which all samples were below the level of detection were placed in a nondetectable contaminants data base.

  14. The John von Neumann Institute for Computing (NIC): A survey of its supercomputer facilities and its Europe-wide computational science activities

    E-Print Network [OSTI]

    N. Attig

    2005-12-12T23:59:59.000Z

    The John von Neumann Institute for Computing (NIC) at the Research Centre Juelich, Germany, is one of the leading supercomputing centres in Europe. Founded as a national centre in the mid-eighties it now provides more and more resources to European scientists. This happens within EU-funded projects (I3HP, DEISA) or Europe-wide scientific collaborations. Beyond these activities NIC started an initiative towards the new EU member states in summer 2004. Outstanding research groups are offered to exploit the supercomputers at NIC to accelerate their investigations on leading-edge technology. The article gives an overview of the organisational structure of NIC, its current supercomputer systems, and its user support. Transnational Access (TA) within I3HP is described as well as access by the initiative for new EU member states. The volume of these offers and the procedure of how to apply for supercomputer resources is introduced in detail.

  15. Oak Ridge National Laboratory: Recent Accomplishments and Challenges...

    Office of Environmental Management (EM)

    ETTP ORNL Y-12 City of Oak Ridge www.energy.govEM ORNL Scope MV: MSRE Salt Drain Tanks * Bethel Valley D&D and RA scope - 160 facilities - Isotope processing...

  16. Oak Ridge National Laboratory Site Office CX Determinations ...

    Office of Science (SC) Website

    9800 S. Cass Avenue Argonne, IL 60439 P: (630) 252-2110 Larry Kelly U.S. Department of Energy 200 Administration Road Oak Ridge, TN 37830 P: (865) 576-0885 Categorical Exclusion...

  17. West Virginia University 1 Oak Ridge Associated Universities

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    , earth sciences, epidemiology, engineering, physics, geological sciences, pharmacology, ocean sciences minority students pursuing degrees in science and engineering related disciplines. A comprehensive listing Since 1957, students and faculty of West Virginia University have benefited from their membership in Oak

  18. World War II role of Oak Ridge National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    War II role of Oak Ridge National Lab featured in second 70th anniversary lecture February 4, 2013 Shared national security mission with Los Alamos highlighted LOS ALAMOS, NEW...

  19. Five more spring nature walks planned on Oak Ridge Reservation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reservation. April 4's nature walk will feature frog calls and bat monitoring. Photo: W.K. Roy. An American toad captured in mid-croak on the Oak Ridge Reservation. April 4's...

  20. B & W Y-12 and 14 Years in Oak Ridge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Y-12 and 14 Years in Oak Ridge I well recall the transition that began in November, 2000, when BWXT Y-12 (now B&W Y-12) took over the management and operating contract for what...

  1. Transportation Decision Support Systems Oak Ridge National Laboratory

    E-Print Network [OSTI]

    Transportation Decision Support Systems Oak Ridge National Laboratory managed by UT-Battelle, LLC Passenger Flows Supply Chain Efficiency Transportation: Energy Environment Safety Security Vehicle and implementation of automated transportation decision support models for the scheduling and routing of cargo

  2. DOE Issues Final Request for Proposal for Oak Ridge Transuranic...

    Broader source: Energy.gov (indexed) [DOE]

    -- The U.S. Department of Energy (DOE) today issued a Final Request for Proposal (RFP), for support services at the Oak Ridge Transuranic Waste Processing Center (TWPC) in...

  3. Bill Wilcox ? The transformation and second birth of Oak Ridge...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prize winner. "The year was scarred by two awful events. Oak Ridge's first (so far only) nuclear criticality accident occurred at Y-12 on June 16, 1958, that exposed eight...

  4. Independent Oversight Targeted Review, Oak Ridge National Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    The HFIR and REDC facilities at the Oak Ridge National Laboratory are managed by UT-Battelle under contract to DOE's Office of Science. Independent Oversight conducted the review...

  5. Microsoft Word - Yamhill_Oaks_Gahr_CX.doc

    Broader source: Energy.gov (indexed) [DOE]

    of Yamhill Oaks (Gahr) Property Fish and Wildlife Project No.: 2009-017-00, Contract BPA-004959 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25...

  6. 60 years of great science [Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    None

    2003-01-01T23:59:59.000Z

    This issue highlights Oak Ridge National Laboratory's contributions in more than 30 areas of research and related activities during the past 60 years and provides glimpses of current activities that are carrying on this heritage.

  7. The Oak Ridge Centers for Manufacturing Technologies ? Skills...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Oak Ridge Centers for Manufacturing Technology (ORCMT), John said, "As the Apprentice program drew to a close at the end of FY 1992, Clyde Kelly came to our office (the...

  8. The Oak Ridge Reservation Annual Site Environmental Report Summary, 2007

    SciTech Connect (OSTI)

    None, None

    2009-02-28T23:59:59.000Z

    The Oak Ridge Reservation Annual Site Environmental Report is prepared and published each year to inform the public of the environmental activities that take place on the reservation and in the surrounding areas. It is written to comply with DOE Order 231.1A, Environment, Safety, and Health Reporting. This document has been prepared to present the highlights of the Oak Ridge Reservation Annual Site Environmental Report 2007 in an easy-to-read, summary format.

  9. INDEPENDENT VERIFICATION OF THE CENTRAL CAMPUS AND SOUTHEAST LABORATORY COMPLEX BUILDING SLABS AT OAK RIDGE NATIONAL LABORATORY, OAK RIDGE, TENNESSEE

    SciTech Connect (OSTI)

    Weaver, Phyllis C.

    2012-07-24T23:59:59.000Z

    Oak Ridge Associated Universities/Oak Ridge Institute for Science and Education (ORAU/ORISE) has completed the independent verification survey of the Central Campus and Southeast Lab Complex Building Slabs. The results of this effort are provided. The objective of this verification survey was to provide independent review and field assessment of remediation actions conducted by SEC, and to independently assess whether the final radiological condition of the slabs met the release guidelines.

  10. Data Sharing Report Characterization of Isotope Row Facilities Oak Ridge National Laboratory Oak Ridge TN

    SciTech Connect (OSTI)

    Weaver, Phyllis C

    2013-12-12T23:59:59.000Z

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support using funds provided by the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested ORAU to plan and implement a survey approach, focused on characterizing the Isotope Row Facilities located at the Oak Ridge National Laboratory (ORNL) for future determination of an appropriate disposition pathway for building debris and systems, should the buildings be demolished. The characterization effort was designed to identify and quantify radiological and chemical contamination associated with building structures and process systems. The Isotope Row Facilities discussed in this report include Bldgs. 3030, 3031, 3032, 3033, 3033A, 3034, 3036, 3093, and 3118, and are located in the northeast quadrant of the main ORNL campus area, between Hillside and Central Avenues. Construction of the isotope production facilities was initiated in the late 1940s, with the exception of Bldgs. 3033A and 3118, which were enclosed in the early 1960s. The Isotope Row facilities were intended for the purpose of light industrial use for the processing, assemblage, and storage of radionuclides used for a variety of applications (ORNL 1952 and ORAU 2013). The Isotope Row Facilities provided laboratory and support services as part of the Isotopes Production and Distribution Program until 1989 when DOE mandated their shutdown (ORNL 1990). These facilities performed diverse research and developmental experiments in support of isotopes production. As a result of the many years of operations, various projects, and final cessation of operations, production was followed by inclusion into the surveillance and maintenance (S&M) project for eventual decontamination and decommissioning (D&D). The process for D&D and final dismantlement of facilities requires that the known contaminants of concern (COCs) be evaluated and quantified and to identify and quantify any additional contaminants in order to satisfy the waste acceptance criteria requirements for the desired disposal pathway. Known facility contaminants include, but are not limited to, asbestos-containing material (ACM), radiological contaminants, and chemical contaminants including polychlorinated biphenyls (PCBs) and metals.

  11. Geophysical Surveys of a Known Karst Feature, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Carpenter, P.J.; Carr, B.J.; Doll, W.E.; Kaufmann, R.D.; Nyquist, J.E.

    1999-11-14T23:59:59.000Z

    Geophysical data were acquired at a site on the Oak Ridge Reservation, Tennessee to determine the characteristics of a mud-filled void and to evaluate the effectiveness of a suite of geophysical methods at the site. Methods that were used included microgravity, electrical resistivity, and seismic refraction. Both microgravity and resistivity were able to detect the void as well as overlying structural features. The seismic data provide bedrock depth control for the other two methods, and show other effects that are caused by the void.

  12. INDEPENDENT VERIFICATION OF THE BUILDING 3550 SLAB AT OAK RIDGE NATIONAL LABORATORY OAK RIDGE, TENNESSEE

    SciTech Connect (OSTI)

    Weaver, Phyllis C.

    2012-05-08T23:59:59.000Z

    The Oak Ridge Institute for Science and Education (ORISE) has completed the independent verification survey of the Building 3550 Slab. The results of this effort are provided. The objective of this verification survey is to provide independent review and field assessment of remediation actions conducted by Safety and Ecology Corporation (SEC) to document that the final radiological condition of the slab meets the release guidelines. Verification survey activities on the Building 3550 Slab that included scans, measurements, and the collection of smears. Scans for alpha, alpha plus beta, and gamma activity identified several areas that were investigated.

  13. DOE's Office of Science Awards 18 Million Hours of Supercomputing Time to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterialsDevelopEnergy Oak Ridge Office andto15

  14. DOE's Office of Science Awards 95 Million Hours of Supercomputing Time to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterialsDevelopEnergy Oak Ridge Office

  15. Oak Ridge Reservation environmental report for 1990

    SciTech Connect (OSTI)

    Wilson, A.R. (ed.)

