Powered by Deep Web Technologies
Note: This page contains sample records for the topic "arm atmospheric radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement  

NLE Websites -- All DOE Office Websites (Extended Search)

An Integrated Column Description An Integrated Column Description of the Atmosphere An Integrated Column Description of the Atmosphere Tom Ackerman Chief Scientist Tom Ackerman Chief Scientist ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Pacific Northwest National Laboratory Pacific Northwest National Laboratory The "other" Washington ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Credits to Credits to * Ric Cederwall * Xiquan Dong * Chuck Long * Jay Mace * Mark Miller * Robin Perez * Dave Turner and the rest of the ARM science team * Ric Cederwall * Xiquan Dong * Chuck Long * Jay Mace * Mark Miller * Robin Perez * Dave Turner and the rest of the ARM science team ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Outline Outline * A little philosophy

2

Atmospheric Radiation Measurement (ARM) Climate Research Facility and Atmospheric  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Radiation Measurement (ARM) Atmospheric Radiation Measurement (ARM) Climate Research Facility and Atmospheric System Research (ASR) Science and Infrastructure Steering Committee CHARTER June 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not

3

Atmospheric Radiation Measurement (ARM) Data from the ARM Aerial Facility  

DOE Data Explorer (OSTI)

The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. ARM data is collected both through permanent monitoring stations and field campaigns around the world. Airborne measurements required to answer science questions from researchers or to validate ground data are also collected. To find data from all categories of aerial operations, follow the links from the AAF information page at http://www.arm.gov/sites/aaf. Tables of information will provide start dates, duration, lead scientist, and the research site for each of the named campaigns. The title of a campaign leads, in turn, to a project description, contact information, and links to the data. Users will be requested to create a password, but the data files are free for viewing and downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

4

Style Guide Atmospheric Radiation Measurement (ARM) Climate Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Style Guide Style Guide Atmospheric Radiation Measurement (ARM) Climate Research Facility March 2013 Style Guide Atmospheric Radiation Measurement Climate Research Facility March 2013 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research March 2013 ii Contents 1.0 Introduction .......................................................................................................................................... 1 2.0 Acronyms and Abbreviations ............................................................................................................... 1 2.1 Usage ............................................................................................................................................ 1

5

ARM - PI Product - Atmospheric State, Cloud Microphysics & Radiative Flux  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsAtmospheric State, Cloud Microphysics & ProductsAtmospheric State, Cloud Microphysics & Radiative Flux Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Atmospheric State, Cloud Microphysics & Radiative Flux 1997.01.01 - 2010.12.31 Site(s) NSA SGP TWP General Description This data product contains atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

6

Science Plan for the Atmospheric Radiation Measurement Program (ARM)  

SciTech Connect

The purpose of this Atmospheric Radiation Measurement (ARM) Science Plan is to articulate the scientific issues driving the ARM Program, and to relate them to DOE`s programmatic objectives for ARM, based on the experience and scientific progress gained over the past five years. ARM programmatic objectives are to: (1) Relate observed radiative fluxes and radiances in the atmosphere, spectrally resolved and as a function of position and time, to the temperature and composition of the atmosphere, specifically including water vapor and clouds, and to surface properties, and sample sufficient variety of situations so as to span a wide range of climatologically relevant possibilities; (2) develop and test parameterizations that can be used to accurately predict the radiative properties and to model the radiative interactions involving water vapor and clouds within the atmosphere, with the objective of incorporating these parameterizations into general circulation models. The primary observational methods remote sending and other observations at the surface, particularly remote sensing of clouds, water vapor and aerosols.

NONE

1996-02-01T23:59:59.000Z

7

Atmospheric Radiation Measurement (ARM) Data from the ARM Specific Measurement Categories  

DOE Data Explorer (OSTI)

The ARM Program gathers a wide variety of measurements from many different sources. Each day, the Data Archive stores and distributes large quantities of data collected from these sources. Scientists then use these data to research atmospheric radiation balance and cloud feedback processes, which are critical elements of global climate change. The huge archive of ARM data can be organized by measurement categories into six "collections:" Aerosols, Atmospheric Carbon, Atmospheric State, Cloud Properties, Radiometric, and Surface Properties. Clicking on one of the measurement categories leads to a page that breaks that category down into sub-categories. For example, "Aerosols" is broken down into Microphysical and Chemical Properties (with 9 subsets) and Optical and Radiative Properties (with 7 subsets). Each of the subset links, in turn, leads to detailed information pages and links to specific data streams. Users will be requested to create a password, but the data files are free for viewing and downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

8

Atmospheric Radiation Measurement (ARM) Data from Niamey, Niger for the Radiative Atmospheric Divergence using AMF, GERB and AMMA Stations (RADAGAST)  

DOE Data Explorer (OSTI)

The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To achieve this goal, ARM scientists and researchers around the world use continuous data obtained through the ARM Climate Research Facility. The ARM Mobile Facility (AMF) operates at non-permanent sites selected by the ARM Program. Sometimes these sites can become permanent ARM sites, as was the case with Graciosa Island in the Azores. It is now known as the Eastern North Atlantic permanent site. In January 2006 the AMF deployed to Niamey, Niger, West Africa, at the Niger Meteorological Office at Niamey International Airport. This deployment was timed to coincide with the field phases and Special Observing Periods of the African Monsoon Multidisciplinary Analysis (AMMA). The ARM Program participated in this international effort as a field campaign called "Radiative Divergence using AMF, GERB and AMMA Stations (RADAGAST).The primary purpose of the Niger deployment was to combine an extended series of measurements from the AMF with those from the Geostationary Earth Radiation Budget (GERB) Instrument on the Meteosat operational geostationary satellite in order to provide the first well-sampled, direct estimates of the divergence of solar and thermal radiation across the atmosphere. A large collection of data plots based on data streams from specific instruments used at Niamey are available via a link from ARM's Niamey, Niger site information page. Other data can be found at the related websites mentioned above and in the ARM Archive. Users will be requested to create a password, but the plots and data files are free for viewing and downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

9

Proceedings of the third Atmospheric Radiation Measurement (ARM) science team meeting  

SciTech Connect

This document contains the summaries of papers presented at the 1993 Atmospheric Radiation Measurement (ARM) Science Team meeting held in Morman, Oklahoma. To put these papers in context, it is useful to consider the history and status of the ARM Program at the time of the meeting. Individual papers have been cataloged separately.

Not Available

1994-03-01T23:59:59.000Z

10

Atmospheric Radiation Measurement (ARM) Data from Specific Instruments Used in the ARM Program  

DOE Data Explorer (OSTI)

ARM is known for its comprehensive set of world-class, and in some cases, unique, instruments available for use by the global scientific community. In addition to the ARM instruments, the ARM Climate Research Facility identifies and acquires a wide variety of data including model, satellite, and surface data, from "external instruments," to augment the data being generated within the program. External instruments belong to organizations that are outside of the ARM Program. Field campaign instruments are another source of data used to augment routine observations. The huge archive of ARM data can be organized by instrument categories into twelve "collections:" Aerosols, Airborne Observations, Atmospheric Carbon, Atmospheric Profiling, Cloud Properties, Derived Quantities and Models, Ocean Observations, Radiometric, Satellite Observations, Surface Meteorology, Surface/Subsurface Properties, and Other. Clicking on one of the instrument categories leads to a page that breaks that category down into sub-categories. For example, "Atmospheric Profiling" is broken down into ARM instruments (with 11 subsets), External Instruments (with 6 subsets), and Field Campaign Instruments (with 42 subsets). Each of the subset links, in turn, leads to detailed information pages and links to specific data streams. Users will be requested to create a password, but the data files are free for viewing and downloading.

11

Atmospheric radiation measurement unmanned aerospace vehicle (ARM-UAV) program  

SciTech Connect

ARM-UAV is part of the multi-agency U.S. Global Change Research Program and is addressing the largest source of uncertainty in predicting climatic response: the interaction of clouds and the sun`s energy in the Earth`s atmosphere. An important aspect of the program is the use of unmanned aerospace vehicles (UAVs) as the primary airborne platform. The ARM-UAV Program has completed two major flight series: The first series conducted in April, 1994, using an existing UAV (the General Atomics Gnat 750) consisted of eight highly successful flights at the DOE climate site in Oklahoma. The second series conducted in September/October, 1995, using two piloted aircraft (Egrett and Twin Otter), featured simultaneous measurements above and below clouds and in clear sky. Additional flight series are planned to continue study of the cloudy and clear sky energy budget in the Spring and Fall of 1996 over the DOE climate site in Oklahoma. 3 refs., 4 figs., 1 tab.

Bolton, W.R. [Sandia National Laboratories, Livermore, CA (United States)

1996-11-01T23:59:59.000Z

12

Atmospheric Radiation Measurement (ARM) Data from the North Slope Alaska (NSA) Site  

DOE Data Explorer (OSTI)

The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To achieve this goal, ARM scientists and researchers around the world use continuous data obtained through the ARM Climate Research Facility. ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility to other sites as determined. The North Slope of Alaska (NSA) site is a permanent site providing data about cloud and radiative processes at high latitudes. These data are being used to refine models and parameterizations as they relate to the Arctic. Centered at Barrow and extending to the south (to the vicinity of Atqasuk), west (to the vicinity of Wainwright), and east (towards Oliktok), the NSA site has become a focal point for atmospheric and ecological research activity on the North Slope. Approximately 300,000 NSA data sets from 1993 to the present reside in the ARM Archive at http://www.archive.arm.gov/. Users will need to register for a password, but all files are then free for viewing or downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

13

Atmospheric Radiation Measurement (ARM) Data Products from Principal Investigators  

DOE Data Explorer (OSTI)

The Office of Biological and Environmental Research in DOE's Office of Science is responsible for the ARM Program. The ARM Archive physically resides at the Oak Ridge National Laboratory.

14

ARM - Measurement - Atmospheric temperature  

NLE Websites -- All DOE Office Websites (Extended Search)

temperature temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric temperature The temperature indicated by a thermometer exposed to the air in a place sheltered from direct solar radiation. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AERI : Atmospheric Emitted Radiance Interferometer SONDE : Balloon-Borne Sounding System CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System

15

Atmospheric Radiation Measurement Program  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 ARM 2003 Tom Ackerman Chief Scientist Tom Ackerman Chief Scientist ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement WARNING! WARNING! Today is April 1 But that has NO bearing on this message Today is April 1 But that has NO bearing on this message ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Two Topics Two Topics * Status of ARM (quick overview) * Science plan - ARM in the next 5 years * Status of ARM (quick overview) * Science plan - ARM in the next 5 years ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement ARM Status - Science ARM Status - Science * Steadily increasing productivity - Poster session - over 220 posters (may need to do something about submissions next year) - Peer-reviewed articles: 2.5 to 3 per year per

16

Atmospheric Radiation Measurement (ARM) Data Plots and Figures  

DOE Data Explorer (OSTI)

ARM Program data is available in daily diagnostic plots that can be easily grouped into daily, weekly, monthly, and even yearly increments. By visualizing ARM data in thumbnail-sized data plots, users experience highly-browsable subsets of data available at the Data Archive including complimentary data products derived from data processed by ARM. These thumbnails allow users to quickly scan for a particular type of condition, like a clear day or a day with persistent cirrus. From a diagnostics perspective, the data plots assist in looking for missing data, for data exceeding a particular range, or for loading multiple variables (e.g., shortwave fluxes and precipitation), and to determine whether a certain science or data quality condition is associated with some other parameter (e.g., high wind or rain).[taken from http://www.arm.gov/data/data_plots.stm] Several interfaces and tools have been developed to make data plots easy to generate and manipulate. For example, the NCVWeb is an interactive NetCDF data plotting tool that ARM users can use to plot data as they order it or to plot regular standing data orders. It allows production of detailed tables, extraction of data, statistics output, comparison plotting, etc. without the need for separate visualization software. Users will be requested to create a password, but the data plots are free for viewing and downloading.

17

Atmospheric Radiation Measurement (ARM) Data from the Southern Great Plains (SGP) Site  

DOE Data Explorer (OSTI)

The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To achieve this goal, ARM scientists and researchers around the world use continuous data obtained through the ARM Climate Research Facility. ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility to other sites as determined. Scientists are using the information obtained from the permanent SGP site to improve cloud and radiative models and parameterizations and, thereby, the performance of atmospheric general circulation models used for climate research. More than 30 instrument clusters have been placed around the SGP site. The locations for the instruments were chosen so that the measurements reflect conditions over the typical distribution of land uses within the site. The continuous observations at the SGP site are supplemented by intensive observation periods, when the frequency of measurements is increased and special measurements are added to address specific research questions. During such periods, 2 gigabytes or more of data (two billion bytes) are generated daily. SGP data sets from 1993 to the present reside in the ARM Archive at http://www.archive.arm.gov/ http. Users will need to register for a password, but all files are then free for viewing or downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

18

Atmospheric Radiation Measurement (ARM) Data from Point Reyes, California for the Marine Stratus, Radiation, Aerosol, and Drizzle (MASRAD) Project  

DOE Data Explorer (OSTI)

Point Reyes National Seashore, on the California coast north of San Francisco, was the location of the first deployment of the DOE's Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF). The ARM Program collaborated with the U.S. Office of Naval Research and DOE's Aerosol Science Program in the Marine Stratus, Radiation, Aerosol, and Drizzle (MASRAD) project. Their objectives were to collect data from cloud/aerosol interactions and to improve understanding of cloud organization that is often associated with patches of drizzle. Between March and September 2005, the AMF and at least two research aircraft were used to collect data.

19

Ozonesonde measurements from the Atmospheric Radiation Measurement (ARM) site in Billings, Oklahoma  

SciTech Connect

Ozonesonde instruments were prepared and released at the Atmospheric Radiation Measurement (ARM) site located near Billings, Oklahoma. Ozone sensors, associated radiosondes, balloons, and other parts and pieces required for the ozone observations were provided by WFF on a reimbursable arrangement with ANL. Observations were scheduled daily at 1,700 UTC beginning on September 22, 1995. Attempts to maintain this schedule were frustrated by a few simultaneous operations involving different electronic devices in use resulting in considerable rf noise. Since radiosondes are necessarily low-cost instruments their reception is particularly susceptible to noisy rf fields. Overall, however, 36 ozonesonde flights were made with the last observation occurring on November 1, 1995. Ozone data were processed on-site through the ground-station software and preliminary data delivered to Mike Splitt at the ARM site.

NONE

1998-12-01T23:59:59.000Z

20

Asymmetry in the Diurnal Cycle of Atmospheric Downwelling Radiation at the ARM SGP CF Site Over 1995-2001 Period  

NLE Websites -- All DOE Office Websites (Extended Search)

Asymmetry in the Diurnal Cycle of Atmospheric Asymmetry in the Diurnal Cycle of Atmospheric Downwelling Radiation at the ARM SGP CF Site Over 1995-2001 Period A. P. Trishchenko Canada Centre for Remote Sensing Ottawa, Ontario, Canada Introduction The shape of the diurnal cycle of atmospheric downwelling radiation is an important climatic feature of cloud-radiation interactions and atmospheric properties. Adequate characterization of this diurnal cycle is critical for accurate determination of monthly and seasonal radiation budgets from a limited data sampling. This is especially important for establishing the optimal sampling and temporal interpolation schemes employed in satellite radiation budget missions, such as Earth Radiation Budget Experiment (ERBE), Scanner for Radiation Budget (ScaRaB), and Clouds and Earth's Radiant Energy System

Note: This page contains sample records for the topic "arm atmospheric radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

ARM - Measurement - Atmospheric moisture  

NLE Websites -- All DOE Office Websites (Extended Search)

moisture moisture ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric moisture The moisture content of the air as indicated by several measurements including relative humidity, specific humidity, dewpoint, vapor pressure, water vapor mixing ratio, and water vapor density; note that precipitable water is a separate type. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AERI : Atmospheric Emitted Radiance Interferometer

22

ARM - Measurement - Atmospheric pressure  

NLE Websites -- All DOE Office Websites (Extended Search)

pressure pressure ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric pressure The pressure exerted by the atmosphere as a consequence of gravitational attraction exerted upon the "column" of air lying directly above the point in question. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments SONDE : Balloon-Borne Sounding System CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System

23

Contributions of the Atmospheric Radiation Measurement (ARM) Program and the ARM Climate Research Facility to the U.S. Climate Change Science Program  

SciTech Connect

The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. The 2007 assessment (AR4) by the Intergovernmental Panel on Climate Change (IPCC) reports a substantial range among GCMs in climate sensitivity to greenhouse gas emissions. The largest contributor to this range lies in how different models handle changes in the way clouds absorb or reflect radiative energy in a changing climate (Solomon et al. 2007). In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program within the Office of Biological and Environmental Research (BER) to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To address this problem, BER has adopted a unique two-pronged approach: * The ARM Climate Research Facility (ACRF), a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes. * The ARM Science Program, focused on the analysis of ACRF data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report describes accomplishments of the BER ARM Program toward addressing the primary uncertainties related to climate change prediction as identified by the IPCC.

SA Edgerton; LR Roeder

2008-09-30T23:59:59.000Z

24

ARM - Measurement - Atmospheric turbulence  

NLE Websites -- All DOE Office Websites (Extended Search)

turbulence turbulence ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric turbulence High frequency velocity fluctuations that lead to turbulent transport of momentum, heat, mositure, and passive scalars, and often expressed in terms of variances and covariances. Categories Atmospheric State, Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System

25

Simultaneous Spectral Albedo Measurements Near the Atmospheric Radiation Measurement Southern Great Plains (ARM SGP) Central Facility  

SciTech Connect

In this study, a data analysis is performed to determine the area-averaged, spectral albedo at ARM's SGP central facility site. The spectral albedo is then fed into radiation transfer models to show that the diffuse discrepancy is diminished when the spectral albedo is used (as opposed to using the broadband albedo).

Michalsky, Joseph J.; Min, Qilong; Barnard, James C.; Marchand, Roger T.; Pilewskie, Peter

2003-04-30T23:59:59.000Z

26

Atmospheric Radiation Measurement (ARM) Data from Los Angeles, California, to Honolulu, Hawaii for the Marine ARM GPCI Investigation of Clouds (MAGIC) Field Campaign (an AMF2 Deployment)  

DOE Data Explorer (OSTI)

From October 2012 through September 2013, the second ARM Mobile Facility (AMF2) was deployed on the container ship Spirit, operated by Horizon Lines, for the Marine ARM GPCI* Investigation of Clouds (MAGIC) field campaign. During approximately 20 round trips between Los Angeles, California, and Honolulu, Hawaii, AMF2 obtained continuous on-board measurements of cloud and precipitation, aerosols, and atmospheric radiation; surface meteorological and oceanographic variables; and atmospheric profiles from weather balloons launched every six hours. During two two-week intensive observational periods in January and July 2013, additional instruments were deployed and balloon soundings were be increased to every three hours. These additional data provided a more detailed characterization of the state of the atmosphere and its daily cycle during two distinctly different seasons. The primary objective of MAGIC was to improve the representation of the stratocumulus-to-cumulus transition in climate models. AMF2 data documented the small-scale physical processes associated with turbulence, convection, and radiation in a variety of marine cloud types.

27

Atmospheric Radiation Measurement (ARM) Data from Black Forest Germany for the Convective and Orographically Induced Precipitation Study (COPS)  

DOE Data Explorer (OSTI)

The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility (AMF) to other sites as determined. In 2007 the AMF operated in the Black Forest region of Germany as part of the Convective and Orographically Induced Precipitation Study (COPS). Scientists studied rainfall resulting from atmospheric uplift (convection) in mountainous terrain, otherwise known as orographic precipitation. This was part of a six -year duration of the German Quantitative Precipitation Forecasting (QPF) Program. COPS was endorsed as a Research and Development Project by the World Weather Research Program. This program was established by the World Meteorological Organization to develop improved and cost-effective forecasting techniques, with an emphasis on high-impact weather. A large collection of data plots based on data streams from specific instruments used at Black Forest are available via a link from ARM's Black Forest site information page. Users will be requested to create a password, but the plots and the data files in the ARM Archive are free for viewing and downloading.

28

Atmospheric Radiation Measurement (ARM) Data from Manacapuru, Brazil for the Green Ocean Amazon (GOAMAZON) Field Campaign  

DOE Data Explorer (OSTI)

The Amazon rain forest in Brazil is the largest broadleaf forest in the world, covering 7 million square kilometers of the Amazon Basin in South America. It represents over half of the planet’s remaining rain forests, and comprises the most biodiverse tract of tropical rain forest on the planet. Due to the sheer size of the Amazon rain forest, the area has a strong impact on the climate in the Southern Hemisphere. To understand the intricacies of the natural state of the Amazon rain forest, the Green Ocean Amazon, or GOAMAZON, field campaign is a two-year scientific collaboration among U.S. and Brazilian research organizations. They are conducting a variety of different experiments with dozens of measurement tools, using both ground and aerial instrumentation, including the ARM Aerial Facility's G-1 aircraft. For more information on the holistic view of the campaign, see the Department of Energy’s GOAMAZON website. As a critical component of GOAMAZON, the ARM Mobile Facility (AMF) will obtain measurements near Manacapuru, south of Manaus, Brazil, from January to December 2014. The city of Manaus, with a population of 3 million, uses high-sulfur oil as their primary source of electricity. The AMF site is situated to measure the atmospheric extremes of a pristine atmosphere and the nearby cities’ pollution plume, as it regularly intersects with the site. Along with other instrument systems located at the Manacapuru site, this deployment will enable scientists to study how aerosol and cloud life cycles are influenced by pollutant outflow from a tropical megacity.

29

ARM - Measurement - Backscattered radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsBackscattered radiation govMeasurementsBackscattered radiation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Backscattered radiation The scattering of radiant energy into the hemisphere of space bounded by a plane normal to the direction of the incident radiation and lying on the same side as the incident ray. Categories Aerosols, Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AOS : Aerosol Observing System IAP : In-situ Aerosol Profiles (Cessna Aerosol Flights)

30

ARM - Measurement - Radiative heating rate  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsRadiative heating rate govMeasurementsRadiative heating rate ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Radiative heating rate The heating rate due to the divergence of long and shortwave radiative flux. Categories Radiometric, Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments MOLTS : Model Output Location Time Series Datastreams MOLTS : Model Output Location Time Series Datastreams MOLTSEDASSNDCLASS1 : Model Output Loc. Time Ser. (MOLTS): EDAS

31

Atmospheric Radiation Measurement (ARM) Data from Field Campaigns or Intensive Operational Periods (IOP)  

DOE Data Explorer (OSTI)

The Office of Biological and Environmental Research in DOE's Office of Science is responsible for the ARM Program. The ARM Archive physically resides at the Oak Ridge National Laboratory.

32

Proceedings of the Sixteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting  

SciTech Connect

The ARM Program holds an annual science team meeting each spring. ARM Science Team members, members of the infrastructure, and selected individuals outside the ARM Program are invited to attend the meeting and present posters and formal presentations to share research results. These results are published electronically in the meeting proceedings.

JW Voyles

2006-09-30T23:59:59.000Z

33

DOE/SC-ARM-020 Atmospheric Radiation Measurement Climate Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

20 20 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1-September 30, 2013 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or

34

DOE/SC-ARM-12-021 Atmospheric Radiation Measurement Climate Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1-September 30, 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or

35

DOE/SC-ARM-13-020 Atmospheric Radiation Measurement Climate Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1-September 30, 2013 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or

36

Atmospheric Radiation Measurment (ARM) Data from the Ganges Valley, India for the Ganges Valley Aerosol Experiment (GVAX)  

DOE Data Explorer (OSTI)

In 2011 and 2012, the Ganges Valley Aerosol Experiment (GVAX) began in the Ganges Valley region of India. The objective was to obtain measurements of clouds, precipitation, and complex aerosols to study their impact on cloud formation and monsoon activity in the region. During the Indian Ocean Experiment (INDOEX) field studies, aerosols from the Ganges Valley region were shown to affect cloud formation and monsoon activity over the Indian Ocean. The complex field study used the ARM Mobile Facility (AMF) to measure radiative, cloud, convection, and aerosol characteristics over the mainland. The resulting data set captured pre-monsoon to post-monsoon conditions to establish a comprehensive baseline for advancements in the study of the effects of atmospheric conditions of the Ganges Valley.

37

ARM - Atmospheric Heat Budget  

NLE Websites -- All DOE Office Websites (Extended Search)

ListAtmospheric Heat Budget Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About...

38

Atmospheric Radiation Measurement (ARM) Data from the Eastern North Atlantic Site (ENA), Graciosa Island, Azores  

DOE Data Explorer (OSTI)

From May 2009 through December 2010, the ARM Mobile Facility obtained data from a location near the airport on Graciosa Island to support the Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) field campaign. The campaign was led by principal investigator Robert Wood. Results from this campaign confirmed that the Azores have the ideal mix of conditions to study how clouds, aerosols, and precipitation interact. This new observation site will have significant enhancements to instruments previously deployed to the Azores, including a Ka-/W-band scanning cloud radar, precipitation radar, and Doppler lidar. It has the full support of the Azorean government and collaborators at the University of the Azores. Los Alamos National Laboratory will operate the site for the ARM Facility.

Wood, Robert

39

Final Technical Report for Chief Scientist for Atmospheric Radiation Measurement (ARM) Aerial Vehicle Program (AVP)  

SciTech Connect

The major responsibilities of the PI were identified as 1) the formulation of campaign plans, 2) the representation of AVP in various scientific communities inside and outside of ARM and the associated working groups, 3) the coordination and selection of the relative importance of the three different focus areas (routine observations, IOPs, instrument development program), 4) the examination and quality control of the data collected by AVP, and 5) providing field support for flight series. This report documents the accomplishments in each of these focus areas for the 3 years of funding for the grant that were provided.

Greg M. McFarquhar

2011-10-21T23:59:59.000Z

40

DOE/SC-ARM-13-007 Atmospheric Radiation Measurement Climate Research...  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Measurement Climate Research Facility Operations Quarterly Report January 1-March 31, 2013 DISCLAIMER This report was prepared as an account of work sponsored by the...

Note: This page contains sample records for the topic "arm atmospheric radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Atmospheric Radiation Measurement (ARM) Data from Shouxian, China for the Study of Aerosol Indirect Effects in China  

DOE Data Explorer (OSTI)

In a complex ARM Mobile Facility (AMF) deployment, monitoring data was collected at four locations in China during 2008. The various sites are located in regions with different climate regimes and with high aerosol loadings of different optical, physical, and chemical properties. Measurements obtained at all the AMF sites during the 8-month deployment in China will help scientists to validate satellite-based findings, understand the mechanisms of the aerosol indirect effects in the region, and examine the roles of aerosols in affecting regional climate and atmospheric circulation, with a special focus on the impact of the East Asian monsoon system. As with other collections from the ARM Mobile Facility, the datasets are available from the ARM Archive. The ARM Archive physically resides at the Oak Ridge National Laboratory.

42

Analyses of Atmospheric Radiation Measurement (ARM) program's Enhanced Shortwave Experiment (ARESE)  

E-Print Network (OSTI)

) multiple data sets for studying cloud absorption Z. Li and A. P. Trishchenko Canada Centre for Remote Sensing, Ottawa, Ontario, Canada H. W. Barker Atmospheric Environment Service, Environment Canada from aircraft observations was 37% of the incoming solar irradiance, almost twice that of model

Li, Zhanqing

43

Retrieval of optical and microphysical properties of ice clouds using Atmospheric Radiation Measurement (ARM) data  

E-Print Network (OSTI)

)????????????????.33 b. North Slope of Alaska (NSA)???????????????...49 6. CONCLUSIONS????????????????????????58 REFERENCES????????????????????????..60 VITA????????????????????????????.?.63 vii LIST OF FIGURES FIGURE Page 1 Comparison of the computed phase function... Smith?s method and expanded it to the 1800-3000 cm -1 wavenumber region, which he referred to as the Band II region (note that the region used by Smith et al. (1993) is referred to as the Band I region). DeSlover and Smith (1999) used the Atmospheric...

Kinney, Jacqueline Anne

2005-11-01T23:59:59.000Z

44

ARM - Measurement - Aerosol backscattered radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

backscattered radiation backscattered radiation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol backscattered radiation The scattering of radiant energy into the hemisphere of space bounded by a plane normal to the direction of the incident radiation and lying on the same side as the incident ray. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AOS : Aerosol Observing System MPL : Micropulse Lidar NEPHELOMETER : Nephelometer

45

ARM - Publications: Science Team Meeting Documents: ARM Site Atmospheric  

NLE Websites -- All DOE Office Websites (Extended Search)

ARM Site Atmospheric State Best Estimates for AIRS Forward Model and ARM Site Atmospheric State Best Estimates for AIRS Forward Model and Retrieval Validation Tobin, David University of Wisconsin-Madison Revercomb, Henry University Of Wisconsin-Madison Knuteson, Robert University Of Wisconsin Feltz, Wayne University of Wisconsin Moy, Leslie University of Wisconsin-Madison Lesht, Barry Argonne National Laboratory Cress, Ted Pacific Northwest National Laboratory Strow, Larrabee Hannon, Scott Fetzer, Eric Jet Propulsion Laboratory The Atmospheric Infrared Sounder (AIRS) on the EOS Aqua platform is the first of a new generation of advanced hyperspectral atmospheric sounders with the capability of retrieving temperature and trace gas profiles with high vertical resolution and absolute accuracy. In the past few years ARM has played a major role in the validation of AIRS, including the launch of

46

DOE/EA-1193: Environmental Assessment for the Atmospheric Radiation Measurement (ARM) Program North Slope of Alaska and Adjacent Artic Ocean Cloud and Radiation Testbed (CART) Site (February 1997)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

u. S. DEPARTMENT OF ENERGY u. S. DEPARTMENT OF ENERGY FINDING OF NO SIGNIFICANT IMPACT FINAL ENVIRONMENTAL ASSESSMENT - The United States Department of Energy (DOE) has prepared an environmental assessment (EA) for the Atmospheric Radiation Measurement Cloud and Radiation Testbed (ARM/CART), North Slope of Alaska and Adjacent Arctic Ocean. The purpose of the ARM/CART program is to collect and analyze atmospheric data for the development and validation of global climate change models. The program involves construction of several small facilities and operation of sensing equipment. The EA analyzes the impacts on land use, tundra, air quality, cultura.l resources, socioeconomics, and wildlife. Separate studies (summarized in the EA) were also conducted to ensure that the operation of the facilities would not

47

Atmospheric Radiation Measurement (ARM) Data from Cape Cod, Massachusetts for the Two-Column Aerosol Project (TCAP)  

DOE Data Explorer (OSTI)

The Two-Column Aerosol Project (TCAP) was designed to provide a detailed set of observations with which to (1) perform radiative and cloud condensation nuclei (CCN) closure studies, (2) evaluate a new retrieval algorithm for aerosol optical depth (AOD) in the presence of clouds using passive remote sensing, (3) extend a previously developed technique to investigate aerosol indirect effects, and (4) evaluate the performance of a detailed regional-scale model and a more parameterized global-scale model in simulating particle activation and AOD associated with the aging of anthropogenic aerosols. To meet these science objectives, the ARM Mobile Facility and the Mobile Aerosol Observing System were deployed on Cape Cod, Massachusetts, for a 12-month period starting in the summer of 2012 in order to quantify aerosol properties, radiation, and cloud characteristics at a location subject to both clear and cloudy conditions, and clean and polluted conditions. These observations were supplemented by two aircraft intensive observation periods, one in the summer and a second in the winter.

48

The ARM Atmospheric Emitted Radiance Interferometer (AERI): Status and  

NLE Websites -- All DOE Office Websites (Extended Search)

The ARM Atmospheric Emitted Radiance Interferometer (AERI): Status and The ARM Atmospheric Emitted Radiance Interferometer (AERI): Status and Preliminary Assessments of Instrument Deployments in 2006 Dedecker, Ralph University of Wisconsin Demirgian, Jack Argonne National Laboratory Knuteson, Robert University Of Wisconsin Revercomb, Henry University of Wisconsin-Madison Tobin, David University of Wisconsin-Madison Turner, David University of Wisconsin-Madison Category: Instruments One of the key operational instruments at the Atmospheric Radiation Measurement Climate Research Facility (ACRF) is the Atmospheric Emitted Radiance Interferometer (AERI). This instrument provides the ARM program with surface-based observations of infrared spectrally resolved radiance from a vertically directed cone with better than 1% accuracy. The data from

49

ARM - Publications: Science Team Meeting Documents: Cloud Radiative Forcing  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud Radiative Forcing at the ARM Climate Research Facility: Part 2. The Cloud Radiative Forcing at the ARM Climate Research Facility: Part 2. The Vertical Redistribution of Radiant Energy by Clouds. Mace, Gerald University of Utah Benson, Sally University of Utah Kato, Seiji Hampton University/NASA Langley Research Center Documentation with data of the effects of clouds on the radiant energy balance of the surface and atmosphere represent a critical shortcoming in the set of observations that are needed to ascertain the validity of model simulations of the earth's climate. While clouds are known to cool the climate system from TOA radiation budget studies, the redistribution of energy between the surface and atmosphere and within the atmosphere by clouds has not been examined in detail. Using data collected at the Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP)

50

ARM - Evolution of the Atmosphere  

NLE Websites -- All DOE Office Websites (Extended Search)

provides clues as to the composition of the early atmosphere. Volcanic emissions include nitrogen, sulfur dioxide, carbon dioxide, and trace gases such as argon. Although oxygen,...

51

Final report for the project "Improving the understanding of surface-atmosphere radiative interactions by mapping surface reflectance over the ARM CART site" (award DE-FG02-02ER63351)  

SciTech Connect

Surface spectral reflectance (albedo) is a fundamental variable affecting the transfer of solar radiation and the Earth’s climate. It determines the proportion of solar energy absorbed by the surface and reflected back to the atmosphere. The International Panel on Climate Change (IPCC) identified surface albedo among key factors influencing climate radiative forcing. Accurate knowledge of surface reflective properties is important for advancing weather forecasting and climate change impact studies. It is also important for determining radiative impact and acceptable levels of greenhouse gases in the atmosphere, which makes this work strongly linked to major scientific objectives of the Climate Change Research Division (CCRD) and Atmospheric Radiation Measurement (ARM) Program. Most significant accomplishments of eth project are listed below. I) Surface albedo/BRDF datasets from 1995 to the end of 2004 have been produced. They were made available to the ARM community and other interested users through the CCRS public ftp site ftp://ftp.ccrs.nrcan.gc.ca/ad/CCRS_ARM/ and ARM IOP data archive under “PI data Trishchenko”. II) Surface albedo properties over the ARM SGP area have been described for 10-year period. Comparison with ECMWF data product showed some deficiencies in the ECMWF surface scheme, such as missing some seasonal variability and no dependence on sky-conditions which biases surface energy budget and has some influence of the diurnal cycle of upward radiation and atmospheric absorption. III) Four surface albedo Intensive Observation Period (IOP) Field Campaigns have been conducted for every season (August, 2002, May 2003, February 2004 and October 2004). Data have been prepared, documented and transferred to ARM IOP archive. Nine peer-reviewed journal papers and 26 conference papers have been published.

Alexander P. Trishchenko; Yi Luo; Konstantin V. Khlopenkov, William M. Park; Zhanqing Li; Maureen Cribb

2008-11-28T23:59:59.000Z

52

Atmospheric Radiation Measurement (ARM) Data from Steamboat Springs, Colorado, for the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX)  

DOE Data Explorer (OSTI)

In October 2010, the initial deployment of the second ARM Mobile Facility (AMF2) took place at Steamboat Springs, Colorado, for the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX). The objective of this field campaign was to obtain data about liquid and mixed-phase clouds using AMF2 instruments in conjunction with Storm Peak Laboratory (located at an elevation of 3220 meters on Mt. Werner), a cloud and aerosol research facility operated by the Desert Research Institute. STORMVEX datasets are freely available for viewing and download. Users are asked to register with the ARM Archive; the user's email address is used from that time forward as the login name.

53

ARM - Field Campaign - ARM West Antarctic Radiation Experiment  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsARM West Antarctic Radiation Experiment govCampaignsARM West Antarctic Radiation Experiment Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : ARM West Antarctic Radiation Experiment 2015.10.01 - 2016.03.31 Lead Scientist : Dan Lubin Description West Antarctica is one of the most rapidly warming regions on Earth, and this warming is closely connected with global sea level rise. The discovery of rapid climate change on the West Antarctic Ice Sheet (WAIS) has challenged previous explanations of Antarctic climate change that focused on strengthening of circumpolar westerlies in response to the positive polarity trend in the Southern Annular Mode. West Antarctic warming does not yet have a comprehensive explanation: dynamical mechanisms may vary

54

Atmospheric State, Cloud Microphysics and Radiative Flux  

DOE Data Explorer (OSTI)

Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

Mace, Gerald

55

ARM - Field Campaign - RAdiative Divergence using AMF, GERB and AMMA  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsRAdiative Divergence using AMF, GERB and AMMA STations govCampaignsRAdiative Divergence using AMF, GERB and AMMA STations (RADAGAST) Campaign Links AMF Niamey Deployment AMF Niamey Data Plots RADAGAST Website Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : RAdiative Divergence using AMF, GERB and AMMA STations (RADAGAST) 2006.01.01 - 2007.01.07 Website : http://www.arm.gov/sites/amf/nim Lead Scientist : Anthony Slingo Description Science Plan for the ARM Mobile Facility deployment to Niamey, 2006 Draft: 3 February 2005 Anthony Slingo, Environmental Systems Science Centre, University of Reading, UK 1. Background Despite a great deal of effort over many years, significant disagreements persist between estimates of the partitioning of the Earth's radiation budget between the atmosphere and surface. While the radiation budget at

56

ARM - Field Campaign - ASSIST: Atmospheric Sounder Spectrometer for  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsASSIST: Atmospheric Sounder Spectrometer for Infrared govCampaignsASSIST: Atmospheric Sounder Spectrometer for Infrared Spectral Technology Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : ASSIST: Atmospheric Sounder Spectrometer for Infrared Spectral Technology 2008.07.08 - 2008.07.18 Lead Scientist : Michael Howard For data sets, see below. Description Goals of assist were to intercompare radiance spectra and profile retrievals from a new AERI-like instrument, called "ASSIST" with the SGP site AERI(s) and calculations from Radiosondes measurements. * To bring the ASSIST instrument to the SGP ACRF and perform simultaneous measurements of the sky radiation with those from the AERI. * On relatively cloud-free days, release a special radiosonde at the

57

Failure and Redemption of Multifilter Rotating Shadowband Radiometer (MFRSR)/Normal Incidence Multifilter Radiometer (NIMFR) Cloud Screening: Contrasting Algorithm Performance at Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) and Southern Great Plains (SGP) Sites  

SciTech Connect

Well-known cloud-screening algorithms, which are designed to remove cloud-contaminated aerosol optical depths (AOD) from AOD measurements, have shown great performance at many middle-to-low latitude sites around the world. However, they may occasionally fail under challenging observational conditions, such as when the sun is low (near the horizon) or when optically thin clouds with small spatial inhomogeneity occur. Such conditions have been observed quite frequently at the high-latitude Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) sites. A slightly modified cloud-screening version of the standard algorithm is proposed here with a focus on the ARM-supported Multifilter Rotating Shadowband Radiometer (MFRSR) and Normal Incidence Multifilter Radiometer (NIMFR) data. The modified version uses approximately the same techniques as the standard algorithm, but it additionally examines the magnitude of the slant-path line of sight transmittance and eliminates points when the observed magnitude is below a specified threshold. Substantial improvement of the multi-year (1999-2012) aerosol product (AOD and its Angstrom exponent) is shown for the NSA sites when the modified version is applied. Moreover, this version reproduces the AOD product at the ARM Southern Great Plains (SGP) site, which was originally generated by the standard cloud-screening algorithms. The proposed minor modification is easy to implement and its application to existing and future cloud-screening algorithms can be particularly beneficial for challenging observational conditions.

Kassianov, Evgueni I.; Flynn, Connor J.; Koontz, Annette S.; Sivaraman, Chitra; Barnard, James C.

2013-09-11T23:59:59.000Z

58

Atmospheric Radiation Measurement Climate Research Facility | Argonne  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Radiation Measurement Climate Research Facility Atmospheric Radiation Measurement Climate Research Facility Argonne scientists study climate change 1 of 22 Argonne scientists study climate change The U.S. Department of Energy's Office of Science provided $60 million in ARRA funding for climate research to the Atmospheric Radiation Measurement (ARM) Climate Research Facility, a DOE national user facility that has been operating climate observing sites around the world for nearly two decades. These sites help scientists study clouds and their influence on the sun's radiant energy, which heats our planet. Above is one of the purchases: the Vaisala Present Weather Detector. It optically measures visibility, present weather, precipitation intensity, and precipitation type. It provides a measure of current weather conditions by combining measurements from three

59

ARM - Field Campaign - Tropical Ocean Global Atmosphere Coupled  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsTropical Ocean Global Atmosphere Coupled Ocean-Atmosphere govCampaignsTropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Exp Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Exp 1992.07.11 - 1993.02.28 Lead Scientist : Chuck Long Data Availability Final data available. For data sets, see below. Summary IOP completed. Description The Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA-COARE) was conducted to better understand the structure of the coupled system of the warm pool of the western Pacific Ocean. Hundreds of participants from dozens of countries took part in this experiment from November 1, 1992 through February 28, 1993. Campaign Data Sets

60

Atmospheric Radiation Measurement Radiative Atmospheric Divergence...  

