National Library of Energy BETA

Sample records for arm atmospheric radiation

  1. Atmospheric Radiation Measurement (ARM) Data from the ARM Aerial...

    Office of Scientific and Technical Information (OSTI)

    the ARM Aerial Facility Title: Atmospheric Radiation Measurement (ARM) Data from the ARM Aerial Facility The Atmospheric Radiation Measurement (ARM) Program is the largest global ...

  2. ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * Dave Turner and the rest of the ARM science team * Ric Cederwall * Xiquan Dong * Chuck Long * Jay Mace * Mark Miller * Robin Perez * Dave Turner and the rest of the ARM science ...

  3. Atmospheric Radiation Measurement (ARM) Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Radiation Measurement (ARM) Climate Research Facility and Atmospheric System Research (ASR) Science and Infrastructure Steering Committee CHARTER June 2012 DISCLAIMER ...

  4. Atmospheric Radiation Measurement (ARM) Data from the North Slope...

    Office of Scientific and Technical Information (OSTI)

    North Slope Alaska (NSA) Site Title: Atmospheric Radiation Measurement (ARM) Data from the North Slope Alaska (NSA) Site The Atmospheric Radiation Measurement (ARM) Program is the ...

  5. Atmospheric Radiation Measurement Radiative Atmospheric Divergence using ARM Mobile

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiative Atmospheric Divergence using ARM Mobile Facility, GERB, and AMMA Stations (RADAGAST) Beginning in January 2006, the ARM Mobile Facility (AMF) began supporting RADAGAST to provide the first well-sampled direct esti- mates of the energy balance across the atmosphere. The experiment is part of an ongoing international study of the West African monsoon system and Saharan dust storms. Stationed outside the Niger Meteo- rological Office at the Niamey International Airport, the AMF is located

  6. Style Guide Atmospheric Radiation Measurement (ARM) Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Style Guide Atmospheric Radiation Measurement (ARM) Climate Research Facility March 2013 Style Guide Atmospheric Radiation Measurement Climate Research Facility March 2013 Work ...

  7. DOE/SC-ARM-020 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-020 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  8. ARM - PI Product - Atmospheric State, Cloud Microphysics & Radiative Flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsAtmospheric State, Cloud Microphysics & Radiative Flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Atmospheric State, Cloud Microphysics & Radiative Flux [ ARM Principal Investigator (PI) Data Product ] Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the

  9. Atmospheric Radiation Measurement (ARM) Data from the ARM Aerial Facility

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. ARM data is collected both through permanent monitoring stations and field campaigns around the world. Airborne measurements required to answer science questions from researchers or to validate ground data are also collected. To find data from all categories of aerial operations, follow the links from the AAF information page at http://www.arm.gov/sites/aaf. Tables of information will provide start dates, duration, lead scientist, and the research site for each of the named campaigns. The title of a campaign leads, in turn, to a project description, contact information, and links to the data. Users will be requested to create a password, but the data files are free for viewing and downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  10. Atmospheric Radiation Measurement (ARM) Data from the Southern...

    Office of Scientific and Technical Information (OSTI)

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research ... reflect conditions over the typical distribution of land uses within the site. ...

  11. Atmospheric Radiation Measurement (ARM) Data from the Eastern...

    Office of Scientific and Technical Information (OSTI)

    the Eastern North Atlantic Site (ENA), Graciosa Island, Azores Title: Atmospheric Radiation Measurement (ARM) Data from the Eastern North Atlantic Site (ENA), Graciosa Island, ...

  12. Atmospheric Radiation Measurement (ARM) Data from Point Reyes...

    Office of Scientific and Technical Information (OSTI)

    Seashore, on the California coast north of San Francisco, was the location of the first deployment of the DOE's Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF). ...

  13. Atmospheric Radiation Measurement (ARM) Data from the North Slope...

    Office of Scientific and Technical Information (OSTI)

    North Slope Alaska (NSA) Site Title: Atmospheric Radiation Measurement (ARM) Data from the North Slope Alaska (NSA) Site You are accessing a document from the Department of ...

  14. Atmospheric Radiation Measurement (ARM) Data from the ARM Aerial...

    Office of Scientific and Technical Information (OSTI)

    The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of ...

  15. Satellite data sets for the atmospheric radiation measurement (ARM) program

    SciTech Connect (OSTI)

    Shi, L.; Bernstein, R.L.

    1996-04-01

    This abstract describes the type of data obtained from satellite measurements in the Atmospheric Radiation Measurement (ARM) program. The data sets have been widely used by the ARM team to derive cloud-top altitude, cloud cover, snow and ice cover, surface temperature, water vapor, and wind, vertical profiles of temperature, and continuoous observations of weather needed to track and predict severe weather.

  16. DOE/SC-ARM-13-013 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-13-013 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  17. DOE/SC-ARM-14-025 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-14-025 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  18. DOE/SC-ARM-15-037 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-15-037 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  19. DOE/SC-ARM-12-021 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-12-021 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  20. DOE/SC-ARM-14-007 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-14-007 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  1. DOE/SC-ARM-15-018 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-15-018 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  2. DOE/SC-ARM-14-019 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-14-019 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  3. DOE/SC-ARM-15-001 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-15-001 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  4. DOE/SC-ARM-14-001 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-14-001 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  5. DOE/SC-ARM-13-007 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-13-007 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  6. DOE/SC-ARM-12-015 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-12-015 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  7. DOE/SC-ARM-13-001 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-13-001 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  8. DOE/SC-ARM-13-020 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-13-020 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  9. Science Plan for the Atmospheric Radiation Measurement Program (ARM)

    SciTech Connect (OSTI)

    1996-02-01

    The purpose of this Atmospheric Radiation Measurement (ARM) Science Plan is to articulate the scientific issues driving the ARM Program, and to relate them to DOE`s programmatic objectives for ARM, based on the experience and scientific progress gained over the past five years. ARM programmatic objectives are to: (1) Relate observed radiative fluxes and radiances in the atmosphere, spectrally resolved and as a function of position and time, to the temperature and composition of the atmosphere, specifically including water vapor and clouds, and to surface properties, and sample sufficient variety of situations so as to span a wide range of climatologically relevant possibilities; (2) develop and test parameterizations that can be used to accurately predict the radiative properties and to model the radiative interactions involving water vapor and clouds within the atmosphere, with the objective of incorporating these parameterizations into general circulation models. The primary observational methods remote sending and other observations at the surface, particularly remote sensing of clouds, water vapor and aerosols.

  10. ARESE (ARM Enhanced Shortwave Experiment) Science Plan [Atmospheric Radiation Program

    SciTech Connect (OSTI)

    Valero, F.P.J.; Schwartz, S.E.; Cess, R.D.; Ramanathan, V.; Collins, W.D.; Minnis, P.; Ackerman, T.P.; Vitko, J.; Tooman, T.P.

    1995-09-27

    Several recent studies have indicated that cloudy atmospheres may absorb significantly more solar radiation than currently predicted by models. The magnitude of this excess atmospheric absorption, is about 50% more than currently predicted and would have major impact on our understanding of atmospheric heating. Incorporation of this excess heating into existing general circulation models also appears to ameliorate some significant shortcomings of these models, most notably a tendency to overpredict the amount of radiant energy going into the oceans and to underpredict the tropopause temperature. However, some earlier studies do not show this excess absorption and an underlying physical mechanism that would give rise to such absorption has yet to be defined. Given the importance of this issue, the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program is sponsoring the ARM Enhanced Shortwave Experiment (ARESE) to study the absorption of solar radiation by clear and cloudy atmospheres. The experimental results will be compared with model calculations. Measurements will be conducted using three aircraft platforms (ARM-UAV Egrett, NASA ER-2, and an instrumented Twin Otter), as well as satellites and the ARM central and extended facilities in North Central Oklahoma. The project will occur over a four week period beginning in late September, 1995. Spectral broadband, partial bandpass, and narrow bandpass (10nm) solar radiative fluxes will be measured at different altitudes and at the surface with the objective to determine directly the magnitude and spectral characteristics of the absorption of shortwave radiation by the atmosphere (clear and cloudy). Narrow spectral channels selected to coincide with absorption by liquid water and ice will help in identifying the process of absorption of radiation. Additionally, information such as water vapor profiles, aerosol optical depths, cloud structure and ozone profiles, needed to use as input in radiative

  11. Atmospheric Radiation Measurement (ARM) Data from Black Forest...

    Office of Scientific and Technical Information (OSTI)

    The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of ...

  12. Atmospheric Radiation Measurement (ARM) Data from the Tropical...

    Office of Scientific and Technical Information (OSTI)

    The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of ...

  13. Atmospheric Radiation Measurement (ARM) Data from the Southern...

    Office of Scientific and Technical Information (OSTI)

    The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of ...

