National Library of Energy BETA

Sample records for aromatics volume percent

  1. Variable Average Absolute Percent Differences

    U.S. Energy Information Administration (EIA) Indexed Site

    Variable Average Absolute Percent Differences Percent of Projections Over- Estimated Gross Domestic Product Real Gross Domestic Product (Average Cumulative Growth)* (Table 2) 0.9 45.8 Petroleum Imported Refiner Acquisition Cost of Crude Oil (Constant $) (Table 3a) 37.7 17.3 Imported Refiner Acquisition Cost of Crude Oil (Nominal $) (Table 3b) 36.6 18.7 Total Petroleum Consumption (Table 4) 7.9 70.7 Crude Oil Production (Table 5) 8.1 51.1 Petroleum Net Imports (Table 6) 24.7 73.8 Natural Gas

  2. Norwich Public Utilities- Zero Percent Financing Program

    Broader source: Energy.gov [DOE]

    In partnership with several local banks, Norwich Public Utilities (NPU) is offering a zero percent loan to commercial and industrial customers for eligible energy efficiency improvement projects....

  3. Make aromatics from LPG

    SciTech Connect (OSTI)

    Doolan, P.C. ); Pujado, P.R. )

    1989-09-01

    Liquefied petroleum gas (LPG) consists mainly of the propane and butane fraction recovered from gas fields, associated petroleum gas and refinery operations. Apart from its use in steam cracking and stream reforming, LPG has few petrochemical applications. The relative abundance of LPG and the strong demand for aromatics - benzene, toluene and xylenes (BTX) - make it economically attractive to produce aromatics via the aromatization of propane and butanes. This paper describes the Cyclar process, which is based on a catalyst formulation developed by BP and which uses UOP's CCR catalyst regeneration technology, converts propane, butanes or mixtures thereof to petrochemical-quality aromatics in a single step.

  4. Million Cu. Feet Percent of National Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    8 Minnesota - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet ... Summary statistics for natural gas - Minnesota, 2010-2014 2010 2011 2012 2013 2014 ...

  5. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Alaska - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 269 277 185 R 159 170 Production (million cubic feet) Gross Withdrawals From Gas Wells 127,417 112,268

  6. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 District of Columbia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells

  7. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Massachusetts - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0

  8. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    50 North Dakota - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S36. Summary statistics for natural gas - North Dakota, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 188 239 211 200 200 Production (million cubic feet) Gross Withdrawals From Gas Wells

  9. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Washington - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S49. Summary statistics for natural gas - Washington, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil

  10. District of Columbia Natural Gas Percent Sold to The Commercial...

    U.S. Energy Information Administration (EIA) Indexed Site

    by Local Distribution Companies (Percent) District of Columbia Natural Gas Percent Sold to The Commercial Sectors by Local Distribution Companies (Percent) Decade Year-0 ...

  11. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Alabama - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S1. Summary statistics for natural gas - Alabama, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,026 7,063 6,327 R 6,165 6,118 Production (million cubic feet) Gross Withdrawals From Gas Wells

  12. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Colorado - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 28,813 30,101 32,000 R 32,468 38,346 Production (million cubic feet) Gross Withdrawals From Gas

  13. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Florida - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S10. Summary statistics for natural gas - Florida, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 17,182 16,459 19,742

  14. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Hawaii - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S13. Summary statistics for natural gas - Hawaii, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0

  15. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Idaho - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S14. Summary statistics for natural gas - Idaho, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0

  16. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Kansas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S18. Summary statistics for natural gas - Kansas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 22,145 25,758 24,697 R 23,792 24,354 Production (million cubic feet) Gross Withdrawals From Gas Wells

  17. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Louisiana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 19,137 21,235 19,792 R 19,528 19,251 Production (million cubic feet) Gross Withdrawals From Gas

  18. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 New Mexico - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S33. Summary statistics for natural gas - New Mexico, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,748 32,302 28,206 R 27,073 27,957 Production (million cubic feet) Gross Withdrawals From

  19. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Oregon - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 26 24 27 R 26 28 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,407 1,344 770 770

  20. Million Cu. Feet Percent of National Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    as known volumes of natural gas that were the result of leaks, damage, accidents, migration, andor blow down. Notes: Totals may not add due to independent rounding. Prices are...

  1. Percent of Industrial Natural Gas Deliveries in New Mexico Represented...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico Represented by the Price (Percent) Percent of Industrial Natural Gas Deliveries in New Mexico Represented by the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct ...

  2. Federal Government Increases Renewable Energy Use Over 1000 Percent...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Government Increases Renewable Energy Use Over 1000 Percent since 1999; Exceeds Goal Federal Government Increases Renewable Energy Use Over 1000 Percent since 1999; Exceeds Goal...

  3. Synthetic fuel aromaticity and staged combustion

    SciTech Connect (OSTI)

    Longanbach, J. R.; Chan, L. K.; Levy, A.

    1982-11-15

    Samples of middle and heavy SRC-II distillates were distilled into 50 C boiling point range fractions. These were characterized by measurements of their molecular weight, elemental analysis and basic nitrogen content and calculation of average molecular structures. The structures typically consisted of 1 to 3 aromatic rings fused to alicyclic rings with short, 1 to 3 carbon aliphatic side chains. The lower boiling fractions contained significant amounts (1 atom/molecule) of oxygen while the heavier fractions contained so few heteroatoms that they were essentially hydrocarbons. Laboratory scale oxidative-pyrolysis experiments were carried out at pyrolysis temperatures of 500 to 1100 C and oxygen concentrations from 0 to 100 percent of stoichiometry. Analysis of liquid products, collected in condensers cooled with liquid nitrogen showed that aromatization is a major reaction in the absence of oxygen. The oxygen-containing materials (phenolics) seem to be more resistant to thermal pyrolysis than unsubstituted aromatics. Nitrogen converts from basic to nonbasic forms at about 500 C. The nonbasic nitrogen is more stable and survives up to 700 C after which it is slowly removed. A recently constructed 50,000 Btu/hr staged combustor was used to study the chemistry of the nitrogen and aromatics. SRC II combustion was studied under fuel-rich, first-stage conditions at air/fuel ratios from 0.6 to 1.0 times stoichiometric. The chemistry of the fuel during combustion calls for further investigation in order to examine the mechanism by which HCN is evolved as a common intermediate for the formation of the nitrogen-containing gaseous combustion products. 25 references, 45 figures, 25 tables.

  4. Aromatic molecules as spintronic devices

    SciTech Connect (OSTI)

    Ojeda, J. H.; Orellana, P. A.; Laroze, D.

    2014-03-14

    In this paper, we study the spin-dependent electron transport through aromatic molecular chains attached to two semi-infinite leads. We model this system taking into account different geometrical configurations which are all characterized by a tight binding Hamiltonian. Based on the Green's function approach with a Landauer formalism, we find spin-dependent transport in short aromatic molecules by applying external magnetic fields. Additionally, we find that the magnetoresistance of aromatic molecules can reach different values, which are dependent on the variations in the applied magnetic field, length of the molecules, and the interactions between the contacts and the aromatic molecule.

  5. Process for conversion of light olefins to LPG and aromatics

    SciTech Connect (OSTI)

    Martindale, D.C.; Andermann, R.E.; Mowry, J.R.

    1989-01-03

    A hydrocarbon conversion process is described which comprises passing a hydrocarbon feed stream comprising at least 30 mole percent olefins having 3 to 4 carbon atoms per molecule and also comprising at least 50 mole percent paraffins having 3 to 4 carbon atoms per molecule and containing less than 10 mole percent C/sub 5/-plus hydrocarbons into a catalytic reaction zone operated at low severity conditions and contacting the feed stream with a solid catalyst gallium. A reaction zone effluent stream is produced comprising C/sub 6/-C/sub 8/ aromatic hydrocarbons and C/sub 3/-C/sub 4/ paraffins, with the reaction zone effluent stream containing less than 10 mole percent olefinic hydrocarbons. The low severity conditions include a combination of pressure, feed space velocity and temperature, including a temperature below 425/sup 0/C, which results in a partial conversion of the feed hydrocarbons into aromatic hydrocarbons whereby: (i) when the effluent is separated there are produced a first product stream, which first product stream is rich in C/sub 6/-C/sub 8/ aromatic hydrocarbons and is withdrawn from the process, with the second product stream, which second product stream is rich in C/sub 3/-C/sub 4/ paraffins and is withdrawn from the process, with the second product stream having a flow rate equal to at least 30 wt. percent of the flow rate of the feed stream; and (ii) the mass flow rate of paraffinic hydrocarbons out of the reaction zone exceeds the mass flow rate of paraffinic hydrocarbons into the reaction zone.

  6. New Mexico Natural Gas % of Total Residential Deliveries (Percent...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    % of Total Residential Deliveries (Percent) New Mexico Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  7. Connecticut Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Connecticut Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  8. Maine Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Maine Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  9. Virginia Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Virginia Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  10. Washington Natural Gas % of Total Residential Deliveries (Percent...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    % of Total Residential Deliveries (Percent) Washington Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  11. Waste Isolation Pilot Plant Contractor Receives 86 Percent of...

    Office of Environmental Management (EM)

    Waste Isolation Pilot Plant Contractor Receives 86 Percent of Available Fee Waste Isolation Pilot Plant Contractor Receives 86 Percent of Available Fee April 27, 2016 - 12:20pm ...

  12. Kansas Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Kansas Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  13. Arizona Natural Gas % of Total Residential Deliveries (Percent...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    % of Total Residential Deliveries (Percent) Arizona Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  14. Federal Government Increases Renewable Energy Use Over 1000 Percent since

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1999; Exceeds Goal | Department of Energy Government Increases Renewable Energy Use Over 1000 Percent since 1999; Exceeds Goal Federal Government Increases Renewable Energy Use Over 1000 Percent since 1999; Exceeds Goal November 3, 2005 - 12:35pm Addthis WASHINGTON, DC - The Department of Energy (DOE) announced today that the federal government has exceeded its goal of obtaining 2.5 percent of its electricity needs from renewable energy sources by September 30, 2005. The largest energy

  15. Dismantlements of Nuclear Weapons Jump 50 Percent | National...

    National Nuclear Security Administration (NNSA)

    Dismantlements of Nuclear Weapons Jump 50 Percent June 07, 2007 WASHINGTON, D.C. -- Meeting President Bush's directive to reduce the country's nuclear arsenal, the Department of ...

  16. Nuclear Weapons Dismantlement Rate Up 146 Percent | National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Weapons Dismantlement Rate Up 146 Percent October 01, 2007 WASHINGTON, D.C. -- The United States significantly increased its rate of dismantled nuclear weapons during ...

  17. Detection of chlorinated aromatic compounds

    DOE Patents [OSTI]

    Ekechukwu, A.A.

    1996-02-06

    A method for making a composition for measuring the concentration of chlorinated aromatic compounds in aqueous fluids, and an optical probe for use with the method are disclosed. The composition comprises a hydrophobic polymer matrix, preferably polyamide, with a fluorescent indicator uniformly dispersed therein. The indicator fluoresces in the presence of the chlorinated aromatic compounds with an intensity dependent on the concentration of these compounds in the fluid of interest, such as 8-amino-2-naphthalene sulfonate. The probe includes a hollow cylindrical housing that contains the composition in its distal end. The probe admits an aqueous fluid to the probe interior for exposure to the composition. An optical fiber transmits excitation light from a remote source to the composition while the indicator reacts with chlorinated aromatic compounds present in the fluid. The resulting fluorescence light signal is reflected to a second optical fiber that transmits the light to a spectrophotometer for analysis. 5 figs.

  18. Detection of chlorinated aromatic compounds

    DOE Patents [OSTI]

    Ekechukwu, Amy A.

    1996-01-01

    A method for making a composition for measuring the concentration of chloated aromatic compounds in aqueous fluids, and an optical probe for use with the method. The composition comprises a hydrophobic polymer matrix, preferably polyamide, with a fluorescent indicator uniformly dispersed therein. The indicator fluoresces in the presence of the chlorinated aromatic compounds with an intensity dependent on the concentration of these compounds in the fluid of interest, such as 8-amino-2-naphthalene sulfonate. The probe includes a hollow cylindrical housing that contains the composition in its distal end. The probe admits an aqueous fluid to the probe interior for exposure to the composition. An optical fiber transmits excitation light from a remote source to the composition while the indicator reacts with chlorinated aromatic compounds present in the fluid. The resulting fluorescence light signal is reflected to a second optical fiber that transmits the light to a spectrophotometer for analysis.

  19. Minnesota Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    Minnesota Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 ... Share of Total U.S. Natural Gas Residential Deliveries Minnesota Share of Total U.S. ...

  20. PERCENT FEDERAL LAND FOR OIL/GAS FIELD OUTLINES

    U.S. Energy Information Administration (EIA) Indexed Site

    The VBA code below calculates the area percent of a first polygon layer (e.g. oilgas field outlines) that are within a second polygon layer (e.g. federal land) and writes out the ...

  1. California Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    California Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 ... Share of Total U.S. Natural Gas Residential Deliveries California Share of Total U.S. ...

  2. Table 2. Percent of Households with Vehicles, Selected Survey...

    U.S. Energy Information Administration (EIA) Indexed Site

    Percent of Households with Vehicles, Selected Survey Years " ,"Survey Years" ,1983,1985,1988,1991,1994,2001 "Total",85.5450237,89.00343643,88.75545852,89.42917548,87.25590956,92.08...

  3. Arizona - Natural Gas 2014 Million Cu. Feet Percent of

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Arizona - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S3. Summary statistics for natural gas - Arizona, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 5 5 5 5 5 Production (million cubic feet) Gross Withdrawals From Gas Wells 183 168 117 72 106 From

  4. "Variable","Average Absolute Percent Differences","Percent of Projections Over- Estimated"

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual Energy Outlook Retrospective Review, 2014" "Variable","Average Absolute Percent Differences","Percent of Projections Over- Estimated" "Gross Domestic Product" "Real Gross Domestic Product (Average Cumulative Growth)* (Table 2)",0.9204312786,45.77777778 "Petroleum" "Imported Refiner Acquisition Cost of Crude Oil (Constant $) (Table 3a)",37.71300779,17.33333333 "Imported Refiner Acquisition Cost of Crude Oil

  5. Molecular catalytic hydrogenation of aromatic hydrocarbons and...

    Office of Scientific and Technical Information (OSTI)

    catalysts for the hydrogenation of monocyclic aromatic hydrocarbons under mild conditions. ... NAPHTHALENE; CHRYSENE; ORGANOMETALLIC COMPOUNDS; CATALYTIC EFFECTS; RHODIUM COMPOUNDS; ...

  6. U.S. Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Deliveries (Percent) U.S. Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100 100 100 100 100 100 100 2000's 100 100 100 100 100 100 100 100 100 100 2010's 100 100 100 100 100 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Share of Total U.S. Natural Gas

  7. BOSS Measures the Universe to One-Percent Accuracy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BNL

    BOSS Measures the Universe to One-Percent Accuracy BOSS Measures the Universe to One-Percent Accuracy The Baryon Oscillation Spectroscopic Survey makes the most precise calibration yet of the universe's "standard ruler" January 8, 2014 Contact: Paul Preuss, Paul_Preuss@lbl.gov , +1 415-272-3253 BOSS-BAOv1.jpg Baryon acoustic oscillations (gray spheres), which descend from waves of increased density in the very early universe, are where galaxies have a tendency to cluster or

  8. Los Alamos reduces water use by 26 percent in 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos reduces water use Los Alamos reduces water use by 26 percent in 2014 The Lab decreased its water usage by 26 percent, with about one-third of the reduction attributable to using reclaimed water to cool a supercomputing center. March 16, 2015 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and

  9. Alkylation of organic aromatic compounds

    DOE Patents [OSTI]

    Smith, L.A. Jr.

    1989-07-18

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

  10. Nucleophilic fluorination of aromatic compounds

    DOE Patents [OSTI]

    Satyamurthy, Nagichettiar; Barrio, Jorge R

    2014-03-18

    Iodylbenzene derivatives substituted with electron donating as well as electron withdrawing groups on the aromatic ring are used as precursors in aromatic nucleophilic substitution reactions. The iodyl group (IO.sub.2) is regiospecifically substituted by nucleophilic fluoride to provide the corresponding fluoroaryl derivatives. No-carrier-added [F-18]fluoride ion derived from anhydrous [F-18](F/Kryptofix, [F-18]CsF or a quaternary ammonium fluoride (e.g., Me.sub.4NF, Et.sub.4NF, n-Bu.sub.4NF, (PhCH.sub.2).sub.4NF) exclusively substitutes the iodyl moiety in these derivatives and provides high specific activity F-18 labeled fluoroaryl analogs. Iodyl derivatives of a benzothiazole analog and 6-iodyl-L-dopa derivatives have been synthesized as precursors and have been used in the preparation of no-carrier-added [F-18]fluorobenzothiazole as well as 6-[F-18]fluoro-L-dopa.

  11. Alkylation of organic aromatic compounds

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1994-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  12. Alkylation of organic aromatic compounds

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1993-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene to about the mid point of the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  13. Alkylation of organic aromatic compounds

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A.

    1989-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  14. Alkylation of organic aromatic compounds

    DOE Patents [OSTI]

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1993-09-07

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a molecular sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene to about the mid point of the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 figures.

  15. Alkylation of organic aromatic compounds

    DOE Patents [OSTI]

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1994-06-14

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a molecular sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

  16. Alaska Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Alaska Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.28 0.31 0.31 0.31 0.30 0.35 0.37 2000's 0.32 0.35 0.33 0.33 0.37 0.37 0.47 0.42 0.44 0.42 2010's 0.39 0.43 0.52 0.39 0.35 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  17. Hawaii Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,056 1,055 1,057 1,043 983 983 983 983 983 983 983 983 2014 947 946 947 947 947 947 951 978 990 968 974 962 2015 968 954 947 959 990 1,005 1,011 965 989 996 996 997 2016 998 1,004

    % of Total Residential Deliveries (Percent) Hawaii Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.01 0.01 0.01 0.01 0.01 0.01 0.01 2000's 0.01 0.01 0.01

  18. Idaho Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,015 1,031 1,021 1,010 997 988 994 1,001 1,026 1,034 1,054 2014 1,048 1,036 1,030 1,022 1,006 993 984 996 1,005 1,019 1,046 1,039 2015 1,047 1,037 1,030 1,023 1,000 1,010 1,034 1,028 1,024 1,033 1,035 1,041 2016 1,034 1,038

    % of Total Residential Deliveries (Percent) Idaho Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.25

  19. Alabama Natural Gas % of Total Electric Utility Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Electric Utility Deliveries (Percent) Alabama Natural Gas % of Total Electric Utility Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.17 0.13 0.23 0.23 0.29 0.60 0.53 2000's 0.81 1.29 1.98 1.68 2.14 1.79 2.34 2.57 2.46 3.30 2010's 3.81 4.53 4.40 4.08 4.23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  20. Alabama Natural Gas % of Total Residential Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Deliveries (Percent) Alabama Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.04 1.03 1.02 1.08 0.97 1.03 0.90 2000's 0.95 1.03 0.95 0.92 0.90 0.87 0.87 0.75 0.77 0.75 2010's 0.88 0.78 0.66 0.72 0.77 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages:

  1. Alabama Natural Gas % of Total Vehicle Fuel Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Deliveries (Percent) Alabama Natural Gas % of Total Vehicle Fuel Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.44 0.20 0.15 0.08 0.71 0.57 0.57 2000's 0.57 0.52 0.52 0.52 0.52 0.67 0.47 0.36 0.32 0.29 2010's 0.37 0.64 0.64 0.63 0.63 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages:

  2. Alabama Natural Gas Percentage Total Commercial Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Deliveries (Percent) Alabama Natural Gas Percentage Total Commercial Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.90 0.88 0.87 0.92 1.01 0.86 0.91 2000's 0.80 0.87 0.80 0.80 0.85 0.84 0.86 0.78 0.80 0.78 2010's 0.87 0.80 0.74 0.77 0.79 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring

  3. Alabama Natural Gas Percentage Total Industrial Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Deliveries (Percent) Alabama Natural Gas Percentage Total Industrial Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.28 2.23 2.38 2.27 2.36 2.39 2.53 2000's 2.46 2.11 2.13 2.22 2.25 2.29 2.30 2.26 2.13 2.13 2010's 2.12 2.19 2.38 2.42 2.46 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring

  4. New NREL Research Facility Slashes Energy Use by 66 Percent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Research Facility Slashes Energy Use by 66 Percent For more information contact: Linda Brown, 275-4097 Golden, Colo., October 3, 1996 -- Americans can look forward to lower utility bills and more comfortable buildings thanks to a new research facility dedicated today at the U.S. Department of Energy's National Renewable Energy Laboratory. Christine Ervin, DOE's assistant secretary for renewable energy and energy efficiency, and U.S. Congressman Dan Schaefer (R.-Colo.) helped dedicate the

  5. Molecular catalytic hydrogenation of aromatic hydrocarbons and

    Office of Scientific and Technical Information (OSTI)

    catalytic hydrogenation of aromatic hydrocarbons and hydrotreating of coal liquids. Yang, Shiyong; Stock, L.M. 01 COAL, LIGNITE, AND PEAT; 40 CHEMISTRY; COAL LIQUIDS;...

  6. Quantum transport through aromatic molecules

    SciTech Connect (OSTI)

    Ojeda, J. H.; Rey-Gonzlez, R. R.; Laroze, D.

    2013-12-07

    In this paper, we study the electronic transport properties through aromatic molecules connected to two semi-infinite leads. The molecules are in different geometrical configurations including arrays. Using a nearest neighbor tight-binding approach, the transport properties are analyzed into a Green's function technique within a real-space renormalization scheme. We calculate the transmission probability and the Current-Voltage characteristics as a function of a molecule-leads coupling parameter. Our results show different transport regimes for these systems, exhibiting metal-semiconductor-insulator transitions and the possibility to employ them in molecular devices.

  7. Percent of Commercial Natural Gas Deliveries in California Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 86.6 77.8 74.5 76.9 48.8 52.1 54.9 50.4 48.7 57.1 2000's 57.1 62.6 68.6 70.3 71.2 68.7 64.7 60.7 56.7 54.9 2010's 54.1 54.3 50.0 49.9 48.4 50.0

  8. Percent of Commercial Natural Gas Deliveries in District of Columbia

    U.S. Energy Information Administration (EIA) Indexed Site

    Represented by the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100.0 97.3 99.0 98.0 90.9 76.8 70.5 54.9 52.3 45.9 2000's 35.6 22.4 23.5 30.5 23.3 100.0 100.0 100.0 100.0 100.0 2010's 100.0 16.9 17.9 19.1 19.9 21.4

  9. Percent of Commercial Natural Gas Deliveries in Louisiana Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100.0 99.1 87.5 98.1 97.9 98.1 98.3 95.9 94.6 93.8 2000's 96.3 96.5 99.0 98.8 98.6 98.6 98.4 98.0 98.4 92.0 2010's 85.9 83.6 78.0 77.7 78.9 79.1

  10. Percent of Commercial Natural Gas Deliveries in Massachusetts Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 99.9 99.8 99.8 97.5 76.2 84.9 74.7 62.6 57.9 59.8 2000's 63.0 62.1 57.4 68.7 71.3 70.5 70.6 65.3 57.9 56.9 2010's 52.1 50.0 48.6 39.4 42.3 NA

  11. Percent of Commercial Natural Gas Deliveries in Mississippi Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 95.6 95.9 96.4 96.6 96.6 97.0 97.4 94.8 94.8 96.0 2000's 95.6 95.7 96.7 95.9 95.7 95.7 94.9 88.8 90.4 91.0 2010's 90.6 89.8 89.0 89.1 87.5 NA

  12. Percent of Commercial Natural Gas Deliveries in New Hampshire Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100.0 100.0 100.0 100.0 100.0 99.2 96.9 92.4 94.1 93.2 2000's 86.4 86.6 80.6 79.2 74.9 75.7 75.4 71.2 58.9 53.9 2010's 57.3 55.6 51.8 50.2 57.0 58.4

  13. Percent of Commercial Natural Gas Deliveries in North Carolina Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 94.6 95.0 95.9 98.5 96.6 92.4 96.5 94.4 90.6 93.8 2000's 96.5 94.0 90.8 92.2 89.0 87.6 83.2 83.0 84.5 85.2 2010's 84.8 84.4 83.5 84.5 84.9 NA

  14. Percent of Commercial Natural Gas Deliveries in Pennsylvania Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 78.4 77.3 75.8 77.4 74.4 68.4 70.4 63.6 56.8 56.9 2000's 60.5 63.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2010's 100.0 48.5 42.1 40.2 41.4 NA

  15. Percent of Commercial Natural Gas Deliveries in South Carolina Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 97.8 98.2 98.6 99.2 98.5 96.4 99.0 98.8 97.9 97.1 2000's 98.7 97.5 98.5 96.6 96.4 96.2 95.0 94.9 94.9 93.5 2010's 92.7 91.1 90.6 91.7 92.8 91.3

  16. Percent of Commercial Natural Gas Deliveries in Tennessee Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 97.5 95.7 96.4 95.8 94.1 93.8 94.3 92.2 87.3 88.8 2000's 92.5 93.6 90.9 90.5 92.2 92.2 92.0 91.9 91.7 90.2 2010's 90.8 89.9 88.8 90.0 90.7 88.6

  17. Percent of Commercial Natural Gas Deliveries in Washington Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 93.6 92.2 87.3 93.9 95.4 91.8 85.9 84.1 86.8 89.3 2000's 92.7 94.0 89.8 88.0 88.5 88.8 88.9 89.2 89.0 88.7 2010's 87.8 88.4 87.4 86.8 86.0 85.2

  18. Percent of Commercial Natural Gas Deliveries in West Virginia Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 58.1 54.9 56.9 54.3 55.2 51.6 56.3 54.5 49.5 51.8 2000's 56.6 63.9 57.4 60.2 57.1 58.2 56.0 58.6 53.5 53.6 2010's 51.0 49.2 48.9 52.9 56.7 53.3

  19. Percent of Commercial Natural Gas Deliveries in Wisconsin Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 90.7 91.0 91.3 94.4 93.5 92.0 91.6 82.1 74.0 79.0 2000's 78.1 77.2 75.9 79.1 79.7 79.0 76.0 75.5 76.8 76.8 2010's 76.2 76.4 74.4 77.7 77.0 NA

  20. Percent of Industrial Natural Gas Deliveries in Louisiana Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 10.1 9.2 8.5 2000's 10.8 8.3 13.4 13.4 21.6 27.9 28.4 25.9 21.4 18.3 2010's 16.7 13.7 14.7 14.2 11.9

  1. Percent of Industrial Natural Gas Deliveries in Massachusetts Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 33.8 26.2 36.9 2000's 27.3 26.3 20.0 45.4 38.2 36.5 34.4 29.9 20.6 21.1 2010's 19.4 20.6 17.7 18.3 22.3 26.3

  2. Percent of Industrial Natural Gas Deliveries in Mississippi Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 39.6 37.6 26.3 2000's 26.9 28.8 25.9 33.7 34.4 25.2 20.0 15.0 12.2 10.1 2010's 9.6 9.7 9.6 10.6 9.9 9.0

  3. Percent of Industrial Natural Gas Deliveries in New Hampshire Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 48.8 30.7 24.3 2000's 18.1 13.0 12.3 12.0 10.7 10.6 14.6 15.3 17.7 20.6 2010's 12.8 10.7 9.0 7.5 9.2

  4. Percent of Industrial Natural Gas Deliveries in North Carolina Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 45.5 32.1 47.8 2000's 52.2 30.5 39.2 36.9 29.1 26.4 20.8 21.2 19.1 13.6 2010's 11.6 9.7 8.8 9.2 10.2 10.9

  5. Percent of Industrial Natural Gas Deliveries in Pennsylvania Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 14.3 13.1 11.8 2000's 11.8 9.9 7.3 6.6 6.4 7.0 5.5 5.4 5.7 4.5 2010's 3.8 2.0 1.3 1.3 1.2 1.0

  6. Percent of Industrial Natural Gas Deliveries in South Carolina Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 86.9 86.7 86.1 2000's 86.5 82.1 87.7 78.5 77.8 77.4 71.4 47.3 47.3 47.6 2010's 46.3 45.4 45.1 45.6 43.6 42.1

  7. Percent of Industrial Natural Gas Deliveries in Tennessee Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 38.3 33.1 34.7 2000's 38.5 36.2 36.0 39.9 40.5 42.4 38.9 38.2 39.9 38.2 2010's 35.7 29.7 29.4 29.7 30.0 29.6

  8. Percent of Industrial Natural Gas Deliveries in Washington Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 23.5 20.1 24.0 2000's 34.5 38.2 27.4 20.1 17.3 15.8 20.2 17.4 12.9 8.7 2010's 8.3 7.5 7.3 6.7 6.5 NA

  9. Percent of Industrial Natural Gas Deliveries in West Virginia Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 12.2 6.3 10.8 2000's 13.8 16.6 12.7 14.0 13.4 17.0 17.0 16.2 19.0 17.4 2010's 14.7 15.6 16.3 18.0 15.6 NA

  10. Percent of Industrial Natural Gas Deliveries in Wisconsin Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 27.1 22.0 20.2 2000's 22.1 19.5 21.4 20.2 18.8 18.1 18.3 18.5 18.3 18.1 2010's 17.4 17.8 17.6 18.8 19.6 NA

  11. Dehydrocyclodimerization, converting LPG to aromatics

    SciTech Connect (OSTI)

    Johnson, J.A.; Hilder, G.K.

    1984-03-01

    British Petroleum (BP) recognized the potential need for ways of exploiting feedstocks with low opportunity cost and commenced a research program at its Sunbury Research Center to discover and develop a catalyst for the conversion of LPG to a liquid product. The successful outcome of this research program is the Cyclar /SUP SM/ process, a joint development of UOP Process Division and British Petroleum. The Cyclar process offers a single-step conversion of LPG to an aromatic product which has a highvalue, is easily transported and useful both to fuel and petrochemical applications. The LPG producer can invest in a single unit, avoiding the need to identify and develop markets for multiple C/sub 3/ and C/sub 4/ products. This catalytic process, which employs UOP Continuous Catalyst Regeneration (CCR) technology, can also be applied to refinery light ends to produce a high-quality gasoline. Aromatic and hydrogen yields from propane and butane feeds surpass those obtained from catalytic reforming of Light Arabian naphtha. This paper describes the principles of the Cyclar process and illustrates yields and economics for several interesting applications.

  12. Arkansas Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,016 1,016 1,016 1,017 1,018 1,016 1,016 1,014 1,012 1,012 1,015 2014 1,017 1,015 1,015 1,018 1,017 1,019 1,021 1,021 1,019 1,018 1,011 1,017 2015 1,021 1,023 1,023 1,025 1,022 1,020 1,023 1,022 1,019 1,029 1,014 1,015 2016 1,019 1,015

    % of Total Residential Deliveries (Percent) Arkansas Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9

  13. Colorado Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,023 1,032 1,030 1,033 1,040 1,051 1,056 1,057 1,058 1,037 1,032 1,033 2014 1,030 1,036 1,038 1,041 1,051 1,050 1,048 1,048 1,050 1,055 1,042 1,051 2015 1,046 1,044 1,051 1,059 1,059 1,070 1,073 1,069 1,076 1,069 1,060 1,051 2016 1,050 1,052

    % of Total Residential Deliveries (Percent) Colorado Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9

  14. Delaware Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,050 1,049 1,046 1,048 1,041 1,049 1,058 1,054 1,065 1,064 1,067 1,057 2014 1,052 1,048 1,048 1,051 1,045 1,049 1,063 1,065 1,062 1,063 1,063 1,064 2015 1,061 1,061 1,062 1,051 1,055 1,055 1,044 1,044 1,043 1,051 1,051 1,049 2016 1,055

    % of Total Residential Deliveries (Percent) Delaware Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's

  15. Florida Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,016 1,015 1,016 1,015 1,016 1,015 1,016 1,016 1,017 1,017 1,018 1,018 2014 1,018 1,018 1,018 1,019 1,019 1,019 1,022 1,023 1,024 1,023 1,024 1,025 2015 1,024 1,025 1,024 1,024 1,026 1,026 1,026 1,024 1,024 1,023 1,023 1,023 2016 1,015 1,025

    % of Total Residential Deliveries (Percent) Florida Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9

  16. Georgia Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,014 1,015 1,016 1,015 1,014 1,015 1,016 1,019 1,017 1,016 1,017 1,017 2014 1,018 1,018 1,018 1,018 1,021 1,022 1,023 1,023 1,027 1,026 1,026 1,025 2015 1,025 1,026 1,025 1,026 1,028 1,031 1,030 1,028 1,029 1,028 1,026 1,027 2016 1,029 1,030

    % of Total Residential Deliveries (Percent) Georgia Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9

  17. Illinois Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,013 1,013 1,014 1,015 1,015 1,014 1,015 1,015 1,016 1,017 1,019 1,018 2014 1,020 1,020 1,020 1,020 1,020 1,020 1,022 1,020 1,021 1,021 1,023 1,024 2015 1,027 1,030 1,029 1,028 1,029 1,027 1,027 1,027 1,028 1,028 1,030 1,030 2016 1,031 1,031

    % of Total Residential Deliveries (Percent) Illinois Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9

  18. Indiana Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,011 1,012 1,013 1,015 1,019 1,020 1,019 1,021 1,020 1,018 1,015 1,014 2014 1,016 1,017 1,019 1,019 1,023 1,023 1,025 1,030 1,028 1,027 1,025 1,029 2015 1,028 1,029 1,031 1,039 1,037 1,043 1,043 1,044 1,041 1,039 1,034 1,033 2016 1,030 1,033

    % of Total Residential Deliveries (Percent) Indiana Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9

  19. Iowa Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,025 1,029 1,029 1,030 1,031 1,030 1,030 1,027 1,028 1,032 1,033 1,032 2014 1,034 1,033 1,034 1,036 1,040 1,039 1,043 1,047 1,044 1,046 1,044 1,045 2015 1,045 1,047 1,047 1,051 1,054 1,060 1,059 1,059 1,058 1,058 1,057 1,056 2016 1,053

    % of Total Residential Deliveries (Percent) Iowa Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's

  20. Kentucky Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,023 1,022 1,023 1,025 1,026 1,027 1,028 1,030 1,031 1,028 1,028 1,033 2014 1,029 1,024 1,026 1,028 1,031 1,037 1,034 1,036 1,038 1,022 1,017 1,019 2015 1,023 1,018 1,015 1,016 1,023 1,021 1,024 1,015 1,020 1,024 1,021 1,024 2016 1,027

    % of Total Residential Deliveries (Percent) Kentucky Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's

  1. Louisiana Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,013 1,015 1,015 1,015 1,016 1,016 1,017 1,017 1,016 1,018 1,019 2014 1,017 1,016 1,018 1,021 1,028 1,025 1,029 1,029 1,031 1,034 1,037 1,038 2015 1,030 1,031 1,029 1,029 1,028 1,027 1,028 1,024 1,023 1,023 1,022 1,023 2016 1,024 1,025

    % of Total Residential Deliveries (Percent) Louisiana Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8

  2. Maryland Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,041 1,037 1,032 1,027 1,037 1,042 1,060 1,056 1,062 1,059 1,061 1,059 2014 1,053 1,048 1,045 1,049 1,047 1,052 1,051 1,051 1,049 1,052 1,057 1,057 2015 1,059 1,061 1,058 1,051 1,058 1,057 1,055 1,049 1,050 1,053 1,049 1,050 2016 1,061

    % of Total Residential Deliveries (Percent) Maryland Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's

  3. Massachusetts Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,037 1,033 1,032 1,033 1,035 1,032 1,033 1,034 1,036 1,038 1,033 1,030 2014 1,035 1,032 1,031 1,030 1,030 1,031 1,030 1,029 1,029 1,028 1,029 1,028 2015 1,035 1,035 1,030 1,029 1,027 1,027 1,029 1,028 1,027 1,028 1,029 1,030 2016 1,031 1,032

    % of Total Residential Deliveries (Percent) Massachusetts Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7

  4. Michigan Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,021 1,021 1,022 1,026 1,020 1,022 1,024 1,021 1,019 1,019 1,017 1,019 2014 1,019 1,021 1,021 1,017 1,020 1,019 1,015 1,028 1,022 1,023 1,026 1,029 2015 1,027 1,026 1,030 1,035 1,028 1,033 1,034 1,035 1,036 1,034 1,041 1,040 2016 1,040 1,038

    % of Total Residential Deliveries (Percent) Michigan Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9

  5. Mississippi Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,013 1,013 1,014 1,014 1,015 1,018 1,018 1,021 1,022 1,025 1,020 1,020 2014 1,019 1,014 1,019 1,026 1,030 1,034 1,035 1,036 1,035 1,033 1,035 1,034 2015 1,036 1,033 1,031 1,037 1,032 1,030 1,030 1,029 1,031 1,028 1,029 1,030 2016 1,031 1,032

    % of Total Residential Deliveries (Percent) Mississippi Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7

  6. Missouri Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,014 1,014 1,013 1,014 1,013 1,017 1,015 1,016 1,019 1,013 1,014 2014 1,013 1,013 1,014 1,014 1,011 1,016 1,016 1,018 1,017 1,018 1,017 1,017 2015 1,017 1,020 1,025 1,026 1,024 1,026 1,026 1,026 1,026 1,025 1,024 1,023 2016 1,024