NLE Websites -- All DOE Office Websites (Extended Search)

radiation emitted by the earth. This instrument is onboard a European Union geostationary weather satellite launched in December 2005; it is collecting data over Niamey and the...

Note: This page contains sample records for the topic "arm atmospheric radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

ARM - Publications: Science Team Meeting Documents: ARM Radiative...  

NLE Websites -- All DOE Office Websites (Extended Search)

Research, Inc. Delamere, Jennifer Atmospheric and Environmental Research, Inc. Cady-Pereira, Karen Atmospheric and Environmental Research, Inc. Tobin, David University of...

62

ARM - Radiative Heating in Underexplored Bands Campaign (RHUBC...  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts News ARM Press Release (Feb. 26, 2007) Images flickrdots Radiative Heating in Underexplored Bands Campaign (RHUBC) Now available: RHUBC-II website Between...

63

ARM Orientation: Overview and History  

NLE Websites -- All DOE Office Websites (Extended Search)

ARM Orientation: ARM Orientation: Overview and History Warren Wiscombe ARM Chief Scientist Brookhaven & NASA ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement 2 Mar 2006 ARM Orientation You want me to be Chief Scientist? Can you believe this guy? ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement 3 Mar 2006 ARM Orientation ARM in a nutshell ARM in a nutshell * * Largest global change research program Largest global change research program funded by the U.S. Department of Energy funded by the U.S. Department of Energy ($44M/yr; ~ ($44M/yr; ~ $10M/yr fo $10M/yr fo r Science Team r Science Team ) ) * * Created to improve cloud and radiation Created to improve cloud and radiation physics and cloud simulation capabilities in physics and cloud simulation capabilities in

64

ARM - Field Campaign - Lower Atmospheric Boundary Layer Experiment  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsLower Atmospheric Boundary Layer Experiment govCampaignsLower Atmospheric Boundary Layer Experiment Campaign Links LABLE Website Related Campaigns 2013 Lower Atmospheric Boundary Layer Experiment 2013.05.28, Turner, SGP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Lower Atmospheric Boundary Layer Experiment 2012.09.17 - 2012.11.13 Lead Scientist : David Turner Description Boundary layer turbulence is an important process that is parameterized in most atmospheric numerical models. Turbulence redistributes energy and mass within the boundary layer. Many different characteristics can impact the character of turbulence in the boundary layer, including different surface types, horizontal wind speed and direction, and the vertical temperature structure of the atmosphere. However, there have been few studies that have

65

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

of Deep Convection During the ARM Summer 1997 IOP: CRM Study Khairoutdinov, M.F. and Randall, D.A., Colorado State University Twelfth Atmospheric Radiation Measurement (ARM)...

66

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

at the ARM Southern Great Plains Iziomon, M.G. and Lohmann, U., Dalhousie University, Canada Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Hansen et...

67

Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008  

SciTech Connect

The Importance of Clouds and Radiation for Climate Change: The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: • The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and • The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

LR Roeder

2008-12-01T23:59:59.000Z

68

Validation of Surface Retrieved Cloud Optical Properties with in situ Measurements at the Atmospheric Radiation Measurement Program (ARM) South Great Plains Site  

SciTech Connect

The surface inferred cloud optical properties from a multifilter rotating shadowband radiometer have been validated against the in situ measurements during the second ARM Enhanced Shortwave Experiment (ARESE II) field campaign at the ARM South Great Plains (SGP) site. On the basis of eight effective radius profiles measured by the in situ Forward Spectra Scattering Probe (FSSP), our retrieved cloud effective radii for single-layer warm water clouds agree well with in situ measurements, within 5.5%. The sensitivity study also illustrates that for this case a 13% uncertainty in observed liquid water path (LWP, 20 g/m2) results in 1.5% difference in retrieved cloud optical depth and 12.7% difference in referred cloud effective radius, on average. The uncertainty of the LWP measured by the microwave radiometer (MWR) is the major contributor to the uncertainty of retrieved cloud effective radius. Further, we conclude that the uncertainty of our inferred cloud optical properties is better than 5% for warm water clouds based on a surface closure study, in which cloud optical properties inferred from narrowband irradiances are applied to a shortwave model and the modeled broadband fluxes are compared to a surface pyranometer.

Min, Qilong; Duan, M.; Marchand, Roger T.

2003-09-11T23:59:59.000Z

69

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Rotating Shadow Arm for Broadband Hemispheric Radiometers: Instrument Design and Concept Verification Using Atmospheric Radiation Measurement Southern Great Plains Radiometer...

70

ARM - Field Campaign - Radiative Heating in Underexplored Bands...  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsRadiative Heating in Underexplored Bands Campaign (RHUBC) Campaign Links RHUBC Website ARM Data Discovery Browse Data Comments? We would love to hear from you Send us...

71

Final Report: High Spectral Resolution Atmospheric Emitted Radiance Studies with the ARM UAV  

SciTech Connect

The active participation in the Atmospheric Radiation Measurement (ARM) Unmanned Airborne Vehicle (UAV) science team that was anticipated in the grant proposal was indefinitely delayed after the first year due to a programmatic decision to exclude the high spectral resolution observations from the existing ARM UAV program. However, this report shows that substantial progress toward the science objectives of this grant have made with the help of separate funding from NASA and other agencies. In the four year grant period (including time extensions), a new high spectral resolution instrument has been flown and has successfully demonstrated the ability to obtain measurements of the type needed in the conduct of this grant. In the near term, the third water vapor intensive observing period (WVIOP-3) in October 2000 will provide an opportunity to bring the high spectral resolution observations of upwelling radiance into the ARM program to complement the downwelling radiance observations from the existing ARM AERI instruments. We look forward to a time when the ARM-UAV program is able to extend its scope to include the capability for making these high spectral resolution measurements from a UAV platform.

Revercomb, Henry E.

1999-12-31T23:59:59.000Z

72

Atmospheric propagation of THz radiation.  

SciTech Connect

In this investigation, we conduct a literature study of the best experimental and theoretical data available for thin and thick atmospheres on THz radiation propagation from 0.1 to 10 THz. We determined that for thick atmospheres no data exists beyond 450 GHz. For thin atmospheres data exists from 0.35 to 1.2 THz. We were successful in using FASE code with the HITRAN database to simulate the THz transmission spectrum for Mauna Kea from 0.1 to 2 THz. Lastly, we successfully measured the THz transmission spectra of laboratory atmospheres at relative humidities of 18 and 27%. In general, we found that an increase in the water content of the atmosphere led to a decrease in the THz transmission. We identified two potential windows in an Albuquerque atmosphere for THz propagation which were the regions from 1.2 to 1.4 THz and 1.4 to 1.6 THz.

Wanke, Michael Clement; Mangan, Michael A.; Foltynowicz, Robert J.

2005-11-01T23:59:59.000Z

73

Atmospheric radiation measurement: A program for improving radiative forcing and feedback in general circulation models  

SciTech Connect

The Atmospheric Radiation Measurement (ARM) Program is a key element of the Department of Energy`s (DOE`s) global change research strategy. ARM represents a long-term commitment to conduct comprehensive studies of the spectral atmospheric radiative energy balance profile for a wide range of cloud conditions and surface types, and to develop the knowledge necessary to improve parameterizations of radiative processes under various cloud regimes for use in general circulation models (GCMs) and related models. The importance of the ARM program is a apparent from the results of model assessments of the impact on global climate change. Recent studies suggest that radiatively active trace gas emissions caused by human activity can lead to a global warming of 1.5 to 4.5 degrees Celsius and to important changes in water availability during the next century (Cess, et al. 1989). These broad-scale changes can be even more significant at regional levels, where large shifts in temperature and precipitation patterns are shown to occur. However, these analyses also indicate that considerable uncertainty exists in these estimates, with the manner in which cloud radiative processes are parameterized among the most significant uncertainty. Thus, although the findings have significant policy implications in assessment of global and regional climate change, their uncertainties greatly influence the policy debate. ARM`s highly focused observational and analytical research is intended to accelerate improvements and reduce key uncertainties associated with the way in which GCMs treat cloud cover and cloud characteristics and the resulting radiative forcing. This paper summarizes the scientific context for ARM, ARM`s experimental approach, and recent activities within the ARM program.

Patrinos, A.A. [USDOE, Washington, DC (United States); Renne, D.S.; Stokes, G.M. [Pacific Northwest Lab., Richland, WA (United States); Ellingson, R.G. [Maryland Univ., College Park, MD (United States)

1991-01-01T23:59:59.000Z

74

ARM - Field Campaign - Routine AAF CLOWD Optical Radiative Observations  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsRoutine AAF CLOWD Optical Radiative Observations (RACORO) govCampaignsRoutine AAF CLOWD Optical Radiative Observations (RACORO) Campaign Links RACORO Website Related Campaigns Surface Radiation Comparison Transfer Measurements for RACORO 2009.01.20, Long, SGP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Routine AAF CLOWD Optical Radiative Observations (RACORO) 2009.01.22 - 2009.06.30 Website : http://acrf-campaign.arm.gov/racoro/ Lead Scientist : Andrew Vogelmann For data sets, see below. Description The ARM Aerial Facility (AAF) supported the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign, led by principal investigator Andrew Vogelmann. During this long-term campaign, the AAF conducted routine flights at the ACRF Southern

75

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

A.A., and Emilenko, A.S., A.M. Obukhov Institute of Atmospheric Physics RAS, Moscow, Russia Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Regular...

76

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

for an Evolving Tropical Cloud System Barker, H.W., Atmospheric Environment Service of Canada; Fu, Q., Dalhousie University Ninth Atmospheric Radiation Measurement (ARM) Science...

77

Preliminary Studies on the Variational Assimilation of Cloud-Radiation Observations Using ARM Observations  

NLE Websites -- All DOE Office Websites (Extended Search)

Studies on the Variational Assimilation Studies on the Variational Assimilation of Cloud-Radiation Observations Using ARM Observations M. Janisková, J.-F. Mahfouf, and J.-J. Morcrette European Centre for Medium-Range Weather Forecasts Shinfield Park, Reading Berskshire, United Kingdom Abstract A linearized cloud scheme and a radiation scheme including cloud effects have been developed at European Centre for Medium-Range Weather Forecasts (ECMWF) to assimilate cloud properties in the framework of the four-dimensional variational (4D-Var) assimilation system. To investigate the potential of those schemes to modify the model temperature, humidity and cloud profiles and produce a better match to the observed radiation fluxes, one-dimensional variational (1D-Var) assimilation experiments have been carried out using data from the Atmospheric Radiation Measurement (ARM)

78

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

International Intercomparison of 3D Radiation Codes (I3RC) Cahalan, R.F., NASAGoddard Space Flight Center Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting...

79

ARM -  

NLE Websites -- All DOE Office Websites (Extended Search)

Center Blog Center Blog Media Contact Lynne Roeder lynne-dot-roeder-at-pnnl-dot-gov @armnewsteam Field Notes Blog Topics Field Notes89 AGU 3 AMIE 10 ARM Aerial Facility 2 ARM Mobile Facility 1 6 ARM Mobile Facility 2 47 BAECC 1 BBOP 4 MAGIC 12 MC3E 17 SGP 2 STORMVEX 29 TCAP 3 Search News Search Blog News Center All Categories What's this? Social Media Guidance News Center All Categories Features and Releases Facility News Field Notes Blog feed Events feed Employment Research Highlights Data Announcements Education News Archive What's this? Social Media Guidance AMF2 Arrives in Finland Jan 02, 2014 [ ARM Mobile Facility 2, BAECC, Blog, Field Notes ] After nine months at sea aboard the Horizon Spirit, the AMF2 reached land for an extended stay at the Station for Measuring Forest Ecosystem-Atmosphere Relations (SMEAR II) in Hyytiala, Finland. This nine-month, land-based deployment is in support of the Biogenic Aerosols-Effects on Clouds and Climate (BAECC) project. The deployment begins February 1, 2014, and [...]

80

12.815 Atmospheric Radiation, Fall 2005  

E-Print Network (OSTI)

Introduction to the physics of atmospheric radiation and remote sensing including use of computer codes. Radiative transfer equation including emission and scattering, spectroscopy, Mie theory, and numerical solutions. ...

Prinn, Ronald G.

Note: This page contains sample records for the topic "arm atmospheric radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Atmospheric radiation measurement: A program for improving radiative forcing and feedback in general circulation models  

SciTech Connect

The Atmospheric Radiation Measurement (ARM) Program is a key element of the Department of Energy's (DOE's) global change research strategy. ARM represents a long-term commitment to conduct comprehensive studies of the spectral atmospheric radiative energy balance profile for a wide range of cloud conditions and surface types, and to develop the knowledge necessary to improve parameterizations of radiative processes under various cloud regimes for use in general circulation models (GCMs) and related models. The importance of the ARM program is a apparent from the results of model assessments of the impact on global climate change. Recent studies suggest that radiatively active trace gas emissions caused by human activity can lead to a global warming of 1.5 to 4.5 degrees Celsius and to important changes in water availability during the next century (Cess, et al. 1989). These broad-scale changes can be even more significant at regional levels, where large shifts in temperature and precipitation patterns are shown to occur. However, these analyses also indicate that considerable uncertainty exists in these estimates, with the manner in which cloud radiative processes are parameterized among the most significant uncertainty. Thus, although the findings have significant policy implications in assessment of global and regional climate change, their uncertainties greatly influence the policy debate. ARM's highly focused observational and analytical research is intended to accelerate improvements and reduce key uncertainties associated with the way in which GCMs treat cloud cover and cloud characteristics and the resulting radiative forcing. This paper summarizes the scientific context for ARM, ARM's experimental approach, and recent activities within the ARM program.

Patrinos, A.A. (USDOE, Washington, DC (United States)); Renne, D.S.; Stokes, G.M. (Pacific Northwest Lab., Richland, WA (United States)); Ellingson, R.G. (Maryland Univ., College Park, MD (United States))

1991-01-01T23:59:59.000Z

82

Atmospheric Radiation Measurement Tropical Warm Pool International Cloud Experiment  

NLE Websites -- All DOE Office Websites (Extended Search)

Tropical Warm Pool Tropical Warm Pool International Cloud Experiment General Description The Tropical Warm Pool - International Cloud Experiment (TWP-ICE) was a collaborative effort led by the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Program and the Australian Bureau of Meteorology. Beginning January 21 and ending February 14, 2006, the experiment was conducted in the region near the ARM Climate Research Facility in Darwin, Northern Australia. This permanent facility is fully equipped with sophisticated instruments for measuring cloud and other atmospheric properties to provide a long-term record of continuous observational data. Measurements obtained from the other experiment components (explained below) will complement this dataset to provide a detailed description of the tropical atmosphere.

83

ARM - Field Campaign - Carbonaceous Aerosol and Radiative Effects Study  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsCarbonaceous Aerosol and Radiative Effects Study (CARES) govCampaignsCarbonaceous Aerosol and Radiative Effects Study (CARES) Campaign Links CARES Website Related Campaigns Carbonaceous Aerosol and Radiation Effects Study (CARES) - Surface Meteorological Sounding 2010.05.26, Zaveri, OSC Carbonaceous Aerosol and Radiation Effects Study (CARES) Photo-Acoustic Aerosol Light Absorption and Scattering 2010.05.26, Arnott, OSC Carbonaceous Aerosol and Radiative Effects Study (CARES): SMPS & CCN counter deployment during CARES/Cal-NEx 2010.05.04, Wang, OSC Carbonaceous Aerosol and Radiative Effects Study (CARES) Ground Based Instruments 2010.04.01, Cziczo, OSC Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Carbonaceous Aerosol and Radiative Effects Study (CARES)

84

Integrated Study of MFRSR-derived Parameters of Atmospheric Aerosols and Trace Gases Over the ARM CART Site Extended Facili...  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Study of MFRSR-Derived Parameters of Integrated Study of MFRSR-Derived Parameters of Atmospheric Aerosols and Trace Gases Over the ARM CART Site Extended Facilities - Comparison with Satellite and Other Ground-Based Measurements M. D. Alexandrov and B. Cairns Columbia University National Aeronautics and Space Administration Goddard Institute for Space Studies New York, New York A. A. Lacis and B. E. Carlson National Aeronautics and Space Administration Goddard Institute for Space Studies New York, New York Comparison of SGP MFRSR Network Aerosol Retrievals with MODIS Aerosol Product The network of Multi-filter Rotating Shadowband Radiometers (MFRSRs) at the Atmospheric Radiation Measurement (ARM) Program Cloud and Radiation Testbed (CART) site consists of 21 instrument sites

85

Evaluation of A New Mixed-Phase Cloud Microphysics Parameterization with the NCAR Climate Atmospheric Model (CAM3) and ARM Observations Fourth Quarter 2007 ARM Metric Report  

SciTech Connect

Mixed-phase clouds are composed of a mixture of cloud droplets and ice crystals. The cloud microphysics in mixed-phase clouds can significantly impact cloud optical depth, cloud radiative forcing, and cloud coverage. However, the treatment of mixed-phase clouds in most current climate models is crude and the partitioning of condensed water into liquid droplets and ice crystals is prescribed as temperature dependent functions. In our previous 2007 ARM metric reports a new mixed-phase cloud microphysics parameterization (for ice nucleation and water vapor deposition) was documented and implemented in the NCAR Community Atmospheric Model Version 3 (CAM3). The new scheme was tested against the Atmospheric Radiation Measurement (ARM) Mixed-phase Arctic Cloud Experiment (M-PACE) observations using the single column modeling and short-range weather forecast approaches. In this report this new parameterization is further tested with CAM3 in its climate simulations. It is shown that the predicted ice water content from CAM3 with the new parameterization is in better agreement with the ARM measurements at the Southern Great Plain (SGP) site for the mixed-phase clouds.

X Liu; SJ Ghan; S Xie; J Boyle; SA Klein

2007-09-30T23:59:59.000Z

86

ARM - Field Campaign - MArine Stratus Radiation Aerosol and Drizzle  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsMArine Stratus Radiation Aerosol and Drizzle (MASRAD) IOP govCampaignsMArine Stratus Radiation Aerosol and Drizzle (MASRAD) IOP Campaign Links Science Plan AMF Point Reyes Website AMF Point Reyes Data Plots Related Campaigns MASRAD: Pt. Reyes Stratus Cloud and Drizzle Study 2005.07.07, Coulter, AMF MASRAD: Cloud Condensate Nuclei Chemistry Measurements 2005.07.01, Berkowitz, AMF MASRAD - Aerosol Optical Properties 2005.06.29, Strawa, AMF MASRAD:Sub-Micron Aerosol Measurements 2005.06.20, Wang, AMF MASRAD: Cloud Study from the 2NFOV at Pt. Reyes Field Campaign 2005.06.02, Wiscombe, AMF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : MArine Stratus Radiation Aerosol and Drizzle (MASRAD) IOP 2005.03.14 - 2005.09.14 Website : http://www.arm.gov/sites/amf/pye/ Lead Scientist : Mark Miller

87

Atmospheric radiation measurement program facilities newsletter, June 2002.  

SciTech Connect

ARM Intensive Operational Period Scheduled to Validate New NASA Satellite--Beginning in July, all three ARM sites (Southern Great Plains [SGP], North Slope of Alaska, and Tropical Western Pacific; Figure 1) will participate in the AIRS Validation IOP. This three-month intensive operational period (IOP) will validate data collected by the satellite-based Atmospheric Infrared Sounder (AIRS) recently launched into space. On May 4, the National Aeronautics and Space Administration (NASA) launched Aqua, the second spacecraft in the Earth Observing System (EOS) series. The EOS satellites monitor Earth systems including land surfaces, oceans, the atmosphere, and ice cover. The first EOS satellite, named Terra, was launched in December 1999. The second EOS satellite is named Aqua because its primary focus is understanding Earth's water cycle through observation of atmospheric moisture, clouds, temperature, ocean surface, precipitation, and soil moisture. One of the instruments aboard Aqua is the AIRS, built by the Jet Propulsion Laboratory, a NASA agency. The AIRS Validation IOP complements the ARM mission to improve understanding of the interactions of clouds and atmospheric moisture with solar radiation and their influence on weather and climate. In support of satellite validation IOP, ARM will launch dedicated radiosondes at all three ARM sites while the Aqua satellite with the AIRS instrument is orbiting overhead. These radiosonde launches will occur 45 minutes and 5 minutes before selected satellite overpasses. In addition, visiting scientists from the Jet Propulsion Laboratory will launch special radiosondes to measure ozone and humidity over the SGP site. All launches will generate ground-truth data to validate satellite data collected simultaneously. Data gathered daily by ARM meteorological and solar radiation instruments will complete the validation data sets. Data from Aqua-based instruments, including AIRS, will aid in weather forecasting, climate modeling, and greenhouse gas studies. These instruments will provide more accurate, detailed global observations of weather and atmospheric parameters that will, in turn, improve the accuracy and quality of weather forecasts. A satellite-based instrument is cost-effective because it can provide continuous global measurements, eliminating isolated yet costly weather balloon releases. Aqua, launched from Vandenberg Air Force Base in California (Figure 2), carries six state-of-the-art instruments that measure various water vapor parameters: (1) AIRS, which measures atmospheric temperature and humidity, land and sea surface temperatures, cloud properties, and radiative energy flux; (2) Advanced Microwave Sounding Unit, which measures atmospheric temperature and humidity during both cloudy and cloud-free periods; (3) Advanced Microwave Scanning Radiometer, which measures cloud properties, radiative energy flux, precipitation rates, land surface wetness, sea ice, snow cover, sea surface temperature, and wind fields; (4) Clouds and the Earth's Radiant Energy System, which measures radiative energy flux; (5) Humidity Sounder for Brazil, which measures atmospheric humidity by using a passive scanning microwave radiometer; and (6) Moderate Resolution Imaging Spectroradiometer, which measures cloud properties, radiative energy flux, aerosol properties, land cover and land use change, vegetation dynamics, land surface temperature, fire occurrence, volcanic effects, sea surface temperature, ocean color, snow cover, atmospheric temperature and humidity, and sea ice. The data-gathering capabilities of the Aqua instruments will provide an unprecedented view of atmosphere-land interactions (Figure 3). The availability of more frequent, more accurate global measurements of important atmospheric parameters will both improve our capabilities for short-term weather forecasting and lead to a better understanding of climate variability and climate change. Simultaneous measurements of many parameters will allow scientists to study complicated forcings and feedbacks of the atmosphere, which can be

Holdridge, D. J.

2002-07-03T23:59:59.000Z

88

ARM - Evaluation Product - Radiatively Important Parameters Best Estimate  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsRadiatively Important Parameters Best ProductsRadiatively Important Parameters Best Estimate (RIPBE) Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Radiatively Important Parameters Best Estimate (RIPBE) 2002.03.01 - 2007.06.30 Site(s) SGP General Description The Radiatively Important Parameters Best Estimate (RIPBE) VAP combines multiple input datastreams, each with their own temporal and vertical resolution, to create a complete set of radiatively important parameters on a uniform vertical and temporal grid with quality control and source information for use as input to a radiative transfer model. One of the main drivers for RIPBE was to create input files for the BroadBand Heating Rate Profiles (BBHRP) VAP, but we also envision use of RIPBE files for user-run

89

ARM AOS Processing Status and Aerosol Intensive Properties VAP  

NLE Websites -- All DOE Office Websites (Extended Search)

Andrews, and P. J. Sheridan National Oceanic and Atmospheric Administration Boulder, Colorado Abstract The Atmospheric Radiation Measurement (ARM) Aerosol Observing System (AOS)...

90

Toward the Development of Multi-Year Total and Special Solar Radiation Budgets at the Three ARM Locales  

NLE Websites -- All DOE Office Websites (Extended Search)

the Development of Multi-Year Total and Special the Development of Multi-Year Total and Special Solar Radiation Budgets at the Three ARM Locales Z. Li and M. C. Cribb Earth System Science Interdisciplinary Center University of Maryland College Park, Maryland A. P. Trishchenko Canada Centre for Remote Sensing Ottawa, Ontario, Canada Introduction Over the past decade, an unprecedented amount of high-quality observational data pertaining to atmospheric and surface parameters has been collected at Atmospheric Radiation Measurement (ARM) locales around the globe. These data have been critical in the development and validation of models used to study the complex interaction of cloud, aerosols, and the surface on the solar radiative budget (SRB), the primary force driving atmospheric circulation. As the next step forward, the challenge of

91

Development of Aerosol Models for Radiative Flux Calculations at ARM Sites: Utility of Trajectory Clustering for Characterizing Aerosol Climatology  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of Aerosol Models for Radiative Flux Development of Aerosol Models for Radiative Flux Calculations at ARM Sites: Utility of Trajectory Clustering for Characterizing Aerosol Climatology E. Andrews Cooperative Institute for Research in the Environment University of Colorado Boulder, Colorado E. Andrews, J. A. Ogren, P. J. Sheridan, and J. M. Harris Climate Monitoring and Diagnostics Laboratory National Oceanic and Atmospheric Administration Boulder, Colorado P. K. Quinn Pacific Marine Environmental Laboratory National Oceanic and Atmospheric Administration Seattle, Washington Abstract The uncertainties associated with assumptions of generic aerosol properties in radiative transfer codes are unknown, which means that these uncertainties are frequently invoked when models and

92

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Event During the International H2O Project (IHOP 2002) Tanamachi, R.L., University of Oklahoma, School of Meteorology Fourteenth Atmospheric Radiation Measurement (ARM) Science...

93

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

A High-Altitude Cloud Climatology From Satellite Data Hobbs, R. and Rusk, D.J., Aeromet, Inc. Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Tenuous,...

94

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

TriggeringCapping Inversions in the Southern Great Plains Cripe, D.G. (a) and Randall, D.A. (b), Colorado State University Eleventh Atmospheric Radiation Measurement (ARM)...

95

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Meteorological Operations Rusk, D.J., Aeromet, Inc. Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting It is highly desirable to use cloud radar data in...

96

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Continued Evaluation of the Microwave Radiometer Profiler Liljegren, J.C., Argonne National Laboratory Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Final...

97

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Analysis of Surface Heat Budget of the Arctic Ocean (SHEBA) data has identified three distinct, preferred...

98

Use of the ARM Measurements of Spectral Zenith Radiance for Better Understanding of 3D Cloud-Radiation Processes & Aerosol-Cloud Interaction  

SciTech Connect

This project focuses on cloud-radiation processes in a general three-dimensional cloud situation, with particular emphasis on cloud optical depth and effective particle size. The proposal has two main parts. Part one exploits the large number of new wavelengths offered by the Atmospheric Radiation Measurement (ARM) zenith-pointing ShortWave Spectrometer (SWS), to develop better retrievals not only of cloud optical depth but also of cloud particle size. We also take advantage of the SWS’ high sampling resolution to study the “twilight zone” around clouds where strong aerosol-cloud interactions are taking place. Part two involves continuing our cloud optical depth and cloud fraction retrieval research with ARM’s 2-channel narrow vield-of-view radiometer and sunphotometer instrument by, first, analyzing its data from the ARM Mobile Facility deployments, and second, making our algorithms part of ARM’s operational data processing.

Chiu, Jui-Yuan Christine [University of Reading] [University of Reading

2014-04-10T23:59:59.000Z

99

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Satellite Data Link on the ARM-UAV Payload McCoy, R.F, Tooman, T.T., and Bolton, W.B., Sandia National Laboratories Thirteenth Atmospheric Radiation Measurement (ARM) Science Team...

100

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

A Dataset of the Evaluation of Large-Scale Models Using ARM Data at Manus and Nauru Jakob, C. and May, P.T., BMRC Thirteenth Atmospheric Radiation Measurement (ARM) Science Team...

Note: This page contains sample records for the topic "arm atmospheric radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

ARM - Field Campaign - Shortwave Radiation and Aerosol Intensive  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsShortwave Radiation and Aerosol Intensive Observation govCampaignsShortwave Radiation and Aerosol Intensive Observation Periods Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Shortwave Radiation and Aerosol Intensive Observation Periods 1998.08.03 - 1998.08.28 Lead Scientist : Warren Wiscombe For data sets, see below. Summary Wednesday, August 5, 1998: IOP Opening Activities: The IOP updates for the Shortwave/Aerosol/BDRF will be composed from notes taken during briefing sessions lead by Don Cahoon and company each night at the Marland Mansion in Ponca City. IOP Status as of 8/4/98 Weather forecasts indicate that cloudy conditions will prevail for the next few days. The Helicopter is on standby for clear sky conditions. Model output indicates clear sky's may move in later this week.

102

Evaluation of GCM Column Radiation Models Under Cloudy Conditions with The Arm BBHRP Value Added Product  

SciTech Connect

The overarching goal of the project was to improve the transfer of solar and thermal radiation in the most sophisticated computer tools that are currently available for climate studies, namely Global Climate Models (GCMs). This transfer can be conceptually separated into propagation of radiation under cloudy and under cloudless conditions. For cloudless conditions, the factors that affect radiation propagation are gaseous absorption and scattering, aerosol particle absorption and scattering and surface albedo and emissivity. For cloudy atmospheres the factors are the various cloud properties such as cloud fraction, amount of cloud condensate, the size of the cloud particles, and morphological cloud features such as cloud vertical location, cloud horizontal and vertical inhomogeneity and cloud shape and size. The project addressed various aspects of the influence of the above contributors to atmospheric radiative transfer variability. In particular, it examined: (a) the quality of radiative transfer for cloudless and non-complex cloudy conditions for a substantial number of radiation algorithms used in current GCMs; (b) the errors in radiative fluxes from neglecting the horizontal variabiity of cloud extinction; (c) the statistical properties of cloud horizontal and vertical cloud inhomogeneity that can be incorporated into radiative transfer codes; (d) the potential albedo effects of changes in the particle size of liquid clouds; (e) the gaseous radiative forcing in the presence of clouds; and (f) the relative contribution of clouds of different sizes to the reflectance of a cloud field. To conduct the research in the various facets of the project, data from both the DOE ARM project and other sources were used. The outcomes of the project will have tangible effects on how the calculation of radiative energy will be approached in future editions of GCMs. With better calculations of radiative energy in GCMs more reliable predictions of future climate states will be attainable, thus affecting public policy decisions with great impact to public life.

Dr. Lazaros Oreopoulos and Dr. Peter M. Norris

2010-03-14T23:59:59.000Z

103

ARM Science Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

ER-ARM-0402 ER-ARM-0402 Atmospheric Radiation Measurement Program Science Plan Current Status and Future Directions of the ARM Science Program Thomas P. Ackerman, Lead Author Anthony D. Del Genio Gregory M. McFarquhar Robert G. Ellingson Peter J. Lamb Richard A. Ferrare Charles N. Long Steve A. Klein Johannes Verlinde October 2004 United States Department of Energy Office of Science, Office of Biological and Environmental Research Executive Summary The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative

104

Atmospheric Radiation Measurement Program facilities newsletter, January 2000  

SciTech Connect

The subject of this newsletter is the ARM unmanned aerospace vehicle program. The ARM Program's focus is on climate research, specifically research related to solar radiation and its interaction with clouds. The SGP CART site contains highly sophisticated surface instrumentation, but even these instruments cannot gather some crucial climate data from high in the atmosphere. The Department of Energy and the Department of Defense joined together to use a high-tech, high-altitude, long-endurance class of unmanned aircraft known as the unmanned aerospace vehicle (UAV). A UAV is a small, lightweight airplane that is controlled remotely from the ground. A pilot sits in a ground-based cockpit and flies the aircraft as if he were actually on board. The UAV can also fly completely on its own through the use of preprogrammed computer flight routines. The ARM UAV is fitted with payload instruments developed to make highly accurate measurements of atmospheric flux, radiance, and clouds. Using a UAV is beneficial to climate research in many ways. The UAV puts the instrumentation within the environment being studied and gives scientists direct measurements, in contrast to indirect measurements from satellites orbiting high above Earth. The data collected by UAVs can be used to verify and calibrate measurements and calculated values from satellites, therefore making satellite data more useful and valuable to researchers.

Sisterson, D.L.

2000-02-16T23:59:59.000Z

105

ARM Site Atmospheric State Best Estimates for AIRS Validation  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Atmospheric State Best Estimates Site Atmospheric State Best Estimates for AIRS Validation D. C. Tobin, H. E. Revercomb, W. F. Feltz, R. D. Knuteson, and D. D. Turner Space Science and Engineering Center University of Wisconsin-Madison Madison, Wisconsin B. M. Lesht Environmental Research Division Argonne National Laboratory Argonne, Illinois L. Strow University of Maryland College Park, Maryland C. Barnet Joint Center for Earth Systems Technology Baltimore, Maryland E. Fetzer National Aeronautics Space Administration Jet Propulsion Laboratory Pasadena, California Introduction The atmospheric infrared sounder (AIRS) is a high spectral resolution infrared sounder on the earth observing plan (EOS) Aqua platform. Temperature and water vapor profile retrievals from AIRS are

106

Cloud Effects on Radiative Heating Rate Profiles over Darwin using ARM and A-train Radar/Lidar Observations  

SciTech Connect

Observations of clouds from the ground-based U.S. Department of Energy Atmospheric Radiation Measurement program (ARM) and satellite-based A-train are used to compute cloud radiative forcing profiles over the ARM Darwin, Australia site. Cloud properties are obtained from both radar (the ARM Millimeter Cloud Radar (MMCR) and the CloudSat satellite in the A-train) and lidar (the ARM Micropulse lidar (MPL) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite in the A-train) observations. Cloud microphysical properties are taken from combined radar and lidar retrievals for ice clouds and radar only or lidar only retrievals for liquid clouds. Large, statistically significant differences of up to 1.43 K/day exist between the mean ARM and A-train net cloud radiative forcing profiles. The majority of the difference in cloud radiative forcing profiles is shown to be due to a large difference in the cloud fraction above 12 km. Above this altitude the A-train cloud fraction is significantly larger because more clouds are detected by CALIPSO than by the ground-based MPL. It is shown that the MPL is unable to observe as many high clouds as CALIPSO due to being more frequently attenuated and a poorer sensitivity even in otherwise clear-sky conditions. After accounting for cloud fraction differences and instrument sampling differences due to viewing platform we determined that differences in cloud radiative forcing due to the retrieved ice cloud properties is relatively small. This study demonstrates that A-train observations are better suited for the calculation cloud radiative forcing profiles. In addition, we find that it is necessary to supplement CloudSat with CALIPSO observations to obtain accurate cloud radiative forcing profiles since a large portion of clouds at Darwin are detected by CALIPSO only.

Thorsen, Tyler J.; Fu, Qiang; Comstock, Jennifer M.

2013-06-11T23:59:59.000Z

107

DOE/ER-0441 Atmospheric Radiation Measurement Plan - February 1990  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Atmospheric Radiation Measurement Program Plan ARM Program Plan Forward In 1978 the Department of Energy initiated the Carbon Dioxide Research Program to address climate change from the increasing concentration of carbon dioxide in the atmosphere. Over the years the Program has studied the many facets of the issue, from the carbon cycle, the climate diagnostics, the vegetative effects, to the societal impacts. The Program is presently the Department's principal entry in the U.S. Global Change Research Program coordinated by the Committee on Earth Sciences (CES) of the Office of Science and Technology Policy (OSTP). The recent heightened concern about global warming from an enhanced greenhouse effect has prompted the Department to accelerate the research to improve predictions of climate change. The emphasis is on

108

An Update on Radiative Transfer Model Development at Atmospheric and Environmental Research, Inc.  

NLE Websites -- All DOE Office Websites (Extended Search)

Update on Radiative Transfer Model Development at Update on Radiative Transfer Model Development at Atmospheric and Environmental Research, Inc. J. S. Delamere, S. A. Clough, E. J. Mlawer, Sid-Ahmed Boukabara, K. Cady-Pereira, and M. Shepard Atmospheric and Environmental Research, Inc. Lexington, Maine Introduction Over the last decade, a suite of radiative transfer models has been developed at Atmospheric and Environmental Research, Inc. (AER) with support from the Atmospheric and Radiation Measurement (ARM) Program. These models span the full spectral regime from the microwave to the ultraviolet, and range from monochromatic to band calculations. Each model combines the latest spectroscopic advancements with radiative transfer algorithms to efficiently compute radiances, fluxes, and cooling

109

DEVELOPMENT OF IMPROVED TECHNIQUES FOR SATELLITE REMOTE SENSING OF CLOUDS AND RADIATION USING ARM DATA, FINAL REPORT  

SciTech Connect

During the period, March 1997 – February 2006, the Principal Investigator and his research team co-authored 47 peer-reviewed papers and presented, at least, 138 papers at conferences, meetings, and workshops that were supported either in whole or in part by this agreement. We developed a state-of-the-art satellite cloud processing system that generates cloud properties over the Atmospheric Radiation (ARM) surface sites and surrounding domains in near-real time and outputs the results on the world wide web in image and digital formats. When the products are quality controlled, they are sent to the ARM archive for further dissemination. These products and raw satellite images can be accessed at http://cloudsgate2.larc.nasa.gov/cgi-bin/site/showdoc?docid=4&cmd=field-experiment-homepage&exp=ARM and are used by many in the ARM science community. The algorithms used in this system to generate cloud properties were validated and improved by the research conducted under this agreement. The team supported, at least, 11 ARM-related or supported field experiments by providing near-real time satellite imagery, cloud products, model results, and interactive analyses for mission planning, execution, and post-experiment scientific analyses. Comparisons of cloud properties derived from satellite, aircraft, and surface measurements were used to evaluate uncertainties in the cloud properties. Multiple-angle satellite retrievals were used to determine the influence of cloud structural and microphysical properties on the exiting radiation field.

Minnis, Patrick [NASA Langley Research Center, Hampton, VA

2013-06-28T23:59:59.000Z

110

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud and Radiative Properties Derived Over the ARM NSA Domain From AVHRR Cloud and Radiative Properties Derived Over the ARM NSA Domain From AVHRR Data Heck, P.W., Nguyen, L., Smith, W. L., Jr., Ayers, J.K., Doelling, D.R., and Spangenberg, D.A., Analytical Services and Materials, Inc.; Minnis, P., and Young, D.F., National Aeronautics and Space Administration-Langley Research Center Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Atmospheric Radiation Measurement (ARM) Program's polar sites on the North Slope of Alaska (NSA) measure time series of various atmospheric, cloud and radiative properties over a few selected areas. Satellite data are needed to provide measurements of similar properties between the sites and to estimate the radiation budget at the top of the atmosphere. Over the other ARM sites in the central United States and the Pacific, geostationary

111

Testing AGCM-Predicted Cloud and Radiation Properties with ARM Data: The Super-Parameterization Approach  

SciTech Connect

The goal of our study is to directly evaluate treatment of clouds and radiation in an atmospheric global climate model (AGCM) using long-term observations from the Atmospheric Radiation Measurement (ARM) program. In this presentation, we will present a comparison of observations from two ARM sites, one in north central Oklahoma and one at Nauru island in the Tropical Western Pacific region, with the model output from corresponding grid points. Traditional parametric approach of diagnosing cloud and radiation properties from large-scale model fields is not well suited for comparison with observed time series at selected locations. A recently emerging approach called super parameterization has shown promise to bridge the gap. Super parameterization consists of a two-dimensional cloud system resolving model (CSRM) embedded into each grid of the NCAR Community Climate System Model thereby computing cloud properties at a scale that is more consistent with observations. Because the approach is computationally expensive only limited simulations have been carried out. Two sets of one year long simulations are considered: one using climatological sea surface temperatures (SST) and another using 1999 SST. Each set includes a run with super-parameterization (SP) as well as an AGCM run with traditional or standard (STD) cloud and radiation treatment. Time series of cloud fraction, precipitation intensity, and downwelling solar radiation flux at the surface are statistically analyzed. Nearly all parameters of frequency distributions of these variables from SP run are shown to be more consistent with observation than those from STD model run. Different temporal and spatial averaging in the simulations and observations imposes limitations on the comparisons and these scale effects will be discussed. Output from the STD run represents statistics for the AGCM grid, which, in our case, is roughly 300 km x 300 km. In contrast, the CSRM domain is 4 km x 256 km and consists of a row of 64 columns, 4 km x 4 km each. One of the benefits of the SP approach is that statistics can be collected for domain-averaged as well as column cloud and radiation properties. The column statistics are representative of scales that are closer to the scales of observations and therefore allow for more direct comparisons.

Ovchinnikov, Mikhail; Ackerman, Thomas P.; Marchand, Roger T.; Khairoutdinov, Marat

2004-01-31T23:59:59.000Z

112

Atmospheres and radiating surfaces of neutron stars  

E-Print Network (OSTI)

The beginning of the 21st century was marked by a breakthrough in the studies of thermal radiation of neutron stars. Observations with modern space telescopes have provided a wealth of valuable information. Being correctly interpreted, this information can elucidate physics of superdense matter in the interiors of these stars. The theory of formation of thermal spectra of neutron stars is based on the physics of plasmas and radiative processes in stellar photospheres. It provides the framework for interpretation of observational data and for extracting neutron-star parameters from these data. This paper presents a review of the current state of the theory of surface layers of neutron stars and radiative processes in these layers, with the main focus on the neutron stars that possess strong magnetic fields. In addition to the conventional deep (semi-infinite) atmospheres, radiative condensed surfaces of neutron stars and "thin" (finite) atmospheres are also considered.

Potekhin, A Y

2014-01-01T23:59:59.000Z

113

ARM - Publications: Science Team Meeting Documents: Data Products...  