  14. Atmospheric Radiation Measurement (ARM) Data from the ARM Specific Measurement Categories

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The ARM Program gathers a wide variety of measurements from many different sources. Each day, the Data Archive stores and distributes large quantities of data collected from these sources. Scientists then use these data to research atmospheric radiation balance and cloud feedback processes, which are critical elements of global climate change. The huge archive of ARM data can be organized by measurement categories into six "collections:" Aerosols, Atmospheric Carbon, Atmospheric State, Cloud Properties, Radiometric, and Surface Properties. Clicking on one of the measurement categories leads to a page that breaks that category down into sub-categories. For example, "Aerosols" is broken down into Microphysical and Chemical Properties (with 9 subsets) and Optical and Radiative Properties (with 7 subsets). Each of the subset links, in turn, leads to detailed information pages and links to specific data streams. Users will be requested to create a password, but the data files are free for viewing and downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  15. Atmospheric Radiation Measurement (ARM) Data from Niamey, Niger for the Radiative Atmospheric Divergence using AMF, GERB and AMMA Stations (RADAGAST)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To achieve this goal, ARM scientists and researchers around the world use continuous data obtained through the ARM Climate Research Facility. The ARM Mobile Facility (AMF) operates at non-permanent sites selected by the ARM Program. Sometimes these sites can become permanent ARM sites, as was the case with Graciosa Island in the Azores. It is now known as the Eastern North Atlantic permanent site. In January 2006 the AMF deployed to Niamey, Niger, West Africa, at the Niger Meteorological Office at Niamey International Airport. This deployment was timed to coincide with the field phases and Special Observing Periods of the African Monsoon Multidisciplinary Analysis (AMMA). The ARM Program participated in this international effort as a field campaign called "Radiative Divergence using AMF, GERB and AMMA Stations (RADAGAST).The primary purpose of the Niger deployment was to combine an extended series of measurements from the AMF with those from the Geostationary Earth Radiation Budget (GERB) Instrument on the Meteosat operational geostationary satellite in order to provide the first well-sampled, direct estimates of the divergence of solar and thermal radiation across the atmosphere. A large collection of data plots based on data streams from specific instruments used at Niamey are available via a link from ARM's Niamey, Niger site information page. Other data can be found at the related websites mentioned above and in the ARM Archive. Users will be requested to create a password, but the plots and data files are free for viewing and downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  16. Atmospheric Radiation Measurement Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ARM 2003 Tom Ackerman Chief Scientist Tom Ackerman Chief Scientist ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement WARNING! WARNING! Today is April 1 But that has NO bearing on this message Today is April 1 But that has NO bearing on this message ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Two Topics Two Topics * Status of ARM (quick overview) * Science plan - ARM in the next 5 years * Status of ARM (quick overview) * Science plan -

  17. Proceedings of the third Atmospheric Radiation Measurement (ARM) science team meeting

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    This document contains the summaries of papers presented at the 1993 Atmospheric Radiation Measurement (ARM) Science Team meeting held in Morman, Oklahoma. To put these papers in context, it is useful to consider the history and status of the ARM Program at the time of the meeting. Individual papers have been cataloged separately.

  18. ARM West Antarctic Radiation Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    West Antarctic Radiation Experiment of the most advanced atmospheric research ... From the fall of 2015 to early 2017, the Atmospheric Radiation Measurement (ARM) West ...

  19. Atmospheric Radiation Measurement (ARM) Data from Specific Instruments Used in the ARM Program

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    ARM is known for its comprehensive set of world-class, and in some cases, unique, instruments available for use by the global scientific community. In addition to the ARM instruments, the ARM Climate Research Facility identifies and acquires a wide variety of data including model, satellite, and surface data, from "external instruments," to augment the data being generated within the program. External instruments belong to organizations that are outside of the ARM Program. Field campaign instruments are another source of data used to augment routine observations. The huge archive of ARM data can be organized by instrument categories into twelve "collections:" Aerosols, Airborne Observations, Atmospheric Carbon, Atmospheric Profiling, Cloud Properties, Derived Quantities and Models, Ocean Observations, Radiometric, Satellite Observations, Surface Meteorology, Surface/Subsurface Properties, and Other. Clicking on one of the instrument categories leads to a page that breaks that category down into sub-categories. For example, "Atmospheric Profiling" is broken down into ARM instruments (with 11 subsets), External Instruments (with 6 subsets), and Field Campaign Instruments (with 42 subsets). Each of the subset links, in turn, leads to detailed information pages and links to specific data streams. Users will be requested to create a password, but the data files are free for viewing and downloading.

  20. Atmospheric radiation measurement unmanned aerospace vehicle (ARM-UAV) program

    SciTech Connect (OSTI)

    Bolton, W.R.

    1996-11-01

    ARM-UAV is part of the multi-agency U.S. Global Change Research Program and is addressing the largest source of uncertainty in predicting climatic response: the interaction of clouds and the sun`s energy in the Earth`s atmosphere. An important aspect of the program is the use of unmanned aerospace vehicles (UAVs) as the primary airborne platform. The ARM-UAV Program has completed two major flight series: The first series conducted in April, 1994, using an existing UAV (the General Atomics Gnat 750) consisted of eight highly successful flights at the DOE climate site in Oklahoma. The second series conducted in September/October, 1995, using two piloted aircraft (Egrett and Twin Otter), featured simultaneous measurements above and below clouds and in clear sky. Additional flight series are planned to continue study of the cloudy and clear sky energy budget in the Spring and Fall of 1996 over the DOE climate site in Oklahoma. 3 refs., 4 figs., 1 tab.

  1. Atmospheric Radiation Measurement (ARM) Data from the North Slope Alaska (NSA) Site

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To achieve this goal, ARM scientists and researchers around the world use continuous data obtained through the ARM Climate Research Facility. ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility to other sites as determined. The North Slope of Alaska (NSA) site is a permanent site providing data about cloud and radiative processes at high latitudes. These data are being used to refine models and parameterizations as they relate to the Arctic. Centered at Barrow and extending to the south (to the vicinity of Atqasuk), west (to the vicinity of Wainwright), and east (towards Oliktok), the NSA site has become a focal point for atmospheric and ecological research activity on the North Slope. Approximately 300,000 NSA data sets from 1993 to the present reside in the ARM Archive at http://www.archive.arm.gov/. Users will need to register for a password, but all files are then free for viewing or downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  2. Atmospheric Radiation Measurement (ARM) Data Products from Principal Investigators

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The PI data sets have been made available by ARM principal investigators (PI) or by others for use by the scientific community through the ARM Archive. These data are value-added products to particular ARM data sets or are derived research data of value to ARM science. Principal Investigators' names, date ranges, and research sites involved are listed in table format with the titles of the data products available. Titles are links to a page of additional details (such as the PI's contact information) and a link to the directory where the data set resides. Users will be requested to create a password, but the data files are free for viewing and downloading. The URL to go directly to the ARM Archive, bypassing the information pages, is http://www.archive.arm.gov/. The Office of Biological and Environmental Research in DOE's Office of Science is responsible for the ARM Program. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  3. Atmospheric Radiation Measurement (ARM) Data Products from Principal Investigators

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Office of Biological and Environmental Research in DOE's Office of Science is responsible for the ARM Program. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  4. Atmospheric Radiation Measurement (ARM) Data from Black Forest...

    Office of Scientific and Technical Information (OSTI)

    ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility (AMF) to other sites as determined. In 2007 the AMF operated in the Black Forest ...

  5. Atmospheric Radiation Measurement (ARM) Value-Added Data Products...

    Office of Scientific and Technical Information (OSTI)

    of the quality of the input data. taken from http:www.arm.govdatavapsall.php One of the ARM data centers, the External Data Center or XDC at Brookhaven National Laboratory, ...

  6. Atmospheric Radiation Measurement (ARM) Data from the Eastern...

    Office of Scientific and Technical Information (OSTI)

    Availability: User Registration Required Language: English Subject: 54 - ENVIRONMENTAL SCIENCES Global Climate Change; ARM Mobile Facility (AMF); Marine boundary layer clouds; ...

  7. Atmospheric Radiation Measurement Climate Research Facility (ARM) | U.S.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Barrels per Calendar Day) Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum

  8. Atmospheric Radiation Measurement (ARM) Data Plots and Figures...

    Office of Scientific and Technical Information (OSTI)

    science or data quality condition is associated with some other parameter (e.g., high wind or rain).taken from http:www.arm.govdatadataplots.stm Several interfaces and ...

  9. Atmospheric Radiation Measurement (ARM) Data from Shouxian, China...

    Office of Scientific and Technical Information (OSTI)

    In a complex ARM Mobile Facility (AMF) deployment, monitoring data was collected at four ... Measurements obtained at all the AMF sites during the 8-month deployment in China will ...

  10. Atmospheric Radiation Measurement (ARM) Data from Shouxian, China...

    Office of Scientific and Technical Information (OSTI)

    in China In a complex ARM Mobile Facility (AMF) deployment, monitoring data was collected ... Measurements obtained at all the AMF sites during the 8-month deployment in China will ...

  11. Atmospheric Radiation Measurement (ARM) Data from Niamey, Niger...

    Office of Scientific and Technical Information (OSTI)

    Sometimes these sites can become permanent ARM sites, as was the case with Graciosa Island in the Azores. It is now known as the Eastern North Atlantic permanent site. In January ...