    % of Total Residential Deliveries (Percent) Missouri Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's

  7. Montana Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,044 1,040 1,032 1,034 1,034 1,044 1,048 1,043 1,047 1,041 1,032 1,031 2014 1,034 1,030 1,030 1,027 1,032 1,030 1,038 1,036 1,040 1,031 1,026 1,030 2015 1,028 1,029 1,028 1,021 1,019 1,030 1,031 1,033 1,032 1,032 1,034 1,034 2016 1,033 1,030

    % of Total Residential Deliveries (Percent) Montana Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9

  8. Nebraska Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,030 1,031 1,032 1,033 1,036 1,035 1,029 1,032 1,038 1,040 1,041 1,036 2014 1,034 1,034 1,037 1,043 1,043 1,047 1,051 1,052 1,050 1,053 1,049 1,052 2015 1,052 1,054 1,053 1,057 1,061 1,063 1,068 1,071 1,068 1,060 1,055 1,053 2016 1,054 1,054

    % of Total Residential Deliveries (Percent) Nebraska Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9

  9. Nevada Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,037 1,039 1,037 1,034 1,031 1,032 1,031 1,033 1,039 1,032 1,029 1,034 2014 1,033 1,033 1,032 1,034 1,032 1,033 1,033 1,035 1,033 1,036 1,036 1,037 2015 1,040 1,040 1,041 1,043 1,043 1,045 1,044 1,043 1,044 1,043 1,043 1,042 2016 1,043 1,042

    % of Total Residential Deliveries (Percent) Nevada Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9

  10. New Hampshire Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,033 1,029 1,028 1,029 1,030 1,030 1,027 1,028 1,031 1,033 1,030 1,030 2014 1,037 1,033 1,031 1,031 1,032 1,038 1,033 1,030 1,027 1,028 1,028 1,030 2015 1,037 1,041 1,033 1,029 1,028 1,028 1,027 1,028 1,028 1,029 1,029 1,030 2016 1,035 1,039

    % of Total Residential Deliveries (Percent) New Hampshire Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7

  11. New Jersey Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,043 1,043 1,043 1,042 1,043 1,046 1,044 1,042 1,045 1,047 1,048 1,050 2014 1,050 1,047 1,045 1,040 1,035 1,037 1,040 1,038 1,039 1,039 1,044 1,045 2015 1,050 1,050 1,050 1,043 1,043 1,043 1,043 1,042 1,041 1,041 1,044 1,044 2016 1,044 1,043

    % of Total Residential Deliveries (Percent) New Jersey Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8

  12. New York Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,032 1,031 1,031 1,031 1,034 1,035 1,034 1,033 1,034 1,034 1,033 1,032 2014 1,032 1,031 1,032 1,031 1,031 1,031 1,031 1,031 1,031 1,032 1,032 1,033 2015 1,034 1,035 1,034 1,034 1,032 1,032 1,031 1,031 1,032 1,032 1,032 1,033 2016 1,033 1,034

    % of Total Residential Deliveries (Percent) New York Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9

  13. North Carolina Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,013 1,014 1,014 1,012 1,010 1,010 1,010 1,011 1,012 1,012 1,015 1,014 2014 1,016 1,018 1,017 1,015 1,016 1,014 1,017 1,024 1,022 1,025 1,028 1,029 2015 1,030 1,028 1,030 1,035 1,035 1,033 1,038 1,037 1,038 1,040 1,033 1,034 2016 1,034

    % of Total Residential Deliveries (Percent) North Carolina Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8

  14. North Dakota Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,082 1,093 1,096 1,091 1,068 1,131 1,140 1,077 1,013 1,099 1,112 1,089 2014 1,087 1,084 1,074 1,077 1,083 1,079 1,078 1,106 1,123 1,100 1,105 1,096 2015 1,036 1,078 1,072 1,084 1,084 1,089 1,117 1,095 1,078 1,093 1,097 1,112 2016 1,095 1,095

    % of Total Residential Deliveries (Percent) North Dakota Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7

  15. Ohio Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,034 1,033 1,033 1,035 1,035 1,038 1,037 1,044 1,045 1,044 1,043 1,044 2014 1,044 1,042 1,041 1,050 1,047 1,048 1,053 1,052 1,052 1,054 1,057 1,060 2015 1,065 1,062 1,062 1,073 1,072 1,068 1,069 1,068 1,071 1,071 1,077 1,077 2016 1,073 1,072

    % of Total Residential Deliveries (Percent) Ohio Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9

  16. Oklahoma Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,040 1,037 1,038 1,039 1,041 1,043 1,044 1,042 1,042 1,044 1,043 1,042 2014 1,036 1,036 1,039 1,037 1,040 1,043 1,042 1,042 1,044 1,043 1,041 1,041 2015 1,042 1,043 1,044 1,045 1,048 1,049 1,050 1,047 1,049 1,049 1,047 1,050 2016 1,049

    % of Total Residential Deliveries (Percent) Oklahoma Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's

  17. Oregon Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,011 1,010 1,012 1,011 1,017 1,020 1,020 1,023 1,021 1,014 1,013 1,013 2014 1,013 1,012 1,010 1,034 1,041 1,044 1,029 1,035 1,033 1,029 1,028 1,028 2015 1,031 1,031 1,032 1,035 1,039 1,042 1,039 1,039 1,038 1,036 1,035 1,036 2016 1,033 1,034

    % of Total Residential Deliveries (Percent) Oregon Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9

  18. Pennsylvania Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,047 1,046 1,047 1,047 1,047 1,048 1,051 1,048 1,049 1,049 1,054 1,053 2014 1,052 1,050 1,048 1,046 1,044 1,044 1,046 1,046 1,045 1,044 1,049 1,052 2015 1,053 1,054 1,049 1,049 1,050 1,046 1,044 1,044 1,044 1,045 1,046 1,046 2016 1,048 1,045

    % of Total Residential Deliveries (Percent) Pennsylvania Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7

  19. Rhode Island Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,030 1,030 1,030 1,032 1,034 1,031 1,032 1,032 1,033 1,034 1,031 1,031 2014 1,031 1,032 1,031 1,030 1,028 1,023 1,029 1,029 1,027 1,030 1,029 1,029 2015 1,029 1,029 1,029 1,029 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 2016 1,032 1,027

    % of Total Residential Deliveries (Percent) Rhode Island Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7

  20. South Carolina Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,021 1,020 1,021 1,019 1,019 1,017 1,019 1,020 1,020 1,020 1,020 1,020 2014 1,022 1,021 1,022 1,022 1,022 1,023 1,022 1,024 1,028 1,027 1,028 1,029 2015 1,030 1,028 1,028 1,029 1,030 1,030 1,031 1,029 1,031 1,031 1,030 1,030 2016 1,031 1,031

    % of Total Residential Deliveries (Percent) South Carolina Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7

  1. South Dakota Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,028 1,030 1,029 1,028 1,028 1,029 1,031 1,030 1,029 1,031 1,030 1,034 2014 1,034 1,034 1,035 1,036 1,039 1,041 1,039 1,045 1,045 1,049 1,048 1,048 2015 1,048 1,048 1,047 1,051 1,054 1,059 1,062 1,060 1,056 1,053 1,053 1,058 2016 1,060 1,058

    % of Total Residential Deliveries (Percent) South Dakota Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7

  2. Tennessee Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,013 1,012 1,016 1,019 1,018 1,021 1,023 1,028 1,028 1,025 1,024 1,022 2014 1,020 1,020 1,021 1,027 1,032 1,031 1,032 1,020 1,024 1,027 1,029 1,028 2015 1,028 1,029 1,029 1,027 1,025 1,025 1,027 1,023 1,025 1,032 1,031 1,034 2016 1,035 1,035

    % of Total Residential Deliveries (Percent) Tennessee Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8

  3. Texas Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,023 1,024 1,024 1,025 1,027 1,026 1,024 1,025 1,024 1,025 1,024 1,025 2014 1,027 1,022 1,028 1,026 1,029 1,032 1,033 1,036 1,033 1,033 1,031 1,030 2015 1,026 1,028 1,029 1,034 1,036 1,036 1,036 1,035 1,036 1,036 1,033 1,030 2016 1,029 1,028

    % of Total Residential Deliveries (Percent) Texas Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9

  4. Utah Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,050 1,050 1,049 1,047 1,048 1,048 1,046 1,041 1,044 1,043 1,045 1,044 2014 1,044 1,044 1,045 1,044 1,038 1,036 1,038 1,040 1,040 1,041 1,038 1,037 2015 1,039 1,046 1,047 1,049 1,043 1,043 1,043 1,043 1,042 1,044 1,044 1,046 2016 1,046 1,043

    % of Total Residential Deliveries (Percent) Utah Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9

  5. Vermont Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,013 1,014 1,016 1,016 1,021 1,016 1,015 1,011 1,012 1,014 1,015 1,014 2014 1,013 1,009 1,015 1,014 1,026 1,031 1,011 1,018 1,015 1,015 1,019 1,021 2015 1,026 1,035 1,027 1,024 1,021 1,021 1,022 1,019 1,020 1,030 1,027 1,027 2016 1,029 1,032

    % of Total Residential Deliveries (Percent) Vermont Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9

  6. West Virginia Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,071 1,071 1,070 1,083 1,088 1,099 1,099 1,119 1,082 1,097 1,086 1,079 2014 1,073 1,073 1,065 1,111 1,094 1,095 1,099 1,106 1,119 1,082 1,077 1,094 2015 1,097 1,084 1,069 1,103 1,107 1,096 1,099 1,099 1,102 1,090 1,114 1,090 2016 1,092 1,09

    % of Total Residential Deliveries (Percent) West Virginia Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7

  7. Wisconsin Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,028 1,026 1,025 1,030 1,027 1,026 1,026 1,023 1,026 1,027 1,027 1,027 2014 1,031 1,033 1,035 1,032 1,033 1,032 1,029 1,034 1,034 1,034 1,035 1,038 2015 1,042 1,044 1,040 1,039 1,038 1,040 1,036 1,040 1,034 1,045 1,043 1,044 2016 1,045 1,046

    % of Total Residential Deliveries (Percent) Wisconsin Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8

  8. Wyoming Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,043 1,040 1,041 1,042 1,043 1,045 1,040 1,040 1,041 1,038 1,035 1,030 2014 1,034 1,032 1,030 1,031 1,029 1,026 1,025 1,031 1,031 1,030 1,033 1,036 2015 1,043 1,041 1,042 1,043 1,045 1,045 1,042 1,044 1,041 1,040 1,046 1,054 2016 1,056 1,052

    % of Total Residential Deliveries (Percent) Wyoming Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9

  9. Predicting Electrochemical Windows of Nitrogen Containing Aromatic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecules - Joint Center for Energy Storage Research October 20, 2014, Research Highlights Predicting Electrochemical Windows of Nitrogen Containing Aromatic Molecules Various nitrogen containing aromatic base molecules and a descriptive relationship derived to predict their reduction potentials is shown. Scientific Achievement A descriptive relationship is derived for computing reduction potentials of quinoxaline derivatives from the orbital energies of the neutral molecules without

  10. Alkylation of organic aromatic compounds

    DOE Patents [OSTI]

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1993-01-05

    Aromatic compounds are alkylated in a combination reactor/distillation column comprising a vessel suitable for operating between 70 C and 500 C and from 0.5 to 20 atmospheres pressure; an inert distillation packing in the lower one-third of said vessel; solid acidic catalytic material such as zeolites or an acidic cation exchange resin supported in the middle one-third of said vessel; and inert distillation packing in the upper one-third of said vessel. A benzene inlet is located near the upper end of the vessel; an olefin inlet is juxtaposed with said solid acidic catalytic material; a bottoms outlet is positioned near the bottom of said vessel for removing said cumene and ethyl benzene; and an overhead outlet is placed at the top of said vessel for removing any unreacted benzene and olefin.

  11. Alkylation of organic aromatic compounds

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1993-01-01

    Aromatic compounds are alkylated in a combination reactor/distillation column comprising a vessel suitable for operating between 70.degree. C. and 500.degree. C. and from 0.5 to 20 atmospheres pressure; an inert distillation packing in the lower one-third of said vessel; solid acidic catalytic material such as zeolites or an acidic cation exchange resin supported in the middle one-third of said vessel; and inert distillation packing in the upper one-third of said vessel. A benzene inlet is located near the upper end of the vessel; an olefin inlet is juxtaposed with said solid acidic catalytic material; a bottoms outlet is positioned near the bottom of said vessel for removing said cumene and ethyl benzene; and an overhead outlet is placed at the top of said vessel for removing any unreacted benzene and olefin.

  12. Table B28. Percent of Floorspace Heated, Number of Buildings and Floorspace, 199

    U.S. Energy Information Administration (EIA) Indexed Site

    8. Percent of Floorspace Heated, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,"Total Floorspace (million square feet)" ,"All Buildings","Not Heated","1 to 50 Percent Heated","51 to 99 Percent Heated","100 Percent Heated","All Buildings","Not Heated","1 to 50 Percent Heated","51 to 99 Percent Heated","100 Percent Heated" "All

  13. Table B29. Percent of Floorspace Cooled, Number of Buildings and Floorspace, 199

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Percent of Floorspace Cooled, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,"Total Floorspace (million square feet)" ,"All Buildings","Not Cooled","1 to 50 Percent Cooled","51 to 99 Percent Cooled","100 Percent Cooled","All Buildings","Not Cooled","1 to 50 Percent Cooled","51 to 99 Percent Cooled","100 Percent Cooled" "All

  14. Table B30. Percent of Floorspace Lit When Open, Number of Buildings and Floorspa

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Percent of Floorspace Lit When Open, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,"Total Floorspace (million square feet)" ,"All Buildings","Not Lita","1 to 50 Percent Lit","51 to 99 Percent Lit","100 Percent Lit","All Buildings","Not Lita","1 to 50 Percent Lit","51 to 99 Percent Lit","100 Percent Lit" "All Buildings

  15. Percent of Commercial Natural Gas Deliveries in California Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 94.6 95.1 93.0 88.3 94.8 92.8 89.4 87.8 91.0 88.5 90.1 92.2 1990 95.8 81.1 94.4 90.4 90.2 85.6 78.0 82.6 79.1 82.3 85.6 88.3 1991 90.5 88.4 90.2 71.0 82.2 71.0 68.0 85.8 68.0 64.7 69.8 80.3 1992 86.6 65.6 75.7 79.0 63.5 74.5 60.9 64.6 79.7 79.0 76.7 81.4 1993 79.9 82.3 77.6 80.7 76.8 71.4 76.4 70.3 70.6 73.8 75.7 78.8 1994 51.3 47.2 50.6 40.5 47.4 32.2 36.4 46.5 46.0 52.2 57.8 68.2 1995 61.3 58.6 64.7 56.8 50.3

  16. Percent of Commercial Natural Gas Deliveries in Connecticut Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 98.4 90.0 81.6 76.5 74.5 80.4 74.8 85.5 90.8 99.5 1990 100.0 100.0 98.7 95.9 92.3 89.9 87.5 86.9 87.2 91.3 98.3 99.1 1991 99.4 99.4 97.5 92.5 85.9 79.2 76.2 77.1 77.9 85.9 93.0 96.6 1992 97.7 97.2 95.6 94.4 93.6 87.2 95.8 98.8 98.7 97.8 98.2 98.4 1993 97.2 97.7 97.2 98.1 99.4 99.3 88.3 98.4 99.6 100.0 100.0 100.0 1994 89.2 90.7 88.4 88.8 74.2 67.8 62.4 61.1 57.4 68.8 77.9 83.4 1995 86.7 88.1 85.7 81.6

  17. Percent of Commercial Natural Gas Deliveries in District of Columbia

    U.S. Energy Information Administration (EIA) Indexed Site

    Represented by the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1990 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1991 100.0 100.0 100.0 100.0 100.0 92.4 86.7 89.4 90.6 91.1 95.7 99.5 1992 99.6 100.0 100.0 97.4 97.6 100.0 91.4 99.5 99.0 100.0 100.0 100.0 1993 100.0 100.0 100.0 100.0 100.0 99.8 96.8 88.4 90.1 92.6 95.9 97.1 1994 99.8 99.8 100.0 98.8 95.7 94.4 76.6

  18. Percent of Commercial Natural Gas Deliveries in Louisiana Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 1990 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1991 100.0 100.0 100.0 100.0 100.0 98.5 98.6 98.4 98.5 98.4 97.4 97.6 1992 82.3 87.7 88.7 90.6 90.5 90.1 90.6 90.2 91.1 90.6 81.4 86.4 1993 97.4 97.9 98.1 98.6 98.9 98.9 98.8 98.8 98.8 98.2 97.1 97.5 1994 97.7 98.1 98.1 98.0 98.0 97.9 98.4 97.6 98.1 97.9 97.9 97.5 1995 97.8 98.2

  19. Percent of Commercial Natural Gas Deliveries in Massachusetts Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 1990 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.8 99.8 99.8 99.7 99.7 1991 99.8 99.8 99.9 99.9 99.9 99.8 99.7 99.6 99.6 99.8 99.9 99.9 1992 99.9 99.9 99.8 99.8 99.7 99.8 99.7 99.6 99.6 99.6 99.7 99.8 1993 98.9 98.7 98.5 97.7 96.5 97.7 96.8 89.2 97.5 96.7 96.9 97.8 1994 75.2 78.4 72.5 69.8 69.8 61.2 67.0 86.0 79.7 90.6 81.2 87.1 1995 87.9 89.4 92.0

  20. Percent of Commercial Natural Gas Deliveries in Mississippi Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1990 97.6 96.0 95.7 95.6 94.5 94.3 93.7 93.5 93.9 94.4 95.2 95.8 1991 96.6 97.0 96.3 95.9 94.5 94.9 94.3 94.6 95.1 94.9 95.5 96.4 1992 96.9 97.3 96.4 96.6 95.2 95.4 95.5 94.8 95.6 95.6 95.9 97.4 1993 97.3 97.3 97.2 97.1 96.1 96.0 96.0 95.7 95.5 95.4 96.1 96.5 1994 97.2 97.6 97.1 96.9 96.1 96.9 97.1 95.1 94.9 94.3 96.2 96.6 1995 96.4 97.4 98.2

  1. Percent of Commercial Natural Gas Deliveries in New Hampshire Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1990 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1991 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1992 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1993 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1994 100.0 100.0 100.0 100.0 100.0

  2. Percent of Commercial Natural Gas Deliveries in North Carolina Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 98.7 98.9 94.9 92.4 89.6 87.7 80.1 84.2 84.4 86.3 97.1 98.1 1990 98.6 98.3 98.0 97.0 89.1 86.3 85.3 85.0 84.7 84.0 98.7 99.1 1991 99.3 99.3 99.0 89.0 87.3 86.1 84.4 86.3 85.0 98.0 99.0 99.3 1992 99.3 99.2 99.2 93.1 88.3 85.8 84.3 86.2 89.2 99.9 100.0 100.0 1993 100.0 100.0 100.0 100.0 100.0 95.4 95.4 95.2 99.7 89.7 96.1 100.0 1994 100.0 100.0 100.0 95.3 94.0 92.1 91.8 90.4 88.3 88.0 94.1 99.4 1995 95.7 96.0 94.5

  3. Percent of Commercial Natural Gas Deliveries in Pennsylvania Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 89.4 88.9 88.7 87.4 81.7 76.8 79.6 77.2 76.4 80.3 82.9 85.3 1990 85.9 83.6 80.9 80.0 74.0 70.2 68.5 68.3 67.2 69.6 74.9 79.2 1991 82.2 79.4 78.8 77.7 72.1 72.9 70.6 71.6 72.2 72.9 76.4 76.7 1992 77.1 79.6 76.6 75.1 71.8 73.1 68.1 67.2 69.4 74.0 74.1 79.4 1993 80.5 79.7 79.5 78.2 72.1 72.9 72.9 69.7 70.3 76.5 75.9 77.0 1994 79.0 80.2 77.5 73.9 71.6 70.8 67.1 71.4 67.9 62.7 68.7 72.1 1995 75.1 74.4 74.9 71.4 68.7

  4. Percent of Commercial Natural Gas Deliveries in South Carolina Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 98.5 98.5 98.6 98.3 98.1 98.2 98.1 97.7 97.7 97.8 98.0 97.3 1990 98.6 98.4 98.3 98.1 92.2 97.6 97.6 97.5 97.9 97.3 98.0 98.6 1991 98.7 98.9 98.7 96.9 97.4 97.5 97.3 97.7 97.7 97.4 98.9 98.9 1992 99.1 99.1 98.9 98.6 98.5 95.8 95.5 95.8 97.0 99.7 100.0 100.0 1993 100.0 100.0 100.0 100.0 100.0 100.0 95.1 94.6 100.0 95.3 100.0 100.0 1994 100.0 100.0 100.0 99.7 97.8 98.3 97.0 95.7 95.2 95.6 96.2 99.9 1995 97.8 97.5

  5. Percent of Commercial Natural Gas Deliveries in Tennessee Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 99.1 98.9 98.9 97.5 96.8 95.9 96.7 95.8 96.9 97.1 97.4 99.1 1990 98.9 98.5 98.7 97.9 95.4 95.4 95.1 95.9 95.1 95.5 96.5 97.5 1991 97.9 94.6 93.6 96.0 94.8 94.3 93.8 93.8 94.0 95.3 97.1 97.8 1992 96.6 97.1 96.8 97.2 93.7 95.8 97.3 90.4 91.6 97.3 97.5 97.4 1993 96.6 96.9 96.6 96.5 97.7 91.3 91.6 91.1 91.4 92.3 94.7 98.9 1994 96.7 98.5 97.9 93.0 90.0 89.4 87.2 87.1 89.3 88.4 91.7 94.4 1995 95.5 95.8 93.4 90.8 89.6

  6. Percent of Commercial Natural Gas Deliveries in Washington Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 95.5 94.8 96.9 93.2 93.0 89.7 87.0 92.6 87.3 93.0 93.6 96.5 1990 96.2 95.9 93.2 92.1 90.9 88.9 88.3 88.4 90.1 91.7 95.7 96.5 1991 97.8 94.9 94.3 93.2 91.2 90.5 88.3 87.2 85.6 85.2 88.7 92.1 1992 92.1 89.0 88.7 85.5 83.5 80.7 78.5 80.3 81.6 83.4 86.8 92.3 1993 93.8 93.2 93.9 93.6 90.8 89.8 90.5 90.4 90.6 94.8 97.4 98.0 1994 97.6 97.6 97.6 97.4 92.1 92.1 92.4 91.7 94.4 93.8 94.1 94.7 1995 94.3 94.0 94.2 92.6 91.8

  7. Percent of Commercial Natural Gas Deliveries in Wisconsin Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 94.1 94.2 94.5 94.0 92.6 87.7 86.1 84.2 84.2 84.3 91.1 95.0 1990 91.6 91.5 91.9 91.9 90.3 86.5 83.1 82.4 82.6 87.5 90.1 93.3 1991 93.8 92.3 92.9 91.2 88.8 83.8 80.7 84.7 83.6 86.7 91.5 92.1 1992 92.7 92.1 91.6 90.0 85.8 82.3 83.3 84.1 85.2 90.7 93.4 95.1 1993 95.2 96.0 95.3 93.5 92.1 90.8 89.2 88.5 90.0 92.6 95.2 96.0 1994 97.1 97.6 97.4 96.6 91.8 89.9 83.5 87.1 87.8 90.8 94.4 84.4 1995 93.5 94.0 93.2 92.4 90.0

  8. Percent of Industrial Natural Gas Deliveries in Connecticut Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 66.1 48.5 50.9 50.2 58.7 44.3 34.1 58.5 55.7 73.8 58.9 51.8 2002 45.0 47.4 53.0 41.3 52.5 50.1 38.1 49.3 53.9 52.2 49.1 54.2 2003 45.5 42.0 48.4 45.5 43.4 42.2 40.0 38.9 41.2 44.0 55.4 54.2 2004 41.0 40.9 39.5 45.6 43.7 45.0 47.5 44.3 43.7 47.4 46.5 46.2 2005 51.3 45.1 46.1 48.5 45.8 42.9 43.2 42.6 48.1 48.4 49.1 44.9 2006 49.2 48.5 45.1 47.1 50.0 49.0 51.8 49.9 50.5 52.2 42.5 47.8 2007 50.6 50.0 47.4 49.5 51.1

  9. Percent of Industrial Natural Gas Deliveries in Mississippi Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 28.2 32.5 24.3 32.8 25.6 33.3 27.5 30.2 28.5 21.2 31.3 31.1 2002 27.5 29.8 27.4 27.0 23.9 26.2 24.1 25.8 24.2 23.9 26.3 25.2 2003 32.3 39.3 37.3 34.5 31.8 37.2 34.6 32.3 32.7 28.6 27.0 35.7 2004 39.9 36.9 33.0 32.8 29.8 33.8 32.8 33.7 36.7 31.0 33.7 38.8 2005 26.7 24.2 23.6 24.4 23.7 22.1 23.2 22.8 42.3 24.8 28.8 23.7 2006 24.7 28.1 24.8 23.5 19.5 19.2 18.1 17.2 16.6 17.5 15.6 18.0 2007 18.4 19.6 17.4 15.6 13.4

  10. Percent of Industrial Natural Gas Deliveries in Tennessee Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 48.0 40.7 40.0 33.7 32.1 29.6 33.1 33.6 35.5 29.3 37.7 38.4 2002 36.3 39.0 44.3 34.8 36.6 33.0 32.5 31.8 33.8 35.5 33.9 38.2 2003 36.7 41.2 40.2 37.2 35.5 33.9 38.7 40.5 42.6 44.0 42.1 46.8 2004 44.2 43.4 42.1 40.5 41.0 36.5 36.4 34.6 37.0 38.3 41.5 47.1 2005 39.9 40.5 44.7 47.3 42.5 39.5 39.5 43.3 42.8 41.5 39.7 46.7 2006 40.9 44.6 40.1 37.3 37.4 39.1 35.5 35.5 34.9 38.2 41.6 39.2 2007 38.8 44.2 40.4 35.4 37.8

  11. Percent of Industrial Natural Gas Deliveries in Washington Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 40.1 37.3 39.3 33.9 31.2 31.0 27.1 35.1 34.9 46.1 46.5 46.1 2002 25.9 28.6 29.4 32.8 30.0 24.4 27.5 20.7 24.7 25.4 31.6 26.9 2003 26.3 26.9 25.5 19.5 18.5 15.1 13.6 15.3 17.5 18.9 18.7 22.2 2004 20.9 21.0 21.4 19.1 15.8 16.0 13.2 17.1 15.0 16.2 14.5 15.6 2005 15.1 14.4 15.2 12.9 11.7 11.7 11.0 15.0 15.5 18.8 20.6 25.3 2006 22.9 22.8 22.6 19.7 19.5 17.8 17.2 16.8 17.1 19.2 21.8 22.3 2007 23.5 22.4 23.2 18.7 16.9

  12. Percent of Industrial Natural Gas Deliveries in Wisconsin Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 25.3 26.6 26.1 18.3 12.5 11.2 12.3 12.4 10.9 15.9 19.9 23.0 2002 25.3 23.6 25.8 21.2 18.5 14.3 11.1 13.3 14.7 20.9 24.7 28.9 2003 27.0 27.3 25.9 18.8 15.3 11.7 10.7 11.7 12.2 17.7 21.3 26.2 2004 26.4 24.1 23.9 19.3 13.5 14.1 12.9 10.4 12.4 17.6 19.6 18.6 2005 21.7 20.9 20.8 15.9 13.4 11.2 12.3 13.2 13.9 16.4 21.9 25.1 2006 21.6 21.7 23.0 13.3 14.1 13.5 11.1 12.3 13.3 18.2 22.8 24.2 2007 22.3 23.7 24.1 17.8 13.6

  13. Percent of Commercial Natural Gas Deliveries in West Virginia Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 68.6 69.0 65.3 63.9 55.0 45.3 39.8 39.5 40.5 49.5 58.6 71.5 1990 72.4 67.8 64.6 60.4 53.8 41.6 34.0 37.7 34.7 38.3 56.1 61.2 1991 64.6 65.8 65.4 54.5 42.1 34.1 31.0 33.9 36.5 45.2 55.6 58.0 1992 65.0 65.9 59.9 63.0 54.5 39.3 35.8 33.6 33.4 48.1 56.8 58.9 1993 60.7 61.3 61.7 60.2 47.5 33.6 30.3 30.6 33.0 46.8 54.9 60.1 1994 67.4 65.2 61.9 58.3 47.8 39.6 29.5 34.3 34.2 41.3 47.5 55.7 1995 55.5 59.5 56.1 50.6 42.2

  14. Percent of Industrial Natural Gas Deliveries in Louisiana Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 8.2 7.6 6.3 8.0 7.2 5.9 9.1 9.6 9.0 8.6 10.0 9.1 2002 13.4 13.3 13.0 13.6 14.3 13.5 12.2 13.1 12.9 12.7 13.4 14.8 2003 12.0 13.2 12.0 13.5 13.7 13.7 11.8 12.8 13.4 14.1 16.3 14.3 2004 14.5 15.7 16.4 22.9 22.7 23.7 23.3 22.9 22.8 23.3 25.2 26.0 2005 26.3 25.9 27.3 27.8 28.6 28.2 27.2 28.9 29.0 28.8 28.8 29.0 2006 29.4 28.6 29.2 26.8 28.8 28.3 28.0 29.5 26.3 25.7 28.6 31.5 2007 29.7 31.7 27.3 28.8 29.9 33.6 23.9 23.8

  15. Percent of Industrial Natural Gas Deliveries in Massachusetts Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 36.9 37.4 48.4 27.7 23.2 18.9 14.1 10.3 18.5 18.6 29.5 21.8 2002 27.5 26.6 23.0 21.7 16.9 14.0 16.5 11.1 9.4 14.8 21.7 28.6 2003 40.7 44.0 44.6 41.6 37.9 36.3 38.9 42.3 35.8 78.7 23.9 36.9 2004 47.9 47.2 45.8 39.9 36.5 34.4 31.3 27.0 23.1 29.2 23.2 40.5 2005 40.9 43.4 42.6 37.2 32.0 29.0 26.8 22.1 22.3 26.9 33.6 40.9 2006 42.4 41.0 40.2 36.9 31.5 28.6 25.2 26.5 26.5 23.7 32.2 31.2 2007 34.8 36.0 37.0 30.2 29.7

  16. Percent of Industrial Natural Gas Deliveries in North Carolina Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 43.8 39.0 34.6 41.8 30.0 28.6 27.2 30.1 21.4 17.7 27.3 30.7 2002 31.5 26.5 28.6 41.0 46.4 45.1 46.2 38.8 46.3 45.1 40.1 38.9 2003 43.9 46.9 48.3 29.8 35.3 34.9 37.5 37.1 35.9 35.9 25.0 28.2 2004 39.9 33.5 26.0 26.6 24.1 36.5 32.4 18.7 25.1 22.5 34.8 27.0 2005 20.8 31.7 23.3 19.2 22.7 20.3 20.8 16.6 38.0 49.2 24.8 30.5 2006 29.4 24.1 25.2 20.4 18.6 17.2 17.3 18.1 16.4 16.9 22.0 22.6 2007 22.2 23.1 25.1 24.0 24.1

  17. Percent of Industrial Natural Gas Deliveries in Pennsylvania Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 17.0 16.4 11.3 10.2 7.7 5.1 7.3 7.5 8.2 8.8 7.3 8.4 2002 8.8 8.3 7.0 5.9 5.7 5.5 4.8 5.0 7.2 7.5 8.1 11.4 2003 8.5 8.5 8.8 7.3 5.7 5.4 5.2 5.0 5.2 5.5 5.9 6.5 2004 7.7 8.1 7.3 6.8 5.3 4.8 4.8 5.1 5.2 4.7 6.5 8.3 2005 8.8 8.4 8.2 7.0 6.1 5.5 5.9 7.1 5.2 5.2 6.7 8.2 2006 8.2 7.3 7.1 5.3 4.8 4.2 4.1 4.1 6.2 4.2 4.6 5.4 2007 6.7 8.5 8.3 5.9 5.6 3.7 3.3 3.2 4.1 3.1 4.5 6.6 2008 7.7 7.3 7.3 6.9 5.7 4.8 4.4 4.3 3.8 3.9

  18. Percent of Industrial Natural Gas Deliveries in South Carolina Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 91.8 86.4 82.7 82.0 77.6 80.8 80.2 80.2 80.3 79.8 82.4 84.4 2002 89.9 87.6 85.4 88.3 90.4 87.4 90.5 84.4 90.3 90.3 84.3 82.9 2003 79.4 79.6 75.8 79.3 81.8 81.7 78.9 77.3 78.4 77.0 76.5 75.9 2004 76.9 75.6 77.0 79.2 79.0 78.2 78.5 79.0 78.6 78.3 77.2 76.4 2005 78.2 78.8 78.0 77.4 78.1 78.2 78.8 78.7 73.2 76.4 67.9 81.3 2006 80.1 78.6 74.0 80.2 71.2 75.3 75.9 77.2 70.6 74.8 48.6 44.6 2007 48.9 48.4 47.5 46.1 47.5

  19. Percent of Industrial Natural Gas Deliveries in West Virginia Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 11.2 6.1 6.1 8.6 8.2 7.3 7.7 8.9 5.9 60.8 7.0 62.1 2002 12.1 12.6 11.7 15.0 12.6 12.1 14.7 13.0 16.1 10.7 13.1 10.4 2003 14.3 12.6 20.3 13.9 14.0 14.7 13.6 13.5 14.6 12.9 14.1 10.9 2004 10.7 10.5 11.4 11.5 19.8 15.0 15.7 15.3 14.3 14.8 14.7 12.8 2005 11.4 12.8 12.5 13.7 17.4 21.1 23.5 20.4 22.1 23.0 20.7 18.5 2006 16.3 14.8 17.3 18.6 16.9 20.3 15.7 16.4 19.0 16.7 16.4 16.7 2007 15.2 13.4 15.9 16.3 17.8 18.5 18.5

  20. Polynuclear aromatic hydrocarbons for fullerene synthesis in flames

    DOE Patents [OSTI]

    Alford, J. Michael; Diener, Michael D.

    2006-12-19

    This invention provides improved methods for combustion synthesis of carbon nanomaterials, including fullerenes, employing multiple-ring aromatic hydrocarbon fuels selected for high carbon conversion to extractable fullerenes. The multiple-ring aromatic hydrocarbon fuels include those that contain polynuclear aromatic hydrocarbons. More specifically, multiple-ring aromatic hydrocarbon fuels contain a substantial amount of indene, methylnapthalenes or mixtures thereof. Coal tar and petroleum distillate fractions provide low cost hydrocarbon fuels containing polynuclear aromatic hydrocarbons, including without limitation, indene, methylnapthalenes or mixtures thereof.

  1. Aromatic and polycyclic aromatic hydrocarbon formation in a laminar premixed n-butane flame

    SciTech Connect (OSTI)

    Marinov, N.M.; Pitz, W.J.; Westbrook, C.K.; Vincitore, A.M.; Castaldi, M.J.; Senkan, S.M.; Melius, C.F.

    1998-07-01

    Experimental and detailed chemical kinetic modeling work has been performed to investigate aromatic and polycyclic aromatic hydrocarbon (PAH) formation pathways in a premixed, rich, sooting, n-butane-oxygen-argon burner stabilized flame. An atmospheric pressure, laminar flat flame operated at an equivalence ratio of 2.6 was used to acquire experimental data for model validation. Gas composition analysis was conducted by an on-line gas chromatograph/mass spectrometer technique. Measurements were made in the main reaction and post-reaction zones for a number of low molecular weight species, aliphatics, aromatics, and polycyclic aromatic hydrocarbons (PAHs) ranging from two to five-fused aromatic rings. Reaction flux and sensitivity analysis were used to help identify the important reaction sequences leading to aromatic and PAH growth and destruction in the n-butane flame. Reaction flux analysis showed the propargyl recombination reaction was the dominant pathway to benzene formation. The consumption of propargyl by H atoms was shown to limit propargyl, benzene, and naphthalene formation in flames as exhibited by the large negative sensitivity coefficients. Naphthalene and phenanthrene production was shown to be plausibly formed through reactions involving resonantly stabilized cyclopentadienyl and indenyl radicals. Many of the low molecular weight aliphatics, combustion by-products, aromatics, branched aromatics, and PAHs were fairly well simulated by the model. Additional work is required to understand the formation mechanisms of phenyl acetylene, pyrene, and fluoranthene in the n-butane flame. 73 refs.

  2. Fact #720: March 26, 2012 Eleven Percent of New Light Trucks...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: March 26, 2012 Eleven Percent of New Light Trucks Sold have Gasoline Direct Injection Fact 720: March 26, 2012 Eleven Percent of New Light Trucks Sold have Gasoline Direct Injection ...