    1991-09-01T23:59:59.000Z

    The purpose of this report is to provide information to the public about the impact of the US Department of Energy's (DOE's) facilities located on the Oak Ridge Reservation (ORR) on the public and the environment. It describes the environmental surveillance and monitoring activities conducted at and around the DOE facilities operated by Martin Marietta Energy Systems, Inc. Preparation and publication of this report is in accordance with DOE Order 5400.1. The order specifies a publication deadline of June of the following year for each calendar year of data. The primary objective of this report is to summarize all information collected for the previous calendar year regarding effluent monitoring, environmental surveillance, and estimates of radiation and chemical dose to the surrounding population. When multiple years of information are available for a program, trends are also evaluated. The first seven sections of Volume 1 of this report address this objective. The last three sections of Volume 1 provide information on solid waste management, special environmental studies, and quality assurance programs.

  16. An investigation into the role of genetics in the tolerance of Texas live oaks to Ceratocystis fagacearum

    E-Print Network [OSTI]

    Gray, Myron Crowley

    2009-05-15T23:59:59.000Z

    The fungus Ceratocystis fagacearum (Bretz) Hunt causes the vascular disease of oak wilt and has been decimating live oaks (Quercus virginiana Mill. and Quercus fusiformis Small.) and red oaks (Quercus texana Small and Quercus marilandica Muenchh...

  17. An investigation into the role of genetics in the tolerance of Texas live oaks to Ceratocystis fagacearum 

    E-Print Network [OSTI]

    Gray, Myron Crowley

    2009-05-15T23:59:59.000Z

    The fungus Ceratocystis fagacearum (Bretz) Hunt causes the vascular disease of oak wilt and has been decimating live oaks (Quercus virginiana Mill. and Quercus fusiformis Small.) and red oaks (Quercus texana Small and Quercus marilandica Muenchh...

  18. PFLOTRAN: Reactive Flow & Transport Code for Use on Laptops to Leadership-Class Supercomputers

    SciTech Connect (OSTI)

    Hammond, Glenn E.; Lichtner, Peter C.; Lu, Chuan; Mills, Richard T.

    2012-04-18T23:59:59.000Z

    PFLOTRAN, a next-generation reactive flow and transport code for modeling subsurface processes, has been designed from the ground up to run efficiently on machines ranging from leadership-class supercomputers to laptops. Based on an object-oriented design, the code is easily extensible to incorporate additional processes. It can interface seamlessly with Fortran 9X, C and C++ codes. Domain decomposition parallelism is employed, with the PETSc parallel framework used to manage parallel solvers, data structures and communication. Features of the code include a modular input file, implementation of high-performance I/O using parallel HDF5, ability to perform multiple realization simulations with multiple processors per realization in a seamless manner, and multiple modes for multiphase flow and multicomponent geochemical transport. Chemical reactions currently implemented in the code include homogeneous aqueous complexing reactions and heterogeneous mineral precipitation/dissolution, ion exchange, surface complexation and a multirate kinetic sorption model. PFLOTRAN has demonstrated petascale performance using 2{sup 17} processor cores with over 2 billion degrees of freedom. Accomplishments achieved to date include applications to the Hanford 300 Area and modeling CO{sub 2} sequestration in deep geologic formations.

  19. Characterization plan for the Oak Ridge National Laboratory Area-Wide Groundwater Program, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    This characterization plan has been developed as part of the U.S. Department of Energy`s (DOE`s) investigation of the Groundwater Operable Unit (GWOU) at Oak Ridge National Laboratory (ORNL) located near Oak Ridge, Tennessee. The first iteration of the characterization plan is intended to serve as a strategy document to guide subsequent GWOU remedial investigations. The plan provides a rationale and organization for groundwater data acquisition, monitoring, and remedial actions to be performed during implementation of environmental restoration activities associated with the ORNL GWOU. It is important to note that the characterization plan for the ORNL GWOU is not a prototypical work plan. As such, remedial investigations will be conducted using annual work plans to manage the work activities, and task reports will be used to document the results of the investigations. Sampling and analysis results will be compiled and reported annually with a review of data relative to risk (screening level risk assessment review) for groundwater. This characterization plan outlines the overall strategy for the remedial investigations and defines tasks that are to be conducted during the initial phase of investigation. This plan is presented with the understanding that more specific addenda to the plan will follow.

  20. Clewlow, Wells, and Pastron. eds: The Archaeology of Oak Park, Ventura County, California, Vols 1 and 2; and Clewlow, Whitley, eds.: The Archaeology of Oak Park, Ventura County, California, Vol. 3

    E-Print Network [OSTI]

    Tartaglia, Louis James

    1980-01-01T23:59:59.000Z

    Archaeology of Oak Park, Ventura County, California. VolumesArchaeology of Oak Park, Ventura County, California. VolumePrehistoric Chumash Sites in Ventura County, California (

  1. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 3 Appendix C

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    This report provides details on the baseline ecological risk assessment conducted in support of the Remedial Investigation (RI) Report for the Melton Valley areas of the White Oak Creek watershed (WOCW). The RI presents an analysis meant to enable the US Department of Energy (DOE) to pursue a series of remedial actions resulting in site cleanup and stabilization. The ecological risk assessment builds off of the WOCW screening ecological risk assessment. All information available for contaminated sites under the jurisdiction of the US Department of Energy`s Comprehensive Environmental Response, Compensation, and Liability Act Federal Facilities Agreement within the White Oak Creek (WOC) RI area has been used to identify areas of potential concern with respect to the presence of contamination posing a potential risk to ecological receptors within the Melton Valley area of the White Oak Creek watershed. The risk assessment report evaluates the potential risks to receptors within each subbasin of the watershed as well as at a watershed-wide scale. The WOC system has been exposed to contaminant releases from Oak Ridge National Laboratory and associated operations since 1943 and continues to receive contaminants from adjacent waste area groupings.

  2. Biogeochemical consequences of livestock grazing in a juniper-oak savanna

    E-Print Network [OSTI]

    Marshall, Samuel Benton

    1995-01-01T23:59:59.000Z

    ) concentrations, microbial biomass C (MBC) and N (MBN), and potential C (Cmi,,) and N (Nmj mineralization rates under different plant communities (shortgrass, midgrass, juniper, oak) in a juniper-oak savanna in west-central Texas. Grazing treatments were...

  3. REPORT OF SURVEY OF OAK RIDGE BUILDING 3597 HOT STORAGE GARDEN

    Broader source: Energy.gov (indexed) [DOE]

    REPORT OF SURVEY OF OAK RIDGE BUILDING 3597 HOT STORAGE GARDEN U.S. Department of Energy Office of Environmental Management & Office of Science Report of Survey of Oak Ridge...

  4. The Oak Ridge Reservation Annual Site Environmental Report, 2007

    SciTech Connect (OSTI)

    none,

    2008-09-30T23:59:59.000Z

    The Oak Ridge Reservation (ORR) consists of three major government-owned, contractor-operated facilities: the Y-12 National Security Complex, Oak Ridge National Laboratory, and East Tennessee Technology Park. The ORR was established in the early 1940s as part of the Manhattan Project, a secret undertaking that produced materials for the first atomic bombs. The reservation’s role has evolved over the years, and it continues to adapt to meet the changing defense, energy, and research needs of the United States. Both the work carried out for the war effort and subsequent research, development, and production activities have involved, and continue to involve, the use of radiological and hazardous materials. The Oak Ridge Reservation Annual Site Environmental Report and supporting data are available at Http://www.ornl.gov/sci/env_rpt or from the project director.

  5. ESPC Success Story- Food and Drug Administration (FDA) White Oak Campus

    Broader source: Energy.gov [DOE]

    FEMP ESPC Success Story on water conservation and green energy at the Food and Drug Administration (FDA) White Oak Campus.

  6. Design demonstrations for category B tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    This document presents design demonstrations conducted of liquid low-level waste (LLLW) storage tank systems located at the Oak Ridge National Laboratory (ORNL). Demonstration of the design of these tank systems has been stipulated by the Federal Facility Agreement (FFA) between the US Environmental Protection Agency (EPA)-Region IV; the Tennessee Department of Environment and Conservation (TDEC); and the DOE. The FFA establishes four categories of tanks. These are: Category A -- New or replacement tank systems with secondary containment; Category B -- Existing tank systems with secondary containment; Category C -- Existing tank systems without secondary containment; Category D -- Existing tank systems without secondary containment that are removed from service. This document provides a design demonstration of the secondary containment and ancillary equipment of 11 tank systems listed in the FFA as Category B. The design demonstration for each tank is presented.

  7. Management of spent nuclear fuel on the Oak Ridge Reservation, Oak Ridge, Tennessee: Environmental assessment

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    On June 1, 1995, DOE issued a Record of Decision [60 Federal Register 28680] for the Department-wide management of spent nuclear fuel (SNF); regionalized storage of SNF by fuel type was selected as the preferred alternative. The proposed action evaluated in this environmental assessment is the management of SNF on the Oak Ridge Reservation (ORR) to implement this preferred alternative of regional storage. SNF would be retrieved from storage, transferred to a hot cell if segregation by fuel type and/or repackaging is required, loaded into casks, and shipped to off-site storage. The proposed action would also include construction and operation of a dry cask SNF storage facility on ORR, in case of inadequate SNF storage. Action is needed to enable DOE to continue operation of the High Flux Isotope Reactor, which generates SNF. This report addresses environmental impacts.

  8. Adventures in supercomputing, a K-12 program in computational science: An assessment

    SciTech Connect (OSTI)

    Oliver, C.E.; Hicks, H.R. [Oak Ridge National Lab., TN (United States); Iles-Brechak, K.D. [Vanderbilt Univ., Oak Ridge, TN (United States); Honey, M.; McMillan, K. [Education Development Center, New York, NY (United States)

    1994-10-01T23:59:59.000Z

    In this paper, the authors describe only those elements of the Department of Energy Adventures in Supercomputing (AiS) program for high school teachers, such as school selection, which have a direct bearing on assessment. Schools submit an application to participate in the AiS program. They propose a team of at least two teachers to implement the AiS curriculum. The applications are evaluated by selection committees in each of the five participating states to determine which schools are the most qualified to carry out the program and reach a significant number of women, minorities, and economically disadvantaged students, all of whom have historically been underrepresented in the sciences. Typically, selected schools either have a large disadvantaged student population, or the applying teachers propose specific means to attract these segments of their student body into AiS classes. Some areas with AiS schools have significant numbers of minority students, some have economically disadvantaged, usually rural, students, and all areas have the potential to reach a higher proportion of women than technical classes usually attract. This report presents preliminary findings based on three types of data: demographic, student journals, and contextual. Demographic information is obtained for both students and teachers. Students have been asked to maintain journals which include replies to specific questions that are posed each month. An analysis of the answers to these questions helps to form a picture of how students progress through the course of the school year. Onsite visits by assessment professionals conducting student and teacher interviews, provide a more in depth, qualitative basis for understanding student motivations.