  12. Atmospheric Radiation Measurement (ARM) Data Plots and Figures

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    ARM Program data is available in daily diagnostic plots that can be easily grouped into daily, weekly, monthly, and even yearly increments. By visualizing ARM data in thumbnail-sized data plots, users experience highly-browsable subsets of data available at the Data Archive including complimentary data products derived from data processed by ARM. These thumbnails allow users to quickly scan for a particular type of condition, like a clear day or a day with persistent cirrus. From a diagnostics perspective, the data plots assist in looking for missing data, for data exceeding a particular range, or for loading multiple variables (e.g., shortwave fluxes and precipitation), and to determine whether a certain science or data quality condition is associated with some other parameter (e.g., high wind or rain).[taken from http://www.arm.gov/data/data_plots.stm] Several interfaces and tools have been developed to make data plots easy to generate and manipulate. For example, the NCVWeb is an interactive NetCDF data plotting tool that ARM users can use to plot data as they order it or to plot regular standing data orders. It allows production of detailed tables, extraction of data, statistics output, comparison plotting, etc. without the need for separate visualization software. Users will be requested to create a password, but the data plots are free for viewing and downloading.

  13. Cloud Classes and Radiative Heating profiles at the Manus and Nauru Atmospheric Radiation Measurement (ARM) Sites

    SciTech Connect (OSTI)

    Mather, James H.; McFarlane, Sally A.

    2009-10-07

    The Tropical Western Pacific (TWP) is a convective regime; however, the frequency and depth of convection is dependant on dynamical forcing which exhibits variability on a range of temporal scales and also on location within the region. Manus Island, Papua New Guinea lies in the heart of the western Pacific warm pool region and exhibits frequent deep convection much of the time while Nauru, which lies approximately 20 degrees to the East of Manus, lies in a transition zone where the frequency of convection is dependent on the phase of the El Nino/Southern Oscillation. Because of this difference in dynamical regime, the distribution of clouds and the associated radiative heating is quite different at the two sites. Individual cloud types: boundary layer cumulus, thin cirrus, stratiform convective outflow, do occur at both sites – but with different frequencies. In this study we compare cloud profiles and heating profiles for specific cloud types at these two sites using data from the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF). Results of this comparison indicate that, while the frequency of specific cloud types differ between the two sites as one would expect, the characteristics of individual cloud classes are remarkably similar. This information could prove to be very useful for applying tropical ARM data to the broader region.

  14. Atmospheric Radiation Measurement (ARM) Data from the Southern Great Plains (SGP) Site

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To achieve this goal, ARM scientists and researchers around the world use continuous data obtained through the ARM Climate Research Facility. ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility to other sites as determined. Scientists are using the information obtained from the permanent SGP site to improve cloud and radiative models and parameterizations and, thereby, the performance of atmospheric general circulation models used for climate research. More than 30 instrument clusters have been placed around the SGP site. The locations for the instruments were chosen so that the measurements reflect conditions over the typical distribution of land uses within the site. The continuous observations at the SGP site are supplemented by intensive observation periods, when the frequency of measurements is increased and special measurements are added to address specific research questions. During such periods, 2 gigabytes or more of data (two billion bytes) are generated daily. SGP data sets from 1993 to the present reside in the ARM Archive at http://www.archive.arm.gov/ http. Users will need to register for a password, but all files are then free for viewing or downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  15. Atmospheric Radiation Measurement Program Science Plan. Current Status and Future Directions of the ARM Science Program

    SciTech Connect (OSTI)

    Ackerman, Thomas P.; Del Genio, Anthony D.; Ellingson, Robert G.; Ferrare, Richard A.; Klein, Steve A.; McFarquhar, Gregory M.; Lamb, Peter J.; Long, Charles M.; Verlinde, Johannes

    2004-10-30

    The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative transfer, aerosol science, determination of cloud properties, cloud modeling, and cloud parameterization testing and development. The focus of ARM science has naturally shifted during the last few years to an increasing emphasis on modeling and parameterization studies to take advantage of the long time series of data now available. During the next 5 years, the principal focus of the ARM science program will be to: Maintain the data record at the fixed ARM sites for at least the next five years; Improve significantly our understanding of and ability to parameterize the 3-D cloud-radiation problem at scales from the local atmospheric column to the global climate model (GCM) grid square; Continue developing techniques to retrieve the properties of all clouds, with a special focus on ice clouds and mixed-phase clouds; Develop a focused research effort on the indirect aerosol problem that spans observations, physical models, and climate model parameterizations; Implement and evaluate an operational methodology to calculate broad-band heating rates in the atmospheric columns at the ARM sites; Develop and implement methodologies to use ARM data more effectively to test atmospheric models, both at the cloud-resolving model scale and the GCM scale; and, Use these methodologies to diagnose cloud parameterization performance and then refine these parameterizations to improve the accuracy of climate model simulations. In addition, the ARM Program is actively developing a new ARM Mobile Facility (AMF) that will be available for short deployments (several months to a year or more) in climatically important regions. The AMF will have much of the same instrumentation as the remote

  16. Atmospheric Radiation Measurement (ARM) Data from the Tropical Western Pacific (TWP) Site.

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To achieve this goal, ARM scientists and researchers around the world use continuous data obtained through the ARM Climate Research Facility. ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility to other sites as determined. The Tropical Western Pacific (TWP) site is one of the four fixed sites. It consists of three climate research facilities; the Manus facility on Los Negros Island in Manus, Papua New Guinea (established in 1996); the Nauru facility on Nauru Island, Republic of Nauru (1998); and the Darwin facility in Darwin, Northern Territory, Australia (2002). The operations are supported by government agencies in each host country. Covering the area roughly between 10 degrees N and 10 degrees S of the equator and from 130 degrees E to 167 degrees E, the TWP locale includes a region that plays a large role in the interannual variability observed in the global climate system. More than 250,000 TWP data sets from 1996 to the present reside in the ARM Archive. Begin at the TWP information page for links or access data directly from the ARM Archive at http://www.archive.arm.gov/. Users will need to register for a password, but all files are then free for viewing or downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  17. Surface Radiation Budget from ARM Satellite Retrievals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface Radiation Budget from ARM Satellite Retrievals P. Minnis, D. P. Kratz, and T. P. ... Hampton, Virginia Introduction Since the Atmospheric Radiation Measurement (ARM) Program ...

  18. Environmental assessment for the Atmospheric Radiation Measurement (ARM) Program: Southern Great Plains Cloud and Radiation Testbed (CART) site

    SciTech Connect (OSTI)

    Policastro, A.J.; Pfingston, J.M.; Maloney, D.M.; Wasmer, F.; Pentecost, E.D.

    1992-03-01

    The Atmospheric Radiation Measurement (ARM) Program is aimed at supplying improved predictive capability of climate change, particularly the prediction of cloud-climate feedback. The objective will be achieved by measuring the atmospheric radiation and physical and meteorological quantities that control solar radiation in the earth`s atmosphere and using this information to test global climate and related models. The proposed action is to construct and operate a Cloud and Radiation Testbed (CART) research site in the southern Great Plains as part of the Department of Energy`s Atmospheric Radiation Measurement Program whose objective is to develop an improved predictive capability of global climate change. The purpose of this CART research site in southern Kansas and northern Oklahoma would be to collect meteorological and other scientific information to better characterize the processes controlling radiation transfer on a global scale. Impacts which could result from this facility are described.

  19. Asymmetry in the Diurnal Cycle of Atmospheric Downwelling Radiation at the ARM SGP CF Site Over 1995-2001 Period

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Asymmetry in the Diurnal Cycle of Atmospheric Downwelling Radiation at the ARM SGP CF Site Over 1995-2001 Period A. P. Trishchenko Canada Centre for Remote Sensing Ottawa, Ontario, Canada Introduction The shape of the diurnal cycle of atmospheric downwelling radiation is an important climatic feature of cloud-radiation interactions and atmospheric properties. Adequate characterization of this diurnal cycle is critical for accurate determination of monthly and seasonal radiation budgets from a

  20. Atmospheric Radiation Measurement (ARM) Data from Point Reyes, California for the Marine Stratus, Radiation, Aerosol, and Drizzle (MASRAD) Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Point Reyes National Seashore, on the California coast north of San Francisco, was the location of the first deployment of the DOE's Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF). The ARM Program collaborated with the U.S. Office of Naval Research and DOE's Aerosol Science Program in the Marine Stratus, Radiation, Aerosol, and Drizzle (MASRAD) project. Their objectives were to collect data from cloud/aerosol interactions and to improve understanding of cloud organization that is often associated with patches of drizzle. Between March and September 2005, the AMF and at least two research aircraft were used to collect data.

  1. Proceedings of the sixth Atmospheric Radiation Measurement (ARM) Science Team meeting

    SciTech Connect (OSTI)

    1997-06-01

    This document contains the summaries of papers presented at the 1996 Atmospheric Radiation Measurement (ARM) Science Team meeting held at San Antonio, Texas. The history and status of the ARM program at the time of the meeting helps to put these papers in context. The basic themes have not changed. First, from its beginning, the Program has attempted to respond to the most critical scientific issues facing the US Global Change Research Program. Second, the Program has been strongly coupled to other agency and international programs. More specifically, the Program reflects an unprecedented collaboration among agencies of the federal research community, among the US Department of Energy`s (DOE) national laboratories, and between DOE`s research program and related international programs, such as Global Energy and Water Experiment (GEWEX) and the Tropical Ocean Global Atmosphere (TOGA) program. Next, ARM has always attempted to make the most judicious use of its resources by collaborating and leveraging existing assets and has managed to maintain an aggressive schedule despite budgets that have been much smaller than planned. Finally, the Program has attracted some of the very best scientific talent in the climate research community and has, as a result, been productive scientifically.