  3. Near Zero Emissions at 50 Percent Thermal Efficiency

    SciTech Connect (OSTI)

    2012-12-31

    Detroit Diesel Corporation (DDC) has successfully completed a 10 year DOE sponsored heavy-duty truck engine program, hereafter referred to as the NZ-50 program. This program was split into two major phases. The first phase was called “Near-Zero Emission at 50 Percent Thermal Efficiency,” and was completed in 2007. The second phase was initiated in 2006, and this phase was named “Advancements in Engine Combustion Systems to Enable High-Efficiency Clean Combustion for Heavy-Duty Engines.” This phase was completed in September, 2010. The key objectives of the NZ-50 program for this first phase were to: • Quantify thermal efficiency degradation associated with reduction of engine-out NOx emissions to the 2007 regulated level of ~1.1 g/hp-hr. • Implement an integrated analytical/experimental development plan for improving subsystem and component capabilities in support of emerging engine technologies for emissions and thermal efficiency goals of the program. • Test prototype subsystem hardware featuring technology enhancements and demonstrate effective application on a multi-cylinder, production feasible heavy-duty engine test-bed. • Optimize subsystem components and engine controls (calibration) to demonstrate thermal efficiency that is in compliance with the DOE 2005 Joule milestone, meaning greater than 45% thermal efficiency at 2007 emission levels. • Develop technology roadmap for meeting emission regulations of 2010 and beyond while mitigating the associated degradation in engine fuel consumption. Ultimately, develop technical prime-path for meeting the overall goal of the NZ-50 program, i.e., 50% thermal efficiency at 2010 regulated emissions. These objectives were successfully met during the course of the NZ-50 program. The most noteworthy achievements in this program are summarized as follows: • Demonstrated technologies through advanced integrated experiments and analysis to achieve the technical objectives of the NZ-50 program with 50.2% equivalent thermal efficiency under EPA 2010 emissions regulations. • Experimentally demonstrate brake efficiency of 48.5% at EPA 2010 emission level at single steady-state point. • Analytically demonstrated additional brake efficiency benefits using advanced aftertreatment configuration concept and air system enhancement including, but not limited to, turbo-compound, variable valve actuator system, and new cylinder head redesign, thus helping to achieve the final program goals. • Experimentally demonstrated EPA 2010 emissions over FTP cycles using advanced integrated engine and aftertreatment system. These aggressive thermal efficiency and emissions results were achieved by applying a robust systems technology development methodology. It used integrated analytical and experimental tools for subsystem component optimization encompassing advanced fuel injection system, increased EGR cooling capacity, combustion process optimization, and advanced aftertreatment technologies. Model based controls employing multiple input and output techniques enabled efficient integration of the various subsystems and ensured optimal performance of each system within the total engine package. . The key objective of the NZ-50 program for the second phase was to explore advancements in engine combustion systems using high-efficiency clean combustion (HECC) techniques to minimize cylinder-out emissions, targeting a 10% efficiency improvement. The most noteworthy achievements in this phase of the program are summarized as follows: • Experimentally and analytically evaluated numerous air system improvements related to the turbocharger and variable valve actuation. Some of the items tested proved to be very successful and modifications to the turbine discovered in this program have since been incorporated into production hardware. • The combustion system development continued with evaluation of various designs of the 2-step piston bowl. Significant improvements in engine emissions have been obtained, but fuel economy improvements have been tougher to realize. • Development of a neural network control system progressed to the point that the system was fully functional and showing significant fuel economy gains in transient engine testing. • Development of the QuantLogic injector with the capability of both a hollow cone spray during early injection and conventional diesel injection at later injection timings was undertaken and proved to be problematic. This injector was designed to be a key component in a PCCI combustion system, but this innovative fuel injector required significantly more development effort than this program’s resources or timing would allow.

  4. Experimental and modeling investigation of aromatic and polycyclic aromatic hydrocarbon formation in a premixed ethylene flame

    SciTech Connect (OSTI)

    Castaldi, M.J.; Marinov, N.M.; Melius, C.F.

    1996-02-01

    Experimental and detailed chemical kinetic modeling has been performed to investigate aromatic and polyaromatic hydrocarbon formation pathways in a rich, sooting, ethylene-oxygen-argon premixed flame. An atmospheric pressure, laminar flat flame operated at an equivalence ratio of 2.5 was used to acquire experimental data for model validation. Gas composition analysis was conducted by an on-line gas chromatograph/mass spectrometer (GC/MS) technique. Measurements were made in the flame and post-flame zone for a number of low molecular weight species, aliphatics, aromatics and polycyclic aromatic hydrocarbons (PAHs) ranging from two to five-aromatic fused rings. The modeling results show the key reaction sequences leading to aromatic and polycyclic aromatic hydrocarbon growth involve the combination of resonantly stabilized radicals. In particular, propargyl and 1-methylallenyl combination reactions lead to benzene and methyl substituted benzene formation, while polycyclic aromatics are formed from cyclopentadienyl radicals and fused rings that have a shared C{sub 5} side structure. Naphthalene production through the reaction step of cyclopentadienyl self-combination and phenanthrene formation from indenyl and cyclopentadienyl combination were shown to be important in the flame modeling study. The removal of phenyl by O{sub 2} leading to cyclopentadienyl formation is expected to play a pivotal role in the PAH or soot precursor growth process under fuel-rich oxidation conditions.

  5. Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes

    DOE Patents [OSTI]

    Smith, R.E.; Dolbeare, F.A.

    1980-10-21

    Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 4-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes. No Drawings

  6. Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes

    DOE Patents [OSTI]

    Smith, Robert E. [557 Escondido Cir., Livermore, CA 94550; Dolbeare, Frank A. [5178 Diane La., Livermore, CA 94550

    1980-10-21

    Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 4-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes.

  7. Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes

    DOE Patents [OSTI]

    Smith, Robert E.; Dolbeare, Frank A.

    1979-01-01

    Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 5-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes.

  8. EECBG 11-002 Clarification of Ten Percent Limitation on Use of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency and Conservation Block Grant Program (EECBG), ten percent ... Guidance For Energy Efficiency And Conservation Block Grant Grantees On Financing Programs ...

  9. Monitoring of vapor phase polycyclic aromatic hydrocarbons

    DOE Patents [OSTI]

    Vo-Dinh, Tuan; Hajaligol, Mohammad R.

    2004-06-01

    An apparatus for monitoring vapor phase polycyclic aromatic hydrocarbons in a high-temperature environment has an excitation source producing electromagnetic radiation, an optical path having an optical probe optically communicating the electromagnetic radiation received at a proximal end to a distal end, a spectrometer or polychromator, a detector, and a positioner coupled to the first optical path. The positioner can slidably move the distal end of the optical probe to maintain the distal end position with respect to an area of a material undergoing combustion. The emitted wavelength can be directed to a detector in a single optical probe 180.degree. backscattered configuration, in a dual optical probe 180.degree. backscattered configuration or in a dual optical probe 90.degree. side scattered configuration. The apparatus can be used to monitor an emitted wavelength of energy from a polycyclic aromatic hydrocarbon as it fluoresces in a high temperature environment.

  10. Characterization and analysis of polycyclic aromatic hydrocarbons

    SciTech Connect (OSTI)

    Breuer, G.M.; Smith, J.P.

    1984-01-01

    Sampling and analytical procedures were developed for determining the concentrations of polycyclic aromatic hydrocarbons in animal-exposure chambers during studies on exposure to diesel exhaust, coal dust, or mixtures of these two pollutants. Fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(e)pyrene, benzo(k)fluoranthene, and benzo(a)pyrene were used as representative polycyclic aromatic hydrocarbons. High-pressure liquid chromatography with fluorescence detection was used for analysis. Coal-dust only samples revealed a broad, rising background in the chromatogram with small peaks superimposed corresponding to fluoranthene, pyrene, and benzo(a)anthracene, diesel exhaust only samples showed many peaks on a flat baseline including those corresponding to fluoranthene, pyrene, benzo(a)anthracene, benzo(k)fluoranthene, and benzo(a)pyrene. In general, no polynuclear aromatics were noted in the clean air samples. The authors note that relatively minor changes in air/fuel ratio, lubricant, fuel, and load may have substantial effects on very minor components of the exhaust emission.

  11. U.S. Utility-Scale Solar 60 Percent Towards Cost-Competition Goal |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Utility-Scale Solar 60 Percent Towards Cost-Competition Goal U.S. Utility-Scale Solar 60 Percent Towards Cost-Competition Goal February 12, 2014 - 11:05am Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department announced today that the U.S. solar industry is more than 60 percent of the way to achieving cost-competitive utility-scale solar photovoltaic (PV) electricity - only three years into the Department's decade-long SunShot Initiative. To help

  12. Volume I

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Volume Comparison Data for February 2016 | Release Date: April 29, 2016 | Complete XLS File Beginning with data for August 2010, natural gas consumption for the residential and commercial sectors was derived from the total system sendout reported by local distribution companies on Form EIA-857, "Monthly Report of Natural Gas Purchases and Deliveries." The new methodology was designed to yield estimates that more closely reflect calendar month consumption patterns. Total system sendout

  13. Volume Visualization

    Office of Scientific and Technical Information (OSTI)

    Volume Visualization of Multiple Alignment of Large Genomic DNA Nameeta Shah 1,2 , Scott E. Dillard 1 , Gunther H. Weber 1,2 , and Bernd Hamann 1,2 1 Institute for Data Analysis and Visualization (IDAV), Department of Computer Science, One Shields Avenue, University of California, Davis, CA 95616-8562, U.S.A. {nyshah, sedillard, ghweber, bhamann}@ucdavis.edu 2 Visualization Group, National Energy Research Scientific Computing Center (NERSC), Lawrence Berkeley National Laboratory, One Cyclotron

  14. Device for aqueous detection of nitro-aromatic compounds

    DOE Patents [OSTI]

    Reagen, W.K.; Schulz, A.L.; Ingram, J.C.; Lancaster, G.D.; Grey, A.E.

    1994-04-26

    This invention relates to a compact and portable detection apparatus for nitro-aromatic based chemical compounds, such as nitrotoluenes, dinitrotoluenes, and trinitrotoluene (TNT). The apparatus is based upon the use of fiber optics using filtered light. The preferred process of the invention relies upon a reflective chemical sensor and optical and electronic components to monitor a decrease in fluorescence when the nitro-aromatic molecules in aqueous solution combine and react with a fluorescent polycyclic aromatic compound. 4 figures.

  15. Device for aqueous detection of nitro-aromatic compounds

    DOE Patents [OSTI]

    Reagen, William K. (Stillwater, MN); Schulz, Amber L. (Bremerton, WA); Ingram, Jani C. (Idaho Falls, ID); Lancaster, Gregory D. (Idaho Falls, ID); Grey, Alan E. (Idaho Falls, ID)

    1994-01-01

    This invention relates to a compact and portable detection apparatus for ro-aromatic based chemical compounds, such as nitrotoluenes, dinitrotoluenes, and trinitrotoluene (TNT). The apparatus is based upon the use of fiber optics using filtered light. The preferred process of the invention relies upon a reflective chemical sensor and optical and electronic components to monitor a decrease in fluorescence when the nitro-aromatic molecules in aqueous solution combine and react with a fluorescent polycyclic aromatic compound.

  16. EECBG 11-002 Clarification of Ten Percent Limitation on Use of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EECBG PROGRAM NOTICE 11-002 EFFECTIVE DATE: July 28, 2011 SUBJECT: CLARIFICATION OF TEN PERCENT LIMATION ON USE OF FUNDS FOR ADMINISTRATIVE EXPENSES PURPOSE To provide guidance to...

  17. EECBG 11-002 Clarification of Ten Percent Limitation on Use of Funds for Administrative Expenses

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Energy Efficiency and Conservation Block Grant Program (EECBG), ten percent limitation, administrative expenses, the Energy Independence and Security Act of 2007.

  18. Impacts of Increasing Natural Gas Fueled CHP from 20 to 35 Percent...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impacts of Increasing Natural Gas Fueled CHP from 20 to 35 Percent of Total Electricity Production in Texas, April 2011 Impacts of Increasing Natural Gas Fueled CHP from 20 to 35 ...

  19. Fact #727: May 14, 2012 Nearly Twenty Percent of Households Own Three or More Vehicles

    Broader source: Energy.gov [DOE]

    Household vehicle ownership has changed over the last six decades. In 1960, over twenty percent of households did not own a vehicle, but by 2010, that number fell to less than 10%. The number of...

  20. Fact #924: May 9, 1916 Twenty Percent of New Cars in 2015 Had...

    Broader source: Energy.gov (indexed) [DOE]

    Twenty Percent of New Cars in 2015 Had Turbochargers File fotw924web.xlsx More Documents & Publications Fact 923: May 2, 2016 Cylinder Deactivation was Used in More than a ...

  1. If I generate 20 percent of my national electricity from wind...

    Open Energy Info (EERE)

    If I generate 20 percent of my national electricity from wind and solar - what does it do to my GDP and Trade Balance ? Home I think that the economics of fossil fuesl are well...

  2. Aromatics oxidation and soot formation in flames

    SciTech Connect (OSTI)

    Howard, J.B.; Pope, C.J.; Shandross, R.A.; Yadav, T.

    1993-12-01

    This project is concerned with the kinetics and mechanisms of aromatics oxidation and soot and fullerenes formation in flames. The scope includes detailed measurements of profiles of stable and radical species concentrations in low-pressure one-dimensional premixed flames. Intermediate species identifications and mole fractions, fluxes, and net reaction rates calculated from the measured profiles are used to test postulated reaction mechanisms. Particular objectives are to identify and to determine or confirm rate constants for the main benzene oxidation reactions in flames, and to characterize fullerenes and their formation mechanisms and kinetics.

  3. Impacts of Increasing Natural Gas Fueled CHP from 20 to 35 Percent of Total

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Production in Texas, April 2011 | Department of Energy Impacts of Increasing Natural Gas Fueled CHP from 20 to 35 Percent of Total Electricity Production in Texas, April 2011 Impacts of Increasing Natural Gas Fueled CHP from 20 to 35 Percent of Total Electricity Production in Texas, April 2011 This report is an examination of the possible impacts, implications, and practicality of increasing the amount of electrical energy produced from combined heat and power (CHP) facilities

  4. New Water Booster Pump System Reduces Energy Consumption by 80 Percent and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Increases Reliability | Department of Energy Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases Reliability New Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases Reliability This case study outlines how General Motors (GM) developed a highly efficient pumping system for their Pontiac Operations Complex in Pontiac, Michigan. In short, GM was able to replace five original 60- to 100-hp pumps with three 15-hp pumps whose speed could

  5. NREL Study Shows 20 Percent Wind is Possible by 2024 - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Study Shows 20 Percent Wind is Possible by 2024 Analysis Shows Transmission Upgrades, Offshore Wind, and Operational Changes Needed to Incorporate 20 to 30 Percent Wind January 20, 2010 Today, the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) released the Eastern Wind Integration and Transmission Study (EWITS). This unprecedented two-and-a-half year technical study of future high-penetration wind scenarios was designed to analyze the economic, operational,

  6. NREL Study: Hybrid Delivery Vans Show Nearly 20 Percent Higher Fuel Economy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - News Releases | NREL Study: Hybrid Delivery Vans Show Nearly 20 Percent Higher Fuel Economy September 28, 2012 The U.S. Department of Energy's (DOE)'s National Renewable Energy Laboratory (NREL) recently completed a performance evaluation report that showed significant fuel economy benefits of hybrid electric delivery vans compared to similar conventional vans. "During the on-road portion of our study, the hybrid vans demonstrated a 13 to 20 percent higher fuel economy than the

  7. Better Buildings Challenge Partners Pledge 20 Percent Energy Drop By 2020 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Challenge Partners Pledge 20 Percent Energy Drop By 2020 Better Buildings Challenge Partners Pledge 20 Percent Energy Drop By 2020 November 9, 2011 - 10:00am Addthis This is the Atlanta Better Buildings Challenge Breakout Session Panel with representatives from the City of Atlanta Office of Sustainability, Southface, the U.S. General Services Administration, and two Atlanta BBC partner organizations. | Photo courtesy of Fred Perry Photography This is the Atlanta Better

  8. Laboratory Investigation of Organic Aerosol Formation from Aromatic Hydrocarbons

    DOE R&D Accomplishments [OSTI]

    Molina, Luisa T.; Molina, Mario J.; Zhang, Renyi

    2006-08-23

    Our work for this DOE funded project includes: (1) measurements of the kinetics and mechanism of the gas-phase oxidation reactions of the aromatic hydrocarbons initiated by OH; (2) measurements of aerosol formation from the aromatic hydrocarbons; and (3) theoretical studies to elucidate the OH-toluene reaction mechanism using quantum-chemical and rate theories.

  9. MFT homogeneity study at TNX: Final report on the low weight percent solids concentration

    SciTech Connect (OSTI)

    Jenkins, W.J.

    1993-09-21

    A statistical design and analysis of both elemental analyses and weight percent solids analyses data was utilized to evaluate the MFT homogeneity at low heel levels and low agitator speed at both high and low solids feed concentrations. The homogeneity was also evaluated at both low and high agitator speed at the 6000+ gallons static level. The dynamic level portion of the test simulated feeding the Melter from the MFT to evaluate the uniformity of the solids slurry composition (Frit-PHA-Sludge) entering the melter from the MFT. This final report provides the results and conclusions from the second half of the study, the low weight percent solids concentration portion, as well as a comparison with the results from the first half of the study, the high weight percent solids portion.

  10. Wind Energy Could Produce 20 Percent of U.S. Electricity By 2030 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Energy Could Produce 20 Percent of U.S. Electricity By 2030 Wind Energy Could Produce 20 Percent of U.S. Electricity By 2030 May 12, 2008 - 11:30am Addthis DOE Report Analyzes U.S. Wind Resources, Technology Requirements, and Manufacturing, Siting and Transmission Hurdles to Increasing the Use of Clean and Sustainable Wind Power WASHINGTON, DC - The U.S Department of Energy (DOE) today released a first-of-its kind report that examines the technical feasibility of

  11. NREL Solar Cell Sets World Efficiency Record at 40.8 Percent - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL NREL Solar Cell Sets World Efficiency Record at 40.8 Percent August 13, 2008 Scientists at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) have set a world record in solar cell efficiency with a photovoltaic device that converts 40.8 percent of the light that hits it into electricity. This is the highest confirmed efficiency of any photovoltaic device to date. The inverted metamorphic triple-junction solar cell was designed, fabricated and

  12. Coupling of oxidative dehydrogenation and aromatization reactions of butane

    SciTech Connect (OSTI)

    Xu, Wen-Qing; Suib, S.L. )

    1994-01-01

    Coupling of oxidative dehydrogenation and aromatization of butane by using a dual function catalyst has led to a significant enhancement of the yields (from 25 to 40%) and selectivities to aromatics (from 39 to 64%). Butane is converted to aromatics by using either zinc-promoted [Ga]-ZSM-5 or zinc and gallium copromoted [Fe]-ZSM-5 zeolite as a catalyst. However, the formation of aromatics is severely limited by hydrocracking of butane to methane, ethane, and propane due to the hydrogen formed during aromatization reactions. On the other hand, the oxidative dehydrogenation of butane to butene over molybdate catalysts is found to be accompanied by a concurrent undesirable reaction, i.e., total oxidation. When two of these reactions (oxidative dehydrogenation and aromatization of butane) are coupled by using a dual function catalyst they have shown to complement each other. It is believed that the rate-limiting step for aromatization (butane to butene) is increased by adding an oxidative dehydrogenation catalyst (Ga-Zn-Mg-Mo-O). The formation of methane, ethane, and propane was suppressed due to the removal of hydrogen initially formed as water. Studies of ammonia TPD show that the acidities of [Fe]-ZSM-5 are greatly affected by the existence of metal oxides such as Ga[sub 2]O[sub 3], MgO, ZnO, and MoO[sub 3]. 40 refs., 9 figs., 1 tab.

  13. WPN 94-8: 40 Percent Waiver Provisions for Mobile Home Units

    Broader source: Energy.gov [DOE]

    This program notice provides clarifying guidance previously issued under Weatherization Program Notice 93-14 on mobile home units weatherized by states which adopt the approved 4.0 version of NEAT or other similar approved energy audits and receive a waiver of the 40 percent requirement from DOE.

  14. WPN 93-14: 40 Percent Waiver Provisions for Multifamily and Mobile Home Units

    Broader source: Energy.gov [DOE]

    This program notice provides guidance on multifamily and mobile home units weatherized by states, which adopt the approved 4.0 version of NEAT or other similar approved energy audits and receive a waiver of the 40 percent requirement from DOE.

  15. Figure 5. Production Schedules at Two Development Rates for the 5 Percent

    U.S. Energy Information Administration (EIA) Indexed Site

    Probability of Recovering 16.0 Billion Barrels 5. Production Schedules at Two Development Rates for the 5 Percent Probability of Recovering 16.0 Billion Barrels of Technically Recoverable Oil from the ANWR Coastal Plain of Alaska fig5.jpg (3770

  16. Percent of Commercial Natural Gas Deliveries in Hawaii Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100 100 100 100 100 100 100 100 100 100 2000's 100 100 100 100 100 100 100 100 100 100 2010's 100 100 100 100

  17. Percent of Commercial Natural Gas Deliveries in Vermont Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100 100 100 100 100 100 100 100 100 100 2000's 100 100 100 100 100 100 100 100 100 100 2010's 100 100 100 100 100 NA

  18. Percent of Industrial Natural Gas Deliveries in Hawaii Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100 100 100 2000's 100 100 100 100 100 100 100 100 100 100 2010's 100 100 100 100

  19. Percent of Industrial Natural Gas Deliveries in Iowa Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 8.7 6.8 7.4 2000's 7.0 7.5 7.6 7.9 8.4 9.8 8.5 6.5 6.6 6.4 2010's 5.8 5.5 5.2 5.

  20. Percent of Industrial Natural Gas Deliveries in Vermont Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100.0 100.0 76.6 2000's 83.8 75.4 74.7 78.8 78.3 81.7 78.4 78.0 79.6 77.9 2010's 77.1 80.9 100.0 100.0

  1. Waste Isolation Pilot Plant Contractor Receives 86 Percent of Available Fee

    Broader source: Energy.gov [DOE]

    CARLSBAD, N.M. – EM’s Carlsbad Field Office (CBFO) recently issued the fiscal year 2015 fee award determination for Nuclear Waste Partnership (NWP), and it shows the Waste Isolation Pilot Plant (WIPP) management and operations contractor earned almost 86 percent — or about $11.7 million of more than $13.6 million — of the fee available for the performance period.

  2. Film Collection Volume One

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Volume One Film Collection Volume Two 75th Anniversary Hydropower in the Northwest Woody Guthrie Videos Strategic Direction Branding & Logos Power of the River History Book...

  3. Volume One Disc Two

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Volume One Film Collection Volume Two 75th Anniversary Hydropower in the Northwest Woody Guthrie Videos Strategic Direction Branding & Logos Power of the River History Book...

  4. Percent of Commercial Natural Gas Deliveries in Alabama Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 79.6 82.7 80.7 80.8 80.3 80.1 81.1 64.7 80.5 70.5 2000's 81.4 82.5 80.5 81.8 82.1 80.5 80.2 79.8 80.2 78.8 2010's 79.3 78.9 76.2 76.6 78.4 77.6

  5. Percent of Commercial Natural Gas Deliveries in Alaska Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100.0 100.0 100.0 100.0 100.0 79.9 63.4 54.5 49.6 55.4 2000's 59.3 60.5 60.0 59.1 55.5 51.2 56.3 76.0 74.9 85.3 2010's 87.7 88.6 94.9 94.5 94.5 98.2

  6. Percent of Commercial Natural Gas Deliveries in Arkansas Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 92.3 91.5 90.7 91.8 95.1 96.0 95.0 94.2 90.8 89.3 2000's 89.9 87.0 80.8 81.9 80.3 74.1 71.7 70.4 64.5 59.4 2010's 55.6 51.5 40.2 43.7 45.5 42.5

  7. Percent of Commercial Natural Gas Deliveries in Colorado Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 97.3 96.0 95.5 95.5 94.8 94.2 93.2 92.8 94.3 97.5 2000's 97.4 95.6 95.3 95.3 94.7 95.2 95.4 95.7 95.2 94.8 2010's 94.6 93.8 92.2 94.7 94.5 NA

  8. Percent of Commercial Natural Gas Deliveries in Delaware Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.8 2000's 98.0 98.3 82.8 82.8 81.6 83.3 77.5 74.8 70.6 53.5 2010's 49.8 53.4 43.7 45.0 46.2 45.7

  9. Percent of Commercial Natural Gas Deliveries in Florida Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 97.6 97.4 97.7 97.8 97.9 97.6 97.1 97.5 96.6 94.5 2000's 67.4 56.6 42.3 42.3 41.2 100.0 100.0 100.0 100.0 100.0 2010's 100.0 38.5 37.0 33.3 32.3 NA

  10. Percent of Commercial Natural Gas Deliveries in Georgia Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 88.4 87.5 88.1 90.5 92.0 93.5 94.1 89.1 83.6 61.0 2000's 17.1 20.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2010's 100.0 100.0 100.0 100.0

  11. Percent of Commercial Natural Gas Deliveries in Idaho Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 87.9 87.6 85.7 86.8 85.9 86.0 86.6 86.1 86.4 85.9 2000's 86.3 86.3 85.9 85.2 85.7 85.6 85.8 84.8 86.0 83.7 2010's 82.0 80.8 77.0 77.4 76.6 74.6

  12. Percent of Commercial Natural Gas Deliveries in Illinois Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 57.6 59.0 57.7 55.3 52.8 50.4 53.9 54.3 47.4 42.8 2000's 41.9 41.1 40.9 43.1 41.2 41.5 39.7 42.2 43.3 41.3 2010's 42.3 38.1 36.8 38.4 38.5 NA

  13. Percent of Commercial Natural Gas Deliveries in Indiana Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 95.7 94.2 96.8 95.2 92.3 87.8 96.3 89.9 79.2 78.3 2000's 78.0 77.1 78.4 79.8 78.2 82.1 79.4 78.1 77.9 73.9 2010's 72.5 70.2 67.4 68.2 67.6 67.0

  14. Percent of Commercial Natural Gas Deliveries in Iowa Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 97.6 97.7 95.7 94.7 90.4 89.3 87.7 88.2 85.8 83.4 2000's 81.1 82.0 81.4 78.0 78.3 78.3 77.3 77.7 75.8 72.5 2010's 72.0 72.1 72.2 72.5 74.4 NA

  15. Percent of Commercial Natural Gas Deliveries in Kansas Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 91.6 89.2 84.4 82.6 78.4 73.6 71.7 70.3 69.5 66.7 2000's 57.3 63.1 58.9 59.1 57.3 68.5 65.4 64.8 64.9 65.7 2010's 66.0 62.6 59.8 61.4 59.3 NA

  16. Percent of Commercial Natural Gas Deliveries in Kentucky Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 95.0 94.0 93.1 92.6 91.4 89.2 90.8 90.0 87.4 87.9 2000's 85.6 81.8 78.9 79.2 78.7 79.7 81.3 81.7 82.0 80.1 2010's 80.5 79.2 77.4 78.8 80.5 79.2

  17. Percent of Commercial Natural Gas Deliveries in Maryland Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 95.6 96.6 96.0 96.6 97.1 96.9 91.9 67.1 36.6 33.4 2000's 39.1 32.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2010's 100.0 27.3 24.7 26.2 27.3 27.4

  18. Percent of Commercial Natural Gas Deliveries in Michigan Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 69.9 68.3 68.8 68.6 65.7 66.4 66.9 63.7 59.7 56.6 2000's 58.8 63.5 62.9 64.2 65.6 100.0 100.0 100.0 100.0 100.0 2010's 100.0 54.1 51.0 53.2 55.2 55

  19. Percent of Commercial Natural Gas Deliveries in Missouri Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 86.0 85.9 85.5 84.6 83.3 83.3 82.2 79.9 78.3 78.6 2000's 80.0 80.8 80.0 80.5 77.4 77.1 76.4 76.9 77.5 76.7 2010's 76.5 73.1 69.2 72.3 70.5 71.1

  20. Percent of Commercial Natural Gas Deliveries in Montana Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 97.9 97.5 95.4 93.2 91.8 91.6 91.5 91.5 77.2 79.8 2000's 73.5 76.1 75.1 68.8 76.0 77.4 76.9 78.5 79.6 49.2 2010's 54.6 53.3 52.8 53.3 53.5 NA

  1. Percent of Commercial Natural Gas Deliveries in Nebraska Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 93.9 91.8 88.2 91.0 80.2 77.1 70.0 74.2 72.5 66.6 2000's 61.1 63.7 63.7 65.4 63.5 64.5 65.1 63.9 57.5 61.3 2010's 60.6 60.6 55.8 57.3 56.4 56.1

  2. Percent of Commercial Natural Gas Deliveries in Nevada Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 97.7 90.8 88.3 92.7 82.5 76.5 74.2 71.3 70.2 60.9 2000's 54.6 73.9 78.5 67.2 67.9 68.1 68.2 67.0 67.0 65.1 2010's 65.4 64.3 61.4 60.1 58.4 57.9

  3. Percent of Commercial Natural Gas Deliveries in New Jersey Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 94.8 93.9 92.4 91.6 91.6 86.3 73.3 56.2 60.5 56.0 2000's 56.9 57.5 49.1 50.7 48.1 51.6 46.9 44.2 42.1 38.3 2010's 36.1 32.6 30.8 35.2 32.0 NA

  4. Percent of Commercial Natural Gas Deliveries in New Mexico Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 83.1 77.7 70.0 62.5 62.4 60.3 64.7 71.0 67.0 63.0 2000's 62.2 67.3 72.5 70.3 69.0 69.0 65.0 64.2 62.6 58.2 2010's 60.7 59.8 57.0 57.0 54.4 NA

  5. Percent of Commercial Natural Gas Deliveries in New York Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 83.6 80.7 77.7 77.2 79.6 76.2 77.0 64.7 53.1 57.2 2000's 40.1 45.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2010's 100.0 100.0 100.0 100.0

  6. Percent of Commercial Natural Gas Deliveries in North Dakota Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 74.8 70.0 68.9 72.7 79.6 80.9 88.0 88.9 83.8 88.2 2000's 89.5 90.1 91.6 94.4 92.6 92.9 93.0 93.3 93.4 92.9 2010's 92.6 92.8 91.9 92.6 93.1 NA

  7. Percent of Commercial Natural Gas Deliveries in Ohio Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 87.3 86.7 85.6 84.6 81.5 76.3 71.8 65.5 55.0 46.4 2000's 45.2 41.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2010's 100.0 100.0 100.0 100.0

  8. Percent of Commercial Natural Gas Deliveries in Oklahoma Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 92.1 91.3 88.5 90.0 88.5 85.2 84.5 81.8 73.2 71.6 2000's 72.4 74.0 71.0 71.3 61.6 53.1 49.9 48.1 51.3 46.4 2010's 47.5 46.3 41.1 44.6 45.3 43.7

  9. Percent of Commercial Natural Gas Deliveries in Oregon Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 97.7 97.9 97.8 97.9 98.1 98.1 98.3 98.5 99.0 98.8 2000's 98.8 99.3 98.7 98.4 98.6 98.6 98.5 98.5 98.5 98.4 2010's 97.4 97.4 96.9 96.6 96.0 NA

  10. Percent of Commercial Natural Gas Deliveries in Rhode Island Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 95.9 100.0 100.0 100.0 100.0 100.0 91.8 80.5 59.2 53.2 2000's 53.2 58.0 65.9 72.1 73.3 74.3 73.1 66.5 66.2 68.0 2010's 61.2 56.9 55.4 54.5 52.2 53.9

  11. Percent of Commercial Natural Gas Deliveries in South Dakota Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 86.4 81.8 82.4 83.9 89.1 86.9 82.7 83.3 84.2 81.2 2000's 83.1 84.2 83.1 82.3 82.3 83.5 82.1 81.2 83.0 82.2 2010's 80.9 81.7 81.6 81.6 81.6 81.0

  12. Percent of Commercial Natural Gas Deliveries in Texas Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 89.8 89.3 79.7 83.8 82.4 68.6 83.5 61.4 81.0 77.3 2000's 79.0 88.4 71.8 73.7 74.6 79.5 82.0 81.9 82.5 78.3 2010's 76.4 73.4 72.4 72.8 72.6 NA

  13. Percent of Commercial Natural Gas Deliveries in Utah Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100.0 100.0 100.0 100.0 83.3 81.8 81.9 83.2 82.5 82.9 2000's 83.9 84.4 83.7 84.4 84.4 86.8 86.8 86.9 86.4 85.6 2010's 86.2 86.7 83.9 81.8 78.3 77.0

  14. Percent of Commercial Natural Gas Deliveries in Virginia Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 93.2 93.6 90.7 88.8 86.7 84.1 85.3 77.9 72.1 67.4 2000's 66.4 65.8 61.4 65.7 63.6 100.0 100.0 100.0 100.0 100.0 2010's 100.0 54.1 52.1 54.6 55.8 54.2

  15. Percent of Commercial Natural Gas Deliveries in Wyoming Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 99.8 99.0 98.0 98.0 96.1 93.6 85.9 84.1 90.5 89.1 2000's 90.0 86.5 48.7 51.7 51.4 49.3 47.8 49.3 65.6 65.5 2010's 65.3 64.0 62.6 62.9 60.8 NA

  16. Percent of Industrial Natural Gas Deliveries in Delaware Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 31.0 22.4 16.6 2000's 10.6 16.1 13.4 15.6 11.7 12.2 9.0 9.8 5.8 2.1 2010's 5.3 1.6 0.3 0.3 0.3 NA

  17. Percent of Industrial Natural Gas Deliveries in Florida Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 10.5 7.3 5.0 2000's 5.2 3.8 3.8 3.9 3.7 3.4 3.1 3.1 3.0 3.2 2010's 3.0 3.0 2.7 3.2 3.5 NA

  18. Percent of Industrial Natural Gas Deliveries in Georgia Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 26.7 25.3 23.9 2000's 20.2 19.9 19.2 15.9 16.4 17.1 17.0 17.2 16.1 17.6 2010's 18.2 18.2 20.0 18.9 20.0 NA

  19. Percent of Industrial Natural Gas Deliveries in Idaho Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.0 2.5 2.7 2000's 2.7 2.2 2.0 2.1 2.4 2.3 2.1 2.0 1.9 1.7 2010's 1.8 2.0 1.9 2.5 2.8 2.4

  20. Percent of Industrial Natural Gas Deliveries in Illinois Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 11.5 9.3 9.1 2000's 9.0 9.9 9.3 9.9 9.0 9.5 8.7 9.5 9.4 7.7 2010's 7.4 6.3 6.0 6.8 6.4 5.7

  1. Percent of Industrial Natural Gas Deliveries in Indiana Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 16.0 9.3 5.8 2000's 10.3 7.7 8.6 9.0 8.3 7.9 7.2 7.4 6.7 7.0 2010's 5.6 3.5 1.9 2.0 2.1 1.9

  2. Percent of Industrial Natural Gas Deliveries in Kansas Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 9.2 9.9 10.1 2000's 10.4 9.3 10.8 7.9 6.9 6.3 7.3 5.9 7.8 6.7 2010's 7.0 9.5 9.7 9.3 8.3 NA

  3. Percent of Industrial Natural Gas Deliveries in Kentucky Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 19.2 17.8 17.5 2000's 19.0 18.7 17.7 18.8 16.9 16.9 15.8 16.6 17.5 18.1 2010's 17.9 17.6 17.8 18.3 17.2 16.0

  4. Percent of Industrial Natural Gas Deliveries in Maryland Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 7.4 7.0 6.5 2000's 6.1 8.5 8.0 10.0 8.2 8.2 6.7 7.8 6.3 5.3 2010's 5.3 5.5 5.1 6.8 7.3 NA

  5. Percent of Industrial Natural Gas Deliveries in Michigan Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 12.5 10.8 11.1 2000's 10.2 11.3 10.2 10.9 10.7 10.1 10.2 12.6 12.5 11.8 2010's 8.8 9.3 7.4 7.4 7.6 NA

  6. Percent of Industrial Natural Gas Deliveries in Missouri Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 21.5 18.2 18.5 2000's 16.8 16.5 16.0 14.8 13.8 14.2 13.2 12.8 13.9 13.2 2010's 13.1 13.4 12.5 13.9 14.0 12.3

  7. Percent of Industrial Natural Gas Deliveries in Montana Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.1 1.5 1.7 2000's 1.9 2.2 2.1 1.8 1.6 1.8 0.7 0.8 1.0 1.1 2010's 1.5 1.3 1.0 1.2 1.4 NA

  8. Percent of Industrial Natural Gas Deliveries in Nebraska Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 27.0 12.7 14.2 2000's 15.4 18.0 15.7 16.5 16.5 16.3 11.6 9.7 10.2 8.9 2010's 8.2 7.6 6.8 7.8 7.4 7.1

  9. Percent of Industrial Natural Gas Deliveries in Nevada Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 6.3 15.5 22.5 2000's 18.1 33.3 34.3 19.1 16.5 17.2 16.8 17.1 17.8 17.3 2010's 18.4 17.8 15.5 15.7 15.5 NA

  10. Percent of Industrial Natural Gas Deliveries in New Jersey Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 49.3 49.5 47.9 2000's 23.5 21.6 20.8 19.5 16.4 19.9 19.5 20.6 11.0 9.0 2010's 8.4 8.2 6.5 6.1 6.6 NA

  11. Percent of Industrial Natural Gas Deliveries in New Mexico Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 9.5 9.8 16.4 2000's 16.5 10.1 15.6 12.3 11.2 8.4 11.6 10.6 10.0 11.9 2010's 12.4 10.2 7.9 8.0 7.5 6.4

  12. Percent of Industrial Natural Gas Deliveries in New York Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 12.7 8.3 14.3 2000's 11.3 10.8 11.0 10.6 10.7 14.7 11.7 12.3 11.4 11.7 2010's 10.6 7.9 6.8 6.3 6.1 NA

  13. Percent of Industrial Natural Gas Deliveries in North Dakota Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 18.5 14.6 14.9 2000's 13.9 9.8 9.2 45.9 51.1 27.5 42.3 48.1 46.2 34.8 2010's 29.7 37.4 34.7 37.9 34.7 39.6

  14. Percent of Industrial Natural Gas Deliveries in Ohio Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 5.7 4.3 4.1 2000's 5.3 6.5 4.0 3.9 3.5 3.6 3.0 2.7 2.7 2.8 2010's 2.1 2.0 1.6 2.2 2.0 NA

  15. Percent of Industrial Natural Gas Deliveries in Oklahoma Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4.7 3.6 3.9 2000's 4.2 4.2 3.3 2.4 1.6 1.6 1.1 0.9 0.6 0.5 2010's 0.5 0.6 0.5 0.7 0.8

  16. Percent of Industrial Natural Gas Deliveries in Oregon Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 16.3 14.3 13.6 2000's 17.7 21.5 14.4 17.5 24.9 33.2 26.6 21.8 20.1 18.9 2010's 17.1 17.1 16.7 16.9 17.2 16.6

  17. Percent of Industrial Natural Gas Deliveries in Rhode Island Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 17.4 7.4 6.5 2000's 34.0 27.3 27.3 18.9 15.7 15.3 13.6 11.6 11.7 9.2 2010's 6.5 6.0 6.3 9.0 8.1 5.3

  18. Percent of Industrial Natural Gas Deliveries in South Dakota Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 24.1 35.6 37.0 2000's 41.9 42.1 19.4 25.5 28.2 30.2 33.6 17.8 16.9 14.4 2010's 10.4 4.7 4.3 5.2 4.6 4.1

  19. Percent of Industrial Natural Gas Deliveries in Texas Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 17.2 14.1 23.7 2000's 29.6 35.0 43.0 43.9 48.8 54.6 55.4 54.7 50.4 47.2 2010's 48.6 39.0 39.4 41.7 40.3 40

  20. Percent of Industrial Natural Gas Deliveries in Utah Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 8.9 8.6 9.5 2000's 10.0 10.4 13.6 13.6 19.8 19.5 20.1 14.1 12.7 12.2 2010's 12.1 12.7 11.0 11.1 10.5 8.6

  1. Percent of Industrial Natural Gas Deliveries in Virginia Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 13.0 12.8 12.1 2000's 17.6 17.3 15.3 17.3 16.0 17.1 13.9 14.1 17.3 15.8 2010's 15.3 13.6 10.9 10.3 11.1 NA

  2. Percent of Industrial Natural Gas Deliveries in Wyoming Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.5 2.0 2.9 2000's 2.6 2.5 2.9 1.8 2.1 3.7 3.5 3.0 3.2 3.1 2010's 1.1 1.0 0.9 1.2 1.3 NA

  3. Method to produce alumina aerogels having porosities greater than 80 percent

    DOE Patents [OSTI]

    Poco, John F.; Hrubesh, Lawrence W.