NLE Websites -- All DOE Office Websites (Extended Search)

McCoy, Robert Sandia National Laboratories The ARM-Unmanned Aerospace Vehicle (ARM-UAV) program is an airborne complement to the primarily ground-based Atmospheric Radiation...

114

A Climatology of Surface Cloud Radiative Effects at the ARM Tropical Western Pacific Sites  

SciTech Connect

Cloud radiative effects on surface downwelling fluxes are investigated using long-term datasets from the three Atmospheric Radiation Measurement (ARM) sites in the Tropical Western Pacific (TWP) region. The Nauru and Darwin sites show significant variability in sky cover, downwelling radiative fluxes, and surface cloud radiative effect (CRE) due to El Niño and the Australian monsoon, respectively, while the Manus site shows little intra-seasonal or interannual variability. Cloud radar measurement of cloud base and top heights are used to define cloud types so that the effect of cloud type on the surface CRE can be examined. Clouds with low bases contribute 71-75% of the surface shortwave (SW) CRE and 66-74% of the surface longwave (LW) CRE at the three TWP sites, while clouds with mid-level bases contribute 8-9% of the SW CRE and 12-14% of the LW CRE, and clouds with high bases contribute 16-19% of the SW CRE and 15-21% of the LW CRE.

McFarlane, Sally A.; Long, Charles N.; Flaherty, Julia E.

2013-04-01T23:59:59.000Z

115

Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2007  

SciTech Connect

This annual report describes the purpose and structure of the program, and presents key accomplishments in 2007. Notable achievements include: • Successful review of the ACRF as a user facility by the DOE Biological and Environmental Research Advisory Committee. The subcommittee reinforced the importance of the scientific impacts of this facility, and its value for the international research community. • Leadership of the Cloud Land Surface Interaction Campaign. This multi-agency, interdisciplinary field campaign involved enhanced surface instrumentation at the ACRF Southern Great Plains site and, in concert with the Cumulus Humilis Aerosol Processing Study sponsored by the DOE Atmospheric Science Program, coordination of nine aircraft through the ARM Aerial Vehicles Program. • Successful deployment of the ARM Mobile Facility in Germany, including hosting nearly a dozen guest instruments and drawing almost 5000 visitors to the site. • Key advancements in the representation of radiative transfer in weather forecast models from the European Centre for Medium-Range Weather Forecasts. • Development of several new enhanced data sets, ranging from best estimate surface radiation measurements from multiple sensors at all ACRF sites to the extension of time-height cloud occurrence profiles to Niamey, Niger, Africa. • Publication of three research papers in a single issue (February 2007) of the Bulletin of the American Meteorological Society.

LR Roeder

2007-12-01T23:59:59.000Z

116

Design of a differential radiometer for atmospheric radiative flux measurements  

SciTech Connect

The Hemispherical Optimized NEt Radiometer (HONER) is an instrument under development at the Los Alamos National Laboratory for deployment on an unmanned aerospace vehicle as part of the Atmospheric Radiation Measurements (ARM/UAV) program. HONER is a differential radiometer which will measure the difference between the total upwelling and downwelling fluxes and is intended to provide a means of measuring the atmospheric radiative flux divergence. Unlike existing instruments which measure the upwelling and downwelling fluxes separately, HONER will achieve an optical difference by chopping the two fluxes alternately onto a common pyroelectric detector. HONER will provide data resolved into two spectral bands; one covering the solar dominated region from less than 0.4 micrometer to approximately 4.5 micrometers and the other covering the region from approximately 4.5 micrometers to greater than 50 micrometers, dominated by thermal radiation. The means of separating the spectral regions guarantees seamless summation to calculate the total flux. The fields-of-view are near-hemispherical, upward and downward. The instrument can be converted, in flight, from the differential mode to absolute mode, measuring the upwelling and downwelling fluxes separately and simultaneously. The instrument also features continuous calibration from on-board sources. We will describe the design and operation of the sensor head and the on-board reference sources as well as the means of deployment.

LaDelfe, P.C.; Weber, P.G.; Rodriguez, C.W.

1994-11-01T23:59:59.000Z

117

Application of Stochastic Radiative Transfer Theory to the ARM Cloud-Radiative Parameterization Problem  

SciTech Connect

This project had two primary goals: (1) development of stochastic radiative transfer as a parameterization that could be employed in an AGCM environment, and (2) exploration of the stochastic approach as a means for representing shortwave radiative transfer through mixed-phase layer clouds. To achieve these goals, climatology of cloud properties was developed at the ARM CART sites, an analysis of the performance of the stochastic approach was performed, a simple stochastic cloud-radiation parameterization for an AGCM was developed and tested, a statistical description of Arctic mixed phase clouds was developed and the appropriateness of stochastic approach for representing radiative transfer through mixed-phase clouds was assessed. Significant progress has been made in all of these areas and is detailed in the final report.

Dana E. Veron

2012-04-09T23:59:59.000Z

118

ARM - Instrument - wacr  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentswacr govInstrumentswacr Documentation WACR : Handbook WACR : Instrument Mentor Monthly Summary (IMMS) reports WACR : Data Quality Assessment (DQA) reports ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : W-Band (95 GHz) ARM Cloud Radar (WACR) Instrument Categories Cloud Properties Latest version W-band ARM cloud radar Latest version W-band ARM cloud radar General Overview The W-band Atmospheric Radiation Measurement (ARM) Program Cloud Radar (WACR) systems are zenith pointing Doppler radars that probe the extent and composition of clouds at 95.04 GHz. The main purpose of this radar is to determine cloud boundaries (e.g., cloud bottoms and tops). This radar reports estimates for the first three spectra moments for each range gate

119

ARM Climate Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Act Recovery Act Learn about ARM's efforts. The Atmospheric Radiation Measurement (ARM) Climate Research Facility is a U.S. Department of Energy scientific user facility, providing data from strategically located in situ and remote sensing observatories around the world. [ Live Data Displays ] Featured Data 09.19.2013 New ARM Best Estimate Land Product Contains Critical Soil Quantities for Describing Land Properties 09.12.2013 Value-Added Product Estimates Planetary Boundary Layer Height from Radiosondes 08.29.2013 New Data Available for Precipitation Value-Added Product Feature12.30.2013 Pole Position: New Field Campaigns Explore Arctic and Antarctic Atmosphere Pole Position: New Field Campaigns Explore Arctic and Antarctic Atmosphere For the first time, ARM ventures to Antarctica for one of several newly

120

ARM XDC Datastreams  

NLE Websites -- All DOE Office Websites (Extended Search)

StreamsTropical Atmosphere Ocean StreamsTropical Atmosphere Ocean from Buoys Documentation TAO Instrument External Datastream Descriptions ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Tropical Atmosphere Ocean from Buoys (TAO) Information updated on February 3, 2005, 3:19 pm GMT General Data Description These data files contain 2 minute average radiation and 10 minute average meteorology, precipitation, salinity and sea surface temperature data from the seven TAO buoys located on the 165E line (8n, 5n, 2n, 0n, 2s, 5s, 8s) of the TAO Buoy Array. The radiation data were obtained from TAO Array moorings through a collaborative effort between NOAA/PMEL/TAO and DOE/ARM. Data from these buoys are stored in monthly netCDF files that are generated

Note: This page contains sample records for the topic "arm atmospheric radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

ARM - PI Product - Cloud Properties and Radiative Heating Rates for TWP  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsCloud Properties and Radiative Heating Rates for ProductsCloud Properties and Radiative Heating Rates for TWP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Cloud Properties and Radiative Heating Rates for TWP 2002.01.01 - 2012.02.08 Site(s) TWP General Description A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote

122

Land-atmosphere interaction and radiative-convective equilibrium  

E-Print Network (OSTI)

I present work on several topics related to land-atmosphere interaction and radiative-convective equilibrium: the first two research chapters invoke ideas related to land-atmosphere interaction to better understand ...

Cronin, Timothy (Timothy Wallace)

2014-01-01T23:59:59.000Z

123

Surface summertime radiative forcing by shallow cumuli at the Atmospheric Radiation Measurement Southern Great Plains site  

SciTech Connect

Although shallow cumuli are common over large areas of the globe, their impact on the surface radiative forcing has not been carefully evaluated. This study addresses this shortcoming by analyzing data from days with shallow cumuli collected over eight summers (2000-2007) at the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Climate Research Facility (collectively ACRF) Southern Great Plains site. During periods with clouds, the average shortwave and longwave radiative forcings are 45.5 W m-2 and +11.6 W m-2, respectively. The forcing has been defined so that a negative (positive) forcing indicates a surface cooling (warming). On average, the shortwave forcing is negative, however, instances with positive shortwave forcing are observed approximately 20% of the time. These positive values of shortwave forcing are associated with three-dimensional radiative effects of the clouds. The three-dimensional effects are shown to be largest for intermediate cloud amounts. The magnitude of the three-dimensional effects decreased with averaging time, but it is not negligibly small even for large averaging times as long as four hours.

Berg, Larry K.; Kassianov, Evgueni I.; Long, Charles N.; Mills Jr., David L.

2011-01-08T23:59:59.000Z

124

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

The ARM Shipboard Oceanographic and Atmospheric Radiation (SOAR) Program: A Review of Instrumentation and Results to Date Reynolds, R.M. (a), MIller, M.A. (a), Bartholomew, M.J....

125

ARM - Field Campaign - Nauru99 Campaign  

NLE Websites -- All DOE Office Websites (Extended Search)

Lead Scientist : Chris Fairall Data Availability Data Policy for Nauru99 The Atmospheric Radiation Measurement (ARM) program, funded by the U.S. Department of Energy (DOE) of the...

126

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Instrumentation for the AMR-UAV Payload McCoy, R.F., Tooman, T.T., and Bolton, W.B., Sandia National Laboratories Thirteenth Atmospheric Radiation Measurement (ARM) Science Team...

127

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of Broadband Surface Flux Closure Under Cloudy Skies at Nauru McFarlane, S.A. and Evans, K.F., University of Colorado Twelfth Atmospheric Radiation Measurement (ARM)...

128

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of MODIS Cloud Mask Products (MOD35) with MMCR Data Zhang, Q. and Mace, G.G., University of Utah Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting...

129

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Development Li,Z.(a), Cribb, M.(a), and Trishchenko, A.P.(b), University of Maryland (a), Canada Centre for Remote Sensing (b) Twelfth Atmospheric Radiation Measurement (ARM)...

130

ARM TR-008  

NLE Websites -- All DOE Office Websites (Extended Search)

09 09 Continuous Profiles of Cloud Microphysical Properties for the Fixed Atmospheric Radiation Measurement Sites June 2006 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research June 2006, ARM-0609 Contents 1 Background ............................................................................................................................... 1 2 Scientific Relevance.................................................................................................................. 1 3 Results....................................................................................................................................... 1 4 Contacts.....................................................................................................................................

131

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

The Use of the ARM WSI to Estimate the Atmospheric Optical Depth at Night The Use of the ARM WSI to Estimate the Atmospheric Optical Depth at Night Musat, I.C. and Ellingson, R.G., University of Maryland Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The shortwave extinction by atmospheric constituents can be studied during the night, with the light of stars as a radiation source, using the ARM Whole Sky Imager (WSI). The digital images obtained with the WSI are processed to infer the star radiance at the TOA and the broadband atmospheric extinction coefficient. Subsequently, the broadband extinction is calculated from an atmosphere model, and the goodness of fit of the model with observations is assessed taking into account the known profiles of temperature, pressure, columnar mixing ratios of the gases, diverse

132

ARM - Radiative Heating in Underexplored Bands Campaign-II (RHUBC...  

NLE Websites -- All DOE Office Websites (Extended Search)

Eli Mlawer, Principal Investigator Dave Turner, Principal Investigator Radiative Heating in Underexplored Bands Campaign-II (RHUBC-II) At an elevation of more than 5000...

133

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

6, 2012 [Facility News] 6, 2012 [Facility News] News Tips from 2012 EGU General Assembly Bookmark and Share The ARM Facility is attending the 2012 European Geophysical Union General Assembly at the Austria Center in Vienna for the first time. The ARM Facility is attending the 2012 European Geophysical Union General Assembly at the Austria Center in Vienna for the first time. VIENNA - The U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility is the world's most comprehensive outdoor laboratory and data archive for research related to atmospheric processes that affect Earth's climate. At the European Geophysical Union (EGU) General Assembly 2012 in Vienna, find out how scientists use the ARM Facility to study the interactions between clouds,

134

ARM - VAP Process - mwrret  

NLE Websites -- All DOE Office Websites (Extended Search)

Productsmwrret Productsmwrret Documentation & Plots Technical Report Data Management Facility Plots (Quick Looks) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP : MWR Retrievals (MWRRET) Instrument Categories Cloud Properties, Atmospheric Profiling, Derived Quantities and Models Image - sample data plot Image - sample data plot There are 2-channel (23.8 and 31.4GHz) microwave radiometers (MWRs) deployed at each ARM Climate Research Facility site. The observed brightness temperatures from these MWRs can be inverted to retrieve precipitable water vapor (PWV) and cloud liquid water path (LWP), both of which are critical variables to understanding radiative transfer in the atmosphere and clouds. The ARM Facility routinely has provided retrieved

135

ARM - Education  

NLE Websites -- All DOE Office Websites (Extended Search)

govEducation govEducation Education Homeroom-Education and Outreach Information Like a rock that slowly wears away beneath the pressure of a waterfall, our climate is almost imperceptibly changing. Glaciers are getting smaller, droughts are lasting longer, and "extreme weather events" like fires, floods, and tornadoes are occurring with greater frequency. Why? To try and answer that question, scientists use data from the Atmospheric Radiation Measurement (ARM) Climate Research Facility. Instruments at the ARM sites around the world collect data about clouds, precipitation, solar energy, and tiny particles in the air called aerosols. Scientists use that data to study the Earth's climate and develop better ways of predicting what the climate will be like in the future.

136

ARM - Events Article  

NLE Websites -- All DOE Office Websites (Extended Search)

, 2007 [Events] , 2007 [Events] Climate Scientists Cool Their Heels at Science Team Meeting in Monterey Bookmark and Share Nearly 300 participants from countries as far away as Japan, Australia, and Finland attended the 2007 ARM Science Team Meeting. Nearly 300 participants from countries as far away as Japan, Australia, and Finland attended the 2007 ARM Science Team Meeting. A spring mix of sunny skies and stormy weather provided an appropriate setting for the Seventeenth Atmospheric Radiation Measurement (ARM) Program Science Team Meeting, held March 26 through March 30 in Monterey, California. Held annually since 1990, this meeting brings together ARM scientists, ARM infrastructure staff, and user facility researchers to review program progress and plan future activities.

137

Climate Science for a Sustainable Energy Future Atmospheric Radiation Measurement Best Estimate (CSSEFARMBE)  

SciTech Connect

The Climate Science for a Sustainable Energy Future (CSSEF) project is working to improve the representation of the hydrological cycle in global climate models, critical information necessary for decision-makers to respond appropriately to predictions of future climate. In order to accomplish this objective, CSSEF is building testbeds to implement uncertainty quantification (UQ) techniques to objectively calibrate and diagnose climate model parameterizations and predictions with respect to local, process-scale observations. In order to quantify the agreement between models and observations accurately, uncertainty estimates on these observations are needed. The DOE Atmospheric Radiation Measurement (ARM) program takes atmospheric and climate related measurements at three permanent locations worldwide. The ARM VAP called the ARM Best Estimate (ARMBE) [Xie et al., 2010] collects a subset of ARM observations, performs quality control checks, averages them to one hour temporal resolution, and puts them in a standard format for ease of use by climate modelers. ARMBE has been widely used by the climate modeling community as a summary product of many of the ARM observations. However, the ARMBE product does not include uncertainty estimates on the data values. Thus, to meet the objectives of the CSSEF project and enable better use of this data with UQ techniques, we created the CSSEFARMBE data set. Only a subset of the variables contained in ARMBE is included in CSSEFARMBE. Currently only surface meteorological observations are included, though this may be expanded to include other variables in the future. The CSSEFARMBE VAP is produced for all extended facilities at the ARM Southern Great Plains (SGP) site that contain surface meteorological equipment. This extension of the ARMBE data set to multiple facilities at SGP allows for better comparison between model grid boxes and the ARM point observations. In the future, CSSEFARMBE may also be created for other ARM sites. As each site has slightly different instrumentation, this will require additional development to understand the uncertainty characterization associated with instrumentation at those sites. The uncertainty assignment process is implemented into the ARM program’s new Integrated Software Development Environment (ISDE) so that many of the key steps can be used in the future to screen data based on ARM Data Quality Reports (DQRs), propagate uncertainties when transforming data from one time scale into another, and convert names and units into NetCDF Climate and Forecast (CF) standards. These processes are described in more detail in the following sections.

Riihimaki, Laura D.; Gaustad, Krista L.; McFarlane, Sally A.

2012-09-28T23:59:59.000Z

138

ARM - Field Campaign - Azores: Above-Cloud Radiation Budget near Graciosa  

NLE Websites -- All DOE Office Websites (Extended Search)

Above-Cloud Radiation Budget near Graciosa Island Above-Cloud Radiation Budget near Graciosa Island Related Campaigns Azores: Clouds, Aerosol and Precipitation in the Marine Boundary Layer (CAP-MBL) 2009.05.01, Wood, AMF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Azores: Above-Cloud Radiation Budget near Graciosa Island 2010.04.15 - 2010.09.15 Lead Scientist : Mark Miller For data sets, see below. Description The scientific focus is to measure the cloud-top downwelling radiative fluxes in coincidence with trace gas measurements made at Pico Observatory, Pico Island Azores. To enhance measurement capabilities in the vicinity of Graciosa and to take advantage of a unique opportunity to measure cloud transmittance in the marine, instruments associated with the ARM Ancillary

139

A Study of Longwave Radiation Codes for Climate Studies: Validation with ARM Observations and Tests in General Circulation Models  

SciTech Connect

One specific goal of the Atmospheric Radiation Measurements (ARM) program is to improve the treatment of radiative transfer in General Circulation Models (GCMs) under clear-sky, general overcast and broken cloud conditions. Our project was geared to contribute to this goal by attacking major problems associated with one of the dominant radiation components of the problem --longwave radiation. The primary long-term project objectives were to: (1) develop an optimum longwave radiation model for use in GCMs that has been calibrated with state-of-the-art observations for clear and cloudy conditions, and (2) determine how the longwave radiative forcing with an improved algorithm contributes relatively in a GCM when compared to shortwave radiative forcing, sensible heating, thermal advection and convection. The approach has been to build upon existing models in an iterative, predictive fashion. We focused on comparing calculations from a set of models with operationally observed data for clear, overcast and broken cloud conditions. The differences found through the comparisons and physical insights have been used to develop new models, most of which have been tested with new data. Our initial GCM studies used existing GCMs to study the climate model-radiation sensitivity problem. Although this portion of our initial plans was curtailed midway through the project, we anticipate that the eventual outcome of this approach will provide both a better longwave radiative forcing algorithm and from our better understanding of how longwave radiative forcing influences the model equilibrium climate, how improvements in climate prediction using this algorithm can be achieved.

Robert G. Ellingson

2004-09-28T23:59:59.000Z

140

ARM - Field Campaign - Macquarie Island Cloud and Radiation Experiment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud and Radiation Experiment (MICRE) 2016.03.01 - 2018.03.31 Lead Scientist : Roger Marchand Abstract Clouds over the Southern Ocean are poorly represented in present day...

Note: This page contains sample records for the topic "arm atmospheric radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

ARM - ARM Organization  

NLE Websites -- All DOE Office Websites (Extended Search)

ARMARM Organization ARMARM Organization Laboratory Partners Nine DOE national laboratories share the responsibility of managing and operating the ARM Climate Research Facility. ARM Group Links Science Board SISC Charter Data Archive Data Management Facility Data Quality Program Engineering Support External Data Center ARM Organization The ARM Climate Research Facility operates field research sites around the world for global change research. Three primary locations-Southern Great Plains, Tropical Western Pacific, North Slope of Alaska-plus aircraft and the portable ARM Mobile Facilities-are heavily instrumented to collect massive amounts of atmospheric measurements needed to create data files. Scientists use these data to study the effects and interactions of sunlight, clouds, and radiant energy, as well as interdisciplinary research

142

ARM - Publications: Science Team Meeting Documents: Clouds and radiation in  

NLE Websites -- All DOE Office Websites (Extended Search)

Clouds and radiation in the Arctic coastal system - effects of local Clouds and radiation in the Arctic coastal system - effects of local heterogeneity Key, Erica University of Miami, RSMAS Minnett, Peter University of Miami Improving our comprehension of the influence of clouds in the polar regions is important as a prerequisite to refining our understanding of the earth's climate system. Polar clouds modulate the radiative heat loss to space in the regions that serve as the heat sink of the climate system. The local feedbacks between cloud formation and changing surface albedo that result from the ice melting and refreezing cycle, and the small space scales over which significant gradients occur, render this a very complex system to study. Difficulties in making appropriate measurements in the harsh Arctic environment lead to sparse, if not absent information on the

143

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Using ARM Measurements to Evaluate and Improve the Turbulent Boundary-Layer Using ARM Measurements to Evaluate and Improve the Turbulent Boundary-Layer Parameterization in the CCM Zhang, M.H. (a) and Yu, R.C. (a), State University of New York(a) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Three-Dimensional advective tendencies at the Atmospheric Radiation Measurement (ARM) Program Southern Great Plains (SGP) site, together with diurnal variation of the clear-sky boundary layer atmosphere temperature and moisture, are used to study the down-gradient and "non-local" turbulent transport of heat and moisture in the atmospheric boundary layer. The observational results are then used to evaluate the boundary layer parameterization in the National Center for Atmospheric Research (NCAR) CCM3. It is found that the down-gradient turbulent transport in the CCM3 is

144

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Impact of an Improved Longwave Radiation Model, RRTM, on the Energy Budget Impact of an Improved Longwave Radiation Model, RRTM, on the Energy Budget and Thermodynamic Properties of the NCAR Climate Model, CCM3 Iacono, M.J., Mlawer, E.J., and Clough, S.A., Atmospheric and Environmental Research, Inc. Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting The effect of introducing a new longwave radiation parameterization, Rapid Radiative Transfer Model (RRTM), on the energy budget and thermodynamic properties of Version 3 of the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM3) will be presented. RRTM is a rapid and accurate k-distribution radiative transfer model that has been developed for the Atmospheric Radiation Measurement (ARM) Program. Among the important features of the RRTM are its connection to radiation

145

Posters Objective Analysis Schemes to Monitor Atmospheric Radiation Measurement Data in Near Real-Time  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 Posters Objective Analysis Schemes to Monitor Atmospheric Radiation Measurement Data in Near Real-Time M. Splitt University of Oklahoma Norman, Oklahoma Recent work in this area by Charles Wade (1987) lays out the groundwork for monitoring data quality for projects with large networks of instruments such as the Atmospheric Radiation Measurement (ARM) Program. Wade generated objectively analyzed fields of meteorological variables (temperature, pressure, humidity, and wind) and then compared the objectively analyzed value at the sensor location with the value produced by the sensor. Wade used a Barne's objective analysis scheme to produce objective data values for a given meteorological variable (q) in two- dimensional space. The objectively analyzed value should

146

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of Terra Aerosol and Water Vapor Measurements Using ARM SGP Data Evaluation of Terra Aerosol and Water Vapor Measurements Using ARM SGP Data Ferrare, R.A.(a), Brasseur, L.H.(b), Clayton, M.B.(b), Turner, D.D.(c), Remer, L.(d), and Gao, B.C.(e), NASA Langley (a), SAIC (b), Pacific Northwest National Laboratory (c), NASA Goddard (d), Naval Research Laboratory (e) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Measurements from the Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site are used to evaluate atmospheric measurements derived from NASA's Moderate-Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR) sensors on board the Terra satellite. MODIS and MISR AOT retrievals are evaluated using ARM SGP Cimel Sun photometer and MultiFilter Rotating

147

An Instrumentation Complex for Atmospheric Radiation Measurements in Siberia  

NLE Websites -- All DOE Office Websites (Extended Search)

Instrumentation Complex for Atmospheric Radiation Instrumentation Complex for Atmospheric Radiation Measurements in Siberia S. M. Sakerin, F. V. Dorofeev, D. M. Kabanov, V. S. Kozlov, M. V. Panchenko, Yu. A. Pkhalagov, V. V. Polkin, V. P. Shmargunov, S. A. Terpugova, S. A. Turchinovich, and V. N. Uzhegov Institute of Atmospheric Optics Tomsk, Russia Introduction The instrumentation complex is described, which has been prepared for radiative experiments in the region of Tomsk (West Siberia). The complex consists of three groups of devices to measure (a) the characteristics of the total downward radiation; (b) the most variable components of the atmospheric transparency directly affecting the income of radiation (aerosol optical depth [AOD], total content of water vapor, ozone, etc.); and (c) aerosol and meteorological parameters of the near-ground layer of the

148

ARM - Instrument - prp  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentsprp govInstrumentsprp Documentation PRP : Instrument Mentor Monthly Summary (IMMS) reports PRP : Data Quality Assessment (DQA) reports ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Portable Radiation Package (PRP) Instrument Categories Radiometric The Portable Radiation Package (PRP) is an instrument suite to collect atmospheric radiation measurements on a moving platform. The instrument suite consists of a Precision Spectral Pyranometer (PSP), Precision Infrared Radiometer (PIR), and continuously rotating shadowband radiometer. Output Datastreams 1sprprad : Portable Radiation Package: Broadband Radiometers, 1 second resolution 6sprpfrsr : Portable Radiation Package: Fast Rotating Shadowband

149

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Improved Retrieval Of Cloud Liquid Water Path For ARM Microwave Improved Retrieval Of Cloud Liquid Water Path For ARM Microwave Radiometers Liljegren, J.C., Ames Laboratory Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Atmospheric Radiation Measurement (ARM) Program has deployed dual-frequency microwave water radiometers (MWRs) at its Cloud and Radiation Testbed (CART) sites in the U. S. Southern Great Plains (SGP), the Tropical Western Pacific (TWP), and the North Slope of Alaska/Adjacent Arctic Ocean (NSA/AAO). Although the integrated water vapor amount provided by these instruments has enjoyed increasing application, the primary purpose of these instruments has been to provide measurements of the integrated liquid water path in clouds. The liquid water path measurements have been widely used by ARM investigators to test cloud life cycle

150

ARM Climate Research Facility Annual Report 2005  

SciTech Connect

Through the ARM Program, the DOE funded the development of several highly instrumented ground stations for studying cloud formation processes and their influence on radiative transfer, and for measuring other parameters that determine the radiative properties of the atmosphere. This scientific infrastructure, and resultant data archive, is a valuable national and international asset for advancing scientific knowledge of Earth systems. In fiscal year (FY) 2003, the DOE designated ARM sites as a national scientific user facility: the ARM Climate Research (ACRF). The ACRF has enormous potential to contribute to a wide range interdisciplinary science in areas such as meteorology, atmospheric aerosols, hydrology, biogeochemical cycling, and satellite validation, to name only a few.

J. Voyles

2005-12-31T23:59:59.000Z

151

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Three-Dimensional Radiative Transfer Computations to Complement the ARM Three-Dimensional Radiative Transfer Computations to Complement the ARM Broadband Heating Rate Profile (BBHRP) Value Added Product (VAP) OHirok, W.(a), Gautier, C.(a), and Miller, M.A.(b), University of California, Santa Barbara (a), Brookhaven National Laboratory (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting A core programmatic goal of ARM is to understand how cloud variability is associated with radiative flux variability. A major effort among the ARM working groups is now underway to produce the Broadband Heating Rate Profile (BBHRP) Value Added Product (VAP). The heating rate profiles are derived from Rapid Radiative Transfer Models (RRTMs) that use best estimates of cloud characteristics, gaseous profiles, aerosols and surface

152

ARM - Campaign Instrument - aerosmassspec  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentsaerosmassspec govInstrumentsaerosmassspec Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Aerosol Mass Spectrometer (AEROSMASSSPEC) Instrument Categories Aerosols, Atmospheric Carbon, Airborne Observations Campaigns 2006 MAX-Mex-Megacity Aerosol eXperiment - Mexico City [ Download Data ] Off Site Campaign : various, including non-ARM sites, 2006.03.03 - 2006.03.28 2007 Cumulus Humilis Aerosol Process Study (CHAPS) [ Download Data ] Off Site Campaign : various, including non-ARM sites, 2007.06.04 - 2007.06.25 2008 VAMOS Ocean-Cloud-Atmos-Land Study (VOCALS) [ Download Data ] Off Site Campaign : various, including non-ARM sites, 2008.10.14 - 2008.11.13 Carbonaceous Aerosol and Radiative Effects Study (CARES) [ Download Data ]

153

ARM - Journal Articles 2003  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Publications Journal Articles Conference Documents Program Documents Technical Reports Publications Database Public Information Materials Image Library Videos Publication Resources Submit a Publication Publishing Procedures ARM Style Guide (PDF, 448KB) Acronyms Glossary Logos Contacts RSS for Publications Journal Search [ Advanced Search ] Publication Years 2013 149 2012 163 2011 185 2010 197 2009 213 2008 174 2007 150 2006 213 2005 139 2004 141 2003 187 2002 205 2001 207 2000 232 1999 136 1998 172 1997 103 1996 84 1995 124 1994 65 1993 51 1992 47 1991 25 1990 12 1986 1 Journal Articles : 2003 Author Article Title Journal Funded By Dong Arctic stratus cloud properties and radiative forcing at the ARM NSA site (Citation) J. Climate ARM Zurovac-Jevtic Development and test of a cirrus parameterization scheme using NCAR CCM3 (Citation) Journal of the Atmospheric Sciences ARM

154

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparison of Aerosol Properties Within and Above the Atmospheric Boundary Comparison of Aerosol Properties Within and Above the Atmospheric Boundary Layer at the ARM SGP Site Delle Monache, L.(a), Perry, K.D.(a), and Cederwall, R.T.(b), San Jose State University (a), Lawrence Livermore National Laboratory (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The objective of this work is to determine under what conditions, if any, measurements of aerosol properties made at the surface at the ARM SGP Central Facility are representative of aerosol properties within the column of air above the surface. This is important in assessing the value of data collected at the ARM Aerosol Observation System (AOS) for developing and diagnosing cloud and radiation parameterizations involving aerosol properties within and above the atmospheric boundary layer (ABL). The study

155

Observations of the impact of a major Saharan dust storm on the atmospheric radiation balance  

SciTech Connect

Saharan dust storms transport large quantities of material across the African continent and beyond, causing widespread disruption and hazards to health. The dust may be deposited into the Atlantic Ocean, where it provides an important source of nutrients1, and may be carried as far as the West Indies. Such events may also influence the growth of Atlantic tropical cyclones. Satellite observations have enabled estimates to be made of the effect of the dust on the radiation budget seen from space, but only limited in situ observations have hitherto been made at the surface. Here we present the first simultaneous and continuous observations of the effect of a major dust storm in March 2006 on the radiation budget both at the top of the atmosphere (TOA) and at the surface. We combine data from the Geostationary Earth Radiation Budget (GERB) broadband radiometer and the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) on the Meteosat-8 weather satellite with remote sensing and in situ measurements from a new Mobile Facility located in Niamey, Niger (13{sup o} 29'N, 2{sup o} 10'E), operated by the US Atmospheric Radiation Measurement (ARM) program. We show that the dust produced major perturbations to the radiation budget seen from space and from the surface. By combining the two datasets, we estimate the impact on the radiation budget of the atmosphere itself. Using independent data from the Mobile Facility, we derive the optical properties of the dust and input these and other information into radiation codes to simulate the radiative fluxes. Comparisons with the observed fluxes provides a stringent test of the ability of the codes to represent the radiative properties of this important component of the global aerosol burden.

Slingo, A.; Ackerman, Thomas P.; Allan, R. P.; Kassianov, Evgueni I.; McFarlane, Sally A.; Robinson, G. J.; Barnard, James C.; Miller, Mark; Harries, J. E.; Russell, J. E.; Dewitte, S.

2006-12-01T23:59:59.000Z

156

ARM - Publications: Science Team Meeting Documents: Using ARM data to  

NLE Websites -- All DOE Office Websites (Extended Search)

Using ARM data to evaluate the dependence of surface downward longwave Using ARM data to evaluate the dependence of surface downward longwave radiation on near-surface temperature and water vapour path, in both ARM observations and the Met Office NWP model. Henderson, Peter Environmental Systems Science Centre Slingo, Anthony Environmental Systems Science Centre In this work, we continue our comparisons between ARM data and simulations from the UK Met Office Numerical Weather Prediction (NWP) model. The present analysis focuses on the variables that control the downwelling longwave radiation at the surface, in particular the column water vapour and near-surface temperature. Water vapour is both a source and a sink of latent heat, is an active modulator of atmospheric radiative transfer and therefore influences both the general circulation and the global energy

157

A U. S. Department of Energy User Facility Atmospheric Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Program DOESC-ARMP-07-003 Science and Research Data Products Climate Data for the World A primary objective of the U.S. Department of Energy's Atmospheric Radiation...

158

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

20, 2008 Facility News ARM Scientists Lead International Radiation Symposium in Brazil Bookmark and Share The ARM Science Team showed up in force at the 2008 International...

159

ARM - Instrument - aos  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentsaos govInstrumentsaos Documentation AOS : Handbook AOS : Instrument Mentor Monthly Summary (IMMS) reports AOS : Data Quality Assessment (DQA) reports ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Aerosol Observing System (AOS) Beneficiary of Recovery Act funding. Instrument Categories Aerosols General Overview The aerosol observing system (AOS) is the primary Atmospheric Radiation Measurement (ARM) platform for in situ aerosol measurements at the surface. The principal measurements are those of the aerosol absorption and scattering coefficients as a function of the particle size and radiation wavelength. Additional measurements include those of the particle number concentration, size distribution, hygroscopic growth, and inorganic

160

Thermal Infrared Radiation and Carbon Dioxide in the Atmosphere  

E-Print Network (OSTI)

dioxide Water vapor #12;Atmospheric composition (parts per million by volume) · Nitrogen (N2) 780Thermal Infrared Radiation and Carbon Dioxide in the Atmosphere Bill Satzer 3M Company #12;Outline,840 · Oxygen (O2) 209,460 · Argon (Ar) 9340 · Carbon dioxide (CO2) 394 · Methane (CH4) 1.79 · Ozone (O3) 0

Olver, Peter

Note: This page contains sample records for the topic "arm atmospheric radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

ARM - SGP Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Science SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts SGP Science Overall Objectives The primary goal of the Southern Great Plains (SGP) site is to produce data adequate to support significant research addressing the objectives of the overall ARM Climate Research Facility. These overall objectives, as paraphrased from the ARM Program Plan (DOE 1990), are the following: to describe the radiative energy flux profile of the clear and cloudy atmosphere to understand the processes determining the flux profile

162

ARM - Instrument - sirs  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentssirs govInstrumentssirs Documentation SIRS : Handbook SIRS : Instrument Mentor Monthly Summary (IMMS) reports SIRS : Data Quality Assessment (DQA) reports ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Solar and Infrared Radiation Station (SIRS) Instrument Categories Radiometric Picture of the Solar Infrared Radiation Station (SIRS) Picture of the Solar Infrared Radiation Station (SIRS) General Overview The Solar Infrared Radiation Station (SIRS) provides continuous measurements of broadband shortwave (solar) and longwave (atmospheric or infrared) irradiances for downwelling and upwelling components. These 1-minute data are collected from a network of stations to help determine

163

ARM - History and Status of the ARM Program  

NLE Websites -- All DOE Office Websites (Extended Search)

ARM has made a significant contribution in improving climate prediction models: radiative heat transfer, radiation absorption, and cirrus cloud properties. ARM scientists use data...

164

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2010 [Facility News] 8, 2010 [Facility News] Europeans Keen to Hear About Effects of Dust Using Data from Africa Bookmark and Share In 2006, the ARM Mobile Facility joined the AMMA project to obtain data for scientists to study the impact that airborne Saharan dust has on incoming solar radiation. This photo shows the sun setting through a dusty atmosphere near Niamey, Niger, where the mobile facility was deployed for one year. In 2006, the ARM Mobile Facility joined the AMMA project to obtain data for scientists to study the impact that airborne Saharan dust has on incoming solar radiation. This photo shows the sun setting through a dusty atmosphere near Niamey, Niger, where the mobile facility was deployed for one year. Researcher Xiaohong Liu from Pacific Northwest National Laboratory was

165

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

31, 2007 [Facility News] 31, 2007 [Facility News] Long-term Radiosonde Validation Campaign Concludes Bookmark and Share In 2007, sonde launches at ARM sites supported validation of the IASI instrument onboard the Metop-A satellite. As the satellite scans a "swath" of the Earth below it, the IASI scanning mirror directs emitted infrared radiation into the uncovered interferometer to derive atmospheric temperature and humidity profiles. (Image source: European Space Agency) In 2007, sonde launches at ARM sites supported validation of the IASI instrument onboard the Metop-A satellite. As the satellite scans a "swath" of the Earth below it, the IASI scanning mirror directs emitted infrared radiation into the uncovered interferometer to derive atmospheric temperature and humidity profiles. (Image source: European Space Agency)

166

Evaluation of the Multi-scale Modeling Framework Using Data from the Atmospheric Radiation Measurement Program  

SciTech Connect

One of the goals of the Atmospheric Radiation Measurement (ARM) program is to provide long-term observations for evaluating and improving cloud and radiation treatment in global climate models. Unfortunately, the traditional parametric approach of diagnosing cloud and radiation properties for gridcells that are tens to hundreds kilometers across from large-scale model fields is not well suited for comparison with time series of ground based observations at selected locations. A recently emerging approach called a multi-scale modeling framework (MMF) has shown promise to bridge the scale gap. The MMF consists of a two-dimensional or small three-dimensional cloud resolving model (CRM) embedded into each grid column of the Community Atmospheric Model (CAM), thereby computing cloud properties at a scale that is more consistent with observations. We present a comparison of data from two ARM sites, one at the Southern Great Plains (SGP) in Oklahoma and one at Nauru Island in the Tropical Western Pacific (TWP) region, with output from both the CAM and MMF. Two sets of one year long simulations are considered: one using climatological sea surface temperatures (SST) and another using 1999 SST. Each set includes a run with the MMF as well as the CAM run with traditional or standard cloud and radiation treatment. Time series of cloud fraction, precipitation intensity, and downwelling solar radiation flux at the surface are statistically analyzed. For the TWP site, nearly all parameters of frequency distributions of these variables from the MMF run are shown to be more consistent with observation than those from the CAM run. This change is attributed to the improved representation of convective clouds in the MMF compared to the conventional climate model. For the SGP, the MMF shows little to no improvement in predicting the same quantities. Possible causes of this lack of improvement are discussed.

Ovtchinnikov, Mikhail; Ackerman, Thomas P.; Marchand, Roger T.; Khairoutdinov, Marat

2006-05-01T23:59:59.000Z

167

Evaluation of the Multi-Scale Modeling Framework using Data from the Atmospheric Radiation Measurement Program  

SciTech Connect

One of the goals of the Atmospheric Radiation Measurement (ARM) program was to provide long-term observations for evaluation of cloud and radiation treatment in global climate models. Unfortunately, traditional parametric approach of diagnosing cloud and radiation properties from large-scale model fields is not well suited for comparison with observed time series at selected locations. A recently emerging approach called the multi-scale modeling framework (MMF) has shown promise to bridge the gap. MMF consists of a two-dimensional cloud system resolving model (CSRM) embedded into each CAM grid column of the Community Atmospheric Model (CAM), thereby computing cloud properties at a scale that is more consistent with observations. Because the approach is computationally expensive only limited simulations have been carried out. In this presentation, we will present a comparison of data from two ARM sites, one at the Southern Great Plains (SGP) in Oklahoma and one at Nauru island in the Tropical Western Pacific (TWP) region, with output from both CAM and MMF. Two sets of one year long simulations are considered: one using climatological sea surface temperatures (SST) and another using 1999 SST. Each set includes a run with MMF as well as CAM run with traditional or standard cloud and radiation treatment. Time series of cloud fraction, precipitation intensity, and downwelling solar radiation flux at the surface are statistically analyzed. For the TWP site, nearly all parameters of frequency distributions of these variables from MMF run are shown to be more consistent with observation than those from CAM run. For the SGP, the improvements are marginal.

Ovchinnikov, Mikhail; Ackerman, Thomas P.; Marchand, Roger T.; Khairoutdinov, Marat

2004-07-01T23:59:59.000Z

168

Top-of-atmosphere radiative cooling with white roofs: experimental  

NLE Websites -- All DOE Office Websites (Extended Search)

Top-of-atmosphere radiative cooling with white roofs: experimental Top-of-atmosphere radiative cooling with white roofs: experimental verification and model-based evaluation Title Top-of-atmosphere radiative cooling with white roofs: experimental verification and model-based evaluation Publication Type Journal Article Year of Publication 2012 Authors Salamanca, Francisco, Shaheen R. Tonse, Surabi Menon, Vishal Garg, Krishna P. Singh, Manish Naja, and Marc L. Fischer Journal Environmental Research Letters Volume 7 Issue 4 Abstract We evaluate differences in clear-sky upwelling shortwave radiation reaching the top of the atmosphere in response to increasing the albedo of roof surfaces in an area of India with moderately high aerosol loading. Treated (painted white) and untreated (unpainted) roofs on two buildings in northeast India were analyzed on five cloudless days using radiometric imagery from the IKONOS satellite. Comparison of a radiative transfer model (RRTMG) and radiometric satellite observations shows good agreement (R2 = 0.927). Results show a mean increase of ~50 W m-2 outgoing at the top of the atmosphere for each 0.1 increase of the albedo at the time of the observations and a strong dependence on atmospheric transmissivity.

