National Library of Energy BETA

Sample records for arm cloud radar

  1. Scanning ARM Cloud Radar Handbook

    SciTech Connect (OSTI)

    Widener, K; Bharadwaj, N; Johnson, K

    2012-06-18

    The scanning ARM cloud radar (SACR) is a polarimetric Doppler radar consisting of three different radar designs based on operating frequency. These are designated as follows: (1) X-band SACR (X-SACR); (2) Ka-band SACR (Ka-SACR); and (3) W-band SACR (W-SACR). There are two SACRs on a single pedestal at each site where SACRs are deployed. The selection of the operating frequencies at each deployed site is predominantly determined by atmospheric attenuation at the site. Because RF attenuation increases with atmospheric water vapor content, ARM's Tropical Western Pacific (TWP) sites use the X-/Ka-band frequency pair. The Southern Great Plains (SGP) and North Slope of Alaska (NSA) sites field the Ka-/W-band frequency pair. One ARM Mobile Facility (AMF1) has a Ka/W-SACR and the other (AMF2) has a X/Ka-SACR.

  2. ARM - Evaluation Product - Scanning ARM Cloud Radar Corrections (SACRCOR)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsScanning ARM Cloud Radar Corrections (SACRCOR) ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Scanning ARM Cloud Radar Corrections (SACRCOR) [ ARM research - evaluation data product ] This dataset contains moments from the Scanning ARM Cloud Radars (SACRs) which have been filtered and corrected

  3. ARM - Field Campaign - Cloud Radar IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsCloud Radar IOP ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Cloud Radar IOP 1997.04.02 - 1997.04.22 Lead Scientist : Brooks Martner Data Availability MMCR Quick Look Data For data sets, see below. Abstract The objectives of the Cloud Radar IOP are to: support the calibration of the ARM millimeter cloud radar and evaluate the spatial versus temporal variability of cloud properties as seen

  4. First observations of tracking clouds using scanning ARM cloud radars

    SciTech Connect (OSTI)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (first echo). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud field and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.

  5. First observations of tracking clouds using scanning ARM cloud radars

    SciTech Connect (OSTI)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud field and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.

  6. ARM - Field Campaign - DC-8 Cloud Radar Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsDC-8 Cloud Radar Campaign Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : DC-8 Cloud Radar Campaign...

  7. First observations of tracking clouds using scanning ARM cloud radars

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud fieldmore » and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.« less

  8. W-band ARM Cloud Radar (WACR) Handbook

    SciTech Connect (OSTI)

    Widener, KB; Johnson, K

    2005-01-05

    The W-band Atmospheric Radiation Measurement (ARM) Program Cloud Radar (WACR) systems are zenith pointing Doppler radars that probe the extent and composition of clouds at 95.04 GHz. The main purpose of this radar is to determine cloud boundaries (e.g., cloud bottoms and tops). This radar reports estimates for the first three spectra moments for each range gate up to 15 km. The 0th moment is reflectivity, the 1st moment is radial velocity, and the 2nd moment is spectral width. Also available are the raw spectra files. Unlike the millimeter wavelength cloud radar (MMCR), the WACR does not use pulse coding and operates in only copolarization and cross-polarization modes.

  9. Scanning ARM Cloud Radars Part I: Operational Sampling Strategies

    SciTech Connect (OSTI)

    Kollias, Pavlos; Bharadwaj, Nitin; Widener, Kevin B.; Jo, Ieng; Johnson, Karen

    2014-03-01

    Probing clouds in three-dimensions has never been done with scanning millimeter-wavelength (cloud) radars in a continuous operating environment. The acquisition of scanning cloud radars by the Atmospheric Radiation Measurement (ARM) program and research institutions around the world generate the need for developing operational scan strategies for cloud radars. Here, the first generation of sampling strategies for the Scanning ARM Cloud Radars (SACRs) is discussed. These scan strategies are designed to address the scientific objectives of the ARM program, however, they introduce an initial framework for operational scanning cloud radars. While the weather community uses scan strategies that are based on a sequence of scans at constant elevations, the SACRs scan strategies are based on a sequence of scans at constant azimuth. This is attributed to the cloud properties that are vastly different for rain and snow shafts that are the primary target of precipitation radars. A cloud surveillance scan strategy is introduced (HS-RHI) based on a sequence of horizon-to-horizon Range Height Indicator (RHI) scans that sample the hemispherical sky (HS). The HS-RHI scan strategy is repeated every 30 min to provide a static view of the cloud conditions around the SACR location. Between HS-RHI scan strategies other scan strategies are introduced depending on the cloud conditions. The SACRs are pointing vertically in the case of measurable precipitation at the ground. The radar reflectivities are corrected for water vapor attenuation and non-meteorological detection are removed. A hydrometeor detection mask is introduced based on the difference of cloud and noise statistics is discussed.

  10. Validation of a radar doppler spectra simulator using measurements from the ARM cloud radars

    SciTech Connect (OSTI)

    Remillard, J.; Luke, E.; Kollias, P.

    2010-03-15

    The use of forward models as an alternative approach to compare models with observations contains advantages and challenges. Radar Doppler spectra simulators are not new; their application in high- resolution models with bin microphysics schemes could help to compare model output with the Doppler spectra recorded from the vertically pointing cloud radars at the ARM Climate Research Facility sites. The input parameters to a Doppler spectra simulator are both microphysical (e.g., particle size, shape, phase, and number concentration) and dynamical (e.g., resolved wind components and sub-grid turbulent kinetic energy). Libraries for spherical and non-spherical particles are then used to compute the backscattering cross-section and fall velocities, while the turbulence is parameterized as a Gaussian function with a prescribed width. The Signal-to-Noise Ratio (SNR) is used to determine the amount of noise added throughout the spectrum, and the spectral smoothing due to spectral averages is included to reproduce the averaging realized by cloud radars on successive returns. Thus, realistic Doppler spectra are obtained, and several parameters that relate to the morphological characteristics of the synthetically generated spectra are computed. Here, the results are compared to the new ARM microARSCL data products in an attempt to validate the simulator. Drizzling data obtained at the SGP site by the MMCR and the AMF site at Azores using the WACR are used to ensure the liquid part and the turbulence representation part of the simulator are properly accounted in the forward model.

  11. ARM: X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    SciTech Connect (OSTI)

    Dan Nelson; Joseph Hardin; Iosif Lindenmaier; Bradley Isom; Karen Johnson; Nitin Bharadwaj

    2011-09-14

    X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  12. ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dan Nelson; Joseph Hardin; Iosif (Andrei) Lindenmaier; Bradley Isom; Karen Johnson; Nitin Bharadwaj

    2011-05-24

    Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  13. ARM: W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dan Nelson; Joseph Hardin; Iosif (Andrei) Lindenmaier; Bradley Isom; Karen Johnson; Nitin Bharadwaj

    1990-01-01

    W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  14. ARM: X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dan Nelson; Joseph Hardin; Iosif (Andrei) Lindenmaier; Bradley Isom; Karen Johnson; Nitin Bharadwaj

    X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  15. ARM: W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dan Nelson; Joseph Hardin; Iosif (Andrei) Lindenmaier; Bradley Isom; Karen Johnson; Nitin Bharadwaj

    W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  16. ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dan Nelson; Joseph Hardin; Iosif (Andrei) Lindenmaier; Bradley Isom; Karen Johnson; Nitin Bharadwaj

    Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  17. ARM - Measurement - Radar Doppler

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Doppler ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Radar Doppler The power spectrum and moments of the radar signal expressed as a function of Doppler frequency or Doppler velocity. It may be thought of as the reflectivity weighted radial velocity distribution of the scatterers in a distributed target. Categories Cloud Properties Instruments The above measurement is considered scientifically

  18. ARM - Measurement - Radar polarization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    polarization ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Radar polarization The temporal and geometric behavior of the electric field vector of an electromagnetic wave transmitted or received by a radar system, e.g. elliptical polarization, differential reflectivity, phase shift, co-polar correlation coefficient, linear depolarization ratio. Categories Cloud Properties Instruments The above

  19. Cloud Effects on Radiative Heating Rate Profiles over Darwin using ARM and A-train Radar/Lidar Observations

    SciTech Connect (OSTI)

    Thorsen, Tyler J.; Fu, Qiang; Comstock, Jennifer M.

    2013-06-11

    Observations of clouds from the ground-based U.S. Department of Energy Atmospheric Radiation Measurement program (ARM) and satellite-based A-train are used to compute cloud radiative forcing profiles over the ARM Darwin, Australia site. Cloud properties are obtained from both radar (the ARM Millimeter Cloud Radar (MMCR) and the CloudSat satellite in the A-train) and lidar (the ARM Micropulse lidar (MPL) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite in the A-train) observations. Cloud microphysical properties are taken from combined radar and lidar retrievals for ice clouds and radar only or lidar only retrievals for liquid clouds. Large, statistically significant differences of up to 1.43 K/day exist between the mean ARM and A-train net cloud radiative forcing profiles. The majority of the difference in cloud radiative forcing profiles is shown to be due to a large difference in the cloud fraction above 12 km. Above this altitude the A-train cloud fraction is significantly larger because more clouds are detected by CALIPSO than by the ground-based MPL. It is shown that the MPL is unable to observe as many high clouds as CALIPSO due to being more frequently attenuated and a poorer sensitivity even in otherwise clear-sky conditions. After accounting for cloud fraction differences and instrument sampling differences due to viewing platform we determined that differences in cloud radiative forcing due to the retrieved ice cloud properties is relatively small. This study demonstrates that A-train observations are better suited for the calculation cloud radiative forcing profiles. In addition, we find that it is necessary to supplement CloudSat with CALIPSO observations to obtain accurate cloud radiative forcing profiles since a large portion of clouds at Darwin are detected by CALIPSO only.

  20. Scanning ARM Cloud Radars. Part II: Data Quality Control and Processing

    SciTech Connect (OSTI)

    Kollias, Pavlos; Jo, Ieng; Borque, Paloma; Tatarevic, Aleksandra; Lamer, Katia; Bharadwaj, Nitin; Widener, Kevin B.; Johnson, Karen L.; Clothiaux, Eugene E.

    2014-03-01

    The Scanning ARM Cloud Radars (SACRs) are the primary instruments for documenting the four-dimensional structure and evolution of clouds within a 20-30 km radius from the ARM fixed and mobile sites. Here, the post-processing of the calibrated SACR measurements is discussed. First, a feature mask algorithm that objectively determines the presence of significant radar returns is described. The feature mask algorithm is based on the statistical properties of radar receiver noise. It accounts for atmospheric emission and is applicable even for SACR profiles with few or no signal-free range gates. Using the nearest-in-time atmospheric sounding, the SACR radar reflectivities are corrected for gaseous attenuation (water vapor and oxygen) using a line-by-line absorption model. Despite having a high pulse repetition frequency, the SACR has a narrow Nyquist velocity limit and thus Doppler velocity folding is commonly observed. An unfolding algorithm that makes use of a first guess for the true Doppler velocity using horizontal wind measurements from the nearest sounding is described. The retrieval of the horizontal wind profile from the HS-RHI SACR scan observations and/or nearest sounding is described. The retrieved horizontal wind profile can be used to adaptively configure SACR scan strategies that depend on wind direction. Several remaining challenges are discussed, including the removal of insect and second-trip echoes. The described algorithms significantly enhance SACR data quality and constitute an important step towards the utilization of SACR measurements for cloud research.

  1. W-band ARM Cloud Radar (WACR) Update and Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    width) along with spectra data. The AMF WACR will be deployed with the AMF in Niamey, Niger early in 2006. We will present ingested WACR data formats available from the ARM...

  2. Scanning ARM Cloud Radars Part II: Data Quality Control and Processing

    SciTech Connect (OSTI)

    Kollias, Pavlos; Jo, Ieng; Borque, Paloma; Tatarevic, Aleksandra; Lamer, Katia; Bharadwaj, Nitin; Widener, Kevin B.; Johnson, Karen; Clothiaux, Eugene E.

    2014-03-01

    The Scanning ARM Cloud Radars (SACRs) are the primary instruments for documenting the four-dimensional structure and evolution of clouds within a 20-30 km radius from the ARM fixed and mobile sites. Here, the post-processing of the calibrated SACR measurements is discussed. First, a feature mask algorithm that objectively determines the presence of significant radar returns is described. The feature mask algorithm is based on the statistical properties of radar receiver noise. It accounts for atmospheric emission and is applicable even for SACR profiles with few or no signal-free range gates. Using the nearest-in-time atmospheric sounding, the SACR radar reflectivities are corrected for gaseous attenuation (water vapor and oxygen) using a line-by-line absorption model. Despite having a high pulse repetition frequency, the SACR has a narrow Nyquist velocity limit and thus Doppler velocity folding is commonly observed. An unfolding algorithm that makes use of a first guess for the true Doppler velocity using horizontal wind measurements from the nearest sounding is described. The retrieval of the horizontal wind profile from the Hemispherical Sky Range Height Indicator SACR scan observations and/or nearest sounding is described. The retrieved horizontal wind profile can be used to adaptively configure SACR scan strategies that depend on wind direction. Several remaining challenges are discussed, including the removal of insect and second-trip echoes. The described algorithms significantly enhance SACR data quality and constitute an important step towards the utilization of SACR measurements for cloud research.

  3. A Comparison of ARM Cloud Radar Profiles with MMF Simulated Radar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    state, and did the same for the model output. - By profiles of cloud occurrence, we mean (at given altitude above ground level) the relative frequency that a cloud was...

  4. ARM - Radar Backgrounder

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CenterRadar Backgrounder Media Contact Hanna Goss hanna-dot-goss-at-pnnl-dot-gov @armnewsteam Field Notes Blog Topics Field Notes107 AGU 3 AMIE 10 ARM Aerial Facility 2 ARM Mobile Facility 1 6 ARM Mobile Facility 2 47 ARM Mobile Facility 3 1 BAECC 1 BBOP 4 ENA 1 GOAMAZON 7 MAGIC 15 MC3E 17 PECAN 3 SGP 7 STORMVEX 29 TCAP 3 Search News Search Blog News Center All Categories What's this? Social Media Guidance News Center All Categories Features and Releases Facility News Field Notes Blog Events

  5. Determination of Large-Scale Cloud Ice Water Concentration by Combining Surface Radar and Satellite Data in Support of ARM SCM Activities

    SciTech Connect (OSTI)

    Liu, Guosheng

    2013-03-15

    Single-column modeling (SCM) is one of the key elements of Atmospheric Radiation Measurement (ARM) research initiatives for the development and testing of various physical parameterizations to be used in general circulation models (GCMs). The data required for use with an SCM include observed vertical profiles of temperature, water vapor, and condensed water, as well as the large-scale vertical motion and tendencies of temperature, water vapor, and condensed water due to horizontal advection. Surface-based measurements operated at ARM sites and upper-air sounding networks supply most of the required variables for model inputs, but do not provide the horizontal advection term of condensed water. Since surface cloud radar and microwave radiometer observations at ARM sites are single-point measurements, they can provide the amount of condensed water at the location of observation sites, but not a horizontal distribution of condensed water contents. Consequently, observational data for the large-scale advection tendencies of condensed water have not been available to the ARM cloud modeling community based on surface observations alone. This lack of advection data of water condensate could cause large uncertainties in SCM simulations. Additionally, to evaluate GCMs’ cloud physical parameterization, we need to compare GCM results with observed cloud water amounts over a scale that is large enough to be comparable to what a GCM grid represents. To this end, the point-measurements at ARM surface sites are again not adequate. Therefore, cloud water observations over a large area are needed. The main goal of this project is to retrieve ice water contents over an area of 10 x 10 deg. surrounding the ARM sites by combining surface and satellite observations. Built on the progress made during previous ARM research, we have conducted the retrievals of 3-dimensional ice water content by combining surface radar/radiometer and satellite measurements, and have produced 3-D cloud ice water contents in support of cloud modeling activities. The approach of the study is to expand a (surface) point measurement to an (satellite) area measurement. That is, the study takes the advantage of the high quality cloud measurements (particularly cloud radar and microwave radiometer measurements) at the point of the ARM sites. We use the cloud ice water characteristics derived from the point measurement to guide/constrain a satellite retrieval algorithm, then use the satellite algorithm to derive the 3-D cloud ice water distributions within an 10° (latitude) x 10° (longitude) area. During the research period, we have developed, validated and improved our cloud ice water retrievals, and have produced and archived at ARM website as a PI-product of the 3-D cloud ice water contents using combined satellite high-frequency microwave and surface radar observations for SGP March 2000 IOP and TWP-ICE 2006 IOP over 10 deg. x 10 deg. area centered at ARM SGP central facility and Darwin sites. We have also worked on validation of the 3-D ice water product by CloudSat data, synergy with visible/infrared cloud ice water retrievals for better results at low ice water conditions, and created a long-term (several years) of ice water climatology in 10 x 10 deg. area of ARM SGP and TWP sites and then compared it with GCMs.

  6. Properties of tropical convection observed by ARM millimeter-radars

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Properties of tropical convection observed by ARM millimeter-radars Haynes, John Colorado State University Stephens, Graeme Colorado State University Category: Cloud Properties The results of an analysis of tropical cloud systems observed from a variety of vertically pointing radar systems are described. In particular, observations taken during five years of operation of the ARM millimeter wavelength radar system (MMCR) at Manus Island in the Tropical West Pacific region are characterized into

  7. ARM - Cloud Memory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Memory Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Cloud Memory Now you can make your own cloud memory game to practice recognizing clouds at home or share with your class. Example (not to scale) of cloud memory card available for download. Example (not to scale) of cloud memory card

  8. ARM - Measurement - Cloud fraction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fraction ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud fraction Fraction of sky covered by clouds. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance

  9. Ka-Band ARM Zenith Radar (KAZR) Instrument Handbook

    SciTech Connect (OSTI)

    Widener, K; Bharadwaj, N; Johnson, K

    2012-03-06

    The Ka-band ARM zenith radar (KAZR) is a zenith-pointing Doppler cloud radar operating at approximately 35 GHz. The KAZR is an evolutionary follow-on radar to ARM's widely successful millimeter-wavelength cloud radar (MMCR). The main purpose of the KAZR is to provide vertical profiles of clouds by measuring the first three Doppler moments: reflectivity, radial Doppler velocity, and spectra width. At the sites where the dual-polarization measurements are made, the Doppler moments for the cross-polarization channel are also available. In addition to the moments, velocity spectra are also continuously recorded for each range gate.

  10. ARM Climate Research Facility Radar Operations Plan

    SciTech Connect (OSTI)

    Voyles, JW

    2012-05-18

    Roles, responsibilities, and processes associated with Atmospheric Radiation Measurement (ARM) Radar Operations.

  11. ARM: Millimeter Wave Cloud Radar (MMCR), replaces mmcrcal and mmcrmoments datastreams following C-40 processor upgrade of 2003.09.09

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Karen Johnson; Nitin Bharadwaj

    1990-01-01

    Millimeter Wave Cloud Radar (MMCR), replaces mmcrcal and mmcrmoments datastreams following C-40 processor upgrade of 2003.09.09

  12. ARM Scanning Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (fixed elevation) 3. Sector scan (for cloud tracking) 4. Staring mode 3D-Cloud Products Case Study - Marine Stratocumulus 75 o Horizontal Wind Height In-cloud horizontal wind and...

  13. Python-ARM Radar Toolkit

    Energy Science and Technology Software Center (OSTI)

    2013-03-17

    The Python-ARM Radar Toolkit (Py-ART) is a collection of radar quality control and retrieval codes which all work on two unifying Python objects: the PyRadar and PyGrid objects. By building ingests to several popular radar formats and then abstracting the interface Py-ART greatly simplifies data processing over several other available utilities. In addition Py-ART makes use of Numpy arrays as its primary storage mechanism enabling use of existing and extensive community software tools.

  14. Science Goals for the ARM Recovery Act Radars

    SciTech Connect (OSTI)

    JH Mather

    2012-05-29

    Science Goals for the ARM Recovery Act Radars. In October 2008, an ARM workshop brought together approximately 30 climate research scientists to discuss the Atmospheric Radiation Measurement (ARM) Climate Research Facility's role in solving outstanding climate science issues. Through this discussion it was noted that one of ARM's primary contributions is to provide detailed information about cloud profiles and their impact on radiative fluxes. This work supports cloud parameterization development and improved understanding of cloud processes necessary for that development. A critical part of this work is measuring microphysical properties (cloud ice and liquid water content, cloud particle sizes, shapes, and distribution). ARM measurements and research have long included an emphasis on obtaining the best possible microphysical parameters with the available instrumentation. At the time of the workshop, this research was reaching the point where additional reduction in uncertainties in these critical parameters required new instrumentation for applications such as specifying radiative heating profiles, measuring vertical velocities, and studying the convective triggering and evolution of three-dimensional (3D) cloud fields. ARM was already operating a subset of the necessary instrumentation to make some progress on these problems; each of the ARM sites included (and still includes) a cloud radar (operating at 35 or 94 GHz), a cloud lidar, and balloon-borne temperature and humidity sensors. However, these measurements were inadequate for determining detailed microphysical properties in most cases. Additional instrumentation needed to improve retrievals of microphysical processes includes radars at two additional frequencies for a total of three at a single site (35 GHz, 94 GHz, and a precipitation radar) and a Doppler lidar. Evolving to a multi-frequency scanning radar is a medium-term goal to bridge our understanding of two-dimensional (2D) retrievals to the 3D cloud field. These additional microphysical measurements would allow detailed cloud properties to be derived even in the presence of light precipitation. It is important to couple these detailed measurements of cloud microphysics to vertical motion on the cloud scale to couple microphysics with meteorological processes. Vertically pointing Doppler radars provide the vertical motion of cloud particles but, to separate particle motion from air motion, a wind profiler is required. The American Recovery and Reinvestment Act provided the means to address these needs and implement a multi-frequency suite of radars, including scanning radars, at each of the ARM sites. In addition, Doppler lidars have been deployed at several sites. With these new measurement capabilities, ARM has the measurement capabilities to tackle the problems of improving microphysical profile descriptions and evaluating the relationship between our current narrow-field-of view, zenith perspective on clouds to a description of the full 3D cloud field and its temporal evolution.

  15. ARM - Cloud and Rain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ListCloud and Rain Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Cloud and Rain Water vapor is an invisible gas that is always present in the troposphere. However, the amount of water vapor which the air can hold depends directly on the air temperature. Warm air can hold much more water

  16. ARM - Cloud Word Seek

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Word Seek Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Cloud Word Seek

  17. ARM - Measurement - Radar reflectivity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    upon the size, shape, aspect, and dielectric properties of that target. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  18. ARM - Field Campaign - Marine ARM GPCI Investigation of Clouds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsMarine ARM GPCI Investigation of Clouds (MAGIC) Campaign Links MAGIC Website ARM Data Discovery Browse Data Related Campaigns Marine ARM GPCI Investigation of Clouds...

  19. Millimeter Wave Cloud Radar (MMCR) Handbook

    SciTech Connect (OSTI)

    KB Widener; K Johnson

    2005-01-30

    The millimeter cloud radar (MMCR) systems probe the extent and composition of clouds at millimeter wavelengths. The MMCR is a zenith-pointing radar that operates at a frequency of 35 GHz. The main purpose of this radar is to determine cloud boundaries (e.g., cloud bottoms and tops). This radar will also report radar reflectivity (dBZ) of the atmosphere up to 20 km. The radar possesses a doppler capability that will allow the measurement of cloud constituent vertical velocities.

  20. ARM - Cloud Twist

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Twist Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Cloud Twist Want to make your own version of Cloud Twist? Here are the files you will need. Floor Mat A low resolution image (7.3 MB) and high resolution image (53.2 MB) are available. Spinner Board A low resolution image (992.6 KB) and

  1. ARM - Measurement - Cloud base height

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    base height ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud base height For a given cloud or cloud layer, the lowest level of the atmosphere where cloud properties are detectable. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all

  2. ARM - Measurement - Cloud top height

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    top height ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud top height For a given cloud or cloud layer, the highest level of the atmosphere where cloud properties are detectable. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all

  3. ARM - Measurement - Images of Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsImages of Clouds ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Images of Clouds Digital images of cloud scenes (various formats) from satellite, aircraft, and ground-based platforms. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  4. ARM - Measurement - Total cloud water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  5. ARM - Measurement - Cloud size

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    measurements as cloud thickness, cloud area, and cloud aspect ratio. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  6. ARM - Measurement - Cloud ice particle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ice particle ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud ice particle Particles made of ice found in clouds. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or

  7. ARM - Measurement - Cloud optical depth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    optical depth ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud optical depth Amount of light cloud droplets or ice particles prevent from passing through a column of atmosphere. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all

  8. ARM - Measurement - Cloud type

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement : Cloud type Cloud type such as cirrus, stratus, cumulus etc Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  9. ARM Installs Aircraft Detection Radar System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Installs Aircraft Detection Radar System For improved safety in and around the ARM SGP CART site, the ARM Program recently purchased and installed an aircraft detection radar system at the central facility near Lamont, Oklahoma. The new system will enhance safety measures already in place at the central facility. The SGP CART site, especially the central facility, houses several instruments employing laser technology. These instruments are designed to be eye-safe and are not a hazard to

  10. ARM - Evaluation Product - Cloud Microbase-kazr Profiles (ka) VAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsCloud Microbase-kazr Profiles (ka) VAP ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Cloud Microbase-kazr Profiles (ka) VAP The KAZR radars have recently replaced the MMCR at ARM sites, and so the new KAZR-based radar products will now serve as input to Microbase. All of the historic Microbase

  11. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, S-band Radar (williams-s_band)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  12. ARM - Measurement - Cloud location

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    point in space and time, typically expressed as a binary cloud mask. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  13. ARM - Measurement - Cloud extinction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an incident beam by the process of cloud absorption andor scattering. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  14. ARM - Evaluation Product - KAZR Active Remotely-Sensed Cloud Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (KAZRARSCL) Active Remotely-Sensed Cloud Locations (KAZRARSCL) ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : KAZR Active Remotely-Sensed Cloud Locations (KAZRARSCL) [ ARM research - evaluation data product ] The KAZR-ARSCL VAP provides cloud boundaries and best-estimate time-height fields of radar

  15. ARM - Evaluation Product - Precipitation Radar Moments Mapped...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Precipitation Radar Moments Mapped to a Cartesian Grid The Scanning...

  16. ARM - Field Campaign - Cloud IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsCloud IOP ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Cloud IOP 1998.04.27 - 1998.05.17 Lead Scientist : Gerald Mace For data sets, see below. Summary Monday, April 27, 1998 IOP Opening Activities: Heavy rain (nearly 2.5" since 12Z 4/26/98) at the central facility (CF) dominated the first day of the Cloud Physics/Single Column Model IOP and limited the daily activities. A 1430 GMT

  17. ARM - Field Campaign - Remote Cloud Sensing (RCS) Field Evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsRemote Cloud Sensing (RCS) Field Evaluation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Remote Cloud Sensing (RCS) Field Evaluation 1994.04.01 - 1994.05.31 Lead Scientist : Robert Kropfli Data Availability CPRS Cloud Data (from the University of Massachusetts Cloud Profiling Radar System (CPRS)) For data sets, see below. Abstract The primary purpose of the field evaluation and calibration

  18. ARM - Field Campaign - Remote Cloud Sensing (RCS) Field Evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsRemote Cloud Sensing (RCS) Field Evaluation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Remote Cloud Sensing (RCS) Field Evaluation 1995.04.01 - 1995.05.31 Lead Scientist : Robert Kropfli Data Availability CPRS Cloud Data (from the University of Massachusetts Cloud Profiling Radar System (CPRS)) For data sets, see below. Abstract The primary purpose of the field evaluation and calibration

  19. ARM - Field Campaign - Marine ARM GPCI Investigations of Clouds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Marine ARM GPCI Investigations of Clouds (MAGIC): Cloud Properties from Zenith...

  20. ARM - Evaluation Product - ARM Cloud Retrieval Ensemble Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsARM Cloud Retrieval Ensemble Data ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : ARM Cloud Retrieval Ensemble Data The ARM Cloud Retrieval Ensemble Data (ACRED) set is a multi-year cloud microphysical property ensemble data set created by assembling existing ARM cloud retrievals, which are based

  1. ARM - Measurement - Cloud phase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that involves property descriptors such as stratus, cumulus, and cirrus. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  2. ARM Data for Cloud Parameterization

    SciTech Connect (OSTI)

    Xu, Kuan-Man

    2006-10-02

    The PI's ARM investigation (DE-IA02-02ER633 18) developed a physically-based subgrid-scale saturation representation that fully considers the direct interactions of the parameterized subgrid-scale motions with subgrid-scale cloud microphysical and radiative processes. Major accomplishments under the support of that interagency agreement are summarized in this paper.

  3. Scanning Cloud Radar Observations at Azores: Preliminary 3D Cloud Products

    SciTech Connect (OSTI)

    Kollias, P.; Johnson, K.; Jo, I.; Tatarevic, A.; Giangrande, S.; Widener, K.; Bharadwaj, N.; Mead, J.