    2003-09-16

    A two-step method for producing monolithic alumina aerogels having porosities of greater than 80 percent. Very strong, very low density alumina aerogel monoliths are prepared using the two-step sol-gel process. The method of preparing pure alumina aerogel modifies the prior known sol method by combining the use of substoichiometric water for hydrolysis, the use of acetic acid to control hydrolysis/condensation, and high temperature supercritical drying, all of which contribute to the formation of a polycrystalline aerogel microstructure. This structure provides exceptional mechanical properties of the alumina aerogel, as well as enhanced thermal resistance and high temperature stability.

  4. University of Delaware | Catalysis Center for Energy Innovation | Aromatics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Thrust Green Aromatics Transition state for the Diels-Alder reaction of 2,5-dimethylfuran and ethylene in zeolite LiY Most polymers and plastics require six-carbon ring structures. Sugars (such as glucose and xylose) derived from cellulose and hemicellulose are converted into five-atom ring structures called furans, which consist of four carbons and one oxygen. In order to make the right carbon atom ring, CCEI has introduced technology for the production of aromatics from furans by

  5. Percent of Commercial Natural Gas Deliveries in Hawaii Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100 100 100 100 100 100 100 100 100 100 100 100 1990 100 100 100 100 100 100 100 100 100 100 100 100 1991 100 100 100 100 100 100 100 100 100 100 100 100 1992 100 100 100 100 100 100 100 100 100 100 100 100 1993 100 100 100 100 100 100 100 100 100 100 100 100 1994 100 100 100 100 100 100 100 100 100 100 100 100 1995 100 100 100 100 100 100 100 100 100 100 100 100 1996 100 100 100 100 100 100 100 100 100 100 100 100

  6. Percent of Commercial Natural Gas Deliveries in Vermont Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100 100 100 100 100 100 100 100 100 100 100 100 1990 100 100 100 100 100 100 100 100 100 100 100 100 1991 100 100 100 100 100 100 100 100 100 100 100 100 1992 100 100 100 100 100 100 100 100 100 100 100 100 1993 100 100 100 100 100 100 100 100 100 100 100 100 1994 100 100 100 100 100 100 100 100 100 100 100 100 1995 100 100 100 100 100 100 100 100 100 100 100 100 1996 100 100 100 100 100 100 100 100 100 100 100 100

  7. Percent of Industrial Natural Gas Deliveries in Hawaii Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 100 100 100 100 100 100 100 100 100 100 100 100 2002 100 100 100 100 100 100 100 100 100 100 100 100 2003 100 100 100 100 100 100 100 100 100 100 100 100 2004 100 100 100 100 100 100 100 100 100 100 100 100 2005 100 100 100 100 100 100 100 100 100 100 100 100 2006 100 100 100 100 100 100 100 100 100 100 100 100 2007 100 100 100 100 100 100 100 100 100 100 100 100 2008 100 100 100 100 100 100 100 100 100 100 100 100

  8. Percent of Commercial Natural Gas Deliveries in U.S. Total Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 93.1 90.8 89.1 1990's 86.6 85.1 83.2 83.9 79.3 76.7 77.6 70.8 67.0 66.1 2000's 63.9 66.0 77.4 78.2 78.0 82.1 80.8 80.4 79.7 77.8 2010's 77.5 67.3 65.2 65.8 65.8 65.9

  9. No-carrier-added (NCA) aryl ([sup 18]F) fluorides via the nucleophilic aromatic substitution of electron rich aromatic rings

    DOE Patents [OSTI]

    Yushin Ding; Fowler, J.S.; Wolf, A.P.

    1993-10-19

    A method for synthesizing no-carrier-added (NCA) aryl [.sup.18 F] fluoride substituted aromatic aldehyde compositions bearing an electron donating group is described. The method of the present invention includes the step of reacting aromatic nitro aldehydes having a suitably protected hydroxyl substitutent on an electron rich ring. The reaction is The U.S. Government has rights in this invention pursuant to Contract Number DE-AC02-76CH00016, between the U.S. Department of Energy and Associated Universities Inc.

  10. No-carrier-added (NCA) aryl (18E) fluorides via the nucleophilic aromatic substitution of electron rich aromatic rings

    DOE Patents [OSTI]

    Ding, Yu-Shin; Fowler, Joanna S.; Wolf, Alfred P.

    1993-01-01

    A method for synthesizing no-carrier-added (NCA) aryl [.sup.18 F] fluoride substituted aromatic aldehyde compositions bearing an electron donating group is described. The method of the present invention includes the step of reacting aromatic nitro aldehydes having a suitably protected hydroxyl substitutent on an electron rich ring. The reaction is The U.S. Government has rights in this invention pursuant to Contract Number DE-AC02-76CH00016, between the U.S. Department of Energy and Associated Universities Inc.

  11. Development of genetically engineered bacteria for production of selected aromatic compounds

    DOE Patents [OSTI]

    Ward, Thomas E.; Watkins, Carolyn S.; Bulmer, Deborah K.; Johnson, Bruce F.; Amaratunga, Mohan

    2001-01-01

    The cloning and expression of genes in the common aromatic pathway of E. coli are described. A compound for which chorismate, the final product of the common aromatic pathway, is an anabolic intermediate can be produced by cloning and expressing selected genes of the common aromatic pathway and the genes coding for enzymes necessary to convert chorismate to the selected compound. Plasmids carrying selected genes of the common aromatic pathway are also described.

  12. FY 2013 Volume 5

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 DOE/CF-0075 Volume 5 Environmental Management Department of Energy FY 2013 Congressional Budget Request February 2012 Office of Chief Financial Officer Volume 5 DOE/CF-0075 Volume 5 Environmental Management Printed with soy ink on recycled paper Department of Energy FY 2013 Congressional Budget Request Environmental Management Page 1 FY 2013 Congressional Budget Volume 5 Table of Contents Page Appropriation Account Summary

  13. FY 2013 Volume 6

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Volume 6 Department of Energy FY 2013 Congressional Budget Request Power Marketing Administrations Southeastern Power Administration Southwestern Power Administration Western Area Power Administration Western Area Power Administration Bonneville Power Administration February 2012 Office of Chief Financial Officer Volume 6 DOE/CF-0076 Volume 6 Department of Energy FY 2013 Congressional Budget Request Power Marketing Administrations Southeastern Power Administration Southwestern Power

  14. CleanFleet. Volume 2, Project Design and Implementation

    SciTech Connect (OSTI)

    1995-12-01

    The CleanFleet alternative fuels demonstration project evaluated five alternative motorfuels in commercial fleet service over a two-year period. The five fuels were compressed natural gas, propane gas, California Phase 2 reformulated gasoline (RFG), M-85 (85 percent methanol and 15 percent RFG), and electric vans. Eight-four vans were operated on the alternative fuels and 27 vans were operated on gasoline as baseline controls. Throughout the demonstration information was collected on fleet operations, vehicle emissions, and fleet economics. In this volume of the CleanFleet findings, the design and implementation of the project are summarized.

  15. Possibility of using cylindrical ionization chambers for percent depth-dose measurements in clinical electron beams

    SciTech Connect (OSTI)

    Ono, Takeshi; Araki, Fujio; Yoshiyama, Fumiaki

    2011-08-15

    Purpose: This study investigated the possibility of using cylindrical ionization chambers for percent depth-dose (PDD) measurements in high-energy clinical electron beams. Methods: The cavity correction factor, P{sub cav}, for cylindrical chambers with various diameters was calculated as a function of depth from the surface to R{sub 50}, in the energy range of 6-18 MeV electrons with the EGSnrc C ++ -based user-code CAVITY. The results were compared with those for IBA NACP-02 and PTW Roos parallel-plate ionization chambers. The effective point of measurement (EPOM) for the cylindrical chamber and the parallel-plate chamber was positioned according to the IAEA TRS-398 code of practice. The overall correction factor, P{sub Q}, and the percent depth-ionization (PDI) curve for a PTW30013 Farmer-type chamber were also compared with those of NACP-02 and Roos chambers. Results: The P{sub cav} values at depths between the surface and R{sub 50} for cylindrical chambers were all lower than those with parallel-plate chambers. However, the variation in depth for cylindrical chambers equal to or less than 4 mm in diameter was equivalent to or smaller than that for parallel-plate chambers. The P{sub Q} values for the PTW30013 chamber mainly depended on P{sub cav}, and for parallel-plate chambers depended on the wall correction factor, P{sub wall}, rather than P{sub cav}. P{sub Q} at depths from the surface to R{sub 50} for the PTW30013 chamber was consequently a lower value than that with parallel-plate chambers. However, the variation in depth was equivalent to that of parallel-plate chambers at electron energies equal to or greater than 9 MeV. The shift to match calculated PDI curves for the PTW30013 chamber and water (perturbation free) varied from 0.65 to 0 mm between 6 and 18 MeV beams. Similarly, the shifts for NACP-02 and Roos chambers were 0.5-0.6 mm and 0.2-0.3 mm, respectively, and were nearly independent of electron energy. Conclusions: Calculated PDI curves for PTW30013, NACP-02, and Roos chambers agreed well with that of water by using the optimal EPOM. Therefore, the possibility of using cylindrical ionization chambers can be expected for PDD measurements in clinical electron beams.

  16. Percent of Commercial Natural Gas Deliveries in Alaska Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1990 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1991 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1992 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1993 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1994 100.0 100.0 100.0 100.0 100.0 100.0

  17. Percent of Commercial Natural Gas Deliveries in Delaware Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1990 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1991 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1992 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1993 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1994 100.0 100.0 100.0 100.0 100.0 100.0

  18. Percent of Commercial Natural Gas Deliveries in Florida Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1990 100.0 100.0 100.0 100.0 96.2 96.1 96.3 96.1 96.4 96.0 96.7 94.9 1991 96.5 97.0 97.5 98.1 97.8 97.8 97.9 97.8 98.2 97.8 96.8 96.8 1992 96.8 97.2 97.4 98.2 98.3 98.2 98.1 98.1 98.3 98.2 97.4 97.0 1993 97.2 97.2 97.2 98.3 98.4 98.4 98.3 98.3 98.3 98.2 97.3 97.0 1994 97.3 97.6 97.8 98.3 97.6 98.3 98.2 98.4 98.5 97.9 97.8 97.0 1995 96.7 97.3 97.5

  19. Percent of Commercial Natural Gas Deliveries in Maine Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1990 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1991 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1992 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1993 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1994 100.0 100.0 100.0 100.0 100.0 100.0

  20. Percent of Commercial Natural Gas Deliveries in New Jersey Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 99.0 98.9 98.7 98.3 96.2 94.7 94.2 93.4 93.5 94.7 99.0 99.7 1990 99.6 99.3 96.6 94.4 94.3 93.2 89.3 86.4 87.1 86.2 91.7 96.5 1991 98.1 96.5 95.8 91.8 92.3 89.1 89.5 80.6 89.2 90.0 93.2 97.0 1992 96.9 95.7 92.1 87.7 94.1 91.3 88.6 80.7 80.7 86.4 94.8 96.9 1993 93.6 94.0 93.7 91.2 88.5 86.4 87.1 79.8 84.6 90.0 92.4 93.8 1994 94.9 96.2 96.3 89.8 87.4 85.1 81.4 82.2 83.6 88.0 89.6 92.1 1995 93.7 92.4 91.3 87.4 84.5

  1. Percent of Commercial Natural Gas Deliveries in North Dakota Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 81.7 84.8 84.0 83.9 80.6 74.8 69.2 64.9 71.4 70.9 74.8 81.6 1990 83.9 82.5 78.4 76.0 75.4 69.7 54.3 53.3 57.4 58.4 69.8 75.8 1991 79.4 79.9 74.9 71.7 70.6 59.0 49.6 47.6 49.6 48.7 67.6 70.1 1992 71.7 73.7 72.0 71.6 73.6 63.8 61.6 58.8 57.2 56.8 67.3 68.9 1993 77.1 73.8 77.4 76.8 73.3 62.6 58.1 54.0 53.5 56.0 74.2 78.9 1994 82.6 86.8 83.1 82.1 78.4 69.7 66.2 63.2 61.8 64.0 82.2 76.9 1995 84.3 85.9 84.3 83.2 80.0

  2. Percent of Commercial Natural Gas Deliveries in Rhode Island Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 100.0 87.1 83.9 47.7 48.9 40.4 44.6 82.7 100.0 100.0 1990 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 75.5 80.2 97.3 91.1 1991 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1992 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1993 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1994 100.0 100.0 100.0 100.0 100.0 100.0 100.0

  3. Percent of Commercial Natural Gas Deliveries in South Dakota Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 92.8 93.1 92.8 92.1 92.5 91.6 90.2 89.4 90.0 89.6 91.1 92.0 1990 90.7 90.1 90.2 88.0 78.4 83.0 81.9 82.4 82.0 77.7 82.0 86.3 1991 84.8 83.0 80.5 83.4 79.5 74.9 74.3 74.3 74.5 76.7 83.4 85.2 1992 87.0 83.3 85.6 83.1 80.7 73.5 72.3 74.6 78.0 76.5 81.8 84.7 1993 86.5 83.9 84.4 81.2 76.4 73.3 74.9 72.9 75.8 78.7 90.0 91.2 1994 92.9 92.3 92.6 88.4 84.7 74.7 72.7 82.0 79.0 83.4 88.4 92.1 1995 92.1 90.8 89.7 87.2 82.8

  4. Percent of Commercial Natural Gas Deliveries in Utah Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1990 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1991 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1992 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1993 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1994 83.8 85.2 82.9 82.4 77.7 77.9 76.4

  5. Percent of Commercial Natural Gas Deliveries in Wyoming Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.8 99.6 99.7 99.7 1990 99.7 99.7 99.7 99.8 99.7 99.7 99.6 99.6 99.5 99.5 99.7 99.7 1991 99.9 99.9 99.4 98.9 99.0 98.2 97.4 98.3 97.2 98.4 98.6 98.5 1992 98.6 98.1 97.8 98.4 97.9 97.2 96.5 97.1 97.4 97.2 98.2 98.3 1993 98.8 98.2 98.4 98.1 98.2 96.9 97.1 96.5 95.0 97.1 97.2 99.0 1994 98.1 96.0 96.9 97.3 95.2 91.7 93.4 92.1 93.5 95.6 96.1 96.8 1995 88.4 98.2 93.6 92.4 89.2

  6. Percent of Industrial Natural Gas Deliveries in New Jersey Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 29.3 31.1 27.6 21.9 21.2 19.6 18.6 15.6 18.5 16.8 15.6 21.1 2002 23.5 22.2 23.5 21.5 18.7 18.3 17.4 16.9 18.0 18.5 22.1 26.0 2003 21.1 23.1 26.0 26.8 23.9 18.0 15.3 17.3 13.3 14.9 13.0 18.4 2004 19.5 22.5 18.1 16.6 15.0 13.7 11.6 15.1 13.6 13.6 15.4 18.5 2005 22.4 22.7 21.9 17.6 15.7 15.4 17.7 20.4 16.9 19.4 20.1 25.4 2006 23.6 22.4 21.6 19.0 17.0 16.3 18.5 19.1 15.6 16.6 19.9 21.8 2007 21.5 23.6 20.8 23.0 17.1

  7. Percent of Industrial Natural Gas Deliveries in U.S. Total Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 23.5 23.2 22.0 21.0 19.5 19.2 20.2 19.6 19.8 20.3 20.2 20.7 2002 20.3 20.5 20.2 26.3 23.9 25.5 24.0 22.5 22.5 21.7 21.8 23.1 2003 21.4 22.1 21.3 20.9 20.3 19.1 24.7 22.9 22.9 23.3 22.7 23.5 2004 23.1 23.6 22.8 23.3 23.4 25.0 24.9 24.0 22.8 22.6 23.5 24.5 2005 24.8 24.3 24.6 23.9 24.2 23.7 24.5 24.6 23.2 23.2 23.4 23.7 2006 23.7 23.7 23.8 23.5 23.8 23.3 23.6 23.7 22.0 22.9 23.0 23.4 2007 22.7 23.0 22.4 22.3 23.2

  8. Ambient aromatic hydrocarbon measurements at Welgegund, South Africa

    SciTech Connect (OSTI)

    Jaars, K.; Beukes, J. P.; van Zyl, P. G.; Venter, A. D.; Josipovic, M.; Pienaar, J. J.; Vakkari, Ville; Aaltonen, H.; Laakso, H.; Kulmala, M.; Tiitta, P.; Guenther, Alex B.; Hellen, H.; Laakso, L.; Hakola, H.

    2014-07-11

    Aromatic hydrocarbons are associated with direct adverse human health effects and can have negative impacts on ecosystems due to their toxicity, as well as indirect negative effects through the formation of tropospheric ozone and secondary organic aerosol that affect human health, crop production and regional climate. Measurements were conducted at the Welgegund measurement station (South Africa) that is considered to be a regionally representative background site. However, the site is occasionally impacted by plumes from major anthropogenic source regions in the interior of South Africa, which include the western Bushveld Igneous Complex (e.g. platinum, base metal and ferrochrome smelters), the eastern Bushveld Igneous Complex (platinum and ferrochrome smelters), the Johannesburg-Pretoria metropolitan conurbation (>10 million people), the Vaal Triangle (e.g. petrochemical and industries), the Mpumalanga Highveld (e.g. coal-fired power plants and petrochemical industry) and also a region of anti-cyclonic recirculation of air mass over the interior of South Africa. The aromatic hydrocarbon measurements were conducted with an automated sampler on Tenax-TA and Carbopack-B adsorbent tubes with heated inlet for one year. Samples were collected twice a week for two hours during daytime and two hours 1 during night-time. A thermal desorption unit, connected to a gas chromatograph and a mass 2 selective detector was used for sample preparation and analysis. Results indicated that the 3 monthly median total aromatic hydrocarbon concentrations ranged between 0.01 to 3.1 ppb. 4 Benzene levels did not exceed local air quality standards. Toluene was the most abundant 5 species, with an annual median concentration of 0.63 ppb. No statistically significant 6 differences in the concentrations measured during daytime and night-time were found and no distinct seasonal patterns were observed. Air mass back trajectory analysis proved that the lack of seasonal cycles could be attributed to patterns determining the origin of the air masses sampled. Aromatic hydrocarbon concentrations were in general significantly higher in air masses that passed over anthropocentrically impacted regions. Interspecies correlations and ratios gave some indications of the possible sources for the different aromatic hydrocarbons in the source regions defined in the paper. The highest contribution of aromatic hydrocarbon concentrations to ozone formation potential was also observed in plumes passing over anthropocentrically impacted regions.

  9. Percent of Commercial Natural Gas Deliveries in Alabama Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 84.0 82.5 89.4 90.6 83.8 86.2 55.5 83.6 78.9 84.4 78.4 85.7 1990 86.9 82.1 80.0 76.8 74.9 79.8 76.8 73.3 76.5 78.0 69.7 81.4 1991 82.2 87.0 87.9 83.2 84.0 85.4 85.7 81.3 75.8 74.4 75.5 81.7 1992 83.7 86.8 84.0 83.2 79.0 77.6 75.3 74.7 74.4 73.2 74.2 80.6 1993 84.1 85.3 85.8 84.0 79.8 76.8 75.9 74.0 74.4 71.3 74.7 79.3 1994 86.1 87.7 84.1 83.1 78.0 76.5 74.8 71.8 64.7 70.0 73.6 76.7 1995 82.5 85.7 85.8 81.4 77.5 75.7

  10. Percent of Commercial Natural Gas Deliveries in Arkansas Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 95.3 95.6 95.9 94.3 91.3 91.5 87.2 86.2 88.2 87.5 90.7 93.4 1990 95.8 94.8 93.7 93.2 90.7 88.8 88.4 86.9 87.4 86.8 90.6 91.5 1991 93.8 94.7 96.1 91.0 87.7 85.1 84.8 85.5 85.9 86.5 90.5 92.3 1992 93.0 94.7 91.3 92.7 88.4 87.0 85.9 85.4 86.4 87.6 88.7 90.8 1993 92.5 93.0 92.8 91.8 87.6 84.2 85.9 84.7 85.7 87.8 92.7 98.7 1994 93.9 95.9 95.4 94.8 91.2 91.7 94.2 94.3 96.6 95.3 96.4 97.4 1995 97.2 98.0 96.3 95.1 93.3 93.1

  11. Percent of Commercial Natural Gas Deliveries in Colorado Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 98.0 98.1 98.3 97.8 97.3 97.3 95.0 91.8 95.8 95.6 96.9 97.2 1990 98.1 98.0 97.9 97.6 97.3 97.4 94.7 94.5 95.5 94.6 97.0 97.0 1991 96.8 97.1 96.1 96.2 96.9 97.2 93.7 93.9 93.6 92.3 94.7 96.3 1992 96.7 96.7 95.9 95.7 95.1 96.0 94.2 93.3 93.6 91.2 93.7 96.2 1993 96.6 96.4 96.5 95.8 95.2 95.5 93.0 93.1 95.2 90.6 94.1 95.9 1994 95.9 96.1 95.7 94.9 95.3 94.3 91.2 91.7 93.1 91.5 93.2 95.5 1995 95.9 96.0 95.1 94.3 95.1 95.5

  12. Percent of Commercial Natural Gas Deliveries in Georgia Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 96.6 93.6 89.7 88.2 85.3 81.7 80.7 80.2 83.0 86.4 89.4 96.8 1990 96.5 90.3 88.7 86.9 82.0 80.9 80.1 82.5 78.9 84.3 87.9 94.1 1991 92.1 90.7 88.8 84.7 81.6 79.7 79.6 80.3 78.8 82.8 90.7 92.5 1992 90.8 90.6 89.3 88.2 85.0 82.7 79.7 83.3 83.4 84.6 87.9 92.9 1993 91.5 92.9 94.6 90.9 86.5 83.0 85.4 84.9 85.6 86.0 91.2 93.0 1994 97.0 94.9 92.4 90.3 89.3 86.8 87.9 89.0 86.1 88.6 91.6 92.6 1995 96.1 97.1 93.3 90.7 89.7 88.4

  13. Percent of Commercial Natural Gas Deliveries in Idaho Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 88.9 90.2 90.6 89.0 82.8 85.9 86.8 83.0 84.1 79.3 84.6 87.4 1990 91.5 90.4 89.7 87.7 85.8 88.1 86.1 85.2 85.0 79.3 86.3 86.4 1991 91.0 91.7 88.5 87.4 87.4 86.8 84.7 84.0 82.9 73.6 85.1 87.5 1992 89.4 89.0 87.1 85.2 83.1 80.2 81.0 82.4 80.2 77.9 82.2 88.3 1993 89.4 89.9 91.0 87.9 87.4 82.3 82.8 81.3 79.2 77.7 81.5 87.8 1994 87.8 88.6 88.1 85.9 83.2 82.7 84.2 80.1 80.6 79.4 84.1 87.6 1995 89.7 89.1 86.5 85.5 86.0 85.3

  14. Percent of Commercial Natural Gas Deliveries in Illinois Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 71.8 73.5 69.8 69.6 67.5 59.7 50.2 47.4 62.4 64.5 68.9 74.5 1990 65.6 65.7 60.2 55.3 52.9 40.6 40.7 41.8 44.5 54.6 52.2 63.6 1991 66.1 62.7 61.0 56.7 49.1 45.4 39.4 43.5 55.0 54.8 60.4 60.3 1992 63.0 58.2 59.5 57.5 53.0 43.4 44.4 49.2 47.0 55.5 60.5 59.9 1993 61.0 58.4 58.3 56.3 51.5 43.4 42.9 38.3 50.0 50.2 53.7 56.0 1994 59.1 59.9 58.0 49.9 46.5 37.8 36.1 36.3 39.7 47.5 49.9 52.0 1995 54.8 53.2 52.9 49.3 40.2 42.9

  15. Percent of Commercial Natural Gas Deliveries in Indiana Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 94.1 93.9 94.3 92.6 92.6 97.2 96.7 96.8 89.1 91.9 97.7 98.9 1990 99.2 98.5 93.4 90.1 92.1 90.6 92.2 89.7 88.4 91.8 98.4 98.6 1991 94.2 93.3 93.2 93.2 92.6 89.2 89.9 89.6 92.6 98.5 97.9 95.4 1992 93.6 92.4 98.6 99.1 99.7 99.9 92.8 99.6 91.9 99.8 99.9 98.0 1993 94.5 94.1 99.6 99.5 100.0 91.9 90.4 91.1 92.9 90.7 92.2 96.1 1994 94.1 97.5 93.7 91.5 88.4 85.6 84.6 85.9 84.3 86.7 91.3 91.4 1995 89.7 89.9 89.5 87.0 83.4 76.1

  16. Percent of Commercial Natural Gas Deliveries in Iowa Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 98.4 98.4 98.5 98.0 97.0 96.3 95.4 95.0 95.2 96.6 97.6 98.3 1990 98.5 98.2 98.1 97.8 97.3 96.3 95.3 95.6 92.3 95.5 97.5 97.7 1991 98.4 98.4 98.2 97.3 96.7 95.7 94.9 91.5 96.0 96.3 98.5 98.0 1992 97.6 97.4 96.5 96.2 94.3 93.2 91.3 90.6 88.7 91.0 96.1 96.7 1993 96.6 96.6 95.8 96.4 92.9 90.8 90.2 88.3 88.9 92.8 95.2 93.2 1994 92.9 94.3 91.2 90.5 87.9 84.1 81.3 80.0 80.5 86.0 90.4 91.0 1995 91.7 92.0 91.1 88.8 86.1 81.9

  17. Percent of Commercial Natural Gas Deliveries in Kansas Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 94.8 94.4 94.1 94.6 92.9 89.2 93.7 94.7 91.8 88.9 88.2 92.9 1990 92.7 90.8 90.6 92.6 91.6 93.1 94.3 94.0 93.3 87.0 88.0 89.4 1991 92.5 91.6 87.9 91.2 88.5 87.1 91.3 89.7 86.9 82.0 87.7 85.3 1992 82.9 83.8 83.9 86.8 88.8 86.8 88.4 88.9 86.9 81.1 78.0 82.7 1993 84.3 83.1 86.1 84.4 85.3 83.0 84.4 86.3 81.3 72.2 75.5 79.9 1994 82.2 85.6 82.3 75.3 69.9 70.4 70.9 71.5 71.9 77.1 83.9 79.5 1995 87.8 73.6 83.2 69.5 62.9 64.8

  18. Percent of Commercial Natural Gas Deliveries in Kentucky Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 97.1 96.6 96.4 94.9 91.0 89.2 89.5 88.2 89.8 90.7 94.4 97.0 1990 97.2 96.9 96.3 94.8 91.6 91.6 89.5 89.5 89.1 93.3 95.0 96.2 1991 97.1 95.7 94.7 89.8 86.4 85.5 87.5 88.0 91.1 91.5 95.7 95.5 1992 95.4 94.2 93.6 91.9 87.9 86.9 86.7 87.4 87.9 93.0 94.6 94.9 1993 91.6 91.6 95.3 93.5 92.4 93.5 89.9 81.6 88.1 88.5 94.5 95.4 1994 93.6 95.9 94.6 92.1 88.2 85.4 83.0 83.5 83.4 87.6 87.9 89.9 1995 90.8 91.2 89.9 86.3 87.4 80.6

  19. Percent of Commercial Natural Gas Deliveries in Maryland Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 97.1 96.6 97.1 96.7 95.9 95.1 94.3 94.7 94.1 94.2 94.6 96.8 1990 97.6 97.1 96.0 95.7 94.3 94.5 93.6 93.1 92.6 93.3 94.7 95.6 1991 97.3 97.5 97.1 96.6 95.9 94.8 94.5 94.7 94.1 95.8 96.5 97.4 1992 97.2 97.2 96.3 95.6 94.1 92.8 93.1 92.7 94.1 95.0 97.0 97.4 1993 97.3 97.4 96.5 96.3 94.6 96.2 95.0 93.4 93.4 95.4 97.1 98.1 1994 98.1 98.3 98.2 95.8 95.8 95.4 95.2 94.1 95.2 96.2 96.5 97.8 1995 97.9 98.5 97.8 96.7 95.9 96.2

  20. Percent of Commercial Natural Gas Deliveries in Michigan Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 75.8 74.5 76.0 71.7 64.9 47.6 51.7 50.8 57.5 64.4 69.5 73.5 1990 73.1 74.0 74.5 72.3 67.4 58.1 49.6 51.5 52.2 62.1 70.1 74.6 1991 73.0 72.2 72.4 67.3 62.1 51.2 44.3 41.2 47.5 60.1 87.2 70.0 1992 73.7 74.5 71.4 70.5 66.6 55.5 48.5 51.6 49.9 61.1 68.6 73.1 1993 74.5 72.3 72.6 68.0 63.7 51.6 50.5 54.4 50.9 63.1 68.1 73.1 1994 73.7 71.6 70.8 66.3 60.1 45.7 41.7 42.3 45.4 55.4 63.4 69.8 1995 72.5 72.2 71.2 68.0 61.5 45.8

  1. Percent of Commercial Natural Gas Deliveries in Missouri Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 94.4 93.9 94.4 93.2 90.7 85.8 86.1 90.5 86.9 88.8 90.3 92.3 1990 93.7 90.7 89.2 88.2 82.5 77.4 70.9 70.8 72.6 74.8 83.8 85.9 1991 90.8 91.1 89.1 82.1 79.0 75.4 71.1 72.2 75.1 75.6 85.9 88.5 1992 89.7 90.1 89.1 88.1 82.7 80.6 71.9 75.8 74.5 76.1 81.0 87.2 1993 87.5 89.2 89.8 88.1 78.0 74.7 72.2 69.2 74.3 73.4 82.3 85.9 1994 88.8 87.2 87.6 85.1 79.0 75.0 70.2 70.0 68.2 70.2 77.0 82.0 1995 87.0 88.9 87.2 83.3 80.9 75.0

  2. Percent of Commercial Natural Gas Deliveries in Montana Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 98.3 98.9 98.8 98.6 97.4 96.8 96.4 96.3 96.3 97.5 97.9 98.1 1990 97.9 97.8 97.6 98.6 96.9 98.4 96.3 95.8 93.3 96.9 97.6 99.6 1991 98.5 98.1 98.0 97.7 97.8 96.9 95.8 95.8 95.8 96.3 96.5 97.2 1992 97.1 98.0 96.7 96.5 96.6 94.9 95.4 96.8 90.6 92.0 92.8 94.6 1993 95.4 94.0 94.9 93.9 94.9 91.1 91.2 91.2 87.5 88.8 91.5 93.5 1994 92.7 93.0 92.7 91.8 91.9 89.6 88.7 87.8 87.5 89.0 91.2 93.1 1995 93.0 92.5 92.5 91.9 92.0 90.1

  3. Percent of Commercial Natural Gas Deliveries in Nebraska Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 96.8 96.5 97.1 99.8 99.7 99.8 99.9 99.9 99.7 98.8 98.1 98.5 1990 95.6 95.3 94.1 93.2 92.3 89.6 96.9 94.2 93.0 90.2 89.9 93.5 1991 93.6 93.3 91.8 87.9 85.4 88.2 96.4 95.2 85.8 86.1 90.5 91.4 1992 91.7 91.6 89.9 90.9 88.7 81.7 85.6 83.6 80.5 84.5 87.1 90.9 1993 94.1 94.7 94.5 93.4 89.5 88.4 88.1 87.8 82.9 85.2 84.8 92.0 1994 88.2 88.9 85.8 82.3 79.2 72.9 75.9 77.8 65.1 62.2 73.5 80.7 1995 81.4 80.6 79.2 79.8 76.0 71.8

  4. Percent of Commercial Natural Gas Deliveries in Nevada Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 98.0 98.1 96.9 95.0 94.2 94.3 92.7 91.7 91.2 96.2 97.2 98.8 1990 99.1 99.4 97.7 97.0 96.4 96.7 95.7 95.0 95.1 96.8 98.4 99.1 1991 99.4 99.4 94.3 92.2 90.6 87.2 84.0 85.2 79.5 84.3 82.2 89.0 1992 90.6 89.5 88.3 87.2 83.7 84.0 84.8 81.4 82.7 88.9 88.5 95.4 1993 97.0 96.0 94.3 91.0 92.5 90.6 89.7 86.7 89.6 89.7 90.9 93.5 1994 93.8 89.3 86.1 81.3 80.1 79.6 76.4 74.5 76.4 73.9 76.7 81.4 1995 81.5 83.2 77.4 78.9 77.1 76.5

  5. Percent of Commercial Natural Gas Deliveries in New York Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 90.4 90.1 89.3 85.0 85.4 81.3 78.6 78.2 73.6 74.8 82.4 89.7 1990 90.5 92.3 85.6 85.3 78.9 77.8 80.2 80.1 76.5 75.8 80.7 81.5 1991 86.2 85.4 84.4 81.0 75.8 72.8 76.8 75.1 73.1 75.0 79.5 81.1 1992 81.0 78.9 79.5 77.3 72.4 70.9 72.9 69.3 69.3 76.0 82.6 81.5 1993 81.4 81.5 82.3 77.8 71.3 66.2 69.1 72.1 72.8 74.1 77.9 77.2 1994 83.7 83.4 83.3 77.7 73.4 73.2 74.7 73.4 75.1 76.4 78.0 81.9 1995 80.8 82.8 79.3 76.3 71.7 66.5

  6. Percent of Commercial Natural Gas Deliveries in Ohio Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 87.4 88.1 87.1 86.0 81.2 74.4 75.5 75.0 78.9 85.1 87.8 90.3 1990 89.9 89.2 89.9 86.4 82.4 78.5 77.0 75.6 77.7 83.0 87.9 91.4 1991 91.6 90.0 87.2 83.6 78.6 74.7 75.5 73.7 75.6 82.6 87.8 89.8 1992 89.1 88.0 88.4 85.7 78.9 73.9 72.0 73.5 73.1 84.2 85.7 88.5 1993 89.4 87.0 86.9 83.8 76.1 73.9 74.6 69.4 72.6 82.8 84.5 86.3 1994 87.4 86.5 84.9 78.4 75.9 70.5 66.7 67.5 66.5 75.1 78.7 81.5 1995 81.0 80.0 78.6 76.8 67.8 61.4