169

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Physical Retrieval of PWV and CLW with MonoRTM Using ARM MWR Data Physical Retrieval of PWV and CLW with MonoRTM Using ARM MWR Data Clough, S.A.(a), Cady-Pereira, K.(a), Boukabara, S.(a), and Liljegren, J.C.(b), Atmospheric and Environmental Research, Inc. (a), Argonne National Laboratory (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The newly developed radiative transfer model, MonoRTM, has been utilized as the forward model in a physical retrieval method to obtain Precipitable Water Vapor (PWV) and Cloud Liquid Water (CLW) using ARM MWR data. The dependence of the forward model on water vapor and oxygen has been carefully analyzed in the context of the ARM dataset covering a three-year period from 1996 to 1998. A detailed error analysis for the forward model brightness temperatures at 23.8 GHz and 31.4 GHz has been has been

170

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

January 15, 2006 [Facility News] January 15, 2006 [Facility News] ARM Mobile Facility Begins Year-Long Deployment in Africa Bookmark and Share Beginning on January 9, the ARM Mobile Facility began officially collecting atmospheric data from a location at the airport in Niamey, Niger, Africa. As part of the RADAGAST field campaign, the AMF will measure the effects of absorbing aerosols from desert dust in the dry season, and the effects of deep convective clouds and associated moisture loadings on the transmission of atmospheric radiation during the summer monsoon. These measurements will be combined with associated satellite data to provide the first well-sampled direct estimates of the energy balance across the atmosphere. This dataset will provide valuable information to an ongoing effort called

171

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of Simulated Clouds in the Community Atmospheric Model (CAM2): Evaluation of Simulated Clouds in the Community Atmospheric Model (CAM2): Over the Globe and at the ARM Site Zhang, M.H.(a) and Lin, W.Y.(a), Stony Brook University Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting We first compare seasonal climatology of the global distribution of ISCCP-type clouds in the NCAR CAM2 with observations from ISCCP. Model deficiencies in simulated clouds are highlighted. Model capability of simulating the observed response of different cloud types to ENSO is also discussed. We then use ARM cloud measurements at the ARM SGP to compare with the CAM cloud statistics at the same site. It is shown that several model deficiencies in the global cloud distribution are also present at the ARM site. Relevance of these model deficiencies to the interpretation of

172

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Initial Cloud Properties Derived from GMS Over the Tropical Western Pacific Initial Cloud Properties Derived from GMS Over the Tropical Western Pacific Doelling, D.R., Ho, S.-P., Smith, W.L., Jr., Analytical Services and Materials, Inc.; Minnis, P., National Aeronautics and Space Administration-Langley Research Center Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Satellite data are needed to provide measurements of the earth-atmosphere shortwave (SW) albedo, outgoing longwave radiation (OLR), and cloud and surface radiative properties for the Atmospheric Radiation Measurement (ARM) Program's Tropical Western Pacific (TWP) domain. Geostationary Meteorological Satellite (GMS) data have been archived since November 1996 and provide the basis for monitoring these essential parameters over the ARM TWP. This paper describes the initial efforts and results of developing

173

ARM TR-008  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 - September 30, 2008 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research July 1 - September 30, 2008, DOE/SC-ARM/P-08-019 Contents 1. Data Availability....................................................................................................................... 1 2. Site Visit Requests, Archive Accounts, and Research Computer Accounts............................. 2 3. Safety ........................................................................................................................................ 4 4. Publications...............................................................................................................................

174

ARM TR-008  

NLE Websites -- All DOE Office Websites (Extended Search)

10 10 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2006 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research April 1 - June 30, 2006, ARM 06-010 Contents 1 Data Availability....................................................................................................................... 1 2 Site Visit Requests, Archive Accounts, and Research Computer Accounts............................. 2 3 Safety ........................................................................................................................................ 3 Tables 1 Operational Statistics for the Fixed ACRF and AMF Sites for the Period April 1 -

175

ARM TR-008  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2006 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research October 1 - December 31, 2006, DOE/SC-ARM/P-07-001 Contents 1. Data Availability....................................................................................................................... 1 2. Site Visit Requests, Archive Accounts, and Research Computer Accounts............................. 2 3. Safety ........................................................................................................................................ 3 Tables Table 1. Operational Statistics for the Fixed ACRF and AMF Sites for the Period October 1 -

176

ARM TR-008  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 - March 31, 2005 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research January 1 - March 31, 2005, ARM-05-014 Contents 1 Data Availability....................................................................................................................... 1 2 Site Visit Requests, Archive Accounts, and Research Computer Accounts............................. 2 3 Safety ........................................................................................................................................ 3 Tables 1 Operational Statistics for the Fixed ACRF Sites for the Period January 1 -

177

ARM TR-008  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2005 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research April 1 - June 30, 2005, ARM-05-015 Contents 1 Data Availability....................................................................................................................... 1 2 Site Visit Requests, Archive Accounts, and Research Computer Accounts............................. 2 3 Safety ........................................................................................................................................ 3 Tables 1 Operational Statistics for the Fixed ACRF Sites for the Period April 1 -

178

ARM TR-008  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 Atmospheric Radiation Measurement Program Climate Research Facility Operations Cumulative Quarterly Report October 1, 2003 - September 30, 2004 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research October 1 - September 30, 2004, ARM-05-017 Contents 1 Data Availability....................................................................................................................... 1 2 Site Visit Requests, Archive Accounts, and Research Computer Accounts............................. 2 3 Publications............................................................................................................................... 4 4 Safety ........................................................................................................................................

179

ARM TR-008  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2004 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research October 1 - December 31, 2004, ARM-05-013 Contents 1 Data Availability....................................................................................................................... 1 2 Safety ........................................................................................................................................ 3 Tables 1 Operational Statistics for the ACRF Sites for the Period October 1, 2003- December 31, 2004 Site Visit Requests, Archive Accounts, and Research Computer

180

ARM TR-008  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 - March 31, 2006 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research January 1 - March 31, 2006, ARM 06-008 Contents 1 Data Availability....................................................................................................................... 1 2 Site Visit Requests, Archive Accounts, and Research Computer Accounts............................. 2 3 Safety ........................................................................................................................................ 3 Tables 1 Operational Statistics for the Fixed ACRF and AMF Sites for the Period January 1 -

Note: This page contains sample records for the topic "arm atmospheric radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

ARM TR-008  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 - September 30, 2005 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research July 1 - September 30, 2005, ARM-05-016 Contents 1 Data Availability....................................................................................................................... 1 2 Site Visit Requests, Archive Accounts, and Research Computer Accounts............................. 2 3 Safety ........................................................................................................................................ 3 4 Publications...............................................................................................................................

182

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

The Surface Shortwave Radiation Budget in the ECMWF Forecast System The Surface Shortwave Radiation Budget in the ECMWF Forecast System Morcrette, J.-J., European Centre for Medium-Range Weather Forecasts, United Kingdom Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The surface shortwave radiation (SSR) produced by the ECMWF forecast system since 1989 is studied with reference to the various versions of the shortwave radiation scheme. For the latest 6-spectral interval version, model SSR is compared with surface radiation measurements for recent periods, available as part of the Baseline Surface Radiation Network (BSRN), Surface Radiation Network (SURFRAD), and Atmospheric Radiation Measurement (ARM) programs. Comparisons on one-hour basis are emphasized to allow discrepancies to be more easily linked to differences between model

183

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Diurnal Cycle of Cloud Microphysical Properties from GOES Over the ARM Diurnal Cycle of Cloud Microphysical Properties from GOES Over the ARM Southern Great Plains Minnis, P., and Young, D.F., National Aeronautics and Space Administration-Langley Research Center; Smith, W.L., Jr., and Heck, P.W., Analytical Services and Materials, Inc. Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Cloud coverage, height and optical depth have been derived from the Geostationary Operational Environmental Satellite (GOES) data taken over the Atmospheric Radiation Measurement (ARM) Program's Southern Great Plains (SGP) domain since 1994. While these parameters provide a valuable basis for understanding the interaction of clouds with the radiation budget, they do not provide a complete characterization of the cloud field. Phase

184

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparison of MM5 Forecast Shortwave Radiation with ARM SGP Data Comparison of MM5 Forecast Shortwave Radiation with ARM SGP Data Armstrong, M.A. and Ellingson, R.G., University of Maryland Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The performance of the Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model 5 (MM5), in particular the shortwave downwelling (SW) flux calculations, is examined in this paper. Selected quantities output from the MM5 were compared with ARM SGP data gathered during the SCM intensive observation period (IOP) from June 18 to July 18, 1997. MM5 was run 29 times with a forecast length of 24 hours. The data were saved and then compared to radiosonde and pyranometer data. SW flux calculated from the MM5 deviated severely from that observed at the SGP

185

ARM Participation  

NLE Websites -- All DOE Office Websites (Extended Search)

navigation, GPS can make ground radiation measurements for comparison with satellite data. Other GPS applications include atmospheric chemistry, astronomy, ionospheric...

186

ARM - Selected Science Team Proposals - FY 1995  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) ARM Science Team Meetings User Meetings Annual Meetings of the Atmospheric System Research (ASR) Science Team and Fall Working Groups Accomplishments Read about the 20 years of accomplishments (PDF, 696KB) from the ARM Program and user facility. Performance Metrics ASR Metrics 2009 2008 2007 2006 Selected Science Team Proposals - FY 1995 Dr. R. Nelson Byrne, SAIC: "Evolution of a New GCM-Capable Stochastic Cloud/Radiation Parameterization Using ARM Data - Phase II" Dr. Steven J. Ghan, Pacific Northwest National Laboratory: "Parameterization of Convective Cloud Coverage in GCMs" Dr. George Golitsyn, Russian Academy of Sciences, Institute of

187

Solar Radiation Estimated Through Mesoscale Atmospheric Modeling over Northeast Brazil  

Science Journals Connector (OSTI)

The use of renewable energy sources like solar wind and biomass is rapidly increasing in recent years with solar radiation as a particularly abundant energy source over Northeast Brazil. A proper quantitative knowledge of the incoming solar radiation is of great importance for energy planning in Brazil serving as basis for developing future projects of photovoltaic power plants and solar energy exploitation. This work presents a methodology for mapping the incoming solar radiation at ground level for Northeast Brazil using a mesoscale atmospheric model (Regional Atmospheric Modeling System—RAMS) calibrated and validated using data from the network of automatic surface stations from the State Foundation for Meteorology and Water Resources from Ceará (Fundação Cearense de Meteorologia e Recursos Hídricos? FUNCEME). The results showed that the model exhibits systematic errors overestimating surface radiation but that after the proper statistical corrections using a relationship between the model?predicted cloud fraction the ground?level observed solar radiation and the incoming solar radiation estimated at the top of the atmosphere a correlation of 0.92 with a confidence interval of 13.5? W / m 2 is found for monthly data. Using this methodology we found an estimate for annual average incoming solar radiation over Ceará of 215? W / m 2 (maximum in October: 260? W / m 2 ).

Otacilio Leandro de Menezes Neto; Alexandre Araújo Costa; Fernando Pinto Ramalho; Paulo Henrique Santiago de Maria

2009-01-01T23:59:59.000Z

188

ARM - Blog Article  

NLE Websites -- All DOE Office Websites (Extended Search)

6, 2013 [ARM Mobile Facility 2, Blog, Field Notes, MAGIC] 6, 2013 [ARM Mobile Facility 2, Blog, Field Notes, MAGIC] Seasickness in Spirit! Bookmark and Share The images in this post are graphic and could very well be those of me on a boat. Eight years ago, as a first-year graduate student, I was participating in a week-long oceanographic research cruise just off the coast of southern California. A severe case of seasickness rendered me so nauseous and incapable of work that I decided never to set foot on a boat again-and I haven't so far. Hopefully, this will not be the fate for several instruments that participated in their first-ever marine operation last fall. Between October of 2012 and January of 2013, one of the two mobile facilities maintained by the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility, went on its first extended

189

ARM Climate Research Facility  

NLE Websites -- All DOE Office Websites

banner banner Home | People | Site Index Atmospheric Radiation Measurement Climate Research Facility US Department of Energy About Science Campaigns Sites Instruments Measurements Data News Publications Education Become a User Recovery Act Mission FAQ Outreach Displays History Organization Participants Facility Statistics Forms Contacts Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) ARM Science Team Meetings Propose a Campaign Submitting Proposals: Guidelines Featured Campaigns Campaign Data List of Campaigns Aerial Facility Eastern North Atlantic Mobile Facilities North Slope of Alaska Southern Great Plains Tropical Western Pacific Location Table Contacts Instrument Datastreams Value-Added Products PI Data Products Field Campaign Data Related Data

190

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Vapor Intensive Operating Periods: General Results, Status and Plans Water Vapor Intensive Operating Periods: General Results, Status and Plans Revercomb, H.E., Tobin, D.C., Knuteson, R.O., and Feltz, W.F., University of Wisconsin-Madison; Turner, D.D., Pacific Northwest National Laboratory Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Accurate measurements of atmospheric water vapor are very important for climate research and monitoring. Unexpectedly large uncertainties of sonde water vapor observations implied by Atmospheric Radiation Measurement (ARM) Program's radiation measurements led to special Water Vapor Intensive Observation Periods (IOPs) conducted in 1996 and 1997 at the Southern Great Plains (SGP) central facility. The goal was to use the complement of ARM advanced instrumentation to better quantify the problem and to find ways of

191

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of Upper Tropospheric Water Vapor in the NCAR Community Climate Evaluation of Upper Tropospheric Water Vapor in the NCAR Community Climate Model, CCM3, Using Modeled and Observed HIRS Radiances Iacono, M.J., Delamere, J.S., Mlawer, E.J., and Clough, S.A., Atmospheric and Environmental Research, Inc. Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Upper tropospheric water vapor (UTWV) simulated by the National Center for Atmospheric Research Community Climate Model, CCM3, is evaluated by comparing modeled, clear sky, brightness temperatures to those observed from space by the High-resolution Infrared Radiation Sounder (HIRS). The climate model was modified to utilize a highly accurate longwave radiation model, RRTM, and a separate radiance module, both developed for the Atmospheric Radiation Measurement (ARM) Program. The radiance module

192

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Tropical Cloud Radiative Forcing and the Large-Scale Atmospheric Energy Tropical Cloud Radiative Forcing and the Large-Scale Atmospheric Energy Transport Tian, B. (a) and Ramanathan, V. (b), Scripps Institution of Oceanography, UCSD Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Moist static energy is exported within the atmosphere column, from equatorial latitudes to the subtropics by the Hadley circulation and from the western Pacific warm pool to the eastern Pacific cold tongue by the Walker circulation. It is the net energy fluxes into the atmosphere, i.e., the radiative and the turbulent latent and sensible heat fluxes from surface and the radiative flux at the top of the atmosphere, that maintain this energy transport and balance the resulting divergence of energy. We demonstrate here that the dominant term that provides the balance is the

193

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

An Overview of ARM Satellite Cloud and Radiation Budget Datasets An Overview of ARM Satellite Cloud and Radiation Budget Datasets Minnis, P.(a), Nguyen, L.(a), Smith Jr., W.L.(a), Doelling, D.R.(b), Heck, P.W.(c), Khaiyer, M.M.(b), Palikonda, R.(b), Young, D.F.(a), Spangenberg, D.A.(b), Chakrapani, V.(b), Walter, B.J.(b), and Nowicki, G.D.(b), NASA Langley Research Center (a), Analytical Services and Materials, Inc. (b), CIMSS/University of Wisconsin-Madison (c) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The derivation of cloud properties from satellite data has been greatly enhanced by the availability of new multispectral satellite imagers, the validation power of ARM instruments and IOPs, and increases in computer processing speeds. Likewise, the recent availability of broadband radiation

194

ARM - Instrument - rl  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentsrl govInstrumentsrl Documentation RL : Handbook RL : Instrument Mentor Monthly Summary (IMMS) reports RL : Data Quality Assessment (DQA) reports ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Raman Lidar (RL) Beneficiary of Recovery Act funding. Instrument Categories Aerosols, Atmospheric Profiling Picture of the Raman Lidar (RL) Picture of the Raman Lidar (RL) General Overview The Raman Lidar (RL) is an active, ground-based laser remote sensing instrument that measures vertical profiles of water-vapor mixing ratio and several cloud- and aerosol-related quantities. Lidar (light detection and ranging) is the optical analog of radar, using pulses of laser radiation to probe the atmosphere. This system is fully computer automated, and will run

195

Atmospheric transmittance model for photosynthetically active radiation  

SciTech Connect

A parametric model of the atmospheric transmittance in the PAR band is presented. The model can be straightforwardly applied for calculating the beam, diffuse and global components of the PAR solar irradiance. The required inputs are: air pressure, ozone, water vapor and nitrogen dioxide column content, Ångström's turbidity coefficient and single scattering albedo. Comparison with other models and ground measured data shows a reasonable level of accuracy for this model, making it suitable for practical applications. From the computational point of view the calculus is condensed into simple algebra which is a noticeable advantage. For users interested in speed-intensive computation of the effective PAR solar irradiance, a PC program based on the parametric equations along with a user guide are available online at http://solar.physics.uvt.ro/srms.

Paulescu, Marius; Stefu, Nicoleta; Gravila, Paul; Paulescu, Eugenia; Boata, Remus; Pacurar, Angel; Mares, Oana [Physics Department, West University of Timisoara, V Parvan 4, 300223 Timisoara (Romania); Pop, Nicolina [Department of Physical Foundations of Engineering, Politehnica University of Timisoara, V Parvan 2, 300223 Timisoara (Romania); Calinoiu, Delia [Mechanical Engineering Faculty, Politehnica University of Timisoara, Mihai Viteazu 1, 300222 Timisoara (Romania)

2013-11-13T23:59:59.000Z

196

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Winter Surface Radiative Energy Exchange at NSA: Cloudy vs. Clear Sky Winter Surface Radiative Energy Exchange at NSA: Cloudy vs. Clear Sky Stramler, K.(a), Del Genio, A.D.(b), and Rossow, W.(b), Columbia University (a), NASA/GISS (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM measurements at Point Barrow, Alaska show that atmospheric emission drives the winter variability of the surface radiative energy exchange, as the incursion of air masses of differing properties alternately warm and cool the snow surface and the snow-ground interface. The magnitude of the surface radiative energy exchange, however, appears to be in part dictated by the more slowly varying sub-surface temperatures. This is most evident when observing the inter-annual variability of clear-sky surface net longwave radiation at NSA; winter cloudy-sky surface net longwave radiation

197

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

The Radiative Properties of Uniform and Broken Stratus: An Observational The Radiative Properties of Uniform and Broken Stratus: An Observational and Modelling Study Utilizing the Independent Column Approximation for Solar Radiative Transfer Clothiaux, E.E., The Pennsylvania State University; Barker, H.W., Atmospheric Environment Service of Canada; Kato, S., Hampton University; Dong, X., Analytical Service and Materials, Inc. Ackerman, T.P., The Pennsylvania State University; Liljegren, J.C., Ames Laboratory Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Millimeter-Wave Cloud Radar (MMCR) has operated continuously at the Atmospheric Radiation Measurement (ARM) Program's Southern Great Plains (SGP) site since November 11, 1996. As yet, much of the early data has not been calibrated correctly and insect contamination in the boundary layer is

198

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Anomalous Radiative Absorption and Unbounded Cascade Models of Cloud Anomalous Radiative Absorption and Unbounded Cascade Models of Cloud Fields Schertzer, D., and Larchevêque, M., Université P.&M. Curie, Paris, France; Lovejoy, S., McGill University; Naud, C., Blackett Laboratory, Imperial College, London Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting One of the most achieving results of Atmospheric Radiation Measurement (ARM) Program could well have been the empirical finding of the anomalous radiative absorption of the atmosphere. We demonstrate that unbounded cascade models of cloud fields, rather than bounded cascade models, could give a theoretical and quantitative understanding of this phenomenon. Indeed, the former models keep contact with the physics and coherence of the turbulent cascades (velocity, temperature and liquid water content) and

199

The ARM unpiloted aerospace vehicle (UAV) program  

SciTech Connect

Unmanned aerospace vehicles (UAVs) are an important complement to the DOE`s Atmospheric Radiation Measurement (ARM) Program. ARM is primarily a ground-based program designed to extensively quantify the radiometric and meteorological properties of an atmospheric column. There is a need for airborne measurements of radiative profiles, especially flux at the tropopause, cloud properties, and upper troposphere water vapor. There is also a need for multi-day measurements at the tropopause; for example, in the tropics, at 20 km for over 24 hours. UAVs offer the greatest potential for long endurance at high altitudes and may be less expensive than piloted flights. 2 figs.

Sowle, D. [Mission Research Corporation, Santa Barbara, CA (United States)

1995-09-01T23:59:59.000Z

200

Improving Convection Parameterization Using ARM Observations and NCAR Community Atmosphere Model  

SciTech Connect

Highlight of Accomplishments: We made significant contribution to the ASR program in this funding cycle by better representing convective processes in GCMs based on knowledge gained from analysis of ARM/ASR observations. In addition, our work led to a much improved understanding of the interaction among aerosol, convection, clouds and climate in GCMs.

Zhang, Guang J [Scripps Institution of Oceanography

2013-07-29T23:59:59.000Z

Note: This page contains sample records for the topic "arm atmospheric radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Sub-Grid-Scale Isentropic Transports on McRAS Evaluations Sub-Grid-Scale Isentropic Transports on McRAS Evaluations Using ARM-CART SCM Datasets Sud, Y.C., Walker, G.K., and Tao, W.-K., Climate and Radiation Branch, Laboratory for Atmospheres, NASA/Goddard Space Flight Center Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Influence of Sub-grid-Scale Isentropic Transports on McRAS: Evaluation using ARM-CART SCM Datasets. Y. C. Sud, G. K. Walker and W.-K. Tao In GCM-physics evaluations with the currently available ARM-CART SCM datasets, McRAS produced very similar character of near surface errors of simulated temperature and humidity containing typically warm and moist biases near the surface and cold and dry biases aloft. We argued it must have a common cause presumably rooted in the model physics. Lack of vertical adjustment

202

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

ARM Radiosonde Humidity Measurements and Proposed Corrections ARM Radiosonde Humidity Measurements and Proposed Corrections Based On AWEX Radiosonde Intercomparisons Miloshevich, L.M.(a), Lesht, B.M.(b), and Voemel, H.(c), National Center for Atmospheric Research (a), Argonne National Laboratory (b), NOAA/CMDL (c) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM radiosonde relative humidity (RH) measurements are widely used in numerical modeling, remote sensor validation, and radiative transfer calculations, yet their accuracy as a function of temperature and RH has not been adequately quantified. During the AIRS Water vapor EXperiment (AWEX) at the SGP site in November 2003, 34 launches of multiple radiosondes on the same balloon were conducted, including 12 soundings from the University of Colorado's Cryogenic Frostpoint Hygrometer (CFH). The

203

ARM - Collaborations  

NLE Websites -- All DOE Office Websites (Extended Search)

govScienceCollaborations govScienceCollaborations Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) ARM Science Team Meetings User Meetings Annual Meetings of the Atmospheric System Research (ASR) Science Team and Fall Working Groups Accomplishments Read about the 20 years of accomplishments (PDF, 696KB) from the ARM Program and user facility. Performance Metrics ASR Metrics 2009 2008 2007 2006 Collaborations The ARM Climate Research Facility collaborates extensively with other U.S. Department of Energy (DOE) programs and laboratories, agencies, universities, and private firms in gathering and sharing data. This collaborative approach allows ARM to leverage its investment in instruments, sites, data, and science and to gain the knowledge necessary

204

ARM - Data Sharing and Distribution Policy  

NLE Websites -- All DOE Office Websites (Extended Search)

DocumentationData Sharing and Distribution Policy DocumentationData Sharing and Distribution Policy Policies, Plans, Descriptions Data Documentation Home Data Sharing and Distribution Policy Data Management and Documentation Plan Data Product Registration and Submission Reading netCDF and HDF Data Files Time in ARM netCDF Data Files Data Archive Documentation ARM Archive's Catalog of Data Streams (Updated monthly) Access to Historical ARM Data More on Understanding and Finding ARM Data Data Quality Problem Reporting Data Sharing and Distribution Policy Purpose This document sets expectations and establishes procedures for sharing data acquired in through the operations of Atmospheric Radiation Measurement (ARM) Climate Research Facility. These data may be acquired from routine ARM-supported efforts or from collaborating or cooperating programs. When

205

ARM XDC Datastreams  

NLE Websites -- All DOE Office Websites (Extended Search)

StreamsNOAA/ESRL/GMD Radiometers StreamsNOAA/ESRL/GMD Radiometers Documentation NOAARAD Instrument External Datastream Descriptions ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send NOAA/ESRL/GMD Radiometers (NOAARAD) Information updated on June 26, 2007, 5:34 pm GMT General Data Description NOAA/ESRL GMD (National Oceanic and Atmospheric Administration / Earth System Research Laboratory, Global Monitoring Division) provides surface radiation data from Barrow, AK, part of a long-term surface solar irradiance monitoring network of globally remote sites (G-Rad). Data are available from 1976-02-18 to present. Expand All Collapse All Data Stream Names noaaradbrw : High resolution surface radiation data in netcdf format from Barrow

206

ARM - Instrument - tao  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentstao govInstrumentstao Documentation TAO : XDC documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Tropical Atmosphere Ocean from Buoys (TAO) Instrument Categories Radiometric, Ocean Observations, Surface Meteorology General Overview These data files contain 2-minute average radiation and 10-minute average meteorology, precipitation, salinity and sea surface temperature data from the seven TAO buoys located on the 165E line (8n, 5n, 2n, 0n, 2s, 5s, 8s) of the TAO Buoy Array. Data from these buoys are stored in monthly netCDF files that are generated by PMEL. The radiation data were obtained from TAO Array moorings through a collaborative effort between NOAA/PMEL/TAO and

207

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparisons of a Cloud Resolving Model and ARM Data Comparisons of a Cloud Resolving Model and ARM Data Posselt, D., Mecikalski, J., Tanamachi, R., Feltz, W.F., Turner, D.D., Tobin, D., Knuteson, R.O., and Revercomb, H.E., University of Wisconsin - Madison Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting CIMSS/SSEC at the University of Wisconsin is currently running version 3.5 of the PSU/NCAR MM5 once per day at a resolution of 4 km over the ARM CART site domain. Simulations are performed using a sophisticated cloud-resolving microphysics scheme (Reisner 1998) and a radiative parameterization based on RRTM (Mlawer 1997). With selection of appropriate case studies, comparisons of the model output to ARM data can be used to evaluate the model's ability to reproduce boundary-layer thermal and

208

ARMlUnmanned Air VehiclelSatelites The Atmospheric Radiation Measurement  

NLE Websites -- All DOE Office Websites (Extended Search)

ARMlUnmanned Air VehiclelSatelites ARMlUnmanned Air VehiclelSatelites The Atmospheric Radiation Measurement Unmanned Aerospace Vehicle Program: An Overview P. A. Crowley Environmental Sciences Division U.S. Department of Energy Washington, D.C. J. Vitko, Jr. Sandia National Laboratories Livermore, CA 94550 Introduction for leased UA V operation over the next year. Examples include, but are not limited to, the existing Gnat 750-45, with its 7-8 km ceiling, as well as the planned FY93 demonstration of two 20 km capable UA Vs-the Perseus- B and the Raptor. Thus the funding of some initial flights and the availability of leased UAVs will enable us to start up the ARM-UAV program. Additional funding will be required to continue this program. Interim Science Team This paper and the one that follows describe the start-up

209

DOE/SC-ARM/TR-097 Radiatively Important Parameters Best Estimate  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 Radiatively Important Parameters Best Estimate (RIPBE): An ARM Value-Added Product S McFarlane T Shippert J Mather June 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or

210

ARM Standards Policy Committee Report  

SciTech Connect

Data and metadata standards promote the consistent recording of information and are necessary to ensure the stability and high quality of Atmospheric Radiation Measurement (ARM) Climate Research Facility data products for scientific users. Standards also enable automated routines to be developed to examine data, which leads to more efficient operations and assessment of data quality. Although ARM Infrastructure agrees on the utility of data and metadata standards, there is significant confusion over the existing standards and the process for allowing the release of new data products with exceptions to the standards. The ARM Standards Policy Committee was initiated in March 2012 to develop a set of policies and best practices for ARM data and metadata standards.

Cialella, A; Jensen, M; Koontz, A; McFarlane, S; McCoy, R; Monroe, J; Palanisamy, G; Perez, R; Sivaraman, C

2012-09-19T23:59:59.000Z

211

ARM - Measurement - Longwave spectral radiance  

NLE Websites -- All DOE Office Websites (Extended Search)

spectral radiance spectral radiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Longwave spectral radiance The rate at which the spectrally resolved radiant energy in the longwave portion of the spectrum is emitted in a particular direction per unit area perpendicular to the direction of radiation. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AERI : Atmospheric Emitted Radiance Interferometer ASSIST : Atmospheric Sounder Spectrometer for Infrared Spectral

212

Detection of atmospheric Cherenkov radiation using solar heliostat mirrors  

E-Print Network (OSTI)

The gamma-ray energy region between 20 and 250 GeV is largely unexplored. Ground-based atmospheric Cherenkov detectors offer a possible way to explore this region, but large Cherenkov photon collection areas are needed to achieve low energy thresholds. This paper discusses the development of a Cherenkov detector using the heliostat mirrors of a solar power plant as the primary collector. As part of this development, we built a prototype detector consisting of four heliostat mirrors and used it to record atmospheric Cherenkov radiation produced in extensive air showers created by cosmic ray particles.

Ong, R A

1996-01-01T23:59:59.000Z

213

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Observations and Stochastic Modeling of Shortwave Radiative Transfer at the Observations and Stochastic Modeling of Shortwave Radiative Transfer at the ARM CART Sites Secora, J.M. and Veron, D.E., Rutgers University Stochastic modeling has been shown to be a promising technique for representing shortwave radiative transfer through fractional cloud fields and may be a suitable approach for characterizing the impact of macroscale inhomogeneity of the cloud field on the radiation in an Atmospheric General Circulation Model (AGCM) environment. To ascertain the conditions under which the stochastic approach would be appropriate in an AGCM, several steps have been taken. Initially, we have analyzed both microphysical and geometrical cloud characteristics for one year at three Atmospheric Radiation Measurement (ARM) Program Cloud and Radiation Testbed (CART)

214

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Irradiance Using Remotely Sensed Cloud Properties From Irradiance Using Remotely Sensed Cloud Properties From ARM's SGP Site Barker, H.W., Atmospheric Environment Service of Canada; Li, Z., Canada Centre for Remote Sensing; Clothiaux, E.E., and Ackerman, T.P., The Pennsylvania State University; Kato, S., National Aeronautics and Space Administration-Langley Research Center Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Time series of profiles of cloud water content and droplet effective radii have been inferred from data obtained by a 35-GHz radar and a Microwave Radiometer (MWR) at the Atmospheric Radiation Measurement (ARM) Program's Southern Great Plains (SGP) site. These profiles initialize a Monte Carlo algorithm that predicts time series of broadband surface solar irradiance, which in turn are compared with coeval measurements. Special attention is

215

Atmospheric Radiation Measurement Climate Research Facility - annual report 2004  

NLE Websites -- All DOE Office Websites (Extended Search)

ER-ARM-0403 ER-ARM-0403 3 Table of Contents Program Overview ............................................................................................................................................................ 4 The Role of Clouds in Climate .................................................................................................................................... 4 ARM Science Goals ..................................................................................................................................................... 4 ARM Climate Research Facility: Successful Science Program Leads to User Facility Designation ................................ 5 Sites Around the World Enable Real Observations .......................................................................................................

216

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Change of Atmospheric Boundary Layer Thermal Regime Induced by Aerosol as Change of Atmospheric Boundary Layer Thermal Regime Induced by Aerosol as Measured by MTP-5 Koldaev, A.V.(a), Kadygrov, E.N.(a), Khaikine, M.N.(a), Kuznetsova, I.N.(b), and Golitsyn, G.S.(c), Central Aerological Observatory (a), Hydrometeorological Center (b), A.M.Obukhov Institute of Atmospheric Physics Russian Academy of Science (c) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Change in atmospheric boundary layer (ABL) radiation balance as caused by natural and anthropogenic reasons is an important topic of ARM Project. The influence of aerosol while its concentration was extremely high within a long period of time was studied experimentally. The case was observed in Moscow region with the transport of combustion products from peat and

217

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Full Spectrum Correlated-k for Shortwave Atmospheric Radiative Transfer Full Spectrum Correlated-k for Shortwave Atmospheric Radiative Transfer Pawlak, D.T.(a,b), Clothiaux, E.E.(a), Modest, M.M.(c), and Cole, J.N.S.(a), Department of Meteorology, The Pennsylvania State University (a), Air Force Institute of Technology, Civilian Institutions Graduate Programs Division (b), Department of Mechanical Engineering, The Pennsylvania State University (c) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Fast and accurate atmospheric radiation heating and cooling rate calculations are important for improving global climate and numerical weather prediction model performance. The radiative transfer calculations in atmospheric models must be fast so that the underlying methods can actually be implemented in the models and the calculations must be accurate

218

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

CAGEX Version 3: Tightening Shortwave Fluxes and Measurements of Surface CAGEX Version 3: Tightening Shortwave Fluxes and Measurements of Surface Spectral Characteristics Alberta, T.L., Analytical Services and Materials, Inc.; Charlock, T.P., National Aeronautics and Space Administration-Langley Research Center Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Version 3 of the CAGEX (Clouds and Earth's Radiant Energy System [CERES]/Atmospheric Radiation Measurement [ARM]/Global Energy and Water Experiment [GEWEX]) is introduced. As with Version 2 (10/95) and Version 1 (4/94), Version 3 provides input data sufficient for broadband radiative transfer calculations; fluxes computed with those inputs and the Fu-Liou code as modified by Hu, Rose and Kratz; and measurements for validation and diagnostics. Along with the usual ARM data sets (Solar and Infrared

219

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Using ARM GOES-8 Cloud and TOA Flux Properties to Estimate Surface Using ARM GOES-8 Cloud and TOA Flux Properties to Estimate Surface Radiation Budget Parameters Stackhouse, P.W., Jr. (a), Gupta, S.K. (b), Cox, S.J. (b), Minnis, P. (a), Smith, W.L., Jr. (b), and Khaiyer, M.M. (b), NASA Langley Research Center (a) Analytical Services and Materials, Inc. (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The Global Energy and Water Cycle Experiment (GEWEX) Surface Radiation Budget Project (SRB) uses top-of-atmosphere (TOA) radiance measurements and cloud property retrievals to estimate surface fluxes on a global basis. Normally, GEWEX SRB algorithms rely on TOA radiances and cloud information derived from International Satellite Cloud Climatology Project (ISCCP) data. Here, we show first results of using SW and LW algorithms featured in

220

ARM - FAQ  

NLE Websites -- All DOE Office Websites (Extended Search)

topics. Atmospheric Sciences and Clouds Climate Change, Global Warming, and Greenhouse Effect Gases Measurements and Instruments Online Resources Radiation and the Sun...

Note: This page contains sample records for the topic "arm atmospheric radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

ARM - Events Article  

NLE Websites -- All DOE Office Websites (Extended Search)

including invited talks. Observing and Modeling Atmospheric Vertical Motion - Posters, Monday, December 9. Convened by ARM Facility scientists, nearly two dozen...

222

ARM - UAV Campaigns  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Research The DOE ARM Aerial Facility Field Campaigns AAF Campaigns 2007 - UAV Campaigns 1993 - 2006, 2015 Other Aircraft Campaigns 1993 - 2010 AAF Contacts Rickey...

223

ARM - AAF Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Research The DOE ARM Aerial Facility Field Campaigns AAF Campaigns 2007 - UAV Campaigns 1993 - 2006, 2015 Other Aircraft Campaigns 1993 - 2010 AAF Contacts Rickey...

224

ARM - AAF Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Research The DOE ARM Aerial Facility Field Campaigns AAF Campaigns 2007 - UAV Campaigns 1993 - 2006, 2015 Other Aircraft Campaigns 1993 - 2010 AAF Contacts Rickey...

225

ARM - Events Article  

NLE Websites -- All DOE Office Websites (Extended Search)

March 29, 2012 [Events] March 29, 2012 [Events] ARM Attends Third Annual Atmospheric System Research Science Team Meeting Bookmark and Share The ARM Climate Research Facility provided information about the user facility, including a live data kiosk, public information materials, and banners showcasing the three fixed ARM sites. The ARM Climate Research Facility provided information about the user facility, including a live data kiosk, public information materials, and banners showcasing the three fixed ARM sites. The third annual Atmospheric System Research (ASR) Science Team Meeting, held March 12-16 in Arlington, Virginia, brought together members of ASR and the ARM Climate Research Facility. ASR and ARM collaborate through the use of ARM facilities for targeted field campaigns and data gathered at ARM

226

ARM - Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

govAboutGlossary govAboutGlossary About Become a User Recovery Act Mission FAQ Outreach Displays History Organization Participants Facility Statistics Forms Contacts Facility Documents ARM Management Plan (PDF, 335KB) Field Campaign Guidelines (PDF, 1.1MB) ARM Climate Research Facility Expansion Workshop (PDF, 1.46MB) Facility Activities ARM and the Recovery Act Contributions to International Polar Year Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Acronyms / Glossary 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A absolute humidity The mass of water vapor in a given volume. absolutely stable air An atmospheric condition that exists when the environmental lapse rate is less than the moist adiabatic lapse rate. absolutely unstable air

227

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Kids Learn About Weather at Day Camps in June Kids Learn About Weather at Day Camps in June Bookmark and Share To earn their Weather Badges, Girl Scouts rotated through a variety of learning stations, including one featuring instruments for measuring atmospheric properties. Campers blew air onto the radiation shields surrounding the temperature and humidity sensor to observe any changes recorded by the instrument. To earn their Weather Badges, Girl Scouts rotated through a variety of learning stations, including one featuring instruments for measuring atmospheric properties. Campers blew air onto the radiation shields surrounding the temperature and humidity sensor to observe any changes recorded by the instrument. On June 6, education and outreach staff from the ARM Southern Great Plains (SGP) site spent four hours helping local Girl Scouts earn their Weather

228

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Fair - Weather Cumuli Climatology at the TWP ARM Site Fair - Weather Cumuli Climatology at the TWP ARM Site Kollias, P. and Albrecht B.A., University of Miami Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Fair-weather cumuli are fundamental in regulating the vertical structure of water vapor and entropy in the lowest 2 km of the Earths atmosphere over vast areas of the oceans. Over two years of data from the mm-wavelength cloud radar, at the Nauru (TWP-ARM) site, are analyzed and a statistical description of the field of fair weather cumulus is inferred. Frequency diagrams of cloud thickness, fractional coverage, updraft-downdraft magnitudes and cloud reflectivity are calculated for four different classes of fair weather cumuli. Seasonal patterns are identified and their relationship to the thermodynamic structure of the boundary layer (wet-dry

229

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

LASE Characterization of Water Vapor, Aerosol, and Cloud Distributions Over LASE Characterization of Water Vapor, Aerosol, and Cloud Distributions Over the ARM Southern Great Plains Central Facility During AFWEX Ismail, S. (a), Ferrare, R.A. (a), Browell, E.V. (a), Kooi, S.A. (b), Brasseur L.H. (b), Clayton, M.B. (b), Brackett, V. (b), Goldsmith, J.E.M. (c), Whiteman, D.N. (d), and Barrick, J. (a), NASA Langley Research Center (a), SAIC Inc., Hampton, Virginia (b), Sandia National Laboratories (c), NASA Goddard Space Flight Center (d) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting NASA's Lidar Atmospheric Sensing Experiment (LASE) system was operated during the ARM/FIRE Water Vapor Experiment (AFWEX) to characterize the upper tropospheric water vapor field over the ARM Center Facility (CF) as part of the third Water Vapor Intensive Observation Period (WVIOP3). LASE

230

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

GPS Measured Water Vapor Variability at the ARM SGP CF GPS Measured Water Vapor Variability at the ARM SGP CF Braun, J. (a), Rocken, C. (a), and Schmid, B. (b), UCAR (a), BAER (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Ground based Global Positioning System (GPS) stations can measure precipitable water vapor (PWV) and slant water vapor (SWV). SWV is the integrated amount of water vapor along the slant path from the GPS transmitter to the station. The ARM program has sponsored the University Corporation for Atmospheric Research (UCAR) to install and operate a network of single frequency GPS receivers at the Southern Great Plains (SGP) Central Facility (CF). Fourteen stations were installed in 1999, and an additional nine stations in 2000. The entire network covers approximately 40 square kilometers roughly centered around the SGP CF. This

231

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

The ARM Blue/Green Period: 3-Channel Color Composites of GOES-8 Data The ARM Blue/Green Period: 3-Channel Color Composites of GOES-8 Data Wagener, R., and Gregory, L., Brookhaven National Laboratory, ARM External Data Center Konidaris, N., Carnegie Mellon University; Minnett, P.J., University of Miami, Rosenstiel School of Marine and Atmospheric Sciences Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Despite the title and the general appearance of the resulting images, this is not an attempt to emulate art nor an expression of anybody's mood. It is simply an attempt to condense as much information as possible about a day's worth of Geostationary Operational Environmental Satellite (GOES) data onto a single web page. A 24-bit red, green, blue (RGB) color composite is derived by assigning the reflectivity in the GOES-8 visible channel to red,

232

ARM TR-008  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 ACRF Ingest Software Status: New, Current, and Future February 2007 Annette Koontz, for ACRF Engineering Management Pacific Northwest National Laboratory PNNL Ingest Developers: Sutanay Choudhury Brian Ermold Krista Gaustad Annette Koontz Work supported by the U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research February 2007, DOE/SC-ARM/P-07-004.1 Introduction The purpose of this report is to provide status of the ingest software used to process instrument data for the Atmospheric Radiation Measurement Program Climate Research Facility (ACRF). The report is divided into 4 sections: (1) for news about ingests currently under development, (2) for current production

233

ARM TR-008  

NLE Websites -- All DOE Office Websites (Extended Search)

10 10 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2007 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research April 1 - June 30, 2007, DOE/SC-ARM/P-07-010 Contents 1. Data Availability....................................................................................................................... 1 2. Site Visit Requests, Archive Accounts, and Research Computer Accounts............................. 2 3. Safety ........................................................................................................................................ 4 Tables 1. Operational Statistics for the Fixed ACRF Sites for the Period April 1 - June 30, 2007.