  2. Comparison of Cirrus Cloud Radiative Properties and Dynamical Processes at Two Atmospheric Radiation Measurement (ARM) Si...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cirrus Cloud Radiative Properties and Dynamical Processes at Two Atmospheric Radiation Measurement Sites in the Tropical Western Pacific J. M. Comstock, J. H. Mather, and T. P. Ackerman Pacific Northwest National Laboratory Richland, Washington Introduction Upper tropospheric humidity plays an important role in the formation and maintenance of tropical cirrus clouds. Deep convection is crucial for the transport of water vapor from the boundary layer to the upper troposphere and is

  3. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Office of Scientific and Technical Information (OSTI)

    Title: Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly ... Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites ...

  4. Contributions of the Atmospheric Radiation Measurement (ARM) Program and the ARM Climate Research Facility to the U.S. Climate Change Science Program

    SciTech Connect (OSTI)

    SA Edgerton; LR Roeder

    2008-09-30

    The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. The 2007 assessment (AR4) by the Intergovernmental Panel on Climate Change (IPCC) reports a substantial range among GCMs in climate sensitivity to greenhouse gas emissions. The largest contributor to this range lies in how different models handle changes in the way clouds absorb or reflect radiative energy in a changing climate (Solomon et al. 2007). In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program within the Office of Biological and Environmental Research (BER) to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To address this problem, BER has adopted a unique two-pronged approach: * The ARM Climate Research Facility (ACRF), a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes. * The ARM Science Program, focused on the analysis of ACRF data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report describes accomplishments of the BER ARM Program toward addressing the primary uncertainties related to climate change prediction as identified by the IPCC.

  5. ARM - Measurement - Radiative heating rate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsRadiative heating rate ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Radiative heating rate The heating rate due to the divergence of long and shortwave radiative flux. Categories Radiometric, Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  6. Radiation Measurement (ARM) Climate Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    overview Sponsored by the U.S. Department of Energy's (DOE) Office of Science, the Atmospheric Radiation Measurement (ARM) Climate Research Facility was established in 1990 to improve global climate models by increasing understanding of clouds and radiative feedbacks. Through the ARM Facility, DOE funded the development of highly instrumented research sites at strategic locations around the world: the Southern Great Plains (SGP), Tropical Western Pacific (TWP), and North Slope of Alaska (NSA).

  7. Atmospheric Radiation Measurement (ARM) Data from Oliktok Point, Alaska (an AMF3 Deployment)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Located at the North Slope of Alaska on the coast of the Arctic Ocean, Oliktok Point is extremely isolated, accessible only by plane. From this remote spot researchers now have access to important data about Arctic climate processes at the intersection of land and sea ice. As of October 2013, Oliktok Point is the temporary home of ARMs third and newest ARM Mobile Facility, or AMF3. The AMF3 is gathering data using about two dozen instruments that obtain continuous measurements of clouds, aerosols, precipitation, energy, and other meteorological variables. Site operators will also fly manned and unmanned aircraft over sea ice, drop instrument probes and send up tethered balloons. The combination of atmospheric observations with measurements from both the ground and over the Arctic Ocean will give researchers a better sense of why the Arctic sea ice has been fluctuating in fairly dramatic fashion over recent years. AMF3 will be stationed at Oliktok Point.

  8. Overview of the United States Department of Energy's ARM (Atmospheric

    Office of Scientific and Technical Information (OSTI)

    Radiation Measurement) Program (Conference) | SciTech Connect Overview of the United States Department of Energy's ARM (Atmospheric Radiation Measurement) Program Citation Details In-Document Search Title: Overview of the United States Department of Energy's ARM (Atmospheric Radiation Measurement) Program The Department of Energy (DOE) is initiating a major atmospheric research effort, the Atmospheric Radiation Measurement Program (ARM). The program is a key component of DOE's research

  9. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    27 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-16-027 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  10. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-16-037 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  11. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    01 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-16-001 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  12. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-15-069 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  13. Atmospheric Radiation Measurement (ARM) Data from Black Forest Germany for the Convective and Orographically Induced Precipitation Study (COPS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility (AMF) to other sites as determined. In 2007 the AMF operated in the Black Forest region of Germany as part of the Convective and Orographically Induced Precipitation Study (COPS). Scientists studied rainfall resulting from atmospheric uplift (convection) in mountainous terrain, otherwise known as orographic precipitation. This was part of a six -year duration of the German Quantitative Precipitation Forecasting (QPF) Program. COPS was endorsed as a Research and Development Project by the World Weather Research Program. This program was established by the World Meteorological Organization to develop improved and cost-effective forecasting techniques, with an emphasis on high-impact weather. A large collection of data plots based on data streams from specific instruments used at Black Forest are available via a link from ARM's Black Forest site information page. Users will be requested to create a password, but the plots and the data files in the ARM Archive are free for viewing and downloading.

  14. Atmospheric Radiation Measurement (ARM) Data from Los Angeles, California, to Honolulu, Hawaii for the Marine ARM GPCI Investigation of Clouds (MAGIC) Field Campaign (an AMF2 Deployment)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    From October 2012 through September 2013, the second ARM Mobile Facility (AMF2) was deployed on the container ship Spirit, operated by Horizon Lines, for the Marine ARM GPCI* Investigation of Clouds (MAGIC) field campaign. During approximately 20 round trips between Los Angeles, California, and Honolulu, Hawaii, AMF2 obtained continuous on-board measurements of cloud and precipitation, aerosols, and atmospheric radiation; surface meteorological and oceanographic variables; and atmospheric profiles from weather balloons launched every six hours. During two two-week intensive observational periods in January and July 2013, additional instruments were deployed and balloon soundings were be increased to every three hours. These additional data provided a more detailed characterization of the state of the atmosphere and its daily cycle during two distinctly different seasons. The primary objective of MAGIC was to improve the representation of the stratocumulus-to-cumulus transition in climate models. AMF2 data documented the small-scale physical processes associated with turbulence, convection, and radiation in a variety of marine cloud types.

  15. Raman lidar measurements of water vapor and aerosols during the atmospheric radiation measurement (ARM) remote clouds sensing (RCS) intensive observation period (IOP)

    SciTech Connect (OSTI)

    Melfi, S.H.; Starr, D.O`C.; Whiteman, D.

    1996-04-01

    The first Atmospheric Radiation Measurement (ARM) remote Cloud Study (RCS) Intensive Operations Period (IOP) was held during April 1994 at the Southern Great Plains (SGP) site. This experiment was conducted to evaluate and calibrate state-of-the-art, ground based remote sensing instruments and to use the data acquired by these instruments to validate retrieval algorithms developed under the ARM program.

  16. Search for: "atmospheric radiation measurement" | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    ... Atmospheric Radiation Measurement (ARM) Data from Shouxian, China for the Study of Aerosol Indirect Effects in China In a complex ARM Mobile Facility (AMF) deployment, monitoring ...

  17. Atmospheric Radiation Measurement (ARM) Data from Oliktok Point, Alaska (an AMF3 Deployment)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Located at the North Slope of Alaska on the coast of the Arctic Ocean, Oliktok Point is extremely isolated, accessible only by plane. From this remote spot researchers now have access to important data about Arctic climate processes at the intersection of land and sea ice. As of October 2013, Oliktok Point is the temporary home of ARM’s third and newest ARM Mobile Facility, or AMF3. The AMF3 is gathering data using about two dozen instruments that obtain continuous measurements of clouds, aerosols, precipitation, energy, and other meteorological variables. Site operators will also fly manned and unmanned aircraft over sea ice, drop instrument probes and send up tethered balloons. The combination of atmospheric observations with measurements from both the ground and over the Arctic Ocean will give researchers a better sense of why the Arctic sea ice has been fluctuating in fairly dramatic fashion over recent years. AMF3 will be stationed at Oliktok Point.

  18. Atmospheric Radiation Measurement (ARM) Data from Manacapuru, Brazil for the Green Ocean Amazon (GOAMAZON) Field Campaign

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Amazon rain forest in Brazil is the largest broadleaf forest in the world, covering 7 million square kilometers of the Amazon Basin in South America. It represents over half of the planet’s remaining rain forests, and comprises the most biodiverse tract of tropical rain forest on the planet. Due to the sheer size of the Amazon rain forest, the area has a strong impact on the climate in the Southern Hemisphere. To understand the intricacies of the natural state of the Amazon rain forest, the Green Ocean Amazon, or GOAMAZON, field campaign is a two-year scientific collaboration among U.S. and Brazilian research organizations. They are conducting a variety of different experiments with dozens of measurement tools, using both ground and aerial instrumentation, including the ARM Aerial Facility's G-1 aircraft. For more information on the holistic view of the campaign, see the Department of Energy’s GOAMAZON website. As a critical component of GOAMAZON, the ARM Mobile Facility (AMF) will obtain measurements near Manacapuru, south of Manaus, Brazil, from January to December 2014. The city of Manaus, with a population of 3 million, uses high-sulfur oil as their primary source of electricity. The AMF site is situated to measure the atmospheric extremes of a pristine atmosphere and the nearby cities’ pollution plume, as it regularly intersects with the site. Along with other instrument systems located at the Manacapuru site, this deployment will enable scientists to study how aerosol and cloud life cycles are influenced by pollutant outflow from a tropical megacity.