  7. Percent of Commercial Natural Gas Deliveries in Oklahoma Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 89.7 90.2 91.7 87.9 89.1 86.6 86.7 85.0 86.8 86.5 89.1 91.2 1990 94.8 93.2 92.0 93.2 92.6 90.6 89.1 89.5 88.5 87.8 89.9 90.6 1991 94.6 95.1 92.9 91.4 90.3 88.7 87.1 85.6 86.8 81.2 87.6 90.6 1992 91.6 92.3 87.7 90.9 85.4 84.1 80.2 85.7 84.3 85.3 86.9 88.1 1993 91.8 92.0 91.7 90.9 89.1 83.1 80.5 82.2 83.4 83.1 91.5 91.9 1994 90.7 93.8 93.1 89.6 88.0 81.3 74.6 73.8 76.1 78.1 85.0 91.2 1995 90.7 89.8 89.7 85.3 84.9 79.3

  8. Percent of Commercial Natural Gas Deliveries in Oregon Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 99.1 99.2 98.7 98.3 97.6 97.6 97.0 97.2 97.4 96.7 97.3 98.0 1990 98.2 98.6 98.4 97.4 97.4 97.5 96.6 96.6 96.9 95.6 96.5 98.1 1991 98.7 98.3 97.8 97.7 97.5 98.0 97.3 97.2 97.2 95.9 97.6 98.0 1992 98.6 98.4 97.4 97.7 97.7 97.8 97.9 96.7 97.8 94.6 97.4 98.4 1993 98.6 99.0 98.5 98.0 97.6 97.8 97.6 97.5 97.3 93.6 96.5 98.2 1994 98.5 98.6 98.3 97.4 97.6 97.7 98.1 97.7 97.9 97.0 97.8 98.6 1995 98.5 98.5 98.2 98.2 97.9 97.8

  9. Percent of Commercial Natural Gas Deliveries in Texas Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 87.2 92.4 93.7 92.5 90.6 89.6 93.3 91.2 83.1 87.3 87.9 93.2 1990 91.1 90.1 83.9 90.5 90.3 92.3 90.3 90.7 89.1 87.4 88.0 91.5 1991 92.1 91.3 91.8 92.1 87.7 91.4 91.1 90.4 87.3 80.7 84.8 87.6 1992 86.9 85.6 83.4 83.6 79.5 77.8 77.0 75.9 71.9 72.4 75.3 78.6 1993 85.5 86.7 85.6 85.2 80.1 81.0 82.7 85.1 80.7 81.1 84.2 84.0 1994 82.1 81.6 84.0 83.6 73.8 81.6 88.8 82.6 83.3 75.1 78.9 89.0 1995 72.8 71.3 73.6 70.2 55.0 72.7

  10. Percent of Commercial Natural Gas Deliveries in Virginia Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 98.3 98.4 98.1 97.1 96.4 96.4 93.9 94.1 95.4 93.3 96.4 97.9 1990 97.2 95.9 90.6 86.6 94.2 93.9 94.1 91.9 92.0 92.9 92.5 93.7 1991 95.9 96.9 95.2 93.6 91.8 90.8 91.3 89.5 90.2 92.6 90.9 93.5 1992 94.6 93.3 93.7 91.7 88.9 88.4 86.9 85.9 83.8 89.9 86.6 90.3 1993 90.2 91.8 89.8 87.6 90.1 87.6 85.4 77.2 85.9 79.8 88.8 93.2 1994 95.2 97.2 92.5 82.7 85.1 76.7 82.4 72.9 72.9 76.1 79.4 86.1 1995 90.8 90.0 88.7 77.6 76.2 74.7

  11. Percent of Industrial Natural Gas Deliveries in Alabama Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 26.4 25.4 21.7 22.1 19.5 21.1 21.0 21.8 21.4 20.8 22.1 21.9 2002 24.1 22.3 22.5 20.1 18.3 19.6 20.7 21.4 20.0 21.4 24.2 23.5 2003 22.3 22.2 23.9 21.3 20.5 20.8 21.8 18.1 19.7 19.6 21.6 22.3 2004 22.6 23.2 21.9 19.9 20.2 20.8 19.1 19.9 19.1 19.7 20.2 21.8 2005 22.9 23.8 21.3 23.1 23.1 22.6 24.8 22.8 26.3 23.5 23.2 26.2 2006 22.8 23.1 22.4 24.1 23.9 22.2 22.5 23.0 23.4 24.5 24.6 25.6 2007 24.1 24.8 24.4 23.9 24.8 23.9

  12. Percent of Industrial Natural Gas Deliveries in Delaware Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 10.8 29.0 19.8 13.0 14.8 20.4 15.1 11.6 14.2 11.7 14.9 16.3 2002 18.4 19.6 20.4 17.5 21.7 15.6 11.9 9.9 8.0 8.6 10.6 10.3 2003 11.8 16.2 16.3 23.7 21.2 13.2 16.1 11.2 12.5 21.3 14.0 15.5 2004 10.7 11.4 12.2 12.8 9.4 14.4 11.1 12.1 11.5 12.2 10.9 12.8 2005 9.4 13.1 14.7 14.0 10.2 13.3 12.8 10.9 13.5 11.5 12.4 12.5 2006 10.7 9.8 9.6 11.0 8.9 6.2 7.6 7.5 8.5 9.3 8.3 10.7 2007 9.7 14.7 14.4 12.2 8.5 9.2 8.1 8.2 9.2 7.1 8.8

  13. Percent of Industrial Natural Gas Deliveries in Florida Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 6.1 4.5 3.5 4.7 5.9 3.6 1.9 2.9 2.5 2.5 3.3 4.0 2002 4.1 4.5 4.1 3.6 3.5 4.2 3.2 3.5 3.9 3.4 3.8 4.4 2003 4.2 5.9 4.4 3.9 3.5 3.7 3.3 2.6 3.7 3.2 4.4 3.3 2004 4.6 3.8 4.2 3.3 3.3 3.7 2.9 3.2 4.4 3.3 4.1 3.6 2005 2.7 4.1 3.8 3.4 3.1 3.2 3.4 3.5 3.4 3.7 3.5 3.6 2006 3.0 2.8 3.0 2.8 2.3 2.4 5.3 2.9 3.0 2.4 4.2 3.1 2007 2.6 3.1 3.5 2.3 2.9 4.0 2.8 2.6 3.6 2.5 3.7 3.6 2008 2.9 3.3 3.4 2.5 2.9 2.4 2.8 2.5 3.2 3.0 3.3 3.3

  14. Percent of Industrial Natural Gas Deliveries in Georgia Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 28.1 24.7 21.2 18.5 19.8 19.2 17.1 18.0 16.4 17.5 19.5 19.7 2002 20.2 20.6 21.4 19.5 18.0 19.2 17.7 17.9 18.5 18.2 19.4 19.5 2003 16.7 19.1 17.2 16.0 16.8 14.4 12.6 13.4 14.2 15.3 16.5 18.0 2004 18.2 17.2 17.4 15.5 14.9 15.8 15.9 15.1 15.6 13.9 14.0 22.4 2005 19.9 18.4 15.9 17.9 13.7 14.6 12.9 15.6 19.7 18.7 19.4 18.3 2006 18.3 25.0 17.2 12.5 12.7 16.7 15.2 16.2 15.7 18.0 17.8 17.0 2007 17.2 19.3 17.9 18.7 16.7 16.6

  15. Percent of Industrial Natural Gas Deliveries in Idaho Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 3.3 3.2 2.5 2.2 1.9 1.6 1.5 1.8 1.6 1.5 1.8 2.3 2002 2.7 2.9 2.7 2.5 0.9 1.9 1.8 2.0 1.4 1.6 1.3 2.3 2003 2.2 2.5 2.1 1.8 1.7 1.6 2.0 2.2 1.8 2.0 2.4 3.1 2004 3.2 2.9 2.8 2.0 2.1 2.0 1.9 1.9 1.6 1.5 2.5 3.2 2005 3.0 2.7 2.7 2.4 1.8 1.7 1.6 1.6 2.0 1.7 2.4 3.0 2006 2.5 2.6 2.3 2.0 1.8 1.5 1.6 1.6 1.5 2.0 2.3 2.6 2007 2.3 2.1 1.7 1.8 1.7 1.9 1.7 1.5 1.7 2.0 2.2 2.4 2008 2.2 2.3 2.4 1.8 1.4 1.7 1.6 1.9 1.4 1.8 2.3 2.1

  16. Percent of Industrial Natural Gas Deliveries in Illinois Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 14.3 14.6 11.7 8.9 7.1 6.7 5.8 6.1 7.5 8.7 10.3 12.1 2002 11.2 11.2 11.1 10.3 7.6 7.2 3.9 5.4 6.6 9.4 10.7 12.6 2003 13.4 13.4 12.9 9.2 7.9 6.9 5.7 7.6 5.3 9.1 10.5 10.6 2004 13.5 12.0 9.7 8.1 5.8 6.1 6.4 5.7 5.0 8.3 10.4 11.5 2005 12.9 11.8 10.7 8.2 6.0 4.7 6.3 6.0 6.8 10.6 11.6 12.5 2006 12.3 11.9 11.1 8.8 7.4 4.9 5.3 6.4 6.6 8.5 7.7 9.6 2007 11.5 12.7 12.8 10.6 10.3 7.8 6.0 5.4 6.4 7.5 7.7 10.4 2008 11.7 12.9 12.9

  17. Percent of Industrial Natural Gas Deliveries in Indiana Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 15.1 14.0 7.1 7.1 4.2 3.7 5.2 1.0 5.5 8.3 6.6 10.2 2002 8.4 8.1 10.1 6.4 5.3 6.2 5.3 5.9 6.6 12.5 12.6 12.4 2003 14.2 12.9 8.9 7.2 7.0 5.9 6.2 5.7 9.3 6.2 11.3 9.3 2004 9.2 8.9 8.9 6.9 6.4 6.2 6.9 6.5 7.3 7.9 10.4 11.6 2005 9.8 7.7 9.6 5.8 6.3 5.5 5.5 6.7 8.2 8.2 10.6 8.9 2006 8.2 9.3 7.4 4.3 7.0 5.0 6.4 5.9 6.3 8.2 8.3 8.4 2007 9.3 9.4 5.8 7.6 6.1 5.5 6.0 5.0 6.9 6.8 9.5 9.1 2008 8.4 7.5 7.0 6.7 5.5 4.5 4.7 4.7 5.3

  18. Percent of Industrial Natural Gas Deliveries in Kansas Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 3.0 2.9 3.2 2.9 7.8 9.4 18.1 21.2 16.4 7.7 7.9 4.4 2002 5.0 5.1 6.6 13.0 12.4 16.1 22.4 18.5 11.6 5.7 4.3 4.3 2003 2.4 3.4 3.2 8.2 11.0 6.9 14.8 21.1 9.1 5.3 5.0 3.1 2004 2.7 2.8 4.6 10.3 9.4 14.0 13.4 11.0 9.2 2.6 2.4 2.3 2005 1.7 1.4 1.4 3.2 6.6 8.2 16.3 19.2 9.0 3.8 2.5 1.7 2006 1.7 2.0 3.2 5.7 9.4 12.9 16.2 16.9 9.4 3.6 2.1 2.1 2007 1.3 1.5 1.5 1.4 4.9 9.8 16.2 17.3 9.6 4.0 2.8 1.7 2008 1.6 1.5 2.7 7.5 10.4 13.4

  19. Percent of Industrial Natural Gas Deliveries in Kentucky Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 27.3 21.8 18.9 13.8 17.8 15.8 17.4 17.4 17.3 19.6 16.5 16.9 2002 16.8 18.2 18.9 17.2 15.5 16.5 18.0 19.1 16.3 18.0 18.8 18.4 2003 20.6 20.1 18.7 19.5 19.2 20.3 16.6 16.0 18.1 18.2 18.1 18.4 2004 18.8 18.3 16.3 16.0 14.6 16.6 16.2 15.2 15.5 15.6 17.5 20.3 2005 16.5 17.5 17.3 16.0 15.8 15.2 16.1 14.9 17.4 17.9 17.2 19.7 2006 15.6 16.9 17.6 14.8 14.9 14.2 16.0 15.7 14.6 15.7 15.5 17.6 2007 16.6 18.1 17.0 17.7 16.1 17.5

  20. Percent of Industrial Natural Gas Deliveries in Maryland Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 15.4 11.4 9.7 7.2 6.7 4.5 9.7 6.3 6.3 7.0 6.6 10.3 2002 10.3 11.3 13.0 5.3 5.8 6.0 4.5 5.8 4.3 6.9 7.1 11.9 2003 10.5 13.2 11.4 9.1 7.8 6.6 6.3 6.2 7.1 12.1 11.9 12.9 2004 11.2 10.7 8.8 9.1 6.4 4.7 5.0 5.6 7.2 7.2 9.4 10.9 2005 11.3 11.5 11.3 9.8 5.5 5.1 4.9 5.3 5.2 6.2 9.4 10.7 2006 8.7 10.4 8.9 6.1 4.5 4.4 3.7 3.9 6.5 5.8 7.7 9.2 2007 13.1 13.7 11.0 9.9 6.1 3.7 4.5 3.8 6.9 3.5 8.4 10.4 2008 9.5 10.4 7.5 6.6 4.7 3.1

  1. Percent of Industrial Natural Gas Deliveries in Michigan Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 18.6 17.2 15.3 13.3 9.0 5.7 5.4 5.8 6.0 7.3 9.9 12.0 2002 14.4 13.3 14.0 11.4 8.1 5.7 4.3 5.2 3.9 6.5 10.9 17.6 2003 15.4 14.6 15.1 11.9 8.7 5.9 6.1 3.8 6.7 6.9 9.6 14.4 2004 14.6 15.9 18.0 11.4 7.4 5.7 5.0 4.9 5.0 6.1 9.2 13.3 2005 14.3 17.0 15.8 10.7 8.1 5.3 4.0 3.8 4.6 7.2 9.8 13.8 2006 15.4 16.4 13.5 10.8 7.3 5.1 3.8 4.5 5.2 7.0 10.6 13.6 2007 14.8 17.3 16.9 13.5 11.5 8.4 6.3 6.0 6.2 7.4 11.4 16.6 2008 16.4 17.4

  2. Percent of Industrial Natural Gas Deliveries in Missouri Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 25.6 17.3 19.1 14.4 11.1 10.2 9.5 8.1 9.5 10.2 12.4 32.9 2002 21.7 26.8 26.8 15.8 10.2 9.8 9.3 9.8 10.9 9.0 14.0 18.7 2003 18.8 21.0 19.0 13.6 12.1 12.4 12.5 8.8 10.3 11.1 13.1 16.8 2004 17.4 20.0 16.1 14.7 11.4 10.1 9.6 9.7 10.5 11.0 12.6 15.4 2005 20.1 18.4 16.4 13.9 11.9 9.6 10.1 9.4 10.5 11.2 13.0 17.9 2006 17.2 17.0 14.8 13.7 10.5 10.2 9.9 9.6 10.2 10.8 13.2 16.7 2007 15.4 18.5 16.7 12.3 10.6 10.1 9.7 8.4 8.7 10.3

  3. Percent of Industrial Natural Gas Deliveries in Montana Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 3.0 3.1 2.8 2.6 2.3 1.9 0.9 0.8 1.0 1.2 1.9 3.0 2002 3.0 2.9 3.6 2.3 2.0 1.2 0.9 0.7 0.8 1.1 2.1 3.4 2003 2.9 2.8 3.3 2.1 1.8 1.0 1.0 0.8 0.8 0.6 1.2 1.6 2004 1.8 2.4 1.9 1.0 1.5 1.4 1.1 0.7 0.8 1.1 1.8 2.4 2005 3.1 2.9 2.2 2.3 1.8 1.4 0.9 0.6 0.7 1.0 1.3 2.3 2006 1.3 1.0 1.1 0.9 0.6 0.4 0.2 0.1 0.2 0.3 0.6 1.0 2007 1.0 1.2 0.9 0.9 0.5 0.4 0.3 0.3 0.4 0.5 0.7 1.0 2008 1.3 1.4 1.8 1.1 0.9 0.5 0.6 0.5 0.5 0.4 0.8 0.9

  4. Percent of Industrial Natural Gas Deliveries in Nebraska Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 25.7 29.6 30.3 21.0 19.7 16.7 8.3 12.9 13.3 18.6 12.0 18.7 2002 22.6 19.5 29.3 17.6 15.0 24.0 7.4 8.4 8.8 16.4 18.9 19.6 2003 20.3 22.7 24.9 19.3 17.1 24.1 8.7 9.7 10.9 15.7 17.7 19.4 2004 19.7 21.4 24.7 19.0 18.3 14.2 9.2 10.6 16.5 18.8 16.0 16.6 2005 24.4 20.0 24.6 18.5 19.0 18.2 10.0 8.6 12.9 15.1 14.2 18.3 2006 13.8 15.1 17.1 13.3 13.0 9.8 8.3 7.7 10.5 11.5 10.2 12.4 2007 12.1 13.0 14.5 11.6 9.7 8.9 7.1 6.4 6.9 9.8

  5. Percent of Industrial Natural Gas Deliveries in Nevada Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 32.2 25.0 16.8 19.7 13.2 12.9 38.9 31.5 31.7 41.7 48.4 68.2 2002 58.3 44.3 59.1 37.8 44.2 40.0 17.5 18.2 19.5 21.2 23.0 28.8 2003 25.6 28.9 20.3 22.8 14.8 13.2 13.6 11.9 12.5 15.8 23.9 21.7 2004 21.4 23.6 14.9 15.1 12.4 11.3 10.7 11.5 13.4 15.9 20.9 22.6 2005 24.3 25.3 17.8 18.4 14.8 14.1 9.6 12.3 13.6 15.9 18.3 19.5 2006 20.9 21.8 22.3 14.7 14.8 11.9 11.7 10.6 11.5 16.9 16.6 23.7 2007 22.1 26.8 17.9 16.6 14.8 11.6

  6. Percent of Industrial Natural Gas Deliveries in New York Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 13.3 14.8 13.4 11.3 10.4 10.0 9.2 10.2 4.2 4.8 15.5 9.7 2002 12.2 12.1 11.1 11.1 11.9 10.9 9.4 10.4 13.5 7.7 9.4 11.2 2003 11.5 11.6 12.1 10.9 10.9 12.3 10.5 12.0 8.0 5.8 10.5 10.1 2004 12.4 13.5 11.5 13.0 11.1 11.5 9.3 8.7 8.0 7.6 8.7 9.8 2005 17.0 16.9 17.4 14.3 10.2 11.1 15.9 16.5 14.3 11.9 12.4 14.8 2006 14.8 14.0 11.5 9.6 7.6 11.4 11.0 9.9 9.6 10.8 13.6 13.7 2007 13.5 18.5 12.7 13.3 10.1 7.8 10.2 9.0 11.0 9.7 11.2

  7. Percent of Industrial Natural Gas Deliveries in North Dakota Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 15.2 13.8 16.8 8.2 5.8 5.5 1.1 4.7 8.0 12.1 13.4 17.9 2002 9.8 10.6 12.6 10.1 7.4 4.8 5.1 5.2 6.7 11.6 14.4 13.2 2003 35.1 44.0 60.0 30.9 17.9 17.7 25.0 32.3 22.3 25.2 44.1 87.2 2004 54.7 46.4 57.3 56.1 36.3 16.0 13.5 58.7 63.2 58.6 55.3 53.4 2005 25.1 17.0 17.7 14.7 9.6 4.4 10.3 15.1 51.6 58.4 45.9 23.2 2006 26.1 18.4 28.8 53.1 58.6 61.2 13.1 13.9 43.4 56.3 52.6 19.1 2007 26.6 28.8 24.7 58.5 61.4 46.9 11.0 38.6

  8. Percent of Industrial Natural Gas Deliveries in Ohio Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 13.1 9.8 10.4 6.2 3.9 3.4 1.5 4.8 1.2 2.9 5.6 6.4 2002 5.4 6.2 5.4 4.8 1.9 1.7 1.6 2.1 2.5 2.3 4.9 6.7 2003 6.3 7.0 5.4 4.0 1.8 2.4 2.0 1.7 1.7 2.4 3.3 4.6 2004 5.1 5.7 4.0 3.8 2.1 2.3 1.7 2.3 2.2 2.7 3.4 4.5 2005 5.7 6.6 4.5 2.6 2.0 1.6 2.1 2.0 1.9 2.6 3.3 4.8 2006 4.6 4.7 4.0 2.7 2.1 2.2 2.2 2.1 2.2 2.2 3.0 3.5 2007 3.9 4.8 3.5 2.6 1.8 1.8 1.9 1.4 1.5 1.2 2.2 3.7 2008 3.9 4.2 3.5 2.5 1.1 1.7 1.9 1.4 1.4 1.6 2.7 4.1

  9. Percent of Industrial Natural Gas Deliveries in Oklahoma Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 9.5 7.8 6.3 4.6 2.7 3.0 2.6 2.5 2.3 2.0 3.3 3.3 2002 5.2 6.1 5.0 3.4 2.4 2.0 1.5 2.7 2.7 1.4 2.9 3.8 2003 3.2 4.0 5.9 2.4 1.4 2.8 2.3 1.3 0.4 1.3 1.4 2.3 2004 2.5 3.0 2.6 1.1 1.1 0.7 1.4 1.3 1.2 1.0 1.1 2.2 2005 2.6 2.4 1.8 5.3 0.8 0.5 0.7 0.3 0.5 0.6 1.1 2.0 2006 2.0 1.4 1.1 1.0 0.7 0.8 0.4 0.8 0.9 1.3 1.3 1.2 2007 1.7 1.9 1.1 0.5 0.8 0.7 0.5 0.5 0.6 1.0 0.8 1.1 2008 1.0 1.5 1.0 0.5 0.6 0.5 0.3 0.2 0.2 0.1 0.3 0.8

  10. Percent of Industrial Natural Gas Deliveries in Oregon Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 27.2 17.0 18.7 20.3 20.5 20.7 23.5 26.8 24.2 21.1 20.6 21.4 2002 18.9 20.8 20.3 19.3 12.6 11.1 10.1 8.9 10.8 11.5 12.6 12.8 2003 13.8 14.3 13.8 12.7 16.1 16.2 15.5 15.6 19.2 21.1 24.5 25.4 2004 25.1 24.3 24.2 23.3 21.8 22.9 22.6 22.1 23.8 23.5 31.1 33.4 2005 34.3 34.3 32.7 31.0 30.2 30.1 31.4 32.1 33.6 35.0 34.8 38.2 2006 36.0 36.3 35.1 26.5 25.4 24.3 23.2 21.2 21.6 20.5 21.5 24.0 2007 23.6 24.3 22.9 21.8 20.8 21.8

  11. Percent of Industrial Natural Gas Deliveries in Rhode Island Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 41.4 29.5 26.1 37.6 29.0 29.3 26.0 26.2 22.4 26.8 29.3 13.6 2002 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 2003 15.7 18.9 21.5 19.6 26.7 11.7 16.8 18.8 18.6 22.1 18.5 22.3 2004 13.9 16.7 14.5 16.8 21.1 11.7 16.7 15.3 16.0 19.4 10.5 23.0 2005 17.8 14.7 15.9 11.0 16.3 16.5 12.9 13.8 16.3 13.2 16.5 19.7 2006 18.6 18.7 16.4 15.0 12.5 13.3 8.8 10.5 11.4 12.8 10.5 15.7 2007 13.0 19.0 15.1 12.7 10.1 14.3

  12. Percent of Industrial Natural Gas Deliveries in South Dakota Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 51.1 54.8 52.4 50.8 35.1 32.7 28.6 26.5 24.1 33.3 45.5 44.5 2002 16.4 18.6 13.2 18.4 14.1 10.7 9.5 9.0 19.5 27.6 30.6 34.9 2003 26.3 24.4 27.3 26.0 23.9 22.4 24.7 23.3 25.3 24.8 26.8 29.1 2004 29.0 28.5 30.0 24.4 26.1 28.2 22.6 27.6 24.8 27.2 33.3 31.0 2005 28.5 28.0 33.6 26.7 31.6 26.1 28.9 31.7 27.8 30.4 33.3 35.8 2006 38.6 36.4 37.5 31.3 39.2 30.3 27.6 30.1 27.8 31.5 33.7 35.4 2007 33.8 31.8 31.3 15.2 16.2 12.1

  13. Percent of Industrial Natural Gas Deliveries in Texas Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 35.8 35.7 33.7 34.2 32.9 34.2 36.5 34.8 37.5 36.0 35.1 34.5 2002 30.8 32.1 30.6 50.7 45.4 50.5 49.5 46.5 46.3 43.4 43.8 44.8 2003 40.1 39.5 39.1 39.5 39.8 36.1 50.7 46.2 49.0 47.8 47.2 48.2 2004 48.4 49.3 46.7 49.4 49.0 51.9 51.3 49.9 47.4 46.0 46.6 48.9 2005 58.7 57.0 56.9 55.8 55.8 54.9 56.8 55.0 52.5 49.7 51.1 49.5 2006 52.1 52.1 54.8 55.6 55.3 54.7 58.1 57.4 54.1 57.9 56.5 55.6 2007 52.7 51.6 52.4 53.0 54.2 56.0

  14. Percent of Industrial Natural Gas Deliveries in Utah Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 11.9 9.2 10.7 10.1 9.5 9.5 10.1 11.5 9.4 9.2 11.0 13.8 2002 14.0 13.8 12.6 15.8 13.0 13.4 12.1 13.6 13.5 12.8 15.0 13.7 2003 14.5 14.6 13.1 14.9 14.1 13.2 11.8 12.7 13.8 13.9 13.2 13.1 2004 13.8 15.2 13.3 14.6 12.7 12.7 18.4 46.5 26.9 24.3 23.4 23.8 2005 18.4 18.6 18.4 17.7 18.6 21.3 20.0 21.2 21.3 21.5 18.3 19.9 2006 22.3 23.2 22.5 24.0 24.0 24.7 24.2 13.9 13.4 15.3 15.8 16.0 2007 14.4 13.6 14.4 14.6 13.3 12.7 14.5

  15. Percent of Industrial Natural Gas Deliveries in Vermont Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 95.2 80.1 79.2 79.2 69.2 67.8 65.6 67.7 70.7 73.3 76.0 79.0 2002 77.7 78.3 78.6 78.2 72.6 66.8 66.7 65.1 66.8 72.6 76.2 85.5 2003 87.3 100.0 100.0 75.7 74.2 72.4 75.0 67.7 70.4 73.2 77.4 80.1 2004 79.9 84.7 80.7 82.2 78.6 73.8 70.0 68.3 69.2 76.4 82.1 83.7 2005 83.6 86.4 82.6 78.0 74.4 71.5 72.1 83.9 94.3 82.4 75.7 96.4 2006 93.0 87.6 82.4 77.2 73.3 72.9 71.7 69.7 71.5 76.3 75.1 79.5 2007 83.0 84.1 81.8 76.2 72.2 71.7

  16. Percent of Industrial Natural Gas Deliveries in Virginia Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 27.4 24.1 20.8 18.6 13.3 23.5 10.9 12.9 15.0 24.1 11.2 15.4 2002 16.8 19.7 18.3 14.0 14.1 10.8 10.7 11.0 13.2 16.0 19.3 22.9 2003 25.6 22.5 16.5 23.9 12.9 9.1 13.4 19.6 12.6 17.7 17.9 17.0 2004 21.5 18.8 18.7 16.8 14.9 11.2 15.6 14.5 8.9 15.1 16.1 21.1 2005 18.3 21.6 18.1 19.3 15.7 16.6 9.5 11.6 16.0 18.7 21.5 20.0 2006 21.6 17.0 16.0 13.2 13.8 10.4 9.5 8.0 12.7 14.5 16.0 15.7 2007 17.0 20.0 17.1 17.2 15.4 9.5 10.3

  17. Percent of Industrial Natural Gas Deliveries in Wyoming Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 3.6 3.9 3.7 2.8 1.9 2.1 1.8 2.0 2.0 2.3 2.2 1.8 2002 3.3 3.6 3.6 3.0 3.6 2.4 2.6 2.8 2.8 3.2 2.1 2.5 2003 2.4 2.4 2.1 1.8 1.4 1.4 1.4 1.3 1.4 1.4 2.2 2.0 2004 2.0 1.9 2.2 1.9 1.9 1.9 2.7 1.7 2.3 2.0 2.3 2.4 2005 2.8 5.0 5.8 4.5 4.1 3.5 2.8 2.5 2.5 2.8 4.2 4.4 2006 4.4 4.5 4.2 3.9 3.3 2.7 2.2 2.3 2.8 3.3 3.8 3.7 2007 4.3 4.1 3.4 3.7 2.8 2.0 1.5 1.7 1.9 2.9 3.3 3.3 2008 3.8 3.7 3.9 3.9 2.9 2.1 2.0 1.7 2.5 3.0 3.6 3.9

  18. Redox shuttles having an aromatic ring fused to a 1,1,4,4-tetrasubstituted cyclohexane ring

    DOE Patents [OSTI]

    Weng, Wei; Zhang, Zhengcheng; Amine, Khalil

    2015-12-01

    An electrolyte includes an alkali metal salt; an aprotic solvent; and a redox shuttle additive including an aromatic compound having at least one aromatic ring fused with at least one non-aromatic ring, the aromatic ring having two or more oxygen or phosphorus-containing substituents.

  19. Amination of electrophilic aromatic compounds by vicarious nucleophilic substitution

    DOE Patents [OSTI]

    Mitchell, Alexander R.; Pagoria, Philip F.; Schmidt, Robert D.

    2000-01-01

    The present invention relates to a process to aminate electrophilic aromatic compounds by vicarious nucleophilic substitution of hydrogen using quaternary hydrazinium salts. The use of trialkylhydrazinium halide, e.g., trimethylhydrazinium iodide, as well as hydroxylamine, alkoxylamines, and 4-amino-1,2,4-triazole to produce aminated aromatic structures, such as 1,3-diamino-2,4,6-trinitrobenzene (DATB), 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) and 3,5-diamino-2,4,6-trinitrotoluene (DATNT), is described. DATB and TATB are useful insensitive high explosives. TATB is also used for the preparation of benzenehexamine, a starting material for the synthesis of novel materials (optical imaging devices, liquid crystals, ferromagnetic compounds).

  20. FY 2009 Volume 7

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 DOE/CF-030 Volume 7 Fossil Energy Research and Development Naval Petroleum and Oil Shale Reserves Strategic Petroleum Reserve Northeast Home Heating Oil Reserve Clean Coal Technology Ultra-Deepwater Unconventional Natural Gas February 2008 Office of Chief Financial Officer Department of Energy FY 2009 Congressional Budget Request Volume 7 DOE/CF-030 Volume 7 Fossil Energy Research and Development Naval Petroleum and Oil Shale Reserves Strategic Petroleum Reserve Northeast Home Heating Oil

  1. FY 2010 Volume 6

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 DOE/CF-040 Volume 6 Power Marketing Administrations Southeastern Power Administration Southwestern Power Administration Western Area Power Administration Bonneville Power Administration May 2009 Office of Chief Financial Officer FY 2010 Congressional Budget Request Volume 6 DOE/CF-040 Volume 6 Power Marketing Administrations Southeastern Power Administration Southwestern Power Administration Western Area Power Administration Bonneville Power Administration Printed with soy ink on recycled

  2. FY 2005 Volume 1

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Volume 1 February 2004 Volume 1 National Nuclear Security Administration National Nuclear Security Administration Office of the Administrator Office of the Administrator Weapons Activities Weapons Activities Defense Nuclear Nonproliferation Defense Nuclear Nonproliferation Naval Reactors Naval Reactors Office of Management, Budget and Evaluation/CFO Department of Energy Department of Energy FY 2005 Congressional Budget FY 2005 Congressional Budget Request Request DOE/ME-0032 Volume 1 February

  3. FY 2005 Volume 4

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ME-0035 Volume 4 Science Science Nuclear Waste Disposal Nuclear Waste Disposal Defense Nuclear Waste Disposal Defense Nuclear Waste Disposal Departmental Administration Departmental Administration Inspector General Inspector General Working Capital Fund Working Capital Fund February 2004 Volume 4 Office of Management, Budget and Evaluation/CFO Department of Energy Department of Energy FY 2005 Congressional Budget FY 2005 Congressional Budget Request Request DOE/ME-0035 Volume 4 Science Science

  4. FY 2013 Volume 2

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Volume 2 f Department of Energy FY 2013 Congressional B d R Budget Request Other Defense Activities Departmental Administration Inspector General Working Capital F nd Working Capital Fund Safeguards and Security Crosscut Pensions February 2012 Office of Chief Financial Officer Volume 2 DOE/CF-0072 Volume 2 f Department of Energy FY 2013 Congressional B d R Budget Request Other Defense Activities Departmental Administration Inspector General Working Capital F nd Working Capital Fund Safeguards

  5. FY 2013 Volume 4

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 DOE/CF-0074 Volume 4 Science Advanced Research Projects Agency-Energy Department of Energy FY 2013 Congressional Budget Request February 2012 Office of Chief Financial Officer Volume 4 DOE/CF-0074 Volume 4 Science Advanced Research Projects Agency-Energy Printed with soy ink on recycled paper Department of Energy FY 2013 Congressional Budget Request Science Advanced Research Projects Agency- Energy Science Advanced Research Projects Agency- Energy Department of Energy/Science/ Advanced

  6. FY 2013 Volume I

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE/CF-0071 Volume 1 National Nuclear Security Administration Office of the Administrator Weapons Activities Defense Nuclear Nonproliferation Naval Reactors Department of Energy FY 2013 Congressional Budget Request February 2012 Office of Chief Financial Officer Volume 1 DOE/CF-0071 Volume 1 National Nuclear Security Administration Office of the Administrator Weapons Activities Defense Nuclear Nonproliferation Naval Reactors Printed with soy ink on recycled paper Department of Energy FY 2013

  7. THE INFRARED SPECTROSCOPY OF NEUTRAL POLYCYCLIC AROMATIC HYDROCARBON CLUSTERS

    SciTech Connect (OSTI)

    Ricca, Alessandra; Bauschlicher, Charles W. Jr.; Allamandola, Louis J. E-mail: Charles.W.Bauschlicher@nasa.gov

    2013-10-10

    The mid-infrared spectra of neutral homogeneous polycyclic aromatic hydrocarbon (PAH) clusters have been computed using density functional theory including an empirical correction for dispersion. The C-H out-of-plane bending modes are redshifted for all the clusters considered in this work. The magnitude of the redshift and the peak broadening are dependent on PAH size, shape, and on the PAH arrangement in the cluster.

  8. CleanFleet. Final report: Volume 1, summary

    SciTech Connect (OSTI)

    1995-12-01

    The South Coast Alternative Fuels Demonstration, called CleanFleet, was conducted in the Los Angeles area from April 1992 through September 1994. The demonstration consisted of 111 package delivery vans operating on five alternative fuels and the control fuel, unleaded gasoline. The alternative fuels were propane gas, compressed natural gas, California Phase 2 reformulated gasoline (RFG), methanol with 15 percent RFG (called M-85), and electricity. This volume of the eight volume CleanFleet final report is a summary of the project design and results of the analysis of data collected during the demonstration on vehicle maintenance and durability, fuel economy, employee attitudes, safety and occupational hygiene, emissions, and fleet economics.

  9. High-performance, high-volume fly ash concrete

    SciTech Connect (OSTI)

    2008-01-15

    This booklet offers the construction professional an in-depth description of the use of high-volume fly ash in concrete. Emphasis is placed on the need for increased utilization of coal-fired power plant byproducts in lieu of Portland cement materials to eliminate increased CO{sub 2} emissions during the production of cement. Also addressed is the dramatic increase in concrete performance with the use of 50+ percent fly ash volume. The booklet contains numerous color and black and white photos, charts of test results, mixtures and comparisons, and several HVFA case studies.