234

ARM TR-008  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 - March 31, 2009 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research January 1 - March 31, 2008, DOE/SC-ARM/P-09-009 Contents 1. Data Availability....................................................................................................................... 1 2. Site Visit Requests, Archive Accounts, and Research Computer Accounts............................. 2 3. Safety ........................................................................................................................................ 4 Tables Table 1. Operational Statistics for the Fixed ACRF Sites for the Period January 1 - March 31,

235

ARM TR-008  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2007 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research October 1 - December 31, 2007, DOE/SC-ARM/P-08-001 Contents 1. Data Availability....................................................................................................................... 1 2. Site Visit Requests, Archive Accounts, and Research Computer Accounts............................. 2 3. Safety ........................................................................................................................................ 4 Tables Table 1. Operational Statistics for the Fixed ACRF Sites for the Period October 1 - December

236

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

July 10, 2012 [Facility News] July 10, 2012 [Facility News] Collaborations in Atmospheric Science and Observations Discussed in Germany Bookmark and Share Susanne Crewell (center) is flanked by Jimmy Voyles (left) and Shaocheng Xie (right) during a tour of the Research Center Juelich and the university's Jülich ObservatorY for Cloud Evolution (JOYCE) site. Crewell explained that JOYCE, like ARM facilities, was designed for long-term continuous measurements of cloud, radiation, boundary humidity, and precipitation, using active and passive remote sensing instruments. Susanne Crewell (center) is flanked by Jimmy Voyles (left) and Shaocheng Xie (right) during a tour of the Research Center Juelich and the

237

ARM - Datastreams - 915rwpwind  

NLE Websites -- All DOE Office Websites (Extended Search)

rwpwind rwpwind Documentation Data Quality Plots Citation DOI: 10.5439/1025134 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : 915RWPWIND 915-MHz Radar Wind Profiler/RASS (RWP915): wind profile data Active Dates 1996.12.30 - 2001.03.31 Measurement Categories Aerosols, Atmospheric State, Cloud Properties Originating Instrument Radar Wind Profiler (RWP) Measurements The measurements below provided by this product are those considered scientifically relevant. Measurement Variable Horizontal wind dir Backscattered radiation spc_amp Horizontal wind spd Horizontal wind u_wind Horizontal wind v_wind Horizontal wind vel0 Horizontal wind vel1 Horizontal wind vel2 Horizontal wind

238

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

December 3, 2004 [Facility News] December 3, 2004 [Facility News] First Deployment of ARM Mobile Facility to Occur on California Coast Bookmark and Share Image - Point Reyes Beach Image - Point Reyes Beach Point Reyes National Seashore, on the California coast north of San Francisco, has been identified as the official location for the first deployment of the DOE's Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF). As part of a 6-month field campaign beginning in March 2005 to study the microphysical characteristics of marine stratus and, in particular, marine stratus drizzle processes, the AMF will provide a mature instrument system to help fill information gaps in the existing limited surveys of marine stratus microphysical structure. Marine stratus clouds are known to be susceptible to the byproducts of fossil fuel consumption, a

239

ARM XDC Datastreams  

NLE Websites -- All DOE Office Websites (Extended Search)

StreamsOzone Monitoring Instrument StreamsOzone Monitoring Instrument Documentation OMI Instrument External Datastream Descriptions ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Ozone Monitoring Instrument (OMI) Information updated on April 10, 2008, 7:10 pm GMT General Data Description The OMI instrument distinguishes between aerosol types, such as smoke, dust, and sulfates, and can measure cloud pressure and coverage, which provide data to derive tropospheric ozone. OMI continues the TOMS record for total ozone and other atmospheric parameters related to ozone chemistry and climate. The OMI instrument is mounted on the EOS Aura platform. The OMI instrument employs hyperspectral imaging in a push-broom mode to observe solar backscatter radiation in the visible and ultraviolet. The

240

ARM User Survey Report  

SciTech Connect

The objective of this survey was to obtain user feedback to, among other things, determine how to organize the exponentially growing data within the Atmospheric Radiation Measurement (ARM) Climate Research Facility, and identify users’ preferred data analysis system. The survey findings appear to have met this objective, having received approximately 300 responses that give insight into the type of work users perform, usage of the data, percentage of data analysis users might perform on an ARM-hosted computing resource, downloading volume level where users begin having reservations, opinion about usage if given more powerful computing resources (including ability to manipulate data), types of tools that would be most beneficial to them, preferred programming language and data analysis system, level of importance for certain types of capabilities, and finally, level of interest in participating in a code-sharing community.

Roeder, LR

2010-06-22T23:59:59.000Z

Note: This page contains sample records for the topic "arm atmospheric radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterizing and Filling Temporal and Spatial Gaps in Time-Aggregated ARM Characterizing and Filling Temporal and Spatial Gaps in Time-Aggregated ARM Measurements for Use in Carbon Models Hargrove, W.W.(a), Brandt, C.C.(a), Jager, H.I.(a), Hanan, N.(b), and McCord, R.A.(a), Oak Ridge National Laboratory (ORNL)(a), Natural Resource Ecology Laboratory (NREL)(b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Data gaps limit the use of ARM data as input for simulation models. Because the ARM program records actual measurements, circumstances unavoidably arise when instrument and storage failures create gaps in the temporal stream of measurements. Most temporal gaps are short in duration and affect only one or a few related parameters. However, some rare failures, such as wide-area power outages or ice storms, occasionally affect many measurement

242

ARM-UAV Mission Gateway System  

NLE Websites -- All DOE Office Websites (Extended Search)

ARM-UAV Mission Gateway System ARM-UAV Mission Gateway System S. T. Moore and S. Bottone Mission Research Corporation Santa Barbara, California Introduction The Atmospheric Radiation Measurement-unmanned aerospace vehicle (ARM-UAV) Mission Gateway System (MGS) is a new field support system for the recently reconfigured ARM-UAV payload. The MGS is responsible for the following critical tasks: * Provides an interface for command and control of the ARM-UAV payload during a flight. * Receives and displays mid-flight state of health information, to help ensure the integrity and safety of the payload. * Receives and displays data snapshots, averaged data, or sub-sampled data. * Provides a user configurable, moving map display to enable the Mission Controller and the science

243

MAGIC: Marine ARM GPCI Investigation of Clouds  

SciTech Connect

The second Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF2) will be deployed aboard the Horizon Lines cargo container ship merchant vessel (M/V) Spirit for MAGIC, the Marine ARM GPCI1 Investigation of Clouds. The Spirit will traverse the route between Los Angeles, California, and Honolulu, Hawaii, from October 2012 through September 2013 (except for a few months in the middle of this time period when the ship will be in dry dock). During this field campaign, AMF2 will observe and characterize the properties of clouds and precipitation, aerosols, and atmospheric radiation; standard meteorological and oceanographic variables; and atmospheric structure. There will also be two intensive observational periods (IOPs), one in January 2013 and one in July 2013, during which more detailed measurements of the atmospheric structure will be made.

Lewis, ER; Wiscombe, WJ; Albrecht, BA; Bland, GL; Flagg, CN; Klein, SA; Kollias, P; Mace, G; Reynolds, RM; Schwartz, SE; Siebesma, AP; Teixeira, J; Wood, R; Zhang, M

2012-10-03T23:59:59.000Z

244

ARM - Events Article  

NLE Websites -- All DOE Office Websites (Extended Search)

and Radiative Transfer: Basic Research and Applications A05: Atmospheric Column Radiative Energy Budget A20: Frontiers in Atmospheric Instrumentation and Measurement A22:...

245

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparison of ARM Cloud Property Observations with CRM Simulations Comparison of ARM Cloud Property Observations with CRM Simulations Xu, K.-M. (a), Cederwall, R.T. (b), Xie, S.C. (b), and Yio, J.J. (b), NASA Langley Research Center (a), Lawrence Livermore National Laboratory (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The cloud property observations are compared with cloud-resolving model simulated cloud properties in this study, using the Summer 1997 Intensive Observation Period (IOP) data of the ARM program. Midlatitude continental cumulus convection are simulated by seven 2-D and two 3-D cloud resolving models (CRMs), driven by observed large-scale advective temperature and moisture tendencies, surface turbulence fluxes, and radiative heating profiles during three subperiods of the Summer 1997 IOP. Each subperiod

246

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Aerosol Forcing Calculated at the ARM Southern Great Plains Site Direct Aerosol Forcing Calculated at the ARM Southern Great Plains Site Ackerman, T.P., Flynn, D.M., and Long, C.N., Pacific Northwest National Laboratory Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The continuous measurements of direct and diffuse solar radiation, water vapor column amount, and aerosol optical depth provided at the ARM SGP site permit us to calculate directly the actual magnitude of the direct aerosol forcing. Our methodology employs the clear sky detection algorithm of Long and Ackerman (2000) to identify cloudless periods. We then fit the downward solar flux at the surface during these periods with an empirical function, which provides us with a continuous mathematical representation of the surface flux under aerosol conditions. The flux under completely clear

247

ARM - Instruments  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstruments govInstruments Instruments Location Table Contacts Instrument Categories Select below to highlight instruments in specified categories. Aerosols Airborne Observations Atmospheric Carbon Measurements of atmospheric carbon are obtained from samples collected at the Southern Great Plains site. For more information about these measurements, see the ARM Carbon Project website. Now available: Aircraft carbon profile samples These data (and more) are freely available in the ARM Archive. The first time you visit the Archive you will need to create a new account-a relatively short form asking for contact information-you can use right away. Coming soon: Airborne continuous CO2 profile samples Atmospheric Profiling Cloud Properties Derived Quantities and Models Ocean Observations

248

Atmospheric Radiation Measurement Program Climate Research Facility Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1-March 31, 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or

249

Atmospheric Radiation Measurement Program Climate Research Facility Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1-December 31, 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or

250

Atmospheric Radiation Measurement Program Climate Research Facility Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report January 1-March 31, 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or

251

Optical remote diagnostics of atmospheric propagating beams of ionizing radiation  

DOE Patents (OSTI)

Data is obtained for use in diagnosing the characteristics of a beam of ionizing radiation, such as charged particle beams, neutral particle beams, and gamma ray beams. In one embodiment the beam is emitted through the atmosphere and produces nitrogen fluorescence during passage through air. The nitrogen fluorescence is detected along the beam path to provide an intensity from which various beam characteristics can be calculated from known tabulations. Optical detecting equipment is preferably located orthogonal to the beam path at a distance effective to include the entire beam path in the equipment field of view.

Karl, Jr., Robert R. (Los Alamos, NM)

1990-01-01T23:59:59.000Z

252

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

An Improved Technique for Producing MPL Backscatter Profiles Properly An Improved Technique for Producing MPL Backscatter Profiles Properly Characterized at All Ranges Flynn, C.J. and Powell, D.M., Pacific Northwest National Laboratory Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting An important part of ARM's mission is the quantitative study of the effect of clouds and aerosol on radiative transfer and the energy budget. Micropulse Lidar (MPL) are an integral component of the ARM Program's measurement strategy with one deployed at each of the four major sites (SGP, TWP1, TWP2, and NSA). The MPL system is capable of producing vertical profiles of cloud and aerosol from ground level to the top of the atmosphere. However, the legitimacy of these profiles is sensitive to the calibration and system corrections of the individual MPL. In particular,

253

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Validation of CERES/MODIS Cloud Property Retrievals Using Ground-Based Validation of CERES/MODIS Cloud Property Retrievals Using Ground-Based Measurements Obtained at the DOE ARM SGP Site Dong, X.(a), Minnis, P.(b), Sun-Mack, S.(b), and Mace, G.G.(a), University of Utah (a), NASA Langley Research Center (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Cloud macrophysical and microphysical properties derived from the NASA TERRA (EOS-AM) Moderate Resolution Spectroradiometer (MODIS) as part of the Clouds and the Earth's Radiant Energy System (CERES) project during November 2000-June 2001 are compared to simultaneous ground-based observations. The ground-based data taken by the Atmospheric Radiation Measurement (ARM) Program are used as "ground truth" data set in the validation of the CERES cloud products and to improve the CERES daytime and

254

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

31, 2005 [Facility News] 31, 2005 [Facility News] Ancillary Site to Provide Key Data from Africa Bookmark and Share In January 2006, the ARM Mobile Facility (AMF) begins a year-long field campaign in Africa as part of a multi-year international experiment called the African Monsoon Multidisciplinary Analysis (AMMA). The AMF will be placed at the airport in Niamey, Niger, well within view of the Global Earth Radiation Budget (GERB) geostationary satellite. Cloud and radiative property measurements collected by the AMF will be used in conjunction with GERB data for a greater understanding of the atmosphere than could be gained from either dataset alone. While preparing for the campaign, the science team identified the need for instrumentation at an off-site location to compare radiative measurements from the natural environment of

255

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Results of the Atmospheric Aerosol Condensation Activity Studies Results of the Atmospheric Aerosol Condensation Activity Studies Isakov, A.A. and Golitsyn, G.S., A.M.Obukhov Institute of Atmospheric Physics Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Some new results are presented. of investigations of optical and microphysical characteristics of the atmospheric surface layer aerosol by means of spectropolarimeter The daily measurements were carried out in February - April 2000 at the Zvenigorod Scientific Station of the Institute within the Institut's ARM measurements Program. The spectropolarimeter measured the spectral dependencies of the polarization components of direct scattering coefficient D at three angles j = 450,900,1350 in spectral region l= 0.4 -0.75 mcm. During the measurement period about 500 records

256

ARM - Data Announcements Article  

NLE Websites -- All DOE Office Websites (Extended Search)

October 29, 2008 Data Announcements Radiative Transfer Model Intercomparison Project Data Now Available Bookmark and Share The ARM Climate Research Facility Data Archive has...

257

ARM - Education Article  

NLE Websites -- All DOE Office Websites (Extended Search)

change. The scientists give straightforward explanations of concepts such as the greenhouse effect, solar radiation, the Pacific warm pool, and the El Nio phenomenon. ARM...

258

E-Print Network 3.0 - atmospheric longwave radiation Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

January 1995, Dallas, TX. (56.12) THE GREENHOUSEEFFECT VISUALIZER Summary: to greenhouse effect is provided by subtracting the top of the atmosphere longwave radiation flux...

259

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparison of Boundary Layer Cloud Properties using Surface and GOES Comparison of Boundary Layer Cloud Properties using Surface and GOES Measurements at the ARM SGP Site Dong, X. (a), Minnis, P. (b), Smith, W.L., Jr. (b), and Mace, G.G. (a), University of Utah (a), NASA Langley Research Center (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Boundary layer cloud microphysical and radiative properties derived from GOES data during March 2000 cloud IOP at ARM SGP site are compared with simultaneous surface-based observations. The cloud-droplet effective radius, optical depth, and top-of-atmoshpere (TOA) albedo are retrieved from a 2-stream radiative transfer model in conjunction with ground-based measurements of cloud radar, laser ceilometer, microwave and solar radiometers. The satellite results are retrieved from GOES visible and

260

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL Pyrheliometer Comparisons - 2002 NREL Pyrheliometer Comparisons - 2002 Reda, I. and Stoffel, T.L., National Renewable Energy Laboratory Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting All broadband shortwave radiometers used by the ARM Program are calibrated with absolute cavity radiometers traceable to the World Radiometric Reference (WRR). The WRR was developed and is maintained by the World Radiation Center under the auspices of the World Meteorological Organization. Each fall, the National Renewable Energy Laboratory (NREL) hosts annual comparisons of absolute cavity radiometers at the Solar Radiation Research Laboratory in Golden, Colorado. Since 1995, NREL has maintained the Transfer Standard Group (TSG) consisting of five radiometers belonging to NREL and the ARM Program. Our poster summarizes the results of

Note: This page contains sample records for the topic "arm atmospheric radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

ARM: Surface Radiation Measurement Quality Control testing, including climatologically configurable limits  

DOE Data Explorer (OSTI)

Surface Radiation Measurement Quality Control testing, including climatologically configurable limits

Hodges, Gary; Stoffel, Tom; Kutchenreiter, Mark; Kay, Bev; Habte, Aron; Ritsche, Michael; Morris, Victor; Anderberg, Mary

262

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

5, 2011 [Facility News] 5, 2011 [Facility News] Atmospheric System Research Announces Funding Opportunity Bookmark and Share The U.S. Department of Energy's Office of Science is now accepting applications for Office of Biological and Environmental Research (BER) research grants for the development of innovative laboratory and observational data analyses. The resulting knowledge from such analyses will be used to improve cloud and aerosol formulations in global climate models. Successful applications will be part of the Atmospheric System Research (ASR) Program in the Climate and Environmental Sciences Division (CESD). The mission of ASR, in partnership with the ARM Climate Research Facility, is to quantify the interactions among aerosols, clouds, precipitation, radiation, dynamics, and thermodynamics to improve fundamental

263

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

March 10, 2010 [Facility News] March 10, 2010 [Facility News] Atmospheric System Research Funding Opportunity Announced Bookmark and Share The U.S. Department of Energy's Office of Science is now accepting applications for Office of Biological and Environmental Research (BER) research grants for the development of innovative laboratory and observational data analyses. The resulting knowledge from such analyses will be used to improve cloud and aerosol formulations in global climate models. If the application is successful, the research will be part of the Atmospheric System Research (ASR) Program in the Climate and Environmental Sciences Division (CESD). The mission of ASR, in partnership with the ARM Climate Research Facility, is to quantify the interactions among aerosols, clouds, precipitation, radiation, dynamics, and thermodynamics to improve

264

Estimation of the Radiation Dose to the Public Due to Atmospheric Emissions from the Rostov NPP  

Science Journals Connector (OSTI)

The radiation dose to the public due to atmospheric emissions from the Rostov NPP is calculated using a point conservative approach and a complex of migration and dosimetric models. The radiation exposure path...

L. A. Sharpan; E. I. Karpenko; S. I. Spiridonov

2014-01-01T23:59:59.000Z

265

ARM - Publications: Science Team Meeting Documents: Comparison of ECMWF  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparison of ECMWF Model and ARSCL Cloudiness at the ARM SGP site Comparison of ECMWF Model and ARSCL Cloudiness at the ARM SGP site Kollias, Pavlos RSMAS/University of Miami Albrecht, Bruce University of Miami The Department of Energy (DOE) Atmospheric Radiation Measurements (ARM) Program operates a comprehensive suite of active remote sensors at Southern Great Plains (SGP) in Oklahoma since 1996 to detect all hydrometeors in the atmospheric column above. Due to its location, the ARM SGP site cloud and precipitation climatology it is believed to be representative of mid-latitudes. Long-term (6.5 years) observations from this ARM site are used to provide a cloud and precipitation climatology. A cloud classification scheme based on cloud base height, fractional coverage, cloud thickness, cloud reflectivity and precipitation detection at the

266

ARM - Data Announcements Article  

NLE Websites -- All DOE Office Websites (Extended Search)

November 1, 2012 [Data Announcements] November 1, 2012 [Data Announcements] New Flagship Data Product Launched Bookmark and Share Climate Modeling Best Estimate Transitioned to ARM Best Estimate Data plot from ARM Best Estimate Cloud Radiation VAP demonstrating cloud fraction at Darwin for 2010. Data plot from ARM Best Estimate Cloud Radiation VAP demonstrating cloud fraction at Darwin for 2010. The ARM showcase data set CMBE, previously released as an evaluation product, transitioned to an ARM production data set and became the first two products of the new ARMBE value-added product. The new flagship ARMBE product name will represent all the ARM best estimate products. Transitioning CMBE to ARMBE required changing the metadata to meet ARM production data standards, but also brings the new release of ARM Best

267

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

The Solar Spectrum 360 to 1050 nm from Rotating Shadowband The Solar Spectrum 360 to 1050 nm from Rotating Shadowband Spectroradiometer (RSS) Measurements at the Southern Great Plains Site Harrison, L.C., Berndt, J.L., Kiedron, P.W., Michalsky, J.J., Min, Q., and Schlemmer, J., Atmospheric Sciences Research Center, State University of New York, Albany Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Two years of Langley extrapolations made from the Southern Great Plains (SGP) site of the Atmospheric Radiation Measurement (ARM) Program using two very different RSS instruments and a NIST-derived irradiance scale show larger extraterrrestrial solar irradiances in the 400 to 600 nm domain by as much as 4.5% compared to the Labs and Neckels [1968] data. Our results are more congruent with Thuiller et al. [1998] in this domain, but do not

268

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

The Influence of Clouds, Aerosols, and Water Vapor on the Discrepancy The Influence of Clouds, Aerosols, and Water Vapor on the Discrepancy Between Modeled and Observed Atmospheric Absorption Arking, A. Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Daily mean estimates of atmospheric absorption of solar radiation at the ARM/SGP site are obtained for 36 days during the fall season in 1995 and 1997. They are based on broadband observations of surface flux and satellite estimates of TOA albedo. Mean absorption in the vertical column is 0.246 (expressed as a ratio with respect to the incident flux at TOA). For 13 of the days, which are entirely free of clouds, the mean absorption is 0.245. Although clouds have no systematic effect on absorption, they do have an effect---sometimes causing an increase and sometimes a decrease

269

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud Property Retrieval Using Combined Ground-Based Remote Sensors Cloud Property Retrieval Using Combined Ground-Based Remote Sensors Wang, Z. and Sassen, K., University of Utah Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The Atmospheric Radiation Measurements Program (ARM) is making measurements with diverse ground-based remote sensors. To provide more complete and accurate cloud information, it is necessary to combine diverse measurements because of the different capabilities of various sensors. In this study, a remote sensing cloud detection algorithm has been developed that can differentiate between various atmospheric targets such as ice and water clouds, virga, precipitation, and aerosol layers. Cloud type and macrophysical properties are identified by combining ground-based polarization lidar, millimeter wave radar, infrared radiometer, and dual

270

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

A Continuous Baseline Microphysical Retrieval (MICROBASE): Status of SGP A Continuous Baseline Microphysical Retrieval (MICROBASE): Status of SGP Version 1.2 and Prototype TWP Version Miller, M.A.(a), Johnson, K.L.(a), Jensen, M.P.(b), Mace, G.G.(c), Dong, X.(d), and Vogelmann, A.M.(a), Brookhaven National Laboratory (a), Columbia University (b), University of Utah (c), University of North Dakota (d) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The interaction of clouds with incoming and outgoing radiation streams produces discontinuous regions of heating and cooling within the atmospheric column. These regions can influence the atmospheric circulations at multiple scales, as well as modify the existing cloud structures. The Broadband Heating Rate Project (BBHRP) within ARM has the goal of producing instantaneous snapshots of the heating and cooling rate

271

ARM - ARM Climate Research Facility Contributions to International Polar  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Support International Polar Year Begins at ACRF with 3-week Campaign in Barrow Aerosol Affects on Clouds To Be Studied Yearlong Study to Improve Polar Measurements of Radiative Energy Education Efforts Educational Kiosk CD Available at No Cost-Request Yours Today! POLAR-PALOOZA: Climate science goes on tour! Partnership Extends Support for National Science Teacher Conference Teacher's Domain Combines Culture and Climate Other Links ACRF IPY Home U.S. IPY Home ARM Climate Research Facility Contributions to International Polar Year (IPY) The Department of Energy's International Polar Year (IPY) contributions will be conducted at the Atmospheric Radiation Measurement Climate Research Facility (ARM) located in the North Slope of Alaska. This DOE user facility

272

ARM - Events Article  

NLE Websites -- All DOE Office Websites (Extended Search)

April 12, 2011 [Events, Facility News] April 12, 2011 [Events, Facility News] ARM Participates in Second Annual Atmospheric System Research Science Team Meeting Bookmark and Share In front of her poster, Alice Cialella from Brookhaven National Laboratory speaks to ARM Aerial Facility Program Manager Rickey Petty. In front of her poster, Alice Cialella from Brookhaven National Laboratory speaks to ARM Aerial Facility Program Manager Rickey Petty. ARM Facility staff participated in the second annual Atmospheric System Research (ASR) Science Team Meeting, held March 27-April 1 in San Antonio, Texas. ASR and ARM collaborate through the use of ARM facilities for targeted field campaigns and data gathered at ARM sites for climate model improvement. The annual meeting provides an opportunity for science and

273

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud-Radiation-Aerosol Experiment (1996) at IAPh, Russia Cloud-Radiation-Aerosol Experiment (1996) at IAPh, Russia Golitsyn, G.S., Anikine, P.P., and Sviridenkov, M.A., Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting In 1996, local measurements of the optical properties of the near-surface aerosol were carried out parallel with aureole measurements of the aerosol in the atmospheric column. The spectral radiation was measured by a complex of spectrometers. Global radiation was controlled by standard equipment (pyrheliometer, pyranometer, pyrgeometer). A microwave sounder was used to determine the liquid water path of clouds and water vapor content. Advanced Very High Resolution Radiometer (AVHRR) data from the National Oceanic and

274

Overview of the ARM/FIRE Water Vapor Experiment (AFWEX)  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview of the ARM/FIRE Water Vapor Overview of the ARM/FIRE Water Vapor Experiment (AFWEX) D. C. Tobin, H. E. Revercomb, and D. D. Turner University of Wisconsin-Madison Madison, Wisconsin Introduction An overview of the ARM/FIRE Water Vapor Experiment (AFWEX) is given. This field experiment was conducted during November-December 2000 near the central ground-based Atmospheric Radiation Measurement (ARM) site in north central Oklahoma, and was sponsored jointly by the ARM, the National Aeronautics and Space Administration (NASA) First ISCCP Regional Experiment (FIRE), and the National Polar-orbiting Operational Environmental Satellite System (NPOESS) programs. Its primary goal was to collect accurate measurements of upper-level (~8 to 12 km) water vapor near the ground-based ARM site. These data are being used to determine the accuracy of measurements that are

275

Tools for Viewing and Quality Checking ARM Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Tools for Viewing and Quality Checking ARM Data Tools for Viewing and Quality Checking ARM Data S. Bottone and S. Moore Mission Research Corporation Santa Barbara, California Introduction Mission Research Corporation (MRC) is developing software tools to assist the Atmospheric Radiation Measurement (ARM) Data Quality Office with their data inspection tasks. One such tool is NCVweb, a web-based data analysis and visualization tool that allows for easy viewing of ARM NetCDF data files. This tool helps to eliminate the need of and problems associated with downloading large volumes of data, installing and configuring visualization software, or writing custom data exploration software. It has been upgraded this year with many new features described below. NCVweb can be used at the ARM Data Quality website directly via http://dq.arm.gov/ncvweb/ncvweb.cgi, or via the Data Quality

276

ARM - Feature Stories and Releases Article  

NLE Websites -- All DOE Office Websites (Extended Search)

19, 2007 [Feature Stories and Releases] 19, 2007 [Feature Stories and Releases] Marked Improvements Shown in Global Weather Forecast Model Bookmark and Share Contact: Lynne Roeder, ARM Public Information Officer, 509.372.4331 Example of an ECMWF analysis. Example of an ECMWF analysis. One of the world's foremost weather forecast models is showing dramatic improvements thanks to the pairing of two recent advancements in the representation of radiative transfer in global weather and climate models. Developed with funding from the Atmospheric Radiation Measurement (ARM) Program, the new components simulate the absorption and scattering of sunlight ("solar radiation") in the atmosphere and better represent small-scale cloud variability. Their application to the forecast model of the European Centre for Medium-Range Weather Forecasts (ECMWF) solves a

277

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

3D Delta-Diffusion and IR Monte-Carlo Methods for Radiative Transfer 3D Delta-Diffusion and IR Monte-Carlo Methods for Radiative Transfer Applied to Inhomogeneous Cirrus over the ARM-SGP Site Chen, Y.(a), Liou, K.N.(a), Gu, Y.(a), Ou, S.C.(a), and Mace, G.G.(b), University of California, Los Angeles (a), University of Utah (b) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting An efficient method based on a full multigrid approach has been developed to solve the 3D delta-diffusion radiative transfer equation, which utilizes four-term spherical harmonics expansion for the phase function and intensity. This method first solves the inhomogeneous partial differential equation on a number of coarse grids and subsequently performs interpolation to predivided fine grids to speed up the convergence of the solution, particularly useful for cloud radiation parameterization in

278

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterizing Diurnal CO2 Cycles in the Continental Boundary Layer Using Characterizing Diurnal CO2 Cycles in the Continental Boundary Layer Using Precise Concentration Measurements and a Simple Numerical Model Torn, M.S.(a), Riley, W.(a), Rischer, M.L.(a), Biraud, S.(a), and Berry, J.(b), Lawrence Berkeley National Laboratory (a), Carnegie Institution of Washington (b) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting In continental regions, atmospheric CO2 profiles are strongly influenced by atmospheric dynamics as well as ecosystem and anthropogenic fluxes. Relating site level measurements or atmospheric profiles to regional CO2 budgets may require methods to represent or evaluate these influences. At the Southern Great Plains ARM-CART, we are measuring precise CO2 concentrations continuously at 2-60 m and weekly at 300 and 3300 m agl. CO2

279

DOE/SC-ARM/P-07-004  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Contributions of the Atmospheric Radiation Measurement (ARM) Program and the ARM Climate Research Facility to the U.S. Climate Change Science Program September 2008 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research DISCLAIMER This report was prepared as an account of work sponsored b y the U.S. Government. Neither the United States nor an agency thereof, nor any of

280

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Science Team Meeting 8 Science Team Meeting 1998 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Cover image Proceedings of the Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM-CONF-1998, March 1998 Tucson, Arizona For proper viewing, many of these proceedings should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. * Poster abstract only; an extended abstract was not provided by the author(s). History and Status of the ARM Program - March 1998 Session Papers A Cloud Climatology of the ARM CART Site S.M. Lazarus, S.K. Krueger, and G.G. Mace A Combination of the Separation of Variable and the T-Matrix Method for Computing Optical Properties of Spheroidal Particles*

Note: This page contains sample records for the topic "arm atmospheric radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Initial Measurements from the Compact Millimeter-Wave Radar Initial Measurements from the Compact Millimeter-Wave Radar Roman-Nieves, J.(a), Sekelsky, S.M.(a), Tooman, T.T.(b), and Bolton, W.B.(b), University of Massachusetts at Amherst (a), Sandia National Laboratories (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The University of Massachusetts at Amherst has developed a solid state compact 95 GHz millimeter-wave radar (CMR) for the ARM Unmanned Aerospace Vehicle (UAV) program. CMR has recently flown in ARM-UAV sponsored engineering flights and a cirrus science mission flying aboard the NASA Proteus aircraft. This poster presents the final CMR hardware configuration and results from ground-based and airborne engineering measurements. In addition we show airborne measurements form from the ARM-UAV 2002 Cirrus

282

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosol Indirect Effect: Evidence from the ARM SGP and NSA Sites Aerosol Indirect Effect: Evidence from the ARM SGP and NSA Sites Penner, J.E.(a), Chen, Y.(a), and Dong, X.(b), University of Michigan (a), University of North Dakota (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The ARM SGP site and the NSA site provide a unique opportunity to examine the effects of aerosols on cloud optical properties because the aerosol concnetrations at each site span the range between polluted and clean conditions. Here, we examine whether the effect of aerosols on clouds can adequately explain the observed relationship between the liquid water path observed at each site and the cloud optical depth required to determine the observed surface flux. Aerosol number concentration at the SGP site was determined from the observed CN number concentration as well as the

283

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud Height Statistics Derived from ARM Millimeter Cloud Radar Cloud Height Statistics Derived from ARM Millimeter Cloud Radar Kato, S. (a), Clothiaux, E.E. (b), and Xu, K.-M. (c), Hampton University (a), Pennsylvania State University (b), NASA Langley Research Center(c) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The probability of occurrence of the cloud top height for a given altitude and relation to the geometrical cloud thickness are derived from radar reflectivity factor taken by a millimeter cloud radar operated at ARM Oklahoma site. Statistics derived using July 1997 data show that the cloud top is likely to occur at 12 km and clouds extend to the lower troposphere. Statistics derived using January 1998 data show that single layer boundary layer clouds are dominant. There is another cloud top peak, although less

284

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

ARM External Data: Recent Developments and Future Plans ARM External Data: Recent Developments and Future Plans Wagener, R., Gregory, L., Ma, L.L., and Cialella, A., Brookhaven National Laboratory Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting This poster lists new datastreams collected and processed by the ARM External Data Center since the last update in 1999 (MOLTS, TOMS, 30 min OK Mesonet, CSPHOT, TWP AVHRR, ECMWF, RUC, TAO Buoy, IAP). We describe briefly the software tools employed in converting these data to netCDF files, because data-users might find them helpful in dealing with the raw files themselves (GrADS, IDL, Perl). The priorities for future data acquisitions and ingests are set by consensus of the Science Working Groups. The current high priority new collections include: Suominet GPS data, Darwin Radar and

285

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

ARM In The Classroom: Developing an Operational Forecasting Site for the ARM In The Classroom: Developing an Operational Forecasting Site for the NSA Harrington, J. Y.(a) and Olsson, P. Q.(b), The Pennsylvania State University (a), The University of Alaska Anchorage (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting During the fall 2002 semester, the Department of Meteorology's Computer Applications in Meteorology course took on the project of developing an operational forecasting site for the ARM North Slope of Alaska and the Alaska Region. The course was designed around team-driven forecast products similar to what the students will find in the job environment. During the fall semester, the students were provided with a data feed from Alaska consisting of various forecast fields for the ETA model Alaska grid. The

286

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparison of Stratus Cloud Optical Depths Retrieved from Surface and GOES Comparison of Stratus Cloud Optical Depths Retrieved from Surface and GOES Measurements over the SGP ARM Central Facility Dong, X., and Smith, W.L. Jr., Analytical Services and Materials, Inc.; Minnis, P., NASA Langley Research Center Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting For reliable application of satellite datasets in cloud process and single column models, it is important to have a reasonable estimate of the errors in the observed cloud properties. When properly used, ground-based instruments can provide a cloud truth dataset for estimating errors in the satellite products. Data taken during the spring 1994 ARM Intensive Observation Period (IOP), ARM Enhanced Shortwave Experiment (ARESE), and SUbsonic Aircraft Contrail and Cloud Effects Special Study (SUCCESS) are

287

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

An Overview of Water Vapor IOP (WVIOP) 2000 and ARM/FIRE Water Vapor An Overview of Water Vapor IOP (WVIOP) 2000 and ARM/FIRE Water Vapor EXperiment (AFWEX) Tobin, D., Revercomb, H., and Turner, D.D., University of Wisconsin-Madison Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting WVIOP 2000 and AFWEX, two field experiments with focus on the accuracy of ARM water vapor measurements, have recently been conducted. WVIOP 2000, the third in a series of WVIOPs which have studied the accuracy of lower tropospheric water vapor measurements, ran from 18 September to 8 October 2000 and consisted of ground based operations primarily out of the SGP central facility. AFWEX was an interagency experiment with the primary goal of assessing the accuracy of upper level (~8-12 km) water vapor measurements. It was conducted from 27 November to 15 December 2000 and

288

Use of ARM observations and numerical models to determine radiative and latent heating profiles of mesoscale convective systems for general circulation models  

SciTech Connect

This three-year project, in cooperation with Professor Bob Houze at University of Washington, has been successfully finished as planned. Both ARM (the Atmospheric Radiation Measurement Program) data and cloud-resolving model (CRM) simulations were used to identify the water budgets of clouds observed in two international field campaigns. The research results achieved shed light on several key processes of clouds in climate change (or general circulation models), which are summarized below. 1. Revealed the effect of mineral dust on mesoscale convective systems (MCSs) Two international field campaigns near a desert and a tropical coast provided unique data to drive and evaluate CRM simulations, which are TWP-ICE (the Tropical Warm Pool International Cloud Experiment) and AMMA (the African Monsoon Multidisciplinary Analysis). Studies of the two campaign data were contrasted, revealing that much mineral dust can bring about large MCSs via ice nucleation and clouds. This result was reported as a PI presentation in the 3rd ASR Science Team meeting held in Arlington, Virginia in March 2012. A paper on the studies was published in the Journal of the Atmospheric Sciences (Zeng et al. 2013). 2. Identified the effect of convective downdrafts on ice crystal concentration Using the large-scale forcing data from TWP-ICE, ARM-SGP (the Southern Great Plains) and other field campaigns, Goddard CRM simulations were carried out in comparison with radar and satellite observations. The comparison between model and observations revealed that convective downdrafts could increase ice crystal concentration by up to three or four orders, which is a key to quantitatively represent the indirect effects of ice nuclei, a kind of aerosol, on clouds and radiation in the Tropics. This result was published in the Journal of the Atmospheric Sciences (Zeng et al. 2011) and summarized in the DOE/ASR Research Highlights Summaries (see http://www.arm.gov/science/highlights/RMjY5/view). 3. Used radar observations to evaluate model simulations In cooperation with Profs. Bob Houze at University of Washington and Steven Rutledge at Colorado State University, numerical model results were evaluated with observations from W- and C-band radars and CloudSat/TRMM satellites. These studies exhibited some shortcomings of current numerical models, such as too little of thin anvil clouds, directing the future improvement of cloud microphysics parameterization in CRMs. Two papers of Powell et al (2012) and Zeng et al. (2013), summarizing these studies, were published in the Journal of the Atmospheric Sciences. 4. Analyzed the water budgets of MCSs Using ARM data from TWP-ICE, ARM-SGP and other field campaigns, the Goddard CRM simulations were carried out to analyze the water budgets of clouds from TWP-ICE and AMMA. The simulations generated a set of datasets on clouds and radiation, which are available http://cloud.gsfc.nasa.gov/. The cloud datasets were available for modelers and other researchers aiming to improve the representation of cloud processes in multi-scale modeling frameworks, GCMs and climate models. Special datasets, such as 3D cloud distributions every six minutes for TWP-ICE, were requested and generated for ARM/ASR investigators. Data server records show that 86,206 datasets were downloaded by 120 users between April of 2010 and January of 2012. 5. MMF simulations The Goddard MMF (multi-scale modeling framework) has been improved by coupling with the Goddard Land Information System (LIS) and the Goddard Earth Observing System Model, Version 5 (GOES5). It has also been optimized on NASA HEC supercomputers and can be run over 4000 CPUs. The improved MMF with high horizontal resolution (1 x 1 degree) is currently being applied to cases covering 2005 and 2006. The results show that the spatial distribution pattern of precipitation rate is well simulated by the MMF through comparisons with satellite retrievals from the CMOPRH and GPCP data sets. In addition, the MMF results were compared with three reanalyses (MERRA, ERA-Interim and CFSR). Although the MMF tends

Tao, Wei-Kuo; Houze, Robert, A., Jr.; Zeng, Xiping

2013-03-14T23:59:59.000Z

289

GPS Water Vapor Projects Within the ARM Southern Great Plains Region  

NLE Websites -- All DOE Office Websites (Extended Search)

GPS Water Vapor Projects Within the ARM GPS Water Vapor Projects Within the ARM Southern Great Plains Region J. Braun, T. Van Hove, S. Y. Ha, and C. Rocken GPS Science and Technology Program University Corporation for Atmospheric Research Boulder, Colorado Abstract The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program has a need for an improved capability to measure and characterize the four-dimensional distribution of water vapor within the atmosphere. Applications for this type of data include their use in radiation transfer studies, cloud-resolving and single-column models, and for the establishment of an extended time series of water vapor observations. The University Corporation for Atmospheric Research's (UCAR) GPS Science and Technology (GST) Program is working with ARM to leverage the substantial investment in

290

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Boundary Layer Structure and Fair-Weather Cumulus Characteristics at the Boundary Layer Structure and Fair-Weather Cumulus Characteristics at the TWP ARM Site - Comparisons with Other Tropical and Subtropical Sites Albrecht, B. and Kollias, P., University of Miami Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Fair-weather cumuli are fundamental in regulating the vertical structure of water vapor and entropy in the lowest 2 km of the Earths atmosphere over vast areas of the oceans. Boundary layer structures and cloud characteristics observed at Nauru (ARM TWP) during suppressed convective conditions are compared with those observed at other tropical and subtropical sites. Over three years of data from the mm-wavelength cloud radar and ceilometer observations at the Nauru site are analyzed and a statistical description of the field of fair weather cumulus is inferred.