  19. Atmospheric Radiation Measurement (ARM) Data from Manacapuru, Brazil for the Green Ocean Amazon (GOAMAZON) Field Campaign

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Amazon rain forest in Brazil is the largest broadleaf forest in the world, covering 7 million square kilometers of the Amazon Basin in South America. It represents over half of the planets remaining rain forests, and comprises the most biodiverse tract of tropical rain forest on the planet. Due to the sheer size of the Amazon rain forest, the area has a strong impact on the climate in the Southern Hemisphere. To understand the intricacies of the natural state of the Amazon rain forest, the Green Ocean Amazon, or GOAMAZON, field campaign is a two-year scientific collaboration among U.S. and Brazilian research organizations. They are conducting a variety of different experiments with dozens of measurement tools, using both ground and aerial instrumentation, including the ARM Aerial Facility's G-1 aircraft. For more information on the holistic view of the campaign, see the Department of Energys GOAMAZON website. As a critical component of GOAMAZON, the ARM Mobile Facility (AMF) will obtain measurements near Manacapuru, south of Manaus, Brazil, from January to December 2014. The city of Manaus, with a population of 3 million, uses high-sulfur oil as their primary source of electricity. The AMF site is situated to measure the atmospheric extremes of a pristine atmosphere and the nearby cities pollution plume, as it regularly intersects with the site. Along with other instrument systems located at the Manacapuru site, this deployment will enable scientists to study how aerosol and cloud life cycles are influenced by pollutant outflow from a tropical megacity.

  20. Atmospheric Radiation Measurement (ARM) Data from Field Campaigns or Intensive Operational Periods (IOP)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Office of Biological and Environmental Research in DOE's Office of Science is responsible for the ARM Program. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  1. Overview of the United States Department of Energy's ARM (Atmospheric...

    Office of Scientific and Technical Information (OSTI)

    The objective of the ARM Research is to provide an experimental testbed for the study of important atmospheric effects, particularly cloud and radiative processes, and to test ...

  2. ARM Orientation: Overview and History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Orientation: ARM Orientation: Overview and History Overview and History Mar 2007 ARM Orientation 2 ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement ...

  3. Atmospheric Radiation Measurement (ARM) Value-Added Data Products (Including Evaluated Data Sets)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Many of the scientific needs of the ARM Program are met through the analysis and processing of existing data products into "value-added" products or VAPs. Despite extensive instrumentation deployed at the ARM sites, there will always be quantities of interest that are either impractical or impossible to measure directly or routinely. Physical models using ARM instrument data as inputs are implemented as VAPs and can help fill some of the unmet measurement needs of the Program. Conversely, ARM produces some VAPs not in order to fill unmet measurement needs, but instead to improve the quality of existing measurements. In addition, when more than one measurement is available, ARM also produces "best estimate" VAPs. A special class of VAP called a Quality Measurement Experiment (QME) adds value to the input data streams by providing for continuous assessment of the quality of the input data. [taken from http://www.arm.gov/data/vaps_all.php] One of the ARM data centers, the External Data Center or XDC at Brookhaven National Laboratory, also adds value to ARM information by identifying sources and acquiring external data to augment the data being generated within the program. These external data sets are converted, processed, and carefully evaluated for their value to the overall ARM program. /. Data Plots are also value-added products from ARM.

  4. ARM - Atmospheric Pressure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox ...

  5. Atmospheric Radiation Measurement (ARM) Data from Field Campaigns or Intensive Operational Periods (IOP)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    ARM Climate Research Facility users regularly conduct field campaigns to augment routine data acquisitions and to test and validate new instruments. Any field campaign which is proposed, planned, and implemented at one or more research sites is referred to as an intensive operational period (IOP). IOPs are held using the fixed and mobile sites; Southern Great Plains, North Slope of Alaska, Tropical Western Pacific, ARM Mobile Facility (AMF), and Aerial Vehicles Program (AVP). [Taken from http://www.arm.gov/science/fc.stm] Users may search with the specialized interface or browse campaigns/IOPs in table format. Browsing allows users to see the start date of the IOP, the status (Past, In Progress, etc.), the duration, the Principal Investigator, and the research site, along with the title of the campaign/IOP. Clicking on the title leads to a descriptive summary of the campaign, names of co-investigators, contact information, links to related websites, and a link to available data in the ARM Archive. Users will be requested to create a password, but the data files are free for viewing and downloading. The URL to go directly to the ARM Archive, bypassing the information pages, is http://www.archive.arm.gov/. The Office of Biological and Environmental Research in DOE's Office of Science is responsible for the ARM Program. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  6. Atmospheric Radiation Measurement Program Science Plan. Current...

    Office of Scientific and Technical Information (OSTI)

    Radiation Measurement Program Science Plan. Current Status and Future Directions of the ARM Science Program Citation Details In-Document Search Title: Atmospheric Radiation ...

  7. Atmospheric Radiation Measurment (ARM) Data from the Ganges Valley, India for the Ganges Valley Aerosol Experiment (GVAX)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    In 2011 and 2012, the Ganges Valley Aerosol Experiment (GVAX) began in the Ganges Valley region of India. The objective was to obtain measurements of clouds, precipitation, and complex aerosols to study their impact on cloud formation and monsoon activity in the region. During the Indian Ocean Experiment (INDOEX) field studies, aerosols from the Ganges Valley region were shown to affect cloud formation and monsoon activity over the Indian Ocean. The complex field study used the ARM Mobile Facility (AMF) to measure radiative, cloud, convection, and aerosol characteristics over the mainland. The resulting data set captured pre-monsoon to post-monsoon conditions to establish a comprehensive baseline for advancements in the study of the effects of atmospheric conditions of the Ganges Valley.

  8. GFDL ARM Project Technical Report: Using ARM Observations to Evaluate Cloud and Convection Parameterizations & Cloud-Convection-Radiation Interactions in the GFDL Atmospheric General Circulation Model

    SciTech Connect (OSTI)

    V. Ramaswamy; L. J. Donner; J-C. Golaz; S. A. Klein

    2010-06-17

    This report briefly summarizes the progress made by ARM postdoctoral fellow, Yanluan Lin, at GFDL during the period from October 2008 to present. Several ARM datasets have been used for GFDL model evaluation, understanding, and improvement. This includes a new ice fall speed parameterization with riming impact and its test in GFDL AM3, evaluation of model cloud and radiation diurnal and seasonal variation using ARM CMBE data, model ice water content evaluation using ARM cirrus data, and coordination of the TWPICE global model intercomparison. The work illustrates the potential and importance of ARM data for GCM evaluation, understanding, and ultimately, improvement of GCM cloud and radiation parameterizations. Future work includes evaluation and improvement of the new dynamicsPDF cloud scheme and aerosol activation in the GFDL model.

  9. Atmospheric Radiation Measurement (ARM) Data from the Tropical Western Pacific (TWP) Site.

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility to other sites as determined. The Tropical Western Pacific (TWP) site is one of the four fixed sites. It consists of three climate research facilities; the Manus facility on Los Negros Island in Manus, Papua New Guinea (established in 1996); the Nauru facility on Nauru Island, Republic of Nauru (1998); and the Darwin facility in Darwin, Northern Territory, Australia (2002). The operations are supported by government agencies in each host country. Covering the area roughly between 10 degrees N and 10 degrees S of the equator and from 130 degrees E to 167 degrees E, the TWP locale includes a region that plays a large role in the interannual variability observed in the global climate system. More than 250,000 TWP data sets from 1996 to the present reside in the ARM Archive. Begin at the TWP information page for links or access data directly from the ARM Archive at http://www.archive.arm.gov/. Users will need to register for a password, but all files are then free for viewing or downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  10. ARM - Atmospheric Heat Budget

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Atmospheric Heat Budget shows where the atmospheric heat energy comes from and where it goes. Practically all this energy ultimately comes from the sun in the form of the ...

  11. ARM - Sources of Atmospheric Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sources of Atmospheric Carbon Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Sources of Atmospheric Carbon Atmospheric carbon represented a steady state system, where influx equaled outflow, before the Industrial Revolution. Currently, it is no longer a steady state system because the

  12. Instrument development for atmospheric radiation measurement (ARM): Status of the Atmospheric Emitted Radiance Interferometer - extended Resolution (AERI-X), the Solar Radiance Transmission Interferometer (SORTI), and the Absolute Solar Transmission Inferometer (ASTI)

    SciTech Connect (OSTI)

    Murcray, F.; Stephen, T.; Kosters, J.