  9. Survey of protected vascular plants on the Oak Ridge Reservation, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Awl, D.J.; Pounds, L.R.; Rosensteel, B.A.; King, A.L.; Hamlett, P.A.

    1996-06-01T23:59:59.000Z

    Vascular plant surveys were initiated during fiscal year 1992 by the environmentally sensitive areas program to determine the baseline condition of threatened and endangered (T&E) vascular plant species on the Oak Ridge Reservation (ORR). T&E species receive protection under federal and state regulations. In addition, the National Environmental Policy Act (NEPA) requires that federally-funded projects avoid or mitigate impacts to listed species. T&E plant species found on or near the U.S. Department of Energy`s (DOE) Oak Ridge Reservation (ORR) are identified. Twenty-eight species identified on the ORR are listed by the Tennessee Department of Environment and Conservation as either endangered, threatened, or of special concern. Four of these have been under review by the U.S. Fish and Wildlife Service for possible listing (listed in the formerly-used C2 candidate category). Additional species listed by the state occur near and may be present on the ORR. A range of habitats support the rare taxa on the ORR: river bluffs, sinkholes, calcareous barrens, wetlands, utility corridors, and forests. The list of T&E plant species and their locations on the ORR should be considered provisional because the entire ORR has not been surveyed, and state and federal status of all species continues to be updated. The purpose of this document is to present information on the listed T&E plant species currently known to occur on the ORR as well as listed species potentially occurring on the ORR based on geographic range and habitat availability. For the purpose of this report, {open_quotes}T&E species{close_quotes} include all federal- and state-listed species, including candidates for listing, and species of special concern. Consideration of T&E plant habitats is an important component of resource management and land-use planning; protection of rare species in their natural habitat is the best method of ensuring their long-term survival.

  10. Update of lessons learned from cleanup projects at Oak Ridge

    SciTech Connect (OSTI)

    Sleeman, R.C. [USDOE Oak Ridge Operations, TN (United States)

    1993-12-31T23:59:59.000Z

    The Oak Ridge Operations (ORO) of the US Department of Energy (DOE) has been actively pursuing environmental cleanup of chemically and radioactively contaminated sites for about 7 years. These cleanup projects are carried out under the regulatory requirements of the US Environmental Protection Agency and the various states in which the remedial sites are located. This paper updates and re-examines some of the successes and failures of Oak Ridge cleanup activities, with the intent of encouraging improvements in the areas of safety, project planning, quality assurance, training, and regulatory interactions in future remedial projects.

  11. Oak Ridge National Laboratory Environmental Management Portfolio Plan

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment ofDepartment640OrderOREMJanuary 20149 IndustrialOakOak Ridge

  12. Oak Ridge National Laboratory Environmental Management Portfolio Plan

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment ofDepartment640OrderOREMJanuary 20149 IndustrialOakOak

  13. Oak Ridge National Laboratory Environmental Management Portfolio Plan

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment ofDepartment640OrderOREMJanuary 20149 IndustrialOakOakY-12

  14. Oak Ridge National Laboratory Carbon Fiber Technology Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeeding access(SC) Oak RidgeCenter forPhysicsOak Ridge

  15. Blue Oak Canopy Effect On Seasonal Forage Production and Quality1

    E-Print Network [OSTI]

    Standiford, Richard B.

    Blue Oak Canopy Effect On Seasonal Forage Production and Quality1 William E. Frost Neil K. Mc the canopy of blue oak (Quercus douglasii) and in open grassland at the San Joaquin Experimental Range blue oak compared to open grassland. At most sampling dates, the protein content was greater

  16. EIS-0305: Treating Transuranic (TRU)/Alpha Low-Level at the Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    Treating Transuranic (TRU)/Alpha Low-Level Waste at the Oak Ridge National Laboratory, Oak Ridge, Tennessee)This EIS evaluates DOE's proposal to construct, operate, and decontaminate/decommission a Transuranic (TRU) Waste Treatment Facility in Oak Ridge, Tennessee. The four waste types that would be treated at the proposed facility would be remote-handled TRU mixed waste sludge, liquid low-level waste associated with the sludge, contact-handled TRU/alpha low-level waste solids, and remote-handled TRU/alpha low-level waste solids. The mixed waste sludge and some of the solid waste contain metals regulated under the Resource Conservation and Recovery Act and may be classified as mixed waste.

  17. A real time expert system for performance monitoring and scheduling of a Cray Y-MP supercomputer

    E-Print Network [OSTI]

    Danait, Sachin W.

    1991-01-01T23:59:59.000Z

    administrator's workload. The prototype expert system was tested by submitting sample jobs in the differ&. n& hatch queues. It &vas observed that the load on the network had a signif- icant impact on the performance of the expert system. Ti...'1. ?1'&'s. The prototype, built using the real-time expert shell G2, controls the Net?'orl& f)ueueing System (NQS) on a Cray-YMP supercomputer. 5'ionitoring features are provided by us&' of graphs and read-out tables which provi&l& information...

  18. Genetic variation in post-epidemic and pre-epidemic live oak populations subject to oak wilt 

    E-Print Network [OSTI]

    Bellamy, Brenda Kay

    1992-01-01T23:59:59.000Z

    GENETIC VARIATION IN POST-EPIDEMIC AND PRE-EPIDEMIC LIVE OAK POPULATIONS SUBJECT TO OAR WILT A Thesis by BRENDA KAY BELLAMY Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE May 1992 Major Subject: Plant Pathology GENETIC VARIATION XN POST-EPIDEMIC AND PRE-EPXDENIC LIVE OAK POPULATXONS SUBJECT TO OAE WILT A Thesis by BRENDA KAY BELLAMY Approved as to style and content by: David N. Ap...

  19. Infrared-Based Screening System Oak Ridge National Laboratory

    E-Print Network [OSTI]

    Infrared-Based Screening System (IBSS) Oak Ridge National Laboratory managed by UT-Battelle, LLC underperforming or overworking components are identified. These thermal-based systems integrate infrared (IR) sensors or cameras, video images, and vehicle position sensors, and are generically known as infrared

  20. Oak Ridge Reservation, annual site environmental report for 1993

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    The US DOE currently oversees activities on the Oak Ridge Reservation, a government-owned, contractor-operated facility. Three sites compose the reservation; Y-12, Oak Ridge National Laboratory, and K-25. This document contains a summary of environmental monitoring activities on the Oak Ridge Reservation (ORR) and its surroundings. The results summarized in this report are based on the data collected during calendar year (CY) 1993 and compiled in; Environmental Monitoring in the Oak Ridge Reservation: CY 1993 Results. Annual environmental monitoring on the ORR consists of two major activities: effluent monitoring and environmental surveillance. Effluent monitoring is the collection and analysis of samples or measurements of liquid, gaseous, or airborne effluents for the purpose of characterizing and quantifying contaminants and process stream characteristics, assessing radiation and chemical exposures to members of the public, and demonstrating compliance with applicable standards. Environmental surveillance is the collection and analysis of samples of air, water, soil, foodstuffs, biota, and other media from DOE sites and their environs and the measurement of external radiation for purposes of demonstrating compliance with applicable standards, assessing radiation and chemical exposures to members of the public, and assessing effects, if any, on the local environment.

  1. NOAA-OakRidgeExpandClimate ORNL,GECollaborateonHigh-

    E-Print Network [OSTI]

    #12;· NOAA-OakRidgeExpandClimate Modeling · ORNL,GECollaborateonHigh- Efficiency and the Transcontinental Railroad, less because of their function than the unprecedented level of political and operational stories of the Department of Energy. Ironically, the political and operational discipline that made

  2. Oak processionary moth (Thaumetopoea processionea) -life cycle & control

    E-Print Network [OSTI]

    to Sept. Lay eggs on twigs and stems. #12;March 2010 Pppppp ppp Pppppp ppp Eggs are laid in characteristic #12;March 2010 Pppppp ppp Pppppp ppp Eggs hatch in April at about the time that oak is flushing. First 2010 Pppppp ppp Pppppp ppp Older larvae (L4-L6) possess thousands of very small (0.1-0.3 mm) hairs

  3. CRAD, Management- Oak Ridge National Laboratory TRU ALPHA LLWT Project

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a November 2003 assessment of the Management Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory TRU ALPHA LLWT Project.

  4. CRAD, Training- Oak Ridge National Laboratory TRU ALPHA LLWT Project

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a November 2003 assessment of the Training Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory TRU ALPHA LLWT Project.

  5. Oak Ridge Reservation Annual Site environmental report for 1994

    SciTech Connect (OSTI)

    Koncinski, W.S. [ed.] [Oak Ridge National Lab., TN (United States)

    1995-10-01T23:59:59.000Z

    This report presents the details of the environmental monitoring and management plan for the Oak Ridge Reservation. Topics include: site and operations overview; environmental compliance strategies; environmental management program; effluent monitoring; environmental surveillance; radiation doses; chemical doses; ground water; and quality assurance.