291

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

I Method I Method Potter, G.L.(a), Boyle, J.S.(a), Cederwall, R.T.(a), Fiorino, M.(a), Hnilo, J.J.(a), Phillips, T.J.(a), and Williamson, D.(b), Lawrence Livermore National Laboratory (a), National Center for Atmospheric Research (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting We present a methodology to diagnose GCM errors by using NWP analyses to initialize a climate model. The analysis is used as input in conjunction with ARM data to study the initial model drift (6-36 hours) from the observations. Simply put, a climate model is used in a weather forecast mode to see how quickly it drifts from the observed weather and detailed observations provided by the ARM program. This approach can be used to improve parameterizations responsible for models errors on longer time

292

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

From Crops to Boundary Layer and Back Down Again: the ARM Carbon Project in From Crops to Boundary Layer and Back Down Again: the ARM Carbon Project in the Southern Great Plains Torn, M.S.(a), Berry, J.(b), Riley, W.J.(a), Fischer, M.L.(a), Billesbach, B.(c), Helliker, B.(b), and Giles, L.(b), Lawrence Berkeley National Laboratory (a), Carnegie Institution of Washington (b), University of Nebraska (c) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting One of the challenges in carbon cycle research is the vast range of scale that must be traversed by measurements and models. Our understanding of carbon cycle processes is being built from studies of enzymes, organisms and plot-scale studies of ecosystems, while our ultimate objective is to understand the mass and isotope balance of earthÂ’s atmosphere. Spanning

293

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Development and Comparison of Ground- and Satellite-based Retrievals of Development and Comparison of Ground- and Satellite-based Retrievals of Cirrus Cloud Physical Properties d'Entremont, R.P.(a) and Mitchell, D.L.(b), Atmospheric and Environmental Research, Inc. (a), Desert Research Institute (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting This project is designed to (1) develop new ground- and space-based retrieval methods for cirrus cloud ice water path (IWP), effective size (Deff), and visible extinction optical thickness (OT) using thermal infrared wavelength bands from 3.7 to 13 um, and (2) to compare these retrievals with others obtained by ARM investigators during various ARM IOPs. During year 1 of this project research focused primarily on the enhancing of satellite- and ground-based thermal infrared retrievals of

294

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Sizes, Fractional Coverage, and Radar Doppler Moments Profiles of Sizes, Fractional Coverage, and Radar Doppler Moments Profiles of Fair-Weather Cumulus Clouds at the TWP ARM Site Kollias, P., Albrecht B.A., and Dow B.J., University of Miami Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Fair-weather cumuli are fundamental in regulating the vertical structure of water vapor and entropy in the lowest 2 km of the Earth's atmosphere over vast areas of the oceans. Using data from the mm-wavelength cloud radar, the micro-pulse lidar and ceilometer at the Nauru (TWP-ARM) site, a statistical description of the field of fair weather cumulus is inferred. Frequency diagrams of cloud thickness, fractional coverage, updraft-downdraft magnitudes and cloud reflectivity are calculated. The relationship of the statistical behavior of the cumulus field to the

295

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Shortwave and Longwave Flux and Cooling Rate Profiles for the ARM Central Shortwave and Longwave Flux and Cooling Rate Profiles for the ARM Central Facility Clough, S.A. (a), Delamere, J.S. (a), Mlawer, E.J. (a), Cederwall, R.T. (b), Revercomb, H. (c), Tobin, D. (c), Turner, D.D. (c), Knuteson, R.O. (c), Michalsky, J.J. (d), Kiedron, P.W. (d), Ellingson, R.G. (e), Krueger, S.K. (f), Mace, G.G. (f), Shippert, T. (g), and Zhang, M.H.(h), Atmospheric and Environmental Research, Inc. (a), Lawrence Livermore National Laboratory (b), University of Wisconsin-Madison (c), State University of New York, Albany (d), University of Maryland (e), University of Utah (f), Pacific Northwest National Laboratory (g), State University of New York, Stony Brook (h) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Accurate representations of the cooling rate profile, the surface flux and

296

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

an Improved Convective Triggering Mechanism in the NCAR CAM2 an Improved Convective Triggering Mechanism in the NCAR CAM2 under the CCPP-ARM Parameterization Testbed (CAPT) Framework Xie, S.C.(a), Cederwall, R.T.(a), Potter, G.L.(a), Boyle, J.S.(a), Yio, J.J.(a), Zhang, M.H.(b), and Lin, W.Y.(b), Lawrence Livermore National Laboratory (a), State University of New York at Stony Brook (b) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting In this study, we implement an improved convective triggering mechanism, which was developed by Xie and Zhang [2000] based on the ARM observations and Single-Column Model (SCM) tests, in the NCAR Community Atmosphere Model (CAM2) in order to reduce the problem that the model produces excessive warm season daytime precipitation over land. This problem is closely

297

ARM - ARM Safety Policy  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Policy Safety Policy About Become a User Recovery Act Mission FAQ Outreach Displays History Organization Participants Facility Statistics Forms Contacts Facility Documents ARM Management Plan (PDF, 335KB) Field Campaign Guidelines (PDF, 1.1MB) ARM Climate Research Facility Expansion Workshop (PDF, 1.46MB) Facility Activities ARM and the Recovery Act Contributions to International Polar Year Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send ARM Safety Policy The ARM Climate Research Facility safety policy states that all activities for which the ARM Climate Research Facility has primary responsibility will be conducted in such a manner that all reasonable precautions are taken to protect the health and safety of employees and the general public. All

298

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimation of Temperature Effect of Fires Near Moscow in Summer-Fall 2002 Estimation of Temperature Effect of Fires Near Moscow in Summer-Fall 2002 Mokhov, I.I. and Gorchakova, I.A., Obukhov Institute of Atmosphere Physics RAS, Russia Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Local effect of cooling ΔT due to peatbog and forest fires near Moscow in summer-fall 2002 is estimated. These estimates are based on coordinated measurements at the Zvenigorod Scientific Station (55°42'N, 36°46'E) of our Institute. Continuous measurements of radiation balance components at the surface together with meteorological and aerological observations and determination of the aerosol optical depth τ were used to calculate the aerosol radiative forcing (ARF) at the surface ARF(0), at the top of the atmosphere ARF(∞), and for the whole atmosphere ARF (∞)- ARF(0).

299

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Long-Period Variations of UV-B Radiation From Results of Ozone Long-Period Variations of UV-B Radiation From Results of Ozone Reconstruction from Dendrochronologic Data Zuev, V.V. and Bondarenko, S.L., Institute of Atmospheric Optics Russian Academy of Sciences Tomsk, Russia Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The thickness of stratospheric ozone layer modulates the level of UV-B radiation reaching the surface without cloudiness. The high level of UV-B radiation causes a stress of vegetation including trees. The stress-induced changes in physiologic processes are reflected in tree ring characteristics. The multi-centennial history of ozonosphere behavior is contained in annual tree rings on the basis of response to UV-B radiation effect. The dendrochronologic time series are statistically representative,

300

Use of the ARM Measurements of Spectral Zenith Radiance for Better Understanding of 3D Cloud-Radiation Processes & Aerosol-Cloud Interaction  

SciTech Connect

We proposed a variety of tasks centered on the following question: what can we learn about 3D cloud-radiation processes and aerosol-cloud interaction from rapid-sampling ARM measurements of spectral zenith radiance? These ARM measurements offer spectacular new and largely unexploited capabilities in both the temporal and spectral domains. Unlike most other ARM instruments, which average over many seconds or take samples many seconds apart, the new spectral zenith radiance measurements are fast enough to resolve natural time scales of cloud change and cloud boundaries as well as the transition zone between cloudy and clear areas. In the case of the shortwave spectrometer, the measurements offer high time resolution and high spectral resolution, allowing new discovery-oriented science which we intend to pursue vigorously. Research objectives are, for convenience, grouped under three themes: â?¢ Understand radiative signature of the transition zone between cloud-free and cloudy areas using data from ARM shortwave radiometers, which has major climatic consequences in both aerosol direct and indirect effect studies. â?¢ Provide cloud property retrievals from the ARM sites and the ARM Mobile Facility for studies of aerosol-cloud interactions. â?¢ Assess impact of 3D cloud structures on aerosol properties using passive and active remote sensing techniques from both ARM and satellite measurements.

Alexander Marshak; Warren Wiscombe; Yuri Knyazikhin; Christine Chiu

2011-05-24T23:59:59.000Z

Note: This page contains sample records for the topic "arm atmospheric radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

ARM - AGU Presentations Featuring ARM Data  

NLE Websites -- All DOE Office Websites (Extended Search)

CenterAGU Presentations Featuring ARM Data CenterAGU Presentations Featuring ARM Data Media Contact Lynne Roeder lynne-dot-roeder-at-pnnl-dot-gov @armnewsteam Field Notes Blog Topics Field Notes89 AGU 3 AMIE 10 ARM Aerial Facility 2 ARM Mobile Facility 1 6 ARM Mobile Facility 2 47 BAECC 1 BBOP 4 MAGIC 12 MC3E 17 SGP 2 STORMVEX 29 TCAP 3 Search News Search Blog News Center All Categories What's this? Social Media Guidance News Center All Categories Features and Releases Facility News Field Notes Blog feed Events feed Employment Research Highlights Data Announcements Education News Archive What's this? Social Media Guidance AGU Presentations Featuring ARM Data Monday, December 13 Presentation Type Session ID and Presentation Title Presenters Time and Location A11H. Atmospheric Sciences General Contributions: Clouds and Aerosol-Cloud Interactions I

302

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Impact of Clouds on the Atmospheric Absorption of SW - Comparing Theory and Impact of Clouds on the Atmospheric Absorption of SW - Comparing Theory and Observation at SGP Rose, F.G. (a), Charlock, T.P. (b), and Rutan, D.A. (a), Analytical Services & Materials Inc. (a), NASA Langley Research Center (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting This group, and also Li and Trishchenko, have earlier determined the cloud forcing to the atmospheric absorption of SW by combining surface data at SGP with CERES at TOA. Detailed analysis of our results show a systematic trend in the difference of all-sky and clear-sky atmospheric absorption with cosSZA: All-sky absorbs significantly more than clear-sky as cosSZA increases. From radiative transfer theory, all-sky absorption of SW is expected to be greater (less) than clear sky absoption when clouds are low

303

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Measurement (ARM) Science Team Meeting The Unmanned Aerospace Vehicle (UAV) Program conducted an ARM Enhanced Shortwave Experiment (ARESE) II Intensive...

304

Atmospheric Radiation Measurement Program facilities newsletter, November 2002.  

SciTech Connect

Fall 2002 Intensive Operation Periods: Single Column Model and Unmanned Aerospace Vehicle--In an Intensive Operation Period (IOP) on November 3-23, 2002, researchers at the SGP CART site are collecting a detailed data set for use in improving the Single Column Model (SCM), a scaled-down climate model. The SCM represents one vertical column of air above Earth's surface and requires less computation time than a full-scale global climate model. Researchers first use the SCM to efficiently improve submodels of clouds, solar radiation transfer, and atmosphere-surface interactions, then implement the results in large-scale global models. With measured values for a starting point, the SCM predicts atmospheric variables during prescribed time periods. A computer calculates values for such quantities as the amount of solar radiation reaching the surface and predicts how clouds will evolve and interact with incoming light from the sun. Researchers compare the SCM's predictions with actual measurements made during the IOP, then adjust the submodels to make predictions more reliable. A second IOP conducted concurrently with the SCM IOP involves high-altitude, long-duration aircraft flights. The original plan was to use an unmanned aerospace vehicle (UAV), but the National Aeronautics and Space Administration (NASA) aircraft Proteus will be substituted because all UAVs have been deployed elsewhere. The UAV is a small, instrument-equipped, remote-control plane that is operated from the ground by a computer. The Proteus is a manned aircraft, originally designed to carry telecommunications relay equipment, that can be reconfigured for uses such as reconnaissance and surveillance, commercial imaging, launching of small space satellites, and atmospheric research. The plane is designed for two on-board pilots in a pressurized cabin, flying to altitudes up to 65,000 feet for as long as 18 hours. The Proteus has a variable wingspan of 77-92 feet and is 56 feet long. The plane can carry up to 7,260 pounds of equipment, making it a versatile research tool. The Proteus is making measurements at the very top of the cirrus cloud layer to characterize structures of these clouds. These new measurements will provide more accurate, more abundant data for use in improving the representation of clouds in the SCM. 2002-2003 Winter Weather Forecast--Top climate forecasters at the National Oceanic and Atmospheric Administration's (NOAA's) Climate Prediction Center say that an El Nino condition in the tropical Pacific Ocean will influence our winter weather this year. Although this El Nino is not as strong as the event of the 1997-1998 winter season, the United States will nevertheless experience some atypical weather. Strong impacts could be felt in several areas. Nationally, forecasters are predicting warmer-than-average temperatures over the northern tier of states and wetter-than-average conditions in the southern tier of states during the 2002-2003 winter season. Kansas residents should expect warmer and wetter conditions, while Oklahoma will be wetter than average.

Holdridge, D. J.

2002-12-03T23:59:59.000Z

305

ARM - Datastreams - acars  

NLE Websites -- All DOE Office Websites (Extended Search)

Datastreamsacars Datastreamsacars Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : ACARS ARINC ACARS: wind and temperature data from commercial aircraft (ARINC Communications, Addressing, and Reporting System) Active Dates 1998.09.22 - 2008.05.31 Measurement Categories Atmospheric State, Surface Properties Originating Instrument Aircraft Communications Addressing and Reporting System (ACARS) Measurements The measurements below provided by this product are those considered scientifically relevant. Measurement Variable Atmospheric moisture correctedWVMR Atmospheric moisture dewpoint Atmospheric moisture downlinkedRH Atmospheric turbulence maxTurbulence

306

X:\ARM_19~1\4264.FRT  

NLE Websites -- All DOE Office Websites (Extended Search)

the Atmospheric Radiation the Atmospheric Radiation Measurement Program - March 1995 P. Lunn U.S. Department of Energy Washington, D.C. T. Cress and G. Stokes Pacific Northwest National Laboratory Richland, Washington 99352 This document contains the summaries of papers presented understand the quality of the climate model itself. Next, it at the 1995 Atmospheric Radiation Measurement (ARM) showed that it is possible, and in fact necessary, to Science Team meeting held in San Diego, California. To understand the relatively coarse representations of physics put these papers in context, it is useful to consider the contained in a climate model in terms of a hierarchy of history and status of the ARM Program at the time of the process models. For radiation, this hierarchy ranges from meeting. the highly detailed line-by-line codes to the highly

307

Interpolation Uncertainties Across the ARM SGP Area  

NLE Websites -- All DOE Office Websites (Extended Search)

Interpolation Uncertainties Across the ARM SGP Area Interpolation Uncertainties Across the ARM SGP Area J. E. Christy, C. N. Long, and T. R. Shippert Pacific Northwest National Laboratory Richland, Washington Interpolation Grids Across the SGP Network Area The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program operates a network of surface radiation measurement sites across north central Oklahoma and south central Kansas. This Southern Great Plains (SGP) network consists of 21 sites unevenly spaced from 95.5 to 99.5 degrees west longitude, and from 34.5 to 38.5 degrees north latitude. We use the technique outlined by Long and Ackerman (2000) and Long et al. (1999) to infer continuous estimates of clear-sky downwelling shortwave (SW) irradiance, SW cloud effect, and daylight fractional sky cover for each

308

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

The Second ARM Diffuse Horizontal Irradiance Comparison Fall 2003 The Second ARM Diffuse Horizontal Irradiance Comparison Fall 2003 Michalsky, J.J.(a), Dolce, R.(b), Dutton, E.G.(c), Long, C.N.(d), Jeffries, W.Q.(e), McArthur, L.J.B.(f), Philipona, R.(g), Reda, I.(h), and Stoffel, T.L.(h), State University of New York at Albany (a), Kipp & Zonen, Inc. (b), Climate Monitoring and Diagnostics Laboratory, NOAA (c), Pacific Northwest National Laboratory (d), Yankee Environmental Systems, Inc. (e), Meteorological Service of Canada (f), World Radiation Center (g), National Renewable Energy Laboratory (h) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The first diffuse horizontal irradiance comparison in the Fall 2001 revealed a consistency near the 2 W/m2 level among more than half of the pyranometers that participated. In planning for this second comparison the

309

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

International Pyrgeometer and Absolute Sky-scanning Radiometer Comparison International Pyrgeometer and Absolute Sky-scanning Radiometer Comparison at the NSA ARM site Barrow Stamnes, K. (a), Dutton, E.G. (b), Marty, Ch. (c), Michalsky, J.J. (d), Philipona, R. (e), Stoffel, T. (f), Storvold, R. (c), and Zak, B.D. (g), Stevens Institute of Technology, New Jersey (a), NOAA, Climate Monitoring and Diagnostics Laboratory (b), University of Alaska Fairbanks (c), State University of New York at Albany (d), World Radiation Center, Davos, Switzerland (e), National Renewable Energy Lab, Boulder (f), Sandia National Laboratories, Albuquerque (g) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The first International Prgeometer and Absolute Sky-scanning Radiometer Comparison (IPASRC I), which was held in fall 1999 at the ARM SGP site in

310

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparison of Daily Broadband Surface Albedos Measured at Six Extended Comparison of Daily Broadband Surface Albedos Measured at Six Extended Facilities in the ARM Southern Great Plains Cloud and Radiation Testbed Hamm, K.G., University of Oklahoma Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting An analysis of time series of daily hemispherical broadband surface albedo for 1998-1999 from six ARM Extended Facilities has been performed. The results show that the mean annual albedo differs by as much as 30% among the six sites. The annual range of daily albedos also varies among the sites. For example, albedos measured at the tallgrass prairie near Pawhuska, OK show a range of daily albedo between 0.15 and 0.20 for 1998, while daily albedos measured at a grazed pasture near Cordell, OK for the same time period have a range between 0.17 and 0.24 (or 40% higher than at

311

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

A Satellite-Based Assessment of Upper Tropospheric Water Vapor Measurements A Satellite-Based Assessment of Upper Tropospheric Water Vapor Measurements During AFWEX Soden, B.J.(a), Ferrare, R.A.(b), Goldsmith, J.E.M.(c), Smith, W.L.(d), Tobin, D.(e), Turner, D.D.(f), and Whiteman, D.N.(g), NOAA/GFDL (a), NASA/LaRC (b), Sandia National Laboratories (c), NASA/LaRC (d), UW/SSEC (e), Pacific Northwest National Laboratory (f), NASA/GSFC (g) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Accurate measuremetns of upper tropospheric water vapor are critical both for understanding the flow of radiation and formation of clouds, and for the detection and attribution of climate change. In fall of 2000 ARM conducted the ARM-FIRE Water Vapor Experiment (AFWEX) to evaluate the accuracy of upper tropospheric water vapor measurements. The experiment

312

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

An Assessment of Upper Tropospheric Humidity Measurements at the ARM An Assessment of Upper Tropospheric Humidity Measurements at the ARM SGP/CART Site Soden, B.J. (a), Turner, D.D. (b), and Goldsmith, J.E.M. (c), NOAA/GFDL (a), Pacific Northwest National Laboratory (b), Sandia National Laboratories (c) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Upper tropospheric water vapor plays a key role in regulating the flow of radiation through clear skies and the formation and dissipation of clouds. Unfortunately, due to the difficulty of accurately measuring this quantity, it remains a key uncertainty in GCM predictions of climate change. Much of the uncertainty surrounding upper tropospheric water vapor reflects an incomplete understanding of the processes which regulate its distribution and variations. This, in turn, reflects the lack of suitable observations

313

ARM - Atmospheric Pressure  

NLE Websites -- All DOE Office Websites (Extended Search)

be removed from the source of heat with heavy gloves and the cap refitted to make the seal again. Without paying special attention to the heated can, the lecture should...

314

Improved ARM-SGP TOA OLR Fluxes from GOES-8 IR Radiances Based on CERES Data  

NLE Websites -- All DOE Office Websites (Extended Search)

ARM-SGP TOA OLR Fluxes from GOES-8 IR ARM-SGP TOA OLR Fluxes from GOES-8 IR Radiances Based on CERES Data D. R. Doelling and M. M. Khaiyer Analytical Services and Materials, Inc. Hampton, Virginia P. Minnis National Aeronautics and Space Administration Langley Research Center Hampton, Virginia Introduction The radiation budget at the top of the atmosphere (TOA) is a quantity of fundamental importance to the Atmospheric Radiation Measurement (ARM) Program. Thus, it is necessary to measure the radiation budget components, broadband shortwave albedo and outgoing longwave radiation (OLR), as accurately as possible. Measurement of OLR over the ARM surface sites has only been possible since the advent of Clouds and the Earth's Radiant Energy System (CERES; Wielicki et al. 1998) in 1998. Prior to

315

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiative Effects of Cloud Inhomogeneity and Geometric Association over the Radiative Effects of Cloud Inhomogeneity and Geometric Association over the Tropical Western Pacific Warm Pool Jensen, M.P.(a) and DelGenio, A.D.(b), Department of Applied Physics and Applied Mathematics, Columbia University, NASA GISS (a), NASA GISS (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The radiative and microphysical characteristics for several precipitating anvil systems observed by the TRMM satellite over the Manus or Nauru Island ARM sites are modelled. Reflectivity data from the TRMM Precipitation radar and GMS satellite infrared radiometer measurements are used to parametrize the three-dimensional cloud microphysics of each precipitating cloud system. These parameterized cloud properties are used as input for a

316

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Parameterizing the Radiative Properties of Midlatitude Clouds Parameterizing the Radiative Properties of Midlatitude Clouds Sassen, K. (a), Comstock, J.M. (b), and Wang, Z. (a), University of Utah (a), Pacific Northwest National Laboratory (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting A major goal of the ARM program is to obtain the requisite information needed to improve the treatment of the radiative effects of clouds in large-scale models that ultimately must be relied on to predict the impact of human-induced activities on global climate change. The clouds of the middle and upper troposphere are especially difficult to treat because of their variable optical properties, which range from optically thin in the visible, and graybody emitters in the infrared, to dense blackbody emitters. Approaches to obtain this information involve the development of

317

ARM TR-008  

NLE Websites -- All DOE Office Websites (Extended Search)

3 An Evaluation of the Nonlinearity Correction Applied to Atmospheric Emitted Radiance Interferometer (AERI) Data Collected by the Atmospheric Radiation Measurement Program...

318

ARM - ARM Science Board  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Facility Expansion Workshop (PDF, 1.46MB) Facility Activities ARM and the Recovery Act Contributions to International Polar Year Comments? We would love to hear...

319

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Formation of Fair-Weather Cumuli Formation of Fair-Weather Cumuli Zhu, P. and Albrecht, B., University of Miami Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting This study includes two related parts. In the first part, The formation of fair-weather cumuli has been analyzed based on both a simple mixed layer model and the data collected from the Atmospheric Radiation Measurement (ARM) program at the Southern Great Plains (SGP) site. By analyzing the conditions for the formation of fair-weather cumuli, we illustrate how different processes, such as the surface heat fluxes, the entrainment process at the boundary layer top, the vertical thermodynamic structure above the boundary layer, and the large-scale subsidence, control the formation of clouds. The results of our analysis show that it is the highly

320

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Science Team Meeting 3 Science Team Meeting 1992 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Proceedings of the Third Atmospheric Radiation Measurement (ARM) Science Team Meeting CONF-9303112, March 1-4,1993 Norman, Oklahoma For proper viewing, many of these proceedings should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. History and Status of the ARM Program - March 1993 History and Status of the Atmospheric Radiation Measurement Program - March 1993 P. Lunn, T. Cress, and G. Stokes Clear Skies A Study of Longwave Radiaiton Codes for Climate Studies: Validation with Observations and Tests in General Circulation Models - an Update R.G. Ellingson and F. Baer

Note: This page contains sample records for the topic "arm atmospheric radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

A Compact Millimeter-Wave Radar for UAV Applications A Compact Millimeter-Wave Radar for UAV Applications Bambha, R., Carswell, J., and Swift, C., University of Massachusetts Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Assembly of the Compact Millimeter-wave Radar (CMR) has been completed at the University of Massachusetts, and ground-based cloud measurements have been acquired. The CMR is a 95-GHz solid-state radar intended for airborne cloud measurements. Funding for the project was provided by the Atmospheric Radiation Measurement-Unmanned Aerospace Vehicle (ARM-UAV) program with the eventual goal of developing a radar capable of operating on the Altus UAV. Simultaneous measurements made by CMR and the Cloud Profiling Radar System (CPRS) have been made to evaluate CMR's performance. CPRS is a larger

322

ARM - Field Campaign - Spring Cloud IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsSpring Cloud IOP govCampaignsSpring Cloud IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Spring Cloud IOP 2000.03.01 - 2000.03.26 Lead Scientist : Gerald Mace For data sets, see below. Summary The Atmospheric Radiation Measurement (ARM) Program conducted a Cloud Intensive Operational Period (IOP) in March 2000 that was the first-ever effort to document the 3-dimensional cloud field from observational data. Prior numerical studies of solar radiation propagation through the atmosphere in the presence of clouds have been limited by the necessity to use theoretical representations of clouds. Three-dimensional representations of actual clouds and their microphysical properties, such as the distribution of ice and water, had previously not been possible

323

Anthropogenic NO2 in the Atmosphere: Estimates of the Column Content and Radiative Forcing  

NLE Websites -- All DOE Office Websites (Extended Search)

Anthropogenic NO Anthropogenic NO 2 in the Atmosphere: Estimates of the Column Content and Radiative Forcing A. N. Rublev Institution of Molecular Physics Russian Research Center Kurchatov Institute Moscow, Russia N Chubarova Meteorological Observatory of Moscow State University Moscow, Russia G. Gorchakov Obukhov Institute of Atmospheric Physics Russian Academy of Sciences Moscow, Russia Introduction The work summarizes the different methodical aspects, firstly, the use of atmosphere optical depths presented in Aerosol Robotic Network (AERONET) data for NO 2 column retrievals, and, secondly, its radiative forcing calculated as difference between integral solar fluxes absorbed in the atmosphere with and without NO 2 under given air mass or the sun zenith angle.

324

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectral Characterization of the Scattering and Absorption of Solar Spectral Characterization of the Scattering and Absorption of Solar Radiation by Aerosols and Clouds: Results from Several Recent Field Studies Pilewskie, P.(a), Rabbette, M.(b), Bergstrom, R.(b), Pommier, J.(b), and Howard, S.(b), NASA Ames Research Center (a), Bay Area Environmental Research Institute (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Efforts to reduce the uncertainty in climate forcing due to the radiative effects of aerosols and clouds have led to the improvement of radiometric sensors used to measure the spectral distribution of solar radiation in the atmosphere. Because much of our current understanding of the solar radiation budget is derived from broadband (spectrally integrated) observations, newer spectrally resolved observations need to be examined in

325

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

3-D Reconstruction of a Regional-Scale Cloud Field from Satellite Data 3-D Reconstruction of a Regional-Scale Cloud Field from Satellite Data for Use in a Broadband Monte Carlo Radiative Transfer Model Galinsky, V., Ramanathan, V., Boer, E., Podgorny, I., and Vogelmann, A. M., Center for Atmospheric Sciences-Scripps Institution of Oceanography Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting The absence of realistic 3-D cloud fields and their associated radiative transfer in current general circulation models (GCM) or radiative transfer models may result in large inconsistencies in the Earth's energy budget calculations. We investigate these effects by reconstructing the regional-scale, 3-D cloud field structure from multi-spectral satellite imagery. From this reconstruction, we compute the radiative fluxes using a

326

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrared Interferometric Measurements of the Air-Sea Temperature Difference Infrared Interferometric Measurements of the Air-Sea Temperature Difference Minnett, P.J., Rosenstiel School of Marine and Atmospheric Science, University of Miami Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Marine Atmosphere Emitted Radiance Interferometers (M-AERI) have been mounted on several research ships on cruises in the world?s oceans, several in the areas of the ARM TWP and NSA-AAO sites. Accurate measurements of the skin sea-surface temperature and near-surface air temperatures are derived from the infrared spectral measurements, which, unlike conventional measurements of air-sea temperature difference, have a common calibration. This removes the largest source of uncertainty in the measurement of air-sea temperature differences, and thereby a major uncertainty in

327

ARM - Feature Stories and Releases Article  

NLE Websites -- All DOE Office Websites (Extended Search)

December 30, 2013 [Feature Stories and Releases] December 30, 2013 [Feature Stories and Releases] Pole Position: New Field Campaigns Explore Arctic and Antarctic Atmosphere Bookmark and Share Each year, the ARM Climate Research Facility receives proposals to use key components of the Facility for extended or intensive field campaigns to improve understanding of atmospheric processes that are relevant to regional and global climate. The Department of Energy has selected the following field campaigns that take place from 2014 through 2016. ARM West Antarctic Radiation Experiment (AWARE) McMurdo Station is a scientific outpost located on the southern tip of Ross Island, Antarctica. McMurdo Station is a scientific outpost located on the southern tip of Ross Island, Antarctica. West Antarctic is an area nearly devoid of atmospheric and climate

328

ARM Mobile Facility - Design and Schedule for Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Mobile Facility - Design and Schedule for Integration Mobile Facility - Design and Schedule for Integration K. B. Widener Pacific Northwest National Laboratory Richland, Washington Abstract The Atmospheric Radiation Measurement (ARM) Program has a need for an ARM Mobile Facility (AMF) that can be deployed anywhere in the world for up to 12 months at a time. This system shall be modular so that it can meet the needs of ARM science objectives of each individual deployment. The design phase for developing the AMF has begun. A design review was held for the AMF in December 2002. The design of the shelters, instrumentation, and data system along with the schedule for integration will be presented. Introduction Early in the development of the ARM Program, the need to be able to make atmospheric measurements

329

Remote Sensing and In-Situ Observations of Arctic Mixed-Phase and Cirrus Clouds Acquired During Mixed-Phase Arctic Cloud Experiment: Atmospheric Radiation Measurement Uninhabited Aerospace Vehicle Participation  

SciTech Connect

The Atmospheric Radiation Monitor (ARM) uninhabited aerospace vehicle (UAV) program aims to develop measurement techniques and instruments suitable for a new class of high altitude, long endurance UAVs while supporting the climate community with valuable data sets. Using the Scaled Composites Proteus aircraft, ARM UAV participated in Mixed-Phase Arctic Cloud Experiment (M-PACE), obtaining unique data to help understand the interaction of clouds with solar and infrared radiation. Many measurements obtained using the Proteus were coincident with in-situ observations made by the UND Citation. Data from M-PACE are needed to understand interactions between clouds, the atmosphere and ocean in the Arctic, critical interactions given large-scale models suggest enhanced warming compared to lower latitudes is occurring.

McFarquhar, G.M.; Freer, M.; Um, J.; McCoy, R.; Bolton, W.

2005-03-18T23:59:59.000Z

330

DOE/SC-ARM-14-025 Atmospheric Radiation Measurement Climate Research...  

NLE Websites -- All DOE Office Websites (Extended Search)

to the continental U.S. megasite. The Manus TWP facility has been decommissioned and all instrumentation from that site is in transit to the SGP site for reconfiguration. The...

331

ARM - Instrument - assist  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentsassist govInstrumentsassist Documentation ASSIST : Instrument Mentor Monthly Summary (IMMS) reports ASSIST : Data Quality Assessment (DQA) reports ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST) Instrument Categories Radiometric The Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST), like the AERI, measures infrared spectral zenith radiance at high spectral resolution. Output Datastreams assistch1 : Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST): channel 1 data assistch2 : Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST): channel 2 data

332

ARM - Blog Article  

NLE Websites -- All DOE Office Websites (Extended Search)

1, 2013 [BBOP, Blog, Field Notes] 1, 2013 [BBOP, Blog, Field Notes] "...and BBOP was chosen for this one." Bookmark and Share The Biomass Burning Observation Project, or BBOP, is a field campaign that is being carried out with the Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF) of the U.S. Department of Energy this summer to measure the evolution of properties of aerosols produced by biomass burns. Biomass refers to any vegetation-trees, grass, etc.-and thus biomass burns refer to forest fires, grass fires, etc., whether they be natural, such as forest fires started by lightning strikes, or anthropogenic (i.e., man-made), such as crops being burned by farmers. This first newsletter will give an introduction to BBOP, and subsequent newsletters, to be distributed every few weeks, will provide information on the status of the

333

ARM - Blog Article  

NLE Websites -- All DOE Office Websites (Extended Search)

4, 2013 [Blog, Field Notes, SGP] 4, 2013 [Blog, Field Notes, SGP] Department of Energy Maintains Sophisticated Climate Research Facility... in Tornado Alley Bookmark and Share "We're talking about 500,000 square miles under the gun for severe weather," warned CNN meteorologist Indra Petersons on Monday morning. "Today could be as bad as yesterday," she added. It was May 20. Over the weekend, severe weather had already caused fatalities and a tornado alert was in place across five states, from Texas to Michigan. Sitting in his sun-filled office at Pacific Northwest National Laboratory in eastern Washington, Jim Mather, a climate scientist, looked worried. In his role as technical director of the Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility, he is responsible

334

ARM - Blog Article  

NLE Websites -- All DOE Office Websites (Extended Search)

7, 2013 [Blog, Field Notes, SGP] 7, 2013 [Blog, Field Notes, SGP] You Will Be Missed, Mr. Samaras Bookmark and Share Around the early 1990s, the U.S. Department of Energy set up the Atmospheric Radiation Measurement (ARM) Program to collect climate and weather-related observations from across the globe. One of its first sites-now sprawling over 143,000 square kilometers and harboring 33 suites of sophisticated instruments-is in Oklahoma. Around the same time, a man working by himself was designing and building his own weather-measuring probes and driving them around in a truck. For the next twenty years, Tim Samaras would log close to 56,000 kilometers each year, driving across the prairies during peak tornado season. Early in his life, the movie "The Wizard of Oz" had captured Samaras's imagination.

335

W-Band ARM Cloud Radar - Specifications and Design  

NLE Websites -- All DOE Office Websites (Extended Search)

W-Band ARM Cloud Radar - Specifications and Design W-Band ARM Cloud Radar - Specifications and Design K. B. Widener Pacific Northwest National Laboratory Richland, Washington J. B. Mead ProSensing, Inc. Amherst, Massachusetts Abstract The Atmospheric Radiation Measurement (ARM) Program and ProSensing, Inc. have teamed to develop and deploy the W-band ARM Cloud Radar (WACR) at the SGP central facility. The WACR will be co- located with the ARM millimeter wave cloud radar (MMCR) with planned operation to begin in early 2005. This radar will complement the measurements of the MMCR and will aid in filtering out insect contamination in the data. In this poster we present the design goals, expected performance characteristics, and the detailed design for the WACR. Introduction The MMCR has been operating at the Southern Great Plains (SGP) site since 1998. It has proven to be

336

Analyst Tools and Quality Control Software for the ARM Data System  

SciTech Connect

ATK Mission Research develops analyst tools and automated quality control software in order to assist the Atmospheric Radiation Measurement (ARM) Data Quality Office with their data inspection tasks. We have developed a web-based data analysis and visualization tool, called NCVweb, that allows for easy viewing of ARM NetCDF files. NCVweb, along with our library of sharable Interactive Data Language procedures and functions, allows even novice ARM researchers to be productive with ARM data with only minimal effort. We also contribute to the ARM Data Quality Office by analyzing ARM data streams, developing new quality control metrics, new diagnostic plots, and integrating this information into DQ HandS - the Data Quality Health and Status web-based explorer. We have developed several ways to detect outliers in ARM data streams and have written software to run in an automated fashion to flag these outliers.

Moore, S.T.

2004-12-14T23:59:59.000Z

337

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Retrieval of Cirrus Particle Sizes Using a Spit-Window Technique: A Retrieval of Cirrus Particle Sizes Using a Spit-Window Technique: A Sensitivity Study Fu, Q. (a) and Sun, W.B. (b), University of Washington (a), Dalhousie University (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The 8 - 12 um atmospheric window is an important spectral region for the remote sensing of the earth-atmosphere system. Since clouds are the major regulator of the global radiative energy budget, numerous methods have been developed to detect clouds and cloud properties based on satellite observations. Among them are the split-window techniques which are particularly useful for remote sensing of cirrus clouds. Owing to the large spectral variation of ice's imaginary refractive index over the atmospheric window, one can infer the effective ice particle sizes of cirrus clouds

338

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

On Problems in Simulating Boundary-layer Cumulus Clouds with Third-Order On Problems in Simulating Boundary-layer Cumulus Clouds with Third-Order Turbulence Closure Models Cheng, A.(a) and Xu, K.-M.(b), Atmospheric Sciences, NASA Langley Research Center (a), Center for Atmospheric Sciences, Hampton University (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting A hierarchy of third-order turbulence closure models are used to simulate boundary-layer cumulus clouds from the Atmospheric Radiation Measurement in this study. A moist spurious oscillation is found in the Level-3 model, which predicts all third moments. The period of the oscillation is about 1000 s, which is resulted from the interaction of the mean liquid water gradient and the liquid water buoyancy terms in the third-moment equations. A reasonably large diffusion coefficient and a large dissipation at its

339

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Longwave Irradiance Uncertainty Atmospheric Longwave Irradiance Uncertainty Philipona, R. (a), Dutton, E.G. (b), Wood, N. (b), Anderson, G. (b), Stoffel, T. (c), Reda, I. (c), Michalsky, J.J. (d), Wendling, P. (e), Stiffter, A. (e), Clough, S.A. (f), Mlawer, E.J. (f), Revercomb, H. (g), and Shippert, T. (h), World Radiation Center, Davos, Switzerland (a), NOAA, Climate Monitoring and Diagnosic Laboratory (b), National Renewable Energy Laboratory (c), State University of New York at Albany (d), DLR, Oberfaffenhofen, Germany (e), Atmospheric and Environmental Research Inc. (f), University of Wisconsin-Madison (g), Pacific Northwest National Laboratory (h) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The first International Pyrgeometer and Absolute Sky-scanning Radiometer

340

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

The Absorption of NIR Solar Radiation by Precipitation The Absorption of NIR Solar Radiation by Precipitation Evans, W.F.J.(a) and Puckrin, E.(b), Physics Department, Trent University (a), DRDC,Canada (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting It has recently been shown by Ackerman (Physics Today; 2003) that good radiation codes can model the absorption of up to 100 W/m2 of short wave by clouds. However, spectral measurements of the transmission of solar infrared radiation through clear and cloudy skies with FTIR spectroscopy have indicated that still are certain clouds which absorb unexpectedly large amounts of near-infrared (NIR) radiation. The amounts are unexpected in the sense that radiation codes, including sophisticated algorithms such as MODTRAN4, do not model this strong NIR absorption effect. The absorption

Note: This page contains sample records for the topic "arm atmospheric radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud Radiative Forcing of the Arctic Surface: The Influence of Cloud Cloud Radiative Forcing of the Arctic Surface: The Influence of Cloud Properties, Surface Albedo, and Solar Zenith Angle Shupe, M.D. and Intrieri, J.M., NOAA - Environmental Technology Laboratory Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting An annual cycle of cloud and radiation measurements made as part of the Surface Heat Budget of the Arctic program are utilized to determine which properties of Arctic clouds control the surface radiation balance. Surface cloud radiative forcing (CF), defined as the difference between the all-sky net surface radiative flux and the clear sky net surface flux, was calculated from measurements of broadband fluxes and results from a clear sky model. Longwave cloud forcing (CFLW) is shown to be a function of cloud

342

Low Dose Radiation Program: Links - Organizations Conducting Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Conducting Low Dose Radiation Research Conducting Low Dose Radiation Research DOE Low Dose Radiation Research Program DoReMi Integrating Low Dose Research High Level Expert Group (HLEG) on European Low Dose Risk Research Multidisciplinary European Low Dose Initiative (MELODI) RISC-RAD Radiosensitivity of Individuals and Susceptibility to Cancer induced by Ionizing Radiation United States Transuranium & Uranium Registries Organizations Conducting other Radiation Research Argonne National Laboratory (ANL) Armed Forces Radiology Research Institute (AFRRI) Atmospheric Radiation Measurement (ARM) Program Brookhaven National Laboratory (BNL) Center for Devices and Radiological Health (CDRH) Central Research Institute of Electric Power Industry (CRIEPI) Colorado State University Columbia University

343

Computational study of atmospheric transfer radiation on an equatorial tropical desert (La Tatacoa, Colombia)  

E-Print Network (OSTI)

Radiative transfer models explain and predict interaction between solar radiation and the different elements present in the atmosphere, which are responsible for energy attenuation. In Colombia there have been neither measurements nor studies of atmospheric components such as gases and aerosols that can cause turbidity and pollution. Therefore satellite images cannot be corrected radiometrically in a proper way. When a suitable atmospheric correction is carried out, loss of information is avoided, which may be useful for discriminating image land cover. In this work a computational model was used to find radiative atmospheric attenuation (300 1000nm wavelength region) on an equatorial tropical desert (La Tatacoa, Colombia) in order to conduct an adequate atmospheric correction.

Delgado-Correal, Camilo; Castaño, Gabriel

2012-01-01T23:59:59.000Z

344

E-Print Network 3.0 - atmospheric radiative transfer Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Earth and Atmospheric Sciences, Cornell University Collection: Geosciences 49 The Greenhouse Effect without Feedbacks Summary: Number microns10.016.7 7.14 T261K 12;Radiative...