  10. FY 2005 Volume 2

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Volume 2 February 2004 Volume 2 Office of Management, Budget and Evaluation/CFO Other Defense Activities Other Defense Activities Energy Security and Assurance Energy Security and Assurance Security Security Independent Oversight & Performance Assurance Independent Oversight & Performance Assurance Civilian Radioactive Waste Management Civilian Radioactive Waste Management Environment, Safety & Health Environment, Safety & Health Legacy Management Legacy Management Nuclear

  11. FY 2005 Volume 3

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Volume 3 February 2004 Volume 3 Office of Management, Budget and Evaluation/CFO Energy Supply Energy Supply Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Electric Transmission and Distribution Electric Transmission and Distribution Nuclear Energy Nuclear Energy Civilian Radioactive Waste Management Civilian Radioactive Waste Management Environment, Safety & Health Environment, Safety & Health Future Liabilities Future Liabilities Legacy Management Legacy

  12. FY 2005 Volume 5

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Volume 5 Environmental Management Environmental Management Defense Site Acceleration Completion Defense Site Acceleration Completion Defense Environmental Services Defense Environmental Services Non Non - - Defense Site Acceleration Completion Defense Site Acceleration Completion Non Non - - Defense Environmental Services Defense Environmental Services Uranium Enrichment Decontamination Uranium Enrichment Decontamination and Decommissioning Fund and Decommissioning Fund February 2004 Volume 5

  13. FY 2005 Volume 6

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 Volume 6 Power Marketing Administrations Power Marketing Administrations Southeastern Power Administration Southeastern Power Administration Southwestern Power Administration Southwestern Power Administration Western Area Power Administration Western Area Power Administration Bonneville Power Administration Bonneville Power Administration February 2004 Volume 6 Office of Management, Budget and Evaluation/CFO Department of Energy Department of Energy FY 2005 Congressional Budget FY 2005

  14. Method of upgrading oils containing hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline

    DOE Patents [OSTI]

    Baker, Eddie G. (Richland, WA); Elliott, Douglas C. (Richland, WA)

    1993-01-01

    The present invention is a multi-stepped method of converting an oil which is produced by various biomass and coal conversion processes and contains primarily single and multiple ring hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline. The single and multiple ring hydroxyaromatic hydrocarbon compounds in a raw oil material are first deoxygenated to produce a deoxygenated oil material containing single and multiple ring aromatic compounds. Then, water is removed from the deoxygenated oil material. The next step is distillation to remove the single ring aromatic compouns as gasoline. In the third step, the multiple ring aromatics remaining in the deoxygenated oil material are cracked in the presence of hydrogen to produce a cracked oil material containing single ring aromatic compounds. Finally, the cracked oil material is then distilled to remove the single ring aromatics as gasoline.

  15. Reduction of Aromatic Hydrocarbons by Zero-Valent Iron and Palladium Catalyst

    SciTech Connect (OSTI)

    Kim, Young-Hun; Shin, Won Sik; Ko, Seok-Oh; Kim, Myung-Chul

    2004-03-31

    Permeable reactive barrier (PRB) is an alternative technology for soil and groundwater remediation. Zero valent iron, which is the most popular PRB material, is only applicable to halogenated aliphatic organics and some heavy metals. The objective of this study was to investigate reductive dechlorination of halogenated compounds and reduction of non-halogenated aromatic hydrocarbons using zero valent metals (ZVMs) and catalysts as reactive materials for PRBs. A group of small aromatic hydrocarbons such as monochlorophenols, phenol and benzene were readily reduced with palladium catalyst and zero valent iron. Poly-aromatic hydrocarbons (PAHs) were also tested with the catalysts and zero valent metal combinations. The aromatic rings were reduced and partly reduced PAHs were found as the daughter compounds. The current study demonstrates reduction of aromatic compounds by ZVMs and modified catalysts and implicates that PRB is applicable not only for halogenated organic compounds but nonhalogenated aromatic compounds such as PAHs.

  16. Method of upgrading oils containing hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline

    DOE Patents [OSTI]

    Baker, E.G.; Elliott, D.C.

    1993-01-19

    The present invention is a multi-stepped method of converting an oil which is produced by various biomass and coal conversion processes and contains primarily single and multiple ring hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline. The single and multiple ring hydroxyaromatic hydrocarbon compounds in a raw oil material are first deoxygenated to produce a deoxygenated oil material containing single and multiple ring aromatic compounds. Then, water is removed from the deoxygenated oil material. The next step is distillation to remove the single ring aromatic compounds as gasoline. In the third step, the multiple ring aromatics remaining in the deoxygenated oil material are cracked in the presence of hydrogen to produce a cracked oil material containing single ring aromatic compounds. Finally, the cracked oil material is then distilled to remove the single ring aromatics as gasoline.

  17. Volume_I

    Energy Savers [EERE]

    for Nanoscale Material Activities at Department of Energy Laboratories, August 2008 | Department of Energy Volume II, Environment, Safety, and Health Special Review of Work Practices for Nanoscale Material Activities at Department of Energy Laboratories, August 2008 Volume II, Environment, Safety, and Health Special Review of Work Practices for Nanoscale Material Activities at Department of Energy Laboratories, August 2008 At the request of the Secretary of Energy, the U.S. Department of

  18. LARGE ABUNDANCES OF POLYCYCLIC AROMATIC HYDROCARBONS IN TITAN'S UPPER ATMOSPHERE

    SciTech Connect (OSTI)

    Lopez-Puertas, M.; Funke, B.; Garcia-Comas, M.; Dinelli, B. M.; Adriani, A.; D'Aversa, E.; Moriconi, M. L.; Boersma, C.; Allamandola, L. J.

    2013-06-20

    In this paper, we analyze the strong unidentified emission near 3.28 {mu}m in Titan's upper daytime atmosphere recently discovered by Dinelli et al. We have studied it by using the NASA Ames PAH IR Spectroscopic Database. The polycyclic aromatic hydrocarbons (PAHs), after absorbing UV solar radiation, are able to emit strongly near 3.3 {mu}m. By using current models for the redistribution of the absorbed UV energy, we have explained the observed spectral feature and have derived the vertical distribution of PAH abundances in Titan's upper atmosphere. PAHs have been found to be present in large concentrations, about (2-3) Multiplication-Sign 10{sup 4} particles cm{sup -3}. The identified PAHs have 9-96 carbons, with a concentration-weighted average of 34 carbons. The mean mass is {approx}430 u; the mean area is about 0.53 nm{sup 2}; they are formed by 10-11 rings on average, and about one-third of them contain nitrogen atoms. Recently, benzene together with light aromatic species as well as small concentrations of heavy positive and negative ions have been detected in Titan's upper atmosphere. We suggest that the large concentrations of PAHs found here are the neutral counterpart of those positive and negative ions, which hence supports the theory that the origin of Titan main haze layer is located in the upper atmosphere.

  19. Synthesis of condensed phases containing polycyclic aromatic hydrocarbons fullerenes and nanotubes

    DOE Patents [OSTI]

    Reilly, Peter T. A.

    2004-10-19

    The invention relates to methods for producing polycyclic aromatic hydrocarbons, fullerenes, and nanotubes, comprising: a. heating at least one carbon-containing material to form a condensed phase comprising at least one polycyclic aromatic hydrocarbon; b. collecting at least some of the condensed phase; c. reacting the condensed phase to form fullerenes and/or nanotubes.

  20. Viability Assessment Volume 5

    SciTech Connect (OSTI)

    DOE,

    1998-12-01

    This volume presents a management summary of the cost estimate to complete the design, and to license, construct, operate, monitor, close, and decommission a Monitored Geologic Repository at Yucca Mountain in Nevada. This volume summarizes the scope, estimating methodologies, and assumptions used in development of the Monitored Geologic Repository-VA cost estimate. It identifies the key features necessary to understand the summary costs presented herein. This cost summary derives from a larger body of documented cost analysis. Volume 5 is organized to reflect this structured approach to cost estimation and contains the following sections: Section 1, Cost Elements. This section briefly defines the components of each major repository cost element. Section 2, Project Phases. This section presents the definition, as used in the estimate, of five project phases (Licensing, Pre-emplacement Construction, Emplacement Operations, Monitoring, and Closure and Decommissioning) and the schedule dates for each phase. It also contains major milestone dates and a bar chart schedule. Section 3, Major Assumptions. This section identifies key high-level assumptions for the cost estimate basis. Additional detailed assumptions are included in the appendices. Section 4, Integrated Cost Summary. This section presents a high-level roll-up of the VA costs resulting from the estimating work. The tables and figures contained in this section were compiled from the more detailed cost estimates in the appendices. Section 5, References. This section identifies the references that support this cost volume. Appendices. For each major repository cost element, Appendices B-F [B, C, D, E, F] presents additional information on the scope of cost elements, identifies methodologies used to develop the cost estimates, lists underlying cost assumptions, and tabulates summary results. Appendix A contains a glossary to assist the reader in understanding the terminology in Volume 5. Appendix G presents costs associated with three VA design options, as described in Volume 2. These costs are provided for information and are not compiled into the integrated cost summary.

  1. Viability Assessment Volume 4

    SciTech Connect (OSTI)

    DOE

    1998-12-01

    Volume 4 provides the DOE plan and cost estimate for the remaining work necessary to proceed from completing this VA to submitting an LA to NRC. This work includes preparing an EIS and evaluating the suitability of the site. Both items are necessary components of the documentation required to support a decision in 2001 by the Secretary of Energy on whether or not to recommend that the President approve the site for development as a repository. If the President recommends the site to Congress and the site designation becomes effective, then DOE will submit the LA to NRC in 2002 for authorization to construct the repository. The work described in Volume 4 constitutes the last step in the characterization of the Yucca Mountain site and the design and evaluation of the performance of a repository system in the geologic setting of this site. The plans in this volume for the next 4 years' work are based on the results of the previous 15 years' work, as reported in Volumes 1, 2, and 3 of this VA. Volume 1 summarizes what DOE has learned to date about the Yucca Mountain site. Volume 2 describes the current, reference repository design, several design options that might enhance the performance of the reference design, and several alternative designs that represent substantial departures from the reference design. Volume 2 also summarizes the results of tests of candidate materials for waste packages and for support of the tunnels into which waste would be emplaced. Volume 3 provides the results of the latest performance assessments undertaken to evaluate the performance of the design in the geologic setting of Yucca Mountain. The results described in Volumes 1, 2, and 3 provide the basis for identifying and prioritizing the work described in this volume. DOE believes that the planned work, together with the results of previous work, will be sufficient to support a site suitability evaluation for site recommendation and, if the site is recommended and designated, a defensible LA. Volume 4 is divided into seven sections. Section 2 presents a rationale and summary for the technical work to be done to develop the preclosure and postclosure safety cases that will support the compliance evaluations required for the evaluation of site suitability and for licensing. Section 2 also describes other necessary technical work, including that needed to support design decisions and development of the necessary design information. Section 3 presents a more detailed description of the technical work required to address the issues identified in Section 2. Section 3 also describes activities that will continue after submittal of the site recommendation and the LA. Examples include the drift scale heater test in the Exploratory Studies Facility (Section 3.1.4.3) and long-term waste package corrosion testing (Section 3.2.2.9). Section 4 discusses the statutory and regulatory framework for site recommendation and submittal of an LA, and describes the activities and documentation that must be completed to achieve these milestones, including the development of an EIS. Section 5 describes the numerous activities required to support program milestones, including support for completing the testing program, continuing tests as part of the performance confirmation program, and managing information and records to support regulatory and legal review. Sections 6 and 7 provide cost and schedule information for the activities planned.

  2. Extremely strong tubular stacking of aromatic oligoamide macrocycles

    SciTech Connect (OSTI)

    Kline, Mark A.; Wei, Xiaoxi; Horner, Ian J.; Liu, Rui; Chen, Shuang; Chen, Si; Yung, Ka Yi; Yamato, Kazuhiro; Cai, Zhonghou; Bright, Frank V.; Zeng, Xiao Cheng; Gong, Bing

    2015-01-01

    As the third-generation rigid macrocycles evolved from progenitor 1, cyclic aromatic oligoamides 3, with a backbone of reduced constraint, exhibit extremely strong stacking with an astoundingly high affinity (estimated lower limit of Kdimer > 1013 M-1 in CHCl3), which leads to dispersed tubular stacks that undergo further assembly in solution. Computational study reveals a very large binding energy (-49.77 kcal mol-1) and indicates highly cooperative local dipole interactions that account for the observed strength and directionality for the stacking of 3. In the solid-state, X-ray diffraction (XRD) confirms that the aggregation of 3 results in well-aligned tubular stacks. The persistent tubular assemblies of 3, with their non-deformable sub-nm pore, are expected to possess many interesting functions. One such function, transmembrane ion transport, is observed for 3.

  3. Extremely strong tubular stacking of aromatic oligoamide macrocycles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kline, Mark A.; Wei, Xiaoxi; Horner, Ian J.; Liu, Rui; Chen, Shuang; Chen, Si; Yung, Ka Yi; Yamato, Kazuhiro; Cai, Zhonghou; Bright, Frank V.; et al

    2014-09-16

    As the third-generation rigid macrocycles evolved from progenitor 1, cyclic aromatic oligoamides 3, with a backbone of reduced constraint, exhibit extremely strong stacking with an astoundingly high affinity (estimated lower limit of K-dimer > 1013 M-1 in CHCl3), which leads to dispersed tubular stacks that undergo further assembly in solution. Computational study reveals a very large binding energy (-49.77 kcal mol-1) and indicates highly cooperative local dipole interactions that account for the observed strength and directionality for the stacking of 3. In the solid-state, X-ray diffraction (XRD) confirms that the aggregation of 3 results in well-aligned tubular stacks. Furthermore, themore » persistent tubular assemblies of 3, with their non-deformable sub-nm pore, are expected to possess many interesting functions. One such function, transmembrane ion transport, is observed for 3.« less

  4. Extremely strong tubular stacking of aromatic oligoamide macrocycles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kline, Mark A.; Wei, Xiaoxi; Horner, Ian J.; Liu, Rui; Chen, Shuang; Chen, Si; Yung, Ka Yi; Yamato, Kazuhiro; Cai, Zhonghou; Bright, Frank V.; et al

    2015-01-01

    As the third-generation rigid macrocycles evolved from progenitor 1, cyclic aromatic oligoamides 3, with a backbone of reduced constraint, exhibit extremely strong stacking with an astoundingly high affinity (estimated lower limit of Kdimer > 1013 M-1 in CHCl3), which leads to dispersed tubular stacks that undergo further assembly in solution. Computational study reveals a very large binding energy (-49.77 kcal mol-1) and indicates highly cooperative local dipole interactions that account for the observed strength and directionality for the stacking of 3. In the solid-state, X-ray diffraction (XRD) confirms that the aggregation of 3 results in well-aligned tubular stacks. The persistentmore » tubular assemblies of 3, with their non-deformable sub-nm pore, are expected to possess many interesting functions. One such function, transmembrane ion transport, is observed for 3.« less

  5. FY 2005 Volume 7

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Volume 7 Interior & Related Agencies Interior & Related Agencies Fossil Energy Research & Development Fossil Energy Research & Development Naval Petroleum & Oil Shale Reserves Naval Petroleum & Oil Shale Reserves Elk Hills School Lands Fund Elk Hills School Lands Fund Energy Conservation Energy Conservation Economic Regulation Economic Regulation Strategic Petroleum Reserve Strategic Petroleum Reserve Energy Information Administration Energy Information Administration

  6. Computer Simulations Reveal Multiple Functions for Aromatic Residues in Cellulase Enzymes (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-07-01

    NREL researchers use high-performance computing to demonstrate fundamental roles of aromatic residues in cellulase enzyme tunnels. National Renewable Energy Laboratory (NREL) computer simulations of a key industrial enzyme, the Trichoderma reesei Family 6 cellulase (Cel6A), predict that aromatic residues near the enzyme's active site and at the entrance and exit tunnel perform different functions in substrate binding and catalysis, depending on their location in the enzyme. These results suggest that nature employs aromatic-carbohydrate interactions with a wide variety of binding affinities for diverse functions. Outcomes also suggest that protein engineering strategies in which mutations are made around the binding sites may require tailoring specific to the enzyme family. Cellulase enzymes ubiquitously exhibit tunnels or clefts lined with aromatic residues for processing carbohydrate polymers to monomers, but the molecular-level role of these aromatic residues remains unknown. In silico mutation of the aromatic residues near the catalytic site of Cel6A has little impact on the binding affinity, but simulation suggests that these residues play a major role in the glucopyranose ring distortion necessary for cleaving glycosidic bonds to produce fermentable sugars. Removal of aromatic residues at the entrance and exit of the cellulase tunnel, however, dramatically impacts the binding affinity. This suggests that these residues play a role in acquiring cellulose chains from the cellulose crystal and stabilizing the reaction product, respectively. These results illustrate that the role of aromatic-carbohydrate interactions varies dramatically depending on the position in the enzyme tunnel. As aromatic-carbohydrate interactions are present in all carbohydrate-active enzymes, the results have implications for understanding protein structure-function relationships in carbohydrate metabolism and recognition, carbon turnover in nature, and protein engineering strategies for biofuels production.

  7. FY 2013 Volume 3

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 DOE/CF-0073 Volume 3 Printed with soy ink on recycled paper Department of Energy FY 2013 Congressional Budget Request Energy Efficiency and Renewable Energy Electricity Delivery and Energy Reliability Nuclear Energy Fossil Energy Research and Development Naval Petroleum and Oil Shale Reserves Strategic Petroleum Reserve Northeast Home Heating Oil Reserve Ultra-Deepwater Unconventional Natural Gas Elk Hills Lands Fund Advanced Tech. Vehicle Manufacturing Loan Program Title 17 Innovative Tech.

  8. Viability Assessment Volume 2

    SciTech Connect (OSTI)

    DOE

    1998-12-01

    This volume describes the major design features of the Monitored Geologic Repository. This document is not intended to provide an exhaustive, detailed description of the repository design. Rather, this document summarizes the major systems and primary elements of the design that are radiologically significant, and references the specific technical documents and design analyses wherein the details can be found. Not all portions of the design are at the same level of completeness. Highest priority has been given to assigning resources to advance the design of the Monitored Geologic Repository features that are important to radiological safety and/or waste isolation and for which there is no NRC licensing precedent. Those features that are important to radiological safety and/or waste isolation, but for which there is an NRC precedent, receive second priority. Systems and features that have no impact on radiological safety or waste isolation receive the lowest priority. This prioritization process, referred to as binning, is discussed in more detail in Section 2.3. Not every subject discussed in this volume is given equal treatment with regard to the level of detail provided. For example, less detail is provided for the surface facility design than for the subsurface and waste package designs. This different level of detail is intentional. Greater detail is provided for those functions, structures, systems, and components that play key roles with regard to protecting radiological health and safety and that are not common to existing nuclear facilities already licensed by NRC. A number of radiological subjects are not addressed in the VA, (e.g., environmental qualification of equipment). Environmental qualification of equipment and other radiological safety considerations will be addressed in the LA. Non-radiological safety considerations such as silica dust control and other occupational safety considerations are considered equally important but are not addressed in th is volume of the VA (see Volume 1, Section 2.2.1.2, subsection on Health Related Mineral Issues).

  9. Final EIS Volume 3

    Energy Savers [EERE]

    Volume 3 Final Environmental Impact Statement for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center DOE/EIS-0226 January 2010 The West Valley Site Comment Response Document Final Environmental Impact Statement for AVAILABILITY OF THE FINAL EIS FOR DECOMMISSIONING AND/OR LONG- TERM STEWARDSHIP AT THE WEST VALLEY DEMONSTRATION PROJECT AND WESTERN NEW YORK NUCLEAR SERVICE CENTER For further information on this Final

  10. Polycyclic aromatic hydrocarbon and mid-infrared continuum emission in a z

    Office of Scientific and Technical Information (OSTI)

    > 4 submillimeter galaxy (Journal Article) | SciTech Connect Polycyclic aromatic hydrocarbon and mid-infrared continuum emission in a z > 4 submillimeter galaxy Citation Details In-Document Search Title: Polycyclic aromatic hydrocarbon and mid-infrared continuum emission in a z > 4 submillimeter galaxy We report the detection of 6.2 μm polycyclic aromatic hydrocarbon (PAH) and rest-frame 4-7 μm continuum emission in the z = 4.055 submillimeter galaxy GN20, using the Infrared

  11. Distribution of polycyclic aromatic hydrocarbons in lime spray dryer ash

    SciTech Connect (OSTI)

    Ping Sun; Panuwat Taerakul; Linda K. Weavers; Harold W. Walker

    2005-10-01

    Four lime spray dryer (LSD) ash samples were collected from a spreader stoker boiler and measured for their concentrations of 16 U.S. EPA specified polycyclic aromatic hydrocarbons (PAHs). Results showed that the total measured PAH concentration correlated with the organic carbon content of the LSD ash. Each LSD ash sample was then separated using a 140 mesh sieve into two fractions: a carbon-enriched fraction ({gt}140 mesh) and a lime-enriched fraction ({lt}140 mesh). Unburned carbon was further separated from the carbon-enriched fraction with a lithiumheteropolytungstate (LST) solution. PAH measurements on these different fractions showed that unburned carbon had the highest PAH concentrations followed by the carbon-enriched fraction, indicating that PAHs were primarily associated with the carbonaceous material in LSD ash. However, detectable levels of PAHs were also found in the lime-enriched fraction, suggesting that the fine spray of slaked lime may sorb PAH compounds from the flue gas in the LSD process. 37 refs., 5 figs., 4 tabs.

  12. Atmospheric transport and outflow of polycyclic aromatic hydrocarbons from China

    SciTech Connect (OSTI)

    Chang Lang; Shu Tao; Wenxin Liu; Yanxu Zhang; Staci Simonich

    2008-07-15

    A potential receptor influence function (PRIF) model, based on air mass forward trajectory calculations, was applied to simulate the atmospheric transport and outflow of polycyclic aromatic hydrocarbons (PAHs) emitted from China. With a 10 day atmospheric transport time, most neighboring countries and regions, as well as remote regions, were influenced by PAH emissions from China. Of the total annual PAH emission of 114 Gg, 92.7% remained within the boundary of mainland China. The geographic distribution of PRIFs within China was similar to the geographic distribution of the source regions, with high values in the North China Plain, Sichuan Basin, Shanxi, and Guizhou province. The Tarim basin and Sichuan basin had unfavorable meteorological conditions for PAH outflow. Of the PAH outflow from China (8092 tons or 7.1% of the total annual PAH emission), approximately 69.9% (5655 tons) reached no further than the offshore environment of mainland China and the South China Sea. Approximate 227, 71, 746, and 131 tons PAHs reached North Korea, South Korea, Russia-Mongolia region, and Japan, respectively, 2-4 days after the emission. Only 1.4 tons PAHs reached North America after more than 9 days. Interannual variation in the eastward PAH outflow was positively correlated to cold episodes of El Nino/Southern Oscillation. However, trans-Pacific atmospheric transport of PAHs from China was correlated to Pacific North America index (PNA) which is associated with the strength and position of westerly winds. 38 refs., 4 figs.

  13. Selective aromatization of C[sub 3]- and C[sub 4]-paraffins over modified encilite catalysts: 2. Kinetics of n-butane aromatization

    SciTech Connect (OSTI)

    Jana, A.K.; Rao, M.S. . Dept. of Chemical Engineering)

    1993-11-01

    The kinetics of the aromatization of n-butane over Zn-encilite catalyst was studied in a fixed bed reactor under steady-state conditions at atmospheric pressure and in the temperature range of 480--540 C. The experimental data were analyzed, and a dual-site mechanism was proposed. Six rate equations of the Langmuir-Hinshelwood type were tested. The unknown parameters in the rate equations were estimated by a nonlinear regression method. A kinetic equation for n-butane aromatization is proposed.

  14. Two-Step Process Converts Lignin into Simple Aromatic Compounds - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Two-Step Process Converts Lignin into Simple Aromatic Compounds Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary Lignin is a major component of non-edible biomass. It is a cheap byproduct of pulp and biofuel production and is one of the few naturally occurring sources of valuable aromatic compounds. Converting lignin's complex biopolymer structure into simple organic chemicals has attracted major interest. For example,

  15. Chemistry of Furan Conversion into Aromatics and Olefins over HZSM-5: A Model Biomass Conversion Reaction

    SciTech Connect (OSTI)

    Cheng, Yu-Ting; Huber, George W.

    2011-06-03

    The conversion of furan (a model of cellulosic biomass) over HZSM-5 was investigated in a thermogravimetric analysismass spectrometry system, in situ Fourier transform infrared analysis, and in a continuous-flow fixed-bed reactor. Furan adsorbed as oligomers at room temperature with a 1.73 of adsorbed furan/Al ratio. These oligomers were polycyclic aromatic compounds that were converted to CO, CO?, aromatics, and olefins at temperatures from 400 to 600 C. Aromatics (e.g., benzene, toluene, and naphthalene), oligomer isomers (e.g., benzofuran, 2,2-methylenebisfuran, and benzodioxane), and heavy oxygenates (C??{sub +} oligomers) were identified as intermediates formed inside HZSM-5 at different reaction temperatures. During furan conversion, graphite-type coke formed on the catalyst surface, which caused the aromatics and olefins formation to deactivate within the first 30 min of time on-stream. We have measured the effects of space velocity and temperature for furan conversion to help us understand the chemistry of biomass conversion inside zeolite catalysts. The major products for furan conversion included CO, CO?, allene, C?C? olefins, benzene, toluene, styrene, benzofuran, indene, and naphthalene. The aromatics (benzene and toluene) and olefins (ethylene and propylene) selectivity decreased with increasing space velocity. Unsaturated hydrocarbons such as allene, cyclopentadiene, and aromatics selectivity increased with increasing space velocity. The product distribution was selective to olefins and CO at high temperatures (650 C) but was selective to aromatics (benzene and toluene) at intermediate temperatures (450600 C). At low temperatures (450 C), benzofuran and coke contributed 60% of the carbon selectivity. Several different reactions were occurring for furan conversion over zeolites. Some important reactions that we have identified in this study include DielsAlder condensation (e.g., two furans form benzofuran and water), decarbonylation (e.g., furan forms CO and allene), oligomerization (allene forms olefins and aromatics plus hydrogen), and alkylation (e.g., furan plus olefins). The product distribution was far from thermodynamic equilibrium.

  16. Environmental diagnostic analysis of ground water bacteria and their involvement in utilization of aromatic compounds

    SciTech Connect (OSTI)

    Wear, J.E. Jr.

    1993-05-01

    The objective of this study was to examine the hypothesis that select functional groups of bacteria from pristine sites have an innate ability to degrade synthetic aromatics that often contaminate groundwater environments,due to exposure to naturally occurring recalcitrant aromatics in their environment. This study demonstrates that subsurface microbial communities are capable of utilizing lignin and humic acid breakdown products. Utilizers of these compounds were found to be present in most all the wells tested. Even the deepest aquifer tested had utilizers present for all six of the aromatics tested. Highest counts for the aromatics tested were observed with the naturally occurring breakdown products of either lignin or humic acid. Carboxylic acids were found to be an important sole carbon source for groundwater bacteria possibly explained by the fact that they are produced by the oxidative cleavage of aromatic ring structures. The carbohydrate sole carbon sources that demonstrated the greatest densities were ones commonly associated with humics. This study indicates that utilization of naturally occurring aromatic compounds in the subsurface is an important nutritional source for groundwater bacteria. In addition, it suggests that adaptation to naturally occurring recalcitrant substrates is the origin of degradative pathways for xenobiotic compounds with analogous structure. This work has important implications for in situ bioremediation as a method of environmental cleanup.

  17. Simulation of polycyclic aromatic hydrocarbons transport in multimedia

    SciTech Connect (OSTI)

    Chen, L.; Chu, C.J.

    1999-07-01

    Many studies have indicated that the threat from toxic air pollutants such as VOCs comes not through inhalation by humans while the pollutants are in a gaseous state but through absorption when the pollutants are in a solid state such as in an aerosol or particulate form. Pollutants such as Polycyclic Aromatic Hydrocarbons (PAHs) usually exist in a semi-volatile state. To assess the risk of the PAHs, one needs to estimate the dose of the pollutants to which a human would be exposed through various pathways. In this study, the authors modified a Spatial Multimedia Compartmental Model (SMCM) originally developed by UCLA Professor Cohen to predict the PAHs distribution among multimedia such as air, water, soil and sediment in the Taipei metropolitan area. Three PAHs were considered in this study. They are Benzo(a)pyrene, Pyrene and Chrysene. When PAHs are emitted into atmosphere, physical and chemical mechanisms may redistribute the PAHs among multimedia. Five cases of PAHs distribution in multimedia were simulated: (1) PAHs distribution in a dry condition, (2) PAHs distribution when there are different dry deposition velocities, (3) PAHs distribution under a single rainfall event, (4) PAHs distribution when there are different soil properties, (5) PAHs distribution under a random rainfall case. The simulation results are concluded: (1) In the dry case, the PAHs accumulate mostly in soil and air compartments, (2) Different dry depositing velocities will affect the PAHs distribution among compartments. (3) Different soil properties affect the PAHs concentration in the soil and sediment compartments, (4) The soil PAHs concentrations usually increase for those PAHs with a high solid/gas ratio. (5) The random rainfall only affects the PAHs concentration in the soil.

  18. Kinetics and mechanisms of reactions involving small aromatic reactive intermediates

    SciTech Connect (OSTI)

    Lin, M.C.

    1993-12-01

    Small aromatic radicals such as C{sub 6}H{sub 5}, C{sub 6}H{sub 5}O and C{sub 6}H{sub 4} are key prototype species of their homologs. C{sub 6}H{sub 5} and its oxidation product, C{sub 6}H{sub 5}O are believed to be important intermediates which play a pivotal role in hydrocarbon combustion, particularly with regard to soot formation. Despite their fundamental importance, experimental data on the reaction mechanisms and reactivities of these species are very limited. For C{sub 6}H{sub 5}, most kinetic data except its reactions with NO and NO{sub 2}, were obtained by relative rate measurements. For C{sub 6}H{sub 5}O, the authors have earlier measured its fragmentation reaction producing C{sub 5}H{sub 5} + CO in shock waves. For C{sub 6}H{sub 4}, the only rate constant measured in the gas phase is its recombination rate at room temperature. The authors have proposed to investigate systematically the kinetics and mechanisms of this important class of molecules using two parallel laser diagnostic techniques--laser resonance absorption (LRA) and resonance enhanced multiphoton ionization mass spectrometry (REMPI/MS). In the past two years, study has been focused on the development of a new multipass adsorption technique--the {open_quotes}cavity-ring-down{close_quotes} technique for kinetic applications. The preliminary results of this study appear to be quite good and the sensitivity of the technique is at least comparable to that of the laser-induced fluorescence method.

  19. Guidance for growth factors, projections, and control strategies for the 15 percent rate-of-progress plans

    SciTech Connect (OSTI)

    Not Available

    1993-03-01

    Section 182(b)(1) of the Clean Air Act (Act) requires all ozone nonattainment areas classified as moderate and above to submit a State Implementation Plan (SIP) revision by November 15, 1993, which describes, in part, how the areas will achieve an actual volatile organic compound (VOC) emissions reduction of at least 15 percent during the first 6 years after enactment of the Clean Air Act Amendments of 1990 (CAAA). In addition, the SIP revision must describe how any growth in emissions from 1990 through 1996 will be fully offset. It is important to note that section 182(b)(1) also requires the SIP for moderate areas to provide for reductions in VOC and nitrogen oxides (NOx) emissions as necessary to attain the national primary ambient air quality standard for ozone by November 15, 1996. The guidance document focuses on the procedures for developing 1996 projected emissions inventories and control measures which moderate and above ozone nonattainment areas must include in their rate-of-progress plans. The document provides technical guidance to support the policy presented in the 'General Preamble: Implementation of Title I of the CAAA of 1990' (57 FR 13498).

  20. Thermal performance measurements of a 100 percent polyester MLI (multilayer insulation) system for the Superconducting Super Collider

    SciTech Connect (OSTI)

    Boroski, W.N.; Gonczy, J.D.; Niemann, R.C.

    1989-09-01

    Thermal performance measurements of a 100 percent polyester multilayer insulation (MLI) system for the Superconducting Super Collider (SSC) were conducted in a Heat Leak Test Facility (HLTF) under three experimental test arrangements. Each experiment measured the thermal performance of a 32-layer MLI blanket instrumented with twenty foil sensors to measure interstitial layer temperatures. Heat leak values and sensor temperatures were monitored during transient and steady state conditions under both design and degraded insulating vacuums. Heat leak values were measured using a heatmeter. MLI interstitial layer temperatures were measured using Cryogenic Linear Temperature Sensors (CLTS). Platinum resistors monitored system temperatures. High vacuum was measured using ion gauges; degraded vacuum employed thermocouple gauges. A four-wire system monitored instrumentation sensors and calibration heaters. An on-line computerized data acquisition system recorded and processes data. This paper reports on the instrumentation and experimental preparation used in carrying out these measurements. In complement with this paper is an associate paper bearing the same title head, but with the title extension Part 2: Laboratory results (300K--80K). 13 refs., 7 figs.

  1. Twisted mass finite volume effects

    SciTech Connect (OSTI)

    Colangelo, Gilberto; Wenger, Urs; Wu, Jackson M. S.

    2010-08-01

    We calculate finite-volume effects on the pion masses and decay constant in twisted mass lattice QCD at finite lattice spacing. We show that the lighter neutral pion in twisted mass lattice QCD gives rise to finite-volume effects that are exponentially enhanced when compared to those arising from the heavier charged pions. We demonstrate that the recent two flavor twisted mass lattice data can be better fitted when twisted mass effects in finite-volume corrections are taken into account.

  2. Synergistic effect of mixing dimethyl ether with methane, ethane, propane, and ethylene fuels on polycyclic aromatic hydrocarbon and soot formation

    SciTech Connect (OSTI)

    Yoon, S.S.; Anh, D.H.; Chung, S.H.

    2008-08-15

    Characteristics of polycyclic aromatic hydrocarbon (PAH) and soot formation in counterflow diffusion flames of methane, ethane, propane, and ethylene fuels mixed with dimethyl ether (DME) have been investigated. Planar laser-induced incandescence and fluorescence techniques were employed to measure relative soot volume fractions and PAH concentrations, respectively. Results showed that even though DME is known to be a clean fuel in terms of soot formation, DME mixture with ethylene fuel increases PAH and soot formation significantly as compared to the pure ethylene case, while the mixture of DME with methane, ethane, and propane decreases PAH and soot formation. Numerical calculations adopting a detailed kinetics showed that DME can be decomposed to produce a relatively large number of methyl radicals in the low-temperature region where PAH forms and grows; thus the mixture of DME with ethylene increases CH{sub 3} radicals significantly in the PAH formation region. Considering that the increase in the concentration of O radicals is minimal in the PAH formation region with DME mixture, the enhancement of PAH and soot formation in the mixture flames of DME and ethylene can be explained based on the role of methyl radicals in PAH and soot formation. Methyl radicals can increase the concentration of propargyls, which could enhance incipient benzene ring formation through the propargyl recombination reaction and subsequent PAH growth. Thus, the result substantiates the importance of methyl radicals in PAH and soot formation, especially in the PAH formation region of diffusion flames. (author)

  3. Process for removing halogenated aliphatic and aromatic compounds from petroleum products

    DOE Patents [OSTI]

    Googin, John M.; Napier, John M.; Travaglini, Michael A.

    1983-01-01

    A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced.

  4. Process for removing halogenated aliphatic and aromatic compounds from petroleum products

    DOE Patents [OSTI]

    Googin, J.M.; Napier, J.M.; Travaglini, M.A.

    1983-09-20

    A process is described for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 1 fig.

  5. Rehab guide: Roofs. Volume 3

    SciTech Connect (OSTI)

    1999-03-01

    Nine volumes will eventually make up The Rehab Guide in its entirety, and they are listed on the back cover of this volume. Each one is devoted to distinct elements of the house, and within each volume is a range of issues that are common to that element of home rehabilitation work. This volume, Roofs, for example, covers the major roofing systems including framing and sheathing; protective strategies such as underlayments and flashing; energy and air infiltration issues; roofing materials; and gutters and down-spouts. Each volume addresses a wide range techniques, materials, and tools, and recommendations based on regional differences around the country. Throughout The Rehab Guide, special attention is given to issues related to energy efficiency, sustainability, and accessibility.

  6. Fusing porphyrins with polycyclic aromatic hydrocarbons and heterocycles for optoelectronic applications

    DOE Patents [OSTI]

    Thompson, Mark E.; Diev, Viacheslav; Hanson, Kenneth; Forrest, Stephen R.

    2015-08-18

    A compound that can be used as a donor material in organic photovoltaic devices comprising a non-activated porphyrin fused with one or more non-activated polycyclic aromatic rings or one or more non-activated heterocyclic rings can be obtained by a thermal fusion process. The compounds can include structures of Formula I: ##STR00001## By heating the reaction mixture of non-activated porphyrins with non-activated polycyclic aromatic rings or heterocyclic rings to a fusion temperature and holding for a predetermined time, fusion of one or more polycyclic rings or heterocyclic rings to the non-activated porphyrin core in meso,.beta. fashion is achieved resulting in hybrid structures containing a distorted porphyrin ring with annulated aromatic rings. The porphyrin core can be olygoporphyrins.

  7. Product Guide Category Prices Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    Kerosene refiners 2,4,32 3,5,41 prime suppliers - 47 Table U.S. Energy Information Administration Petroleum Marketing Monthly 1 Product Guide Category Prices Volumes No. 1 ...

  8. Alternative descriptions of catalyst deactivation in aromatization of propane and butane

    SciTech Connect (OSTI)

    Koshelev, Yu.N.; Vorob`ev, B.L.; Khvorova, E.P.

    1995-08-20

    Deactivation of a zeolite-containing catalyst has been studied in aromatization of propane and butane. Various descriptions of the dependence of the alkane conversion on the coke concentration on the catalyst have been considered, and using a statistical method of estimating the model validity, the most preferable form of the deactivation function has been proposed.

  9. Influence of temperature and process duration on composition of products of butane aromatization on zeolitic catalyst

    SciTech Connect (OSTI)

    Vorob`ev, B.L.; Trishin, P.Yu.; Koshelev, Yu.N.

    1995-06-10

    A study has been made of the influence of catalyst deactivation in the course of its service. The composition of products of butane aromatization on zeolitic catalyst and on selectivity of formation of target products and by-products is reported.