    2010-03-15

    The deployment of the Scanning W-Band ARM Cloud Radar (SWACR) during the AMF campaign at Azores signals the first deployment of an ARM Facility-owned scanning cloud radar and offers a prelude for the type of 3D cloud observations that ARM will have the capability to provide at all the ARM Climate Research Facility sites by the end of 2010. The primary objective of the deployment of Scanning ARM Cloud Radars (SACRs) at the ARM Facility sites is to map continuously (operationally) the 3D structure of clouds and shallow precipitation and to provide 3D microphysical and dynamical retrievals for cloud life cycle and cloud-scale process studies. This is a challenging task, never attempted before, and requires significant research and development efforts in order to understand the radar's capabilities and limitations. At the same time, we need to look beyond the radar meteorology aspects of the challenge and ensure that the hardware and software capabilities of the new systems are utilized for the development of 3D data products that address the scientific needs of the new Atmospheric System Research (ASR) program. The SWACR observations at Azores provide a first look at such observations and the challenges associated with their analysis and interpretation. The set of scan strategies applied during the SWACR deployment and their merit is discussed. The scan strategies were adjusted for the detection of marine stratocumulus and shallow cumulus that were frequently observed at the Azores deployment. Quality control procedures for the radar reflectivity and Doppler products are presented. Finally, preliminary 3D-Active Remote Sensing of Cloud Locations (3D-ARSCL) products on a regular grid will be presented, and the challenges associated with their development discussed. In addition to data from the Azores deployment, limited data from the follow-up deployment of the SWACR at the ARM SGP site will be presented. This effort provides a blueprint for the effort required for the development of 3D cloud products from all new SACRs that the program will deploy at all fixed and mobile sites by the end of 2010.

  4. Forthcoming Upgrades to the ARM MMCRs: Improved Radar Processor and Dual-Polarization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forthcoming Upgrades to the ARM MMCRs: Improved Radar Processor and Dual-Polarization K. P. Moran, B. E. Martner, and K. A. Clark National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado C. Chanders Science and Technology Corporation Background The Atmospheric Radiation Measurement (ARM) Millimeter Wavelength Cloud Radars (MMCRs) are vertically pointing ground-based Doppler systems, designed for long-term, unattended operations. In spite of very low

  5. ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : ARM Cloud Aerosol Precipitation Experiment (ACAPEX) 2015.01.14 - 2015.02.12 Lead...

  6. ARM - Field Campaign - Marine ARM GPCI Investigations of Clouds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Marine ARM GPCI Investigations of Clouds (MAGIC): Parsivel Disdrometer support for...

  7. ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : ARM Cloud Aerosol Precipitation Experiment (ACAPEX): Aerial Observations 2015.01.14...

  8. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Single installation SWACR W-Band (95 GHz) ARM Cloud Radar, mounted to scan Cloud Properties Browse Data Single installation TSI Total Sky Imager Cloud Properties...

  9. ARM - Field Campaign - Midlatitude Continental Convective Clouds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiment (MC3E) Campaign Links Science Plan MC3E Website Field Campaign Report ARM Data Discovery Browse Data Related Campaigns Midlatitude Continental Convective Clouds...

  10. Cloud radar Doppler spectra in drizzling stratiform clouds: 2. Observations and microphysical modeling of drizzle evolution

    SciTech Connect (OSTI)

    Kollias, P.; Luke, E.; Szyrmer, W.; Rmillard, J.

    2011-07-02

    In part I, the influence of cloud microphysics and dynamics on the shape of cloud radar Doppler spectra in warm stratiform clouds was discussed. The traditional analysis of radar Doppler moments was extended to include skewness and kurtosis as additional descriptors of the Doppler spectrum. Here, a short climatology of observed Doppler spectra moments as a function of the radar reflectivity at continental and maritime ARM sites is presented. The evolution of the Doppler spectra moments is consistent with the onset and growth of drizzle particles and can be used to assist modeling studies of drizzle onset and growth. Time-height radar observations are used to exhibit the coherency of the Doppler spectra shape parameters and demonstrate their potential to improve the interpretation and use of radar observations. In addition, a simplified microphysical approach to modeling the vertical evolution of the drizzle particle size distribution in warm stratiform clouds is described and used to analyze the observations. The formation rate of embryonic drizzle droplets due to the autoconversion process is not calculated explicitly; however, accretion and evaporation processes are explicitly modeled. The microphysical model is used as input to a radar Doppler spectrum forward model, and synthetic radar Doppler spectra moments are generated. Three areas of interest are studied in detail: early drizzle growth near the cloud top, growth by accretion of the well-developed drizzle, and drizzle depletion below the cloud base due to evaporation. The modeling results are in good agreement with the continental and maritime observations. This demonstrates that steady state one-dimensional explicit microphysical models coupled with a forward model and comprehensive radar Doppler spectra observations offer a powerful method to explore the vertical evolution of the drizzle particle size distribution.

  11. ARM Cloud Properties Working Group: Meeting Logistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Properties WG Breakout Session 2008 ARM Science Team Meeting Mar. 10, 2008, Norfolk, VA Monday March 10, 2008 1500 to 1515: R. Hogan - A Proposal for ARM support of Cloudnet Activities 1515 to 1530: M. Jensen - Cloud Properties Value- Added Product Development 1530 to 1545: C. Long - Instrument Group Report 1545 to 1600: S. Matrosov - WSR-88D data for ARM science 1600 to 1615: Y. Zhao - A BimodalParticle Distribution Assumption in Cirrus: Comparison of retrieval results with in situ

  12. ARM - Measurement - Cloud particle number concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    number concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud particle number concentration The total number of cloud particles present in any given volume of air. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available

  13. ARM - Measurement - Cloud particle size distribution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    size distribution ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud particle size distribution The number of cloud particles present in any given volume of air within a specified size range, including liquid and ice. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each

  14. ARM - Evaluation Product - ISCCP Cloud Data Around the ARM Sites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsISCCP Cloud Data Around the ARM Sites Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : ISCCP Cloud Data Around the ARM Sites ISCCP data (Rossow and Schiffer, 1999 and Rossow, et.al. 2005) are widely used in the climate modeling community. Within our LLNL CCPP-ARM Parameterization Testbed (CAPT) team, we have been using the ISCCP

  15. ARM - Field Campaign - Marine ARM GPCI Investigations of Clouds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Browse Data Related Campaigns Marine ARM GPCI Investigation of Clouds (MAGIC) 2012.10.01, Lewis, AMF Comments? We would love to hear from you Send us a note below or call us at...

  16. ARM - PI Product - Cloud Properties and Radiative Heating Rates for TWP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsCloud Properties and Radiative Heating Rates for TWP ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Cloud Properties and Radiative Heating Rates for TWP A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites

  17. Evaluation of high-level clouds in cloud resolving model simulations with ARM and KWAJEX observations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Zheng; Muhlbauer, Andreas; Ackerman, Thomas

    2015-11-05

    In this paper, we evaluate high-level clouds in a cloud resolving model during two convective cases, ARM9707 and KWAJEX. The simulated joint histograms of cloud occurrence and radar reflectivity compare well with cloud radar and satellite observations when using a two-moment microphysics scheme. However, simulations performed with a single moment microphysical scheme exhibit low biases of approximately 20 dB. During convective events, two-moment microphysical overestimate the amount of high-level cloud and one-moment microphysics precipitate too readily and underestimate the amount and height of high-level cloud. For ARM9707, persistent large positive biases in high-level cloud are found, which are not sensitivemore » to changes in ice particle fall velocity and ice nuclei number concentration in the two-moment microphysics. These biases are caused by biases in large-scale forcing and maintained by the periodic lateral boundary conditions. The combined effects include significant biases in high-level cloud amount, radiation, and high sensitivity of cloud amount to nudging time scale in both convective cases. The high sensitivity of high-level cloud amount to the thermodynamic nudging time scale suggests that thermodynamic nudging can be a powerful ‘‘tuning’’ parameter for the simulated cloud and radiation but should be applied with caution. The role of the periodic lateral boundary conditions in reinforcing the biases in cloud and radiation suggests that reducing the uncertainty in the large-scale forcing in high levels is important for similar convective cases and has far reaching implications for simulating high-level clouds in super-parameterized global climate models such as the multiscale modeling framework.« less

  18. CloudSat as a Global Radar Calibrator

    SciTech Connect (OSTI)

    Protat, Alain; Bouniol, Dominique; O'Connor, E. J.; Baltink, Henk K.; Verlinde, J.; Widener, Kevin B.

    2011-03-01

    The calibration of the CloudSat spaceborne cloud radar has been thoroughly assessed using very accurate internal link budgets before launch, comparisons with predicted ocean surface backscatter at 94 GHz, direct comparisons with airborne cloud radars, and statistical comparisons with ground-based cloud radars at different locations of the world. It is believed that the calibration of CloudSat is accurate to within 0.5 to 1 dB. In the present paper it is shown that an approach similar to that used for the statistical comparisons with ground-based radars can now be adopted the other way around to calibrate other ground-based or airborne radars against CloudSat and / or detect anomalies in long time series of ground-based radar measurements, provided that the calibration of CloudSat is followed up closely (which is the case). The power of using CloudSat as a Global Radar Calibrator is demonstrated using the Atmospheric Radiation Measurement cloud radar data taken at Barrow, Alaska, the cloud radar data from the Cabauw site, The Netherlands, and airborne Doppler cloud radar measurements taken along the CloudSat track in the Arctic by the RASTA (Radar SysTem Airborne) cloud radar installed in the French ATR-42 aircraft for the first time. It is found that the Barrow radar data in 2008 are calibrated too high by 9.8 dB, while the Cabauw radar data in 2008 are calibrated too low by 8.0 dB. The calibration of the RASTA airborne cloud radar using direct comparisons with CloudSat agrees well with the expected gains and losses due to the change in configuration which required verification of the RASTA calibration.

  19. ARM - Field Campaign - Fall 1997 Cloud IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsFall 1997 Cloud IOP ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Fall 1997 Cloud IOP 1997.09.15 - 1997.10.05 Lead Scientist : Gerald Mace For data sets, see below. Summary The primary objective of the Cloud IOP was to generate a multi-platform data set that can be used as validation for cloud property retrieval algorithms that are being implemented on the operational MMCR data stream.

  20. ARM - Evaluation Product - Corrected Precipitation Radar Moments in Antenna

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coordinates ProductsCorrected Precipitation Radar Moments in Antenna Coordinates Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Corrected Precipitation Radar Moments in Antenna Coordinates Raw moments from the scanning ARM precipitation radars (SAPRs) are subject to a number of instrumental and atmospheric phenomena that must be

  1. ARM - Field Campaign - Midlatitude Continental Convective Clouds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency...

  2. ARM - Field Campaign - Boundary Layer Cloud IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsBoundary Layer Cloud IOP Campaign Links Campaign Images ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at...

  3. ARM - Field Campaign - Arctic Cloud Infrared Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Arctic Cloud Infrared Imaging 2012.07.16 - 2014.07.31 Lead Scientist : Joseph Shaw...

  4. ARM - Measurement - Cloud droplet size

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    droplet size Linear size (e.g. radius or diameter) of a cloud particle Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  5. ARM - Measurement - Cloud effective radius

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the number size distribution of cloud particles, whether liquid or ice. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  6. ARM - Instrument - kasacr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentskasacr Documentation KASACR : Handbook ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Ka-Band Scanning ARM Cloud Radar (KASACR) Instrument Categories Cloud Properties Note: All the Scanning ARM Cloud Radars have been technically accepted by ARM as meeting specification and each radar's first data are available at this URL: http://www.archive.arm.gov/sacr/. ARM's scanning cloud radars are

  7. ARM - Instrument - wsacr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentswsacr Documentation WSACR : Handbook ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : W-band Scanning ARM Cloud Radar (WSACR) Instrument Categories Cloud Properties Note: All the Scanning ARM Cloud Radars have been technically accepted by ARM as meeting specification and each radar's first data are available at this URL: http://www.archive.arm.gov/sacr/. ARM's scanning cloud radars are

  8. ARM Cloud Retrieval Ensemble Data Set (ACRED)

    SciTech Connect (OSTI)

    Zhao, C; Xie, S; Klein, SA; McCoy, R; Comstock, JM; Delanoë, J; Deng, M; Dunn, M; Hogan, RJ; Jensen, MP; Mace, GG; McFarlane, SA; O’Connor, EJ; Protat, A; Shupe, MD; Turner, D; Wang, Z

    2011-09-12

    This document describes a new Atmospheric Radiation Measurement (ARM) data set, the ARM Cloud Retrieval Ensemble Data Set (ACRED), which is created by assembling nine existing ground-based cloud retrievals of ARM measurements from different cloud retrieval algorithms. The current version of ACRED includes an hourly average of nine ground-based retrievals with vertical resolution of 45 m for 512 layers. The techniques used for the nine cloud retrievals are briefly described in this document. This document also outlines the ACRED data availability, variables, and the nine retrieval products. Technical details about the generation of ACRED, such as the methods used for time average and vertical re-grid, are also provided.

  9. ARM - PI Product - Cloud-Scale Vertical Velocity and Turbulent Dissipation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rate Retrievals ProductsCloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files

  10. ARM - Field Campaign - NSA Scanning Radar IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scanning radar observations for a variety of sampling modes assess the real-time signal processing of the 3-cm wave precipitation scanning radar by collecting IQ time...

  11. ARM - Measurement - Cloud condensation nuclei

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AOS : Aerosol Observing System CCN : Cloud Condensation Nuclei Particle Counter TDMA : Tandem Differential Mobility Analyzer Field Campaign Instruments AMT : Aerosol Modeling...

  12. ARM - Instrument - xsacr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsxsacr Documentation XSACR : Handbook ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : X-Band Scanning ARM Cloud Radar (XSACR) Instrument Categories Cloud Properties Picture of the X-band scanning ARM cloud radar Note: All the Scanning ARM Cloud Radars have been technically accepted by ARM as meeting specification and each radar's first data are available at this URL:

  13. ARM - Instrument - wacr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentswacr Documentation WACR : Handbook ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : W-Band (95 GHz) ARM Cloud Radar (WACR) Instrument Categories Cloud Properties Latest version W-band ARM cloud radar General Overview The W-band Atmospheric Radiation Measurement (ARM) Program Cloud Radar (WACR) systems are zenith pointing Doppler radars that probe the extent and composition of clouds at

  14. Mixed-Phase Cloud Retrievals Using Doppler Radar Spectra

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mixed-Phase Cloud Retrievals Using Doppler Radar Spectra M. D. Shupe, S. Y. Matrosov, and T. L. Schneider National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado P. Kollias Rosentiel School of Marine Atmospheric Sciences University of Miami Miami, Florida Introduction The radar Doppler spectrum contains a wealth of information on cloud microphysical properties. Typically, radar-based cloud retrievals use only the zeroth or first moments of the

  15. ARM - Field Campaign - Measuring Clouds at SGP with Stereo Photogramme...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the form of the Point Cloud of Cloud Points Product (PCCPP). The PCCPP will: provide context on life-cycle stage and cloud position for vertically pointing radars, lidars, and...

  16. ARM - Field Campaign - 2001 Multi-Frequency Radar IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaigns2001 Multi-Frequency Radar IOP ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : 2001 Multi-Frequency Radar IOP 2001.03.01 - 2001.09.30 Lead Scientist : Stephen Sekelsky Data Availability http://abyss.ecs.umass.edu For data sets, see below. Summary Install UMass and NOAA Aeronomy Laboratory "guest instrument" radars at the SGP CART site adjacent to the MMCR system. Both the UMass and

  17. X-band Scanning ARM Precipitation Radar (X-SAPR) Instrument Handbook

    SciTech Connect (OSTI)

    Widener, K; Bharadwaj, N

    2012-10-29

    The X-band scanning ARM cloud radar (X-SAPR) is a full-hemispherical scanning polarimetric Doppler radar transmitting simultaneously in both H and V polarizations. With a 200 kW magnetron transmitter, this puts 100 kW of transmitted power for each polarization. The receiver for the X-SAPR is a Vaisala Sigmet RVP-900 operating in a coherent-on-receive mode. Three X-SAPRs are deployed around the Southern Great Plains (SGP) Central Facility in a triangular array. A fourth X-SAPR is deployed near Barrow, Alaska on top of the Barrow Arctic Research Center.

  18. ARM Cloud Aerosol Precipitation Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Precipitation Experiment a NOAA ship in the Pacific Ocean and on a DOE- sponsored plane over land and sea. These researchers will study: (1) water sources, evolution and structure of atmospheric rivers over the Pacific Ocean (2) long range transport of aerosols over the Pacific Ocean between Hawaii and the U.S. West Coast, and how aerosols interact with atmospheric rivers (3) the point where atmospheric rivers make landfall on the U.S. West Coast, especially how clouds form where

  19. DOE/SC-ARM-12-006 ARM Climate Research Facility Radar Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 ARM Climate Research Facility Radar Operations Plan May 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States...

  20. ARM - PI Product - Atmospheric State, Cloud Microphysics & Radiative Flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsAtmospheric State, Cloud Microphysics & Radiative Flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Atmospheric State, Cloud Microphysics & Radiative Flux [ ARM Principal Investigator (PI) Data Product ] Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the

  1. ARM - PI Product - Tropical Cloud Properties and Radiative Heating Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsTropical Cloud Properties and Radiative Heating Profiles ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Tropical Cloud Properties and Radiative Heating Profiles We have generated a suite of products that includes merged soundings, cloud microphysics, and radiative fluxes and heating profiles. The cloud microphysics is strongly based on the ARM Microbase value added product (Miller et al.,

  2. MAGIC: Marine ARM GPCI Investigation of Clouds

    SciTech Connect (OSTI)

    Lewis, ER; Wiscombe, WJ; Albrecht, BA; Bland, GL; Flagg, CN; Klein, SA; Kollias, P; Mace, G; Reynolds, RM; Schwartz, SE; Siebesma, AP; Teixeira, J; Wood, R; Zhang, M

    2012-10-03

    The second Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF2) will be deployed aboard the Horizon Lines cargo container ship merchant vessel (M/V) Spirit for MAGIC, the Marine ARM GPCI1 Investigation of Clouds. The Spirit will traverse the route between Los Angeles, California, and Honolulu, Hawaii, from October 2012 through September 2013 (except for a few months in the middle of this time period when the ship will be in dry dock). During this field campaign, AMF2 will observe and characterize the properties of clouds and precipitation, aerosols, and atmospheric radiation; standard meteorological and oceanographic variables; and atmospheric structure. There will also be two intensive observational periods (IOPs), one in January 2013 and one in July 2013, during which more detailed measurements of the atmospheric structure will be made.

  3. ARM - Midlatitude Continental Convective Clouds

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike; Bartholomew, Mary Jane; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos

    2012-01-19

    Convective processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of convective processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to convective processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.

  4. ARM - Midlatitude Continental Convective Clouds

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike; Bartholomew, Mary Jane; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos

    Convective processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of convective processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to convective processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2014 [Facility News] Under the Radar-This Time in Retirement Bookmark and Share Kevin Widener (in red), seen here with Andrei Lindenmaier in front of the scanning ARM cloud radar, began retired life officially on October 31, 2014. Kevin Widener (in red), seen here with Andrei Lindenmaier in front of the scanning ARM cloud radar, began retired life officially on October 31, 2014. After 30 years with Pacific Northwest National Laboratory, including the last two decades as leader of ARM's radar

  6. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H.-L.(b), University of Utah (a), EMCNCEPNOAA (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Using cloud radar observations of cirrus cloud...

  7. Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing applications

    SciTech Connect (OSTI)

    Kollias, P.; Luke, E.; Rmillard, J.; Szyrmer, W.

    2011-07-02

    Several aspects of spectral broadening and drizzle growth in shallow liquid clouds remain not well understood. Detailed, cloud-scale observations of microphysics and dynamics are essential to guide and evaluate corresponding modeling efforts. Profiling, millimeter-wavelength (cloud) radars can provide such observations. In particular, the first three moments of the recorded cloud radar Doppler spectra, the radar reflectivity, mean Doppler velocity, and spectrum width, are often used to retrieve cloud microphysical and dynamical properties. Such retrievals are subject to errors introduced by the assumptions made in the inversion process. Here, we introduce two additional morphological parameters of the radar Doppler spectrum, the skewness and kurtosis, in an effort to reduce the retrieval uncertainties. A forward model that emulates observed radar Doppler spectra is constructed and used to investigate these relationships. General, analytical relationships that relate the five radar observables to cloud and drizzle microphysical parameters and cloud turbulence are presented. The relationships are valid for cloud-only, cloud mixed with drizzle, and drizzle-only particles in the radar sampling volume and provide a seamless link between observations and cloud microphysics and dynamics. The sensitivity of the five observed parameters to the radar operational parameters such as signal-to-noise ratio and Doppler spectra velocity resolution are presented. The predicted values of the five observed radar parameters agree well with the output of the forward model. The novel use of the skewness of the radar Doppler spectrum as an early qualitative predictor of drizzle onset in clouds is introduced. It is found that skewness is a parameter very sensitive to early drizzle generation. In addition, the significance of the five parameters of the cloud radar Doppler spectrum for constraining drizzle microphysical retrievals is discussed.

  8. ARM - Field Campaign - IR Cloud Camera Feasibility Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsIR Cloud Camera Feasibility Study ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send...

  9. ARM - Datastreams - kasacrcrcal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamskasacrcrcal Documentation Data Quality Plots Citation DOI: 10.5439/1095595 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KASACRCRCAL Ka-Band Scanning ARM Cloud Radar (KASACR) Corner Reflector Calibration Active Dates 2011.12.16 - 2014.03.10 Measurement Categories Cloud Properties Originating Instrument Ka-Band Scanning ARM Cloud Radar (KASACR)

  10. ARM - Datastreams - kasacrcrraster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamskasacrcrraster Documentation Data Quality Plots Citation DOI: 10.5439/1095596 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KASACRCRRASTER Ka-Band Scanning ARM Cloud Radar (KASACR) Corner Reflector Raster Scan Active Dates 2012.07.19 - 2014.03.10 Measurement Categories Cloud Properties Originating Instrument Ka-Band Scanning ARM Cloud Radar (KASACR)

  11. ARM - Datastreams - kasacrppi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamskasacrppi Documentation Data Quality Plots Citation DOI: 10.5439/1046198 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KASACRPPI Ka-Band Scanning ARM Cloud Radar (KASACR) PPI Active Dates 2011.04.11 - 2015.07.02 Measurement Categories Cloud Properties Originating Instrument Ka-Band Scanning ARM Cloud Radar (KASACR) Measurements Only measurements

  12. ARM - Datastreams - wsacrcrraster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamswsacrcrraster Documentation Data Quality Plots Citation DOI: 10.5439/1150281 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : WSACRCRRASTER W-Band Scanning ARM Cloud Radar (WSACR) Corner Reflector Raster Scan Active Dates 2012.06.20 - 2013.11.27 Measurement Categories Cloud Properties Originating Instrument W-band Scanning ARM Cloud Radar (WSACR)

  13. ARM - Field Campaign - MASRAD: Cloud Condensate Nuclei Chemistry...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Condensate Nuclei Chemistry Measurements Campaign Links AMF Point Reyes Website ARM Data Discovery Browse Data Related Campaigns MArine Stratus Radiation Aerosol and Drizzle...

  14. ARM - Field Campaign - Cirrus Clouds and Aerosol Properties Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsCirrus Clouds and Aerosol Properties Campaign ARM Data Discovery Browse Data Related Campaigns Vaisala Laser Ceilometer CL51 Demonstration 2013.11.14, Winston, SGP...

  15. ARM - Field Campaign - MASRAD: Pt. Reyes Stratus Cloud and Drizzle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsMASRAD: Pt. Reyes Stratus Cloud and Drizzle Study Campaign Links AMF Point Reyes Website ARM Data Discovery Browse Data Related Campaigns MArine Stratus Radiation...

  16. ARM - Field Campaign - Colorado: The Storm Peak Lab Cloud Property...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Storm Peak Lab Cloud Property Validation Experiment (STORMVEX) Campaign Links STORMVEX Website ARM Data Discovery Browse Data Related Campaigns Colorado: CFHCMH Deployment to...

  17. Testing AGCM-Predicted Cloud and Radiation Properties with ARM...

    Office of Scientific and Technical Information (OSTI)

    evaluate treatment of clouds and radiation in an atmospheric global climate model (AGCM) using long-term observations from the Atmospheric Radiation Measurement (ARM) program. ...

  18. ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Campaign Links BAECC Website ARM Data Discovery Browse Data Related Campaigns Biogenic Aerosols - Effects on Clouds and Climate: Cloud OD Sensor TWST 2014.06.15, Scott, AMF...

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10, 2016 [Facility News] Opportunity for Cloud Properties Retrieval Algorithm Development: Request for Interest Opened Bookmark and Share The ARM Facility is seeking a scientific consultant to develop an operational cloud property algorithm, using data from ARM facilities and instruments like these scanning cloud radars. The ARM Facility is seeking a scientific consultant to develop an operational cloud property algorithm, using data from ARM facilities and instruments like these scanning cloud

  20. ARM - Publications: Science Team Meeting Documents: Cloud Radiative Forcing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the ARM Climate Research Facility: Part 2. The Vertical Redistribution of Radiant Energy by Clouds. Cloud Radiative Forcing at the ARM Climate Research Facility: Part 2. The Vertical Redistribution of Radiant Energy by Clouds. Mace, Gerald University of Utah Benson, Sally University of Utah Kato, Seiji Hampton University/NASA Langley Research Center Documentation with data of the effects of clouds on the radiant energy balance of the surface and atmosphere represent a critical shortcoming

  1. ARM - Instrument -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstruments Documentation : Contacts (PHP) : Index (PHP) : Instrument-fc (PHP) : Instrument (PHP) : Location (PHP) Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Instruments () A relocated wind profiler, a new dual-frequency scanning cloud radar, and an upgraded K-band ARM zenith radar line up at the SGP site A relocated wind profiler, a new dual-frequency scanning cloud radar, and an upgraded K-band ARM zenith radar line up at

  2. ARM - Field Campaign - Cloud LAnd Surface Interaction Campaign...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Campaign Links CLASIC Website ARM Data Discovery Browse Data Related Campaigns CLASIC - SAM Support 2007.06.09, DeVore, SGP CLASIC - 9.4 GHz Phase Array Radar 2007.06.08, Kollias,...

  3. Clouds, aerosol, and precipitation in the Marine Boundary Layer: An ARM mobile facility deployment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wood, Robert; Luke, Ed; Wyant, Matthew; Bretherton, Christopher S.; Remillard, Jasmine; Kollias, Pavlos; Fletcher, Jennifer; Stemmler, Jayson; deSzoeke, S.; Yuter, Sandra; et al

    2014-04-27

    The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21-month (April 2009-December 2010) comprehensive dataset documenting clouds, aerosols, and precipitation using the Atmospheric Radiation Measurement Program (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols, and precipitation in the marine boundary layer. Graciosa Island straddles the boundary between the subtropics and midlatitudes in the Northeast Atlantic Ocean and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulusmore » and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1-11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back-trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging.The data from Graciosa are being compared with short-range forecasts made with a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a permanent fixed ARM site that became operational in October 2013.« less

  4. Clouds, aerosol, and precipitation in the Marine Boundary Layer: An ARM mobile facility deployment

    SciTech Connect (OSTI)

    Wood, Robert; Luke, Ed; Wyant, Matthew; Bretherton, Christopher S.; Remillard, Jasmine; Kollias, Pavlos; Fletcher, Jennifer; Stemmler, Jayson; deSzoeke, S.; Yuter, Sandra; Miller, Matthew; Mechem, David; Tselioudis, George; Chiu, Christine; Mann, Julia; O Connor, Ewan; Hogan, Robin; Dong, Xiquan; Miller, Mark; Ghate, Virendra; Jefferson, Anne; Min, Qilong; Minnis, Patrick; Palinkonda, Rabindra; Albrecht, Bruce; Hannay, Cecile; Lin, Yanluan

    2014-04-27

    The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21-month (April 2009-December 2010) comprehensive dataset documenting clouds, aerosols, and precipitation using the Atmospheric Radiation Measurement Program (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols, and precipitation in the marine boundary layer. Graciosa Island straddles the boundary between the subtropics and midlatitudes in the Northeast Atlantic Ocean and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulus and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1-11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back-trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging.The data from Graciosa are being compared with short-range forecasts made with a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a permanent fixed ARM site that became operational in October 2013.

  5. ARM - PI Product - Cloud Property Retrieval Products for Graciosa Island,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Azores ProductsCloud Property Retrieval Products for Graciosa Island, Azores ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Cloud Property Retrieval Products for Graciosa Island, Azores [ research data - ASR funded ] The motivation for developing this product was to use the Dong et al. 1998 method to retrieve cloud microphysical properties, such as cloud droplet effective radius, cloud droplets

  6. ARM's efforts to address the need for 3D cloud and precipitation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2007 Multi-scale Observing Facility (MOF) - Whitepaper 2009 Steps forward: ARM-CASA Partnership ARM-GPM proposed field campaign Wind Profiler IOP Radar simulator...

  7. ARM - PI Product - AERIoe Thermodynamic Profile and Cloud Retrieval for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MC3E Lamont X-band site (I6) Lamont X-band site (I6) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : AERIoe Thermodynamic Profile and Cloud Retrieval for MC3E Lamont X-band site (I6) [ ARM research ] The AERIoe algorithm retrieves profiles of temperature and water vapor mixing ratio, together with cloud properties for a single-layer cloud (i.e., LWP, effective radius), from AERI-observed infrared

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    31, 2009 [Facility News] New Cloud Radar to Join Mobile Facility on Graciosa Island Bookmark and Share These schematics illustrate the rotational capabilities of the new scanning radar. Much like an operational weather radar, the design allows the antenna to scan any portion of the sky; quite a departure from the one-directional beam of traditional ARM cloud radars. (illustration courtesy of ProSensing, Inc.) These schematics illustrate the rotational capabilities of the new scanning radar. Much

  9. Posters Radar/Radiometer Retrievals of Cloud Liquid Water and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Posters Radar/Radiometer Retrievals of Cloud Liquid Water and Drizzle: Analysis Using Data from a Three-Dimensional Large Eddy Simulation of Marine Stratocumulus Clouds G. Feingold Cooperative Institute for Research in Environmental Sciences University of Colorado Boulder, Colorado A. S. Frisch National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado B. Stevens and W. R. Cotton Colorado State University Fort Collins, Colorado Introduction Marine

  10. ARM - Field Campaign - Deep Convective Clouds and Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsDeep Convective Clouds and Chemistry Campaign Links DC3 Experiment Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send...