345

The DOE ARM Aerial Facility  

SciTech Connect

The Department of Energy Atmospheric Radiation Measurement (ARM) Program is a climate research user facility operating stationary ground sites that provide long-term measurements of climate relevant properties, mobile ground- and ship-based facilities to conduct shorter field campaigns (6-12 months), and the ARM Aerial Facility (AAF). The airborne observations acquired by the AAF enhance the surface-based ARM measurements by providing high-resolution in-situ measurements for process understanding, retrieval-algorithm development, and model evaluation that are not possible using ground- or satellite-based techniques. Several ARM aerial efforts were consolidated into the AAF in 2006. With the exception of a small aircraft used for routine measurements of aerosols and carbon cycle gases, AAF at the time had no dedicated aircraft and only a small number of instruments at its disposal. In this "virtual hangar" mode, AAF successfully carried out several missions contracting with organizations and investigators who provided their research aircraft and instrumentation. In 2009, AAF started managing operations of the Battelle-owned Gulfstream I (G-1) large twin-turboprop research aircraft. Furthermore, the American Recovery and Reinvestment Act of 2009 provided funding for the procurement of over twenty new instruments to be used aboard the G-1 and other AAF virtual-hangar aircraft. AAF now executes missions in the virtual- and real-hangar mode producing freely available datasets for studying aerosol, cloud, and radiative processes in the atmosphere. AAF is also engaged in the maturation and testing of newly developed airborne sensors to help foster the next generation of airborne instruments.

Schmid, Beat; Tomlinson, Jason M.; Hubbe, John M.; Comstock, Jennifer M.; Mei, Fan; Chand, Duli; Pekour, Mikhail S.; Kluzek, Celine D.; Andrews, Elisabeth; Biraud, S.; McFarquhar, Greg

2014-05-01T23:59:59.000Z

346

ARM News  

NLE Websites -- All DOE Office Websites (Extended Search)

AMF2 Arrives in Finland Thu, 02 Jan AMF2 Arrives in Finland Thu, 02 Jan 2014 15:20:50 +0000 Publication Notice: 13 New References Available Tue, 31 Dec 2013 22:58:51 +0000 New Brochure Highlights Advances in Atmospheric Science Tue, 31 Dec 2013 09:35:40 +0000 Pole Position: New Field Campaigns Explore Arctic and Antarctic Atmosphere Mon, 30 Dec 2013 00:01:43 +0000 Effect of Environmental Instability on the Sensitivity of Convection to the Rimed Ice Species Fri, 13 Dec 2013 23:04:03 +0000 Publication Notice: New Journal Reference Available Wed, 11 Dec 2013 21:12:19 +0000 All Mixed Up—Probing Large and Small Scale Turbulence Structures in Continental Stratocumulus Clouds Mon, 09 Dec 2013 15:38:33 +0000 ARM Facility Insights at the 2013 AGU Fall Meeting Fri, 06 Dec 2013 15:12:38

347

ARM - 2007 Performance Metrics  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Performance Metrics 7 Performance Metrics Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) ARM Science Team Meetings User Meetings Annual Meetings of the Atmospheric System Research (ASR) Science Team and Fall Working Groups Accomplishments Read about the 20 years of accomplishments (PDF, 696KB) from the ARM Program and user facility. Performance Metrics ASR Metrics 2009 2008 2007 2006 2007 Performance Metrics A Single Column Model (SCM) represents the evolution of the atmosphere in a single grid box of a Global Climate Model (GCM). This illustration represents the observing strategy of ARM, which takes continuous atmospheric observations from fixed sites in three climate regimes around the world. A Single Column Model (SCM) represents the evolution of the atmosphere in a

348

Solar and Infrared Radiation Station (SIRS) Handbook  

SciTech Connect

The Solar Infrared Radiation Station (SIRS) provides continuous measurements of broadband shortwave (solar) and longwave (atmospheric or infrared) irradiances for downwelling and upwelling components. The following six irradiance measurements are collected from a network of stations to help determine the total radiative flux exchange within the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Climate Research Facility: • Direct normal shortwave (solar beam) • Diffuse horizontal shortwave (sky) • Global horizontal shortwave (total hemispheric) • Upwelling shortwave (reflected) • Downwelling longwave (atmospheric infrared) • Upwelling longwave (surface infrared)

Stoffel, T

2005-07-01T23:59:59.000Z

349

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Exploration of Statistical Angular Radiance Closure in Cloudy Skies Exploration of Statistical Angular Radiance Closure in Cloudy Skies Evans, K.F.(a) and Wiscombe, W.J.(b), University of Colorado (a), NASA/Goddard (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Most ARM cloudy sky radiation closure experiments have been performed with broadband fluxes. However, it is difficult to understand the causes of the inevitable discrepencies between the modeled and observed broadband fluxes in those closure experiments because the fluxes are extensively integrated over angle and wavelength. For example, knowing that a particular comparison disagrees by 50 W/m^2 is not particularly helpful in discovering which aspects of cloud remote sensing, radiative transfer, or measurements might be in error. Angular radiance closure compares the measured and

350

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Improved Methods for Broadband Outdoor Radiometer Calibration (BORCAL) Improved Methods for Broadband Outdoor Radiometer Calibration (BORCAL) Wilcox, S.M., Andreas, A.M., Reda, I., and Myers, D.R., National Renewable Energy Laboratory Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The ARM Program deploys approximately 100 radiometers to measure broadband solar radiation at stations in the North Slope of Alaska (NSA), Southern Great Plains (SGP), and Tropical Western Pacific (TWP) Cloud and Radiation Testbed (CART) sites. Two calibration events performed at the SGP Radiometer Calibration Facility (RCF) each year maintain radiometer calibration traceability to the World Radiometric Reference and assure reliable and uniform measurements at each CART site. Calibrations are performed using the Radiometer Calibration and Characterization (RCC)

351

Darwin: The Third DOE ARM TWP ARCS Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Darwin: The Third DOE ARM TWP ARCS Site Darwin: The Third DOE ARM TWP ARCS Site W. E. Clements and L. Jones Los Alamos National Laboratory, Los Alamos, New Mexico T. Baldwin Special Services Unit Australian Bureau of Meteorology Melbourne, Australia K. Nitschke South Pacific Regional Environment Programme Apia, Samoa Introduction The U.S. Department of Energy's (DOE's) Atmospheric Radiation Measurement (ARM) Program began operations in its Tropical Western Pacific (TWP) locale in October 1996 when the first Atmospheric Radiation and Cloud Station (ARCS) began collecting data on Manus Island in Papua New Guinea (PNG). Two years later, in November 1998 a second ARCS began operations on the island of Nauru in the Central Pacific. Now a third ARCS has begun collecting data in Darwin, Australia. See Figure 1 for

352

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

LASE Characterization of Water Vapor Over the ARM SGP During AFWEX LASE Characterization of Water Vapor Over the ARM SGP During AFWEX Ismail, S.(a), Ferrare, R.A.(a), Browell, E.V.(a), Kooi, S.A.(b), Brasseur, L.H.(b), Clayton, M.B.(b), Brackett, V.(b), Turner, D.D. (c), Goldsmith, J.E.M.(d), Whiteman, D.N.(e), Barrick, J.(a), Sachse, G.(a), Diskin, G.(a), Podolske, J.(f), Schmidlin, F.J.(g), and Bosenberg, J.(h), NASA Langley (a), SAIC (b), Pacific Northwest National Laboratory (c), Sandia National Laboratories (d), NASA Goddard (e), NASA Ames (f), NASA Wallops (g), Max Planck Institute (h) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting NASA's Lidar Atmospheric Sensing Experiment (LASE) system was operated during the ARM/FIRE Water Vapor Experiment (AFWEX) to characterize the upper tropospheric (UT) water vapor field over the ARM Center Facility (CF)

353

Raciometry J. W. Griffin, Technical Monitor ARM Instrument Development Program  

NLE Websites -- All DOE Office Websites (Extended Search)

J. W. Griffin, Technical Monitor J. W. Griffin, Technical Monitor ARM Instrument Development Program Pacific Northwest Laboratory Richland, Washington the end of FY93 are noted. Fiscal Year 1993 is the third and final year of the initial (3-year) funding cycle for ARM- funded instrument development projects. That is, IDP principal investigators will be required to submit a new proposal in order to be considered for funding beyond September 30, 1993. As for the first funding cycle, continuation proposals will be peer-reviewed and funding awarded on a competitive basis. Goals of the Instrument Development Program The primary goal of the Atmospheric Radiation Measurement (ARM) Instrument Development Program (lOP) is to develop fieldable atmospheric sensing systems which 1) provide a needed atmospheric observation/

354

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Importance and Parameterization of Longwave Radiative Scattering by Mineral Importance and Parameterization of Longwave Radiative Scattering by Mineral Aerosols Gautier, C., Dufresne, J.-L., and Ricchiazzi, P.J., University of California Santa Barbara Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The effect of scattering is not always included in longwave models of radiative forcing due to mineral aerosols. In this presentation, we quantify and highlight the importance of scattering in the longwave domain for a wide range of conditions commonly encountered during dust events. We show that the neglect of scattering may lead to an underestimate of longwave aerosol forcing. This underestimate may reach 50% of the forcing at the top of atmosphere and 15% at the surface for aerosol effective radius greater than a few tenths of a micron. In contrast, the heating rate

355

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

A First Look at the Radiative Impact of Tropical Cirrus Systems Encountered A First Look at the Radiative Impact of Tropical Cirrus Systems Encountered During CRYSTAL-FACE Pilewskie, P. (a), Gore, W. (a), Rabbette, M. (b), Howard, S. (b), and Pommier, J. (b), NASA Ames Research Center (a), Bay Area Environmental Research Institute (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting During the 2002 CRYSTAL-FACE experiment we deployed identical solar spectral and broad-band infrared sensors on the ER-2 and CIRPAS Twin Otter in order to characterize the column radiative energy budget in the tropical atmosphere under varying conditions such as thick anvil cirrus, thin sub-visible cirrus, and cloud free conditions. The data are used to determine cirrus and clear sky heating and cooling rates. The solar spectral reflectance and transmittance data are used to infer cloud

356

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Aircraft Measurements of Spectral and Broadband Shortwave Albedo from the Aircraft Measurements of Spectral and Broadband Shortwave Albedo from the NASA Langley OV-10 Smith, W.L., Jr.(a), Charlock, T.P.(a), Roback, V.E.(a), Rutledge, C.K.(b), and Zhang, T.P.(b), NASA Langley Research Center (a), Analytical Services and Materials, Inc. (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting In order to validate and improve surface radiative fluxes derived as part of the Clouds and the Earth's Radiant Energy System (CERES) program, The CERES Fixed-wing Airborne Radiometer (CFAR) was developed to make measurements of upwelling and downwelling shortwave (spectral and broadband) and longwave (broadband) radiative fluxes. The CFAR consists of an OV-10A Bronco twin-turboprop, originally developed for military applications but chosen by NASA for atmospheric radiation measurements

357

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Angular Distribution of Intensity in a Flux of Radiation Scattered by a Angular Distribution of Intensity in a Flux of Radiation Scattered by a Cloud Dvoryashin, S.V., Shukurov, K.A., Shukurov, A.K., and Golitsyn, G.S., A.M.Obukhov Institute of Atmospheric Physics, RAS Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting A study of the angular distribution of intensity in a flux of solar radiation scattered by a cloud was carried out in conditions of translucent clouds (the disk of the Sun is visible). Using the digital video camera KODAK DC200, mounted on the sun tracker, the sky images with the angle of view 38 0) have been obtained in cloudy and cloudless conditions. During measurements the disk of the Sun was closed with a blend. Using the specially developed program the photometry of the received images was

358

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

A Satellite Cloud, Radiation and Precipitation Data Set for Cloud Model A Satellite Cloud, Radiation and Precipitation Data Set for Cloud Model Evaluation Xu, K.-M.(a), Wielicki, B.A.(a), Wong, T.(a), and Randall, D.A.(b), NASA Langley Research Center (a), Colorado State University (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting To systematically evaluate cloud models including large-eddy simulation (LES), cloud-resolving models (CRMs), cloud parameterizations in general circulation models (GCMs), one needs a large set of cloud, radiation and precipitation data that are matched with simultaneous atmospheric state data. We have been using a technique to produce such a data set at the NASA Langley Research Center. Specifically, this technique classifies EOS (Earth Observing System) satellite data into distinct cloud systems or "cloud

359

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Interactions of Cumulus Convection and the Boundary Layer Over the Southern Interactions of Cumulus Convection and the Boundary Layer Over the Southern Great Plains Krueger, S.K. (a), Luo, Y. (a), Lazarus, S.M. (a), and Xu, K.-M. (b), University of Utah (a), NASA Langley Research Center (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting We are using observations and cloud-resolving model (CRM) simulations to better understand the interaction between deep cumulus convection and the boundary layer over the southern Great Plains of the United States. The observations are from a 29-day ARM SCM IOP that took place at the ARM SGP site during June and July 1997. The cumulus effects in the boundary layer are due to rain evaporation and fluxes due to cumulus updrafts and downdrafts. These effects can substantially modify the boundary layer in

360

ARM - Field Campaign - Fall 1995 UAV IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

UAV IOP UAV IOP Campaign Links ARM UAV Program Science Plan Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Fall 1995 UAV IOP 1995.09.01 - 1995.09.30 Lead Scientist : John Vitko For data sets, see below. Description ARESE, the ARM Enhanced Shortwave Experiment, concluded a very successful deployment to Oklahoma on November 1, 1995. The purpose of this five week long campaign was to conduct a series of instrumented flights to measure the interaction of solar energy with clear and cloudy skies to provide additional insight into recent observations of enhanced absorption in cloudy atmospheres.As such, ARESE focused on two scientific objectives: (1) the direct measurement of the absorption of solar radiation by clear

Note: This page contains sample records for the topic "arm atmospheric radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Towards Parameterization of Frontal Mesoscale Circulations and Cloudiness Towards Parameterization of Frontal Mesoscale Circulations and Cloudiness in GCMs Based on ARM Observations Norris, J.R.(a), Weaver, C.P.(b), Gordon, N.D.(c), and Klein, S.A.(d), Scripps Institution of Oceanography (a), Rutgers University (b), Scripps Institution of Oceanography (c), GFDL/NOAA (d) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Cloudiness associated with extratropical cyclones is currently poorly represented in GCMs due to incorrect and insufficient representation of subgrid-scale processes. Since this can lead to erroneous cloud-climate feedbacks it is necessary to develop an understanding of the relationship between mesoscale cloud variability and large-scale synoptic forcing that will result in improved parameterization. Observations from the ARM

362

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrared Cloud Imager (ICI) Measurements of Cloud Statistics During the Infrared Cloud Imager (ICI) Measurements of Cloud Statistics During the 2003 Cloudiness Intercomparison Campaign Gregory, L., Wagener, R., Ma, L.L., and Cialella, A., Brookhaven National Laboratory Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The process of creating ARM data-streams from external data sources is described from identification of scientific need as determined by the science working groups to implementation and documentation, which involves ARM's task management tools: Engineering Change Request/Order, Baseline Change Request, Data Object Design/Birth of a Data Stream, eXternal Data Stream documentation. Pitfalls and typical delays are illustrated with recently completed data-stream ingests. Some procedural changes are

363

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of Terra MODIS Aerosol and Water Vapor Measurements Using ARM Evaluation of Terra MODIS Aerosol and Water Vapor Measurements Using ARM SGP Data Ferrare, R.A. (a), Brasseur, L.H. (b), Turner, D.D. (c,d), Tooman, T.P. (e), Remer, L. (f), and Gao, B-C. (g), NASA Langley Research Center (a), Science Applications International Corporation/NASA/LaRC (b), Pacific Northwest National Laboratory (c), University of Wisconsin-Madison (d), Sandia National Laboratories (e), NASA Goddard Space Flight Center (f), Naval Research Laboratory (g) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting NASA's Moderate-Resolution Imaging Spectroradiometer (MODIS) sensor on the Earth Observing System (EOS) Terra satellite platform has been measuring aerosol and water vapor parameters since February 2000. The MODIS aerosol

364

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Meeting Meeting 1999 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Cover image Proceedings of the Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM-CONF-1999, March 1999 San Antonio, Texas For proper viewing, many of these proceedings should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. * Poster abstract only; an extended abstract was not provided by the author(s). A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Abshire, J.B. Development of a Compact Lidar to Profile Water Vapor in the Lower Troposphere Ackerman, T.P. A 25-Month Database of Stratus Cloud Properties Generated from Ground-Based Measurements at the ARM SGP Site

365

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparison of Spectral and Broadband Measurements of Surface Flux with Comparison of Spectral and Broadband Measurements of Surface Flux with Model Calculations on Clear Days at the ARM SGP Site Arking, A. (a), Liu, F. (a), Harrison, L. C. (b), Pilewskie, P. (c), and Chou, M.-D. (d), Johns Hopkins University (a), State University of New York, Albany (b), NASA Ames Research Center (c), NASA Goddard Space Flight Center (d) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Observations of spectral and broadband solar irradiance at the ARM/SGP site have been compared with line-by-line model calculations. The spectral measurements were made with the SUNY Albany Rotating Shadowband Spectroradiometer (RSS) and the NASA Ames Solar Spectral Flux Radiometer (SSFR). The broadband measurements were made with the Baseline Solar

366

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Mean 3D Radiative Transfer in Cloudy Columns: Further Empirical Evidence Mean 3D Radiative Transfer in Cloudy Columns: Further Empirical Evidence for Propagation Kernels with Power-Law Tails Davis, A.B. (a), Marshak, A. (b), and Barker, H.W. (c), Los Alamos National Laboratory (a), NASA Goddard Space Flight Center (b), Meteorological Service of Canada (c) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting For reasons of computational efficiency, current radiation parameterizations in GCMs are uniformly based on analytical 2-stream solutions of the 1D integro-differential radiative transfer equation (RTE). This is true even when there is an effort to account for subgrid variability which would normally call for the full 3D RTE. Indeed, state-of-the-art GCM radiation schemes use linear combinations of clear-

367

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiative Forcing of Arctic Boundary Layers During SHEBA Radiative Forcing of Arctic Boundary Layers During SHEBA Pinto, J.O., Mirocha, J., Reeder, R.A., and Curry, J.A., University of Colorado Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Field measurements obtained during the Surface Heat Budget of the Arctic (SHEBA) experiment are used to ascertain the importance of radiation in the evolution of the Arctic boundary layer. Radiation effects the boundary layer structure through the vertical flux divergence of longwave and shortwave fluxes as well as through radiative heating/cooling of the surface which determines the sensible heat flux. The mean and turbulence structure of the both clear and cloud boundary layers in winter, spring and summer are determined from aircraft data, radiosonde soundings, the ASFG

368

You are here: OUP USA Home > U.S. General Catalog > Atmospheric Science > Climatology Radiation and Cloud Processes in the Atmosphere  

E-Print Network (OSTI)

You are here: OUP USA Home > U.S. General Catalog > Atmospheric Science > Climatology Radiation and long-range levels. The author here offers a systematic discussion of the transfer of solar and thermal important topics in atmospheric radiation, cloud physics, and thermal equilibrium. Aspects

Liou, K. N.

369

DOE research on atmospheric aerosols  

SciTech Connect

Atmospheric aerosols are the subject of a significant component of research within DOE`s environmental research activities, mainly under two programs within the Department`s Environmental Sciences Division, the Atmospheric Radiation Measurement (ARM) Program and the Atmospheric Chemistry Program (ACP). Research activities conducted under these programs include laboratory experiments, field measurements, and theoretical and modeling studies. The objectives and scope of these programs are briefly summarized. The ARM Program is the Department`s major research activity focusing on atmospheric processes pertinent to understanding global climate and developing the capability of predicting global climate change in response to energy related activities. The ARM approach consists mainly of testing and improving models using long-term measurements of atmospheric radiation and controlling variables at highly instrumented sites in north central Oklahoma, in the Tropical Western Pacific, and on the North Slope of Alaska. Atmospheric chemistry research within DOE addresses primarily the issue of atmospheric response to emissions from energy-generation sources. As such this program deals with the broad topic known commonly as the atmospheric source-receptor sequence. This sequence consists of all aspects of energy-related pollutants from the time they are emitted from their sources to the time they are redeposited at the Earth`s surface.

Schwartz, S.E.

1995-11-01T23:59:59.000Z

370

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of the Aerosol-Cloud Interactions from Aircraft, Surface Analysis of the Aerosol-Cloud Interactions from Aircraft, Surface Measurements, and Cloud Parcel Model During the March 2000 IOP at the ARM SGP Site Delene, D.J.(a), Dong, X.(a), Chen, Y.(b), Poellot, M.(a), and Penner, J.E.(b), University of North Dakota (a), University of Michigan (b) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting One of the largest uncertainties in estimating anthropogenic forcing of climate change and in predicting future climates is the relationship between atmospheric aerosols and cloud properties. Aerosols affect cloud optical properties, cloud water content and cloud lifetime. A higher aerosol number concentration generally results in the nucleation of more smaller cloud droplets, which increases cloud albedo and results in a

371

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Spatial Hetergeneity in Mid-Summer Fluxes of Carbon, Water and Energy in Spatial Hetergeneity in Mid-Summer Fluxes of Carbon, Water and Energy in Agriculutural Plots Near the SGP Central Facility Fischer, M.L.(a), Billesbach, D.(b), Berry, J.(c), Riley, W.R.(a), and Torn, M.S.(a), Lawrence Berkeley National Laboratory (a), University of Nebraska (b), Carnegie Institution of Washington (c) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Patterns of land use and management are likely to dominate the spatial heterogeneity in cycles of energy, carbon, and water in ecosystems of the Southern Great Plains (SGP). We report recent progress on measuring and modeling spatial heterogeneity in land surface-atmosphere exchange for different crops in the footprint of a flux system mounted on the ARM SGP Central Facility 60 m tower. The first phase of our the "Portable Flux

372

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterization and Calibration of the Commercial RSS Slated for Permanent Characterization and Calibration of the Commercial RSS Slated for Permanent Deployment at SGP Kiedron, P., Berndt, J., Yager, E., Harrison, L., and Michalsky, J., Atmospheric Sciences Research Center, SUNY at Albany, New York Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The ARM program purchased a rotating shadowband spectroradiometer (RSS) that was manufactured by Yankee Environmental Systems, Inc. At ASRC the instrument went through initial acceptance tests and after corrections and modifications made by the manufacturer the instrument was characterized. The angular response, linearity, wavelength registration, out-of-band rejection, slit function, absolute spectral response and noise were measured. The purpose of instrument characterization is to provide the

373

arm_2007_rutan.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Sky Broadband Surface Albedo From CERES and MODIS Instruments Sky Broadband Surface Albedo From CERES and MODIS Instruments on Board Terra Satellite, Direct Comparisons David Rutan 1 , Tom Charlock 2 , Crystal Schaff 3 , Miguel Roman 4 , Fred Rose 1 1. Science Systems & Applications Inc. 2. NASA Langley Research Center, Atmos.Science Div. 3. Boston University 4. MODIS BRDF/Albedo Group Corresponding Author: David Rutan (d.a.rutan@larc.nasa.gov) Goal: Compare CERES/CRS Ed2b Land Surface Albedo to MODIS MOD43C2 v004 Surface Albedo. Acknowledgements: ARM data is made available through the U.S Department of Energy as part of the Atmospheric Radiation Measurement Program. CERES data were obtained from the NASA Langley Research Center Atmospheric Sciences Data Center. MODIS data is made available from the Goddard Laboratory sciences Data Center.

374

DOE/SC-ARM-XXXX DOE/SC-ARM-0706 DOE/SC-ARM-0805  

NLE Websites -- All DOE Office Websites (Extended Search)

XXXX XXXX DOE/SC-ARM-0706 DOE/SC-ARM-0805 3 Table of Contents Program Overview ............................................................................................................................................................ 4 The Importance of Clouds and Radiation for Climate Change .................................................................................... 4 ARM Climate Research Facility ................................................................................................................................... 4 Sites Around the World Enable Real Observations ......................................................................................................... 5 Setting the Standard for Ground-Based Climate Observations ........................................................................................

375

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosol Absorption, Optical Depth and Vertical Extent Estimates Using Aerosol Absorption, Optical Depth and Vertical Extent Estimates Using UV/blue Satellite Measurements Cairns, B., and Alexandrov, M.D., Columbia University; Carlson, B.E., and Lacis, A.A., NASA Goddard Institute for Space Studies Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting The radiative balance of the atmosphere and the climatological response of the atmospheric circulation to changes in aerosol loading is principally determined by the vertical extent and single-scatter albedo of the aerosols. Although UV radiance measurements made by the Total Ozone Mapping Experiment Spectrometer (TOMS) instrument have been used to detect UV absorbing aerosols and estimate their properties, the unknown verticalextent of the aerosol affects the sensitivity of the radiances to

376

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Retrieval of Mean Cosine of Aerosol Phase Function from Extinction and Sky Retrieval of Mean Cosine of Aerosol Phase Function from Extinction and Sky Brightness Measurements Zhuravleva, T.B.(a), Sviridenkov, M.A.(b), and Anikin, P.P.(b), Institute of Atmospheric Optics SB RAS, Tomsk, Russia (a), A.M. Obukhov Institute of Atmospheric Physics RAS, Moscow, Russia (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Asymmetry of the aerosol phase function together with optical thickness drive the magnitude of the aerosol radiative forcing. Two approaches are usually used to obtain the mean cosine of the phase function retrieval of the single scattering phase function from sky brightness measurements or calculations for the given aerosol size distribution and refractive index. We studied the possibility to determine the mean cosine directly from

377

ARM - ARM at AGU 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

News Field Notes Blog feed Events feed Employment Research Highlights Data Announcements Education News Archive What's this? Social Media Guidance ARM at AGU 2011 ARM at AGU User...

378

ARM - VAP Product - armbeatm  

NLE Websites -- All DOE Office Websites (Extended Search)

Productsarmbearmbeatm Productsarmbearmbeatm Documentation Data Management Facility Plots (Quick Looks) Citation DOI: 10.5439/1095313 DOI: 10.5439/1039931 Central Facility, Lamont, OK (SGP C1) DOI: 10.5439/1039932 Central Facility, Barrow AK (NSA C1) DOI: 10.5439/1039933 Central Facility, Manus I., PNG (TWP C1) DOI: 10.5439/1039934 Central Facility, Nauru Island (TWP C2) DOI: 10.5439/1039935 Central Facility, Darwin, Australia (TWP C3) [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP Output : ARMBEATM ARMBE: Atmospheric measurements Active Dates 1994.01.01 - 2012.12.31 Originating VAP Process ARM Best Estimate Data Products : ARMBE Description The ARM Best Estimate Atmospheric Measurements (ARMBEATM) value-added

379

ARM - Article  

NLE Websites -- All DOE Office Websites (Extended Search)

January 11, 2007 [Facility News] January 11, 2007 [Facility News] ARM Mobile Facility Moves to China in 2008 for Study of Aerosol Impacts on Climate Bookmark and Share Onshore winds and a mountain range to the west of Shanghai form a natural basin which traps particulates in the air above the Yangtze River delta region. (Illustration courtesy of Patricia Ebrey, University of Washington) Onshore winds and a mountain range to the west of Shanghai form a natural basin which traps particulates in the air above the Yangtze River delta region. (Illustration courtesy of Patricia Ebrey, University of Washington) China generates exceptionally high amounts of aerosol particles whose influence on the atmosphere has been detected across the Pacific Rim. In the Yangtze River delta in southeast China, these high aerosol loadings

380

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Science Team Meeting 1 Science Team Meeting 2001 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Cover image Proceedings of the Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM-CONF-2001, March 2001 Atlanta, Georgia For proper viewing, many of these proceedings should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. * Poster abstract only; an extended abstract was not provided by the author(s). A 3-Year Climatology of Cloud and Radiative Properties Derived from GOES-8 Data Over the Southern Great Plains M.M. Khaiyer, A.D. Rapp, D.R. Doelling, M.L. Nordeen, W.L. Smith, Jr., and P. Minnis A 4-Year Study of the RASS Temperature Bias

Note: This page contains sample records for the topic "arm atmospheric radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Meeting Meeting 2002 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Cover image Proceedings of the Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM-CONF-2002, April 2002 St. Petersburg, Florida For proper viewing, extended abstracts should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. * Poster abstract only; an extended abstract was not provided by the author(s). A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Ackerman, S.A. Cloud Phase Determination in the Arctic Using AERI Data ERBE OLR and Cloud Type by Split Window* Ackerman, T.P. A Climatology of Shortwave Cloud Radiative Forcing Using Ground-Based Broadband Radiometric Time-Series*

382

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

High Latitude Cloud Microphysical Properties from FTIR Data High Latitude Cloud Microphysical Properties from FTIR Data Lubin, D., Scripps Institution of Oceanography Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The ARM AERI instruments record downwelling radiance spectra with sufficient radiometric calibration to enable the retrieval of important cloud microphysical properties. This poster will describe how radiative transfer simulations that include cloud thermodynamic phase (liquid water, ice, mixed phase) can be utilized with Fourier Transform Infrared (FTIR) spectroradiometer data. The presence of the ice phase in cloud alters the slope of the brightness temperature spectrum between 800 - 1200 inverse centimeters, such that ice can often be detected. The AERI near infrared channel also may have potential for cloud phase as discrimination.

383

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Science Team Meeting 5 Science Team Meeting 1995 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Proceedings of the Fifth Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM-CONF-1995, March 1995 San Diego, California For proper viewing, many of these proceedings should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. * Poster abstract only; an extended abstract was not provided by the author(s). A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Ackerman, T.P. A Boundary-Layer Cloud Study Using Southern Great Plains Cloud and Radiation Testbed (CART) Data A Comparison of Radiometric Fluxes Influenced by Parameterized Cirrus Clouds with Observed Fluxes at the Southern Great Plains (SGP) Cloud

384

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of Day-Night Continuity in Retrievals of Cloud Properties from Evaluation of Day-Night Continuity in Retrievals of Cloud Properties from GOES Heck, P.W.(a), Minnis, P.(b), Khaiyer, M.M.(a), Smith, Jr., W.L.(b), Young, D.F.(b), and Nguyen, L.(b), Analytical Services & Materials, Inc. (a), NASA Langley Research Center (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Currently, multi-spectral algorithms are being used to retrieve microphysical and radiative cloud p roperties from Geostationary Operational Environmental Satellite (GOES) imagery in a near-real time over a domain that includes the ARM Southern Great Plains (SGP) site. The Visible-Infrared-Solar i nfrared-Split window Technique (VISST) and Solar infrared- Infrared-Split window Technique (SIST) a re applied to half-hourly GOES data. The VISST is utilized during daylight hours while

385

ARM - Datastreams - ecmwfsupp  

NLE Websites -- All DOE Office Websites (Extended Search)

Datastreamsecmwfsupp Datastreamsecmwfsupp Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : ECMWFSUPP ECMWF: supplemental data, entire coverage Active Dates 1996.10.01 - 2013.11.30 Measurement Categories Atmospheric State, Cloud Properties, Radiometric, Surface Properties Originating Instrument European Centre for Medium Range Weather Forecasts Model Data (ECMWF) Description These data can only be distributed to ARM scientists. ARM scientists who obtain these data must agree to acknowledge use of the data in their publications and not to share the data with others who are not on the ARM Science Team. Measurements The measurements below provided by this product are those considered

386

ARM - Datastreams - ecmwfvar  

NLE Websites -- All DOE Office Websites (Extended Search)

Datastreamsecmwfvar Datastreamsecmwfvar Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : ECMWFVAR ECMWF: model met. and cloud variables at altitude, entire coverage, 1-hr avg Active Dates 1995.04.17 - 2013.12.31 Measurement Categories Atmospheric State, Cloud Properties Originating Instrument European Centre for Medium Range Weather Forecasts Diagnostic Analyses (ECMWFDIAG) Description These data can only be distributed to ARM scientists. ARM scientists who obtain these data must agree to acknowledge use of the data in their publications and not to share the data with others who are not on the ARM Science Team. Measurements The measurements below provided by this product are those considered

387

ARM - Datastreams - 05okm  

NLE Websites -- All DOE Office Websites (Extended Search)

5okm 5okm Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : 05OKM Oklahoma Mesonet (OKM): 5-min averages, meteorological data from 111 stations Active Dates 1994.01.01 - 2013.11.30 Measurement Categories Atmospheric State, Radiometric Originating Instrument Oklahoma Mesonet (OKM) Description These data can only be distributed to ARM scientists. ARM scientists who obtain these data must agree to acknowledge use of the data in their publications and not to share the data with others who are not on the ARM Science Team. Measurements The measurements below provided by this product are those considered scientifically relevant. Measurement Variable

388

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Combination of Temperature and Humidity Profiles from a Scanning 5-mm Combination of Temperature and Humidity Profiles from a Scanning 5-mm Radiometer and MWR-Scaled Radiosondes During the 1999 Winter NSA/AAO Radiometer Experiment Westwater, E.R.(a), Leuski, V.(a), and Racette, P.(b), CIRES, University of Colorado/NOAA-ETL (a), NASA/ Goddard Space Flight Center (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting A scanning 5-mm-wavelength radiometer was deployed during an Intensive Operating Periods (IOP) at the Atmospheric Radiation Measurement Program's Cloud and Radiation Testbed (CART) facilities. at the North Slope of Alaska/Adjacent Arctic Ocean site near Barrow, Alaska, during March of 1999. One goal was to evaluate the ability of an oxygen-band 5-mm microwave radiometer for measuring sharp temperature inversions that are typical

389

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Implementing Flexible Cloud Vertical Structure in GFDL's AM-2 Large-Scale Implementing Flexible Cloud Vertical Structure in GFDL's AM-2 Large-Scale Model Using Stochastic Clouds Pincus, R.(a), Klein, S.A.(b), and Hemmler, R.(b), NOAA-CIRES Climate DiagnosticsCenter (a), Geophysical Fluid Dynamics Laboratory (b) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Cloud vertical structure has a significant impact on radiation and precipitation fluxes, which can then feed back to the general circulation. In large-scale models with partial cloudiness in each grid cell, this structure is usually imposed in the form of "overlap assumptions," which are typically implemented separately in the radiation and precipitation codes. To date, GFDL's global atmospheric model AM-2 has used the random overlap assumption, which is easy to implement but known to be unrealistic

390

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

A Semianalytic Technique to Speed Up Successive Order of Scattering Model A Semianalytic Technique to Speed Up Successive Order of Scattering Model for Optically Thick Media Duan, M. and Min, Q., Atmospheric Sciences Research Center, State University of New York Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting A semianalytic technique has been developed to speed up integration of radiative transfer over optically thick media for the successive order of scattering method. Based on characteristics of internal distribution of scattering intensity, this technique uses piece-wise analytic eigenfunctions to fit internal scattering intensities and integrates them analytically over optical depth. This semianalytic approach greatly reduces the number of sub-grids for accurately solving radiative transfer based on

391

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Parameterization for Three-Dimensional Inhomogeneous Cirrus Radiation Parameterization for Three-Dimensional Inhomogeneous Cirrus Clouds: Application to Climate Models Gu, Y. and Liou, K.N., University of California, Los Angeles Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting A three-dimensional (3D) radiative transfer model has been developed to simulate the transfer of solar and thermal infrared radiation in inhomogeneous cirrus clouds. The model utilizes a diffusion approximation approach (four-term expansion in the intensity) for application to inhomogeneous media employing Cartesian coordinates. The extinction coefficient, single-scattering albedo, and asymmetry factor are functions of spatial position and wavelength and are parameterized in terms of the ice water content and mean effective ice crystal size. We employ the

392

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluating Stochastic Radiative Transfer Evaluating Stochastic Radiative Transfer Lane, D.E. (a), Somerville, R.C.J. (b), and Iacobellis, S.F. (b), CIRES, University of Colorado, Boulder (a), Scripps Institution of Oceanography, University of California, San Diego (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Stochastic modeling is a promising technique for representing shortwave radiative transfer through scattered, low-level clouds. A distinct advantage of this approach is that a stochastic model can accurately calculate the radiative heating rates through a broken cloud layer without requiring an exact description of the cloud geometry. In this paper a single-column model is employed to quantify the influence of the stochastic approach on model thermodynamics for times when broken cloud fields were

393

Evaluation of cloud fraction and its radiative effect simulated by IPCC AR4 global models against ARM surface observations  

SciTech Connect

Cloud Fraction (CF) is the dominant modulator of radiative fluxes. In this study, we evaluate CF simulations in the IPCC AR4 GCMs against ARM ground measurements, with a focus on the vertical structure, total amount of cloud and its effect on cloud shortwave transmissivity, for both inter-model deviation and model-measurement discrepancy. Our intercomparisons of three CF or sky-cover related dataset reveal that the relative differences are usually less than 10% (5%) for multi-year monthly (annual) mean values, while daily differences are quite significant. The results also show that the model-observation and the inter-model deviations have a similar magnitude for the total CF (TCF) and the normalized cloud effect, and they are twice as large as the surface downward solar radiation and cloud transmissivity. This implies that the other cloud properties, such as cloud optical depth and height, have a similar magnitude of disparity to TCF among the GCMs, and suggests that a better agreement among the GCMs in solar radiative fluxes could be the result of compensating errors in either cloud vertical structure, cloud optical depth or cloud fraction. Similar deviation pattern between inter-model and model-measurement suggests that the climate models tend to generate larger bias against observations for those variables with larger inter-model deviation. The simulated TCF from IPCC AR4 GCMs are very scattered through all seasons over three ARM sites: Southern Great Plains (SGP), Manus, Papua New Guinea and North Slope of Alaska (NSA). The GCMs perform better at SGP than at Manus and NSA in simulating the seasonal variation and probability distribution of TCF; however, the TCF in these models is remarkably underpredicted and cloud transmissivity is less susceptible to the change of TCF than the observed at SGP. Much larger inter-model deviation and model bias are found over NSA than the other sites in estimating the TCF, cloud transmissivity and cloud-radiation interaction, suggesting that the Arctic region continues to challenge cloud simulations in climate models. Most of the GCMs tend to underpredict CF and fail to capture the seasonal variation of CF at middle and low levels in the tropics. The high altitude CF is much larger in the GCMs than the observation and the inter-model variability of CF also reaches maximum at high levels in the tropics. Most of the GCMs tend to underpredict CF by 50-150% relative to the measurement average at low and middle levels over SGP. While the GCMs generally capture the maximum CF in the boundary layer and vertical variability, the inter-model deviation is largest near surface over the Arctic. The internal variability of CF simulated in ensemble runs with the same model is very minimal.

Qian, Yun; Long, Charles N.; Wang, Hailong; Comstock, Jennifer M.; McFarlane, Sally A.; Xie, Shaocheng

2012-02-17T23:59:59.000Z

394

ARM Climate Research Facility Annual Report 2004  

SciTech Connect

Like a rock that slowly wears away beneath the pressure of a waterfall, planet earth?s climate is almost imperceptibly changing. Glaciers are getting smaller, droughts are lasting longer, and extreme weather events like fires, floods, and tornadoes are occurring with greater frequency. Why? Part of the answer is clouds and the amount of solar radiation they reflect or absorb. These two factors clouds and radiative transfer represent the greatest source of error and uncertainty in the current generation of general circulation models used for climate research and simulation. The U.S. Global Change Research Act of 1990 established an interagency program within the Executive Office of the President to coordinate U.S. agency-sponsored scientific research designed to monitor, understand, and predict changes in the global environment. To address the need for new research on clouds and radiation, the U.S. Department of Energy (DOE) established the Atmospheric Radiation Measurement (ARM) Program. As part of the DOE?s overall Climate Change Science Program, a primary objective of the ARM Program is improved scientific understanding of the fundamental physics related to interactions between clouds and radiative feedback processes in the atmosphere.

Voyles, J.

2004-12-31T23:59:59.000Z

395

DOE/SC-ARM-10-018 CARES: Carbonaceous Aerosol and Radiative  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 CARES: Carbonaceous Aerosol and Radiative Effects Study Operations Plan June 2010 RA Zaveri Principal Investigator WJ Shaw DJ Cziczo DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or

396

Satellite Data Assimilation in Numerical Weather Prediction Models. Part I: Forward Radiative Transfer and Jacobian Modeling in Cloudy Atmospheres  

Science Journals Connector (OSTI)

Satellite data assimilation requires rapid and accurate radiative transfer and radiance gradient models. For a vertically stratified scattering and emitting atmosphere, the vector discrete-ordinate radiative transfer model (VDISORT) was developed ...

Fuzhong Weng; Quanhua Liu

2003-11-01T23:59:59.000Z

397

ARM - Publications: Science Team Meeting Documents: Assessing physical  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessing physical processes in the ECMWF model forecasts through the ARM Assessing physical processes in the ECMWF model forecasts through the ARM SGP site measurements Neggers, Roel European Centre for Medium-range Weather Forecasts (ECMWF) Cheinet, Sylvain ECMWF (UK) Beljaars, Anton ECMWF Koehler, M European Centre for Medium-range Weather Forecasts, Reading, Morcrette, Jean-Jacques European Centre for Medium-Range Weather Forecasts Viterbo, Pedro ECMWF In this study, we compare short-term weather forecasts of the ECMWF model (Integrated Forecast System, IFS) to measurements at the Southern Great Plains (SGP) site of the Atmospheric Radiation Measurement (ARM) program in July 2003. By using a number of ARM instruments and complementary satellite and radar network data, a number of systematic deficiencies are characterized in the IFS, focusing on mixing processes.