  10. Nuclear power reactor instrumentation systems handbook. Volume...

    Office of Scientific and Technical Information (OSTI)

    Nuclear power reactor instrumentation systems handbook. Volume 1 Citation Details In-Document Search Title: Nuclear power reactor instrumentation systems handbook. Volume 1 You ...

  11. International Linear Collider Technical Design Report - Volume...

    Office of Scientific and Technical Information (OSTI)

    Design Report - Volume 2: Physics Citation Details In-Document Search Title: International Linear Collider Technical Design Report - Volume 2: Physics You are accessing a ...

  12. International Linear Collider Technical Design Report - Volume...

    Office of Scientific and Technical Information (OSTI)

    Design Report - Volume 2: Physics Citation Details In-Document Search Title: International Linear Collider Technical Design Report - Volume 2: Physics Authors: Baer, Howard ; ...

  13. LLE Review Quarterly Report (July - September 2004). Volume 100

    SciTech Connect (OSTI)

    Schmid, Ansgar W.

    2004-09-01

    The key article in this volume of the LLE Review, covering July-September 2004, addresses "Shock Propagation in Deuterium-Tritium-Saturated Foam" by T. J. B. Collins (LLE) and A. Poludnenko, A. Cunningham, and A. Frank (UR, Department of Physics and Astronomy) (p. 227). Testing the assumption of homogeneous mixing in fibrous foams saturated with cryogenic deuterium and tritium, shock passage in wetted-foam mixtures was simulated by the adaptive-mesh, two-dimensional hydrodynamic code AstroBEAR. For foam fibers of diameter ~1/10 m and relevant foam densities, the mixing length behind the shock is found to be of the order of microns. Transverse motion dampens out sufficiently that, at the mixing region's edge farthest from the shock, Rankine-Hugoniot jump conditions are obeyed to within a few percent and shock speeds are also within a few percent of their homogeneous values. In addition, questions of feedthrough and feedout are addressed, showing that the stability of the shock front, once it leaves the wetted-foam layer, minimizes the effect of feedthrough. As a result, simulations of whole-foam-pellet implosions may model the wetted foam as a homogeneous mixture.

  14. High air volume to low liquid volume aerosol collector

    DOE Patents [OSTI]

    Masquelier, Donald A.; Milanovich, Fred P.; Willeke, Klaus

    2003-01-01

    A high air volume to low liquid volume aerosol collector. A high volume flow of aerosol particles is drawn into an annular, centripetal slot in a collector which directs the aerosol flow into a small volume of liquid pool contained is a lower center section of the collector. The annular jet of air impinges into the liquid, imbedding initially airborne particles in the liquid. The liquid in the pool continuously circulates in the lower section of the collector by moving to the center line, then upwardly, and through assistance by a rotating deflector plate passes back into the liquid at the outer area adjacent the impinging air jet which passes upwardly through the liquid pool and through a hollow center of the collector, and is discharged via a side outlet opening. Any liquid droplets escaping with the effluent air are captured by a rotating mist eliminator and moved back toward the liquid pool. The collector includes a sensor assembly for determining, controlling, and maintaining the level of the liquid pool, and includes a lower centrally located valve assembly connected to a liquid reservoir and to an analyzer for analyzing the particles which are impinged into the liquid pool.

  15. Petroleum Supply Annual, Volume 1

    U.S. Energy Information Administration (EIA) Indexed Site

    1 With Data for 2014 | Release Date: September 25, 2015 | Next Release Date: August 31, 2016 Previous Issues Year: 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 Go Volume 1 - Final annual data for the supply and disposition of crude oil and petroleum products. Volume 1 Tables All Tables All Tables Detailed Statistics Tables National Statistics 1 U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products PDF CSV 2 U.S.

  16. Petroleum Supply Annual, Volume 2

    U.S. Energy Information Administration (EIA) Indexed Site

    2 With Data for 2014 | Release Date: September 25, 2015 | Next Release Date: August 31, 2016 Previous Issues Year: 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 Go Volume 2 - Final monthly statistics for the supply and disposition of crude oil and petroleum products. Volume 2 Tables All Tables All Tables Detailed Statistics Tables National Statistics 1 U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products PDF CSV 2

  17. PATRAM '80. Proceedings. Volume 1

    SciTech Connect (OSTI)

    Huebner, H.W.

    1980-01-01

    Volume 1 contains papers from the following sessions: Plenary Session; Regulations, Licensing and Standards; LMFBR Systems Concepts; Risk/Safety Assessment I; Systems and Package Design; US Institutional Issues; Risk/Safety Assessment II; Leakage, Leak Rate and Seals; Poster Session A; Operations and Systems Experience I; Manufacturing Processes and Materials; and Quality Assurance and Maintenance. Individual papers were processed. (LM)

  18. PATRAM '80. Proceedings. Volume 2

    SciTech Connect (OSTI)

    Huebner, H.W.

    1980-01-01

    Volume 2 contains papers from the following sessions: Safeguards-Related Problems; Neutronics and Criticality; Operations and Systems Experience II; Plutonium Systems; Intermediate Storage in Casks; Operations and Systems Planning; Institutional Issues; Structural and Thermal Evaluation I; Poster Session B; Extended Testing I; Structural and Thermal Evaluation II; Extended Testing II; and Emergency Preparedness and Response. Individual papers were processed. (LM)

  19. Aromatic-Hydroxyl Interaction of a Lignin Model Compound on SBA-15, Present at Pyrolysis Temperatures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kandziolka, III, Michael V.; Kidder, Michelle; Gill, Lance W.; Wu, Zili; Savara, Aditya Ashi

    2014-07-14

    An aromatic alpha-aryl ether compound (a benzyl phenyl ether analogue) was covalently grafted to mesoporous silica SBA-15, to create BPEa-SBA-15. The BPEa-SBA-15 was subjected to successive heating cycles up to 600 °C, with in situ monitoring by DRIFTS. It was found that the toluene moiety coordinates to SBA-15 surface silanol hydroxyl groups via an aromatic–hydroxyl interaction. This interaction is evidenced by a red-shift of the aromatic C–H stretches, as well as a red-shift and broadening of the surface hydroxyl O–H stretches, which are features characteristic of a hydrogen bond. These features remain present during heating until ~400 °C whereupon themore » ether linkage of BPEa-SBA-15 is cleaved, accompanied by loss of the toluene moiety.« less

  20. Synthetic fuel aromaticity and staged combustion. First quarterly technical progress report, September 23-December 31, 1980

    SciTech Connect (OSTI)

    Levy, Arthur; Longanbach, James R.; Chan, Lisa K.

    1981-01-28

    Synthetic liquid fuels, otherwise referred to as synfuels or coal-derived liquids, are probably best characterized from a combustion-environmental point of view as low in hydrogen, low in sulfur, high in nitrogen, and high in aromatics. As a consequence two of the more critical problems in synfuel combustion are NO/sub x/ formation and soot formation (and polycyclic organic matter). This program is directed to these two issues. At first hand the solutions to burning synfuels high in aromatics and fuel-bound nitrogen are diametrically opposed, i.e., high temperature and excess air keep soot levels down, low temperatures and vitiated air keep nitrogen oxide levels down. Staged combustion however offers a logical solution to the above. This program separates and analyzes the synfuel combustion problem via its component parts and then puts them together again phenomenologically via the stage combustion process.

  1. Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    W W 843.8 W W 2,188.3 W W 193.2 133.6 - 326.8 November ... W W 818.4 1,151.9 NA 1,984.1 W W 189.5 127.0 - 316.5 December ... W W W...

  2. Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    W 2,734.4 W W W W - 243.3 May ... W W 898.3 W W 2,818.3 W W W W - 255.4 June ... W W 919.7 W W 2,841.1 W W...

  3. Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    13,752.8 14,204.9 16,837.5 52,025.3 9,480.0 78,342.8 2,675.9 2,738.6 2,823.0 4,995.6 - 7,818.6 August ... 13,908.8 14,400.4 17,863.9 53,248.7 8,114.1...

  4. Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    39,569.3 40,215.9 122,708.5 26,876.5 189,800.8 10,466.7 10,604.8 10,129.5 14,302.8 - 24,432.4 February ... 40,637.5 41,953.1 43,328.9 133,687.6...

  5. VOLUME

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, NUMBER 18 P H Y S I C A L R E V I E W L E T T E R S 6 MAY 2002 Measurement of the Current-Density Profile and Plasma Dynamics in the Reversed-Field Pinch D. L. Brower, W. X. Ding, and S. D. Terry Electrical Engineering Department, University of California at Los Angeles, Los Angeles, California 90095 J. K. Anderson, T. M. Biewer, B. E. Chapman, D. Craig, C. B. Forest, S. C. Prager, and J. S. Sarff Physics Department, University of Wisconsin - Madison, Madison, Wisconsin 53706 (Received 29

  6. VOLUME

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reduced Edge Instability and Improved Confinement in the MST Reversed-Field Pinch B. E. Chapman, 1, * J. K. Anderson, 1 T. M. Biewer, 1 D. L. Brower, 2 S. Castillo, 1 P. K. Chattopadhyay, 1 C.-S. Chiang, 1 D. Craig, 1 D. J. Den Hartog, 1 G. Fiksel, 1 P. W. Fontana, 1 C. B. Forest, 1 S. Gerhardt, 1 A. K. Hansen, 1 D. Holly, 1 Y. Jiang, 2 N. E. Lanier, 1 S. C. Prager, 1 J. C. Reardon, 1 and J. S. Sarff 1 1 University of Wisconsin, Madison, Wisconsin 53706 2 University of California, Los Angeles,

  7. VOLUME

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0, NUMBER 10 P H Y S I C A L R E V I E W L E T T E R S 9 MARCH 1998 Strong E 3 B Flow Shear and Reduced Fluctuations in a Reversed-Field Pinch B. E. Chapman, C.-S. Chiang, S. C. Prager, J. S. Sarff, and M. R. Stoneking Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (Received 8 May 1997) Large radial electric field gradients, leading to sheared E 3 B flow, are observed in enhanced confinement discharges in the Madison Symmetric Torus reversed-field pinch. The flow shear

  8. VOLUME

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9, NUMBER 10 P H Y S I C A L R E V I E W L E T T E R S 8 SEPTEMBER 1997 Enhanced Confinement with Plasma Biasing in the MST Reversed Field Pinch D. Craig, A. F. Almagri, J. K. Anderson, J. T. Chapman, C.-S. Chiang, N. A. Crocker, D. J. Den Hartog, G. Fiksel, S. C. Prager, J. S. Sarff, and M. R. Stoneking Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (Received 23 June 1997) We report an increase in particle confinement with plasma biasing in a reversed field pinch.

  9. VOLUME

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 P H Y S I C A L R E V I E W L E T T E R S 17 JULY 2000 Spectroscopic Observation of Fluctuation-Induced Dynamo in the Edge of the Reversed-Field Pinch P. W. Fontana, D. J. Den Hartog, G. Fiksel, and S. C. Prager Department of Physics, University of Wisconsin - Madison, Madison, Wisconsin 53706 (Received 29 October 1999) The fluctuation-induced dynamo ͗ ~ v 3 ~ b͘ has been investigated by direct measurement of ~ v and ~ b in the edge of a reversed-field pinch and is found to be significant in

  10. VOLUME

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 P H Y S I C A L R E V I E W L E T T E R S 16 OCTOBER 2000 Momentum Transport from Nonlinear Mode Coupling of Magnetic Fluctuations A. K. Hansen, A. F. Almagri, D. Craig, D. J. Den Hartog, C. C. Hegna, S. C. Prager, and J. S. Sarff University of Wisconsin Department of Physics,1150 University Avenue, Madison, Wisconsin 53706 (Received 5 April 2000) A cause of observed anomalous plasma momentum transport in a reversed-field pinch is determined experimentally. Magnetohydrodynamic theory predicts

  11. VOLUME

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 P H Y S I C A L R E V I E W L E T T E R S 4 SEPTEMBER 2000 Control of Density Fluctuations and Electron Transport in the Reversed-Field Pinch N. E. Lanier, D. Craig, J. K. Anderson, T. M. Biewer, B. E. Chapman, D. J. Den Hartog, C. B. Forest, and S. C. Prager Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 D. L. Brower and Y. Jiang Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, California 90095-1594 (Received 24

  12. VOLUME

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 6 JANUARY 1997 Increased Confinement and b by Inductive Poloidal Current Drive in the Reversed Field Pinch J. S. Sarff, N. E. Lanier, S. C. Prager, and M. R. Stoneking University of Wisconsin, Madison, Wisconsin 53706 (Received 8 October 1996) With the addition of inductive poloidal current drive for current profile control in the Madison Symmetric Torus (MST) reversed field pinch, the magnetic fluctuation amplitude halves, leading to reduced

  13. VOLUME

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence of Stabilization in the Z-Pinch U. Shumlak, R. P. Golingo, and B. A. Nelson University of Washington, Aerospace and Energetics Research Program, Seattle, Washington 98195-2250 D. J. Den Hartog* Sterling Scientific, Inc., Madison, Wisconsin (Received 11 June 2001; published 29 October 2001) Theoretical studies have predicted that the Z-pinch can be stabilized with a sufficiently sheared axial flow [U. Shumlak and C. W. Hartman, Phys. Rev. Lett. 75, 3285 (1995)]. A Z-pinch experiment is

  14. VOLUME

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    18 P H Y S I C A L R E V I E W L E T T E R S 29 OCTOBER 2001 Suppression of Transport Cross Phase by Strongly Sheared Flow P. W. Terry, 1 D. E. Newman, 2 and A. S. Ware 3 1 Department of Physics, University of Wisconsin - Madison, Madison, Wisconsin 53706 2 Department of Physics, University of Alaska at Fairbanks, Fairbanks, Alaska 99775 3 Department of Physics and Astronomy, University of Montana- Missoula, Missoula, Montana 59812 (Received 28 February 2001; published 12 October 2001) A generic

  15. Site Environmental Report for 2005 Volume I and Volume II

    SciTech Connect (OSTI)

    Ruggieri, Michael

    2006-07-07

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1A, ''Environment, Safety, and Health Reporting''. The ''Site Environmental Report for 2005'' summarizes Berkeley Lab's environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year 2005. (Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as ''Berkeley Lab'', ''the Laboratory'', ''Lawrence Berkeley National Laboratory'', and ''LBNL''.) The report is separated into two volumes. Volume I contains an overview of the Laboratory, the status of environmental programs, and summarized results from surveillance and monitoring activities. This year's Volume I text body is organized into an executive summary followed by six chapters. The report's structure has been reorganized this year, and it now includes a chapter devoted to environmental management system topics. Volume II contains individual data results from surveillance and monitoring activities. The ''Site Environmental Report'' is distributed by releasing it on the Web from the Berkeley Lab Environmental Services Group (ESG) home page, which is located at http://www.lbl.gov/ehs/esg/. Many of the documents cited in this report also are accessible from the ESG Web page. CD and printed copies of this Site Environmental Report are available upon request. The report follows the Laboratory's policy of using the International System of Units (SI), also known as the metric system of measurements. Whenever possible, results are also reported using the more conventional (non-SI) system of measurements, because the non-SI system is referenced by several current regulatory standards and is more familiar to some readers. Two tables are provided at the end of the Glossary to help readers: the first defines the prefixes used with SI units of measurement, and the second provides conversions to non-SI units.

  16. International Linear Collider Technical Design Report (Volumes 1 through 4)

    SciTech Connect (OSTI)

    Harrison M.

    2013-03-27

    The design report consists of four volumes: Volume 1, Executive Summary; Volume 2, Physics; Volume 3, Accelerator (Part I, R and D in the Technical Design Phase, and Part II, Baseline Design); and Volume 4, Detectors.

  17. Volume International: Order (2014-CE-32014)

    Broader source: Energy.gov [DOE]

    DOE ordered Volume International Corporation to pay a $8,000 civil penalty after finding Volume International had failed to certify that certain models of ceiling fans comply with the applicable energy conservation standards.

  18. spaceheat_percent2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    ... 1.7 Q 2.3 2.6 1.3 Q 29.9 Steam or Hot-Water System ...... 7.4 8.7 12.5 12.9 1.3 Q ... 7.5 18.6 9.3 14.4 Q Q 16.3 Steam or Hot-Water System ...... 4.1 7.8 5.5 8.7 Q Q 18.1 ...

  19. OMAE 1993: Proceedings. Volume 5: Pipeline technology

    SciTech Connect (OSTI)

    Yoon, M.; Murray, A.; Thygesen, J.

    1993-01-01

    This volume of conference proceedings is volume five of a five volume series dealing with offshore and arctic pipeline, marine riser, platforms, and ship design and engineering. This volume is a result of increased use of pipeline transportation for oil, gas, and liquid products and the resultant need for lower design and operating costs. Papers in this conference cover topics on environmental considerations, pipeline automation, computer simulation techniques, materials testing, corrosion protection, permafrost problems, pipeline integrity, geotechnical concerns, and offshore engineering problems.

  20. Solar Fundamentals Volume 1: Technology

    Broader source: Energy.gov [DOE]

    This report is one component of a multi-part series publication to assist in educating th'se seeking to become more familiar with the solar industry. This volume introduces solar technologies, explaining each technology’s applications, the components that make up a photovoltaic system, and how they can be used to optimize energy generation. This report explains solar insolation and how it impacts energy generation in illustrating where solar energy is a viable option. A final section highlights important considerations in solar project siting to maximize system production and avoid unexpected project development challenges.

  1. Environmental Report 1995. Volume 1

    SciTech Connect (OSTI)

    Harrach, R.J.; Failor, R.A.; Gallegos, G.M.

    1996-09-01

    This report contains the results of Lawrence Livermore National Laboratory`s (LLNL) environmental monitoring and compliance effort and an assessment of the impact of LLNL operations on the environment and the public. This first volume describes LLNL`s environmental impact and compliance activities and features descriptive and explanatory text, summary data tables, and plots showing data trends. The summary data include measures of the center of data, their spread or variability, and their extreme values. Chapters on monitoring air, sewage, surface water, ground water, soil and sediment, vegetation and foodstuff, and environmental radiation are present.

  2. Flash Vacuum Pyrolysis of Lignin Model Compounds: Reaction Pathways of Aromatic Methoxy Groups

    SciTech Connect (OSTI)

    Britt, P.F.; Buchanan, A.C., III; Martineau, D.R.

    1999-03-21

    Currently, there is interest in utilizing lignin, a major constituent of biomass, as a renewable source of chemicals and fuels. High yields of liquid products can be obtained from the flash or fast pyrolysis of biomass, but the reaction pathways that lead to product formation are not understood. To provide insight into the primary reaction pathways under process relevant conditions, we are investigating the flash vacuum pyrolysis (FVP) of lignin model compounds at 500 C. This presentation will focus on the FVP of {beta}-ether linkages containing aromatic methoxy groups and the reaction pathways of methoxy-substituted phenoxy radicals.

  3. Process for removing halogenated aliphatic and aromatic compounds from petroleum products. [Polychlorinated biphenyls; methylene chloride; perchloroethylene; trichlorofluoroethane; trichloroethylene; chlorobenzene

    DOE Patents [OSTI]

    Googin, J.M.; Napier, J.M.; Travaglini, M.A.

    1982-03-31

    A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contracting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible polyhydroxy compound, such as, water, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds in the low polar or nonpolar solvent by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered for recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 2 tables.

  4. Petroleum supply annual 1994. Volume 1

    SciTech Connect (OSTI)

    1995-05-22

    The Petroleum Supply Annual (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1994 through annual and monthly surveys. The PSA is divided into two volumes. This first volume contains four sections: Summary Statistics, Detailed Statistics, Refinery Capacity, and Oxygenate Capacity each with final annual data. The second volume contains final statistics for each month of 1994, and replaces data previously published in the Petroleum Supply Monthly (PSM). The tables in Volumes 1 and 2 are similarly numbered to facilitate comparison between them. Below is a description of each section in Volume 1 of the PSA.

  5. Petroleum supply annual 1993. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The Petroleum Supply Annual (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1993 through annual and monthly surveys. The PSA is divided into two volumes. This first volume contains four sections: Summary Statistics, Detailed Statistics, Refinery Capacity, and Oxygenate Capacity each with final annual data. The second volume contains final statistics for each month of 1993, and replaces data previously published in the Petroleum Supply Monthly (PSM). The tables in Volumes 1 and 2 are similarly numbered to facilitate comparison between them. Below is a description of each section in Volume 1 of the PSA.

  6. Volume efficient sodium sulfur battery

    DOE Patents [OSTI]

    Mikkor, Mati

    1980-01-01

    In accordance with the teachings of this specification, a sodium sulfur battery is formed as follows. A plurality of box shaped sulfur electrodes are provided, the outer surfaces of which are defined by an electrolyte material. Each of the electrodes have length and width dimensions substantially greater than the thicknesses thereof as well as upwardly facing surface and a downwardly facing surface. An electrode structure is contained in each of the sulfur electrodes. A holding structure is provided for holding the plurality of sulfur electrodes in a stacked condition with the upwardly facing surface of one sulfur electrode in facing relationship to the downwardly facing surface of another sulfur electrode thereabove. A small thickness dimension separates each of the stacked electrodes thereby defining between each pair of sulfur electrodes a volume which receives the sodium reactant. A reservoir is provided for containing sodium. A manifold structure interconnects the volumes between the sulfur electrodes and the reservoir. A metering structure controls the flow of sodium between the reservoir and the manifold structure.

  7. Proposed Southline Transmission Line Project - Volume 3 of 4...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Right-of-Way ... G-1 11 12 13 VOLUME SUMMARY 14 15 Volume 1 - Executive Summary, Chapters 1, 2, and 3 16 Volume 2 -...

  8. A study on the coagulation of polycyclic aromatic hydrocarbon clusters to determine their collision efficiency

    SciTech Connect (OSTI)

    Raj, Abhijeet; Sander, Markus; Janardhanan, Vinod; Kraft, Markus [Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge CB2 3RA (United Kingdom)

    2010-03-15

    This paper presents a theoretical study on the physical interaction between polycyclic aromatic hydrocarbons (PAHs) and their clusters of different sizes in laminar premixed flames. Two models are employed for this study: a detailed PAH growth model, referred to as the kinetic Monte Carlo - aromatic site (KMC-ARS) model [Raj et al., Combust. Flame 156 (2009) 896-913]; and a multivariate PAH population balance model, referred to as the PAH - primary particle (PAH-PP) model. Both the models are solved by kinetic Monte Carlo methods. PAH mass spectra are generated using the PAH-PP model, and compared to the experimentally observed spectra for a laminar premixed ethylene flame. The position of the maxima of PAH dimers in the spectra and their concentrations are found to depend strongly on the collision efficiency of PAH coagulation. The variation in the collision efficiency with various flame and PAH parameters is studied to determine the factors on which it may depend. A correlation for the collision efficiency is proposed by comparing the computed and the observed spectra for an ethylene flame. With this correlation, a good agreement between the computed and the observed spectra for a number of laminar premixed ethylene flames is found. (author)

  9. 5000 groove/mm multilayer-coated blazed grating with 33percent efficiency in the 3rd order in the EUV wavelength range

    SciTech Connect (OSTI)

    Advanced Light Source; Voronov, Dmitriy L.; Anderson, Erik; Cambie, Rossana; Salmassi, Farhad; Gullikson, Eric; Yashchuk, Valeriy; Padmore, Howard; Ahn, Minseung; Chang, Chih-Hao; Heilmann, Ralf; Schattenburg, Mark

    2009-07-07

    We report on recent progress in developing diffraction gratings which can potentially provide extremely high spectral resolution of 105-106 in the EUV and soft x-ray photon energy ranges. Such a grating was fabricated by deposition of a multilayer on a substrate which consists ofa 6-degree blazed grating with a high groove density. The fabrication of the substrate gratings was based on scanning interference lithography and anisotropic wet etch of silicon single crystals. The optimized fabrication process provided precise control of the grating periodicity, and the grating groove profile, together with very short anti-blazed facets, and near atomically smooth surface blazed facets. The blazed grating coated with 20 Mo/Si bilayers demonstrated a diffraction efficiency in the third order as high as 33percent at an incidence angle of 11? and wavelength of 14.18 nm.

  10. Ironmaking conference proceedings. Volume 54

    SciTech Connect (OSTI)

    1995-12-01

    The technical presentations at this conference displayed a renewed sense of viability of the coke and ironmaking community. In addition, many of the papers show that the environmental aspects of ironmaking are being integrated into day-to-day operations rather than being thought of as separate responsibilities. This volume contains 68 papers divided into the following sections: Blast furnace injection; Blast furnace fundamental studies; Blast furnace general; Blast furnace repairs/rebuilds/modernization; Process control techniques for blast furnaces; Cokemaking general; Cokemaking environmental; Coke--by-products--plant operations; Coal and coke research; Battery operations; Pelletizing; Direct reduction and smelting; and Sintering. Most of the papers have been processed separately for inclusion on the data base.

  11. Information architecture. Volume 3: Guidance

    SciTech Connect (OSTI)

    1997-04-01

    The purpose of this document, as presented in Volume 1, The Foundations, is to assist the Department of Energy (DOE) in developing and promulgating information architecture guidance. This guidance is aimed at increasing the development of information architecture as a Departmentwide management best practice. This document describes departmental information architecture principles and minimum design characteristics for systems and infrastructures within the DOE Information Architecture Conceptual Model, and establishes a Departmentwide standards-based architecture program. The publication of this document fulfills the commitment to address guiding principles, promote standard architectural practices, and provide technical guidance. This document guides the transition from the baseline or defacto Departmental architecture through approved information management program plans and budgets to the future vision architecture. This document also represents another major step toward establishing a well-organized, logical foundation for the DOE information architecture.

  12. Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Johnson, Christopher W.; Salvachua, Davinia; Khanna, Payal; Smith, Holly; Peterson, Darren J.; Beckham, Gregg T.

    2016-04-22

    The conversion of biomass-derived sugars and aromatic molecules to cis,cis-muconic acid (referred to hereafter as muconic acid or muconate) has been of recent interest owing to its facile conversion to adipic acid, an important commodity chemical. Metabolic routes to produce muconate from both sugars and many lignin-derived aromatic compounds require the use of a decarboxylase to convert protocatechuate (PCA, 3,4-dihydroxybenzoate) to catechol (1,2-dihydroxybenzene), two central aromatic intermediates in this pathway. Several studies have identified the PCA decarboxylase as a metabolic bottleneck, causing an accumulation of PCA that subsequently reduces muconate production. A recent study showed that activity of the PCAmore » decarboxylase is enhanced by co-expression of two genetically associated proteins, one of which likely produces a flavin-derived cofactor utilized by the decarboxylase. Using entirely genome-integrated gene expression, we have engineered Pseudomonas putida KT2440-derived strains to produce muconate from either aromatic molecules or sugars and demonstrate in both cases that co-expression of these decarboxylase associated proteins reduces PCA accumulation and enhances muconate production relative to strains expressing the PCA decarboxylase alone. In bioreactor experiments, co-expression increased the specific productivity (mg/g cells/h) of muconate from the aromatic lignin monomer p-coumarate by 50% and resulted in a titer of >15 g/L. In strains engineered to produce muconate from glucose, co-expression more than tripled the titer, yield, productivity, and specific productivity, with the best strain producing 4.92+/-0.48 g/L muconate. Furthermore, this study demonstrates that overcoming the PCA decarboxylase bottleneck can increase muconate yields from biomass-derived sugars and aromatic molecules in industrially relevant strains and cultivation conditions.« less

  13. Determination of the Average Aromatic Cluster Size of Fossil Fuels by Solid-State NMR at High Magnetic Field

    SciTech Connect (OSTI)

    Mao, Kanmi; Kennedy, Gordon J.; Althaus, Stacey M.; Pruski, Marek

    2013-01-07

    We show that the average aromatic cluster size in complex carbonaceous materials can be accurately determined using fast magic-angle spinning (MAS) NMR at a high magnetic field. To accurately quantify the nonprotonated aromatic carbon, we edited the 13C spectra using the recently reported MAS-synchronized spinecho, which alleviated the problem of rotational recoupling of 1H-13C dipolar interactions associated with traditional dipolar dephasing experiments. The dependability of this approach was demonstrated on selected Argonne Premium coal standards, for which full sets of basic structural parameters were determined with high accuracy.

  14. Compounds having aromatic rings and side-chain amide-functionality and a method for transporting monovalent anions across biological membranes using the same

    DOE Patents [OSTI]

    Davis, Jeffery T.; Sidorov, Vladimir; Kotch, Frank W.

    2008-04-08

    A compound containing at least two aromatic rings covalently bonded together, with each aromatic ring containing at least one oxyacetamide-based side chain, the compound being capable of forming a chloride ion channel across a lipid bilayer, and transporting chloride ion across the lipid bilayer.

  15. Surface and Volume Contamination | Department of Energy

    Energy Savers [EERE]

    Surface and Volume Contamination Surface and Volume Contamination (Questions Posted to ERAD in May 2012) Will there be volume contamination/activation guides as well as updated contamination guides? The only guidance being developed for volumetric contamination is a Technical Standard for accelerator facilities. However, a revised version of ANSI N13.12-1999 is expected in the future and it will be assessed to determine its acceptability for use as a pre-approved authorized limit. It is noted

  16. Petroleum supply annual 1995: Volume 1

    SciTech Connect (OSTI)

    1996-05-01

    The {ital Petroleum Supply Annual} contains information on supply and disposition of crude oil and petroleum products. It reflects data collected from the petroleum industry during 1995 through monthly surveys, and it is divided into 2 volumes. This volume contains three sections: summary statistics, detailed statistics, and selected refinery statistics, each with final annual data. (The other volume contains final statistics for each month and replaces data previously published in the {ital Petroleum Supply Monthly}).

  17. PARC Periodical | Volume 6, Issue 5 | Photosynthetic Antenna Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Volume 6, Issue 5 June 3, 2015 PARC Periodical | Volume 6, Issue 5 VIEW ARTICLE HERE

  18. PARC Periodical | Volume 6, Issue 6 | Photosynthetic Antenna Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Volume 6, Issue 6 August 20, 2015 PARC Periodical | Volume 6, Issue 6 VIEW ARTICLE HERE

  19. Solar Progammatic Environmental Impact Statement, Volume 1 |...

    Open Energy Info (EERE)

    Progammatic Environmental Impact Statement, Volume 1 Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Solar Progammatic Environmental...

  20. ,"Minnesota Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ...dnavnghistn5030mn2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  1. ,"Missouri Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ...dnavnghistn5030mo2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  2. ,"Oklahoma Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ...dnavnghistn5030ok2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  3. ,"Utah Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ...dnavnghistn5030ut2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  4. ,"Virginia Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ...dnavnghistn5030va2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  5. ,"Tennessee Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ...dnavnghistn5030tn2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  6. ,"Maryland Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ...dnavnghistn5030md2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  7. ,"Washington Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ...dnavnghistn5030wa2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  8. ,"Montana Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ...dnavnghistn5030mt2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  9. ,"Pennsylvania Natural Gas Underground Storage Volume (MMcf)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ...dnavnghistn5030pa2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  10. ,"Oregon Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ...dnavnghistn5030or2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  11. ,"Nebraska Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ...dnavnghistn5030ne2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  12. ,"Michigan Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ...dnavnghistn5030mi2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  13. ,"Mississippi Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ...dnavnghistn5030ms2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  14. ,"Ohio Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ...dnavnghistn5030oh2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  15. ,"Texas Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ...dnavnghistn5030tx2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  16. ,"Wyoming Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ...dnavnghistn5030wy2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  17. Building America Program Evaluation, Harvard University, Volume...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Program Evaluation, Harvard University, Volume 2, 2004 Building America ... (ETIP), Kennedy School of Government, Harvard University, Vicki Norberg-Bohm, Principal ...

  18. Building America Program Evaluation, Harvard University, Volume...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Program Evaluation, Harvard University, Volume 1, 2004 Building America ... (ETIP), Kennedy School of Government, Harvard University, Vicki Norberg-Bohm, Principal ...

  19. Petroleum supply annual, 1997. Volume 1

    SciTech Connect (OSTI)

    1998-06-01

    The Petroleum Supply Annual (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1997 through annual and monthly surveys. The PSA is divided into two volumes. This first volume contains three sections: Summary Statistics, Detailed Statistics, and Refinery Statistics; each with final annual data. The second volume contains final statistics for each month of 1997, and replaces data previously published in the Petroleum Supply Monthly (PSM). The tables in Volumes 1 and 2 are similarly numbered to facilitate comparison between them. 16 figs., 48 tabs.

  20. Petroleum supply annual 1998: Volume 1

    SciTech Connect (OSTI)

    1999-06-01

    The ``Petroleum Supply Annual`` (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1998 through annual and monthly surveys. The PSA is divided into two volumes. This first volume contains three sections: Summary Statistics, Detailed Statistics, and Refinery Statistics; each with final annual data. The second volume contains final statistics for each month of 1998, and replaces data previously published in the PSA. The tables in Volumes 1 and 2 are similarly numbered to facilitate comparison between them. 16 figs., 59 tabs.

  1. International Linear Collider Technical Design Report - Volume...

    Office of Scientific and Technical Information (OSTI)

    Linear Collider Technical Design Report - Volume 2: Physics Baer, Howard; Barklow, Tim; Fujii, Keisuke; Gao, Yuanning; Hoang, Andre; Kanemura, Shinya; List, Jenny; Logan, Heather...

  2. Rendering graphene supports hydrophilic with non-covalent aromatic functionalization for transmission electron microscopy

    SciTech Connect (OSTI)

    Pantelic, Radosav S., E-mail: pantelic@imbb.forth.gr [National Cancer Institute, 50 South Drive, Building 50, Room 4306, Bethesda, Maryland 20892 (United States); Fu, Wangyang; Schoenenberger, Christian [Department of Physics, University of Basel, Klingelbergstrasse 82, Basel CH-4056 (Switzerland); Stahlberg, Henning [Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, WRO-1058, Basel CH-4058 (Switzerland)

    2014-03-31

    Amorphous carbon films have been routinely used to enhance the preparation of frozen-hydrated samples for transmission electron microscopy (TEM), either in retaining protein concentration, providing mechanical stability or dissipating sample charge. However, strong background signal from the amorphous carbon support obstructs that of the sample, and the insulating properties of thin amorphous carbon films preclude any efficiency in dispersing charge. Graphene addresses the limitations of amorphous carbon. Graphene is a crystalline material with virtually no phase or amplitude contrast and unparalleled, high electrical carrier mobility. However, the hydrophobic properties of graphene have prevented its routine application in Cryo-TEM. This Letter reports a method for rendering graphene TEM supports hydrophilica convenient approach maintaining graphene's structural and electrical properties based on non-covalent, aromatic functionalization.

  3. Measurement of polycyclic aromatic hydrocarbons in the air along the niagara river

    SciTech Connect (OSTI)

    Hoff, R.M.; Chan, K.W.

    1987-06-01

    Two week-long studies in 1982-1983 have measure ambient concentrations of polycyclic aromatic hydrocarbons (PAH) and phthalate esters in air in both the particulate and gas phase along the US-Canadian border and the Niagara River. Concentrations of the PAH species monitored varied from 3 pg m/sup -3/ to 40 ng m/sup -3/. PAH's with three rings or less were found in significant proportions in the gas phase while larger molecules are almost solely in the particulate phase. Particulate components of the PAH loadings appear to originate locally with Buffalo, NY, Niagara Falls, NY, and Niagara Falls, Ontario, as probably sources. Gas-phase PAH components have a more regional character indicating regional or long-range transport. Levels of benzo(a)pyrene are consistent with previous particulate measurements made along the river since 1981.

  4. Air pollution from a large steel factory: polycyclic aromatic hydrocarbon emissions from coke-oven batteries

    SciTech Connect (OSTI)

    Lorenzo Liberti; Michele Notarnicola; Roberto Primerano; Paolo Zannetti

    2006-03-15

    A systematic investigation of solid and gaseous atmospheric emissions from some coke-oven batteries of one of Europe's largest integrated steel factory (Taranto, Italy) has been carried out. These emissions, predominantly diffuse, originate from oven leakages, as well as from cyclic operations of coal loading and coke unloading. In air monitoring samples, polycyclic aromatic hydrocarbons (PAHs) were consistently detected at concentrations largely exceeding threshold limit values. By means of PAHs speciation profile and benzo-(a)pyrene (BaP) equivalent dispersion modeling from diffuse sources, the study indicated that serious health risks exist not only in working areas, but also in a densely populated residential district near the factory. 30 refs., 5 figs., 3 tabs.