  11. ARM - Field Campaign - Mixed-Phase Arctic Cloud Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsMixed-Phase Arctic Cloud Experiment Campaign Links Science Document M-PACE Website Final Summary Report ARM Data Discovery Browse Data Comments? We would love to hear...

  12. ARM - Field Campaign - Tropical Warm Pool - International Cloud...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsTropical Warm Pool - International Cloud Experiment (TWP-ICE) Campaign Links TWP-ICE Website ARM Data Discovery Browse Data Comments? We would love to hear from you...

  13. ARM - Evaluation Product - CMWG Data - SCM-Forcing Data, Cloud

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microphysical Properties and Radiative Heating Profiles ProductsCMWG Data - SCM-Forcing Data, Cloud Microphysical Properties and Radiative Heating Profiles ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : CMWG Data - SCM-Forcing Data, Cloud Microphysical Properties and Radiative Heating Profiles

  14. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Links MC3E Home News News & Press MC3E Backgrounder (PDF, 1.61MB) SGP Images ARM flickr site Field Blog ARM Data Discovery Browse Data Deployment Operations Measurements Science Plan (PDF, 3.85 MB) Featured Data Plots SGP Data Plots (all) Experiment Planning Steering Committee Science Questions MC3E Proposal Abstract and Related Campaigns Meetings Cloud Life Cycle Working Group Contacts Michael Jensen, Lead Scientist Midlatitude Continental Convective Clouds Experiment (MC3E) Thanks

  15. ARM - Publications: Science Team Meeting Documents: W-Band ARM...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kevin Pacific Northwest National Laboratory The W-Band ARM Cloud Radar (WACR) is a dual polarization 95 GHz radar that will be deployed at the SGP CART site in the spring of...

  16. DOE/SC-ARM-12-009 ARM Radar Organization JW Voyles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 ARM Radar Organization JW Voyles June 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein

  17. DOE/SC-ARM-12-010 Science Goals for the ARM Recovery Act Radars

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Science Goals for the ARM Recovery Act Radars JH Mather May 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned

  18. DOE/SC-ARM-13-008 First ARM/ASR Radar Workshop: Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 First ARM/ASR Radar Workshop: Workshop Summary and Recommendations KB Widener and P Kollias May 2013 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use

  19. ARM - Datastreams - kasacrslr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamskasacrslr Documentation Data Quality Plots Citation DOI: 10.5439/1046200 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KASACRSLR Ka-Band Scanning ARM Cloud Radar (KASACR) Side-Looking Radar Active Dates 2011.12.09 - 2014.01.17 Measurement Categories Cloud Properties Originating Instrument Ka-Band Scanning ARM Cloud Radar (KASACR) Measurements Only

  20. ARM - Datastreams - wsacrslr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamswsacrslr Documentation Data Quality Plots Citation DOI: 10.5439/1150287 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : WSACRSLR W-Band Scanning ARM Cloud Radar (W-SACR) Side-Looking Radar Active Dates 2011.12.09 - 2013.05.21 Measurement Categories Cloud Properties Originating Instrument W-band Scanning ARM Cloud Radar (WSACR) Measurements Only measurements

  1. ARM - Datastreams - xsacrslr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsxsacrslr Documentation Data Quality Plots Citation DOI: 10.5439/1150300 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : XSACRSLR X-Band Scanning ARM Cloud Radar (X-SACR) Side-Looking Radar Active Dates 2014.01.16 - 2014.01.17 Measurement Categories Cloud Properties Originating Instrument X-Band Scanning ARM Cloud Radar (XSACR) Measurements Only measurements

  2. ARM - Publications: Science Team Meeting Documents: Cirrus Cloud

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurements by the UAF Polarization Diversity Lidar during M-PACE Cirrus Cloud Measurements by the UAF Polarization Diversity Lidar during M-PACE Sassen, Kenneth University of Alaska Fairbanks Zhu, Jiang UAF During the final week of the September-October 2004 Mixed-Phase Cloud Experiment (M-PACE) conducted in and around the North Slope of Alaska (NSA) Atmospheric Radiation Measurement (ARM) site in Barrow, Alaska, cirrus clouds were unexpectedly prevalent. Overcoming earlier adversity, the

  3. Comparison of Parameterized Cloud Variability to ARM Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Parameterized Cloud Variability to ARM Data S. A. Klein National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory Princeton, New Jersey J. R. Norris Scripps Institute of Oceanography University of California La Jolla, California Abstract Cloud parameterizations in large-scale models often try to predict the amount of sub-grid scale variability in cloud properties to address the significant non-linear effects of radiation and precipitation. Statistical

  4. ARM - Field Campaign - Macquarie Island Cloud and Radiation Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (MICRE) govCampaignsMacquarie Island Cloud and Radiation Experiment (MICRE) Campaign Links Science Plan Backgrounder Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Macquarie Island Cloud and Radiation Experiment (MICRE) 2016.03.01 - 2018.03.31 Lead Scientist : Roger Marchand Abstract Clouds over the Southern Ocean are poorly represented in present day reanalysis products and global climate model simulations. Errors in

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Data Stream Available from Millimeter Wave Cloud Radar Bookmark and Share Inside the instrument shelter, the MMCR data system collects radar spectral data and processes these into reflectivity, vertical velocities, and spectral width. As a result of upgrades to the Millimeter Wave Cloud Radar (MMCR) processors (see http://www.arm.gov/acrf/updates051504.stm#nsammcr) at the ARM Climate Research Facility Southern Great Plains (SGP) and North Slope of Alaska (NSA) locales, two MMCR data

  6. ARM - Instrument - xsapr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsxsapr Documentation XSAPR : Handbook ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : X-Band Scanning ARM Precipitation Radar (XSAPR) Instrument Categories Cloud Properties Picture of the X-band scanning ARM precipitation radar General Overview The X-band scanning ARM precipitation radar (X-SAPR) is an X-band dual-polarization Doppler weather radar manufactured by Radtec, Inc. The X-SAPR

  7. ARM - Publications: Science Team Meeting Documents: Clouds over the ARM SGP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Network area - 3D prospective Clouds over the ARM SGP Network area - 3D prospective Genkova, Iliana University of Illinois-Champaign Long, Chuck Pacific Northwest National Laboratory Minnis, Patrick NASA Langley Research Center Heck, Patrick University of Wisconsin Khaiyer, Mandana Analytical Services and Material, Inc. The poster will present the final product of a 3-dimentional characterization of the clouds over the ARM SGP network area. We have aquired various ground-based and satellite

  8. Ice Concentration Retrieval in Stratiform Mixed-phase Clouds Using Cloud Radar Reflectivity Measurements and 1D Ice Growth Model Simulations

    SciTech Connect (OSTI)

    Zhang, Damao; Wang, Zhien; Heymsfield, Andrew J.; Fan, Jiwen; Luo, Tao

    2014-10-01

    Measurement of ice number concentration in clouds is important but still challenging. Stratiform mixed-phase clouds (SMCs) provide a simple scenario for retrieving ice number concentration from remote sensing measurements. The simple ice generation and growth pattern in SMCs offers opportunities to use cloud radar reflectivity (Ze) measurements and other cloud properties to infer ice number concentration quantitatively. To understand the strong temperature dependency of ice habit and growth rate quantitatively, we develop a 1-D ice growth model to calculate the ice diffusional growth along its falling trajectory in SMCs. The radar reflectivity and fall velocity profiles of ice crystals calculated from the 1-D ice growth model are evaluated with the Atmospheric Radiation Measurements (ARM) Climate Research Facility (ACRF) ground-based high vertical resolution radar measurements. Combining Ze measurements and 1-D ice growth model simulations, we develop a method to retrieve the ice number concentrations in SMCs at given cloud top temperature (CTT) and liquid water path (LWP). The retrieved ice concentrations in SMCs are evaluated with in situ measurements and with a three-dimensional cloud-resolving model simulation with a bin microphysical scheme. These comparisons show that the retrieved ice number concentrations are within an uncertainty of a factor of 2, statistically.

  9. ARM - VAP Process - wacrarscl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Productswacrarscl Documentation & Plots Data Management Facility Plots (Quick Looks) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP : W-band Cloud Radar Active Remote Sensing of Cloud (WACRARSCL) Instrument Categories Cloud Properties Observations from the 95 GHz W-band ARM Cloud Radar (WACR), Micropulse Lidar, and ceilometer have been combined using the new WACR Active Remote Sensing of Clouds (WACR-ARSCL)

  10. ARM - Datastreams - mmcrspectra

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsmmcrspectra Documentation Data Quality Plots Citation DOI: 10.5439/1025242 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : MMCRSPECTRA Millimeter Wavelength Cloud Radar (MMCR): spectral data Active Dates 1997.03.31 - 2000.03.21 Measurement Categories Cloud Properties Originating Instrument Millimeter Wavelength Cloud Radar (MMCR) Measurements The

  11. ARM - Field Campaign - Spring Cloud IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    respectively. From these measurements, cloud condensed water content (CVIcwc) and number concentration (CVInum) are determined. CVInum may be artificially enhanced due to breakup...

  12. ARM - Evaluation Product - Cloud Classification VAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    properties includes cloud boundaries, thickness, phase, type, and precipitation information, and hence provides a useful tool for evaluation of model simulations and...

  13. A Radar-based Observing System for Validation of Cloud Resolving Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radar System Designed for Validation of Cloud Resolving Models Pavlos Kollias Atmospheric Science Division Brookhaven National Laboratory Cloud REsolving MOdel Radar (CREMORA) Scientific Justification Why do we need to know 3-D structure of cloud systems? Slide provided by Tom Ackerman -Evaluation of *Cloud System Resolving Models (one pathway to parameterization development and to climate models) *Satellite retrievals of cloud system properties -Lifecycle of convective systems - all phases of

  14. ARM - PI Product - Merged and corrected 915 MHz Radar Wind Profiler moments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsMerged and corrected 915 MHz Radar Wind Profiler moments ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Merged and corrected 915 MHz Radar Wind Profiler moments [ ARM research ] The radar wind profiler (RWP) present at the SGP central facility operates at 915 MHz and was reconfigured in early 2011, to collect key sets of measurements for precipitation and boundary layer studies. The RWP is

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    W-Band Cloud Radar Added to ARM Mobile Facility in Africa Bookmark and Share Most of the WACR is mounted on top of one of the AMF shelters. The WACR computer and chiller (used to keep the WACR cool in temperatures up to 47 degrees C) are located in the shelter below the radar. A W-band ARM Cloud Radar (WACR) recently joined the suite of baseline capabilities offered by the ARM Mobile Facility (AMF). The term "W-band" refers to the specific radio frequency range of this radar, which is

  16. ARM - Cloud and Land Surface Interaction Campaign (CLASIC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Campaign (CLASIC) Related Links CLASIC Home AAF Home ARM Data Discovery Browse Data Post-Campaign CLASIC/CHAPS Special Session at AGU Annual Meeting, December 15-19 CLASIC Workshop, March 26-27 Data Sets Deployment Resources Measurement Platforms PNNL WRF-CuP Forecast Cloud Physics Lidar MODIS Airborne Simulator Data Mesonet Monitoring ARM Data Plots Experiment Planning CLASIC Proposal Abstract Science Questions Science and Implementation Plan (pdf) Measurement Platforms (pdf) CLASIC-Land

  17. ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds and Climate:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extended Radiosonde IOP Extended Radiosonde IOP ARM Data Discovery Browse Data Related Campaigns Biogenic Aerosols - Effects on Clouds and Climate 2014.02.01, Petäjä, AMF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Biogenic Aerosols - Effects on Clouds and Climate: Extended Radiosonde IOP 2014.05.01 - 2014.08.31 Lead Scientist : Keri Nicoll For data sets, see below. Abstract Modified meteorological radiosondes have been

  18. ARM - Evaluation Product - Cloud Optical Properties from MFRSR Using Min

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Algorithm ProductsCloud Optical Properties from MFRSR Using Min Algorithm ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Cloud Optical Properties from MFRSR Using Min Algorithm Like the operational VAP run at other sites, MFRSRCLDOD is based on the algorithm by Min and Harrison (1996). Users are

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 15, 2008 [Facility News] Cloud Radars on the Screen at Southern Great Plains Site Bookmark and Share With the flip of a switch, a mysterious cirrus dilemma turned from serious to solved recently, as the millimeter wavelength cloud radar (MMCR) passed inspection at the ARM Southern Great Plains (SGP) site in February. In addition, concerns about data from the ARM Mobile Facility (AMF)'s W-band ARM Cloud Radar (WACR) were alleviated through an intercomparison with the SGP WACR in March. Both

  20. ARM - Datastreams - kazrge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamskazrge Documentation Data Quality Plots Citation DOI: 10.5439/1025214 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KAZRGE Ka ARM Zenith Radar (KAZR): general mode Active Dates 2011.01.18 - 2016.03.10 Measurement Categories Atmospheric State, Cloud Properties Originating Instrument Ka ARM Zenith Radar (KAZR) Measurements Only measurements considered

  1. ARM - Datastreams - kazrhi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamskazrhi Documentation Data Quality Plots Citation DOI: 10.5439/1095600 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KAZRHI Ka ARM Zenith Radar (KAZR): highest sensitivity mode Active Dates 2011.01.18 - 2016.01.30 Measurement Categories Atmospheric State, Cloud Properties Originating Instrument Ka ARM Zenith Radar (KAZR) Measurements Only measurements

  2. ARM - Datastreams - kazrmd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamskazrmd Documentation Data Quality Plots Citation DOI: 10.5439/1095601 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KAZRMD Ka ARM Zenith Radar (KAZR): moderate sensitivity mode Active Dates 2011.05.03 - 2016.03.10 Measurement Categories Atmospheric State, Cloud Properties Originating Instrument Ka ARM Zenith Radar (KAZR) Measurements Only measurements

  3. ARM - Datastreams - kazrpr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamskazrpr Documentation Data Quality Plots Citation DOI: 10.5439/1213419 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KAZRPR Ka ARM Zenith Radar (KAZR): precipitation mode Active Dates 2015.04.15 - 2016.03.10 Measurement Categories Atmospheric State, Cloud Properties Originating Instrument Ka ARM Zenith Radar (KAZR) Measurements Only measurements considered

  4. ARM - Datastreams - csaprsec

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamscsaprsec Documentation Data Quality Plots Citation DOI: 10.5439/1025169 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : CSAPRSEC C Scanning ARM Precipitation Radar (CSAPR), Sectors Active Dates 2011.03.25 - 2013.05.01 Measurement Categories Cloud Properties Originating Instrument C-Band ARM Precipitation Radar (CSAPR) Measurements The measurements below

  5. ARM - Instrument - kazr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentskazr Documentation KAZR : Handbook ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Ka ARM Zenith Radar (KAZR) Instrument Categories Cloud Properties General Overview The Ka-band ARM zenith radar (KAZR) remotely probes the extent and composition of clouds at millimeter wavelengths. The KAZR is a zenith-pointing Doppler radar that operates at a frequency of approximately 35 GHz. The main

  6. ARM - Instrument - mmcr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsmmcr Documentation MMCR : Handbook ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Millimeter Wavelength Cloud Radar (MMCR) Instrument Categories Cloud Properties Picture of the Millimeter Wave Cloud Radar (MMCR) General Overview The MMCR systems probe the extent and composition of clouds at millimeter wavelengths. The MMCR is a zenith-pointing radar that operates at a frequency of 35 GHz.

  7. ARM - Datastreams - kasacrawrhi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamskasacrawrhi Documentation Data Quality Plots Citation DOI: 10.5439/1046193 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KASACRAWRHI Ka-Band Scanning ARM Cloud Radar (KASACR) Along-Wind RHI Scan Active Dates 2011.05.26 - 2015.06.30 Measurement Categories Cloud Properties Originating Instrument Ka-Band Scanning ARM Cloud Radar (KASACR) Measurements Only

  8. ARM - Datastreams - kasacrblrhi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamskasacrblrhi Documentation Data Quality Plots Citation DOI: 10.5439/1046194 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KASACRBLRHI Ka-Band Scanning ARM Cloud Radar (KASACR) Boundary Layer RHI Scan Active Dates 2011.05.24 - 2015.06.30 Measurement Categories Cloud Properties Originating Instrument Ka-Band Scanning ARM Cloud Radar (KASACR) Measurements

  9. ARM - Datastreams - kasacrcrrhi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamskasacrcrrhi Documentation Data Quality Plots Citation DOI: 10.5439/1046195 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KASACRCRRHI Ka-Band Scanning ARM Cloud Radar (KASACR) Corner Reflector RHI scan Active Dates 2011.12.15 - 2011.12.15 Measurement Categories Cloud Properties Originating Instrument Ka-Band Scanning ARM Cloud Radar (KASACR) Measurements

  10. ARM - Datastreams - kasacrcwrhi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamskasacrcwrhi Documentation Data Quality Plots Citation DOI: 10.5439/1046196 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KASACRCWRHI Ka-Band Scanning ARM Cloud Radar (KASACR) Cross-Wind RHI Scan Active Dates 2011.05.05 - 2015.07.02 Measurement Categories Cloud Properties Originating Instrument Ka-Band Scanning ARM Cloud Radar (KASACR) Measurements Only

  11. ARM - Datastreams - kasacrvpt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamskasacrvpt Documentation Data Quality Plots Citation DOI: 10.5439/1046201 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KASACRVPT Ka-Band Scanning ARM Cloud Radar (KASACR) Vertically Pointing Scan Active Dates 2011.04.30 - 2015.06.30 Measurement Categories Cloud Properties Originating Instrument Ka-Band Scanning ARM Cloud Radar (KASACR) Measurements Only

  12. ARM - Datastreams - kasacrzppi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamskasacrzppi Documentation Data Quality Plots Citation DOI: 10.5439/1140236 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KASACRZPPI Ka-Band Scanning ARM Cloud Radar (KASACR) Zenith Pointing PPI Active Dates 2014.04.14 - 2014.09.13 Measurement Categories Cloud Properties Originating Instrument Ka-Band Scanning ARM Cloud Radar (KASACR) Measurements Only

  13. ARM - Datastreams - mwacr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsmwacr Documentation Data Quality Plots Citation DOI: 10.5439/1150242 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : MWACR Marine W-band (95 GHz) ARM Cloud Radar Active Dates 2012.11.01 - 2015.02.12 Measurement Categories Cloud Properties Originating Instrument Marine W-Band (95 GHz) ARM Cloud Radar (MWACR) Measurements Only measurements considered

  14. ARM - Datastreams - swacrspeccmaskcopol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsswacrspeccmaskcopol Documentation Data Quality Plots Citation DOI: 10.5439/1025294 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : SWACRSPECCMASKCOPOL S-WACR ARM Cloud Radar, filtered spectral data, co-polarized mode Active Dates 2009.11.05 - 2011.04.25 Measurement Categories Cloud Properties Originating Instrument W-Band (95 GHz) ARM Cloud Radar, mounted

  15. ARM - Datastreams - wacr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamswacr Documentation Data Quality Plots Citation DOI: 10.5439/1025317 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Example wacr Archive Data Plot Example wacr Archive Data Plot Datastream : WACR W-band (95 GHz) ARM Cloud Radar Active Dates 2005.06.22 - 2015.12.02 Measurement Categories Cloud Properties Originating Instrument W-Band (95 GHz) ARM Cloud Radar (WACR)

  16. ARM - Datastreams - wacrspeccmaskcopol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamswacrspeccmaskcopol Documentation Data Quality Plots Citation DOI: 10.5439/1025318 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : WACRSPECCMASKCOPOL W-band (95 GHz) ARM Cloud Radar, filtered spectral data, co-polarized mode Active Dates 2006.03.24 - 2015.12.02 Measurement Categories Cloud Properties Originating Instrument W-Band (95 GHz) ARM Cloud Radar

  17. ARM - Datastreams - wacrspeccmaskxpol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamswacrspeccmaskxpol Documentation Data Quality Plots Citation DOI: 10.5439/1025319 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : WACRSPECCMASKXPOL W-band (95 GHz) ARM Cloud Radar, filtered spectral data, cross-polarized mode Active Dates 2006.03.24 - 2015.12.02 Measurement Categories Cloud Properties Originating Instrument W-Band (95 GHz) ARM Cloud Radar

  18. ARM - Datastreams - wacrspecmom

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamswacrspecmom Documentation Data Quality Plots Citation DOI: 10.5439/1025320 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : WACRSPECMOM W-band (95 GHz) ARM Cloud Radar, spectral data Active Dates 2005.12.16 - 2008.06.03 Measurement Categories Cloud Properties Originating Instrument W-Band (95 GHz) ARM Cloud Radar (WACR) Measurements The measurements below

  19. ARM - Datastreams - wsacrawrhi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamswsacrawrhi Documentation Data Quality Plots Citation DOI: 10.5439/1150278 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : WSACRAWRHI W-Band Scanning ARM Cloud Radar (W-SACR) Along-Wind RHI Scan Active Dates 2011.06.01 - 2015.06.30 Measurement Categories Cloud Properties Originating Instrument W-band Scanning ARM Cloud Radar (WSACR) Measurements Only

  20. ARM - Datastreams - wsacrblrhi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamswsacrblrhi Documentation Data Quality Plots Citation DOI: 10.5439/1150279 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : WSACRBLRHI W-Band Scanning ARM Cloud Radar (W-SACR) Boundary Layer RHI Scan Active Dates 2011.05.24 - 2015.06.30 Measurement Categories Cloud Properties Originating Instrument W-band Scanning ARM Cloud Radar (WSACR) Measurements Only

  1. ARM - Datastreams - wsacrcrcal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamswsacrcrcal Documentation Data Quality Plots Citation DOI: 10.5439/1150280 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : WSACRCRCAL W-Band Scanning ARM Cloud Radar (W-SACR) Corner Reflector Calibration Active Dates 2011.12.16 - 2013.09.05 Measurement Categories Cloud Properties Originating Instrument W-band Scanning ARM Cloud Radar (WSACR) Measurements

  2. ARM - Datastreams - wsacrcrrhi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamswsacrcrrhi Documentation Data Quality Plots Citation DOI: 10.5439/1150282 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : WSACRCRRHI W-Band Scanning ARM Cloud Radar (W-SACR) Corner Reflector RHI scan Active Dates 2011.12.15 - 2011.12.15 Measurement Categories Cloud Properties Originating Instrument W-band Scanning ARM Cloud Radar (WSACR) Measurements Only

  3. ARM - Datastreams - wsacrcwrhi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamswsacrcwrhi Documentation Data Quality Plots Citation DOI: 10.5439/1150283 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : WSACRCWRHI W-Band Scanning ARM Cloud Radar (W-SACR) Cross-Wind RHI Scan Active Dates 2011.05.24 - 2015.07.02 Measurement Categories Cloud Properties Originating Instrument W-band Scanning ARM Cloud Radar (WSACR) Measurements Only

  4. ARM - Datastreams - wsacrppi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamswsacrppi Documentation Data Quality Plots Citation DOI: 10.5439/1150285 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : WSACRPPI W-Band Scanning ARM Cloud Radar (W-SACR) PPI Scan Active Dates 2011.05.24 - 2015.07.02 Measurement Categories Cloud Properties Originating Instrument W-band Scanning ARM Cloud Radar (WSACR) Measurements Only measurements

  5. ARM - Datastreams - wsacrrhi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamswsacrrhi Documentation Data Quality Plots Citation DOI: 10.5439/1150286 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : WSACRRHI W-Band Scanning ARM Cloud Radar (W-SACR) RHI Scans, which can vary in elevation range and azimuth Active Dates 2011.04.06 - 2013.01.29 Measurement Categories Cloud Properties Originating Instrument W-band Scanning ARM Cloud Radar

  6. ARM - Datastreams - wsacrvpt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamswsacrvpt Documentation Data Quality Plots Citation DOI: 10.5439/1150290 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : WSACRVPT W-Band Scanning ARM Cloud Radar (W-SACR) Vertically Pointing Scan Active Dates 2011.04.20 - 2015.06.30 Measurement Categories Cloud Properties Originating Instrument W-band Scanning ARM Cloud Radar (WSACR) Measurements Only

  7. ARM - Datastreams - xsacrawrhi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsxsacrawrhi Documentation Data Quality Plots Citation DOI: 10.5439/1150292 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : XSACRAWRHI X-Band Scanning ARM Cloud Radar (XSACR) Along-Wind RHI Scan Active Dates 2011.09.14 - 2014.09.13 Measurement Categories Cloud Properties Originating Instrument X-Band Scanning ARM Cloud Radar (XSACR) Measurements Only

  8. ARM - Datastreams - xsacrblrhi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsxsacrblrhi Documentation Data Quality Plots Citation DOI: 10.5439/1150293 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : XSACRBLRHI X-Band Scanning ARM Cloud Radar (XSACR) Boundary Layer RHI Scan Active Dates 2011.09.14 - 2014.09.13 Measurement Categories Cloud Properties Originating Instrument X-Band Scanning ARM Cloud Radar (XSACR) Measurements Only

  9. ARM - Datastreams - xsacrcrraster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsxsacrcrraster Documentation Data Quality Plots Citation DOI: 10.5439/1150295 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : XSACRCRRASTER X-Band Scanning ARM Cloud Radar (W-SACR) Corner Reflector Raster Scan Active Dates 2014.03.07 - 2014.03.10 Measurement Categories Cloud Properties Originating Instrument X-Band Scanning ARM Cloud Radar (XSACR)

  10. ARM - Datastreams - xsacrcwrhi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsxsacrcwrhi Documentation Data Quality Plots Citation DOI: 10.5439/1150296 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : XSACRCWRHI X-Band Scanning ARM Cloud Radar (XSACR) Cross-Wind RHI Scan Active Dates 2011.09.14 - 2014.09.13 Measurement Categories Cloud Properties Originating Instrument X-Band Scanning ARM Cloud Radar (XSACR) Measurements Only

  11. ARM - Datastreams - xsacrppi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsxsacrppi Documentation Data Quality Plots Citation DOI: 10.5439/1150298 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : XSACRPPI X-Band Scanning ARM Cloud Radar (XSACR) PPI Scan Active Dates 2011.10.15 - 2014.03.14 Measurement Categories Cloud Properties Originating Instrument X-Band Scanning ARM Cloud Radar (XSACR) Measurements Only measurements considered

  12. ARM - Datastreams - xsacrrhi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsxsacrrhi Documentation Data Quality Plots Citation DOI: 10.5439/1150299 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : XSACRRHI X-Band Scanning ARM Cloud Radar (XSACR) RHI Scans, which can vary in elevation range and azimuth Active Dates 2011.10.15 - 2014.07.25 Measurement Categories Cloud Properties Originating Instrument X-Band Scanning ARM Cloud Radar

  13. ARM - Datastreams - xsacrvpt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsxsacrvpt Documentation Data Quality Plots Citation DOI: 10.5439/1150303 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : XSACRVPT X-Band Scanning ARM Cloud Radar (XSACR) Vertically Pointing Scan Active Dates 2011.09.14 - 2014.09.13 Measurement Categories Cloud Properties Originating Instrument X-Band Scanning ARM Cloud Radar (XSACR) Measurements Only

  14. ARM - Datastreams - xsacrzppi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsxsacrzppi Documentation Data Quality Plots Citation DOI: 10.5439/1150304 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : XSACRZPPI X-Band Scanning ARM Cloud Radar (XSACR) Zenith Pointing PPI Active Dates 2014.03.21 - 2014.09.13 Measurement Categories Cloud Properties Originating Instrument X-Band Scanning ARM Cloud Radar (XSACR) Measurements Only

  15. ARM - Feature Stories and Releases Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    28, 2011 [Feature Stories and Releases] Storm Study in Oklahoma Records Extreme Weather Events Bookmark and Share During MC3E, convective clouds like these were measured by NASA research aircraft and numerous radars throughout the ARM Southern Great Plains site, including these radars at the SGP Central Facility. During MC3E, convective clouds like these were measured by NASA research aircraft and numerous radars throughout the ARM Southern Great Plains site, including these radars at the SGP

  16. The Status of the ACRF Millimeter Wave Cloud Radars (MMCRs), the Path Forward for Future MMCR Upgrades, the Concept of 3D Volume Imaging Radar and the UAV Radar

    SciTech Connect (OSTI)

    P Kollias; MA Miller; KB Widener; RT Marchand; TP Ackerman

    2005-12-30

    The United States (U.S.) Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) operates millimeter wavelength cloud radars (MMCRs) in several climatological regimes. The MMCRs, are the primary observing tool for quantifying the properties of nearly all radiatively important clouds over the ACRF sites. The first MMCR was installed at the ACRF Southern Great Plains (SGP) site nine years ago and its original design can be traced to the early 90s. Since then, several MMCRs have been deployed at the ACRF sites, while no significant hardware upgrades have been performed. Recently, a two-stage upgrade (first C-40 Digital Signal Processors [DSP]-based, and later the PC-Integrated Radar AcQuisition System [PIRAQ-III] digital receiver) of the MMCR signal-processing units was completed. Our future MMCR related goals are: 1) to have a cloud radar system that continues to have high reliability and uptime and 2) to suggest potential improvements that will address increased sensitivity needs, superior sampling and low cost maintenance of the MMCRs. The Traveling Wave Tube (TWT) technology, the frequency (35-GHz), the radio frequency (RF) layout, antenna, the calibration and radar control procedure and the environmental enclosure of the MMCR remain assets for our ability to detect the profile of hydrometeors at all heights in the troposphere at the ACRF sites.

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    seen in this photo) on the WACR calibration tower helped to correct problems related to signal interference. As reported in July 2005, the W-band ARM Cloud Radar (WACR) is a...