  6. Oak Ridge National Laboratory Chemical Sciences at ORNL

    E-Print Network [OSTI]

    and transportation - Recycling economics - Life-cycle assessment · Market Prospects and Acceptance - Consumer choice scattering -Adsorption isotherms #12;2 Oak Ridge National Laboratory D0000499 Carbon Materials Research Group and acceptability - Market modeling and assessment, supply and demand balances - Technology choice and transitions

  7. OAK RIDGE ORNL/TM-2008/131 NATIONAL LABORATORY

    E-Print Network [OSTI]

    Pennycook, Steve

    OAK RIDGE ORNL/TM-2008/131 NATIONAL LABORATORY MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY of Energy (DOE) Information Bridge: Web site: http://www.osti.gov/bridge Reports produced before January 1) representatives, and International Nuclear Information System (INIS) representatives from the following source

  8. OAK RIDGE ORNL/TM-2008/ NATIONAL LABORATORY

    E-Print Network [OSTI]

    Pennycook, Steve

    OAK RIDGE ORNL/TM-2008/ NATIONAL LABORATORY MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY, may be purchased by members of the public from the following source: National Technical Information) representatives, and International Nuclear Information System (INIS) representatives from the following source

  9. OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

    E-Print Network [OSTI]

    enrichment factors (a measure of the change in C isotopic composition through the soil profile with 13C enrichment factors2 (a measure of change in C isotopic composition with soil depth). In the words1 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Depth Profiles of Forest Soil C Isotope

  10. Environmental Compliance and Protection Program Description Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Bechtel Jacobs

    2009-02-26T23:59:59.000Z

    The objective of the Environmental Compliance and Protection (EC and P) Program Description (PD) is to establish minimum environmental compliance requirements and natural resources protection goals for the Bechtel Jacobs Company LLC (BJC) Oak Ridge Environmental Management Cleanup Contract (EMCC) Contract Number DE-AC05-98OR22700-M198. This PD establishes the work practices necessary to ensure protection of the environment during the performance of EMCC work activities on the US Department of Energy's (DOE's) Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee, by BJC employees and subcontractor personnel. Both BJC and subcontractor personnel are required to implement this PD. A majority of the decontamination and demolition (D and D) activities and media (e.g., soil and groundwater) remediation response actions at DOE sites on the ORR are conducted under the authority of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). CERCLA activities are governed by individual CERCLA decision documents (e.g., Record of Decision [ROD] or Action Memorandum) and according to requirements stated in the Federal Facility Agreement for the Oak Ridge Reservation (DOE 1992). Applicable or relevant and appropriate requirements (ARARs) for the selected remedy are the requirements for environmental remediation responses (e.g., removal actions and remedial actions) conducted under CERCLA.

  11. CRAD, Maintenance- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Maintenance Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  12. CRAD, Management- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Management in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  13. CRAD, Training- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Training Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  14. Landscape Dynamics of the Spread of Sudden Oak Death

    E-Print Network [OSTI]

    Kelly, Maggi

    spatial variations in environmental factors andAbstract plant community structure (Ristaino and Gumpertz mortality in thepotential summer solar radiation. This research demonstrates study area;the utility of integrating remotely sensed imagery analysis with Determine the scale and extent to which the oak mortality

  15. DOE/ORO/2218 Oak Ridge Reservation Annual Site

    E-Print Network [OSTI]

    Pennycook, Steve

    ............................................................................................................ xxi Units of Measure and Conversion Factors by UT-Battelle, LLC for the Department of Energy under Contract No. DE-AC05-00OR22725 and by the Y-12 of Energy under Contract No. DE-AC05-00OR22800 and by East Tennessee Technology Park P.O. Box 4699, Oak

  16. DOE/ORO/2261 Oak Ridge Reservation Annual Site

    E-Print Network [OSTI]

    Pennycook, Steve

    ............................................................................................................ xix Units of Measure and Conversion Factors Laboratory P.O. Box 2008, Oak Ridge, TN 37831-2008 Managed by UT-Battelle, LLC, for the Department of Energy-8169 Managed by B&W Technical Services Y-12, L.L.C., for the Department of Energy under Contract No. DE-AC05

  17. DOE/ORO/2296 Oak Ridge Reservation Annual Site

    E-Print Network [OSTI]

    Pennycook, Steve

    ............................................................................................................. xvii Units of Measure and Conversion Factors, Oak Ridge, TN 37831-2008 Managed by UT-Battelle, LLC, for the Department of Energy under Contract No&W Technical Services Y-12, L.L.C., for the Department of Energy under Contract No. DE-AC05-00OR22800

  18. Center for Transportation Analysis News Oak Ridge National Laboratory

    E-Print Network [OSTI]

    Center for Transportation Analysis News Oak Ridge National Laboratory 2360.cta.ornl.gov/cta Pat Hu named Director of the Bureau of Transportation Statistics January 14, 2011 - Patricia Hu has been named as the Director of the Bureau of Transportation Statistics (BTS) by Peter H. Appel

  19. Oak Ridge National Laboratory Institutional Plan, FY 1995--FY 2000

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    This report discusses the institutional plan for Oak Ridge National Laboratory for the next five years (1995-2000). Included in this report are the: laboratory director`s statement; laboratory mission, vision, and core competencies; laboratory plan; major laboratory initiatives; scientific and technical programs; critical success factors; summaries of other plans; and resource projections.

  20. Oak Ridge Y-12 Plant groundwater protection program management plan

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    The Oak Ridge Y- 1 2 Plant (Y-12 Plant) is owned by the United States Department of Energy (DOE) and managed by Lockheed Martin Energy Systems, Inc. (Energy Systems) under contract No. DE-AC05-84OR21400. The Y-12 Plant Groundwater Protection Program (GWPP), which was initiated in 1975, provides for the protection of groundwater resources consistent with Federal, State, and local regulations, and in accordance with DOE orders and Energy Systems policies and procedures. The Y-12 Plant is located in Anderson County, Tennessee, and is within the corporate limits of the City of Oak Ridge. The Y-12 Plant is one of three major DOE complexes that comprise the 37,000-acre Oak Ridge Reservation (ORR) located in Anderson and Roane counties. The Y-12 Plant is located in Bear Creek Valley at an elevation of about 950 feet (ft) above sea level. Bear Creek Valley is bounded on the northwest and southeast, and is isolated from populated areas of Oak Ridge, by parallel ridges that rise about 300 ft above the valley floor. The Y-12 Plant and its fenced buffer area are about 0.6 mile wide by 3.2 miles long and cover approximately 4,900 acres. The main industrialized section encompasses approximately 800 acres.

  1. Original article Is site preparation necessary for bur oak receiving

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    (glyphosate herbicide or black plastic mulching) in 120 cm strips over the seedling rows of bur oak (Quercus were larger in the plastic mulch treatment than in the glyphosate treatment. Results support plastic mulch / Quercus macrocarpa Résumé - La préparation du site est-elle nécessaire lorsqu

  2. Climate Change Science Institute at Oak Ridge National Laboratory

    E-Print Network [OSTI]

    Climate Change Science Institute at Oak Ridge National Laboratory A multidisciplinary research the consequences of climate change, and evaluate and inform policy responses to climate change Highlights of CCSI research include · Participation in the Intergovernmental Panel on Climate Change Fifth Assessment Report

  3. CRAD, Engineering- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Engineering Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  4. 65USDA Forest Service Gen. Tech. Rep. PSW-GTR-160. 1997. Soil Characteristics of Blue Oak and

    E-Print Network [OSTI]

    Standiford, Richard B.

    65USDA Forest Service Gen. Tech. Rep. PSW-GTR-160. 1997. Soil Characteristics of Blue Oak and Coast, California, soils associated with blue oaks (Quercus douglasii) are slightly more acidic, have finer textures are richer in organic matter than those associated with blue oaks. Blue oaks seem to grow more frequently

  5. Soil Management Plan for the Oak Ridge Y-12 National Security Complex Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    None

    2005-03-02T23:59:59.000Z

    This Soil Management Plan applies to all activities conducted under the auspices of the National Nuclear Security Administration (NNSA) Oak Ridge Y-12 National Security Complex (Y-12) that involve soil disturbance and potential management of waste soil. The plan was prepared under the direction of the Y-12 Environmental Compliance Department of the Environment, Safety, and Health Division. Soil disturbances related to maintenance activities, utility and building construction projects, or demolition projects fall within the purview of the plan. This Soil Management Plan represents an integrated, visually oriented, planning and information resource tool for decision making involving excavation or disturbance of soil at Y-12. This Soil Management Plan addresses three primary elements. (1) Regulatory and programmatic requirements for management of soil based on the location of a soil disturbance project and/or the regulatory classification of any contaminants that may be present (Chap. 2). Five general regulatory or programmatic classifications of soil are recognized to be potentially present at Y-12; soil may fall under one or more these classifications: (a) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) pursuant to the Oak Ridge Reservation (ORR) Federal Facilities Agreement; (b) Resource Conservation and Recovery Act (RCRA); (c) RCRA 3004(u) solid waste managements units pursuant to the RCRA Hazardous and Solid Waste Amendments Act of 1984 permit for the ORR; (d) Toxic Substances and Control Act-regulated soil containing polychlorinated biphenyls; and (e) Radiologically contaminated soil regulated under the Atomic Energy Act review process. (2) Information for project planners on current and future planned remedial actions (RAs), as prescribed by CERCLA decision documents (including the scope of the actions and remedial goals), land use controls implemented to support or maintain RAs, RCRA post-closure regulatory requirements for former waste management units, legacy contamination source areas and distribution of contamination in soils, and environmental infrastructure (e.g., caps, monitoring systems, etc.) that is in place or planned in association with RAs. (3) Regulatory considerations and processes for management and disposition of waste soil upon generation, including regulatory drivers, best management practices (BMPs), waste determination protocols, waste acceptance criteria, and existing waste management procedures and BMPs for Y-12. This Soil Management Plan provides information to project planners to better coordinate their activities with other organizations and programs with a vested interest in soil disturbance activities at Y-12. The information allows project managers and maintenance personnel to evaluate and anticipate potential contaminant levels that may be present at a proposed soil disturbance site prior to commencement of activities and allows a more accurate assessment of potential waste management requirements.

  6. EIS-0110: Central Waste Disposal Facility for Low-Level Radioactive Waste, Oak Ridge Reservation, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This EIS assesses the environmental impacts of alternatives for the disposal of low-level waste and by-product materials generated by the three major plants on the Oak Ridge Reservation (ORR). In addition to the no-action alternative, two classes of alternatives are evaluated: facility design alternatives and siting alternatives.