  5. Aromatic carboxylate effect on dimensionality of three bis(benzimidazole)-based cobalt(II) coordination polymers: Syntheses, structures and properties

    SciTech Connect (OSTI)

    Zhang, Ju-Wen; Gong, Chun-Hua; Hou, Li-Li; Tian, Ai-Xiang; Wang, Xiu-Li

    2013-09-15

    Three new metal-organic coordination polymers [Co(4-bbc){sub 2}(bbbm)] (1), [Co(3,5-pdc)(bbbm)]·2H{sub 2}O (2) and [Co(1,4-ndc)(bbbm)] (3) (4-Hbbc=4-bromobenzoic acid, 3,5-H{sub 2}pdc=3,5-pyridinedicarboxylic acid, 1,4-H{sub 2}ndc=1,4-naphthalenedicarboxylic acid and bbbm=1,1-(1,4-butanediyl)bis-1H-benzimidazole) were hydrothermally synthesized and structurally characterized. Polymer 1 is a 1D chain formed by the bbbm ligands and Co{sup II} ions. Polymer 2 exhibits a 2D network with a (3·4·5)(3{sup 2}·4·5·6{sup 2}·7{sup 4}) topology. Polymer 3 possesses a 3D three-fold interpenetrating framework. The versatile structures of title polymers indicate that the aromatic carboxylates have an important influence on the dimensionality of 1–3. Moreover, the thermal stability, electrochemical and luminescent properties of 1–3 were investigated. - graphical abstract: Three bis(benzimidazole)-based cobalt(II) coordination polymers tuned by aromatic carboxylates were hydrothermally synthesized and structurally characterized. The aromatic carboxylates play a key role in the dimensionality of three polymers. The electrochemical and luminescent properties of three polymers were investigated. Display Omitted - Highlights: • Three bis(benzimidazole)-based cobalt(II) coordination polymers tuned by aromatic carboxylates were obtained. • The aromatic carboxylates have an important influence on the dimensionality of three polymers. • The electrochemical and luminescent properties of three polymers were investigated.

  6. Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation

    SciTech Connect (OSTI)

    Keller, Brad M.; Nathan, Diane L.; Wang Yan; Zheng Yuanjie; Gee, James C.; Conant, Emily F.; Kontos, Despina

    2012-08-15

    Purpose: The amount of fibroglandular tissue content in the breast as estimated mammographically, commonly referred to as breast percent density (PD%), is one of the most significant risk factors for developing breast cancer. Approaches to quantify breast density commonly focus on either semiautomated methods or visual assessment, both of which are highly subjective. Furthermore, most studies published to date investigating computer-aided assessment of breast PD% have been performed using digitized screen-film mammograms, while digital mammography is increasingly replacing screen-film mammography in breast cancer screening protocols. Digital mammography imaging generates two types of images for analysis, raw (i.e., 'FOR PROCESSING') and vendor postprocessed (i.e., 'FOR PRESENTATION'), of which postprocessed images are commonly used in clinical practice. Development of an algorithm which effectively estimates breast PD% in both raw and postprocessed digital mammography images would be beneficial in terms of direct clinical application and retrospective analysis. Methods: This work proposes a new algorithm for fully automated quantification of breast PD% based on adaptive multiclass fuzzy c-means (FCM) clustering and support vector machine (SVM) classification, optimized for the imaging characteristics of both raw and processed digital mammography images as well as for individual patient and image characteristics. Our algorithm first delineates the breast region within the mammogram via an automated thresholding scheme to identify background air followed by a straight line Hough transform to extract the pectoral muscle region. The algorithm then applies adaptive FCM clustering based on an optimal number of clusters derived from image properties of the specific mammogram to subdivide the breast into regions of similar gray-level intensity. Finally, a SVM classifier is trained to identify which clusters within the breast tissue are likely fibroglandular, which are then aggregated into a final dense tissue segmentation that is used to compute breast PD%. Our method is validated on a group of 81 women for whom bilateral, mediolateral oblique, raw and processed screening digital mammograms were available, and agreement is assessed with both continuous and categorical density estimates made by a trained breast-imaging radiologist. Results: Strong association between algorithm-estimated and radiologist-provided breast PD% was detected for both raw (r= 0.82, p < 0.001) and processed (r= 0.85, p < 0.001) digital mammograms on a per-breast basis. Stronger agreement was found when overall breast density was assessed on a per-woman basis for both raw (r= 0.85, p < 0.001) and processed (0.89, p < 0.001) mammograms. Strong agreement between categorical density estimates was also seen (weighted Cohen's {kappa}{>=} 0.79). Repeated measures analysis of variance demonstrated no statistically significant differences between the PD% estimates (p > 0.1) due to either presentation of the image (raw vs processed) or method of PD% assessment (radiologist vs algorithm). Conclusions: The proposed fully automated algorithm was successful in estimating breast percent density from both raw and processed digital mammographic images. Accurate assessment of a woman's breast density is critical in order for the estimate to be incorporated into risk assessment models. These results show promise for the clinical application of the algorithm in quantifying breast density in a repeatable manner, both at time of imaging as well as in retrospective studies.

  7. Fundamental Kinetics Database Utilizing Shock Tube Measurements (Volumes 1, 2, 3, 4, and Volume 6)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Davidson, D. F.; Hanson, R. K

    The data from shock tube experiments generally takes three forms: ignition delay times, species concentration time-histories and reaction rate measurements. Volume 1 focuses on ignition delay time data measured and published by the Shock Tube Group in the Mechanical Engineering Department of Stanford University. The cut-off date for inclusion into this volume was January 2005. Volume 2 focuses on species concentration time-histories and was cut off December 2005. The two volumes are in PDF format and are accompanied by a zipped file of supporting data. Volume 3 was issued in 2009. Volume 4, Ignition delay times measurements came out in May, 2014, along with Reaction Rates Measurements, Vol 6. Volume 5 is not available at this time.

  8. Volume International: Proposed Penalty (2014-CE-32014)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Volume International Corporation failed to certify a variety of ceiling fans as compliant with the applicable energy conservation standards.

  9. Petroleum supply annual 1998: Volume 2

    SciTech Connect (OSTI)

    1999-06-01

    The Petroleum Supply Annual (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1998 through monthly surveys. The PSA is divided into two volumes. The first volume contains three sections: Summary Statistics, Detailed Statistics, and Refinery Statistics; each with final annual data. This second volume contains final statistics for each month of 1998, and replaces data previously published in the Petroleum Supply Monthly (PSM). The tables in Volumes 1 and 2 are similarly numbered to facilitate comparison between them. Explanatory Notes, located at the end of this publication, present information describing data collection, sources, estimation methodology, data quality control procedures, modifications to reporting requirements and interpretation of tables. Industry terminology and product definitions are listed alphabetically in the Glossary. 35 tabs.

  10. Site Environmental Report for 1999 - Volume 1

    SciTech Connect (OSTI)

    Ruggieri, M.

    2000-08-12

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1. The Site Environmental Report for 1999 is intended to summarize Berkeley Lab's compliance with environmental standards and requirements, characterize environmental management efforts through surveillance and monitoring activities, and highlight significant programs and efforts for calendar year 1999. The report is separated into two volumes. Volume I contains a general overview of the Laboratory, the status of environmental programs, and summary results from surveillance and monitoring activities. Each chapter in Volume I begins with an outline of the sections that follow, including any tables or figures found in the chapter. Readers should use section numbers (e.g., {section}1.5) as navigational tools to find topics of interest in either the printed or the electronic version of the report. Volume II contains the individual data results from monitoring programs.

  11. Petroleum supply annual 1994, Volume 2

    SciTech Connect (OSTI)

    1995-06-01

    The Petroleum Supply Annual (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1994 through annual and monthly surveys. The PSA is divided into two volumes. This first volume contains four sections: Summary Statistics, Detailed Statistics, Refinery Capacity, and Oxygenate Capacity each with final annual data. The second volume contains final statistics for each month of 1994, and replaces data previously published in the Petroleum Supply Monthly (PSM). The tables in Volumes 1 and 2 are similarly numbered to facilitate comparison between them. Explanatory Notes, located at the end of this publication, present information describing data collection, sources, estimation methodology, data quality control procedures, modifications to reporting requirements and interpretation of tables. Industry terminology and product definitions are listed alphabetically in the Glossary.

  12. Petroleum supply annual, 1997. Volume 2

    SciTech Connect (OSTI)

    1998-06-01

    The Petroleum Supply Annual (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1997 through monthly surveys. The PSA is divided into two volumes. The first volume contains three sections: Summary Statistics, Detailed Statistics, and Refinery Statistics; each with final annual data. The second volume contains final statistics for each month of 1997, and replaces data previously published in the Petroleum Supply Monthly (PSM). The tables in Volumes 1 and 2 are similarly numbered to facilitate comparison between them. Explanatory Notes, located at the end of this publication, present information describing data collection, sources, estimation methodology, data quality control procedures, modifications to reporting requirements and interpretation of tables. Industry terminology and product definitions are listed alphabetically in the Glossary. 35 tabs.

  13. Petroleum supply annual 1995: Volume 2

    SciTech Connect (OSTI)

    1996-06-01

    The Petroleum Supply Annual (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1995 through monthly surveys. The PSA is divided into two volumes. This first volume contains three sections: Summary Statistics, Detailed Statistics, and selected Refinery Statistics each with final annual data. The second volume contains final statistics for each month of 1995, and replaces data previously published in the Petroleum Supply Monthly (PSM). The tables in Volumes 1 and 2 are similarly numbered to facilitate comparison between them. Explanatory Notes, located at the end of this publication, present information describing data collection, sources, estimation methodology, data quality control procedures, modifications to reporting requirements and interpretation of tables. Industry terminology and product definitions are listed alphabetically in the Glossary.

  14. Chemical Management (Volume 3 of 3)

    Office of Environmental Management (EM)

    DOE-HDBK-11393-2005 April 2005 DOE HANDBOOK CHEMICAL MANAGEMENT (Volume 3 of 3) Consolidated Chemical User Safety and Health Requirements U.S. Department of Energy AREA SAFT ...

  15. Site Environmental Report for 1999 - Volume II

    SciTech Connect (OSTI)

    Ruggieri, M.

    2000-08-01

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1. The Site Environmental Report for 1999 is intended to summarize Berkeley Lab's compliance with environmental standards and requirements, characterize environmental management efforts through surveillance and monitoring activities, and highlight significant programs and efforts for calendar year 1999. The report is separated into two volumes. Volume I contains a general overview of the Laboratory, the status of environmental programs, and summary results from surveillance and monitoring activities. Each chapter in Volume I begins with an outline of the sections that follow, including any tables or figures found in the chapter. Readers should use section numbers (e.g., {section}1.5) as navigational tools to find topics of interest in either the printed or the electronic version of the report. Volume II contains the individual data results from monitoring programs.

  16. Petroleum supply annual 1996: Volume 2

    SciTech Connect (OSTI)

    1997-06-01

    The Petroleum Supply Annual (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1996 through monthly surveys. The PSA is divided into two volumes. The first volume contains three sections: Summary Statistics, Detailed Statistics, and Refinery Capacity; each with final annual data. The second volume contains final statistics for each month of 1996, and replaces data previously published in the Petroleum Supply Monthly (PSM). The tables in Volumes 1 and 2 are similarly numbered to facilitate comparison between them. Explanatory Notes, located at the end of this publication, present information describing data collection, sources, estimation methodology, data quality control procedures, modifications to reporting requirements and interpretation of tables. Industry terminology and product definitions are listed alphabetically in the Glossary. 35 tabs.

  17. Grating light reflection spectroelectrochemistry for detection of trace amounts of aromatic hydrocarbons in water

    SciTech Connect (OSTI)

    KELLY,MICHAEL J.; SWEATT,WILLIAM C.; KEMME,SHANALYN A.; KASUNIC,K.J.; BLAIR,DIANNA S.; ZAIDI,S.H.; MCNEIL,J.R.; BURGESS,L.W.; BRODSKY,A.M.; SMITH,S.A.

    2000-04-01

    Grating light reflection spectroscopy (GLRS) is an emerging technique for spectroscopic analysis and sensing. A transmission diffraction grating is placed in contact with the sample to be analyzed, and an incident light beam is directed onto the grating. At certain angles of incidence, some of the diffracted orders are transformed from traveling waves to evanescent waves. This occurs at a specific wavelength that is a function of the grating period and the complex index of refraction of the sample. The intensities of diffracted orders are also dependent on the sample's complex index of refraction. The authors describe the use of GLRS, in combination with electrochemical modulation of the grating, for the detection of trace amounts of aromatic hydrocarbons. The diffraction grating consisted of chromium lines on a fused silica substrate. The depth of the grating lines was 1 {micro}m, the grating period was 1 {micro}m, and the duty cycle was 50%. Since chromium was not suitable for electrochemical modulation of the analyte concentration, a 200 nm gold layer was deposited over the entire grating. This gold layer slightly degraded the transmission of the grating, but provided satisfactory optical transparency for the spectroelectrochemical experiments. The grating was configured as the working electrode in an electrochemical cell containing water plus trace amounts of the aromatic hydrocarbon analytes. The grating was then electrochemically modulated via cyclic voltammetry waveforms, and the normalized intensity of the zero order reflection was simultaneously measured. The authors discuss the lower limits of detection (LLD) for two analytes, 7-dimethylamino-1,2-benzophenoxazine (Meldola's Blue dye) and 2,4,6-trinitrotoluene (TNT), probed with an incident HeNe laser beam ({lambda} = 543.5 nm) at an incident angle of 52.5{degree}. The LLD for 7-dimethylamino-1,2-benzophenoxazine is approximately 50 parts per billion (ppb), while the LLD for TNT is approximately 50 parts per million (ppm). The possible factors contributing to the differences in LLD for these analytes are discussed. This is the final report for a Sandia National Laboratories Laboratory Directed Research and Development (LDRD) project conducted during fiscal years 1998 and 1999 (case number 3518.190).

  18. Photoexcitation of a Volume Plasmon in Buckyballs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photoexcitation of a Volume Plasmon in Buckyballs Photoexcitation of a Volume Plasmon in Buckyballs Print Wednesday, 31 August 2005 00:00 For molecules made from a single element, buckyballs (carbon-60) are very large. They mark the transition from atoms to solids. In atoms and small molecules, the behavior of electrons is accounted individually; in bulk materials, a sea of innumerable electrons can behave en masse, yielding a very different description of electronic structure. Buckyballs perch

  19. Method of measuring a liquid pool volume

    DOE Patents [OSTI]

    Garcia, Gabe V.; Carlson, Nancy M.; Donaldson, Alan D.

    1991-01-01

    A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid.

  20. ETTP Volume I - final.PDF

    Office of Environmental Management (EM)

    Inspection of Environment, Safety, and Health Management at the Oak Ridge Operations Office East Tennessee Technology Park and Officeof Independent Oversight and PerformanceAssurance Officeof theSecretary of Energy May 2003 ISM Volume I INDEPENDENT OVERSIGHT INSPECTION OF ENVIRONMENT, SAFETY, AND HEALTH MANAGEMENT AT THE OAK RIDGE OPERATIONS OFFICE AND EAST TENNESSEE TECHNOLOGY PARK Volume I May 2003 i INDEPENDENT OVERSIGHT INSPECTION OF ENVIRONMENT, SAFETY, AND HEALTH MANAGEMENT AT THE OAK

  1. Gas-phase reactions of polycyclic aromatic hydrocarbon cations and their nitrogen-containing analogs with H atoms

    SciTech Connect (OSTI)

    Demarais, Nicholas J.; Yang, Zhibo; Bierbaum, Veronica M. [Department of Chemistry and Biochemistry, 215 UCB, University of Colorado, Boulder, CO 80309-0215 (United States); Snow, Theodore P., E-mail: Nicholas.Demarais@Colorado.edu, E-mail: Zhibo.Yang@ou.edu, E-mail: Veronica.Bierbaum@Colorado.edu, E-mail: Theodore.Snow@Colorado.edu [Center for Astrophysics and Space Astronomy, 389 UCB, University of Colorado, Boulder, CO 80309-0389 (United States)

    2014-03-20

    We have studied the reactions of polycyclic aromatic hydrocarbon cations and their nitrogen-containing analogs with H atoms. Reaction rate constants are measured at 300 K using a flowing afterglow-selected ion flow tube. We have implemented the laser induced acoustic desorption technique to allow the study of large, non-volatile species in the gas phase. The extension of this work from previous studies shows that the reactivity of polycyclic aromatic hydrocarbon cations with H atoms reaches a constant value for large cations. There is a small difference in reactivity when comparing molecules of different size and geometry; however, no difference in reactivity was found when nitrogen was incorporated into the ring.

  2. Variations in the structure of aromatic solvents under the influence of microadditives of the C{sub 60} fullerene

    SciTech Connect (OSTI)

    Ginzburg, B. M. Tuichiev, Sh.

    2007-02-15

    The structural ordering of aromatic solvents is investigated using wide-angle X-ray diffraction. It is shown that the degree of structural ordering of aromatic solvents at room temperature decreases in the following sequence: benzene, toluene, and n-xylene. The introduction of the C{sub 60} fullerene ({approx}0.001%) into these solvents leads to an increase in the degree of their ordering. Upon introduction of the fullerene, the degree of structural ordering increases significantly in n-xylene and only slightly in toluene and remains virtually unchanged in benzene. An analysis of the small-angle X-ray diffraction patterns of C{sub 60} fullerene solutions in benzene likewise demonstrates that the introduction of the fullerene into benzene leads to an insignificant change in the degree of structural ordering of this solvent. The specific features of the structure and behavior of benzene upon interaction with C{sub 60} fullerene additives are discussed.

  3. Applications of organo-calcium chemistry to control contaminant aromatic hydrocarbons in advanced coal gasification processes: Final technical progress report

    SciTech Connect (OSTI)

    Longwall, J.P.; Chang, C.C.S.; Lai, C.K.S.; Chen, P.; Hajaligol, M.R.; Peters, W.A.

    1988-09-01

    The broad goal of this contract was to provide quantitative understanding of the thermal reactions of aromatics contaminants with calcium oxide under conditions pertinent to their in situ or out-board reduction or elimination from advanced coal gasification process and waste streams. Specific objectives were formalized into the following four tasks: cracking of fresh coal pyrolysis tar, benzene cracking, CaO deactivation behavior, and preliminary economic implications. The approach primarily involved laboratory scale measurements of rates and extents of feed conversion, and of quality indices or compositions of the resulting products, when pure aromatic compounds or newly formed coal pyrolysis tars undergo controlled extents of thermal treatment with CaO of known preparation history. 70 refs., 54 figs., 7 tabs.

  4. Linkages and aromatic clusters in a bituminous coal: Final report, September 1, 1985--September 30, 1988

    SciTech Connect (OSTI)

    Chung, K.E.

    1988-10-01

    The distribution and arrangement of aromatic clusters, oxygen functional groups, and linkages in an Illinois No. 6 bituminous coal were determined by controlled solubilization of the coal, followed by solvent fractionation of the soluble product and detailed analyses of the product fractions. The solubilization was carried out in reactions with NaOH/ethanol/H/sub 2/O at temperatures of 260/degree/, 300/degree/ and 320/degree/C. Elemental balance and spectroscopic data revealed that the oxygen functional groups of the coal were attacked selectively in the solubilization process, resulting in an orderly definable diminution of the complex coal structure. Also aliphatic linkages present in selected solubilized product fractions were subjected to a transalkylation reaction. A molecular structural model specific to the Illinois coal was constructed, and the hydroliquefaction behavior of the coal was evaluated in terms of potential product distribution and hydrogen consumption. The structural characteristics are compared with those of a Wyoming subbituminous coal in our previous study. 9 refs., 16 figs., 11 tabs.

  5. Field application of a genetically engineered microorganism for polycyclic aromatic hydrocarbon bioremediation process monitoring and control

    SciTech Connect (OSTI)

    Sayler, G.S.; Cox, C.D.; Ripp, S.; Nivens, D.E.; Werner, C.; Ahn, Y.; Matrubutham, U.; Burlage, R.

    1998-11-01

    On October 30, 1996, the US Environmental Protection Agency (EPA) commenced the first test release of genetically engineered microorganisms (GEMs) for use in bioremediation. The specific objectives of the investigation were multifaceted and include (1) testing the hypothesis that a GEM can be successfully introduced and maintained in a bioremediation process, (2) testing the concept of using, at the field scale, reporter organisms for direct bioremediation process monitoring and control, and (3) acquiring data that can be used in risk assessment decision making and protocol development for future field release applications of GEMs. The genetically engineered strain under investigation is Pseudomonas fluorescens strain HK44 (King et al., 1990). The original P. fluorescens parent strain was isolated from polycyclic aromatic hydrocarbon (PAH) contaminated manufactured gas plant soil. Thus, this bacterium is able to biodegrade naphthalene (as well as other substituted naphthalenes and other PAHs) and is able to function as a living bioluminescent reporter for the presence of naphthalene contamination, its bioavailability, and the functional process of biodegradation. A unique component of this field investigation was the availability of an array of large subsurface soil lysimeters. This article describes the experience associated with the release of a genetically modified microorganism, the lysimeter facility and its associated instrumentation, as well as representative data collected during the first eighteen months of operation.

  6. Polycyclic aromatic hydrocarbons in surface waters of Alessandria District, South Eastern Piedmont (Italy)

    SciTech Connect (OSTI)

    Trova, C.; Cossa, G.; Gandolfo, G.

    1992-10-01

    Polynuclear aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants. Because of the high toxicity of some polycyclic compounds, such as benzopyrenes, the determination of their levels in air, water, soil and aquatic organisms was the object of several papers. Anthropogenic pyrolitic and combustion processes, related to industrial plants, domestic heating, automobile traffic, are the major sources of these compounds; from these sources they enter atmospheric environment where their concentration is reduced by scavenging during precipitation events: rain, snow and fog in urban areas usually show high contents of PAHs. Dry and wet atmospheric polluted depositions effluents transport appreciable amounts of PAHs to aquatic environment, where they are rapidly taken up and accumulated by both fish and shellfish. Alessandria District, in South-Eastern Piedmont (Italy), lies in the middle of Torino-Milano-Genova industrial area: in addition to local sources, a relatively long range transport of polluted air masses may conduct to this region atmospheric contaminants, such as polynuclear compounds, that can enter fluvial environments through meteoric precipitation. The object of this work was to evaluate PAH content in surface waters flowing across the described territory. Samplings were carried on during winter season, when the concentration of these pollutants usually reaches the highest levels. 8 refs., 4 figs., 2 tabs.

  7. Anaerobic cometabolic transformation of polycyclic and heterocyclic aromatic hydrocarbons: evidence from laboratory and field studies

    SciTech Connect (OSTI)

    Michael Safinowski; Christian Griebler; Rainer U. Meckenstock

    2006-07-01

    The sulfate-reducing enrichment culture N47 can grow on naphthalene or 2-methylnaphthalene as the sole carbon and energy source. The study reported shows that the culture can furthermore cometabolically transform a variety of polycyclic and heteroaromatic compounds with naphthalene or methylnaphthalene as the auxiliary substrate. Most of the cosubstrates were converted to the corresponding carboxylic acids, frequently to several isomers. The mass spectra of specific metabolites that were extracted from supernatants of cultures containing the cosubstrates benzothiophene, benzofuran, and 1-methylnaphthalene resembled known intermediates of the anaerobic naphthalene and 2-methylnaphthalene degradation pathways. This indicates that some of the tested compounds were first methylated and then transformed to the corresponding methylsuccinic acids by a fumarate addition to the methyl group. For some of the cosubstrates, a partial or total inhibition of growth on the auxiliary substrate was observed. This was caused by a specific combination of auxiliary substrate and cosubstrate. None of the cosubstrates tested could be utilized as the sole carbon source and electron donor by the enrichment culture N47. Field investigations at the tar-oil-contaminated aquifer (at a former gasworks in southwest Germany), where strain N47 originated, revealed the presence of metabolites similar to the ones identified in batch culture supernatants. The findings suggest that aromatic hydrocarbons and heterocyclic compounds can be converted by aquifer organisms and produce a variety of polar compounds that become mobile in groundwater. 51 refs., 4 figs., 2 tabs.

  8. PAMAM dendrimers and graphene: Materials for removing aromatic contaminants from water

    SciTech Connect (OSTI)

    DeFever, Ryan S.; Geitner, Nicholas K.; Bhattacharya, Priyanka; Ding, Feng; Ke, Pu Chun; Sarupria, Sapna

    2015-04-07

    We present results from experiments and atomistic molecular dynamics simulations on the association of naphthalene with polyamidoamine (PAMAM) dendrimers and graphene oxide (GrO). Specifically, we investigate 3rd-6th generation (G3-G6) PAMAM dendrimers and GrO with different levels of oxidation. The work is motivated by the potential applications of these materials in removing polycyclic aromatic hydrocarbon contaminants from water. Our experimental results indicate that graphene oxide outperforms dendrimers in removing naphthalene from water. Molecular dynamics simulations suggest that the prominent factors driving naphthalene association to these seemingly disparate materials are similar. Interestingly, we find that cooperative interactions between the naphthalene molecules play a significant role in enhancing their association to the dendrimers and graphene oxide. Our findings highlight that while selection of appropriate materials is important, the interactions between the contaminants themselves can also be important in governing the effectiveness of a given material. The combined use of experiments and molecular dynamics simulations allows us to comment on the possible factors resulting in better performance of graphene oxide in removing naphthalene from water.

  9. Separation, characterization and instrumental analysis of polynuclear aromatic hydrocarbon ring classes in petroleum

    SciTech Connect (OSTI)

    Chmielowiec, J.; Beshai, J.E.; George, A.E.

    1980-08-01

    To develop effective utilization technology for heavy streams from conventional fuels and unconventional resources such as heavy oils and oilsand bitumens, detailed information on the chemical composition of the feedstocks is needed. Attempts were made during the seventies to modify the API Project 60 scheme of analysis or to develop chemically more efficient, and less time-consuming, separation and characterization methods. These attempts aimed to improve characterization by separating the samples into concentrates of different structural types. Samples throughput was increased by using pressure and higher performance chromatographic systems. Other valuable contributions, such as coal-liquid characterization in terms of different chemical functionalities have also been made. The separation of aromatic ring classes and characterization or identification of their major components was our primary objective in this study. A silica-R(NH/sub 2/)/sub 2/-based HPLC system was used in our laboratory to study the analytical potential of this approach; the work was described in a previous publication. In the present study, the applicability of HPLC separation by this system and instrumental spectrometric characterization of 3- and 4-ring PAHs isolated from two Canadian oils were investigated. The oils used, Medicine River and Lloydminster, are examples of hydrocarbon-dominated materials representing light and heavy processing feedstocks, respectively.

  10. In situ toxicity evaluations of turbidity and photoinduction of polycyclic aromatic hydrocarbons

    SciTech Connect (OSTI)

    Ireland, D.S.; Burton, G.A. Jr; Hess, G.G.

    1996-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are prevalent pollutants in the aquatic environment that can cause a wide range of toxic effects. Earlier studies have shown that toxicity of PAHs can be enhanced by ultraviolet (UV) radiation. In situ and laboratory exposures with Ceriodaphnia dubia were used to evaluate photoinduced toxicity of PAHs in wet-weather runoff and in turbid conditions. Exposure to UV increased the toxicity of PAH-contaminated sediment to C. dubia. Toxicity was removed when UV wavelengths did not penetrate the water column to the exposed organisms. A significant correlation was observed between in situ C. dubia survival and turbidity when organisms were exposed to sunlight. Stormwater runoff samples exhibited an increase in chronic toxicity (reproduction) to C. dubia when exposed to UV wavelengths as compared to C. dubia not exposed to UV wavelengths. Toxicity was reduced significantly in the presence of UV radiation when the organic fraction of stormwater runoff was removed. The PAHs are bound to the sediment and resuspended into the water column once the sediment is disturbed (e.g., during a storm). The in situ and laboratory results showed that photoinduced toxicity occurred frequently during low flow conditions and wet weather runoff and was reduced in turbid conditions.

  11. Use of SPMDs to determine average water concentration of polycyclic aromatic hydrocarbons in urban stormwater runoff

    SciTech Connect (OSTI)

    DeVita, W.; Crunkilton, R.

    1995-12-31

    Semipermeable polymeric membrane devices (SPMDS) were deployed for 30 day periods to monitor polycyclic aromatic hydrocarbons (PAHs) in an urban stream which receives much of its flow from urban runoff. SPMDs are capable of effectively sampling several liters of water per day for some PAHs. Unlike conventional methods, SPMDs sample only those non-polar organic contaminants which are truly dissolved and available for bioconcentration. Also, SPMDs may concentrate contaminants from episodic events such as stormwater discharge. The State of Wisconsin has established surface water quality criteria based upon human lifetime cancer risk of 23 ppt for benzo(a)pyrene and 23 ppt as the sum of nine other potentially carcinogenic PAHs. Bulk water samples analyzed by conventional methodology were routinely well above this criteria, but contained particulate bound PAHs as well as PAHs bound by dissolved organic carbon (DOC) which are not available for bioconcentration. Average water concentrations of dissolved PAHs determined using SPMDs were also above this criteria. Variables used for determining water concentration included sampling rate at the exposure temperature, length of exposure and estimation of biofouling of SPMD surface.

  12. Polycyclic aromatic hydrocarbons at selected burning grounds at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Harris, B.W.; Minor, L.K.M.; Flucas, B.J.

    1998-02-01

    A commercial immunoassay field test (IFT) was used to rapidly assess the total concentrations of polycyclic aromatic hydrocarbons (PAHs) in the soil at selected burning grounds within the explosives corridor at Los Alamos National Laboratory (LANL). Results were compared with analyses obtained from LANL Analytical Laboratory and from a commercial laboratory. Both used the Environmental Protection Agency`s (EPA`s) Methods 8270 and 8310. EPA`s Method 8270 employs gas chromatography and mass spectral analyses, whereas EPA`s Method 8310 uses an ultraviolet detector in a high-performance liquid chromatography procedure. One crude oil sample and one diesel fuel sample, analyzed by EPA Method 8270, were included for references. On an average the IFT results were lower for standard samples and lower than the analytical laboratory results for the unknown samples. Sites were selected to determine whether the PAHs came from the material burned or the fuel used to ignite the burn, or whether they are produced by a high-temperature chemical reaction during the burn. Even though the crude oil and diesel fuel samples did contain measurable quantities of PAHs, there were no significant concentrations of PAHs detected in the ashes and soil at the burning grounds. Tests were made on fresh soil and ashes collected after a large burn and on aged soil and ashes known to have been at the site more than three years. Also analyzed were twelve-year-old samples from an inactive open burn cage.

  13. CONTAMINATED SOIL VOLUME ESTIMATE TRACKING METHODOLOGY

    SciTech Connect (OSTI)

    Durham, L.A.; Johnson, R.L.; Rieman, C.; Kenna, T.; Pilon, R.

    2003-02-27

    The U.S. Army Corps of Engineers (USACE) is conducting a cleanup of radiologically contaminated properties under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The largest cost element for most of the FUSRAP sites is the transportation and disposal of contaminated soil. Project managers and engineers need an estimate of the volume of contaminated soil to determine project costs and schedule. Once excavation activities begin and additional remedial action data are collected, the actual quantity of contaminated soil often deviates from the original estimate, resulting in cost and schedule impacts to the project. The project costs and schedule need to be frequently updated by tracking the actual quantities of excavated soil and contaminated soil remaining during the life of a remedial action project. A soil volume estimate tracking methodology was developed to provide a mechanism for project managers and engineers to create better project controls of costs and schedule. For the FUSRAP Linde site, an estimate of the initial volume of in situ soil above the specified cleanup guidelines was calculated on the basis of discrete soil sample data and other relevant data using indicator geostatistical techniques combined with Bayesian analysis. During the remedial action, updated volume estimates of remaining in situ soils requiring excavation were calculated on a periodic basis. In addition to taking into account the volume of soil that had been excavated, the updated volume estimates incorporated both new gamma walkover surveys and discrete sample data collected as part of the remedial action. A civil survey company provided periodic estimates of actual in situ excavated soil volumes. By using the results from the civil survey of actual in situ volumes excavated and the updated estimate of the remaining volume of contaminated soil requiring excavation, the USACE Buffalo District was able to forecast and update project costs and schedule. The soil volume tracking methodology helped the USACE Buffalo District track soil quantity changes from projected excavation work over time and across space, providing the basis for an explanation of some of the project cost and schedule variances.

  14. Data collection system. Volume 1, Overview and operators manual; Volume 2, Maintenance manual; Appendices

    SciTech Connect (OSTI)

    Caudell, R.B.; Bauder, M.E.; Boyer, W.B.; French, R.E.; Isidoro, R.J.; Kaestner, P.C.; Perkins, W.G.

    1993-09-01

    Sandia National Laboratories (SNL) Instrumentation Development Department was tasked by the Defense Nuclear Agency (DNA) to record data on Tektronix RTD720 Digitizers on the HUNTERS TROPHY field test conducted at the Nevada Test Site (NTS) on September 18, 1992. This report contains a overview and description of the computer hardware and software that was used to acquire, reduce, and display the data. The document is divided into two volumes: an overview and operators manual (Volume 1) and a maintenance manual (Volume 2).

  15. Mechanisms of photoinduced C{sub {alpha}}-C{sub {beta}} bond breakage in protonated aromatic amino acids

    SciTech Connect (OSTI)

    Lucas, B.; Barat, M.; Fayeton, J. A.; Perot, M.; Jouvet, C.; Gregoire, G.; Broendsted Nielsen, S.

    2008-04-28

    Photoexcitation of protonated aromatic amino acids leads to C{sub {alpha}}-C{sub {beta}} bond breakage among other channels. There are two pathways for the C{sub {alpha}}-C{sub {beta}} bond breakage, one is a slow process (microseconds) that occurs after hydrogen loss from the electronically excited ion, whereas the other is a fast process (nanoseconds). In this paper, a comparative study of the fragmentation of four molecules shows that the presence of the carboxylic acid group is necessary for this fast fragmentation channel to occur. We suggest a mechanism based on light-induced electron transfer from the aromatic ring to the carboxylic acid, followed by a fast internal proton transfer from the ammonium group to the negatively charged carboxylic acid group. The ion formed is a biradical since the aromatic ring is ionized and the carbon of the COOH group has an unpaired electron. Breakage of the weak C{sub {alpha}}-C{sub {beta}} bond gives two even-electron fragments and is expected to quickly occur. The present experimental results together with the ab initio calculations support the interpretation previously proposed.

  16. Quantifying the Impact of Immediate Reconstruction in Postmastectomy Radiation: A Large, Dose-Volume Histogram-Based Analysis

    SciTech Connect (OSTI)

    Ohri, Nisha; Cordeiro, Peter G.; Keam, Jennifer; Ballangrud, Ase; Shi Weiji; Zhang Zhigang; Nerbun, Claire T.; Woch, Katherine M.; Stein, Nicholas F.; Zhou Ying; McCormick, Beryl; Powell, Simon N.; Ho, Alice Y.

    2012-10-01

    Purpose: To assess the impact of immediate breast reconstruction on postmastectomy radiation (PMRT) using dose-volume histogram (DVH) data. Methods and Materials: Two hundred forty-seven women underwent PMRT at our center, 196 with implant reconstruction and 51 without reconstruction. Patients with reconstruction were treated with tangential photons, and patients without reconstruction were treated with en-face electron fields and customized bolus. Twenty percent of patients received internal mammary node (IMN) treatment. The DVH data were compared between groups. Ipsilateral lung parameters included V20 (% volume receiving 20 Gy), V40 (% volume receiving 40 Gy), mean dose, and maximum dose. Heart parameters included V25 (% volume receiving 25 Gy), mean dose, and maximum dose. IMN coverage was assessed when applicable. Chest wall coverage was assessed in patients with reconstruction. Propensity-matched analysis adjusted for potential confounders of laterality and IMN treatment. Results: Reconstruction was associated with lower lung V20, mean dose, and maximum dose compared with no reconstruction (all P<.0001). These associations persisted on propensity-matched analysis (all P<.0001). Heart doses were similar between groups (P=NS). Ninety percent of patients with reconstruction had excellent chest wall coverage (D95 >98%). IMN coverage was superior in patients with reconstruction (D95 >92.0 vs 75.7%, P<.001). IMN treatment significantly increased lung and heart parameters in patients with reconstruction (all P<.05) but minimally affected those without reconstruction (all P>.05). Among IMN-treated patients, only lower lung V20 in those without reconstruction persisted (P=.022), and mean and maximum heart doses were higher than in patients without reconstruction (P=.006, P=.015, respectively). Conclusions: Implant reconstruction does not compromise the technical quality of PMRT when the IMNs are untreated. Treatment technique, not reconstruction, is the primary determinant of target coverage and normal tissue doses.

  17. State Energy-Efficient Appliance Rebate Program: Volume 1 - Program...

    Energy Savers [EERE]

    State Energy-Efficient Appliance Rebate Program: Volume 1 - Program Design Lessons Learned View the report PDF icon State Energy-Efficient Appliance Rebate Program: Volume 1 - ...

  18. PARC Periodical | Volume 7, Issue 3 | Photosynthetic Antenna Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center PARC Periodical | Volume 7, Issue 3 February 16, 2016 PARC Periodical | Volume 7, Issue 3 VIEW ARTICLE HERE News/Media PARC Periodical

  19. Produced water volumes and management practices in the United...

    Office of Scientific and Technical Information (OSTI)

    Produced water volumes and management practices in the United States. Citation Details In-Document Search Title: Produced water volumes and management practices in the United ...

  20. Path Integral for Stochastic Inflation: Non-Perturbative Volume...

    Office of Scientific and Technical Information (OSTI)

    Path Integral for Stochastic Inflation: Non-Perturbative Volume Weighting, Complex ... Title: Path Integral for Stochastic Inflation: Non-Perturbative Volume Weighting, Complex ...