  18. ARM - Feature Stories and Releases Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 14, 2011 [Feature Stories and Releases] New Study Reveals and Quantifies Magnitude of Long-term Aerosol Effects on Clouds and Precipitation Bookmark and Share Cloud radars measure an incoming storm at the ARM Southern Great Plains site in Oklahoma. Cloud radars measure an incoming storm at the ARM Southern Great Plains site in Oklahoma. 10 years of data from ARM Southern Great Plains site corroborate satellite measurements; match model A study published in Nature Geoscience this week

  19. ARM - Datastreams - kasacrspeccmaskcopol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamskasacrspeccmaskcopol Documentation Data Quality Plots Citation DOI: 10.5439/1095597 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KASACRSPECCMASKCOPOL Ka-Band Scanning ARM Cloud Radar, filtered spectral data, co-polarized mode

  20. ARM - Datastreams - kasacrspeccmaskxpol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamskasacrspeccmaskxpol Documentation Data Quality Plots Citation DOI: 10.5439/1095598 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KASACRSPECCMASKXPOL Ka-Band Scanning ARM Cloud Radar, filtered spectral data, cross-polarized mode

  1. ARM - Datastreams - wsacrspeccmaskcopol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamswsacrspeccmaskcopol Documentation Data Quality Plots Citation DOI: 10.5439/1150288 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : WSACRSPECCMASKCOPOL W-Band Scanning ARM Cloud Radar, filtered spectral data, co-polarized mode

  2. ARM - Datastreams - wsacrspeccmaskxpol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamswsacrspeccmaskxpol Documentation Data Quality Plots Citation DOI: 10.5439/1150289 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : WSACRSPECCMASKXPOL W-Band Scanning ARM Cloud Radar, filtered spectral data, cross-polarized mode

  3. ARM - Datastreams - xsacrspeccmaskcopol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsxsacrspeccmaskcopol Documentation Data Quality Plots Citation DOI: 10.5439/1150301 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : XSACRSPECCMASKCOPOL X-Band Scanning ARM Cloud Radar, filtered spectral data, co-polarized mode

  4. ARM - Datastreams - xsacrspeccmaskxpol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsxsacrspeccmaskxpol Documentation Data Quality Plots Citation DOI: 10.5439/1150302 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : XSACRSPECCMASKXPOL X-Band Scanning ARM Cloud Radar, filtered spectral data, cross-polarized mode

  5. ARM - Datastreams - mmcrmoments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsmmcrmoments Documentation Data Quality Plots Citation DOI: 10.5439/1025230 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : MMCRMOMENTS Millimeter Wavelength Cloud Radar (MMCR): moments data Active Dates 1996.11.07 - 2006.08.12 Measurement Categories Atmospheric State Originating Instrument Millimeter Wavelength Cloud Radar (MMCR) Measurements The

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Field Campaign to Benefit from Multimillion Dollar Radar Technology Bookmark and Share A staff scientist from CIRPAS reviews the unique capabilities provided by the phased-array radar, mounted on the truck behind the group. In March, ARM scientists visited the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) for a first-hand look at the state-of-the-art scanning radar that will be deployed as part of the Cloud Land Surface Interaction Campaign (CLASIC) at the ARM Southern

  7. ARM - Data Announcements Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SACRCOR VAP Released to Evaluation Bookmark and Share This is an example of gaseous attenuation corrected and masked for significant detection radar reflectivity (top) and dealiased radial Doppler velocity from the Ka-SACR. This is an example of gaseous attenuation corrected and masked for significant detection radar reflectivity (top) and dealiased radial Doppler velocity from the Ka-SACR. The ARM Facility is pleased to announce the release of Scanning ARM Cloud Radar (SACR) Corrected Moments

  8. ARM - Field Campaign - Complex Layered Cloud Experiment (CLEX)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsComplex Layered Cloud Experiment (CLEX) Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Complex Layered Cloud Experiment (CLEX) 1996.06.20 - 1996.07.02 Lead Scientist : Graeme Stephens Data Availability TABLE 1 Locations and Status of Extended Facilitiesa SMOS(c) Comments Site Elevation(b) Latitude, Surface Flux SIROS(c) (m) Longitude Type Station(c) (deg) Larned, KS 632 38.202 N Wheat ECOR Yes Yes Power and communication

  9. ARM - Field Campaign - Whole Sky Imager Cloud Fraction Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsWhole Sky Imager Cloud Fraction Data ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Whole Sky Imager Cloud Fraction Data 1994.01.01 - 1994.12.31 Lead Scientist : Tim Tooman Data Availability sgpwsicldcoverC1.c1.19931230.144000.asc POR028T.CCV 30 Dec 93 - 06 Jan 94 sgpwsicldcoverC1.c1.19940107.151000.asc POR029T.CCV 07 Jan 94 - 14 Jan 94 sgpwsicldcoverC1.c1.19940114.144000.asc POR030T.CCV 14

  10. Evaluating cloud retrieval algorithms with the ARM BBHRP framework

    SciTech Connect (OSTI)

    Mlawer,E.; Dunn,M.; Mlawer, E.; Shippert, T.; Troyan, D.; Johnson, K. L.; Miller, M. A.; Delamere, J.; Turner, D. D.; Jensen, M. P.; Flynn, C.; Shupe, M.; Comstock, J.; Long, C. N.; Clough, S. T.; Sivaraman, C.; Khaiyer, M.; Xie, S.; Rutan, D.; Minnis, P.

    2008-03-10

    Climate and weather prediction models require accurate calculations of vertical profiles of radiative heating. Although heating rate calculations cannot be directly validated due to the lack of corresponding observations, surface and top-of-atmosphere measurements can indirectly establish the quality of computed heating rates through validation of the calculated irradiances at the atmospheric boundaries. The ARM Broadband Heating Rate Profile (BBHRP) project, a collaboration of all the working groups in the program, was designed with these heating rate validations as a key objective. Given the large dependence of radiative heating rates on cloud properties, a critical component of BBHRP radiative closure analyses has been the evaluation of cloud microphysical retrieval algorithms. This evaluation is an important step in establishing the necessary confidence in the continuous profiles of computed radiative heating rates produced by BBHRP at the ARM Climate Research Facility (ACRF) sites that are needed for modeling studies. This poster details the continued effort to evaluate cloud property retrieval algorithms within the BBHRP framework, a key focus of the project this year. A requirement for the computation of accurate heating rate profiles is a robust cloud microphysical product that captures the occurrence, height, and phase of clouds above each ACRF site. Various approaches to retrieve the microphysical properties of liquid, ice, and mixed-phase clouds have been processed in BBHRP for the ACRF Southern Great Plains (SGP) and the North Slope of Alaska (NSA) sites. These retrieval methods span a range of assumptions concerning the parameterization of cloud location, particle density, size, shape, and involve different measurement sources. We will present the radiative closure results from several different retrieval approaches for the SGP site, including those from Microbase, the current 'reference' retrieval approach in BBHRP. At the NSA, mixed-phase clouds and cloud with a low optical depth are prevalent; the radiative closure studies using Microbase demonstrated significant residuals. As an alternative to Microbase at NSA, the Shupe-Turner cloud property retrieval algorithm, aimed at improving the partitioning of cloud phase and incorporating more constrained, conditional microphysics retrievals, also has been evaluated using the BBHRP data set.

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battle With Bugs Nearly Over Thanks to New Radar Bookmark and Share The new W-band ARM cloud radar, or WACR, provides improved sensitivity for detecting tiny objects in the atmosphere to an altitude of 5 km. The instrument's antenna is located adjacent to the [/instruments/instrument.php?id=mmcr][millimeter wave cloud radar (MMCR)] antenna on top of the MMCR shelter; the rest of the unit is located inside (inset). The main purpose of the millimeter wavelength cloud radar (MMCR) is to measure

  12. C-Band Scanning ARM Precipitation Radar (C-SAPR) Handbook

    SciTech Connect (OSTI)

    Widener, K; Bharadwaj, N

    2012-11-13

    The C-band scanning ARM precipitation radar (C-SAPR) is a scanning polarimetric Doppler radar transmitting simultaneously in both H and V polarizations. With a 350-kW magnetron transmitter, this puts 125 kW of transmitted power for each polarization. The receiver for the C-SAPR is a National Center for Atmospheric Research (NCAR) -developed Hi-Q system operating in a coherent-on-receive mode. The ARM Climate Research Facility operates two C-SAPRs; one of them is deployed near the Southern Great Plains (SGP) Central Facility near the triangular array of X-SAPRs, and the second C-SAPR is deployed at ARMs Tropical Western Pacific (TWP) site on Manus Island in Papua New Guinea.

  13. Month-Long 2D Cloud-Resolving Model Simulation and Resultant Statistics of Cloud Systems Over the ARM SGP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Month-Long 2D Cloud-Resolving Model Simulation and Resultant Statistics of Cloud Systems Over the ARM SGP X. Wu Department of Geological and Atmospheric Sciences Iowa State University Ames, Iowa X.-Z. Liang Illinois State Water Survey University of Illinois Urbana-Champaign, Illinois Introduction The cloud-resolving model (CRM) has recently emerged as a useful tool to develop improved representations of convections, clouds, and cloud-radiation interactions in general circulation models (GCMs).

  14. Using Radar, Lidar, and Radiometer measurements to Classify Cloud Type and Study Middle-Level Cloud Properties

    SciTech Connect (OSTI)

    Wang, Zhien

    2010-06-29

    The project is mainly focused on the characterization of cloud macrophysical and microphysical properties, especially for mixed-phased clouds and middle level ice clouds by combining radar, lidar, and radiometer measurements available from the ACRF sites. First, an advanced mixed-phase cloud retrieval algorithm will be developed to cover all mixed-phase clouds observed at the ACRF NSA site. The algorithm will be applied to the ACRF NSA observations to generate a long-term arctic mixed-phase cloud product for model validations and arctic mixed-phase cloud processes studies. To improve the representation of arctic mixed-phase clouds in GCMs, an advanced understanding of mixed-phase cloud processes is needed. By combining retrieved mixed-phase cloud microphysical properties with in situ data and large-scale meteorological data, the project aim to better understand the generations of ice crystals in supercooled water clouds, the maintenance mechanisms of the arctic mixed-phase clouds, and their connections with large-scale dynamics. The project will try to develop a new retrieval algorithm to study more complex mixed-phase clouds observed at the ACRF SGP site. Compared with optically thin ice clouds, optically thick middle level ice clouds are less studied because of limited available tools. The project will develop a new two wavelength radar technique for optically thick ice cloud study at SGP site by combining the MMCR with the W-band radar measurements. With this new algorithm, the SGP site will have a better capability to study all ice clouds. Another area of the proposal is to generate long-term cloud type classification product for the multiple ACRF sites. The cloud type classification product will not only facilitates the generation of the integrated cloud product by applying different retrieval algorithms to different types of clouds operationally, but will also support other research to better understand cloud properties and to validate model simulations. The ultimate goal is to improve our cloud classification algorithm into a VAP.

  15. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Processing of ARM Millimeter Wave Cloud Radar Signals at Low Signal to Noise Conditions Kollias, P. and Albrecht B.A., University of Miami Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Atmospheric Radiation Measurement (ARM) program has supported the deployment of several Millimeter Wave Cloud Radars (MMCRs) operating at 35-GHz for an accurate detection of all the hydrometeors in the atmosphere. Despite their short wavelength that increases the Rayleigh backscattering

  16. ARM - Feature Stories and Releases Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2009 [Facility News, Feature Stories and Releases] Thumbs-Up for Radar Design Reviews-Key Recovery Act Milestone Bookmark and Share Of the $60 million allocated to the ARM Climate Research Facility by the American Recovery and Reinvestment Act, nearly half that amount is designated for 18 new scanning radars as well as upgrades to the baseline ARM millimeter wave cloud radars (MMCR) located throughout the Facility. In November, ARM engineering staff led a series of preliminary design reviews

  17. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistical Use of Radar-Derived Cloud Structure in Three-Dimensional Solar Radiative Transfer Calculations Evans, F., and McFarlane, S., University of Colorado, Boulder; Wiscombe, W., National Aeronautics and Space Administration-Goddard Space Flight Center Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Atmospheric Radiation Measurement (ARM) Millimeter-Wave Cloud Radar (MMCR) can provide valuable information about the spatial structure of clouds, which is important for

  18. ARM - Datastreams - kasacrrhi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamskasacrrhi Documentation Data Quality Plots Citation DOI: 10.5439/1046199 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KASACRRHI Ka-Band Scanning ARM Cloud Radar (KASACR) RHI scans, which can vary in elevation range and azimuth Active Dates 2011.04.03 - 2015.07.02 Measurement Categories Cloud Properties Originating Instrument Ka-Band Scanning ARM Cloud

  19. GFDL ARM Project Technical Report: Using ARM Observations to Evaluate Cloud and Convection Parameterizations & Cloud-Convection-Radiation Interactions in the GFDL Atmospheric General Circulation Model

    SciTech Connect (OSTI)

    V. Ramaswamy; L. J. Donner; J-C. Golaz; S. A. Klein

    2010-06-17

    This report briefly summarizes the progress made by ARM postdoctoral fellow, Yanluan Lin, at GFDL during the period from October 2008 to present. Several ARM datasets have been used for GFDL model evaluation, understanding, and improvement. This includes a new ice fall speed parameterization with riming impact and its test in GFDL AM3, evaluation of model cloud and radiation diurnal and seasonal variation using ARM CMBE data, model ice water content evaluation using ARM cirrus data, and coordination of the TWPICE global model intercomparison. The work illustrates the potential and importance of ARM data for GCM evaluation, understanding, and ultimately, improvement of GCM cloud and radiation parameterizations. Future work includes evaluation and improvement of the new dynamicsPDF cloud scheme and aerosol activation in the GFDL model.

  20. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Cloud Information from the MMCR of ARM Sites with that from the Aqua MODIS Cloud Mask Mace, G.G. and Zhang, Q., University of Utah Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting CloudSat is an experimental satellite which will use Cloud Profiling Radar (CPR) to measure the vertical structure of clouds from space. It will fly in orbital formation as part of a constellation of satellites including Aqua, CALIPSO, PARASOL and Aura. We develop an algorithm that

  1. ARM KAZR-ARSCL Value Added Product

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Michael

    The Ka-band ARM Zenith Radars (KAZRs) have replaced the long-serving Millimeter Cloud Radars, or MMCRs. Accordingly, the primary MMCR Value Added Product (VAP), the Active Remote Sensing of CLouds (ARSCL) product, is being replaced by a KAZR-based version, the KAZR-ARSCL VAP. KAZR-ARSCL provides cloud boundaries and best-estimate time-height fields of radar moments.

  2. ARM KAZR-ARSCL Value Added Product

    SciTech Connect (OSTI)

    Jensen, Michael

    2012-09-28

    The Ka-band ARM Zenith Radars (KAZRs) have replaced the long-serving Millimeter Cloud Radars, or MMCRs. Accordingly, the primary MMCR Value Added Product (VAP), the Active Remote Sensing of CLouds (ARSCL) product, is being replaced by a KAZR-based version, the KAZR-ARSCL VAP. KAZR-ARSCL provides cloud boundaries and best-estimate time-height fields of radar moments.

  3. W-Band ARM Cloud Radar - Specifications and Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... computer with digital receiver. 6. Oscilloscope for monitoring detected RF signal. 7. Chiller for temperature stabilization of the RF unit. 8. Uninterruptible power supply (UPS). ...

  4. ARM - Datastreams - mmcrspeccmaskbl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsmmcrspeccmaskbl Documentation Data Quality Plots Citation DOI: 10.5439/1025234 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : MMCRSPECCMASKBL Millimeter Wave Cloud Radar (MMCR), filtered spectral data, boundary layer mode

  5. ARM - Datastreams - mmcrspeccmaskci

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsmmcrspeccmaskci Documentation Data Quality Plots Citation DOI: 10.5439/1025235 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : MMCRSPECCMASKCI Millimeter Wave Cloud Radar (MMCR), filtered spectral data, cirrus

  6. ARM - Datastreams - mmcrspeccmaskge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsmmcrspeccmaskge Documentation Data Quality Plots Citation DOI: 10.5439/1025237 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : MMCRSPECCMASKGE Millimeter Wave Cloud Radar (MMCR), filtered spectral data, general

  7. Stratus Cloud Structure from MM-Radar Transects and Satellite...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    modeling: * cloud-radiation interaction where correlations can trigger three-dimensional (3D) radiative transfer effects; and * dynamical cloud modeling where the goal is to...

  8. Marine ARM GPCI Investigation of Clouds (MAGIC) Science Objectives and Significance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM GPCI Investigation of Clouds (MAGIC) Science Objectives and Significance Every cloud in the sky begins as a tiny droplet, which forms around an even smaller particle called an aerosol particle. Some clouds produce precipitation, and some don't. The relationship between clouds, precipitation, and aerosols is very complex and very important. Scientists use data about clouds, precipitation, and aerosols to develop computer codes, or models, that simulate what's happening in the atmosphere and

  9. Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fielding, M. D.; Chiu, J. C.; Hogan, R. J.; Feingold, G.; Eloranta, E.; O'Connor, E. J.; Cadeddu, M. P.

    2015-02-16

    Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer cloud using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievals using synthetic measurements from large-eddy simulation snapshots of cumulusmore » under stratocumulus, where cloud water path is retrieved with an error of 31 g m−2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the northeast Pacific. Here, retrieved cloud water path agrees well with independent 3-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m−2.« less

  10. Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fielding, M. D.; Chiu, J. C.; Hogan, R. J.; Feingold, G.; Eloranta, E.; O'Connor, E. J.; Cadeddu, M. P.

    2015-07-02

    Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer clouds using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances under conditions when precipitation does not reach the surface. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievalsmore » using synthetic measurements from large-eddy simulation snapshots of cumulus under stratocumulus, where cloud water path is retrieved with an error of 31 g m-2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the Northeast Pacific. Here, retrieved cloud water path agrees well with independent three-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m-2.« less

  11. ARM - Campaign Instrument - xsapr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsxsapr Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : X-Band Scanning ARM Precipitation Radar (XSAPR) Instrument Categories Cloud Properties Campaigns NSA Scanning Radar IOP [ Download Data ] North Slope Alaska, 2013.05.01 - 2013.06.26 Primary Measurements Taken The following measurements are those considered scientifically relevant. Refer to the datastream (netcdf) file headers for the list of all available

  12. ARM - Datastreams - 1290rwpwindmom

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rwpwindmom Documentation Data Quality Plots Citation DOI: 10.5439/1025032 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : 1290RWPWINDMOM 1290-MHz Radar Wind Profiler/RASS (RWP1290): wind moments Active Dates 2007.03.19 - 2015.12.01 Measurement Categories Cloud Properties Originating Instrument Radar Wind Profiler (RWP) Measurements Only measurements considered

  13. ARM - Datastreams - 1290rwpwindspec

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rwpwindspec Documentation Data Quality Plots Citation DOI: 10.5439/1024897 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : 1290RWPWINDSPEC 1290-MHz Radar Wind Profiler/RASS (RWP1290): wind spectra Active Dates 2007.03.19 - 2015.12.01 Measurement Categories Aerosols, Cloud Properties Originating Instrument Radar Wind Profiler (RWP) Measurements Only measurements

  14. ARM - Datastreams - 50rwptempmom

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rwptempmom Documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : 50RWPTEMPMOM 50-MHz Radar Wind Profiler/RASS (RSP50): temperature moments Active Dates 2001.04.01 - 2006.05.04 Measurement Categories Atmospheric State, Cloud Properties Originating Instrument Radar Wind Profiler (50 MHz) (50RWP) Measurements Only measurements considered scientifically relevant are shown below by

  15. ARM - Datastreams - 50rwptempspec

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rwptempspec Documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : 50RWPTEMPSPEC 50-MHz Radar Wind Profiler/RASS (RWP50): temperature spectra Active Dates 2001.04.01 - 2006.05.04 Measurement Categories Aerosols, Cloud Properties Originating Instrument Radar Wind Profiler (50 MHz) (50RWP) Measurements Only measurements considered scientifically relevant are shown below by

  16. ARM - Datastreams - 915rwpprecipcon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rwpprecipcon Documentation Data Quality Plots Citation DOI: 10.5439/1025127 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : 915RWPPRECIPCON 915-MHz Radar Wind Profiler, precipitation consensus data Active Dates 2009.05.20 - 2016.03.11 Measurement Categories Atmospheric State, Cloud Properties Originating Instrument Radar Wind Profiler (RWP) Measurements Only

  17. ARM - Datastreams - 915rwpprecipmom

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rwpprecipmom Documentation Data Quality Plots Citation DOI: 10.5439/1025128 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : 915RWPPRECIPMOM 915-MHz Radar Wind Profiler, precipitation moments data Active Dates 2009.05.28 - 2016.03.11 Measurement Categories Cloud Properties Originating Instrument Radar Wind Profiler (RWP) Measurements Only measurements considered

  18. ARM - Datastreams - 915rwpprecipspec

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rwpprecipspec Documentation Data Quality Plots Citation DOI: 10.5439/1025129 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : 915RWPPRECIPSPEC 915-MHz Radar Wind Profiler, precipitation spectra data Active Dates 2009.05.20 - 2016.03.11 Measurement Categories Cloud Properties Originating Instrument Radar Wind Profiler (RWP) Measurements Only measurements considered

  19. ARM - Datastreams - 915rwptempmom

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rwptempmom Documentation Data Quality Plots Citation DOI: 10.5439/1025132 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : 915RWPTEMPMOM 915-MHz Radar Wind Profiler/RASS (RWP915): temperature moments Active Dates 1997.05.01 - 2011.06.13 Measurement Categories Atmospheric State, Cloud Properties Originating Instrument Radar Wind Profiler (RWP) Measurements Only

  20. ARM - Datastreams - 915rwpwindmom

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rwpwindmom Documentation Data Quality Plots Citation DOI: 10.5439/1025136 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : 915RWPWINDMOM 915-MHz Radar Wind Profiler/RASS (RWP915): wind moments Active Dates 2001.03.27 - 2016.03.11 Measurement Categories Cloud Properties Originating Instrument Radar Wind Profiler (RWP) Measurements Only measurements considered

  1. Cloud and aerosol characterization for the ARM central facility: Multiple remote sensor techniques development

    SciTech Connect (OSTI)

    Sassen, K.

    1992-04-30

    This research project designed to investigate how atmospheric remote sensing technology can best be applied to the characterization of the cloudy atmosphere. Our research program addresses basic atmospheric remote sensing questions, but at the same time is clearly directed toward providing information crucial to the ARM (Atmospheric Remote Sensing) program and for application to the Clouds and Radiation Testbed (CART). The instrumentation that is being brought into play includes a variety of art-of-the-art sensors. Available at NOAA WPL are polarization Doppler K{sub a}-band (0.86 mm) and X-band (3.2 cm) radars, a C0{sub 2}(10.6 {mu}m) Doppler lidar with sequential ' polarization measurement capabilities, a three-channel (20.6, 31.65 and 90 GHz) microwave radiometer, and variety of visible and infrared radiometers. Instrumentation at the University of Utah Facility for Atmospheric Remote Sensing (FARS) includes a polarization ruby (0.643 {mu}m) lidar, a narrow-beam (0.14{degree}) mid-infrared (9.5--11.5 {mu}m) radiometer coaligned with the lidar, several other radiometers in the visible and infrared spectral regions, and an advanced two-color (1.06 and 0.532 {mu}m), four-channel Polarization Diversity Lidar (PDL) and all-sky video imaging system that have only recently been developed under the ARM IDP.

  2. Testing AGCM-Predicted Cloud and Radiation Properties with ARM Data: The

    Office of Scientific and Technical Information (OSTI)

    Super-Parameterization Approach (Conference) | SciTech Connect Testing AGCM-Predicted Cloud and Radiation Properties with ARM Data: The Super-Parameterization Approach Citation Details In-Document Search Title: Testing AGCM-Predicted Cloud and Radiation Properties with ARM Data: The Super-Parameterization Approach The goal of our study is to directly evaluate treatment of clouds and radiation in an atmospheric global climate model (AGCM) using long-term observations from the Atmospheric

  3. A High Resolution Hydrometer Phase Classifier Based on Analysis of Cloud Radar Doppler Spectra.

    SciTech Connect (OSTI)

    Luke,E.; Kollias, P.

    2007-08-06

    The lifecycle and radiative properties of clouds are highly sensitive to the phase of their hydrometeors (i.e., liquid or ice). Knowledge of cloud phase is essential for specifying the optical properties of clouds, or else, large errors can be introduced in the calculation of the cloud radiative fluxes. Current parameterizations of cloud water partition in liquid and ice based on temperature are characterized by large uncertainty (Curry et al., 1996; Hobbs and Rangno, 1998; Intriery et al., 2002). This is particularly important in high geographical latitudes and temperature ranges where both liquid droplets and ice crystal phases can exist (mixed-phase cloud). The mixture of phases has a large effect on cloud radiative properties, and the parameterization of mixed-phase clouds has a large impact on climate simulations (e.g., Gregory and Morris, 1996). Furthermore, the presence of both ice and liquid affects the macroscopic properties of clouds, including their propensity to precipitate. Despite their importance, mixed-phase clouds are severely understudied compared to the arguably simpler single-phase clouds. In-situ measurements in mixed-phase clouds are hindered due to aircraft icing, difficulties distinguishing hydrometeor phase, and discrepancies in methods for deriving physical quantities (Wendisch et al. 1996, Lawson et al. 2001). Satellite-based retrievals of cloud phase in high latitudes are often hindered by the highly reflecting ice-covered ground and persistent temperature inversions. From the ground, the retrieval of mixed-phase cloud properties has been the subject of extensive research over the past 20 years using polarization lidars (e.g., Sassen et al. 1990), dual radar wavelengths (e.g., Gosset and Sauvageot 1992; Sekelsky and McIntosh, 1996), and recently radar Doppler spectra (Shupe et al. 2004). Millimeter-wavelength radars have substantially improved our ability to observe non-precipitating clouds (Kollias et al., 2007) due to their excellent sensitivity that enables the detection of thin cloud layers and their ability to penetrate several non-precipitating cloud layers. However, in mixed-phase clouds conditions, the observed Doppler moments are dominated by the highly reflecting ice crystals and thus can not be used to identify the cloud phase. This limits our ability to identify the spatial distribution of cloud phase and our ability to identify the conditions under which mixed-phase clouds form.

  4. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Integrated Algorithm for Retrieving Low-Level Stratus Cloud Microphysical Properties Using Millimeter Radar and Microwave Radiometer Data Dong, X. and Mace, G.G., University of Utah Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Two methods have been developed for inferring the vertical profiles of cloud microphysics in liquid phase stratocumulus clouds. The first method uses cloud liquid water path derived from microwave radiometer observations and a profile of radar

  5. NNSA Completes its Critical Radar Arming and Fuzing Test for the W88 ALT

    National Nuclear Security Administration (NNSA)

    370 | National Nuclear Security Administration its Critical Radar Arming and Fuzing Test for the W88 ALT 370 | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact

  6. ARM - Datastreams - mmcrcal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsmmcrcal Documentation Data Quality Plots Citation DOI: 10.5439/1025227 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Example mmcrcal Archive Data Plot Example mmcrcal Archive Data Plot Datastream : MMCRCAL Millimeter Wavelength Cloud Radar (MMCR): calibration data Active Dates 1996.11.08 - 2006.08.12 Measurement Categories Cloud Properties Originating Instrument

  7. ARM - PI Product - AERIoe Thermodynamic Profile and Cloud Retrieval for SGP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CF during LABLE-2012 2 ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : AERIoe Thermodynamic Profile and Cloud Retrieval for SGP CF during LABLE-2012 [ ARM research ] The AERIoe algorithm retrieves profiles of temperature and water vapor mixing ratio, together with cloud properties for a single-layer cloud (i.e., LWP, effective radius), from AERI-observed infrared radiance spectrum. The method is a

  8. ARM - PI Product - AERIoe Thermodynamic Profile and Cloud Retrieval for SGP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CF during LABLE-2013 3 ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : AERIoe Thermodynamic Profile and Cloud Retrieval for SGP CF during LABLE-2013 [ ARM research ] The AERIoe algorithm retrieves profiles of temperature and water vapor mixing ratio, together with cloud properties for a single-layer cloud (i.e., LWP, effective radius), from AERI-observed infrared radiance spectrum. The method is a

  9. The Effect of Precipitation on Variability of Low Stratiform Clouds Over ARM SGP Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Precipitation on Variability of Low Stratiform Clouds Over ARM SGP Site Z. N. Kogan, D. B. Mechem, and Y. L. Kogan Cooperative Institute for Mesoscale Metorological Studies University of Oklahoma Norman, Oklahoma Introduction Continental low stratiform clouds cover the sky about 23% of the time during the fall, winter, and spring months and play a significant role in the Earth' radiation budget. Information about cloud structure and variability is crucial in determining areal averages of cloud

  10. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Variability of Low Stratus Over the ARM SGP CART Based on Cloud Radar Data and LES Simulations Kogan, Z.N., Mechem, D.B., and Kogan, Y.L., Cooperative Institute for Mesoscale...

  11. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Radiometers During Aerosols99, the Indian Ocean Experiment (INDOEX), and Nauru99* Miller, M.A. A Survey of the Current State of the DOE ARM Millimeter Cloud Radars, the ...

  12. ARM - Campaign Instrument - mmcr94-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -air Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : 94 GHz, W-band Airborne Cloud Radar (MMCR94-AIR)...