  7. Site characterization plan for groundwater in Waste Area Grouping 1 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Lee, R.R.; Curtis, A.H.; Houlberg, L.M.; Purucker, S.T.; Singer, M.L.; Tardiff, M.F.; Wolf, D.A.

    1994-07-01T23:59:59.000Z

    The Waste Area Grouping (WAG) 1 Groundwater Operable Unit (OU) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, is undergoing a site characterization to identify environmental contamination that may be present. This document, Site Characterization Report for Groundwater in Waste Area Grouping I at Oak Ridge National Laboratory, Oak Ridge, Tennessee, identifies areas of concern with respect to WAG 1 groundwater and presents the rationale, justification, and objectives for conducting this continuing site characterization. This report summarizes the operations that have taken place at each of the areas of concern in WAG 1, summarizes previous characterization studies that have been performed, presents interpretations of previously collected data and information, identifies contaminants of concern, and presents an action plan for further site investigations and early actions that will lead to identification of contaminant sources, their major groundwater pathways, and reduced off-site migration of contaminated groundwater to surface water. Site characterization Activities performed to date at WAG I have indicated that groundwater contamination, principally radiological contamination, is widespread. An extensive network of underground pipelines and utilities have contributed to the dispersal of contaminants to an unknown extent. The general absence of radiological contamination in surface water at the perimeter of WAG 1 is attributed to the presence of pipelines and underground waste storage tank sumps and dry wells distributed throughout WAG 1 which remove more than about 40 million gal of contaminated groundwater per year.

  8. Environmental Survey preliminary report, Oak Ridge National Laboratory (X-10), Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1988-07-01T23:59:59.000Z

    This report presents the preliminary findings from the first phase of the Environmental Survey of the US Department of Energy (DOE) Oak Ridge National Laboratory (ORNL), X-10 site, conducted August 17 through September 4, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with ORNL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at ORNL, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory or a support contractor. When completed, the results will be incorporated into the Environmental Survey Interim Report for ORNL. The Interim Report will reflect the final determinations of the ORNL Survey. 120 refs., 68 figs., 71 tabs.

  9. Environmental Survey preliminary report, Oak Ridge Gaseous Diffusion Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1989-02-01T23:59:59.000Z

    This report presents the preliminary findings from the first phase of the Environmental Survey of the US Department of Energy's (DOE) Oak Ridge Gaseous Diffusion Plant (ORGDP) conducted March 14 through 25, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental risk associated with ORGDP. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at ORGDP, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during is on-site activities. The Sampling and Analysis Plan will be executed by Idaho National Engineering Laboratory (INEL). When completed, the results will be incorporated into the ORGDP Survey findings for in inclusion into the Environmental Survey Summary Report. 120 refs., 41 figs., 74 tabs.

  10. Underground storage tank management plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    The Underground Storage Tank (UST) Program at the Oak Ridge Y-12 Plant was established to locate UST systems at the facility and to ensure that all operating UST systems are free of leaks. UST systems have been removed or upgraded in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance. With the closure of a significant portion of the USTs, the continuing mission of the UST Management Program is to manage the remaining active UST systems and continue corrective actions in a safe regulatory compliant manner. This Program outlines the compliance issues that must be addressed, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Program provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. The plan is divided into three major sections: (1) regulatory requirements, (2) active UST sites, and (3) out-of-service UST sites. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Program, and the procedures and guidance for compliance.

  11. Environmental Monitoring Plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    This document presents the Environmental Monitoring Plan (EMP) for Waste Area Grouping (WAG) 6 at the Oak Ridge National Laboratory (ORNL). Based on the results of the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) and on subsequent discussions with regulators, a decision was made to defer implementing source control remedial measures at the WAG. The alternative selected to address the risks associated with WAG 6 involves maintenance of site access controls prevent public exposure to on-site contaminants, continued monitoring of contaminant releases determine if source control measures are required, and development of technologies that could support the final remediation of WAG 6. Although active source control measures are not being implemented at WAG 6, environmental monitoring is necessary to ensure that any potential changes in contaminant release from the WAG are identified early enough to take appropriate action. Two types of environmental monitoring will be conducted: baseline monitoring and annual routine monitoring. The baseline monitoring will be conducted to establish the baseline contaminant release conditions at the WAG, confirm the site-related chemicals of concern (COCs), and gather data to confirm the site hydrologic model. The baseline monitoring is expected to begin in 1994 and last for 12--18 months. The annual routine monitoring will consist of continued sampling and analyses of COCs to determine off-WAG contaminant flux and risk, identify mills in releases, and confirm the primary contributors to risk. The annual routine monitoring will continue for {approximately} 4 years after completion of the baseline monitoring.

  12. Environmental monitoring plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    This document presents an Environmental Monitoring Plan (EMP) for Waste Area Grouping (WAG 6) at Oak Ridge National Laboratory (ORNL). This document updates a draft monitoring plan developed in 1993. The draft plan was never finalized awaiting resolution of the mechanisms for addressing RCRA concerns at a site where the CERCLA process resulted in a decision to defer action, i.e., postpone closure indefinitely. Over the past two years the Tennessee Department of Environment and Conservation (TDEC), US Department of Energy (DOE), and US Environmental Protection Agency (EPA) Region IV, have agreed that RCRA authority at the site will be maintained through a post- closure permit; ``closure`` in this case referring to deferred action. Both a Revised Closure Plan (DOE 1995a) and a Post-Closure Permit Application (DOE 1995b) have been developed to document this agreement; relevant portions of the EMP will be included in the RCRA Post-Closure Permit Application. As the RCRA issues were being negotiated, DOE initiated monitoring at WAG 6. The purpose of the monitoring activities was to (1) continue to comply with RCRA groundwater quality assessment requirements, (2) install new monitoring equipment, and (3) establish the baseline conditions at WAG 6 against which changes in contaminant releases could be measured. Baseline monitoring is scheduled to end September 30, 1995. Activities that have taken place over the past two years are summarized in this document.

  13. Removal site evaluation report for the Isotope Facilities at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    This removal site evaluation (RmSE) report of the Isotope Facilities at Oak Ridge National Laboratory (ORNL) was prepared to provide the Environmental Restoration Program with information necessary to evaluate whether hazardous and/or radiological contaminants in and around the Isotopes Facility pose a substantial risk to human health or the environment and if remedial site evaluations (RSEs) or removal actions are required. The scope of the project included: (1) a review of historical evidence regarding operations and use of the facility; (2) interviews with facility personnel concerning current and past operating practices; (3) a site inspection; and (4) identification of hazard areas requiring maintenance, removal, or remedial actions. The results of RmSE indicate that no substantial risks exist from contaminants present in the Isotope Facilities because adequate controls and practices exist to protect human health and the environment. The recommended correction from the RmSE are being conducted as maintenance actions; accordingly, this RmSE is considered complete and terminated.

  14. --No Title--

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fred Strohl Communications 865.574.4165 Energy efficient video game technology in Titan supercomputer Listen to the audio OAK RIDGE, Tenn., Dec. 27, 2012 - Oak Ridge National...

  15. National School on Neutron and X-ray Scattering Oak Ridge National Laboratory June 12-26, 2010 Oak Ridge, Tennessee

    E-Print Network [OSTI]

    Pennycook, Steve

    National School on Neutron and X-ray Scattering Oak Ridge National Laboratory June 12-26, 2010 Oak:30 Lecture Inelastic Neutron Scattering B. D. Gaulin McMaster University Lecture Magnetic Scattering B. D Break Break Break Break 9:45 - 10:45 Lecture Continued Inelastic Neutron Scattering B. D. Gaulin Mc

  16. PRESOLICITATION Category: A. Owner: Department of Energy, Oak Ridge National Laboratory -UT Battelle LLC (DOE Contractor), Oak Ridge National Laboratory, Bethel

    E-Print Network [OSTI]

    Hively, Lee M.

    Battelle LLC (DOE Contractor), Oak Ridge National Laboratory, Bethel Valley Road P.O. Box 2008, Oak Ridge-serial data to detect and forewarn of biomedical events and machine failures. UT-Battelle LLC (UT-Battelle process will be facilitated through appropriate licensing of UT-Battelle's intellectual property

  17. Oak Ridge K-25 Site Technology Logic Diagram

    SciTech Connect (OSTI)

    Fellows, R.L. (ed.)

    1993-02-26T23:59:59.000Z

    The Oak Ridge K-25 Technology Logic Diagram (TLD), a decision support tool for the K-25 Site, was developed to provide a planning document that relates envirorunental restoration and waste management problems at the Oak Ridge K-25 Site to potential technologies that can remediate these problems. The TLD technique identifies the research necessary to develop these technologies to a state that allows for technology transfer and application to waste management, remedial action, and decontamination and decommissioning activities. The TLD consists of four separate volumes-Vol. 1, Vol. 2, Vol. 3A, and Vol. 3B. Volume 1 provides introductory and overview information about the TLD. This volume, Volume 2, contains logic diagrams with an index. Volume 3 has been divided into two separate volumes to facilitate handling and use.

  18. Status report: A hydrologic framework for the Oak Ridge Reservation

    SciTech Connect (OSTI)

    Solomon, D.K.; Toran, L.E.; Dreier, R.B. [Oak Ridge National Lab., TN (United States); Moore, G.K.; McMaster, W.M. [Tennessee Univ., Knoxville, TN (United States). Dept. of Civil Engineering

    1992-05-01T23:59:59.000Z

    This first status report on the Hydrologic Studies Task of the Oak Ridge Reservation Hydrology and Geology Study (ORRHAGS) revises earlier concepts of subsurface hydrology and hydrogeochemistry of the ORR. A new classification of hydrogeologic units is given, as well as new interpretations of the gydrogeologic properties and processes that influence contaminant migration. The conceptual hydrologic framework introduced in this report is based primarily on reinterpretations of data acquired during earlier hydrologic investigations of waste areas at and near the three US Department of Energy Oak Ridge (DOE-OR) plant facilities. In addition to describing and interpreting the properties and processes of the groundwater systems as they are presently understood, this report describes surface water-subsurface water relations, influences on contaminant migration,and implications to environmental restoration, environmental monitoring, and waste management.