    1996-04-01

    This paper describes three instruments currently under developemnt for the Atmospheric Radiation Measurement (ARM) Program at the University of Denver: the AERI-X (Atmospheric Emitted Radiance Interferometer-Extended Resolution) and the SORTI (Solar R adiance Transmission Interferometer), and ASTI (Absolute Solar transmission Interferometer).

  13. Atmospheric Radiation Measurement (ARM) Data from the Eastern North Atlantic Site (ENA), Graciosa Island, Azores

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wood, Robert

    From May 2009 through December 2010, the ARM Mobile Facility obtained data from a location near the airport on Graciosa Island to support the Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) field campaign. The campaign was led by principal investigator Robert Wood. Results from this campaign confirmed that the Azores have the ideal mix of conditions to study how clouds, aerosols, and precipitation interact. This new observation site will have significant enhancements to instruments previously deployed to the Azores, including a Ka-/W-band scanning cloud radar, precipitation radar, and Doppler lidar. It has the full support of the Azorean government and collaborators at the University of the Azores. Los Alamos National Laboratory will operate the site for the ARM Facility.

  14. Atmospheric Radiation Measurement (ARM) Data from Shouxian, China for the Study of Aerosol Indirect Effects in China

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    In a complex ARM Mobile Facility (AMF) deployment, monitoring data was collected at four locations in China during 2008. The various sites are located in regions with different climate regimes and with high aerosol loadings of different optical, physical, and chemical properties. Measurements obtained at all the AMF sites during the 8-month deployment in China will help scientists to validate satellite-based findings, understand the mechanisms of the aerosol indirect effects in the region, and examine the roles of aerosols in affecting regional climate and atmospheric circulation, with a special focus on the impact of the East Asian monsoon system. As with other collections from the ARM Mobile Facility, the datasets are available from the ARM Archive. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  15. ARM Orientation: Overview and History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Warren Wiscombe ARM Chief Scientist Brookhaven & NASA ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement 2 Mar 2006 ARM Orientation You want me to be Chief ...

  16. Atmospheric Radiation Measurement Program Science Plan. Current...

    Office of Scientific and Technical Information (OSTI)

    Program Science Plan. Current Status and Future Directions of the ARM Science Program Citation Details In-Document Search Title: Atmospheric Radiation Measurement Program Science ...

  17. ARM 2000

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tom Ackerman Chief Scientist Tom Ackerman Chief Scientist ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement 2 Outline Outline * Last year's goals * ...

  18. ARM - Measurement - Photosynthetically Active Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsPhotosynthetically Active Radiation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Photosynthetically Active Radiation Photosynthetically Active Radiation (PAR) designates the spectral range (wave band) of solar radiation from 400 to 700 nanometers that photosynthetic organisms are able to use in the process of photosynthesis Categories Radiometric Instruments The above measurement is

  19. ARM - Publications: Science Team Meeting Documents: Atmospheric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Modes of Drizzling Stratus at the ARM SGP Site Kollias, Pavlos RSMASUniversity of Miami Albrecht, Bruce University of Miami The representation of boundary layer clouds ...

  20. ARM - Measurement - Aerosol backscattered radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol backscattered radiation The scattering of radiant energy into the hemisphere of space bounded by a ...

  1. Atmospheric Radiation Measurement Program Science Plan. Current Status and

    Office of Scientific and Technical Information (OSTI)

    Future Directions of the ARM Science Program (Technical Report) | SciTech Connect Technical Report: Atmospheric Radiation Measurement Program Science Plan. Current Status and Future Directions of the ARM Science Program Citation Details In-Document Search Title: Atmospheric Radiation Measurement Program Science Plan. Current Status and Future Directions of the ARM Science Program The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate

  2. ARM - Evolution of the Atmosphere

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox ...

  3. ARM - Composition of the Atmosphere

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox ...

  4. ARM - Destination of Atmospheric Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox ...

  5. ARM - Field Campaign - The ARM Pilot Radiation Observation Experiment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from Observations in the ARM Pilot Radiation Observation Experiment Campaign Data Sets IOP Participant Data Source Description Final Data Tooman WSI Order Data Westwater ftirraob...

  6. ARM: Atmospheric Sounder Spectrometer for Infrared Spectral Technology...

    Office of Scientific and Technical Information (OSTI)

    engineering data Title: ARM: Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST): engineering data Atmospheric Sounder Spectrometer for Infrared Spectral ...

  7. Atmospheric Radiation Measurement Climate Research Facility Operations

    Office of Scientific and Technical Information (OSTI)

    Quarterly Report October 1-December 31, 2012 (Program Document) | SciTech Connect Program Document: Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1-December 31, 2012 Citation Details In-Document Search Title: Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1-December 31, 2012 Individual datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility

  8. Final report for the project "Improving the understanding of surface-atmosphere radiative interactions by mapping surface reflectance over the ARM CART site" (award DE-FG02-02ER63351)

    SciTech Connect (OSTI)

    Alexander P. Trishchenko; Yi Luo; Konstantin V. Khlopenkov, William M. Park; Zhanqing Li; Maureen Cribb

    2008-11-28

    Surface spectral reflectance (albedo) is a fundamental variable affecting the transfer of solar radiation and the Earths climate. It determines the proportion of solar energy absorbed by the surface and reflected back to the atmosphere. The International Panel on Climate Change (IPCC) identified surface albedo among key factors influencing climate radiative forcing. Accurate knowledge of surface reflective properties is important for advancing weather forecasting and climate change impact studies. It is also important for determining radiative impact and acceptable levels of greenhouse gases in the atmosphere, which makes this work strongly linked to major scientific objectives of the Climate Change Research Division (CCRD) and Atmospheric Radiation Measurement (ARM) Program. Most significant accomplishments of eth project are listed below. I) Surface albedo/BRDF datasets from 1995 to the end of 2004 have been produced. They were made available to the ARM community and other interested users through the CCRS public ftp site ftp://ftp.ccrs.nrcan.gc.ca/ad/CCRS_ARM/ and ARM IOP data archive under PI data Trishchenko. II) Surface albedo properties over the ARM SGP area have been described for 10-year period. Comparison with ECMWF data product showed some deficiencies in the ECMWF surface scheme, such as missing some seasonal variability and no dependence on sky-conditions which biases surface energy budget and has some influence of the diurnal cycle of upward radiation and atmospheric absorption. III) Four surface albedo Intensive Observation Period (IOP) Field Campaigns have been conducted for every season (August, 2002, May 2003, February 2004 and October 2004). Data have been prepared, documented and transferred to ARM IOP archive. Nine peer-reviewed journal papers and 26 conference papers have been published.

  9. Atmospheric Radiation Measurement (ARM) Data from Steamboat Springs, Colorado, for the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    In October 2010, the initial deployment of the second ARM Mobile Facility (AMF2) took place at Steamboat Springs, Colorado, for the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX). The objective of this field campaign was to obtain data about liquid and mixed-phase clouds using AMF2 instruments in conjunction with Storm Peak Laboratory (located at an elevation of 3220 meters on Mt. Werner), a cloud and aerosol research facility operated by the Desert Research Institute. STORMVEX datasets are freely available for viewing and download. Users are asked to register with the ARM Archive; the user's email address is used from that time forward as the login name.

  10. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    2008-01-15

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  11. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  12. Search for: "atmospheric radiation measurement" | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Observations and Modeling of the Green Ocean Amazon: Sounding Enhancement Field Campaign ... The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate ...

  13. Final Technical Report for Chief Scientist for Atmospheric Radiation...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Final Technical Report for Chief Scientist for Atmospheric Radiation Measurement (ARM) Aerial Vehicle Program (AVP) Citation Details In-Document Search Title: ...

  14. Environmental effects on composite airframes: A study conducted for the ARM UAV Program (Atmospheric Radiation Measurement Unmanned Aerospace Vehicle)

    SciTech Connect (OSTI)

    Noguchi, R.A.

    1994-06-01

    Composite materials are affected by environments differently than conventional airframe structural materials are. This study identifies the environmental conditions which the composite-airframe ARM UAV may encounter, and discusses the potential degradation processes composite materials may undergo when subjected to those environments. This information is intended to be useful in a follow-on program to develop equipment and procedures to prevent, detect, or otherwise mitigate significant degradation with the ultimate goal of preventing catastrophic aircraft failure.

  15. DOE Science Showcase - Atmospheric Radiation Measurement | OSTI, US Dept of

    Office of Scientific and Technical Information (OSTI)

    Energy Office of Scientific and Technical Information Atmospheric Radiation Measurement A scanning cloud radar was one of the instruments taking measurements during GoAmazon 2014/2015. Image credit: ARM Program Atmospheric radiation measurements are fundamental data used to better understand the radiation budget of the earth, why climate is changing, and how climate change will affect our future. DOE's Atmospheric Radiation Measurement (ARM) Program was established as a comprehensive program

  16. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOESC-ARM-15-019 ARM Climate Research Facility Quarterly Value-Added Product Report ... implemented by the Atmospheric Radiation Measurement (ARM) Climate Research Facility. ...