398

ARM - Datastreams - 1440smos  

NLE Websites -- All DOE Office Websites (Extended Search)

smos smos Documentation Data Quality Plots Citation DOI: 10.5439/1024909 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : 1440SMOS Surface Met Observation Station (SMOS): daily minimum/maximum data, with times Active Dates 1994.03.08 - 2009.09.30 Measurement Categories Atmospheric State Originating Instrument Surface Meteorological Observation System Instruments for SGP (SMOS) Measurements The measurements below provided by this product are those considered scientifically relevant. Measurement Variable Atmospheric pressure max_bar_pres Atmospheric moisture max_rh Precipitation max_snow Atmospheric temperature max_temp Atmospheric moisture max_vap_pres Horizontal wind

399

ARM - Datastreams - ecmwfflx  

NLE Websites -- All DOE Office Websites (Extended Search)

Datastreamsecmwfflx Datastreamsecmwfflx Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : ECMWFFLX ECMWF: radiative fluxes at altitude, 1-hr avg, entire coverage Active Dates 1995.04.17 - 2013.12.31 Measurement Categories Radiometric Originating Instrument European Centre for Medium Range Weather Forecasts Diagnostic Analyses (ECMWFDIAG) Description These data can only be distributed to ARM scientists. ARM scientists who obtain these data must agree to acknowledge use of the data in their publications and not to share the data with others who are not on the ARM Science Team. Measurements The measurements below provided by this product are those considered

400

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

7, 2009 [Facility News] 7, 2009 [Facility News] Town Hall Meeting at AGU 2009 Fall Meeting Bookmark and Share ARM Climate Research Facility - New Measurement Capabilities for Climate Research Thursday, December 17, 6:15-7:15 pm, Moscone West Room 2002 American Recovery and Reinvestment Act American Recovery and Reinvestment Act Scientists from around the world use data from the ARM Climate Research Facility to study the interactions between clouds, aerosol and radiation. Through the American Recovery and Reinvestment Act of 2009, the DOE Office of Science received $1.2 billion, with $60 million allocated to the ARM Climate Research Facility. With these funds, ARM will purchase and deploy dual-frequency scanning cloud radars to all the ARM sites, enhance several sites with precipitation radars and energy flux measurement capabilities,

Note: This page contains sample records for the topic "arm atmospheric radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

X:\ARM_19~1\P245-258.WPD  

NLE Websites -- All DOE Office Websites (Extended Search)

.5 .5 S latitude, 152 E longitude). 4.7Wm 2 sr 1 Session Papers 245 The Optical Properties of Equatorial Cirrus in the Pilot Radiation Observation Experiment C. M. R. Platt, S. A. Young, P. Manson, G. R. Patterson, and S. Marsden CSIRO, Division of Atmospheric Research Aspendale, Victoria, Australia Introduction The development of a sensitive filter radiometer for the Atmospheric Radiation Measurement (ARM) Program has been reported by Platt et al. (1994, 1995). The aim was to develop a reliable and fast instrument that could be used alongside a lidar to obtain near realtime optical properties of clouds, particularly high ice clouds, as they drifted over an ARM Cloud and Radiation Testbed (CART) site allowing calculation of the radiation divergence in the atmosphere over the site. Obtaining cloud optical

402

ARM - VAP Process - aod  

NLE Websites -- All DOE Office Websites (Extended Search)

Productsaod Productsaod Documentation & Plots Technical Report (1) Technical Report (2) Data Management Facility Plots (Quick Looks) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP : Aerosol Optical Depth (AOD) Instrument Categories Derived Quantities and Models The core purpose of the ARM Facility is to reduce uncertainties in climate model predictions. A dominant source of uncertainty in these models is the radiative impact of aerosols, which has spawned a major effort in ARM to measure aerosol properties. The Aerosol Optical Depth (AOD) value-added product (VAP) is concerned with several important aerosol radiative properties. The most important of these is the aerosol optical depth (AOD), which is a measure of the total aerosol

403

The Ocean–Land–Atmosphere Model: Optimization and Evaluation of Simulated Radiative Fluxes and Precipitation  

Science Journals Connector (OSTI)

This work continues the presentation and evaluation of the Ocean–Land–Atmosphere Model (OLAM), focusing on the model’s ability to represent radiation and precipitation. OLAM is a new, state-of-the-art earth system model, capable of user-specified ...

David Medvigy; Robert L. Walko; Martin J. Otte; Roni Avissar

2010-05-01T23:59:59.000Z

404

Atmospheric Radiation Measurement Climate Research Facility (ACRF Instrumentation Status: New, Current, and Future)  

SciTech Connect

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

JW Voyles

2008-01-30T23:59:59.000Z

405

Absorption of solar radiation by the cloudy atmosphere: Further interpretations of collocated aircraft measurements  

E-Print Network (OSTI)

Absorption of solar radiation by the cloudy atmosphere: Further interpretations of collocated%) of this enhanced cloud absorption occurs at wavelengths 680 nm, and that the observed cloud absorption does stated, the purpose of ARESE was to address the issue of cloud shortwave (SW) absorption. Do clouds

Zender, Charles

406

Diagnostic analysis of atmospheric moisture and clear-sky radiative feedback in the Hadley  

E-Print Network (OSTI)

Diagnostic analysis of atmospheric moisture and clear-sky radiative feedback in the Hadley Centre and Geophysical Fluid Dynamics Laboratory (GFDL) climate models Richard P. Allan Hadley Centre, Met Office Jersey, USA A. Slingo1 Hadley Centre, Met Office, Bracknell, UK Received 23 July 2001; revised 20

Allan, Richard P.

407

A Model Evaluation Data Set for the Tropical ARM Sites  

DOE Data Explorer (OSTI)

This data set has been derived from various ARM and external data sources with the main aim of providing modelers easy access to quality controlled data for model evaluation. The data set contains highly aggregated (in time) data from a number of sources at the tropical ARM sites at Manus and Nauru. It spans the years of 1999 and 2000. The data set contains information on downward surface radiation; surface meteorology, including precipitation; atmospheric water vapor and cloud liquid water content; hydrometeor cover as a function of height; and cloud cover, cloud optical thickness and cloud top pressure information provided by the International Satellite Cloud Climatology Project (ISCCP).

Jakob, Christian

408

delamere_swqme_arm08_poster.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Shortwave Spectral Radiative Closure Studies Shortwave Spectral Radiative Closure Studies at the ARM Southern Great Plains Climate Research Facility Step 2: Input these properties to the line-by-line radiative transfer model LBLRTM/CHARTS with the HITRAN 2004 line parameter database, including updates through 2007, and MT_CKD continuum model. Compute transmittance, radiance/irradiance. Step 3: Determine best estimate of radiative properties from available radiometric measurements. Step 5: Diagnose cause of measurement/model discrepancies. Improve Steps 1 through4. Step 1: Determine best estimate of atmospheric and surface properties at the SGP ACRF. To do this, use ARM's sophisticated aerosol and cloud remote sensing instrumentation, daily radiosonde launches, and surface microwave radiometers.

409

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

A Climatology of Cloud & Radiative Properties Derived from GMS-5 Data Over A Climatology of Cloud & Radiative Properties Derived from GMS-5 Data Over the Tropical Western Pacific Nordeen, M.L.(a), Doelling, D.R.(a), Khaiyer, M.M.(a), Rapp, A.D.(a), and Minnis, P.(b), Analytical Services & Materials, Inc. (a), National Aeronautics and Space Administration-Langley Research Center (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Satellite derived cloud and radiative properties can provide continuous spatial and temporal coverage over the Tropical Western Pacific (TWP). The TWP is an area with few meteorological stations, but is an interesting region in global climate studies. Starting with the Nauru99 Intensive Operational Period (IOP) (June-July 1999), two years of hourly Geostationary Meteorological Satellite (GSM-5) images are used in the

410

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Effective Diameter in Radiation Transfer: Definition, Applications and Effective Diameter in Radiation Transfer: Definition, Applications and Limitations Mitchell, D. L., Desert Research Institute Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Although the use of an effective radius for radiation transfer calculations in water clouds has been common for many years, the export of this concept to ice clouds has been fraught with uncertainty. A consensus appears to be building that a general definition of effective diameter, Deff, should involve the ratio of the size distribution (SD) volume (at bulk density) to projected area. This work further endorses this concept, describes its physical basis in terms of an effective photon path, and demonstrates the equivalency of a derived Deff definition for both water and ice clouds.

411

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

The Impact of a Revised Treatment of Cirrus Microphysics on the Radiation The Impact of a Revised Treatment of Cirrus Microphysics on the Radiation Budget of the Unified Model Edwards, J.M. (a), Mitchell, D.L. (b), Ivanova, D. (b), and Wilson, D.R. (a), Met Office, Hadley Centre for Climate Prediction and Research (a), Desert Research Institute (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The Unified Model is used for both NWP and climate simulations at the Met Office. A parametrization of ice crystals as planar polycrystals was recently introduced into the climate and mesoscale NWP versions of this model, resulting in improvements to the radiation budget and a reduction in the upper tropospheric cold bias. Based on field observations, the size distribution is taken as bimodal and is characterized by a mean maximum

412

ARM - PI Product - Direct Aerosol Forcing Uncertainty  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsDirect Aerosol Forcing Uncertainty ProductsDirect Aerosol Forcing Uncertainty Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Direct Aerosol Forcing Uncertainty Site(s) NSA SGP TWP General Description Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in

413

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

An Analytic Solution of Two-Stream Stochastic Radiative Transfer in An Analytic Solution of Two-Stream Stochastic Radiative Transfer in Spatially Correlated Media Hu, Y.X.(a) and Davis, A.B.(b), NASA Langley Research Center (a), Los Alamos National Laboratory (b) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting In situ cloud microphysics measurements show spatial auto-correlations of extinction cross sections over a wide range of scales. At some of those scales, homogeneity and independent-column assumptions fail and a three-dimensional treatment of the radiative transfer is required to capture the effect of the correlations. A simple differential form of transport equation is developed for correlated media in order to account for the first-order impact of the spatial auto-correlations. Two-stream

414

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Parameterization of Cloud-Radiation Interactions as Relevant to Climate Parameterization of Cloud-Radiation Interactions as Relevant to Climate Models: A New Dimension Stephens, G.L.(a), Wood, N.B.(a), Barker, H.W.(b), and Gabriel,P.(a), Colorado State University (a), Meteorological Service of Canada (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The parameterization of cloud-radiation interactions involve a number of levels of approximation. The focus of past programs like ICRCCM and I3RC have been directed largely towards assessing methods of solution while other efforts have gone into evaluating the parameterization of cloud optical properties. The parameterization of unresolved cloud variability, however, has received much less attention. A study that attempts to assess a number of the current empirical sub-grid parameterization methods has

415

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparison of Cloud-Radiative Properties from Regional Very-High-Resolution Comparison of Cloud-Radiative Properties from Regional Very-High-Resolution Modeling and Satellite Retrievals Wang, D.-H. (a,b) and Minnis, P.(b), Hampton University (a), NASA Langley Research Center (b) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Data from a regional very-high-resolution modeling/assimilation and the GOES satellite-derived cloud-radiative properties including cloud fraction, temperature, height, thickness, phase, optical depth, effective particle size and ice or liquid water path; and TOA fluxes and albedos, are used in this study. The preliminary results of the intercomparison show that the cloud fields from model and satellite-derived compare well. The frequencies are computed for the individual cloud system. Comparisons of frequency

416

ARM - AMF Data Plots  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Profiler (915RWP) Surface Energy Flux Eddy Correlation Systems (ECOR) Infrared Thermometer (IRT), part of the GNDRAD datastream Longwave Spectral Radiation Atmospheric...

417

ARM - Datastreams - mettiptwr  

NLE Websites -- All DOE Office Websites (Extended Search)

Datastreamsmettiptwr Datastreamsmettiptwr Documentation Data Quality Plots Citation DOI: 10.5439/1046206 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Example mettiptwr Archive Data Plot Example mettiptwr Archive Data Plot Datastream : METTIPTWR Ten Meter Tower: meteorological data, 2 & 6 m, 1-min avg Active Dates 2001.04.01 - 2003.10.25 Measurement Categories Atmospheric State Originating Instrument Surface and Tower Meteorological Instrumentation at NSA (METTWR) Measurements The measurements below provided by this product are those considered scientifically relevant. Measurement Variable Atmospheric pressure atmos_pressure Atmospheric moisture dew_pt_temp_max Atmospheric moisture

418

ARM - Datastreams - aosmet  

NLE Websites -- All DOE Office Websites (Extended Search)

Datastreamsaosmet Datastreamsaosmet Documentation Data Quality Plots Citation DOI: 10.5439/1025153 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : AOSMET AOS: aerosol-based meteorology data Active Dates 2010.10.03 - 2013.10.02 Measurement Categories Atmospheric State Originating Instrument Meteorological Measurements associated with the Aerosol Observing System (AOSMET) Measurements Only measurements considered scientifically relevant are shown below by default. Show all measurements Measurement Units Variable Atmospheric pressure Ambient pressure hPa P_Ambient ( time ) Atmospheric moisture Ambient air relative humidity % RH_Ambient ( time ) Atmospheric temperature

419

ARM - Datastreams - mettwr  

NLE Websites -- All DOE Office Websites (Extended Search)

Datastreamsmettwr Datastreamsmettwr Documentation Data Quality Plots Citation DOI: 10.5439/1046207 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Example mettwr Archive Data Plot Example mettwr Archive Data Plot Datastream : METTWR Forty Meter Tower: meteorological data, 2, 10, 20, & 40 m, 1-min avg Active Dates 1998.03.20 - 2003.10.22 Measurement Categories Atmospheric State Originating Instrument Surface and Tower Meteorological Instrumentation at NSA (METTWR) Measurements The measurements below provided by this product are those considered scientifically relevant. Measurement Variable Atmospheric pressure atmos_pressure Atmospheric moisture dew_pt_temp_max Atmospheric moisture

420

Data Quality Assessment and Control for the ARM Climate Research Facility  

SciTech Connect

The mission of the Atmospheric Radiation Measurement (ARM) Climate Research Facility is to provide observations of the earth climate system to the climate research community for the purpose of improving the understanding and representation, in climate and earth system models, of clouds and aerosols as well as their coupling with the Earth's surface. In order for ARM measurements to be useful toward this goal, it is important that the measurements are of a known and reasonable quality. The ARM data quality program includes several components designed to identify quality issues in near-real-time, track problems to solutions, assess more subtle long-term issues, and communicate problems to the user community.

Peppler, R

2012-06-26T23:59:59.000Z

Note: This page contains sample records for the topic "arm atmospheric radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

ARM - Selected Science Team Applications - FY 2009  

NLE Websites -- All DOE Office Websites (Extended Search)

Brian Mapes, University of Miami: "Parameterizing Convective Organization" Dr. Roger Marchand: "Atmospheric Classification for the Analysis of ARM Observations and Global Climate...

422

ARM - Publications: Science Team Meeting Documents: Establishing Continuous  

NLE Websites -- All DOE Office Websites (Extended Search)

Establishing Continuous Atmospheric Profiles at the North Slope of Alaska Establishing Continuous Atmospheric Profiles at the North Slope of Alaska ACRF Delamere, Jennifer Atmospheric and Environmental Research, Inc. Turner, David Pacific Northwest National Laboratory Mlawer, Eli Atmospheric & Environmental Research, Inc. Clough, Shepard Atmospheric and Environmental Research Miller, Mark Brookhaven National Laboratory Troyan, David Brookhaven National Laboratory Clothiaux, Eugene The Pennsylvania State University Accurate and continuous vertical profiles of the atmospheric state above the North Slope of Alaska ARM Climate Research Facility (NSA ACRF) are a necessity for both accurate forward radiative transfer calculations and cloud microphysical retrievals. In particular, such profiles are a critical component of two important initiatives at the NSA site, the Broadband

423

Atmospheric Radiation Measurement Program - unmanned aerospace vehicle: The follow-on phase  

SciTech Connect

Unmanned Aerospace Vehicle (UAV) demonstration flights (UDF) are designed to provide an early demonstration of the scientific utility of UAVs by using an existing UAV and instruments to measure broadband radiative flux profiles under clear sky conditions. UDF is but the first of three phases of ARM-UAV. The second phase significantly extends both the UAV measurement techniques and the available instrumentation to allow both multi-UAV measurements in cloudy skies and extended duration measurements in the tropopause. These activities build naturally to the third and final phase, that of full operational capability, i.e., UAVs capable of autonomous operations at 20-km altitudes for multiple days with a full suite of instrumentation for measuring radiative flux, cloud properties, and water vapor profiles.

Vitko, J. Jr. [Sandia National Labs., Livermore, CA (United States)

1995-04-01T23:59:59.000Z

424

ARM - Datastreams - kazrge  

NLE Websites -- All DOE Office Websites (Extended Search)

Datastreamskazrge Datastreamskazrge Documentation Data Quality Plots Citation DOI: 10.5439/1025214 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KAZRGE Ka ARM Zenith Radar (KAZR): general mode Active Dates 2011.01.18 - 2014.01.09 Measurement Categories Atmospheric State, Cloud Properties Originating Instrument Ka ARM Zenith Radar (KAZR) Measurements Only measurements considered scientifically relevant are shown below by default. Show all measurements Measurement Units Variable Altitude above mean sea level m alt Base time in Epoch seconds since 1970-1-1 0:00:00 0:00 base_time Radar calibration constant, copolar dB cal_constant_copol ( time ) Radar calibration constant, cross-polar dB cal_constant_xpol ( time )

425

ARM - Datastreams - kazrspeccmaskhicopol  

NLE Websites -- All DOE Office Websites (Extended Search)

Datastreamskazrspeccmaskhicopol Datastreamskazrspeccmaskhicopol Documentation Data Quality Plots Citation DOI: 10.5439/1095602 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KAZRSPECCMASKHICOPOL Ka ARM Zenith Radar (KAZR): filtered spectral data, high sensitivity mode, co-polarized mode Active Dates 2013.04.26 - 2013.11.21 Measurement Categories Atmospheric State, Cloud Properties Originating Instrument Ka ARM Zenith Radar (KAZR) Measurements Only measurements considered scientifically relevant are shown below by default. Show all measurements Measurement Units Variable Altitude above mean sea level m alt Base time in Epoch seconds since 1970-1-1 0:00:00 0:00 base_time

426

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Trace Gases Targeted During Aircraft Carbon Field Campaign Trace Gases Targeted During Aircraft Carbon Field Campaign Bookmark and Share During the Aircraft Carbon field campaign, ARM researchers will add a set of carbon-cycle instruments and sample collection systems to existing aircraft that routinely collect aerosol measurements at the ARM Southern Great Plains site. During the Aircraft Carbon field campaign, ARM researchers will add a set of carbon-cycle instruments and sample collection systems to existing aircraft that routinely collect aerosol measurements at the ARM Southern Great Plains site. Because Earth's atmosphere is comprised almost entirely of nitrogen and oxygen (78% and 21% by volume, respectively), the remaining 1% of the gases are referred to as "trace gases." Trace gases include harmless inert gases,

427

ARM - Measurement - Vertical velocity  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsVertical velocity govMeasurementsVertical velocity ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Vertical velocity The component of the velocity vector, along the local vertical. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System KAZR : Ka ARM Zenith Radar MMCR : Millimeter Wavelength Cloud Radar SODAR : Mini Sound Detection and Ranging

428

ARM - Journal Articles 2007  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 Publications Journal Articles Conference Documents Program Documents Technical Reports Publications Database Public Information Materials Image Library Videos Publication Resources Submit a Publication Publishing Procedures ARM Style Guide (PDF, 448KB) Acronyms Glossary Logos Contacts RSS for Publications Journal Search [ Advanced Search ] Publication Years 2013 149 2012 163 2011 185 2010 197 2009 213 2008 174 2007 150 2006 213 2005 139 2004 141 2003 187 2002 205 2001 207 2000 232 1999 136 1998 172 1997 103 1996 84 1995 124 1994 65 1993 51 1992 47 1991 25 1990 12 1986 1 Journal Articles : 2007 Author Article Title Journal Funded By McFarlane Optical properties of shallow tropical cumuli derived from ARM ground-based remote sensing (Citation) Geophysical Research Letters ARM Mattioli Analysis of Radiosonde and ground-based remotely sensed PWV data from the 2004 North Slope of Alaska Arctic Winter Radiometric Experiment (Citation) Journal of Atmospheric and Oceanic Technology ARM

429

ARM - Data Announcements Article  

NLE Websites -- All DOE Office Websites (Extended Search)

September 19, 2013 [Data Announcements] September 19, 2013 [Data Announcements] New ARM Best Estimate Land Product Contains Critical Soil Quantities for Describing Land Properties Bookmark and Share Soil moisture at the SGP Central Facility site for 1998, mean over five EBBR sensors, measured at 5 centimeters underground. Soil moisture at the SGP Central Facility site for 1998, mean over five EBBR sensors, measured at 5 centimeters underground. The ARM Best Estimate: Land (ARMBELAND) value-added prduct (VAP) is a subset of the ARM Best Estimate (ARMBE) products designed to support community land-atmospheric research and land model developments. It contains several critical soil quantities that ARM has been measuring for many years for describing land properties. The quantities in ARMBELAND are

430

ARM - Datastreams - kazrmd  

NLE Websites -- All DOE Office Websites (Extended Search)

Datastreamskazrmd Datastreamskazrmd Documentation Data Quality Plots Citation DOI: 10.5439/1095601 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KAZRMD Ka ARM Zenith Radar (KAZR): moderate sensitivity mode Active Dates 2011.05.03 - 2014.01.09 Measurement Categories Atmospheric State, Cloud Properties Originating Instrument Ka ARM Zenith Radar (KAZR) Measurements Only measurements considered scientifically relevant are shown below by default. Show all measurements Measurement Units Variable Altitude above mean sea level m alt Base time in Epoch seconds since 1970-1-1 0:00:00 0:00 base_time Radar calibration constant, copolar dB cal_constant_copol ( time )

431

ARM - Datastreams - ecmwften  

NLE Websites -- All DOE Office Websites (Extended Search)

Datastreamsecmwften Datastreamsecmwften Documentation Data Quality Plots Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : ECMWFTEN ECMWF: total and physical tendencies for met and cloud vars, entire coverage, 1-hr avg Active Dates 1995.04.17 - 2013.12.31 Measurement Categories Atmospheric State Originating Instrument European Centre for Medium Range Weather Forecasts Diagnostic Analyses (ECMWFDIAG) Description These data can only be distributed to ARM scientists. ARM scientists who obtain these data must agree to acknowledge use of the data in their publications and not to share the data with others who are not on the ARM Science Team. Measurements The measurements below provided by this product are those considered scientifically relevant.

432

ARM - Evaluation Product - Broadband Heating Rate Profile Project (BBHRP)  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsBroadband Heating Rate Profile Project ProductsBroadband Heating Rate Profile Project (BBHRP) Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Broadband Heating Rate Profile Project (BBHRP) 2000.03.01 - 2006.02.28 Site(s) SGP General Description The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties

433

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Science Team Meeting 2 Science Team Meeting 1992 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Proceedings of the Second Atmospheric Radiation Measurement (ARM) Science Team Meeting DOE CONF-9110336, October 26-30, 1992 Denver, Colorado For proper viewing, many of these proceedings should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. * Poster abstract only; an extended abstract was not provided by the author(s). A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Ackerman, T. An Integrated Cloud Observation and Modeling Investigation in Support of the Atmospheric Radiation Measurement Program Tropical Western Pacific Project: Status Albrecht, B.

434

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparison of Measurements of Liquid Water Path Comparison of Measurements of Liquid Water Path Lane, D.E. (a), Fairall, C.W. (b), Hazen, D. (b), and Orr, B. (b), Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder (a), Environmental Technology Laboratory, National Oceanic and Atmospheric Administration, Boulder (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Investigation of ship-based microwave radiometer observations from the equatorial Pacific during EPIC 99 indicated anomalously high values of liquid water content during clear sky conditions. Several possible sources of error were examined including the radiative transfer model employed to the original sondings, and application of the TIP calibrations. Further research has suggested that incorrect brightness temperatures were observed

435

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Lidar Remote Sensing of Cirrus Clouds at the Southern Great Plains Site: Lidar Remote Sensing of Cirrus Clouds at the Southern Great Plains Site: Comparisons of Extinction and Backscatter Coefficients Derived Using Raman and Backscatter Lidar Technique Comstock, J.M.(a), Fu, Q.(b), Turner, D.D.(c), and Ackerman, T.P.(a), Pacific Northwest National Laboratory (a), Department of Atmospheric Sciences, University of Washington (b), University of Wisconsin/Pacific Northwest National Laboratory(c) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Horizontal and vertical inhomogeneity of cirrus clouds is an important issue in radiation modeling and the representation of cirrus clouds in general circulation models (GCMs). Lidar remote sensing is a useful tool for determining the vertical structure of cirrus clouds. Backscatter

436

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparisons Between Measured and Modeled Longwave Irradiances During Arctic Comparisons Between Measured and Modeled Longwave Irradiances During Arctic Winter: Results from the Second International Pyrgeometer and Absolute Sky-Scanning Radiometer Comparison (IPARSC-II) Marty, Ch.(a), Storvold, R.(a), Philipona, R.(b), Delamere, J.(c), Dutton, E.(d), Michalsky, J.(e), Stamnes, K.(f), Eide, H.(f), and Stoffel, T.(g), Geophysical Institute, University of Alaska Fairbanks (a), World Radiation Center, Davos, Switzerland (b), Atmospheric and Environmental Research, Boston (c), Climate Monitoring and Diagnostics Laboratory NOAA, Boulder (d), State University of New York at Albany (e), Stevens Institute of Technology, Hoboken, New Jersey (f), National Renewable Energy Laboratory, Golden (g) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting

437

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Diurnal Cycle of Convection, Clouds, and Water Vapor in the Tropical Diurnal Cycle of Convection, Clouds, and Water Vapor in the Tropical Upper Troposphere Soden, B.J., NOAA/GFDL Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The presence of large diurnal variations in convection over the tropics is well documented. The amplitude of the diurnal cycle is typically largest over land areas, but important variations are also observed over oceans. Precipitation, for example, generally peaks in the early evening over tropical land regions and in the early morning over oceans. Such land/ ocean phase differences have been the topic of considerable research and debate. Many of the most widely studied diurnal variations, such as precipitation, cloud cover, and outgoing longwave radiation, are directly associated with the atmospheric hydrologic cycle. Given its obvious role in

438

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Evidence for Aerosol Effects on AERI Clear-Sky Radiance at the SGP Evidence for Aerosol Effects on AERI Clear-Sky Radiance at the SGP Ma, Y., and Ellingson, R.G., University of Maryland Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Atmospheric Emitted Radiance Interferometer (AERI) Line-by-Line Radiative Transfer Model (LBLRTM) Quality Measurement Experiment (QME) 10-micron window residuals have been examined relative to the Multifilter Rotating Shadowband Radiometer (MFRSR) 0.87-micron optical depth for clear-sky periods during 1997-98. The analysis shows an increasing aerosol influence on the downwelling radiance with aerosol optical depth for columnar water totals below about 3 cm. Above 3 cm, the residuals become negatively correlated with both aerosol optical depth and precipitable water. This change in the characteristics suggests that the current LBLRTM

439

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

A Comparison of High Spectral Resolution Infrared Cloud Boundary Algorithms A Comparison of High Spectral Resolution Infrared Cloud Boundary Algorithms using S-HIS and AERI Measurements Holz, R.E.(a), Antonelli, P.(a), Ackerman, S.(a), McGill, M.J.(a), Nagel, F.(a), Feltz, W.F.(a), and Turner, D.D.(b), Univeristy of Wisconsin, Madison (a), Pacific Northwest National Laboratory (b) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Cloud top pressure is an important parameter in determining the radiative impact of clouds on climate. In addition, atmospheric temperature and moister retrievals of cloudy scenes using high spectral resolution data require the cloud altitude be known. The S-HIS is scheduled to fly on the Proteus during the upcoming M-PACE experiment. In addition to the SHIS a lidar system and an imager will accompany the SHIS during MPACE. This paper

440

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Application of a Non-local Turbulence Closure Scheme to a Single Column Application of a Non-local Turbulence Closure Scheme to a Single Column Model Ghan, S.J. (a) and Moeng, C.-H. (b), Pacific Northwest National Laboratory (a), National Center for Atmospheric Research (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting A non-local countergradient transport term is added to a turbulence kinetic energy scheme embedded in a single column model (SCM). The countergradient term is expressed in terms of a planetary boundary layer (PBL) velocity scale, the vertical profile of diffusivity, the depth of the PBL, and the fluxes of heat and moisture at the surface and at the top of the PBL. The fluxes at the top of the PBL are expressed in terms of the cloud top radiative cooling rate, the jump in liquid potential temperature and total

Note: This page contains sample records for the topic "arm atmospheric radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

ARM_Overview_black_43.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

- In and Out of Africa - In and Out of Africa Gary Robinson, Tony Slingo, Nazim Bharmal and Jeff Settle Environmental Systems Science Centre, Reading University, UK RADAGAST is a collaborative project, involving UK, US and European scientists, to investigate the radiative divergence across the atmosphere. West Africa was chosen as the study area because the combination of wide range of column water vapour, episodic wind-generated dust events and seasonal aerosols from biomass burning presents a particular challenge to radiative transfer models. The primary data inputs are top-of-atmosphere narrow and broad-band observations from METEOSAT Second Generation (MSG) satellites and surface observations from the ARM Mobile Facility (AMF), which was deployed throughout 2006 at Niamey, Niger, in support of RADAGAST.

442

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Seasonal Variability in Cloud Cover, Cloud Base Height, and Cloud Liquid Seasonal Variability in Cloud Cover, Cloud Base Height, and Cloud Liquid Water Content at the North Slope of Alaska and the Adjacent Arctic Ocean Storvold, R. (a), Stamnes, K. (b), Marty, C. (a), and Zak, B.D. (c), University of Alaska Fairbanks (a), Stevens Institute of Technology (b), Sandia National Laboratories (c) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting There is great seasonal variability in cloud cover, cloud base height, and cloud liquid water in the Arctic. This seasonal variability in cloud properties has been quantified based on a full year of data from the Atmospheric Radiation Measurement Program Sites in Barrow and Atqasuk during 1999-2000. We compare these results with similar results obtained in the Arctic Ocean during the one-year SHEBA experiment. We also compare the

443

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectral Diffuse Irradiance in UV, VIS, and NIR During the 2001 Diffuse IOP Spectral Diffuse Irradiance in UV, VIS, and NIR During the 2001 Diffuse IOP Kiedron, P., Michalsky, J., Berndt, J., Min, Q., and Harrison, L., Atmospheric Sciences Research Center, SUNY Albany, New York Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Two rotating shadowband spectroradiometers (RSS) participated in the 2001 Diffuse IOP. The UV-RSS covered the 300-360 nm range and the VIS-NIR RSS covered 360-1050 nm. Both instruments were calibrated with NIST traceable spectral irradiance. The two instruments were able to measure approximately 95% of total diffuse radiation for clear-sky conditions. The missing shortwave infrared beyond 1050 nm is estimated with a model in order to calculate a total shortwave irradiance. The results are compared with

444

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Parameterization of Hygroscopic Aerosols in a Climate GCM Parameterization of Hygroscopic Aerosols in a Climate GCM Lacis, A.A., Mishchenko, M.I., and Carlson, B.E., Goddard Institute for Space Studies Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Real and imaginary refractive indices are needed over the full range of solar and thermal wavelengths in order to compute the radiative forcing due to atmospheric aerosols. Laboratory measurements are available for dry ammonium sulfate [Toon and Pollack, 1976] over the spectral range 0.3 – 40 ?m, and for dry sea salt [Shettle and Fenn, 1979; Nilsson, 1979; both based on Volz, 1972 measurements] over 0.2 – 40 ?m. Partial spectrum measurements from 0.7 to 2.6 ?m of the imaginary refractive index of ammonium sulfate and ammonium nitrate are also available [Gosse et al.,

445

ARM - Measurement - Cloud top height  

NLE Websites -- All DOE Office Websites (Extended Search)

to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud top height For a given cloud or cloud layer, the highest level of the atmosphere where...

446

ARM - Measurement - Precipitation  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsPrecipitation govMeasurementsPrecipitation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Precipitation All liquid or solid phase aqueous particles that originate in the atmosphere and fall to the earth's surface. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO2FLX : Carbon Dioxide Flux Measurement Systems DISDROMETER : Impact Disdrometer LDIS : Laser Disdrometer MWRHF : Microwave Radiometer - High Frequency

447

ARM - 2008 Performance Metrics  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Performance Metrics 8 Performance Metrics Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) ARM Science Team Meetings User Meetings Annual Meetings of the Atmospheric System Research (ASR) Science Team and Fall Working Groups Accomplishments Read about the 20 years of accomplishments (PDF, 696KB) from the ARM Program and user facility. Performance Metrics ASR Metrics 2009 2008 2007 2006 2008 Performance Metrics Each year, the ARM Program must submit to DOE an overall performance measure related to scientific achievement. The overall performance measure includes specific metrics for reporting progress each quarter. This reporting process includes support documentation (usually a report or data file) appropriate for the metric. Overall Performance Measures

448

ARM - Measurement - Isotope ratio  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsIsotope ratio govMeasurementsIsotope ratio ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Isotope ratio Ratio of stable isotope concentrations. Categories Atmospheric Carbon, Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments FLASK : Flask Samplers for Carbon Cycle Gases and Isotopes Field Campaign Instruments FLASK : Flask Samplers for Carbon Cycle Gases and Isotopes Datastreams FLASK : Flask Samplers for Carbon Cycle Gases and Isotopes

449

ARM - Instrument - sonde  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentssonde govInstrumentssonde Documentation SONDE : Handbook SONDE : XDC documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Balloon-Borne Sounding System (SONDE) Beneficiary of Recovery Act funding. Instrument Categories Atmospheric Profiling General Overview The balloon-borne sounding system (SONDE) provides in situ measurements (vertical profiles) of both the thermodynamic state of the atmosphere, and the wind speed and direction. During some field campaigns, sonde operations from multiple stations around a central location with baseline measurements, like a mobile facility, can provide important constraints for model simulations. At the ARM sites, sondes are launched at the following

450

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Some Results of the Comparison of the Solar Almucantar Sky Brightness Some Results of the Comparison of the Solar Almucantar Sky Brightness Observed Under the Cirri Conditions and the Calculated One Petrushin, A.G.(b), Shukurov, A.K.(a), Shukurov, K.A.(a), and Golitsyn, G.S.(a), A.M. Obukhov Institute of Atmospheric Physics, RAS (a), Institute of Experimental Meteorology, NPO "Typhoon" (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The selected measurements of the solar almucantar sky brightness were carried out at the Zvenigorod Research Facility of the A.M.Obukhov Institute of Atmospheric Physics (IAPh) RAS using the scanning photometer [1] developed in IAPh. These measurements were took place at the cloudy sky and the clear one and at various optical depth t that was controlled with

451

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Variations in the Ratio of IR Window Radiance to Microwave Water Path Variations in the Ratio of IR Window Radiance to Microwave Water Path Observed Under Cloudless Convection Platt, C.M.(a) and Austin, R.T.(b), Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The measurement of the radiance of cirrus (and other) clouds at atmospheric window 8-13 micron wavelengths requires a correction for the water vapor radiance and transmittance below the clouds. Calculating radiances at the times of routine radiosonde ascents and interpolating the radiance/water path ratio between ascents can achieve this. However it has been observed experimentally that IR radiance/water path ratios appear to vary between radiosonde ascents away from the interpolated values. This occurs

452

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

A Partially Prognostic Third-Order Closure Model for Modeling the Boundary A Partially Prognostic Third-Order Closure Model for Modeling the Boundary Layer Cheng, A.C.(a) and Xu, K.-M.(b), Center for Atmospheric Sciences, Hampton University (a), Atmospheric Sciences, NASA Langley Research Center (b) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting A new partially prognostic third-order closure (TOC) model is developed to model boundary-layer clouds in this study. The model assumes joint double Gaussian distributions of vertical velocity, temperature and moisture. The first and second moments of all variables as well as the third moments of vertical velocity, liquid-water potential temperature and total water mixing ratio are predicted to determine a proper probability density function (PDF). Once the PDF is known, the rest of the third moments and

453

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Dust-Climate Interactions: A Conceptual Model Dust-Climate Interactions: A Conceptual Model Shell, K. M. and Somerville, R. C. J., Scripps Institution of Oceanography, University of California, San Diego Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Paleoclimatic evidence strongly suggests that airborne mineral dust can be a climatically important atmospheric aerosol, but little is known quantitatively about the mechanisms of dust-climate interactions. We have developed a conceptual global model with which to study processes and feedbacks within the dust-climate system. We solve numerically for equilibrium climate states defined by temperature as a function of latitude. Our zonally averaged model includes both an atmosphere and a surface that becomes ice-covered at sufficiently low temperatures. We

454

New Visible to Broadband Shortwave Conversions for Deriving Albedos from GOES-8 Over the ARM-SGP  

NLE Websites -- All DOE Office Websites (Extended Search)

New Visible to Broadband Shortwave Conversions for New Visible to Broadband Shortwave Conversions for Deriving Albedos from GOES-8 Over the ARM-SGP V. Chakrapani, D. R. Doelling, and M. M. Khaiyer Analytical Services and Materials, Inc. Hampton, Virginia P. Minnis National Aeronautics and Space Administration Langley Research Center Hampton, Virginia Introduction The radiation budget at the top of the atmosphere (TOA) is a quantity of fundamental importance to the Atmospheric Radiation Measurement (ARM) Program. Thus, it is necessary to measure the radiation budget components, broadband shortwave (SW) albedo and outgoing longwave radiation, as accurately as possible. Measurement of TOA broadband albedos over the ARM surface sites has only been possible since the advent of Clouds and the Earth's Radiant Energy System (CERES; Wielicki et al.

455

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Measurement (ARM) Science Team Meeting Data collected during the SHEBA (Surface Heat Budget of the Arctic Ocean) field experiment and at the Barrow ARM site are used to...

456

Modeling Io's Sublimation-Driven Atmosphere: Gas Dynamics and Radiation Emission  

SciTech Connect

Io's sublimation-driven atmosphere is modeled using the direct simulation Monte Carlo method. These rarefied gas dynamics simulations improve upon earlier models by using a three-dimensional domain encompassing the entire planet computed in parallel. The effects of plasma impact heating, planetary rotation, and inhomogeneous surface frost are investigated. Circumplanetary flow is predicted to develop from the warm subsolar region toward the colder night-side. The non-equilibrium thermal structure of the atmosphere, including vibrational and rotational temperatures, is also presented. Io's rotation leads to an asymmetric surface temperature distribution which is found to strengthen circumplanetary flow near the dusk terminator. Plasma heating is found to significantly inflate the atmosphere on both day- and night-sides. The plasma energy flux also causes high temperatures at high altitudes but permits relatively cooler temperatures at low altitudes near the dense subsolar point due to plasma energy depletion. To validate the atmospheric model, a radiative transfer model was developed utilizing the backward Monte Carlo method. The model allows the calculation of the atmospheric radiation from emitting/absorbing and scattering gas using an arbitrary scattering law and an arbitrary surface reflectivity. The model calculates the spectra in the {nu}{sub 2} vibrational band of SO{sub 2} which are then compared to the observational data.

Walker, Andrew C.; Goldstein, David B.; Varghese, Philip L.; Trafton, Laurence M.; Moore, Chris H.; Stewart, Benedicte [University of Texas at Austin, Department of Aerospace Engineering, 210 East 24. Street W. R. Woolrich Laboratories 1 University Station, C0600 Austin, TX 78712 (United States); Gratiy, Sergey L.; Levin, Deborah A. [Pennsylvania State University, Department of Aerospace Engineering, 229 Hammond, University Park, PA 16802 (United States)

2008-12-31T23:59:59.000Z

457

DOE/SC-ARM/P-07-013  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 - September 30, 2007 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research July 1 - September 30, 2007, DOE/SC-ARM/P-07-013 Contents 1. Data Availability ....................................................................................................................... 1 2. Site Visit Requests, Archive Accounts, and Research Computer Accounts ............................. 2 3. Safety ........................................................................................................................................ 4 Tables

458

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Science Team Meeting 7 Science Team Meeting 1997 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Cover image Proceedings of the Seventh Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM-CONF-1997, March 1997 San Antonio, Texas For proper viewing, many of these proceedings should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. Poster abstracts are not available online for this year. However, if you would like to request a copy of a specific poster abstract, please contact the Web Administrator. A Comparison of Integrated Water Vapor Sensors: WVIOP-96 J.C. Liljegren, E.R. Westwater, and Y. Han A Comparison of Observed Clear-Sky Surface Irradiance with

459

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Improved Surface Emissivities Derived from Multispectral Satellite Data Improved Surface Emissivities Derived from Multispectral Satellite Data Over the ARM SGP Smith, W.L., Jr., Minnis, P., and Young, D.F., NASA Langley Research Center Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Surface emissivity is an important parameter for many remote sensing applications but is difficult to determine because it requires an accurate specification of the surface skin temperature. Because of this, laboratory estimates of the emissivity of pure surfaces are often relied on which generally do not adequately simulate the Earth's natural surfaces as seen from a satellite imager in space. A technique has been developed to derive surface emissivity from clear-sky, multispectral satellite data for three infrared channels (3.9 or 3.7, 10.8 and 12.0 um) common to many of today's

460

ARM - Measurement - Shortwave narrowband direct downwelling irradiance  

NLE Websites -- All DOE Office Websites (Extended Search)

downwelling irradiance downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband direct downwelling irradiance The direct unscattered radiant energy from the Sun, in a narrow band of wavelengths shorter than approximately 4 {mu}m, passing through a horizontal unit area in a downward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available me