  13. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparisons of Measurements of Cloud Lower Boundaries by the MPL, BLC, MMCR, BBSS and AERI Han, D., and Ellingson, R.G., University of Maryland Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting The cloud lower boundary is an important factor in radiative transfer under various cloud conditions. Several ground-based instruments at the ARM CART Central Facility, including the micro pulse lidar (MPL), the Belfort laser ceilometer (BLC), and the MilliMeter Cloud profiling Radar

  14. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using ARM Radar Data to Parameterize the Moments of Cirrus Cloud Properties in Terms of Cloud Layer Thickness and Temperature Vernon, E.N.(a) and Mace, G.G.(b), University of Utah (a), University of Utah (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Improving the reperesentation of cirrus clouds in large-scale models has been identified as a way to reduce the uncertainty associated with climate change simulations in these models. Representing cirrus clouds in

  15. Long-term Observations of the Convective Boundary Layer Using Insect Radar Returns at the SGP ARM Climate Research Facility

    SciTech Connect (OSTI)

    Chandra, A S; Kollias, P; Giangrande, S E; Klein, S A

    2009-08-20

    A long-term study of the turbulent structure of the convective boundary layer (CBL) at the U.S. Department of Energy Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) Climate Research Facility is presented. Doppler velocity measurements from insects occupying the lowest 2 km of the boundary layer during summer months are used to map the vertical velocity component in the CBL. The observations cover four summer periods (2004-08) and are classified into cloudy and clear boundary layer conditions. Profiles of vertical velocity variance, skewness, and mass flux are estimated to study the daytime evolution of the convective boundary layer during these conditions. A conditional sampling method is applied to the original Doppler velocity dataset to extract coherent vertical velocity structures and to examine plume dimension and contribution to the turbulent transport. Overall, the derived turbulent statistics are consistent with previous aircraft and lidar observations. The observations provide unique insight into the daytime evolution of the convective boundary layer and the role of increased cloudiness in the turbulent budget of the subcloud layer. Coherent structures (plumes-thermals) are found to be responsible for more than 80% of the total turbulent transport resolved by the cloud radar system. The extended dataset is suitable for evaluating boundary layer parameterizations and testing large-eddy simulations (LESs) for a variety of surface and cloud conditions.

  16. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Overlap from a Cloud Resolving Model Oreopoulos, L.(a) and Khairoutdinov, M.F.(b), JCET-UMBC (a), Colorado State University (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The overlap properties of ~850 snapshots of convective cloud fields generated by a Cloud Resolving Model are studied and compared with previously published results based on cloud radar observations. Total cloud fraction is overestimated by the random overlap assumption and underestimated by

  17. ARM - Field Campaign - Ground-based Cloud Tomography Experiment at SGP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsGround-based Cloud Tomography Experiment at SGP ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Ground-based Cloud Tomography Experiment at SGP 2009.05.26 - 2009.07.17 Lead Scientist : Dong Huang For data sets, see below. Abstract Knowledge of 3D cloud properties is pressingly needed in many research fields. One of the problems encountered when trying to represent 3D cloud fields in numerical

  18. ARM - Datastreams - kazrspeccmaskgecopol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamskazrspeccmaskgecopol Documentation Data Quality Plots Citation DOI: 10.5439/1025218 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KAZRSPECCMASKGECOPOL Ka ARM Zenith Radar (KAZR): filtered spectral data, general mode, co-polarized mode Active Dates 2011.01.20 - 2016.03.11 Measurement Categories Atmospheric State, Cloud Properties Originating Instrument Ka

  19. ARM - Datastreams - kazrspeccmaskgexpol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamskazrspeccmaskgexpol Documentation Data Quality Plots Citation DOI: 10.5439/1025219 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KAZRSPECCMASKGEXPOL Ka ARM Zenith Radar (KAZR): filtered spectral data, general mode, cross-polarized mode Active Dates 2011.01.20 - 2016.03.11 Measurement Categories Atmospheric State, Cloud Properties Originating Instrument Ka

  20. ARM - Datastreams - kazrspeccmaskhicopol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamskazrspeccmaskhicopol Documentation Data Quality Plots Citation DOI: 10.5439/1095602 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KAZRSPECCMASKHICOPOL Ka ARM Zenith Radar (KAZR): filtered spectral data, high sensitivity mode, co-polarized mode Active Dates 2011.01.27 - 2016.03.11 Measurement Categories Atmospheric State, Cloud Properties Originating

  1. ARM - Datastreams - kazrspeccmaskmdcopol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamskazrspeccmaskmdcopol Documentation Data Quality Plots Citation DOI: 10.5439/1095603 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KAZRSPECCMASKMDCOPOL Ka ARM Zenith Radar (KAZR): filtered spectral data, moderate sensitivity mode, co-polarized mode Active Dates 2011.10.06 - 2016.03.11 Measurement Categories Atmospheric State, Cloud Properties Originating

  2. ARM - Datastreams - kazrspeccmaskmdxpol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamskazrspeccmaskmdxpol Documentation Data Quality Plots Citation DOI: 10.5439/1095604 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KAZRSPECCMASKMDXPOL Ka ARM Zenith Radar (KAZR): filtered spectral data, moderate sensitivity mode, cross-polarized mode Active Dates 2013.04.01 - 2016.03.11 Measurement Categories Atmospheric State, Cloud Properties Originating

  3. ARM - Datastreams - xsaprppi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsxsaprppi Documentation Data Quality Plots Citation DOI: 10.5439/1025327 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : XSAPRPPI X-SAPR Plan Position Indicator scan Active Dates 2010.12.14 - 2016.03.10 Measurement Categories Cloud Properties Originating Instrument X-Band Scanning ARM Precipitation Radar (XSAPR) Measurements Only measurements considered

  4. ARM - Datastreams - xsaprrhi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsxsaprrhi Documentation Data Quality Plots Citation DOI: 10.5439/1150305 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : XSAPRRHI X-SAPR Range Height Indicator scan Active Dates 2011.04.22 - 2015.03.03 Measurement Categories Cloud Properties Originating Instrument X-Band Scanning ARM Precipitation Radar (XSAPR) Measurements Only measurements considered

  5. ARM - Datastreams - xsaprsur

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsxsaprsur Documentation Data Quality Plots Citation DOI: 10.5439/1150306 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : XSAPRSUR X-SAPR Surveillance scan Active Dates 2011.06.24 - 2014.02.25 Measurement Categories Cloud Properties Originating Instrument X-Band Scanning ARM Precipitation Radar (XSAPR) Measurements Only measurements considered scientifically

  6. ARM - Datastreams - xsaprvpt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsxsaprvpt Documentation Data Quality Plots Citation DOI: 10.5439/1025329 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : XSAPRVPT X-SAPR Vertical PoinTing scan Active Dates 2011.04.23 - 2014.05.22 Measurement Categories Cloud Properties Originating Instrument X-Band Scanning ARM Precipitation Radar (XSAPR) Measurements Only measurements considered

  7. Evaluation of Long-Term Cloud-Resolving Modeling with ARM Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Long-Term Cloud-Resolving Modeling with ARM Data Zeng, Xiping NASAGSFC Tao, Wei-Kuo NASAGoddard Space Flight Center Zhang, Minghua State University of New York at Stony...

  8. ARM - PI Product - MWR Retrievals of Cloud Liquid Water and Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govDataPI Data ProductsMWR Retrievals of Cloud Liquid Water and Water Vapor ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us...

  9. ARM - Field Campaign - MASRAD: Cloud Study from the 2NFOV at...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsMASRAD: Cloud Study from the 2NFOV at Pt. Reyes Field Campaign Campaign Links AMF Point Reyes Website ARM Data Discovery Browse Data Related Campaigns MArine Stratus...

  10. Constructing a Merged Cloud-Precipitation Radar Dataset for Tropical Convective Clouds during the DYNAMO/AMIE Experiment at Addu Atoll

    SciTech Connect (OSTI)

    Feng, Zhe; McFarlane, Sally A.; Schumacher, Courtney; Ellis, Scott; Comstock, Jennifer M.; Bharadwaj, Nitin

    2014-05-16

    To improve understanding of the convective processes key to the Madden-Julian-Oscillation (MJO) initiation, the Dynamics of the MJO (DYNAMO) and Atmospheric Radiation Measurement MJO Investigation Experiment (AMIE) collected four months of observations from three radars, the S-band Polarization Radar (S-Pol), the C-band Shared Mobile Atmospheric Research & Teaching Radar (SMART-R), and Ka-band Zenith Radar (KAZR) on Addu Atoll in the tropical Indian Ocean. This study compares the measurements from the S-Pol and SMART-R to those from the more sensitive KAZR in order to characterize the hydrometeor detection capabilities of the two scanning precipitation radars. Frequency comparisons for precipitating convective clouds and non-precipitating high clouds agree much better than non-precipitating low clouds for both scanning radars due to issues in ground clutter. On average, SMART-R underestimates convective and high cloud tops by 0.3 to 1.1 km, while S-Pol underestimates cloud tops by less than 0.4 km for these cloud types. S-Pol shows excellent dynamic range in detecting various types of clouds and therefore its data are well suited for characterizing the evolution of the 3D cloud structures, complementing the profiling KAZR measurements. For detecting non-precipitating low clouds and thin cirrus clouds, KAZR remains the most reliable instrument. However, KAZR is attenuated in heavy precipitation and underestimates cloud top height due to rainfall attenuation 4.3% of the time during DYNAMO/AMIE. An empirical method to correct the KAZR cloud top heights is described, and a merged radar dataset is produced to provide improved cloud boundary estimates, microphysics and radiative heating retrievals.

  11. ARM - VAP Process - kazrarscl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are those considered scientifically relevant. Cloud base height Cloud top height Radar Doppler Radar polarization Radar reflectivity Vertical velocity Locations North Slope...

  12. ARM - Field Campaign - Azores: Clouds, Aerosol and Precipitation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Campaigns Azores: Above-Cloud Radiation Budget near Graciosa Island 2010.04.15, Miller, AMF Azores: Extension to Clouds, Aerosol and Precipitation in the Marine Boundary...

  13. ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    relevant to DOE's goals in understanding the impact of clouds and aerosols on climate change. TWST contributes significantly to the body of data used for extracting cloud...

  14. ARM - Midlatitude Continental Convective Clouds (jensen-sonde)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike; Comstock, Jennifer; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos

    2012-01-19

    A major component of the Mid-latitude Continental Convective Clouds Experiment (MC3E) field campaign was the deployment of an enhanced radiosonde array designed to capture the vertical profile of atmospheric state variables (pressure, temperature, humidity wind speed and wind direction) for the purpose of deriving the large-scale forcing for use in modeling studies. The radiosonde array included six sites (enhanced Central Facility [CF-1] plus five new sites) launching radiosondes at 3-6 hour sampling intervals. The network will cover an area of approximately (300)2 km2 with five outer sounding launch sites and one central launch location. The five outer sounding launch sites are: S01 Pratt, KS [ 37.7oN, 98.75oW]; S02 Chanute, KS [37.674, 95.488]; S03 Vici, Oklahoma [36.071, -99.204]; S04 Morris, Oklahoma [35.687, -95.856]; and S05 Purcell, Oklahoma [34.985, -97.522]. Soundings from the SGP Central Facility during MC3E can be retrieved from the regular ARM archive. During routine MC3E operations 4 radiosondes were launched from each of these sites (approx. 0130, 0730, 1330 and 1930 UTC). On days that were forecast to be convective up to four additional launches were launched at each site (approx. 0430, 1030, 1630, 2230 UTC). There were a total of approximately 14 of these high frequency launch days over the course of the experiment.

  15. Understanding and Improving CRM and GCM Simulations of Cloud Systems with ARM Observations

    SciTech Connect (OSTI)

    Wu, Xiaoqing

    2014-02-25

    The works supported by this ASR project lay the solid foundation for improving the parameterization of convection and clouds in the NCAR CCSM and the climate simulations. We have made a significant use of CRM simulations and ARM observations to produce thermodynamically and dynamically consistent multi-year cloud and radiative properties; improve the GCM simulations of convection, clouds and radiative heating rate and fluxes using the ARM observations and CRM simulations; and understand the seasonal and annual variation of cloud systems and their impacts on climate mean state and variability. We conducted multi-year simulations over the ARM SGP site using the CRM with multi-year ARM forcing data. The statistics of cloud and radiative properties from the long-term CRM simulations were compared and validated with the ARM measurements and value added products (VAP). We evaluated the multi-year climate simulations produced by the GCM with the modified convection scheme. We used multi-year ARM observations and CRM simulations to validate and further improve the trigger condition and revised closure assumption in NCAR GCM simulations that demonstrate the improvement of climate mean state and variability. We combined the improved convection scheme with the mosaic treatment of subgrid cloud distributions in the radiation scheme of the GCM. The mosaic treatment of cloud distributions has been implemented in the GCM with the original convection scheme and enables the use of more realistic cloud amounts as well as cloud water contents in producing net radiative fluxes closer to observations. A physics-based latent heat (LH) retrieval algorithm was developed by parameterizing the physical linkages of observed hydrometeor profiles of cloud and precipitation to the major processes related to the phase change of atmospheric water.

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 31, 2010 [Facility News] Scientists Convene at SGP Site for Complex Convective Cloud Experiment Bookmark and Share The MC3E planning team poses for a group photo near the ARM millimeter wave cloud radar at the SGP Central Facility. Mike Jensen, principle investigator for the campaign, is second from left. Photo courtesy of Brad Orr. In early May, scientists involved in the Midlatitude Continental Convective Cloud Experiment (MC3E), a joint field program involving NASA Global Precipitation

  17. ARM - Publications: Science Team Meeting Documents: Day and Night cloud

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fraction - Cloud Inter-Compariosn IOP results Day and Night cloud fraction - Cloud Inter-Compariosn IOP results Genkova, Iliana University of Illinois-Champaign Long, Chuck Pacific Northwest National Laboratory Turner, David Pacific Northwest National Laboratory We present results from the CIC IOP from March-may, 2003. Day time and night time cloud fraction retrieval algorithms have been presented and intercompared. Amount of low, middle and high cloud have been estimated and compared to

  18. ARM - Evaluation Product - MWR Retrievals of Cloud Liquid Water and Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vapor ProductsMWR Retrievals of Cloud Liquid Water and Water Vapor ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : MWR Retrievals of Cloud Liquid Water and Water Vapor A new algorithm is being developed for the ARM Program to derive liquid water path (LWP) and precipitable water vapor (PWV) from the

  19. Inferring Cloud Feedbacks from ARM Continuous Forcing, ISCCP, and ARSCL Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inferring Cloud Feedbacks from ARM Continuous Forcing, ISCCP, and ARSCL Data A. D. Del Genio National Aeronautics and Space Administration Goddard Institute for Space Studies New York, New York A. B. Wolf and M.-S. Yao SGT Inc., Institute for Space Studies New York, New York Introduction Single Column Model (SCM) versions of parent general circulation models (GCMs), accompanied by cloud-resolving models (CRMs) that crudely resolve cloud-scale dynamics, have increasingly been used to simulate

  20. ARM - Instrument - csapr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentscsapr Documentation CSAPR : Handbook ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : C-Band ARM Precipitation Radar (CSAPR) Instrument Categories Cloud Properties General Overview The C-SAPR is a C-band dual-polarization Doppler weather radar manufactured by ARC, Inc. The C-SAPR operates in a simultaneous transmit and receive (STAR) mode, meaning that the transmit signal is split so that

  1. ARM - Evaluation Product - MicroPulse LIDAR Cloud Optical Depth (MPLCOD)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsMicroPulse LIDAR Cloud Optical Depth (MPLCOD) ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : MicroPulse LIDAR Cloud Optical Depth (MPLCOD) The MPLCOD VAP retrieves the column cloud visible optical depth using LIDAR derived backscatter from the MPLNOR (Micro Pulse Lidar Normalized Backscatter) and

  2. ARM - Field Campaign - Thin Cloud Rotating Shadowband Radiometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thin Cloud Rotating Shadowband Radiometer 2008.01.08 - 2008.07.18 Lead Scientist : Mary Jane Bartholomew For data sets, see below. Abstract The Thin-Cloud Rotating Shadowband...

  3. ARM - Campaign Instrument - umasscprs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsumasscprs Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : University of Massachusetts Cloud Profiling Radar System (UMASSCPRS) Instrument Categories Cloud Properties Campaigns 2001 Multi-Frequency Radar IOP [ Download Data ] Southern Great Plains, 2001.03.01 - 2001.09.30 ARESE II IOP [ Download Data ] Southern Great Plains, 2000.02.01 - 2000.04.05 Cloud IOP [ Download Data ] Southern Great Plains, 1998.04.27 -

  4. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ice Cloud Microphysics Retrievals for the Broadband Radiative Heating Project Haynes, J.M., Stephens, G.L., and Leesman, K.J., Colorado State University Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting A new cloud microphysics retrieval is applied to cirrus observed by the Millimeter-Wavelength Cloud Radar over the ARM Southern Great Plains site. The retrieval has been developed in an optimal estimation framework which allows accurate characterization of the uncertainty of

  5. ARM - Datastreams - kasacrhsrhi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamskasacrhsrhi Documentation Data Quality Plots Citation DOI: 10.5439/1046197 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KASACRHSRHI Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals) Active Dates 2011.05.24 - 2015.07.02 Measurement Categories Cloud Properties Originating

  6. ARM - Datastreams - swacrblrhi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsswacrblrhi Documentation Data Quality Plots Citation DOI: 10.5439/1150273 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : SWACRBLRHI S-WACR Boundary-layer Range-Height Indicator scan Active Dates 2010.04.28 - 2010.05.31 Measurement Categories Cloud Properties Originating Instrument W-Band (95 GHz) ARM Cloud Radar, mounted to scan (SWACR) Measurements Only

  7. ARM - Datastreams - swacrcal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsswacrcal Documentation Data Quality Plots Citation DOI: 10.5439/1025288 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : SWACRCAL S-WACR calibration information Active Dates 2010.03.15 - 2010.04.23 Measurement Categories Cloud Properties Originating Instrument W-Band (95 GHz) ARM Cloud Radar, mounted to scan (SWACR) Measurements Only measurements considered

  8. ARM - Datastreams - swacrcwrhi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsswacrcwrhi Documentation Data Quality Plots Citation DOI: 10.5439/1025289 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : SWACRCWRHI S-WACR Cross-Wind Range-Height Indicator scan Active Dates 2009.10.26 - 2010.05.31 Measurement Categories Cloud Properties Originating Instrument W-Band (95 GHz) ARM Cloud Radar, mounted to scan (SWACR) Measurements Only

  9. ARM - Datastreams - swacrfpt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsswacrfpt Documentation Data Quality Plots Citation DOI: 10.5439/1025290 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : SWACRFPT S-WACR - Fixed PoinTing mode Active Dates 2010.04.28 - 2011.04.25 Measurement Categories Cloud Properties Originating Instrument W-Band (95 GHz) ARM Cloud Radar, mounted to scan (SWACR) Measurements Only measurements considered

  10. ARM - Datastreams - swacrhsrhi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsswacrhsrhi Documentation Data Quality Plots Citation DOI: 10.5439/1025291 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : SWACRHSRHI S-WACR Horizon-to-horizon Range-Height Indicator scan Active Dates 2010.04.28 - 2011.04.25 Measurement Categories Cloud Properties Originating Instrument W-Band (95 GHz) ARM Cloud Radar, mounted to scan (SWACR) Measurements

  11. ARM - Datastreams - swacrppi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsswacrppi Documentation Data Quality Plots Citation DOI: 10.5439/1025292 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : SWACRPPI S-WACR Plan Position Indicator scan Active Dates 2009.10.05 - 2011.04.25 Measurement Categories Cloud Properties Originating Instrument W-Band (95 GHz) ARM Cloud Radar, mounted to scan (SWACR) Measurements Only measurements

  12. ARM - Datastreams - swacrspeccmaskxpol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsswacrspeccmaskxpol Documentation Data Quality Plots Citation DOI: 10.5439/1025295 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : SWACRSPECCMASKXPOL S-WACR filtered spectral data, cross-polarized mode Active Dates 2010.11.27 - 2011.04.25 Measurement Categories Cloud Properties Originating Instrument W-Band (95 GHz) ARM Cloud Radar, mounted to scan (SWACR)

  13. ARM - Datastreams - swacrvad

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsswacrvad Documentation Data Quality Plots Citation DOI: 10.5439/1025296 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : SWACRVAD S-WACR Velocity-Azimuth Display scan Active Dates 2009.10.05 - 2011.04.25 Measurement Categories Cloud Properties Originating Instrument W-Band (95 GHz) ARM Cloud Radar, mounted to scan (SWACR) Measurements Only measurements

  14. ARM - Datastreams - swacrvpt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsswacrvpt Documentation Data Quality Plots Citation DOI: 10.5439/1025297 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : SWACRVPT S-WACR Vertical PoinTing scan Active Dates 2009.10.05 - 2011.04.25 Measurement Categories Cloud Properties Originating Instrument W-Band (95 GHz) ARM Cloud Radar, mounted to scan (SWACR) Measurements Only measurements considered

  15. ARM - Datastreams - wsacrhsrhi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamswsacrhsrhi Documentation Data Quality Plots Citation DOI: 10.5439/1150284 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : WSACRHSRHI W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals) Active Dates 2011.05.24 - 2015.07.02 Measurement Categories Cloud Properties Originating

  16. ARM - Datastreams - xsacrhsrhi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsxsacrhsrhi Documentation Data Quality Plots Citation DOI: 10.5439/1150297 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : XSACRHSRHI X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals) Active Dates 2011.09.14 - 2014.09.13 Measurement Categories Cloud Properties Originating

  17. ARM - Instrument - mwacr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsmwacr Documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Marine W-Band (95 GHz) ARM Cloud Radar (MWACR) Instrument Categories Cloud Properties This instrument started as the zenith pointing WACR at SGP then was converted to the scanning SWACR and deployed with AMF1. For the MAGIC campaign, MWACR was put on a stabilized platform, but only in zenith pointing mode for now. Later it

  18. ARM - Instrument - sacr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentssacr Documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Scanning ARM cloud radar (SACR) Instrument Categories Cloud Properties Contact(s) Karen Johnson Brookhaven National Laboratory (631) 344-5952 kjohnson@bnl.gov Nitin Bharadwaj Pacific Northwest National Laboratory (509) 372-4267 nitin@pnnl.gov Dan Nelson Pacific Northwest National Laboratory associate (509) 375-6895

  19. ARM - Instrument - swacr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsswacr Documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : W-Band (95 GHz) ARM Cloud Radar, mounted to scan (SWACR) Instrument Categories Cloud Properties Output Datastreams swacrblrhi : S-WACR Boundary-layer Range-Height Indicator scan swacrcal : S-WACR calibration information swacrcwrhi : S-WACR Cross-Wind Range-Height Indicator scan swacrfpt : S-WACR - Fixed PoinTing mode

  20. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurements from the Air Force Cloud Profiling Radar (AFCPR) Mozer, J.B., and Hiett, T.C., U.S. Air Force Research Laboratory Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting We will introduce a new ka-band cloud radar that is operating at the U.S. Air Force Research Laboratory (AFRL). The specific measurements we will show involve using the radar data to model the effects of clouds on nighttime urban illumination and to validate satellite cloud retrieval algorithms

  1. ARM - Field Campaign - Aerosol and Cloud Experiments in the Eastern North

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atlantic (ACE-ENA) govCampaignsAerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA) Related Campaigns Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA) 2017.06.01, Wang, ENA Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA) 2017.06.01 - 2018.02.28 Lead Scientist : Jian Wang Abstract With their extensive coverage, low clouds

  2. ARM - Events Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 5, 2009 [Events] American Meteorological Society 34th Conference on Radar Meteorology Bookmark and Share Scientist Peter May from the Centre for Australian Weather and Climate Research is the keynote speaker at the American Meteorological Society's 34th Conference on Radar Meteorology this week. Peter was one of the principal investigators for the Tropical Warm Pool-International Cloud Experiment, conducted in the region near the ARM Climate Research Facility site in Darwin, Northern

  3. ARM - Field Campaign - Aerosol and Cloud Experiments in the Eastern...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    horizontal variabilities of aerosol, trace gases, cloud, drizzle, and atmospheric thermodynamics are critically needed for understanding and quantifying the budget of MBL aerosol,...

  4. ARM - Publications: Science Team Meeting Documents: Interpretation of cloud

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    structure anomalies over the tropical Pacific during the 1997/98 El Nino Interpretation of cloud structure anomalies over the tropical Pacific during the 1997/98 El Nino Cess, Robert State University of New York at Stony Brook Sun, Moguo State University of New York at Stony Brook The CERES/TRMM single satellite footprint (SSF) dataset, available for January 1998 to August 1998, provides not only radiometric data, but also data for cloud fraction, cloud top pressure and cloud optical depth.

  5. ARM - Field Campaign - FIRE-Arctic Cloud Experiment/SHEBA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the Arctic, to measure the BRDF and albedos of various surfaces (ice, snow and tundra) and various cloud types, and to obtain these measurements whenever possible either...

  6. ARM - Publications: Science Team Meeting Documents: Clouds in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clouds in the Darwin area and their relation to large-scale conditions Jakob, Christian BMRC Hoeglund, Sofia Lulea University of Technology This poster shows a climatological...

  7. ARM - Field Campaign - Cloud, Aerosol, and Complex Terrain Interaction...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This range of environmental conditions and cloud properties coupled with a high frequency of events makes this an ideal location for improving our understanding of...

  8. arm_stm_2007_revercomb_poster_cloud.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AERI Derived Cloud Properties David Tobin, Lori Borg, David Turner, Robert Holz, Daniel DeSlover, Hank Revercomb, Bob Knuteson, Leslie Moy, Ed Eloranta, Jun Li Space Science...

  9. ARM - Publications: Science Team Meeting Documents: Clouds and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clouds and radiation in the Arctic coastal system - effects of local heterogeneity Key, Erica University of Miami, RSMAS Minnett, Peter University of Miami Improving our...

  10. DOE/SC-ARM-P-07-006 Evaluation of Mixed-Phase Cloud Microphysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Evaluation of Mixed-Phase Cloud Microphysics Parameterizations with the NCAR Single Column Climate Model (SCAM) and ARM Observations Second Quarter 2007 ARM Metric Report April 2007 Xiaohong Liu and Steven J. Ghan Pacific Northwest National Laboratory Richland, Washington Shaocheng Xie Lawrence Livermore National Laboratory Livermore, California Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research X. Lui, S.J. Ghan, and S. Xie,

  11. ARM TR-008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Millimeter Wave Cloud Radar (MMCR) Handbook January 2005 K. B. Widener K. Johnson Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research January 2005, ARM TR-018 Contents 1. General Overview ............................................................................................................................... 1 2.

  12. ARM - Instrument - dl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsdl Documentation DL : Handbook ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Doppler Lidar (DL) Instrument Categories Cloud Properties Picture of the Doppler Lidar General Overview The Doppler Lidar (DL) is an active remote sensing instrument that provides range- and time-resolved measurements of radial velocity and attenuated backscatter. The principle of operation is similar to radar

  13. Use of the ARM Measurements of Spectral Zenith Radiance for Better Understanding of 3D Cloud-Radiation Processes & Aerosol-Cloud Interaction

    SciTech Connect (OSTI)

    Chiu, Jui-Yuan Christine

    2014-04-10

    This project focuses on cloud-radiation processes in a general three-dimensional cloud situation, with particular emphasis on cloud optical depth and effective particle size. The proposal has two main parts. Part one exploits the large number of new wavelengths offered by the Atmospheric Radiation Measurement (ARM) zenith-pointing ShortWave Spectrometer (SWS), to develop better retrievals not only of cloud optical depth but also of cloud particle size. We also take advantage of the SWS’ high sampling resolution to study the “twilight zone” around clouds where strong aerosol-cloud interactions are taking place. Part two involves continuing our cloud optical depth and cloud fraction retrieval research with ARM’s 2-channel narrow vield-of-view radiometer and sunphotometer instrument by, first, analyzing its data from the ARM Mobile Facility deployments, and second, making our algorithms part of ARM’s operational data processing.

  14. ARM Value-Added Cloud Products: Description and Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Value-Added Cloud Products: Description and Status M. A. Miller, K. L. Johnson, and D. T. Troyan Brookhaven National Laboratory Upton, New York E. E. Clothiaux Pennsylvania State...

  15. ARM - Tropical Warm Pool - International Cloud Experiment (TWP...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    width"16"> Tropical Warm Pool - International Cloud Experiment (TWP-ICE) twp-ice-big One of the most complete data sets of tropical cirrus and convection observations ever...

  16. ARM - Field Campaign - Azores: Above-Cloud Radiation Budget near...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Campaigns Azores: Clouds, Aerosol and Precipitation in the Marine Boundary Layer (CAP-MBL) 2009.05.01, Wood, AMF Comments? We would love to hear from you Send us a note...

  17. ARM - Campaign Instrument - cpol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentscpol Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : C-Band Polarimetric Radar (CPOL) Instrument Categories Cloud Properties Campaigns Biogenic Aerosols - Effects on Clouds and Climate [ Download Data ] Hyytiala, Finland; Mobile Facility, 2014.02.01 - 2014.09.13 Primary Measurements Taken The following measurements are those considered scientifically relevant. Refer to the datastream (netcdf) file headers for

  18. Cloud and aerosol characterization for the ARM central facility: Multiple remote sensor techniques development. Technical progress report

    SciTech Connect (OSTI)

    Sassen, K.

    1992-04-30

    This research project designed to investigate how atmospheric remote sensing technology can best be applied to the characterization of the cloudy atmosphere. Our research program addresses basic atmospheric remote sensing questions, but at the same time is clearly directed toward providing information crucial to the ARM (Atmospheric Remote Sensing) program and for application to the Clouds and Radiation Testbed (CART). The instrumentation that is being brought into play includes a variety of art-of-the-art sensors. Available at NOAA WPL are polarization Doppler K{sub a}-band (0.86 mm) and X-band (3.2 cm) radars, a C0{sub 2}(10.6 {mu}m) Doppler lidar with sequential ` polarization measurement capabilities, a three-channel (20.6, 31.65 and 90 GHz) microwave radiometer, and variety of visible and infrared radiometers. Instrumentation at the University of Utah Facility for Atmospheric Remote Sensing (FARS) includes a polarization ruby (0.643 {mu}m) lidar, a narrow-beam (0.14{degree}) mid-infrared (9.5--11.5 {mu}m) radiometer coaligned with the lidar, several other radiometers in the visible and infrared spectral regions, and an advanced two-color (1.06 and 0.532 {mu}m), four-channel Polarization Diversity Lidar (PDL) and all-sky video imaging system that have only recently been developed under the ARM IDP.