  17. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOESC-ARM-15-020 ARM Climate Research Facility Quarterly Ingest Report Second Quarter: ... maintained by the Atmospheric Radiation Measurement (ARM) Climate Research Facility. ...

  18. ARM: Atmospheric Sounder Spectrometer for Infrared Spectral Technology...

    Office of Scientific and Technical Information (OSTI)

    1 data Title: ARM: Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST): channel 1 data Atmospheric Sounder Spectrometer for Infrared Spectral Technology ...

  19. ARM: Atmospheric Sounder Spectrometer for Infrared Spectral Technology...

    Office of Scientific and Technical Information (OSTI)

    summary data Title: ARM: Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST): summary data Atmospheric Sounder Spectrometer for Infrared Spectral Technology ...

  20. Atmospheric Radiation Measurement Climate Research Facility | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Atmospheric Radiation Measurement Climate Research Facility Argonne scientists study climate change 1 of 22 Argonne scientists study climate change The U.S. Department of Energy's Office of Science provided $60 million in ARRA funding for climate research to the Atmospheric Radiation Measurement (ARM) Climate Research Facility, a DOE national user facility that has been operating climate observing sites around the world for nearly two decades. These sites help scientists

  1. Atmospheric Radiation Measurement Convective and Orographically Induced

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Convective and Orographically Induced Precipitation Study The U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility is providing the ARM Mobile Facility (AMF) to support a long-term precipitation study in the Black Forest region of Germany. Requested by researchers from the University of Hohenheim, the AMF will be deployed as one of four heav- ily instrumented supersites established for the Convective and Orographically Induced Precipita- tion Study

  2. ARM West Antarctic Radiation Experiment (AWARE) Science Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 ARM West Antarctic Radiation Experiment (AWARE) Science Plan D Lubin J Verlinde DH ... DOESC-ARM-15-040 ARM West Antarctic Radiation Experiment (AWARE) Science Plan D Lubin J ...

  3. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wang, Z. and Sassen, K., University of Utah Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The Atmospheric Radiation Measurements Program (ARM) is making ...

  4. Atmospheric Radiation Measurement Program Science Plan

    SciTech Connect (OSTI)

    Ackerman, T

    2004-10-31

    The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative transfer, aerosol science, determination of cloud properties, cloud modeling, and cloud parameterization testing and development. The focus of ARM science has naturally shifted during the last few years to an increasing emphasis on modeling and parameterization studies to take advantage of the long time series of data now available. During the next 5 years, the principal focus of the ARM science program will be to: Maintain the data record at the fixed ARM sites for at least the next five years. Improve significantly our understanding of and ability to parameterize the 3-D cloud-radiation problem at scales from the local atmospheric column to the global climate model (GCM) grid square. Continue developing techniques to retrieve the properties of all clouds, with a special focus on ice clouds and mixed-phase clouds. Develop a focused research effort on the indirect aerosol problem that spans observations, physical models, and climate model parameterizations. Implement and evaluate an operational methodology to calculate broad-band heating rates in the atmospheric columns at the ARM sites. Develop and implement methodologies to use ARM data more effectively to test atmospheric models, both at the cloud-resolving model scale and the GCM scale. Use these methodologies to diagnose cloud parameterization performance and then refine these parameterizations to improve the accuracy of climate model simulations. In addition, the ARM Program is actively developing a new ARM Mobile Facility (AMF) that will be available for short deployments (several months to a year or more) in climatically important regions. The AMF will have much of the same instrumentation as the remote facilities at

  5. ARM - PI Product - Radiative Flux Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsRadiative Flux Analysis ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Radiative Flux Analysis The Radiative Flux Analysis is a technique for using surface broadband radiation measurements for detecting periods of clear (i.e. cloudless) skies, and using the detected clear-sky data to fit functions which are then used to produce continuous clear-sky estimates. The clear-sky estimates and

  6. ARM - Publications: Science Team Meeting Documents: ARM Radiative...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SA, Shephard MW, Mlawer EJ, Delamere JS, Iacono MJ, Cady-Pereira K, Boukabara S, Brown PD. Atmospheric Radiative Transfer Modeling: a Summary of the AER Codes. J Quant Spectrosc...

  7. ARMlUnmanned Air VehiclelSatelites The Atmospheric Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARMlUnmanned Air VehiclelSatelites The Atmospheric Radiation Measurement Unmanned ... This paper and the one that follows describe the start-up of the ARM-Unmanned Aerospace ...

  8. ARM TR-008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly ... 31, 2005, ARM 06-007 Atmospheric Radiation Measurement Program Climate Research ...

  9. ARM TR-008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 Atmospheric Radiation Measurement Program Climate Research Facility Operations ... - June 30, 2006, ARM 06-010 Atmospheric Radiation Measurement Program Climate Research ...

  10. ARM TR-008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly ... March 31, 2005, ARM-05-014 Atmospheric Radiation Measurement Program Climate Research ...

  11. ARM TR-008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly ... - June 30, 2005, ARM-05-015 Atmospheric Radiation Measurement Program Climate Research ...

  12. ARM TR-008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -018 Atmospheric Radiation Measurement Program Climate Research Facility Operations ... 30, 2006, ARM 06-018 Atmospheric Radiation Measurement Program Climate Research ...

  13. ARM TR-008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Atmospheric Radiation Measurement Program Climate Research Facility Operations ... 30, 2004, ARM-05-017 Atmospheric Radiation Measurement Program Climate Research ...

  14. ARM TR-008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly ... March 31, 2006, ARM 06-008 Atmospheric Radiation Measurement Program Climate Research ...

  15. ARM TR-008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly ... 31, 2004, ARM-05-013 Atmospheric Radiation Measurement Program Climate Research ...

  16. ARM TR-008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly ... 30, 2005, ARM-05-016 Atmospheric Radiation Measurement Program Climate Research ...

  17. ARM: Baseline Solar Radiation Network (BSRN): solar irradiances...

    Office of Scientific and Technical Information (OSTI)

    Baseline Solar Radiation Network (BSRN): solar irradiances Title: ARM: Baseline Solar Radiation Network (BSRN): solar irradiances Baseline Solar Radiation Network (BSRN): solar ...

  18. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Engineering Process Workflow Using ExtraView Hull, T.R., Pacific Northwest National Laboratory, ARM Engineering Group Fourteenth Atmospheric Radiation Measurement (ARM) Science...

  19. Failure and Redemption of Multifilter Rotating Shadowband Radiometer (MFRSR)/Normal Incidence Multifilter Radiometer (NIMFR) Cloud Screening: Contrasting Algorithm Performance at Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) and Southern Great Plains (SGP) Sites

    SciTech Connect (OSTI)

    Kassianov, Evgueni I.; Flynn, Connor J.; Koontz, Annette S.; Sivaraman, Chitra; Barnard, James C.

    2013-09-11

    Well-known cloud-screening algorithms, which are designed to remove cloud-contaminated aerosol optical depths (AOD) from AOD measurements, have shown great performance at many middle-to-low latitude sites around the world. However, they may occasionally fail under challenging observational conditions, such as when the sun is low (near the horizon) or when optically thin clouds with small spatial inhomogeneity occur. Such conditions have been observed quite frequently at the high-latitude Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) sites. A slightly modified cloud-screening version of the standard algorithm is proposed here with a focus on the ARM-supported Multifilter Rotating Shadowband Radiometer (MFRSR) and Normal Incidence Multifilter Radiometer (NIMFR) data. The modified version uses approximately the same techniques as the standard algorithm, but it additionally examines the magnitude of the slant-path line of sight transmittance and eliminates points when the observed magnitude is below a specified threshold. Substantial improvement of the multi-year (1999-2012) aerosol product (AOD and its Angstrom exponent) is shown for the NSA sites when the modified version is applied. Moreover, this version reproduces the AOD product at the ARM Southern Great Plains (SGP) site, which was originally generated by the standard cloud-screening algorithms. The proposed minor modification is easy to implement and its application to existing and future cloud-screening algorithms can be particularly beneficial for challenging observational conditions.

  20. Atmospheric Radiation Measurement Program facilities newsletter, March 2000

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2000-04-03

    The Atmospheric Radiation Measurement Program (ARM Program) is sending a copy of the ARM Video, an education overview of their program. In the video you will see and hear ARM scientists describe the importance of studying climate and climate change. It also contains a tour of some ARM sites and a look at state-of-the-art meteorological instrumentation, along with background information about the radiation budget and the complexity of climate modeling. The video was produced by the US Department of Energy.