  19. Native Grass Community Management Plan for the Oak Ridge Reservation

    SciTech Connect (OSTI)

    Ryon, Michael G [ORNL; Parr, Patricia Dreyer [ORNL; Cohen, Kari [ORNL

    2007-06-01T23:59:59.000Z

    Land managers at the Department of Energy's Oak Ridge National Laboratory in East Tennessee are restoring native warm-season grasses and wildflowers to various sites across the Oak Ridge Reservation (ORR). Some of the numerous benefits to planting native grasses and forbs include improved habitat quality for wildlife, improved aesthetic values, lower long-term maintenance costs, and compliance with Executive Order 13112 (Clinton 1999). Challenges to restoring native plants on the ORR include the need to gain experience in establishing and maintaining these communities and the potentially greater up-front costs of getting native grasses established. The goals of the native grass program are generally outlined on a fiscal-year basis. An overview of some of the issues associated with the successful and cost-effective establishment and maintenance of native grass and wildflower stands on the ORR is presented in this report.

  20. Environmental Monitoring Plan for the Oak Ridge Reservation, 2012

    SciTech Connect (OSTI)

    Thompson, Sharon D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2012-10-01T23:59:59.000Z

    The purpose of Oak Ridge Reservation (ORR) environmental surveillance is to characterize radiological and nonradiological conditions of the off-site environs and estimate public doses related to these conditions, confirm estimations of public dose based on effluent monitoring data, and, where appropriate, provide supplemental data to support compliance monitoring for applicable environmental regulations. This environmental monitoring plan (EMP) is intended to document the rationale, frequency, parameters, and analytical methods for the ORR environmental surveillance program and provides information on ORR site characteristics, environmental pathways, dose assessment methods, and quality management. ORR-wide environmental monitoring activities include a variety of media including air, surface water, vegetation, biota, and wildlife. In addition to these activities, site-specific effluent, groundwater, and best management monitoring programs are conducted at the Oak Ridge National Laboratory (ORNL), the Y-12 National Security Complex (Y-12), and the East Tennessee Technology Park (ETTP). This is revision 5.

  1. Oak Ridge K-25 Site Technology Logic Diagram

    SciTech Connect (OSTI)

    Fellows, R.L. (ed.)

    1993-02-26T23:59:59.000Z

    The Oak Ridge K-25 Technology Logic Diagram (TLD), a decision support tool for the K-25 Site, was developed to provide a planning document that relates environmental restoration and waste management problems at the Oak Ridge K-25 Site to potential technologies that can remediate these problems. The TLD technique identifies the research necessary to develop these technologies to a state that allows for technology transfer and application to waste management, remedial action, and decontamination and decommissioning activities. The TLD consists of four separate volumes-Vol. 1, Vol. 2, Vol. 3A, and Vol. 3B. Volume 1 provides introductory and overview information about the TLD. Volume 2 contains logic diagrams. Volume 3 has been divided into two separate volumes to facilitate handling and use. This report is part A of Volume 3 concerning characterization, decontamination, and dismantlement.

  2. Work plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S and M) and as quickly and economical as possible. Implementation and completion of the deactivation project will further reduce the risks to the environment and to public safety and health. Furthermore, completion of the project will result in significant S and M cost savings in future years. The IFDP work plan defines the project schedule, the cost estimate, and the technical approach for the project. A companion document, the EFDP management plan, has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted the strategy of deactivating the simple facilities first, to reduce the scope of the project and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify the activities that best promote the project mission and result in the largest cost savings. This work plan will be reviewed and revised annually. Deactivation of EFDP Facilities was initiated in FY 1994 and will be completed in FY 2000. The schedule for deactivation of facilities is shown. The total cost of the project is estimated to be $51M. The costs are summarized. Upon completion of deactivation, annual S and M costs of these facilities will be reduced from the current level of $5M per year to less than $1M per year.

  3. Level 3 baseline risk evaluation for Building 3506 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Golden, K.M.; Robers, S.K.; Cretella, F.M.

    1994-12-01T23:59:59.000Z

    This report presents the results of the Level 3 Baseline Risk Evaluation (BRE) performed on Building 3506 located at the Oak Ridge National Laboratory (ORNL). This BRE is intended to provide an analysis of the potential for adverse health effects (current or future) posed by contaminants at the facility. The decision was made to conduct a Level 3 (least rigorous) BRE because only residual contamination exists in the building. Future plans for the facility (demolition) also preclude a rigorous analysis. Site characterization activities for Building 3506 were conducted in fall of 1993. Concrete core samples were taken from the floors and walls of both the cell and the east gallery. These cores were analyzed for radionuclides and organic and inorganic chemicals. Smear samples and direct radiation measurements were also collected. Sediment exists on the floor of the cell and was also analyzed. To adequately characterize the risks posed by the facility, receptors for both current and potential future land uses were evaluated. For the current land use conditions, two receptors were evaluated. The first receptor is a hypothetical maintenance worker who spends 250 days (8 hours/day) for 25 years working in the facility. The remaining receptor evaluated is a hypothetical S and M worker who spends 2 days (8 hours/day) per year for 25 years working within the facility. This particular receptor best exemplifies the current worker scenario for the facility. The two current exposure scenarios and parameters of exposure (e.g., inhalation and ingestion rates) have been developed to provide a conservative (i.e. health protective) estimate of potential exposure.

  4. Technology study of Gunite tank sludge mobilization at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    DeVore, J.R.; Herrick, T.J.; Lott, K.E.

    1994-12-01T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) Gunite Tank Sludge Mobilization Technology Study was initiated to support the Gunite Tank Treatability Study effort. The technology study surveyed the methods and technologies available for tank cleaning and sludge mobilization in a radioactive environment. Technologies were identified and considered for applicability to the Gunite and Associated Tanks (GAAT) problems. These were then either accepted for further study or rejected as not applicable. Technologies deemed applicable to the GAAT sludge removal project were grouped for evaluation according to (1) deployment method, (2) types of remotely operated end effector equipment applicable to removal of sludge, (3) methods for removing wastes from the tanks, and (4) methods for concrete removal. There were three major groups of deployment technologies: ``past practice`` technologies, mechanical arm-based technologies, and vehicle-based technologies. The different technologies were then combined into logical sequences of deployment platform, problem, end effector, conveyance, post-removal treatment required (if any), and disposition of the waste. Many waste removal options are available, but the best technology in one set of circumstances at one site might not be the best type to use at a different site. No single technology is capable of treating the entire spectrum of wastes that will be encountered in GAAT. None of the systems used in other industries appears to be suitable, primarily because of the nature of the sludges in the GAAT Operable Unit (OU), their radiation levels, and tank geometries. Other commercial technologies were investigated but rejected because the authors did not believe them to be applicable.

  5. Oak Ridge National Laboratory institutional plan, FY 1996--FY 2001

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    This report discusses the institutional plan for Oak Ridge National Laboratory for the next five years. Included in the report are: laboratory director`s statement; laboratory mission, vision, and core competencies; laboratory strategic plan; major laboratory initiatives; scientific and technical programs; critical success factors; summaries of other plans; resource projections; appendix which contains data for site and facilities, user facility, science and mathematic education and human resources; and laboratory organization chart.

  6. Monolithic circuit development for RHIC at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Alley, G.T.; Britton, C.L. Jr.; Kennedy, E.J.; Newport, D.F.; Wintenberg, A.L.; Young, G.R. [Oak Ridge National Laboratory, TN (United States)

    1991-12-31T23:59:59.000Z

    The work performed for RHIC at Oak Ridge National Laboratory during FY 91 is presented in this paper. The work includes preamplifier, analog memory, and analog-digital converter development for Dimuon Pad Readout, and evaluation and development of preamplifier-shapers for silicon strip readout. The approaches for implementation are considered as well as measured data for the various circuits that have been developed.

  7. Executive Order 12941 Implementation at the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Hunt, R.J.; Kroon, R.J.; Shaffer, K.E.

    1998-08-01T23:59:59.000Z

    Congress enacted the Earthquake Hazards Reduction Act of 1977 (Public Law 95-124, as amended) to reduce risks to life and property from future earthquakes in the US. To implement the provisions of the Act, the Interagency Committee on Seismic Safety in Construction (ICSSC) was chartered. Approximately thirty Federal agencies, including the Department of Energy (DOE), participate in the ICSSC. The ICSSC is chaired by the National Institute of Standards (NIST) which also provides the technical secretariat. EO 12941, Seismic Safety of Existing Federally Owned or Leased Buildings, were prepared and issued by the ICSSC to reduce the vulnerability to buildings owned or leased by agencies or departments for Federal use. This report documents the implementation of EO 12941 at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. ORNL is managed and operated by Lockheed Martin Energy Research, Inc. (LMER) for the DOE-Oak Ridge Operations Office (DOE-ORO). The ORNL building inventory includes buildings that are physically located at ORNL, East Tennessee Technology Park (ETTP), and the Oak Ridge Y-12 Plant. This report addresses buildings physically located at the ORNL plant site. ORNL buildings located at ETTP and Y-12 plant sites will be included in the EO 12941 implementation reports for those sites. The scope of this effort included revising the building inventory for ORNL that was prepared prior to the development of the DOE management plan, evaluating owned buildings not exempt from the requirements of EO 12941, estimating the costs associated with the rehabilitation of vulnerable non-exempt buildings, and preparing this report in the TR-17 prescribed format (CNPE 1996). These activities were performed in accordance with the DOE management plan and as applicable, Phase I - Screening Guidelines To Determine The Structures Exempt From Executive Order 12941 (CNPE 1995).

  8. Oak Ridge National Laboratory Technology Logic Diagram. Indexes

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The Decontamination and Decommissioning (D&D) Index provides a comprehensive list of site problems, problem area/constituents, remedial technologies, and regulatory terms discussed in the D&D sections of the Oak Ridge National Laboratory Technology Logic Diagram. All entries provide specific page numbers, or cross-reference entries that provide specific page numbers, in the D&D volumes (Vol. 1, Pt. A; Vol. 2, Pt. A; and appropriate parts of Vol. 3). The Oak Ridge National Laboratory Technology (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA) and WM activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk.