  19. ARM - Field Campaign - 2008 VAMOS Ocean-Cloud-Atmos-Land Study...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : 2008 VAMOS Ocean-Cloud-Atmos-Land Study (VOCALS) 2008.10.14 - 2008.11.13 Lead...

  20. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Role of Cloud Scale Resolution on Radiative Properties of Oceanic Low-Level Clouds Kassianov, E.I.(a), Ackerman, T.P.(a), and Kollias P.(b), Pacific Northwest National Laboratory (a), University of Miami (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Millimeter radars have been commonly used to examine the spatial/temporal evolution of clouds. To asses the impact of the cloud scale resolution on the solar radiative transfer, two sets of radiative experiments were

  1. Application of Stochastic Radiative Transfer Theory to the ARM Cloud-Radiative Parameterization Problem

    SciTech Connect (OSTI)

    Dana E. Veron

    2012-04-09

    This project had two primary goals: (1) development of stochastic radiative transfer as a parameterization that could be employed in an AGCM environment, and (2) exploration of the stochastic approach as a means for representing shortwave radiative transfer through mixed-phase layer clouds. To achieve these goals, climatology of cloud properties was developed at the ARM CART sites, an analysis of the performance of the stochastic approach was performed, a simple stochastic cloud-radiation parameterization for an AGCM was developed and tested, a statistical description of Arctic mixed phase clouds was developed and the appropriateness of stochastic approach for representing radiative transfer through mixed-phase clouds was assessed. Significant progress has been made in all of these areas and is detailed in the final report.

  2. ARM - Datastreams - 50rwpwindmom

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rwpwindmom Documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : 50RWPWINDMOM 50-MHz Radar Wind Profiler/RASS (RWP50): wind moments Active Dates 2001.04.01 - 2006.05.04 Measurement Categories Cloud Properties Originating Instrument Radar Wind Profiler (50 MHz) (50RWP) Measurements Only measurements considered scientifically relevant are shown below by default. Show all

  3. ARM - Datastreams - 50rwpwindspec

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rwpwindspec Documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : 50RWPWINDSPEC 50-MHz Radar Wind Profiler/RASS (RWP50): wind spectra Active Dates 2001.04.01 - 2006.05.04 Measurement Categories Aerosols, Cloud Properties Originating Instrument Radar Wind Profiler (50 MHz) (50RWP) Measurements Only measurements considered scientifically relevant are shown below by default. Show

  4. ARM - Datastreams - 915rwptemp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rwptemp Documentation Data Quality Plots Citation DOI: 10.5439/1025130 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : 915RWPTEMP 915-MHz Radar Wind Profiler/RASS (RWP915): virtual temperature profile data Active Dates 1996.12.30 - 2001.03.31 Measurement Categories Aerosols, Atmospheric State, Cloud Properties Originating Instrument Radar Wind Profiler (RWP)

  5. ARM - Datastreams - 915rwpwind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rwpwind Documentation Data Quality Plots Citation DOI: 10.5439/1025134 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : 915RWPWIND 915-MHz Radar Wind Profiler/RASS (RWP915): wind profile data Active Dates 1996.12.30 - 2001.03.31 Measurement Categories Aerosols, Atmospheric State, Cloud Properties Originating Instrument Radar Wind Profiler (RWP) Measurements The

  6. ARM - Campaign Instrument - citation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentscitation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : University of North Dakota Citation Aircraft (CITATION) Instrument Categories Airborne Observations, Cloud Properties Campaigns Cloud IOP [ Download Data ] Southern Great Plains, 1998.04.27 - 1998.05.17 Cloud Radar IOP [ Download Data ] Southern Great Plains, 1997.04.02 - 1997.04.22 Fall 1997 Cloud IOP [ Download Data ] Southern Great Plains, 1997.09.15 -

  7. On the relationship among cloud turbulence, droplet formation and drizzle as viewed by Doppler radar, microwave radiometer and lidar

    SciTech Connect (OSTI)

    Feingold, G.; Frisch, A.S.; Cotton, W.R.

    1999-09-01

    Cloud radar, microwave radiometer, and lidar remote sensing data acquired during the Atlantic Stratocumulus Transition Experiment (ASTEX) are analyzed to address the relationship between (1) drop number concentration and cloud turbulence as represented by vertical velocity and vertical velocity variance and (2) drizzle formation and cloud turbulence. Six cases, each of about 12 hours duration, are examined; three of these cases are characteristic of nondrizzling boundary layers and three of drizzling boundary layers. In all cases, microphysical retrievals are only performed when drizzle is negligible (radar reflectivity{lt}{minus}17dBZ). It is shown that for the cases examined, there is, in general, no correlation between drop concentration and cloud base updraft strength, although for two of the nondrizzling cases exhibiting more classical stratocumulus features, these two parameters are correlated. On drizzling days, drop concentration and cloud-base vertical velocity were either not correlated or negatively correlated. There is a significant positive correlation between drop concentration and mean in-cloud vertical velocity variance for both nondrizzling boundary layers (correlation coefficient r=0.45) and boundary layers that have experienced drizzle (r=0.38). In general, there is a high correlation (r{gt}0.5) between radar reflectivity and in-cloud vertical velocity variance, although one of the boundary layers that experienced drizzle exhibited a negative correlation between these parameters. However, in the subcloud region, all boundary layers that experienced drizzle exhibit a negative correlation between radar reflectivity and vertical velocity variance. {copyright} 1999 American Geophysical Union

  8. Automated retrieval of cloud and aerosol properties from the ARM Raman lidar, part 1: feature detection

    SciTech Connect (OSTI)

    Thorsen, Tyler J.; Fu, Qiang; Newsom, Rob K.; Turner, David D.; Comstock, Jennifer M.

    2015-11-01

    A Feature detection and EXtinction retrieval (FEX) algorithm for the Atmospheric Radiation Measurement (ARM) program’s Raman lidar (RL) has been developed. Presented here is part 1 of the FEX algorithm: the detection of features including both clouds and aerosols. The approach of FEX is to use multiple quantities— scattering ratios derived using elastic and nitro-gen channel signals from two fields of view, the scattering ratio derived using only the elastic channel, and the total volume depolarization ratio— to identify features using range-dependent detection thresholds. FEX is designed to be context-sensitive with thresholds determined for each profile by calculating the expected clear-sky signal and noise. The use of multiple quantities pro-vides complementary depictions of cloud and aerosol locations and allows for consistency checks to improve the accuracy of the feature mask. The depolarization ratio is shown to be particularly effective at detecting optically-thin features containing non-spherical particles such as cirrus clouds. Improve-ments over the existing ARM RL cloud mask are shown. The performance of FEX is validated against a collocated micropulse lidar and observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite over the ARM Darwin, Australia site. While we focus on a specific lidar system, the FEX framework presented here is suitable for other Raman or high spectral resolution lidars.

  9. ARM - Campaign Instrument - mmcr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsmmcr Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Millimeter Wavelength Cloud Radar (MMCR) Instrument Categories Cloud Properties Campaigns 2001 Multi-Frequency Radar IOP [ Download Data ] Southern Great Plains, 2001.03.01 - 2001.09.30 Fall 1997 Water Vapor IOP [ Download Data ] Southern Great Plains, 1997.09.15 - 1997.10.05 Primary Measurements Taken The following measurements are those considered

  10. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Possibilities of Rainfall-Rate Estimates from MMCR Measurements Matrosov, S.Y., CIRES, University of Colorado and NOAA ETL The vertically-pointing ARM 8 mm cloud radars are widely used for retrievals of cloud parameters. Attempts to quantitatively retrieve precipitation parameters (excluding drizzle properties) have been scarce. These retrievals are hampered by the saturation of strong radar returns, Mie scattering effects and significant attenuation of millimeter wavelength radiation in rain.

  11. Continuous Profiles of Cloud Microphysical Properties for the Fixed Atmospheric Radiation Measurement Sites

    SciTech Connect (OSTI)

    Jensen, M; Jensen, K

    2006-06-01

    The Atmospheric Radiation Measurement (ARM) Program defined a specific metric for the third quarter of Fiscal Year 2006 to produce and refine a one-year continuous time series of cloud microphysical properties based on cloud radar measurements for each of the fixed ARM sites. To accomplish this metric, we used a combination of recently developed algorithms that interpret radar reflectivity profiles, lidar backscatter profiles, and microwave brightness temperatures into the context of the underlying cloud microphysical structure.

  12. ARM - Field Campaign - LASIC: Layered Atlantic Smoke Interactions with

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clouds govCampaignsLASIC: Layered Atlantic Smoke Interactions with Clouds Campaign Links Science Plan Related Campaigns LASIC: Layered Atlantic Smoke Interactions with Clouds - Supplemental Measurements 2016.06.01, Zuidema, AMF LASIC: Layered Atlantic Smoke Interactions with Clouds - Cloud Radar at St. Helena 2016.06.01, Zuidema, AMF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : LASIC: Layered Atlantic Smoke Interactions with

  13. ARM - Publications: Science Team Meeting Documents: Cloud Property

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrievals using AIRS data during MPACE Cloud Property Retrievals using AIRS data during MPACE Huang, Allen University of Wisconsin Li, Jun University of Wisconsin-Madison Baggett, Kevin University of Wisconsin-Madison Wu, Xuebao University of Wisconsin-Madison Revercomb, Henry University Of Wisconsin-Madison Tobin, David University of Wisconsin-Madison Knuteson, Robert University Of Wisconsin High spectral resolution infrared radiances collected by AIRS aboard the NASA Aqua satellite are

  14. ARM - Data Announcements Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Update of WACR-ARSCL: Evaluation VAP Data Available Bookmark and Share A data plot example is shown here from Hyytiälä, Finland, for July 1, 2014. A data plot example is shown here from Hyytiälä, Finland, for July 1, 2014. New data sets from the 95 GHz W-band ARM Cloud Radar-Active Remote Sensing of Clouds (WACR-ARSCL) are now available for download as an evaluation value-added product (VAP) for the ARM Mobile Facility (AMF) deployments in Hyytiälä, Finland, from February through

  15. Cloud Occurrence Frequency at the Barrow, Alaska, ARM Climate Research Facility for 2008 Third Quarter 2009 ARM and Climate Change Prediction Program Metric Report

    SciTech Connect (OSTI)

    M Jensen; K Johnson; JH Mather

    2009-07-14

    Clouds represent a critical component of the Earth’s atmospheric energy balance as a result of their interactions with solar and terrestrial radiation and a redistribution of heat through convective processes and latent heating. Despite their importance, clouds and the processes that control their development, evolution and lifecycle remain poorly understood. Consequently, the simulation of clouds and their associated feedbacks is a primary source of inter-model differences in equilibrium climate sensitivity. An important step in improving the representation of cloud process simulations is an improved high-resolution observational data set of the cloud systems including their time evolution. The first order quantity needed to understand the important role of clouds is the height of cloud occurrence and how it changes as a function of time. To this end, the Atmospheric Radiation Measurement (ARM) Climate Research Facilities (ACRF) suite of instrumentation has been developed to make the observations required to improve the representation of cloud systems in atmospheric models.

  16. ARM - Feature Stories and Releases Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 9, 2010 [Feature Stories and Releases] Scientists Begin 5-month Study of Cloud Life Cycles Bookmark and Share Instruments at four mountain sites gather data to improve climate models. For Immediate Release: Thursday, December 9, 2010 Just outside Thunderhead Lodge in the Steamboat Springs ski area, one of the ARM Mobile Facility sites hosts a scanning cloud radar and several other instruments. Just outside Thunderhead Lodge in the Steamboat Springs ski area, one of the ARM Mobile

  17. DE/SC-ARM/TR-130 Aerosol Observing System Cloud Condensation Nuclei Average

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DE/SC-ARM/TR-130 Aerosol Observing System Cloud Condensation Nuclei Average (AOSCCNAVG) Value-Added Product Y Shi A Jefferson C Flynn July 2013 DOE/SC-ARM/TR-130 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

  18. Microsoft PowerPoint - arm_stm08-poster_matrosov.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    estimations of cloud and rainfall parameters using ARM and auxiliary instruments Sergey Y. Matrosov, Matthew D. Shupe Cooperative Institute for Research in Environmental Sciences, University of Colorado and NOAA Environmental Technology Laboratory Purpose: Extending ARM column hydrometeor retrievals to include simultaneous estimations of cloud and rainfall parameters in stratiform precipitating systems Approach: Differential attenuation (MMCR and WACR) radar measurements in the rain layer are

  19. ARM - Field Campaign - Measurement of Aerosols, Radiation and CloUds over

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Southern Oceans (MARCUS) govCampaignsMeasurement of Aerosols, Radiation and CloUds over the Southern Oceans (MARCUS) Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Measurement of Aerosols, Radiation and CloUds over the Southern Oceans (MARCUS) 2017.09.01 - 2018.04.01 Lead Scientist : Greg McFarquhar Abstract The Southern Ocean (SO) is the stormiest place on Earth, buffeted by winds and waves that circle the ice of Antarctica,

  20. ARM Cloud Aerosol Precipitation Experiment (ACAPEX) Science Plan

    SciTech Connect (OSTI)

    Leung, L. R.; Prather, K.; Ralph, R.; Rosenfeld, D.; Spackman, R.; DeMott, P.; Fairall, C.; Fan, J.; Hagos, S.; Hughes, M.; Long, C.; Rutledge, S.; Waliser, D.; Wang, H.

    2014-09-01

    The western U.S. receives precipitation predominantly during the cold season when storms approach from the Pacific Ocean. The snowpack that accumulates during winter storms provides about 70-90% of water supply for the region. Understanding and modeling the fundamental processes that govern the large precipitation variability and extremes in the western U.S. is a critical test for the ability of climate models to predict the regional water cycle, including floods and droughts. Two elements of significant importance in predicting precipitation variability in the western U.S. are atmospheric rivers and aerosols. Atmospheric rivers (ARs) are narrow bands of enhanced water vapor associated with the warm sector of extratropical cyclones over the Pacific and Atlantic oceans. Because of the large lower-tropospheric water vapor content, strong atmospheric winds and neutral moist static stability, some ARs can produce heavy precipitation by orographic enhancement during landfall on the U.S. West Coast. While ARs are responsible for a large fraction of heavy precipitation in that region during winter, much of the rest of the orographic precipitation occurs in post-frontal clouds, which are typically quite shallow, with tops just high enough to pass the mountain barrier. Such clouds are inherently quite susceptible to aerosol effects on both warm rain and ice precipitation-forming processes.

  1. ARM - Datastreams - xsaprhsrhi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsxsaprhsrhi Documentation Data Quality Plots Citation DOI: 10.5439/1025326 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : XSAPRHSRHI X-SAPR Horizon-to-horizon Range-Height Indicator scan Active Dates 2010.12.17 - 2015.07.22 Measurement Categories Cloud Properties Originating Instrument X-Band Scanning ARM Precipitation Radar (XSAPR) Measurements The

  2. ARM - Datastreams - xsaprvad

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsxsaprvad Documentation Data Quality Plots Citation DOI: 10.5439/1025328 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : XSAPRVAD X-SAPR Velocity-Azimuth Display scan Active Dates 2010.12.14 - 2010.12.14 Measurement Categories Cloud Properties Originating Instrument X-Band Scanning ARM Precipitation Radar (XSAPR) Measurements The measurements below provided

  3. ARM - Datastreams - csaprrhi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamscsaprrhi Documentation Data Quality Plots Citation DOI: 10.5439/1025168 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : CSAPRRHI C-SAPR Range Height Indicator scan Active Dates 2011.03.25 - 2016.03.09 Measurement Categories Cloud Properties Originating Instrument C-Band ARM Precipitation Radar (CSAPR) Measurements The measurements below provided by this

  4. Cloud Optical Properties from the Multifilter Shadowband Radiometer (MFRSRCLDOD): An ARM Value-Added Product

    SciTech Connect (OSTI)

    Turner, DD; McFarlane, SA; Riihimaki, L; Shi, Y; Lo, C; Min, Q

    2014-02-01

    The microphysical properties of clouds play an important role in studies of global climate change. Observations from satellites and surface-based systems have been used to infer cloud optical depth and effective radius. Min and Harrison (1996) developed an inversion method to infer the optical depth of liquid water clouds from narrow band spectral Multifilter Rotating Shadowband Radiometer (MFRSR) measurements (Harrison et al. 1994). Their retrieval also uses the total liquid water path (LWP) measured by a microwave radiometer (MWR) to obtain the effective radius of the warm cloud droplets. Their results were compared with Geostationary Operational Environmental Satellite (GOES) retrieved values at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site (Min and Harrison 1996). Min et al. (2003) also validated the retrieved cloud optical properties against in situ observations, showing that the retrieved cloud effective radius agreed well with the in situ forward scattering spectrometer probe observations. The retrieved cloud optical properties from Min et al. (2003) were used also as inputs to an atmospheric shortwave model, and the computed fluxes were compared with surface pyranometer observations.

  5. ARM - Midlatitude Continental Convective Clouds (comstock-hvps)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike; Comstock, Jennifer; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos

    2012-01-06

    Convective processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of convective processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to convective processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.

  6. ARM - Midlatitude Continental Convective Clouds (comstock-hvps)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike; Comstock, Jennifer; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos

    Convective processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of convective processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to convective processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.

  7. Derivation of Seasonal Cloud Properties at ARM-NSA from Multispectral MODIS Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Derivation of Seasonal Cloud Properties at ARM-NSA from Multispectral MODIS Data D. A. Spangenberg Analytical Services and Materials, Inc. Hampton, Virginia P. Minnis National Aeronautics and Space Administration Langley Research Center Hampton, Virginia T. Uttal National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado Q. Z. Trepte and S. S.-Mack Science Applications International Corporation Hampton, Virginia Introduction Improving climate model

  8. DEVELOPMENT OF IMPROVED TECHNIQUES FOR SATELLITE REMOTE SENSING OF CLOUDS AND RADIATION USING ARM DATA, FINAL REPORT

    SciTech Connect (OSTI)

    Minnis, Patrick

    2013-06-28

    During the period, March 1997 February 2006, the Principal Investigator and his research team co-authored 47 peer-reviewed papers and presented, at least, 138 papers at conferences, meetings, and workshops that were supported either in whole or in part by this agreement. We developed a state-of-the-art satellite cloud processing system that generates cloud properties over the Atmospheric Radiation (ARM) surface sites and surrounding domains in near-real time and outputs the results on the world wide web in image and digital formats. When the products are quality controlled, they are sent to the ARM archive for further dissemination. These products and raw satellite images can be accessed at http://cloudsgate2.larc.nasa.gov/cgi-bin/site/showdoc?docid=4&cmd=field-experiment-homepage&exp=ARM and are used by many in the ARM science community. The algorithms used in this system to generate cloud properties were validated and improved by the research conducted under this agreement. The team supported, at least, 11 ARM-related or supported field experiments by providing near-real time satellite imagery, cloud products, model results, and interactive analyses for mission planning, execution, and post-experiment scientific analyses. Comparisons of cloud properties derived from satellite, aircraft, and surface measurements were used to evaluate uncertainties in the cloud properties. Multiple-angle satellite retrievals were used to determine the influence of cloud structural and microphysical properties on the exiting radiation field.

  9. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Surface Meteorology (williams-surfmet)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher; Jensen, Mike

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  10. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Parcivel Disdrometer (williams-disdro)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher; Jensen, Mike

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  11. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Vertical Air Motion (williams-vertair)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher; Jensen, Mike

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  12. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, 449 MHz Profiler(williams-449_prof)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher; Jensen, Mike

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  13. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cirrus Cloud Statistics from a Cloud-Resolving Model Simulation Compared to Cloud Radar Observations Krueger, S.K. (a), Luo, Y. (a), Mace, G.G. (a), and Xu, K.-M. (b), University of Utah (a), NASA Langley Research Center (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Mace, Clothiaux, and Ackerman (2000; MCA) determined the properties of cirrus clouds derived from one year (December 1996 to November 1997) of MMCR data collected at the SGP ARM site in Oklahoma. They also

  14. Ground-Based Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Atmospheric Radiation Measurement (ARM) Program A Laboratory for the Study of Clouds ... Tom Ackerman Chief Scientist ARM ARM Atmospheric Radiation Measurement Atmospheric ...

  15. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud

    SciTech Connect (OSTI)

    Klein, S A; McCoy, R B; Morrison, H; Ackerman, A; Avramov, A; deBoer, G; Chen, M; Cole, J; DelGenio, A; Golaz, J; Hashino, T; Harrington, J; Hoose, C; Khairoutdinov, M; Larson, V; Liu, X; Luo, Y; McFarquhar, G; Menon, S; Neggers, R; Park, S; Poellot, M; von Salzen, K; Schmidt, J; Sednev, I; Shipway, B; Shupe, M; Spangenberg, D; Sud, Y; Turner, D; Veron, D; Falk, M; Foster, M; Fridlind, A; Walker, G; Wang, Z; Wolf, A; Xie, S; Xu, K; Yang, F; Zhang, G

    2008-02-27

    Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a cold-air outbreak mixed-phase stratocumulus cloud observed during the Atmospheric Radiation Measurement (ARM) program's Mixed-Phase Arctic Cloud Experiment. The observed cloud occurred in a well-mixed boundary layer with a cloud top temperature of -15 C. The observed liquid water path of around 160 g m{sup -2} was about two-thirds of the adiabatic value and much greater than the mass of ice crystal precipitation which when integrated from the surface to cloud top was around 15 g m{sup -2}. The simulations were performed by seventeen single-column models (SCMs) and nine cloud-resolving models (CRMs). While the simulated ice water path is generally consistent with the observed values, the median SCM and CRM liquid water path is a factor of three smaller than observed. Results from a sensitivity study in which models removed ice microphysics indicate that in many models the interaction between liquid and ice-phase microphysics is responsible for the large model underestimate of liquid water path. Despite this general underestimate, the simulated liquid and ice water paths of several models are consistent with the observed values. Furthermore, there is some evidence that models with more sophisticated microphysics simulate liquid and ice water paths that are in better agreement with the observed values, although considerable scatter is also present. Although no single factor guarantees a good simulation, these results emphasize the need for improvement in the model representation of mixed-phase microphysics. This case study, which has been well observed from both aircraft and ground-based remote sensors, could be a benchmark for model simulations of mixed-phase clouds.

  16. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cirrus Cloud and Upper Tropospheric Turbulence Properties Derived from MMCR Doppler Moments Mace, G. G., University of Utah Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting We are developing an algorithm that uses the radar reflectivity, Doppler velocity and Doppler spectral width observed in cirrus cloud layers to derive the microphysical properties of the cloud and information regarding the mean vertical air motion and turbulence. This approach assumes that the cirrus

  17. ARM - Campaign Instrument - acr-jpl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsacr-jpl Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Airborne Cloud Radar - JPL (ACR-JPL) Instrument Categories Cloud Properties Campaigns Tropical Warm Pool - International Cloud Experiment (TWP-ICE) [ Download Data ] Tropical Western Pacific, 2006.01.21 - 2006.02.13 Primary Measurements Taken The following measurements are those considered scientifically relevant. Refer to the datastream (netcdf) file

  18. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sizes, Fractional Coverage, and Radar Doppler Moments Profiles of Fair-Weather Cumulus Clouds at the TWP ARM Site Kollias, P., Albrecht B.A., and Dow B.J., University of Miami Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Fair-weather cumuli are fundamental in regulating the vertical structure of water vapor and entropy in the lowest 2 km of the Earth's atmosphere over vast areas of the oceans. Using data from the mm-wavelength cloud radar, the micro-pulse lidar and

  19. Atmospheric Radiation Measurement (ARM) Data from Steamboat Springs, Colorado, for the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    In October 2010, the initial deployment of the second ARM Mobile Facility (AMF2) took place at Steamboat Springs, Colorado, for the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX). The objective of this field campaign was to obtain data about liquid and mixed-phase clouds using AMF2 instruments in conjunction with Storm Peak Laboratory (located at an elevation of 3220 meters on Mt. Werner), a cloud and aerosol research facility operated by the Desert Research Institute. STORMVEX datasets are freely available for viewing and download. Users are asked to register with the ARM Archive; the user's email address is used from that time forward as the login name.

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 15, 2004 [Facility News] Upgrades Improve Site Data System Reliability Bookmark and Share Measurements from field instruments, such as the radar wind profiler (center) and radio acoustic sounding system (perimeter) in Barrow, are collected and transmitted by the Site Data System. Site Data Systems are a critically important element of the ARM Climate Research Facility's ability to collect and transmit data on clouds and radiative properties from research instrumentation in the field.

  1. ARM - Campaign Instrument - nawx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsnawx Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : NRC Airborne W and X Band Radar (NAWX) Instrument Categories Airborne Observations, Cloud Properties Campaigns Indirect and Semi-Direct Aerosol Campaign (ISDAC) [ Download Data ] North Slope Alaska, 2008.04.01 - 2008.04.30 Primary Measurements Taken The following measurements are those considered scientifically relevant. Refer to the datastream (netcdf) file

  2. ARM - Midlatitude Continental Convective Clouds - Single Column Model Forcing (xie-scm_forcing)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Xie, Shaocheng; McCoy, Renata; Zhang, Yunyan

    2012-10-25

    The constrained variational objective analysis approach described in Zhang and Lin [1997] and Zhang et al. [2001]was used to derive the large-scale single-column/cloud resolving model forcing and evaluation data set from the observational data collected during Midlatitude Continental Convective Clouds Experiment (MC3E), which was conducted during April to June 2011 near the ARM Southern Great Plains (SGP) site. The analysis data cover the period from 00Z 22 April - 21Z 6 June 2011. The forcing data represent an average over the 3 different analysis domains centered at central facility with a diameter of 300 km (standard SGP forcing domain size), 150 km and 75 km, as shown in Figure 1. This is to support modeling studies on various-scale convective systems.

  3. ARM - PI Product - Cloudnet Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsCloudnet Project ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Cloudnet Project Cloudnet is a research project supported by the European Commission. This project aims to use data obtained quasi-continuously for the development and implementation of cloud remote sensing synergy algorithms. The use of active instruments (lidar and radar) results in detailed vertical profiles of important cloud

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    based on lunchtime workshops. These tutorials covered: An introduction to ARM data ARM Python Radar Toolkit How to submit highlights to ARM How to access NetCDF files. ARM provides...

  5. ARM - Evaluation Product - WACR-ARSCL VAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsWACR-ARSCL VAP ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : WACR-ARSCL VAP Observations from the 95 GHz W-band ARM Cloud Radar (WACR), Micropulse Lidar (MPL), and ceilometer have been combined using the new WACR Active Remote Sensing of Clouds (WACR-ARSCL) VAP (Kollias and Miller, 2007) to

  6. DOE Tech. Memo. ARM VAP-002.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tech. Memo. ARM VAP-002.1 The ARM Millimeter Wave Cloud Radars (MMCRs) and the Active Remote Sensing of Clouds (ARSCL) Value Added Product (VAP) March 4, 2001 Eugene E. Clothiaux, The Pennsylvania State University Mark A. Miller, Brookhaven National Laboratory Robin C. Perez, Pacific Northwest National Laboratory David D. Turner, Pacific Northwest National Laboratory Kenneth P. Moran, NOAA Environmental Technology Laboratory Brooks E. Martner, NOAA Environmental Technology Laboratory Thomas P.

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mixed-Phase Arctic Cloud Experiment, and the ARM Mobile Facility's deployments at Point Reyes National Seashore and Niamey, Niger, West Africa. ARM researchers, including ARM's...

  8. ARM - Feature Stories and Releases Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    17, 2013 [Facility News, Feature Stories and Releases] Popular Science's Brilliant 10 Includes ARM Radar Meteorologist Bookmark and Share To the casual observer, radars for weather and climate research silently go about their business, sending pulses of energy into the sky to bounce off of clouds and other particles overhead. The return signals feed into a computer where they are converted to data. Simple. Scott Collis (image courtesy Argonne National Laboratory) Scott Collis (image courtesy

  9. ARM - VAP Product - arsclwacrbnd1kollias

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Productswacrarsclarsclwacrbnd1kollias Documentation Data Management Facility Plots (Quick Looks) Citation DOI: 10.5439/1097548 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP Output : ARSCLWACRBND1KOLLIAS WACRARSCL: cloud boundaries from first Kollias algorithm Active Dates 2006.03.16 - 2014.09.13 Originating VAP Process W-band Cloud Radar Active Remote Sensing of Cloud :

  10. ARM - Datastreams - mmcrmom

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsmmcrmom Documentation Data Quality Plots Citation DOI: 10.5439/1025228 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Example mmcrmom Archive Data Plot Example mmcrmom Archive Data Plot Datastream : MMCRMOM Millimeter Wave Cloud Radar (MMCR), replaces mmcrcal and mmcrmoments datastreams following C-40 processor upgrade of 2003.09.09 Active Dates 2003.09.27 - 2016.03.08

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 3, 2011 [Facility News] Cloud Radar Overhauled and Renamed Bookmark and Share The KAZR (left) is being tested with a 2-meter antenna used with MMCRs at other ARM sites. This pre-operational test will help uncover any data anomalies prior to the KAZR being installed in its new home in the shelter on the right when it replaces the MMCR. The KAZR (left) is being tested with a 2-meter antenna used with MMCRs at other ARM sites. This pre-operational test will help uncover any data anomalies

  12. ARM - Instrument - cpol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentscpol Documentation CPOL : XDC documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : C-Band Polarimetric Radar (CPOL) Note: cpol is currently inactive and/or retired. Active Dates 2015.01.09 - 2015.02.12 Instrument Categories Cloud Properties Contact(s) Alice Cialella Brookhaven National Laboratory (631) 344-3286 cialella@bnl.gov Michael Jensen Brookhaven National Laboratory

  13. Validation of MODIS-Retrieved Cloud Fractions Using Whole Sky Imager Measurements at the Three ARM Sites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MODIS-Retrieved Cloud Fractions Using Whole Sky Imager Measurements at the Three ARM Sites Z. Li, M. C. Cribb, and F.-L. Chang Earth System Science Interdisciplinary Center University of Maryland College Park, Maryland A. P. Trishchenko Canada Centre for Remote Sensing Ottawa, Ontario, Canada Introduction Given the importance of clouds in modulating the surface energy budget, it is critical to obtain accurate estimates of their fractional amount in the atmospheric column for use in modeling

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scanning ARM precipitation radars at the SGP site and was performed using tools in the Python-ARM radar toolkit. Click on image to enlarge. This data plot shows the height and...