  9. Influence of top removal on tebuthiuron efficacy for live oak control

    E-Print Network [OSTI]

    Swetish, Stephen Michael

    1986-01-01T23:59:59.000Z

    OF CONTENTS. LIST OF TABLES. INTRODUCTION. LITERATURE REVIEW. MATERIALS AND METHODS. Site Description. Experimental Design. Rainfall Data. Live Oak Response. Forage Standing Crops. Herbaceous Cover. RESULTS AND DISCUSSION. Rainfall Data. Live Oak... AND METHODS Site Description This study was conducted on the Sibley Estate near Edna in Lavaca County, Texas. It is located in the transition zone between the Gulf Coast Prairies and Marshes and the Post Oak Savanna Vegetational Areas of Texas (Gould 1975...

  10. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU's) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment and baseline human health evaluation including a toxicity assessment, and a baseline environmental evaluation.

  11. Results of 1995 characterization of Gunite and Associated Tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    This technical memorandum (TM) documents the 1995 characterization of eight underground radioactive waste tanks at Oak Ridge National Laboratory (ORNL). These tanks belong to the Gunite and Associated Tanks (GAAT) operable unit, and the characterization is part of the ongoing GAAT remedial investigation/feasibility study (RI/FS) process. This TM reports both field observations and analytical results; analytical results are also available from the Oak Ridge Environmental Information System (OREIS) data base under the project name GAAT (PROJ-NAME = GAAT). This characterization effort (Phase II) was a follow-up to the {open_quotes}Phase I{close_quotes} sampling campaign reported in Results of Fall 1994 Sampling of Gunite and Associated Tanks at the Oak Ridge National Laboratory, Oak Ridge, Tennessee, ORNL/ER/Sub/87-99053/74, June 1995. The information contained here should be used in conjunction with that in the previous TM. The sampling plan is documented in ORNL Inactive Waste Tanks Sampling and Analysis Plan, ORNL/RAP/LTR-88/24, dated April 1988, as amended by Addendum 1, Revision 2: ORNL Inactive Tanks Sampling and Analysis Plan, DOE/OR/02-1354&D2, dated February 1995. Field team instructions are found in ORNL RI/FS Project Field Work Guides 01-WG-20, Field Work Guide for Sampling of Gunite and Associated Tanks, and 01-WG-21, Field Work Guide for Tank Characterization System Operations at ORNL. The field effort was conducted under the programmatic and procedural umbrella of the ORNL RI/FS Program, and the analysis was in accordance with ORNL Chemical and Analytical Sciences Division (CASD) procedures. The characterization campaign is intended to provide data for criticality safety, engineering design, and waste management as they apply to the GAAT treatability study and remediation. The Department of Energy (DOE) Carlsbad office was interested in results of this sampling campaign and provided funding for certain additional sample collection and analysis.

  12. Phase 2 confirmatory sampling data report, Lower East Fork Poplar Creek, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    A Remedial Investigation of East Fork Poplar Creek (EFPC) concluded that mercury is the principal contaminant of concern in the EFPC floodplain. The highest concentrations of mercury were found to be in a visually distinct black layer of soil that typically lies 15 to 30 cm (6 to 12 in.) below the surface. Mercury contamination was found to be situated in distinct areas along the floodplain, and generally at depths > 20 cm (8 in.) below the surface. In accordance with Comprehensive, Environmental Response, Compensation, and Liability Act (CERCLA), a feasibility study was prepared to assess alternatives for remediation, and a proposed plan was issued to the public in which a preferred alternative was identified. In response to public input, the plan was modified and US Department of Energy (DOE) issued a Record of Decision in 1995 committing to excavating all soil in the EFPC floodplain exceeding a concentration of 400 parts per million (ppm) of mercury. The Lower East Fork Poplar Creek (LEFPC) remedial action (RA) focuses on the stretch of EFPC flowing from Lake Reality at the Y-12 Plant, through the city of Oak Ridge, to Poplar Creek on the Oak Ridge Reservation (ORR) and its associated floodplain. Specific areas were identified that required remediation at the National Oceanographic and Atmospheric Administration (NOAA) Site along Illinois Avenue and at the Bruner Site along the Oak Ridge Turnpike. The RA was conducted in two separate phases. Phase 2, conducted from February to October 1997, completed the remediation efforts at the NOAA facility and fully remediated the Bruner Site. During both phases, data were collected to show that the remedial efforts performed at the NOAA and Bruner sites were successful in implementing the Record of Decision and had no adverse impact on the creek water quality or the city of Oak Ridge publicly owned treatment works.

  13. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU'S) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment from doses to humans and animals and associated cancer risks, exposure via food chains, and historical data. (CBS)

  14. Statistical Description of Liquid Low-Level Waste System Transssuranic Wastes at Oak Ridge Nation Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1996-12-01T23:59:59.000Z

    The US DOE has presented plans for processing liquid low-level wastes (LLLW) located at Oak Ridge National Laboratory (ORNL) in the LLLW tank system. These wastes are among the most hazardous on the Oak Ridge reservation and exhibit both RCRA toxic and radiological hazards. The Tennessee Department of Health and Environment has mandated that the processing of these wastes must begin by the year 2002 and the the goal should be permanent disposal at a site off the Oak Ridge Reservation. To meet this schedule, DOE will solicit bids from various private sector companies for the construction of a processing facility on land located near the ORNL Melton Valley Storage Tanks to be operated by the private sector on a contract basis. This report will support the Request for Proposal process and will give potential vendors information about the wastes contained in the ORNL tank farm system. The report consolidates current data about the properties and composition of these wastes and presents methods to calculate the error bounds of the data in the best technically defensible manner possible. The report includes information for only the tank waste that is to be included in the request for proposal.

  15. Work plan for the High Ranking Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    The High Ranking Facilities Deactivation Project (HRFDP), commissioned by the US Department of Energy Nuclear Materials and Facility Stabilization Program, is to place four primary high-risk surplus facilities with 28 associated ancillary facilities at Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition as rapidly and economically as possible. The facilities will be deactivated and left in a condition suitable for an extended period of minimized surveillance and maintenance (S and M) prior to decontaminating and decommissioning (D and D). These four facilities include two reactor facilities containing spent fuel. One of these reactor facilities also contains 55 tons of sodium with approximately 34 tons containing activated sodium-22, 2.5 tons of lithium hydride, approximately 100 tons of potentially contaminated lead, and several other hazardous materials as well as bulk quantities of contaminated scrap metals. The other two facilities to be transferred include a facility with a bank of hot cells containing high levels of transferable contamination and also a facility containing significant quantities of uranyl nitrate and quantities of transferable contamination. This work plan documents the objectives, technical requirements, and detailed work plans--including preliminary schedules, milestones, and conceptual FY 1996 cost estimates--for the Oak Ridge National Laboratory (ORNL). This plan has been developed by the Environmental Restoration (ER) Program of Lockheed Martin Energy Systems (Energy Systems) for the US Department of Energy (DOE) Oak Ridge Operations Office (ORO).

  16. Research connects soil hydrology and stream water chemistry in California oak woodlands

    E-Print Network [OSTI]

    O'Geen, Anthony T; Dahlgren, Randy A; Swarowsky, Alexandre; Tate, Kenneth W; Lewis, David J; Singer, Michael J

    2010-01-01T23:59:59.000Z

    Dahlgren RA, Tate KW. 2000. Hydrology in a California oakResearch connects soil hydrology and stream water chemistrybetween nitrogen cycling and soil hydrology in a manner that

  17. Thomas Mason Oak Ridge National Lab July 10 2012 SB Summit

    Energy Savers [EERE]

    National Laboratory Presented to the DOENNSA Regional Small Business Summit Thomas E. Mason Director, Oak Ridge National Laboratory Knoxville, Tennessee July 10, 2012 2 Managed...

  18. DOE Deputy Secretary and Rosatom Director Visit Y-12, Oak Ridge...

    National Nuclear Security Administration (NNSA)

    Deputy Secretary and Rosatom Director Visit Y-12, Oak Ridge National Laboratory During Frist Meeting of US-Russian Nuclear Energy and Nuclear Security Working Group | National...

  19. Annual Report for the OAK Fund, Academic Year 2013-2014

    E-Print Network [OSTI]

    Herbert, Bruce E.

    2015-02-17T23:59:59.000Z

    Annual report (year 1) for the OAK Fund, the funding to support publication fees for open access articles written by Texas A&M faculty....

  20. 2014 Annual Planning Summary for the Oak Ridge Office of Environmental Management

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2014 and 2015 within the Oak Ridge Office of Environmental Management.

  1. Annual Report for the OAK Fund, Academic Year 2013-2014 

    E-Print Network [OSTI]

    Herbert, Bruce E.

    2015-02-17T23:59:59.000Z

    Annual report (year 1) for the OAK Fund, the funding to support publication fees for open access articles written by Texas A&M faculty....

  2. Oak Ridge Reservation annual site environmental report for 1996

    SciTech Connect (OSTI)

    NONE

    1997-10-01T23:59:59.000Z

    The US Department of Energy currently oversees activities on the Oak Ridge Reservation (ORR), a government-owned, contractor-operated facility. Three sites compose the reservation: the Oak Ridge Y-12 Plant, Oak Ridge National Laboratory, and East Tennessee Technology Park (formerly the K-25 Site). The ORR was established in the early 1940s as part of the Manhattan Project, a secret undertaking that produced the materials for the first atomic bombs. The reservation`s role has evolved over the years, and it continues to adapt to meet the changing defense, energy, and research needs of the US. Both the work carried out for the war effort and subsequent research, development, and production activities have produced (and continue to produce) radiological and hazardous wastes. This document contains a summary of environmental monitoring activities on the ORR and its surroundings. Environmental monitoring on the ORR consists of two major activities: effluent monitoring and environmental surveillance. Effluent monitoring involves the collection and analysis of samples or measurements of liquid and gaseous effluents prior to release into the environment; these measurements allow the quantification and official reporting of contaminants, assessment of radiation exposures to the public, and demonstration of compliance with applicable standards and permit requirements. Environmental surveillance consists of the collection and analysis of environmental samples from the site and its environs; this provides direct measurement of contaminants in air, water, groundwater, soil, foods, biota, and other media subsequent to effluent release into the environment. Environmental surveillance data verify ORR`s compliance status and, combined with data from effluent monitoring, allow the determination of chemical and radiation dose/exposure assessment of ORR operations and effects, if any, on the local environment.