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Animation Joins Learning Tools on Science Education Website Bookmark and Share ARM's tropical convective clouds animation illustrates the difference between tropical cloud...

  16. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Bulk Properties of Mid Latitude Cirrus Events: Sensitivity to Large Scale Controlling Factors Vernon, E.N. and Mace, G.G., Department of Meteorology, Unviversity of Utah Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The extensive cirrus record recored in the ARM data is being used to investigate the sensitivity of certain cirrus properties to the large scale meteorology. Using millimeter cloud radar (MMCR) data from the Southern Great Plains site, a statistical

  17. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Comparison of the Characteristics of Cirrus from Doppler Radar Measurements at the ARM Sites and the CRYSTAL Field Experiment Laribee-Dowd, K. (a), Mace, G. G. (a), and Marchand, R.T. (b), University of Utah (a) Pacific Northwest National Laboratory (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting By studying the statistics of Doppler velocities in cirrus clouds, the characteristics of cirrus formed through recent injection of ice into the uppertroposphere by deep

  18. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radar Estimations of Ice Cloud Optical Properties Matrosov, S.Y.(a), Shupe, M.D.(b), Heymsfiled, A.J.(c), and Zuidema, P.(d), CIRES University of Colorado and NOAA (a), STC and NOAA (b), NCAR (c), NOAA (d) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Clouds in radiation and climate models are usually described using different parameterizations between their microphysical and optical properties. Visible extinction profiles and optical thicknesses (i.e., the vertical

  19. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Properties of Cirrus over the Western Tropical Pacific as a Function of Their Assocaition with Deep Convective Outflows Deng, M.(a), Mace, G.G.(a), and Soden, B.J.(b), University of Utah (a), Geophysical Fluid Dynamics Laboratory (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The microphysical and radiative properties of upper tropospheric clouds in the tropics are known to have a substantial influence on climate. Observations from long term cloud radar

  20. ARM - Campaign Instrument - lmwrr-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentslmwrr-air Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Airborne L-band Microwave Radiometer and Radar (LMWRR-AIR) Instrument Categories Airborne Observations, Cloud Properties, Radiometric Campaigns Cloud LAnd Surface Interaction Campaign (CLASIC) [ Download Data ] Southern Great Plains, 2007.06.01 - 2007.06.30 Primary Measurements Taken The following measurements are those considered scientifically

  1. COLLABORATIVE RESEARCH:USING ARM OBSERVATIONS & ADVANCED STATISTICAL TECHNIQUES TO EVALUATE CAM3 CLOUDS FOR DEVELOPMENT OF STOCHASTIC CLOUD-RADIATION

    SciTech Connect (OSTI)

    Somerville, Richard

    2013-08-22

    The long-range goal of several past and current projects in our DOE-supported research has been the development of new and improved parameterizations of cloud-radiation effects and related processes, using ARM data, and the implementation and testing of these parameterizations in global models. The main objective of the present project being reported on here has been to develop and apply advanced statistical techniques, including Bayesian posterior estimates, to diagnose and evaluate features of both observed and simulated clouds. The research carried out under this project has been novel in two important ways. The first is that it is a key step in the development of practical stochastic cloud-radiation parameterizations, a new category of parameterizations that offers great promise for overcoming many shortcomings of conventional schemes. The second is that this work has brought powerful new tools to bear on the problem, because it has been a collaboration between a meteorologist with long experience in ARM research (Somerville) and a mathematician who is an expert on a class of advanced statistical techniques that are well-suited for diagnosing model cloud simulations using ARM observations (Shen).

  2. ARM - Evaluation Product - SACR2 pre-CGA Ingested Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsSACR2 pre-CGA Ingested Data ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : SACR2 pre-CGA Ingested Data [ ARM research - evaluation data product ] This is pre-CGA data from the SACR2 instrument. It is similar to other Scanning ARM Cloud Radar (SACR) data that the ARM program has been collecting at

  3. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two-Year Comparison of Cloud-Base Height Measured by MPL, MMCR, and VCEIL at the ARM/NSA Barrow Facility Petracca, B., Shaw, J.A., and Zak, B.D., Montana State University and Sandia National Laboratories This comparison focuses primarily on differences in cloud base height and percentage clear sky that are reported by the Micropulse Lidar (MPL), Millimeter Cloud Radar (MMCR), and Vaisala Ceilometer (VCEIL) at Barrow. Additionally, this study could be useful in interpreting the cloud data from

  4. Cloud Properties from Doppler Radar Spectra - a Growing Suite of Information Extraction Algorithms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from Doppler Radar Spectra - a Growing Suite of Information Extraction Algorithms Edward Luke 1 , Pavlos Kollias 2 , Matthew Shupe 3 , Karen Johnson 1 , Eugene Clothiaux 4 1. Brookhaven National Laboratory 2. McGill University 3. CIRES/NOAA/ETL 4. Penn State University C F B A E D Lidar Prediction Algorithm Depolarization C F B A E D Backscatter DOPPLER RADAR SPECTRA HYDROMETEOR PHASE CLASSIFICATION MIXED LIQUID SOLID MIXED LIQUID SOLID Shupe Multi-instrument Technique Doppler Radar Spectra

  5. ARM CLASIC ER2 CRS/EDOP

    SciTech Connect (OSTI)

    Gerald Heymsfield

    2010-12-20

    Data was taken with the NASA ER-2 aircraft with the Cloud Radar System and other instruments in conjunction with the DOE ARM CLASIC field campaign. The flights were near the SGP site in north Central Oklahoma and targeted small developing convection. The CRS is a 94 GHz nadir pointing Doppler radar. Also on board the ER-2 was the Cloud Physics Lidar (CPL). Seven science flights were conducted but the weather conditions did not cooperate in that there was neither developing convection, or there was heavy rain.

  6. Atmospheric Radiation Measurement (ARM) Data from Los Angeles, California, to Honolulu, Hawaii for the Marine ARM GPCI Investigation of Clouds (MAGIC) Field Campaign (an AMF2 Deployment)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    From October 2012 through September 2013, the second ARM Mobile Facility (AMF2) was deployed on the container ship Spirit, operated by Horizon Lines, for the Marine ARM GPCI* Investigation of Clouds (MAGIC) field campaign. During approximately 20 round trips between Los Angeles, California, and Honolulu, Hawaii, AMF2 obtained continuous on-board measurements of cloud and precipitation, aerosols, and atmospheric radiation; surface meteorological and oceanographic variables; and atmospheric profiles from weather balloons launched every six hours. During two two-week intensive observational periods in January and July 2013, additional instruments were deployed and balloon soundings were be increased to every three hours. These additional data provided a more detailed characterization of the state of the atmosphere and its daily cycle during two distinctly different seasons. The primary objective of MAGIC was to improve the representation of the stratocumulus-to-cumulus transition in climate models. AMF2 data documented the small-scale physical processes associated with turbulence, convection, and radiation in a variety of marine cloud types.

  7. ARM - VAP Product - arsclwacr1kollias

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Productswacrarsclarsclwacr1kollias Documentation Data Management Facility Plots (Quick Looks) Citation DOI: 10.5439/1097547 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP Output : ARSCLWACR1KOLLIAS WACRARSCL: multiple outputs from first Kollias algorithm Active Dates 2006.03.16 - 2014.09.13 Originating VAP Process W-band Cloud Radar Active Remote Sensing of Cloud : WACRARSCL

  8. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Three-Year Cloud Climatology for the Southern Great Plains Site Marchand, R.T. (a), Ackerman, T.P. (a), and Clothiaux, E.E. (b), Pacific Northwest National Laboratory (a), Pennsylvania State University (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting In 1999 we presented a poster on radar-derived macrophyscial cloud statistics for the ARM SGP site for the two years 1997 and 1998. This year we extend those results with additional data from 1999. In addition to previous

  9. ARM - Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Begins Marine Cloud Study in the Azores Bookmark and Share Located next to the airport on Graciosa Island, the ARM Mobile Facility's comprehensive and sophisticated...

  10. Microsoft PowerPoint - ARM200803_DONG.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact of Large-Scale Dynamics on ARM Arctic Cloud and Surface Radiation, and Early Snowmelt Events Xiquan Dong (dong@aero.und.edu, 701-777-6991), Baike Xi, and Kathryn Crosby, University of North Dakota Charles N. Long, DOE Pacific Northwest National Lab. Data and Methods: Cloud Fraction (CF): Derived from ARM radar-lidar observations SW and LW net fluxes: Produced by Radiative Flux Analysis. LWP and PWV: Precipitable water vapor (PWV) and cloud liquid water path (LWP) retrieved from microwave

  11. Validation of Cloud Properties Derived from GOES-9 Over the ARM...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cloud phase, effective temperature, effective height, optical depth, effective particle size, and liquid or ice water path. Cloud-top height and thickness are also derived...

  12. ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maria Cadeddu

    2004-02-19

    Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

  13. ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maria Cadeddu

    Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

  14. ARM - Blog Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 26, 2015 [Blog, Field Notes, SGP] ARM Radar Technician Training Course at the ARM SGP Site Bookmark and Share Editor's note: Joseph Hardin, a radar engineer at the ARM Climate Research Facility, sent this update Training attendees Chris Martin and Matt Gibson working to measure a signal on the top of an X-SAPR radar. Training attendees Chris Martin and Matt Gibson working to measure a signal on the top of an X-SAPR radar. The ARM Climate Research Facility currently operates 33 radars

  15. ARM - Midlatitude Continental Convective Clouds Microwave Radiometer Profiler (jensen-mwr)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike

    2012-02-01

    A major component of the Mid-latitude Continental Convective Clouds Experiment (MC3E) field campaign was the deployment of an enhanced radiosonde array designed to capture the vertical profile of atmospheric state variables (pressure, temperature, humidity wind speed and wind direction) for the purpose of deriving the large-scale forcing for use in modeling studies. The radiosonde array included six sites (enhanced Central Facility [CF-1] plus five new sites) launching radiosondes at 3-6 hour sampling intervals. The network will cover an area of approximately (300)2 km2 with five outer sounding launch sites and one central launch location. The five outer sounding launch sites are: S01 Pratt, KS [ 37.7oN, 98.75oW]; S02 Chanute, KS [37.674, 95.488]; S03 Vici, Oklahoma [36.071, -99.204]; S04 Morris, Oklahoma [35.687, -95.856]; and S05 Purcell, Oklahoma [34.985, -97.522]. Soundings from the SGP Central Facility during MC3E can be retrieved from the regular ARM archive. During routine MC3E operations 4 radiosondes were launched from each of these sites (approx. 0130, 0730, 1330 and 1930 UTC). On days that were forecast to be convective up to four additional launches were launched at each site (approx. 0430, 1030, 1630, 2230 UTC). There were a total of approximately 14 of these high frequency launch days over the course of the experiment. These files contain brightness temperatures observed at Purcell during MC3E. The measurements were made with a 5 channel (22.235, 23.035, 23.835, 26.235, 30.000GHz) microwave radiometer at one minute intervals. The results have been separated into daily files and the day of observations is indicated in the file name. All observations were zenith pointing. Included in the files are the time variables base_time and time_offset. These follow the ARM time conventions. Base_time is the number seconds since January 1, 1970 at 00:00:00 for the first data point of the file and time_offset is the offset in seconds from base_time.

  16. ARM - Midlatitude Continental Convective Clouds - Ultra High Sensitivity Aerosol Spectrometer(tomlinson-uhsas)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Tomlinson, Jason; Jensen, Mike

    2012-02-28

    Ultra High Sensitivity Aerosol Spectrometer (UHSASA) A major component of the Mid-latitude Continental Convective Clouds Experiment (MC3E) field campaign was the deployment of an enhanced radiosonde array designed to capture the vertical profile of atmospheric state variables (pressure, temperature, humidity wind speed and wind direction) for the purpose of deriving the large-scale forcing for use in modeling studies. The radiosonde array included six sites (enhanced Central Facility [CF-1] plus five new sites) launching radiosondes at 3-6 hour sampling intervals. The network will cover an area of approximately (300)2 km2 with five outer sounding launch sites and one central launch location. The five outer sounding launch sites are: S01 Pratt, KS [ 37.7oN, 98.75oW]; S02 Chanute, KS [37.674, 95.488]; S03 Vici, Oklahoma [36.071, -99.204]; S04 Morris, Oklahoma [35.687, -95.856]; and S05 Purcell, Oklahoma [34.985, -97.522]. Soundings from the SGP Central Facility during MC3E can be retrieved from the regular ARM archive. During routine MC3E operations 4 radiosondes were launched from each of these sites (approx. 0130, 0730, 1330 and 1930 UTC). On days that were forecast to be convective up to four additional launches were launched at each site (approx. 0430, 1030, 1630, 2230 UTC). There were a total of approximately 14 of these high frequency launch days over the course of the experiment. These files contain brightness temperatures observed at Purcell during MC3E. The measurements were made with a 5 channel (22.235, 23.035, 23.835, 26.235, 30.000GHz) microwave radiometer at one minute intervals. The results have been separated into daily files and the day of observations is indicated in the file name. All observations were zenith pointing. Included in the files are the time variables base_time and time_offset. These follow the ARM time conventions. Base_time is the number seconds since January 1, 1970 at 00:00:00 for the first data point of the file and time_offset is the offset in seconds from base_time.

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Military Facilities, Restricted Airspace Okayed to Support Arctic Cloud Experiment Bookmark and Share As shown in this aerial photo of Oliktok Point, Alaska, the USAF Long Range Radar Station-also known as Dew Line Station-is situated at the edge of the Arctic Ocean. Instrumentation for the ARM Program's M-PACE experiment will be located just south of the station, near the aircraft hangar. (Photo courtesy of Aeromap U.S.) After more than a year and a half of planning, proposals, and paperwork,

  18. A study of cloud and drizzle properties in the Azores using Doppler Radar spectra

    SciTech Connect (OSTI)

    Luke, E.; Remillard, J.; Kollias, P.

    2010-03-15

    Understanding the onset of coalescence in warm clouds is key in our effort to improve cloud representation in numerical models. Coalescence acts at small scales, and its study requires detailed high-resolution dynamical and microphysical measurements from a comprehensive suite of instruments over a wide range of environmental conditions (e.g., aerosol loading). The first AMF is currently in its second year of a two-year deployment at Graciosa Island in the Azores, offering the opportunity to collect a long data set from a stable land-based platform in a marine stratocumulus regime. In this study, recorded WACR Doppler spectra are used to characterize the properties of Doppler spectra from warm clouds with and without drizzle, and from drizzle only, in an effort to observe the transition (onset) to precipitation in clouds. A retrieval technique that decomposes observed Doppler spectra into their cloud and/or drizzle components is applied in order to quantify drizzle growth.

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    24, 2008 [Facility News] New Leadership Announced for ARM Working Groups Bookmark and Share Matthew Shupe and Ann Fridlind are the new leaders of the ARM Cloud Properties and Cloud Modeling Working Groups, respectively. Matthew Shupe and Ann Fridlind are the new leaders of the ARM Cloud Properties and Cloud Modeling Working Groups, respectively. Hats off to Matthew Shupe and Ann Fridlind, newly announced leaders of the Cloud Properties and Cloud Modeling Working Groups, respectively. Matthew

  20. Using Radar, Lidar and Radiometer Data from NSA and SHEBA to Quantify Cloud Property Effects on the Surface Heat Budget in the Arctic

    SciTech Connect (OSTI)

    Janet Intrieri; Mathhew Shupe

    2005-01-01

    Cloud and radiation data from two distinctly different Arctic areas are analyzed to study the differences between coastal Alaskan and open Arctic Ocean region clouds and their respective influence on the surface radiation budget. The cloud and radiation datasets were obtained from (1) the DOE North Slope of Alaska (NSA) facility in the coastal town of Barrow, Alaska, and (2) the SHEBA field program, which was conducted from an icebreaker frozen in, and drifting with, the sea-ice for one year in the Western Arctic Ocean. Radar, lidar, radiometer, and sounding measurements from both locations were used to produce annual cycles of cloud occurrence and height, atmospheric temperature and humidity, surface longwave and shortwave broadband fluxes, surface albedo, and cloud radiative forcing. In general, both regions revealed a similar annual trend of cloud occurrence fraction with minimum values in winter (60-75%) and maximum values during spring, summer and fall (80-90%). However, the annual average cloud occurrence fraction for SHEBA (76%) was lower than the 6-year average cloud occurrence at NSA (92%). Both Arctic areas also showed similar annual cycle trends of cloud forcing with clouds warming the surface through most of the year and a period of surface cooling during the summer, when cloud shading effects overwhelm cloud greenhouse effects. The greatest difference between the two regions was observed in the magnitude of the cloud cooling effect (i.e., shortwave cloud forcing), which was significantly stronger at NSA and lasted for a longer period of time than at SHEBA. This is predominantly due to the longer and stronger melt season at NSA (i.e., albedo values that are much lower coupled with Sun angles that are somewhat higher) than the melt season observed over the ice pack at SHEBA. Longwave cloud forcing values were comparable between the two sites indicating a general similarity in cloudiness and atmospheric temperature and humidity structure between the two regions.

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data from the radar are transmitted through a wireless connection to the ARM site data system. With the radar up and running, signal returns on June 24 provided an indication of...

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 29, 2008 Facility News Radar Focus Group Zeroes in on Data Quality Bookmark and Share On the roof of the radar instrument shelter at the ARM Southern Great Plains site,...

  3. Environmental assessment for the Atmospheric Radiation Measurement (ARM) Program: Southern Great Plains Cloud and Radiation Testbed (CART) site

    SciTech Connect (OSTI)

    Policastro, A.J.; Pfingston, J.M.; Maloney, D.M.; Wasmer, F.; Pentecost, E.D.

    1992-03-01

    The Atmospheric Radiation Measurement (ARM) Program is aimed at supplying improved predictive capability of climate change, particularly the prediction of cloud-climate feedback. The objective will be achieved by measuring the atmospheric radiation and physical and meteorological quantities that control solar radiation in the earth`s atmosphere and using this information to test global climate and related models. The proposed action is to construct and operate a Cloud and Radiation Testbed (CART) research site in the southern Great Plains as part of the Department of Energy`s Atmospheric Radiation Measurement Program whose objective is to develop an improved predictive capability of global climate change. The purpose of this CART research site in southern Kansas and northern Oklahoma would be to collect meteorological and other scientific information to better characterize the processes controlling radiation transfer on a global scale. Impacts which could result from this facility are described.

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 21, 2014 [Facility News] ARM Scientists Lead Radar Courses at ERAD2014 Bookmark and Share In September, radar engineers and science colleagues gathered in Garmisch-Partenkirchen, Germany, for the 8th European Conference on Radar in Meteorology and Hydrology. Leading ARM radar experts and data users shared their advances during two short-course workshops. A third short course was coordinated by Atmospheric System Research (ASR) colleagues on "Applications of Dual-Polarization Weather

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 15, 2007 Facility News Radar Antenna Replacement Effort Begins at Barrow Bookmark and Share On November 28, 2007, ARM operations and engineering staff braved -15F...

  6. ARM - Events Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Software (PDF). Assisted by other developers, he will be introducing attendees to the Python programming language, exploring the Python-ARM Radar Toolkit, and showcasing several...

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, 2012 Facility News New Organization to Optimize ARM Radar Data Bookmark and Share Every ARM fixed and mobile site now includes both scanning (left) and zenith-pointing (right)...

  8. ARM - Data Announcements Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    classifier. These data are from the ARM C-SAPR at the Southern Great Plains site. The Python ARM Radar Toolkit (Py-ART) development team has released version 1.5.0. as an open...

  9. A Method for the Automatic Detection of Insect Clutter in Doppler-Radar Returns.

    SciTech Connect (OSTI)

    Luke,E.; Kollias, P.; Johnson, K.

    2006-06-12

    The accurate detection and removal of insect clutter from millimeter wavelength cloud radar (MMCR) returns is of high importance to boundary layer cloud research (e.g., Geerts et al., 2005). When only radar Doppler moments are available, it is difficult to produce a reliable screening of insect clutter from cloud returns because their distributions overlap. Hence, screening of MMCR insect clutter has historically involved a laborious manual process of cross-referencing radar moments against measurements from other collocated instruments, such as lidar. Our study looks beyond traditional radar moments to ask whether analysis of recorded Doppler spectra can serve as the basis for reliable, automatic insect clutter screening. We focus on the MMCR operated by the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program at its Southern Great Plains (SGP) facility in Oklahoma. Here, archiving of full Doppler spectra began in September 2003, and during the warmer months, a pronounced insect presence regularly introduces clutter into boundary layer returns.

  10. ARM - Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiative Observations (RACORO) Related Links RACORO Home AAF Home ARM Data Discovery Browse Data Post-Campaign Data Sets Data Guide (PDF, 1.4MB) Campaign Journal Flight Details Images ARM flickr site Deployment Operations Measurements Science & Operations Plan (PDF, 640K) SGP Data Plots RACORO wiki Login Required Experiment Planning Steering Committee Science Questions RACORO Proposal Abstract Full Proposal (PDF, 886K) Collaborations Meetings CLOWD Working Group News Discovery Channel

  11. Microsoft PowerPoint - Albrecht_ARM_2009 Poster.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies V e r t c r ARM Boundary Layer s 2.5 surface saturation mixing ratio as a ces. Regression line e temperature and with RH constant. Diurnal cycle of the hourly- used to estimate liquid wate fluxes in continenta stratocumu lus clouds. The liquid water content was obtained using radar reflectivit and a constraint on the LW from microwave radiometer observatio Doppler radar observatio s from the nt Nuclei 14 & 15 transects Background

  12. Microsoft PowerPoint - arm_stm07-poster_matrosov.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    retrievals using mm-wavelength cloud radar measurements Sergey Y. Matrosov, Matthew D. Shupe Cooperative Institute for Research in Environmental Sciences, University of Colorado and NOAA Environmental Technology Laboratory Purpose: Extending ARM column hydrometeor retrievals to include solid precipitation cases Approach: Z e -S relations customized for the use with mm- wavelength radars. Using the Doppler information (moments and spectra) for quantitative retrievals in snowfall is limited

  13. ARM News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ASR Marine Low Clouds Workshop Held Mon, 29 Feb 2016 03:30:35 +0000 Events, Facility News http://www.arm.gov/news/events/post/36451 <img src="http://www.arm.gov/images/cms/marine-cloud-drizzle.jpg:100w" style="float:left;margin-right:5px;margin-bottom:5px"/><p> While they may not elicit the excitement and drama of their deeper, more-intense, sibling thunderstorm clouds that are associated with severe weather and catastrophic damage, low clouds over oceans are

  14. Application of Stochastic Radiative Transfer Theory to the ARM Cloud-Radiative Parameterization Problem

    SciTech Connect (OSTI)

    Veron, Dana E

    2009-03-12

    This project had two primary goals: 1) development of stochastic radiative transfer as a parameterization that could be employed in an AGCM environment, and 2) exploration of the stochastic approach as a means for representing shortwave radiative transfer through mixed-phase layer clouds. To achieve these goals, an analysis of the performance of the stochastic approach was performed, a simple stochastic cloud-radiation parameterization for an AGCM was developed and tested, a statistical description of Arctic mixed phase clouds was developed and the appropriateness of stochastic approach for representing radiative transfer through mixed-phase clouds was assessed. Significant progress has been made in all of these areas and is detailed below.

  15. Simulation of Frontal Clouds Using the NCAR CAM3 during the ARM...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of New York at Stony Brook Wu, Jingbo Stony Brook University Category: Modeling A case study is carried out to simulate the March 2-3 frontal clouds with the NCAR CAM3 as...

  16. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrievals of Vertical Profiles of Cloud Ice Mass and Particle Characteristic Size from MMCR Data Matrosov, S.Y.(a), Heymsfield, A.J.(b), Shupe, M.D.(c), and Korolev, A.V.(d), CIRES, University of Colorado and NOAA ETL (a), NCAR (b), STC (c), Canadian Atmospheric Service (d) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting A remote sensing method is proposed for the retrievals of vertical profiles of ice cloud microphysical parameters from ground-based measurements of radar

  17. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Use of Performance Metrics to Enhance Meteorological Operations Jakob, C.(a), Pincus, R.(b), Hannay, C.(b), and Xu, K.-M.(c), BMRC (a), NOAA/CIRES CDC (b), NASA Langley (c) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting It is highly desirable to use cloud radar data in the evaluation of model simulations of clouds at various scales. Unfortunately there is an inherent mismatch between the spatial and temporal scales of the models and the observations. Usually this

  18. The Ability of MM5 to Simulate Ice Clouds: Systematic Comparison between Simulated and Measured Fluxes and Lidar/Radar Profiles at SIRTA Atmospheric Observatory

    SciTech Connect (OSTI)

    Chiriaco, M.; Vautard, R.; Chepfer, H.; Haeffelin, M.; Wanherdrick, Y.; Morille, Y.; Protat, A.; Dudhia, J.

    2005-03-18

    Ice clouds play a major role in the radiative energy budget of the Earth-atmosphere system (Liou 1986). Their radiative effect is governed primarily by the equilibrium between their albedo and greenhouse effects. Both macrophysical and microphysical properties of ice clouds regulate this equilibrium. For quantifying the effect of these clouds onto climate and weather systems, they must be properly characterized in atmospheric models. In this paper we use remote-sensing measurements from the SIRTA ground based atmospheric observatory (Site Instrumental de Recherche par Teledetection Atmospherique, http://sirta.lmd.polytechnique.fr). Lidar and radar observations taken over 18 months are used, in order to gain statistical confidence in the model evaluation. Along this period of time, 62 days are selected for study because they contain parts of ice clouds. We use the ''model to observations'' approach by simulating lidar and radar signals from MM5 outputs. Other more classical variables such as shortwave and longwave radiative fluxes are also used. Four microphysical schemes, among which that proposed by Reisner et al. (1998) with original or modified parameterizations of particle terminal fall velocities (Zurovac-Jevtic and Zhang 2003, Heymsfield and Donner 1990), and the simplified Dudhia (1989) scheme are evaluated in this study.

  19. Final Report - Satellite Calibration and Verification of Remotely Sensed Cloud and Radiation Properties Using ARM UAV Data (February 28, 1995 - February 28, 1998)

    SciTech Connect (OSTI)

    Minnis, Patrick

    1998-02-28

    The work proposed under this agreement was designed to validate and improve remote sensing of cloud and radiation properties in the atmosphere for climate studies with special emphasis on the use of satellites for monitoring these parameters to further the goals of the Atmospheric Radiation Measurement (ARM) Program.

  20. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    properties using the ground- based measurements of cloud radar, laser ceilometer, and microwave and solar radiometers. A relationship between effective radius and radar...

  1. ARM - Campaign Instrument - g-1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsg-1 Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Gulfstream (G-1) Instrument Categories Aerosols, Airborne Observations Campaigns Cloud Radar IOP [ Download Data ] Southern Great Plains, 1997.04.02 - 1997.04.22 Fall 1997 Aerosol IOP [ Download Data ] Southern Great Plains, 1997.09.15 - 1997.10.05 Fall 1997 Water Vapor IOP [ Download Data ] Southern Great Plains, 1997.09.15 - 1997.10.05 Shortwave Radiation

  2. SGP and TWP (Manus) Ice Cloud Vertical Velocities

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kalesse, Heike

    Daily netcdf-files of ice-cloud dynamics observed at the ARM sites at SGP (Jan1997-Dec2010) and Manus (Jul1999-Dec2010). The files include variables at different time resolution (10s, 20min, 1hr). Profiles of radar reflectivity factor (dbz), Doppler velocity (vel) as well as retrieved vertical air motion (V_air) and reflectivity-weighted particle terminal fall velocity (V_ter) are given at 10s, 20min and 1hr resolution. Retrieved V_air and V_ter follow radar notation, so positive values indicate downward motion. Lower level clouds are removed, however a multi-layer flag is included.

  3. SGP and TWP (Manus) Ice Cloud Vertical Velocities

    SciTech Connect (OSTI)

    Kalesse, Heike

    2013-06-27

    Daily netcdf-files of ice-cloud dynamics observed at the ARM sites at SGP (Jan1997-Dec2010) and Manus (Jul1999-Dec2010). The files include variables at different time resolution (10s, 20min, 1hr). Profiles of radar reflectivity factor (dbz), Doppler velocity (vel) as well as retrieved vertical air motion (V_air) and reflectivity-weighted particle terminal fall velocity (V_ter) are given at 10s, 20min and 1hr resolution. Retrieved V_air and V_ter follow radar notation, so positive values indicate downward motion. Lower level clouds are removed, however a multi-layer flag is included.