  3. Simulation of contaminated sediment transport in White Oak Creek basin

    SciTech Connect (OSTI)

    Bao, Y.; Clapp, R.B.; Brenkert, A.L. [Oak Ridge National Lab., TN (United States); Moore, T.D. [Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN (United States); Fontaine, T.A. [Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD (United States)

    1995-12-31T23:59:59.000Z

    This paper presents a systematic approach to management of the contaminated sediments in the White Oak Creek watershed at Oak Ridge National Laboratory near Oak Ridge, Tennessee. The primary contaminant of concern is radioactive cesium-137 ({sup 137}Cs), which binds to soil and sediment particles. The key components in the approach include an intensive sampling and monitoring system for flood events; modeling of hydrological processes, sediment transport, and contaminant flux movement; and a decision framework with a detailed human health risk analysis. Emphasis is placed on modeling of watershed rainfall-runoff and contaminated sediment transport during flooding periods using the Hydrologic Simulation Program- Fortran (HSPF) model. Because a large number of parameters are required in HSPF modeling, the major effort in the modeling process is the calibration of model parameters to make simulation results and measured values agree as closely as possible. An optimization model incorporating the concepts of an expert system was developed to improve calibration results and efficiency. Over a five-year simulation period, the simulated flows match the observed values well. Simulated total amount of sediment loads at various locations during storms match with the observed values within a factor of 1.5. Simulated annual releases of {sup 137}Cs off-site locations match the data within a factor of 2 for the five-year period. The comprehensive modeling approach can provide a valuable tool for decision makers to quantitatively analyze sediment erosion, deposition, and transport; exposure risk related to radionuclides in contaminated sediment; and various management strategies.

  4. Fair Oaks Dairy Farms Cellulosic Ethanol Technology Review Summary

    SciTech Connect (OSTI)

    Andrew Wold; Robert Divers

    2011-06-23T23:59:59.000Z

    At Fair Oaks Dairy, dried manure solids (''DMS'') are currently used as a low value compost. United Power was engaged to evaluate the feasibility of processing these DMS into ethanol utilizing commercially available cellulosic biofuels conversion platforms. The Fair Oaks Dairy group is transitioning their traditional ''manure to methane'' mesophilic anaerobic digester platform to an integrated bio-refinery centered upon thermophilic digestion. Presently, the Digested Manure Solids (DMS) are used as a low value soil amendment (compost). United Power evaluated the feasibility of processing DMS into higher value ethanol utilizing commercially available cellulosic biofuels conversion platforms. DMS was analyzed and over 100 potential technology providers were reviewed and evaluated. DMS contains enough carbon to be suitable as a biomass feedstock for conversion into ethanol by gasification technology, or as part of a conversion process that would include combined heat and power. In the first process, 100% of the feedstock is converted into ethanol. In the second process, the feedstock is combusted to provide heat to generate electrical power supporting other processes. Of the 100 technology vendors evaluated, a short list of nine technology providers was developed. From this, two vendors were selected as finalists (one was an enzymatic platform and one was a gasification platform). Their selection was based upon the technical feasibility of their systems, engineering expertise, experience in commercial or pilot scale operations, the ability or willingness to integrate the system into the Fair Oaks Biorefinery, the know-how or experience in producing bio-ethanol, and a clear path to commercial development.

  5. Oak Ridge Reservation environmental report for 1992. Volume 1: Narrative

    SciTech Connect (OSTI)

    Koncinski, W.S. [ed.

    1993-09-01T23:59:59.000Z

    The two volumes of this report present data and supporting narratives regarding the impact of the US Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) on its environs and the public during 1992. This Volume (Volume 1) includes all narrative descriptions, summaries, and conclusions and is intended to be a ``stand-alone`` report for the reader who does not want to review in detail all of the 1992 data for the ORR. Volume 2 includes the detailed data in formats that ensure all the environmental data are represented. Narratives are not included in Vol. 2.

  6. Oak Ridge Reservation annual site environmental report for 1995

    SciTech Connect (OSTI)

    Koncinski, W.S. [ed.

    1996-09-01T23:59:59.000Z

    This report presents the details of the environmental monitoring and management program for the Oak Ridge Reservation. Topics discussed include: site background, climate, and operations; environmental compliance strategies; effluent monitoring; environmental management program including environmental restoration, decontamination and decommissioning, technology development, and public involvement; effluent monitoring of airborne discharges, liquid discharges, toxicity control and monitoring, biological monitoring and abatement; environmental surveillance which encompasses meteorological monitoring, ambient air monitoring, surface water monitoring, soils monitoring, sediment monitoring, and contamination of food stuffs monitoring; radiation doses; chemical exposures; ground water monitoring; and quality assurance.

  7. The Oak Ridge Competitive Electricity Dispatch (ORCED) Model

    SciTech Connect (OSTI)

    Hadley, Stanton W [ORNL

    2008-06-01T23:59:59.000Z

    The Oak Ridge Competitive electricity Dispatch (ORCED) model has been used for multiple analyses of the impacts of different technologies and policies on the electricity grid. The model was developed over ten years ago and has been greatly enhanced since the initial documentation from June 1998 (ORNL/CON-464). The report gives guidance on the workflow and methodologies used, but does not provide a complete user's manual detailing steps necessary to operate the model. It lists the major resources used, shows the main inputs and outputs of the model, and describes how it can be used for a variety of analyses.

  8. EM's Oak Ridge Office Launches New Website | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributions EMEM Recovery ActSeries |ofEnvironmentPlantsOak

  9. Energy Secretary Steven Chu Visits Oak Ridge | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan Departmentof EnergyPublic Law of| Department ofMake MajorVisits Oak

  10. Comments from the Office of Oak Ridge Mayor, Warren Gooch:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesville EnergyDepartment. CashDay-June 22, 2015 |atfrom the Office of Oak

  11. Contractor Fee Payments - Oak Ridge Operations | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout » Contact Us Contact UsEnergyOak Ridge Operations

  12. DOE Names Oak Ridge Cleanup Manager | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE FitsEnergy AllNNSA SiteNames Oak Ridge

  13. Oak Ridge Manufacturing Demonstration Facility (MDF) | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment ofDepartment640OrderOREMJanuary 20149 IndustrialOak

  14. Oak Ridge Office of Environmental Management P.O

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment ofDepartment640OrderOREMJanuary 20149Oak Ridge OPEIUMr.

  15. Oak Ridge Operations Office of Environmental Management Overview

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment ofDepartment640OrderOREMJanuary 20149Oak Ridge OPEIUMr..*

  16. Oak Ridge Operations Office of Environmental Management Overview |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment ofDepartment640OrderOREMJanuary 20149Oak Ridge

  17. Oak Ridge Office of Environmental Management | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for #SpaceWeekOMB Policies OMB PoliciesAbout Us »Oak

  18. Oak Ridge EM Program Collaborates with Regulators on Groundwater Strategy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Order No.of Energy251NewsEnergyOak

  19. Oak Ridge Makes Safety a Community Affair | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Order No.ofUse | Department of EnergyFocusesOak

  20. Oak Ridge National Laboratory Cleanup | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Order No.ofUse | Department ofFCTO T2M Event atOak

  1. Shrub Oak, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York: EnergySumoncleShidaMinnesota:Shreveport,Shrub Oak, New

  2. Early Oak Ridge Home | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work4/11 ENVIROISSUESEVALUATINGG7.0EXPOHome Early Oak

  3. Early Oak Ridge Trailer Home | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work4/11 ENVIROISSUESEVALUATINGG7.0EXPOHome Early OakHome

  4. Oak Ridge Site Specific Advisory Board Contacts | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake YourDepartment ofC T O B E R 2ofResoursesContacts Oak

  5. Oak Ridge Reservation's emergency sectors change | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse to Time-BasedDecember 23,Misc CasesOUO ReviewSiteOak Ridge

  6. Oak Ridge Site Specific Advisory Board | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse to Time-BasedDecember 23,Misc CasesOUO ReviewSiteOak

  7. Oak Ridge Reservation Needs Assessment | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM Policy Acquisition Guides OPAMOREMORSSABandPartneringOak

  8. Royal Oak, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey Jump to:WY) Jump to:Rosneft Jump to:RothOak,

  9. OAK RIDGE NATIONAL LABORATORY ORNLyRStC'45

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronicCurves |double-beta decay experiments | SciTechConnectoml OAK RIDGE

  10. Oak Ridge Reservation Compliance Order, September 26, 1995 Summary

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - T en Y earEnergy T H E D I R E CSafety andSiteDepartmentOak

  11. Oak Brook, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence SeedNunn,and Fees for GeothermalOTilt JumpOak Brook,

  12. Oak Forest, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence SeedNunn,and Fees for GeothermalOTilt JumpOak

  13. Oak Grove, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence SeedNunn,and Fees for GeothermalOTilt JumpOakOregon:

  14. Thousand Oaks, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThe yearThermalSoulOaks, California: Energy

  15. Area Lodging: Oak Ridge | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumni AlumniFederal FacilityAprilAre Earths Rare?Oak Ridge Area

  16. Analysis Activities at Oak Ridge National Laboratory | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NMPerformance |Should KnowCompressor |Laboratory |Oak

  17. About Oak Ridge | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1 Introduction In the design ThisLPO About LPOAbout Oak

  18. Village of Oak Harbor, Ohio (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planningFlowmeter LoggingVillage ofVillageMorrill, NebraskaNewOak

  19. Oak Ridge Construction | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeeding access toScientificScientificConstruction Oak Ridge

  20. Oak Ridge Metrology Center | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeeding access(SC) Oak Ridge Leadership ComputingGlobal