  4. Collaborative Research: ARM observations for the development and evaluation of models and parameterizations of cloudy boundary layers

    SciTech Connect (OSTI)

    Albrecht, Bruce,

    2013-07-12

    This is a collaborative project with Dr. Ping Zhu at Florida International University. It was designed to address key issues regarding the treatment of boundary layer cloud processes in climate models with UM’s research focusing on the analyses of ARM cloud radar observations from MMCR and WACR and FIU’s research focusing on numerical simulations of boundary layer clouds. This project capitalized on recent advancements in the ARM Millimeter Cloud Radar (MMCR) processing and the development of the WACR (at the SGP) to provide high temporal and spatial resolution Doppler cloud radar measurements for characterizing in-cloud turbulence, large-eddy circulations, and high resolution cloud structures of direct relevance to high resolution numerical modeling studies. The principal focus of the observational component of this collaborative study during this funding period was on stratocumulus clouds over the SGP site and fair-weather cumuli over the Nauru site. The statistical descriptions of the vertical velocity structures in continental stratocumulus clouds and in the Nauru shallow cumuli that are part of this study represents the most comprehensive observations of the vertical velocities in boundary layer clouds to date and were done in collaboration with Drs. Virendra Ghate and Pavlos Kollias.

  5. An Improved Cloud Classification Algorithm Based on the SGP CART...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the world. The millimeter wave cloud radar (MMCR) provides radar reflectivity and mean Doppler velocity profiles for most of clouds in the troposphere. Raman lidar provide not...

  6. Stratiform and Convective Precipitation Observed by Multiple Radars during the DYNAMO/AMIE Experiment

    SciTech Connect (OSTI)

    Deng, Min; Kollias, Pavlos; Feng, Zhe; Zhang, Chidong; Long, Charles N.; Kalesse, Heike; Chandra, Arunchandra; Kumar, Vickal; Protat, Alain

    2014-11-01

    The motivation for this research is to develop a precipitation classification and rain rate estimation method using cloud radar-only measurements for Atmospheric Radiation Measurement (ARM) long-term cloud observation analysis, which are crucial and unique for studying cloud lifecycle and precipitation features under different weather and climate regimes. Based on simultaneous and collocated observations of the Ka-band ARM zenith radar (KAZR), two precipitation radars (NCAR S-PolKa and Texas A&M University SMART-R), and surface precipitation during the DYNAMO/AMIE field campaign, a new cloud radar-only based precipitation classification and rain rate estimation method has been developed and evaluated. The resulting precipitation classification is equivalent to those collocated SMART-R and S-PolKa observations. Both cloud and precipitation radars detected about 5% precipitation occurrence during this period. The convective (stratiform) precipitation fraction is about 18% (82%). The 2-day collocated disdrometer observations show an increased number concentration of large raindrops in convective rain compared to dominant concentration of small raindrops in stratiform rain. The composite distributions of KAZR reflectivity and Doppler velocity also show two distinct structures for convective and stratiform rain. These indicate that the method produces physically consistent results for two types of rain. The cloud radar-only rainfall estimation is developed based on the gradient of accumulative radar reflectivity below 1 km, near-surface Ze, and collocated surface rainfall (R) measurement. The parameterization is compared with the Z-R exponential relation. The relative difference between estimated and surface measured rainfall rate shows that the two-parameter relation can improve rainfall estimation.

  7. Comparing Clouds Using Cloud Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How To Graph Goals: The goal of this activity is to learn how to make a coordinate or line graph. Materials: Graph paper Pencil Introduction: Graphs and charts are great because they communicate information visually. Graphs are often used by scientists, but also by newspapers, magazines and businesses around the world. Sometimes, complicated information is difficult to understand and needs an illustration. Other times, a graph or chart helps impress people by getting the point across quickly and

  8. ARM - Blog Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radar Calibration, Grooming, and Alignment at the ARM Oliktok Point Site Bookmark and Share Editor's note: Joseph Hardin, a radar engineer at the ARM Climate Research Facility, sent this update. Hans Verlinde, Pennsylvania State University, overlooks the instrumentation at Oliktok Point, Alaska. Hans Verlinde, Pennsylvania State University, overlooks the instrumentation at Oliktok Point, Alaska. Before a radar site is "turned on" to the public, there are many steps required to make

  9. ARM - Events Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 29, 2016 [Events, Facility News] ASR Marine Low Clouds Workshop Held Bookmark and Share A drizzling marine stratocumulus cloud over the Northeast Pacific Ocean taken during Leg 17 of the Marine ARM GPCI Investigation of Clouds (MAGIC) Campaign. A drizzling marine stratocumulus cloud over the Northeast Pacific Ocean taken during Leg 17 of the Marine ARM GPCI Investigation of Clouds (MAGIC) Campaign. While they may not elicit the excitement and drama of their deeper, more-intense, sibling

  10. DOE/SC-ARM/TR-103 Cloud Condensation Nuclei Profile Value-Added

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Cloud Condensation Nuclei Profile Value-Added Product S McFarlane C Sivaraman S Ghan October 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

  11. DOE/SC-ARM-14-012 The Mid-latitude Continental Convective Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 The Mid-latitude Continental Convective Clouds (MC3E) Experiment Final Campaign Report M Jensen P Kollias S Giangrande April 2014 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed,

  12. TC_CLOUD_REGIME.cdr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    intensity (e.g. May and Ballinger, 2007) Resulting Cloud Properties Examine rain DSD using polarimetric radar Examine ice cloud properties using MMCR and MPL Expect...

  13. Cloud Properties and Radiative Heating Rates for TWP

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Comstock, Jennifer

    2013-11-07

    A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

  14. Cloud Properties and Radiative Heating Rates for TWP

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Comstock, Jennifer

    A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

  15. ARM - Datastreams - kazrspeccmaskblcopol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamskazrspeccmaskblcopol Documentation Data Quality Plots Citation DOI: 10.5439/1046204 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KAZRSPECCMASKBLCOPOL Ka ARM Zenith Radar (KAZR): filtered spectral data, Boundary Layer mode, co

  16. ARM - Datastreams - kazrspeccmaskblxpol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamskazrspeccmaskblxpol Documentation Data Quality Plots Citation DOI: 10.5439/1046205 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KAZRSPECCMASKBLXPOL Ka ARM Zenith Radar (KAZR): filtered spectral data, Boundary Layer mode, cross

  17. ARM - Datastreams - kazrspeccmaskcicopol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamskazrspeccmaskcicopol Documentation Data Quality Plots Citation DOI: 10.5439/1025216 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KAZRSPECCMASKCICOPOL Ka ARM Zenith Radar (KAZR): filtered spectral data, cirrus mode, co

  18. ARM - Datastreams - kazrspeccmaskcixpol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamskazrspeccmaskcixpol Documentation Data Quality Plots Citation DOI: 10.5439/1025217 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KAZRSPECCMASKCIXPOL Ka ARM Zenith Radar (KAZR): filtered spectral data, cirrus mode, cross

  19. ARM - VAP Process - qmeaerilbl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send VAP : Comparison of Statistics or Clouds data...

  20. Atmospheric Radiation Measurement (ARM) Data from the Eastern North Atlantic Site (ENA), Graciosa Island, Azores

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wood, Robert

    From May 2009 through December 2010, the ARM Mobile Facility obtained data from a location near the airport on Graciosa Island to support the Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) field campaign. The campaign was led by principal investigator Robert Wood. Results from this campaign confirmed that the Azores have the ideal mix of conditions to study how clouds, aerosols, and precipitation interact. This new observation site will have significant enhancements to instruments previously deployed to the Azores, including a Ka-/W-band scanning cloud radar, precipitation radar, and Doppler lidar. It has the full support of the Azorean government and collaborators at the University of the Azores. Los Alamos National Laboratory will operate the site for the ARM Facility.

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Begins Marine Cloud Study in the Azores Bookmark and Share Located next to the airport on Graciosa Island, the ARM Mobile Facility's comprehensive and sophisticated...

  2. ARM - Events Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fixed, mobile, and aerial observatories, ARM provides the global science community with free data about clouds, aerosols, precipitation, and radiative energy. Highlights for the...

  3. ARM - Campaign Instrument - mas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    below or call us at 1-888-ARM-DATA. Send Campaign Instrument : NASA MODIS Airborne Simulator (MAS) Instrument Categories Airborne Observations, Radiometric Campaigns Cloud LAnd...

  4. ARM - Fact Sheets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement Platforms PNNL WRF-CuP Forecast Cloud Physics Lidar MODIS Airborne Simulator Data Mesonet Monitoring ARM Data Plots Experiment Planning CLASIC Proposal Abstract...

  5. ARM - CLASIC News & Press

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement Platforms PNNL WRF-CuP Forecast Cloud Physics Lidar MODIS Airborne Simulator Data Mesonet Monitoring ARM Data Plots Experiment Planning CLASIC Proposal Abstract...

  6. ARM - Meetings and Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    528K) Jennifer Comstock, Chaomei Lo, Tim Shippert, Sally McFarlane, Eli Mlawer, David Turner, Andy Vogelmann, and Mandy Khaiyer RACORO: Routine ARM Aerial Facility (AAF) Clouds...

  7. ARM - Campaign Instrument - pdi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Phase Doppler Interferometer (PDI) Instrument Categories Airborne Observations, Cloud Properties...

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hawaii, gathering information on the transition zone between two different cloud types. "This was the first time ARM led a shipboard deployment, and the campaign went...

  9. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Blog Images Contacts Nicki Hickmon, AMF Operations Lynne Roeder, Media Contact Ernie Lewis, Principal Investigator Instruments : MAGIC (Marine ARM GPCI Investigation of Clouds)...

  10. ARM - Events Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility News Students Explore the Skies at ARM Summer Training Bookmark and Share Learning practical and theoretical knowledge about observing and modeling aerosols, clouds,...

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using a "cloud in a jar" demonstration, ARM Technical Director Jim Mather explained to children and their parents about how light is absorbed and scattered in clouds. During the...

  12. ARM - Publications: Science Team Meeting Documents: ARM SCM Intercomparison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Helps Find Cloud Parameterization Bug ARM SCM Intercomparison Helps Find Cloud Parameterization Bug Klein, Stephen Lawrence Livermore National Laboratory The ARM Cloud Parameterization and Modeling working group has carried out several intercomparisons of Single Column Models (SCM) and Cloud Resolving Models (CRMs) to observations. The most recent intercomparison involves the simulation of clouds during the March 2000 Cloud Intensive Observing Period at the Southern Great Plains. The

  13. ARM - Events Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 11, 2015 [Events, Facility News] First ARM Summer Training to be Held in Oklahoma Bookmark and Share Radar row at the Southern Great Plains Central Facility is a series of radars and lidars used to measure a variety of atmospheric properties. Radar row at the Southern Great Plains Central Facility is a series of radars and lidars used to measure a variety of atmospheric properties. In an effort to promote the training of the next generation of atmospheric scientists, the first ever ARM

  14. ARM XDC Datastreams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    StreamsC-Band Polarimetric Radar Documentation CPOL Instrument External Datastream Descriptions ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send C-Band Polarimetric Radar (CPOL) Information updated on November 4, 2013, 4:25 pm GMT General Data Description The polarimetric radar is a scanning 5 cm wavelength radar that uses a 10 minute cycle that includes a volume scan, an RHI (Range Height Indicator) scan over the

  15. ARM: ARSCL: cloud boundaries from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

    SciTech Connect (OSTI)

    Karen Johnson; Michael Jensen

    1996-11-08

    ARSCL: cloud boundaries from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

  16. ARM: ARSCL: cloud boundaries from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Karen Johnson; Michael Jensen

    ARSCL: cloud boundaries from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

  17. ARM - Sponsors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sponsors Related Links CLASIC Home AAF Home ARM Data Discovery Browse Data Post-Campaign CLASIC/CHAPS Special Session at AGU Annual Meeting, December 15-19 CLASIC Workshop, March 26-27 Data Sets Deployment Resources Measurement Platforms PNNL WRF-CuP Forecast Cloud Physics Lidar MODIS Airborne Simulator Data Mesonet Monitoring ARM Data Plots Experiment Planning CLASIC Proposal Abstract Science Questions Science and Implementation Plan (pdf) Measurement Platforms (pdf) CLASIC-Land Experiment Plan

  18. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurements Related Links MC3E Home News News & Press MC3E Backgrounder (PDF, 1.61MB) SGP Images ARM flickr site Field Blog ARM Data Discovery Browse Data Deployment Operations Measurements Science Plan (PDF, 3.85 MB) Featured Data Plots SGP Data Plots (all) Experiment Planning Steering Committee Science Questions MC3E Proposal Abstract and Related Campaigns Meetings Cloud Life Cycle Working Group Contacts Michael Jensen, Lead Scientist Measurements Ground-based Instruments Category

  19. ARM - VAP Product - rwptemp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1-888-ARM-DATA. Send VAP Output : RWPTEMP Radar Wind Profilers (RWP), 50 and 915 MHZ: virtual temperature profiles Active Dates 1995.12.15 - 2006.05.14 Originating VAP Process...

  20. ARM - Campaign Instrument - rwp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Radar Wind Profiler (RWP) Instrument Categories Atmospheric Profiling...

  1. ARM - Campaign Instrument - npol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsnpol Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : NASA N-POL Polarimetric Radar System...

  2. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3D Remote Sensing of Cirrus Cloud Parameters Using AVHRR and MODIS Data Coupled With Radar and Lidar Measurements Ou, S.C.(a), Liou, K.N.(a), Takano, Y.(a), Mace, G.G.(b), Sassen, K.(b), and Heymsfield, A.(c), University of California at Los Angeles, California (a), University of Utah, Utah (b), National Center for Atmospheric Research, Colorado (c) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Satellite mapping of the optical depth in midlatitude and tropical regions has

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15, 2006 [Facility News] Radar Wind Profiler Joins ARM Mobile Facility Instrument Suite Bookmark and Share This spring, a 915 MHz radar wind profiler (RWP) was successfully installed at the ARM Mobile Facility (AMF) site in Niamey, Niger, West Africa, for the remainder of the 1-year RADAGAST field campaign which started in January. The RWP will provide information about wind speed, wind direction, and wind shear, and also enable measurements of the turbulence in the lower part of the

  4. ARM - Datastreams - 1290bsrwpprecipavg

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bsrwpprecipavg Documentation Data Quality Plots Citation DOI: 10.5439/1095572 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : 1290BSRWPPRECIPAVG 1290-MHz Beam-Steered Radar Wind Profiler: Precipitation Datastream Active Dates 2012.12.12 - 2014.07.16 Measurement Categories Atmospheric State Originating Instrument Radar Wind Profiler (RWP) Measurements Only measurements

  5. ARM - Datastreams - 1290bsrwpwindavg

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bsrwpwindavg Documentation Data Quality Plots Citation DOI: 10.5439/1095573 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : 1290BSRWPWINDAVG 1290-MHz Beam-Steered Radar Wind Profiler: Wind and Moment Averages Active Dates 2012.12.06 - 2016.02.26 Measurement Categories Atmospheric State Originating Instrument Radar Wind Profiler (RWP) Measurements Only measurements

  6. ARM: 10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    1998-03-01

    10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

  7. ARM: Fractional cloud cover, clear-sky and all-sky shortwave flux for each of 25 individual SGP facilities.

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Krista Gaustad; Laura Riihimaki

    1997-01-01

    Fractional cloud cover, clear-sky and all-sky shortwave flux for each of 25 individual SGP facilities.

  8. ARM: ARSCL: cloud base height from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

    SciTech Connect (OSTI)

    Karen Johnson; Michael Jensen

    1996-11-08

    ARSCL: cloud base height from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

  9. Effective Radius of Cloud Droplets Derived from Ground-based Remote Sensing at the ARM SGP site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficacy of Aerosol - Cloud Interactions under Varying Meteorological Conditions Byung-Gon Kim, @ Mark Miller, # Stephen Schwartz, $ Yangang Liu, $ Qilong Min % Kangnung National University, @ Rutgers University # Brookhaven National Laboratory, $ State Univ. of NY at Albany % (Courtesy Magritte) Cloud dynamical processes such as entrainment mixing may be the primary modulators of cloud optical properties in certain situations. Entrainment of dry air alters the cloud drop size distribution by

  10. ARM: 10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

  11. ARM: ARSCL: cloud base height from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Karen Johnson; Michael Jensen

    ARSCL: cloud base height from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

  12. ARM: Fractional cloud cover, clear-sky and all-sky shortwave flux for each of 25 individual SGP facilities.

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Krista Gaustad; Laura Riihimaki

    Fractional cloud cover, clear-sky and all-sky shortwave flux for each of 25 individual SGP facilities.

  13. ARM - Campaign Instrument - uav-proteus-micro

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Proteus Cloud Microphysics Instruments (UAV-PROTEUS-MICRO) Instrument Categories Airborne Observations, Cloud...

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 30, 2007 [Facility News] New Radar Wind Profiler Joins AMF Instrument Suite in Germany Bookmark and Share The 1290 MHz wind profiler (foreground) joins the eddy correlation system (background) for the 9-month deployment in Germany. A new 1290 MHz radar wind profiler has joined the ARM Mobile Facility instrument suite for the Convective and Orographic Precipitation Study (COPS) in Germany. This system operates similarly to a Doppler radar and provides measurements of backscattered

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radar Wind Profiler Upgrades Optimize Performance, Increase Reliability Bookmark and Share The RWP associate instrument mentor Tim Martin shows the new amplifier, interface, processor, and display of the upgraded 915 MHz RWP at the SGP Central Facility. Radar wind profilers (RWPs) provide hourly measurements of wind speed and direction from 100 m to 5 km above the ground. Between 1992 and 1996, four 915 MHz 9-panel radar wind profilers (RWPs) were deployed at the ARM Southern Great Plains (SGP)

  16. ARM - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 29(3), doi: 10.1175jcli-d-15-0349.1. ARM Deng M, GG Mace, Z Wang, and E Berry. 2016. "CloudSat 2C-ICE product update with a new Z(e) parameterization in lidar-only region." ...

  17. ARM - Campaign Instrument - ecmwfdiag

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsecmwfdiag Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : European Centre for Medium Range Weather Forecasts Diagnostic Analyses (ECMWFDIAG) Instrument Categories Derived Quantities and Models Campaigns Fall 1997 SCM IOP [ Download Data ] Southern Great Plains, 1997.09.15 - 1997.10.05 Marine ARM GPCI Investigation of Clouds (MAGIC) [ Download Data ] MAGIC (Marine ARM GPCI Investigation of Clouds); Mobile

  18. Comparison of Cloud Fraction and Liquid Water Path between ECMWF simulations and ARM long-term Observations at the NSA Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    poster, seasonal and annual variations of cloudiness and liquid water path (LWP) from European Center for Medium-Range Weather Forecasts (ECMWF) model were compared with surface measurement from the ARM Climate Research Facility (ARCF) North Slope of Alaska ( N S A ) s i t e b e t we e n J a n u a r y 1 9 9 9 and December 2004. ● Model simulated large scale features match well with observations. ● There are significant differences in cloud vertical and temporal distributions and in the

  19. ARM - VAP Process - arscl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Productsarscl Documentation & Plots Technical Report Data Management Facility Plots (Quick Looks) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP : Active Remotely-Sensed Cloud Locations (ARSCL) Instrument Categories Cloud Properties The Active Remote Sensing of Clouds (ARSCL) VAP combines data from active remote sensors to produce an objective determination of hydrometeor height distributions and estimates

  20. ARM - VAP Process - mfrsrcldod

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Productsmfrsrcldod Documentation & Plots Technical Report Data Management Facility Plots (Quick Looks) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP : Cloud Optical Properties from MFRSR Using Min Algorithm (MFRSRCLDOD) Instrument Categories Aerosols, Radiometric The mfrsrcldod1min value-added product produces cloud optical depth for overcast liquid clouds using narrowband irradiance measurements from the

  1. ARM - VAP Process - mplcbh

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Productsmplcbh Documentation & Plots Data Management Facility Plots (Quick Looks) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP : Cloud Base Height from MPL Using Scott-Spinhirne Algorithm (MPLCBH) Instrument Categories Cloud Properties Output Products mplcbh1scott : MPL: cloud base heights using the Scott/Spinhirne algorithm Primary Measurements The following measurements are those considered

  2. ARM - VAP Process - mplcmask

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Productsmplcmask Documentation & Plots Technical Report Data Management Facility Plots (Quick Looks) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP : Cloud mask from Micropulse Lidar (MPLCMASK) Instrument Categories Cloud Properties Sample plot generated by MPLCMASK. Click to enlarge the image. Sample plot generated by MPLCMASK. Click to enlarge the image. An operational cloud boundary algorithm has been

  3. ARM - VAP Process - ripbe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Productsripbe Documentation & Plots Technical Report Data Management Facility Plots (Quick Looks) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP : Radiatively Important Parameters Best Estimate (RIPBE) Instrument Categories Aerosols, Cloud Properties, Radiometric Quicklook plot showing RIPBE liquid cloud effective radius (top) and quality control flags (bottom). For the first half of the day, no cloud data

  4. ARM - VAP Process - sfccldgrid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Productssfccldgrid Documentation & Plots Technical Report Data Management Facility Plots (Quick Looks) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP : Surface Cloud Grid (SFCCLDGRID) Instrument Categories Cloud Properties, Derived Quantities and Models The Surface Cloud Grid VAP uses as input the 15-minute output from the Shortwave Flux Analysis VAP (Long, 2001; Long and Ackerman, 2000; Long et al., 1999)

  5. ARM - Datastreams - noaaaosccn100

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsnoaaaosccn100 Documentation Data Quality Plots Citation DOI: 10.5439/1150249 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : NOAAAOSCCN100 Aerosol Observing System (AOS): cloud condensation nuclei data Active Dates 2009.04.16 - 2015.12.31 Measurement Categories Aerosols, Cloud Properties Originating Instrument Cloud Condensation Nuclei Particle Counter

  6. ARM - Datastreams - aosccn100

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsaosccn100 Documentation Data Quality Plots Citation DOI: 10.5439/1025150 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : AOSCCN100 Aerosol Observing System (AOS): cloud condensation nuclei data Active Dates 2010.10.08 - 2016.03.10 Measurement Categories Aerosols, Cloud Properties Originating Instrument Cloud Condensation Nuclei Particle Counter (CCN)

  7. ARM - Other Aircraft Campaigns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Radar Campaign 12 days Stephen Sekelsky SGP 1998-08-03 Past BDRF Campaign 25 days Don Cahoon SGP 2002-05-13 Past IHOP Campaign 1 months Dave Parsons SGP 2005-05-21 Past...

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, 2015 [Facility News] New Radar Facilities for Remote Areas Bookmark and Share Next generation technology and deployments around the globe will fill in data gaps Beginning January 1, 2016, ARM Facility radars will be deployed at McMurdo Station, seen here in the distance from Observation Hill, in Antarctica for one year. Image courtesy of Dan Lubin. Beginning January 1, 2016, ARM Facility radars will be deployed at McMurdo Station, seen here in the distance from Observation Hill, in Antarctica

  9. ARM - Instrument - 50rwp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstruments50rwp Documentation 50RWP : Handbook ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Radar Wind Profiler (50 MHz) (50RWP) Note: 50rwp is currently inactive and/or retired. Active Dates 1997.05.19 - 2006.05.04 Instrument Categories Atmospheric Profiling Picture of the Radar Wind Profiler and RASS (RWP50) General Overview The 50-MHz Radar Wind Profiler/RASS (RWP50) measures wind profiles

  10. Use of ARM observations and numerical models to determine radiative and latent heating profiles of mesoscale convective systems for general circulation models

    SciTech Connect (OSTI)

    Houze, Jr., Robert A.

    2013-11-13

    We examined cloud radar data in monsoon climates, using cloud radars at Darwin in the Australian monsoon, on a ship in the Bay of Bengal in the South Asian monsoon, and at Niamey in the West African monsoon. We followed on with a more in-depth study of the continental MCSs over West Africa. We investigated whether the West African anvil clouds connected with squall line MCSs passing over the Niamey ARM site could be simulated in a numerical model by comparing the observed anvil clouds to anvil structures generated by the Weather Research and Forecasting (WRF) mesoscale model at high resolution using six different ice-phase microphysical schemes. We carried out further simulations with a cloud-resolving model forced by sounding network budgets over the Niamey region and over the northern Australian region. We have devoted some of the effort of this project to examining how well satellite data can determine the global breadth of the anvil cloud measurements obtained at the ARM ground sites. We next considered whether satellite data could be objectively analyzed to so that their large global measurement sets can be systematically related to the ARM measurements. Further differences were detailed between the land and ocean MCS anvil clouds by examining the interior structure of the anvils with the satellite-detected the CloudSat Cloud Profiling Radar (CPR). The satellite survey of anvil clouds in the Indo-Pacific region was continued to determine the role of MCSs in producing the cloud pattern associated with the MJO.

  11. Fine-scale Horizontal Structure of Arctic Mixed-Phase Clouds.

    SciTech Connect (OSTI)

    Rambukkange,M.; Verlinde, J.; Elorante, E.; Luke, E.; Kollias, P.; Shupe, M.

    2006-07-10

    Recent in situ observations in stratiform clouds suggest that mixed phase regimes, here defined as limited cloud volumes containing both liquid and solid water, are constrained to narrow layers (order 100 m) separating all-liquid and fully glaciated volumes (Hallett and Viddaurre, 2005). The Department of Energy Atmospheric Radiation Measurement Program's (DOE-ARM, Ackerman and Stokes, 2003) North Slope of Alaska (NSA) ARM Climate Research Facility (ACRF) recently started collecting routine measurement of radar Doppler velocity power spectra from the Millimeter Cloud Radar (MMCR). Shupe et al. (2004) showed that Doppler spectra has potential to separate the contributions to the total reflectivity of the liquid and solid water in the radar volume, and thus to investigate further Hallett and Viddaurre's findings. The Mixed-Phase Arctic Cloud Experiment (MPACE) was conducted along the NSA to investigate the properties of Arctic mixed phase clouds (Verlinde et al., 2006). We present surface based remote sensing data from MPACE to discuss the fine-scale structure of the mixed-phase clouds observed during this experiment.

  12. ARM - 2001 ARM Science Team Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Profiles of Fair - Weather Cumulus Clouds at the TWP ARM Site 2:45 p.m. Comstock JM, TP Ackerman, and GG Mace: Cirrus Radiative Properties in the Tropical Western Pacific 3:00 p.m. ...

  13. ARM - 1998 ARM Science Team Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Profiles of Fair - Weather Cumulus Clouds at the TWP ARM Site 2:45 p.m. Comstock JM, TP Ackerman, and GG Mace: Cirrus Radiative Properties in the Tropical Western Pacific 3:00 p.m. ...

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2015 [Facility News] New Virtual Tour Takes ARM Users to the "Top of the World" Bookmark and Share Featured in the virtual tour, the Great White Instrument Platform houses the most instruments of any installation at ARM's NSA site, including five radiometers, two radars, two lidars, a total sky imager, and an infrared thermometer. Featured in the virtual tour, the Great White Instrument Platform houses the most instruments of any installation at ARM's NSA site, including five

  15. ARM - LASSO Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Presentations LASSO Information LASSO Home LASSO Backgrounder Pilot Phase Begins for Routine Large-Eddy Simulations Pilot Project Timeline Presentations Science LASSO Implementation Strategy Related Information ARM Decadal Vision Archive of LASSO Information e-mail list LASSO Collaboration Letter Contacts William Gustafson, Lead Principal Investigator Andrew Vogelmann, Co-Principal Investigator Hanna Goss, Media Contact LASSO Presentations ARM Radar Workshop, February 25, 2016 LES ARM Symbiotic

  16. ARM - Datastreams - csaprvert

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamscsaprvert Documentation Data Quality Plots Citation DOI: 10.5439/0 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : CSAPRVERT C Scanning ARM Precipitation Radar (CSAPR), vertical scan Active Dates 2011.04.08 - 2015.12.22

  17. ARM Virtual Tour

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Overview To get climate data to continually improve earth system models, the Atmospheric Radiation Measurement-or ARM-Climate Research Facility operates observation sites around the world for the U.S. Department of Energy. All these data are freely available to anyone through the ARM Data Archive. North Slope of Alaska In 1997, the ARM Climate Research Facility established research sites on the North Slope of Alaska to provide data about cloud and radiative processes in cold environments and

  18. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radar for UAV Applications Bambha, R., Carswell, J., and Swift, C., University of Massachusetts Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Assembly of the...

  19. Intercomparison of model simulations of mixed-phase clouds observed...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. I: Single layer cloud Citation Details ...

  20. Final Technical Report ARM DOE Grant #DE-FG02-03ER63520 Parameterizations of Shortwave Radiactive Properties of Broken Clouds from Satellite and Ground-Based Measurements

    SciTech Connect (OSTI)

    Albrecht, Bruce, A.

    2006-06-19

    This study used DOE ARM data and facilities to: 1) study macroscopic properties of continental stratus clouds at SGP and the factors controlling these properties, 2) develop a scientific basis for understanding the pocesses responsible for the formation of boundary layer clouds using ARM observations in conjunction with simple parametric models and LES, and 3) evaluate cumulus cloud characteristics retrieved retrieved from the MMCR operating at TWP-Nauru. In addition we have used high resolution 94 GHz observations of boundary layer clouds and precipitation to: 1)develop techniques for using high temporal resolution Doppler velocities to study large-eddy circulations and turbulence in boundary layer clouds and estimate the limitations of using current and past MMCR data for boundary layer cloud studies, 2) evaluate the capability and limitation of the current MMCR data for estimating reflectivity, vertical velocities, and spectral under low-signal-to-noise conditions associated with weak non-precipitating clouds, 3) develop possible sampling modes for the new MMCR processors to allow for adequate sampling of boundary layer clouds, and 4) retrieve updraft and downdraft structures under precipitating conditions.