  1. ARM - Field Campaign - Land - Atmosphere Feedback Experiment (LAFE)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsLand - Atmosphere Feedback Experiment (LAFE) Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Land - Atmosphere Feedback Experiment (LAFE) 2017.08.01 - 2017.08.31 Lead Scientist : Volker Wulfmeyer Abstract The Land-Atmosphere Feedback Experiment (LAFE) will deploy several state-of-the-art scanning lidar and remote sensing systems to the ARM SGP site. These instruments will augment the ARM instrument suite in order to collect

  2. Atmospheric Radiation Measurement Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 1999 ARM Facilities Newsletter is published by Argonne National Laboratory, a multiprogram laboratory operated by The University of Chicago under contract W-31-109-Eng-38 with the U.S. Department of Energy. Technical Contact: Douglas L. Sisterson Editor: Donna J. Holdridge Birds Interact with the ARM Program With the end of summer drawing near, the fall songbird migration season will soon begin. Scientists with the ARM Program will be able to observe the onset of the migration season as

  3. ARM: Portable Radiation Package: Orientation Data, 1 second resolution...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: Portable Radiation Package: Orientation Data, 1 second resolution Portable Radiation Package: Orientation Data, 1 second resolution Authors: Annette Koontz ; R. ...

  4. ARM: Portable Radiation Package: Position and Heading Data with...

    Office of Scientific and Technical Information (OSTI)

    Position and Heading Data with 5 second resolution Title: ARM: Portable Radiation Package: Position and Heading Data with 5 second resolution Portable Radiation Package: Position ...

  5. ARM - Field Campaign - Carbonaceous Aerosol and Radiative Effects...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Data Discovery Browse Data Related Campaigns Carbonaceous Aerosol and Radiation ... Carbonaceous Aerosol and Radiation Effects Study (CARES) Photo-Acoustic Aerosol Light ...

  6. ARM - Field Campaign - Cross-Scale Land-Atmosphere Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Cross-Scale Land-Atmosphere Experiment 2016.09.01 - 2019.05.31 Lead Scientist :...

  7. ARM - Field Campaign - ASSIST: Atmospheric Sounder Spectrometer for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Spectral Technology govCampaignsASSIST: Atmospheric Sounder Spectrometer for Infrared Spectral Technology ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : ASSIST: Atmospheric Sounder Spectrometer for Infrared Spectral Technology 2008.07.08 - 2008.07.18 Lead Scientist : Michael Howard For data sets, see below. Abstract Goals of assist were to intercompare radiance spectra and profile retrievals

  8. Atmospheric Radiation Measurement Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 1999 ARM Facilities Newsletter is published by Argonne National Laboratory, a multiprogram laboratory operated by The University of Chicago under contract W-31-109-Eng-38 with the U.S. Department of Energy. Technical Contact: Douglas L. Sisterson Editor: Donna J. Holdridge What's New The month of March will be busy at the ARM SGP CART site. Several Intensive Observation Period (IOP) experiments will be taking place concurrently. These include the Spring Single-Column Model (SCM) IOP on

  9. Atmospheric Radiation Measurement Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 1999 ARM Facilities Newsletter is published by Argonne National Laboratory, a multiprogram laboratory operated by The University of Chicago under contract W-31-109-Eng-38 with the U.S. Department of Energy. Technical Contact: Douglas L. Sisterson Editor: Donna J. Holdridge Okmulgee - The Wooded Site Of the 24 developed extended facilities throughout the ARM SGP CART site, one is unique. The Okmulgee site is located in the forest at the Okmulgee State Park, five miles west of Okmulgee,

  10. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cover image Proceedings of the Twelfth Atmospheric Radiation Measurement (ARM) Science ... of Stratus Clouds at the SGP: A Radiation Based Study* Comparison of ARM AERI with ...

  11. The Great Plains low-level jet (LLJ) during the atmospheric radiation measurement (ARM) intensive observation period (IOP)-4 and simulations of land use pattern effect on the LLJ

    SciTech Connect (OSTI)

    Wu, Y.; Raman, S.

    1996-04-01

    The Great Plains low-level jet (LLJ) is an important element of the low-level atmospheric circulation. It transports water vapor from the Gulf of Mexico, which in turn affects the development of weather over the Great Plains of the central United States. The LLJ is generally recognized as a complex response of the atmospheric boundary layer to the diurnal cycle of thermal forcing. Early studies have attributed the Great Plains LLJ to the diurnal oscillations of frictional effect, buoyancy over sloping terrain, and the blocking effects of the Rocky Mountains. Recent investigations show that the speed of the LLJ is also affected by the soil type and soil moisture. Some studies also suggest that synoptic patterns may play an important role in the development of the LLJ. Land surface heterogeneties significantly affect mesoscale circulations by generating strong contrasts in surface thermal fluxes. Thus one would expect that the land use pattern should have effects on the LLJ`s development and structure. In this study, we try to determine the relative roles of the synoptic forcing, planetary boundary layers (PBL) processes, and the land use pattern in the formation of the LLJ using the observations from the Atmospheric Radiation Measurement (ARM) Intensive Operation Period (IOP)-4 and numerical sensitivity tests.

  12. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effective Diameter in Radiation Transfer: Definition, Applications and Limitations Mitchell, D. L., Desert Research Institute Eleventh Atmospheric Radiation Measurement (ARM)...

  13. ARM - Field Campaign - Radon Measurements of Atmospheric Mixing (RAMIX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2008) govCampaignsRadon Measurements of Atmospheric Mixing (RAMIX 2008) ARM Data Discovery Browse Data Related Campaigns Radon Measurements of Atmospheric Mixing (RAMIX) 2006.11.01, Fischer, SGP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Radon Measurements of Atmospheric Mixing (RAMIX 2008) 2008.04.01 - 2009.03.31 Lead Scientist : Marc Fischer For data sets, see below. Abstract At present, uncertainty in vertical mixing

  14. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008

    SciTech Connect (OSTI)

    LR Roeder

    2008-12-01

    The Importance of Clouds and Radiation for Climate Change: The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: • The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and • The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

  15. On the Use of ARM Data in the Validation and Refinement of a GCM Radiation Parameterization Scheme

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Use of ARM Data in the Validation and Refinement of a GCM Radiation Parameterization Scheme G. L. Stephens, R. T. Austin, P. M. Gabriel, and N. B. Wood Colorado State University Department of Atmospheric Science Fort Collins, Colorado Introduction Data provided under the Atmospheric Radiation Measurement (ARM) Program of the U.S. Department of Energy have been analyzed with the goal of evaluating a radiation parameterization scheme currently used in both cloud resolving models and general

  16. Atmospheric Radiation Measurement Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 1999 ARM Facilities Newsletter is published by Argonne National Laboratory, a multiprogram laboratory operated by The University of Chicago under contract W-31-109-Eng-38 with the U.S. Department of Energy. Technical Contact: Douglas L. Sisterson Editor: Donna J. Holdridge SGP99 Hydrology Campaign Summer research efforts continue in July with the SGP99 Hydrology Campaign headed by the United States Department of Agriculture, Agricultural Research Service. Other participants are the National

  17. ARM - Field Campaign - ARM West Antarctic Radiation Experiment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Cloud Radar Browse Data KAZR Ka ARM Zenith Radar Browse Data LDIS Laser Disdrometer Browse Data MET Surface Meteorological Instrumentation Browse Data Browse Plots MFR ...

  18. ARM - PI Product - Tropical Cloud Properties and Radiative Heating Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsTropical Cloud Properties and Radiative Heating Profiles ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Tropical Cloud Properties and Radiative Heating Profiles We have generated a suite of products that includes merged soundings, cloud microphysics, and radiative fluxes and heating profiles. The cloud microphysics is strongly based on the ARM Microbase value added product (Miller et al.,

  19. X:\\ARM_19~1\\P283-315.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Satellite Data Sets for the Atmospheric RadiationMeasurement (ARM) Program L. Shi and R. ... NOAA and GOES satellites, Atmospheric Radiation Measurement (ARM) Program measurements ...

  20. AUDIT REPORT Atmospheric Radiation Measurement Climate Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Atmospheric Radiation Measurement Climate Research Facility OAI-M-16-10 May 2016 U.S. ... Audit Report on the "Atmospheric Radiation Measurement Climate Research Facility" ...

  1. Search for: "atmospheric radiation measurement" | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Switch to Detail View for this search DOE Data Explorer Search Results Page 1 of 70 Search for: "atmospheric radiation measurement" 697 results for: "atmospheric radiation ...

  2. Atmospheric Radiation Measurement Climate Research Facility Annual...

    Office of Scientific and Technical Information (OSTI)

    Atmospheric Radiation Measurement Climate Research Facility Annual Report 2006 Citation Details In-Document Search Title: Atmospheric Radiation Measurement Climate Research ...

  3. ARM - Field Campaign - Carbonaceous Aerosol and Radiation Effects...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photo-Acoustic Aerosol Light Absorption and Scattering Campaign Links ARM Data Discovery Browse Data Related Campaigns Carbonaceous Aerosol and Radiative Effects Study (CARES) ...

  4. Atmospheric Radiation Measurement Tropical Warm Pool International Cloud Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tropical Warm Pool International Cloud Experiment General Description The Tropical Warm Pool - International Cloud Experiment (TWP-ICE) was a collaborative effort led by the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Program and the Australian Bureau of Meteorology. Beginning January 21 and ending February 14, 2006, the experiment was conducted in the region near the ARM Climate Research Facility in Darwin, Northern Australia. This permanent facility is fully equipped

  5. Search for: "atmospheric radiation measurement" | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    ... Radiation Measurement program and the NASA Global Precipitation Measurement (GPM) ... and is available through the DOE ARM and NASA data archives. less December 2015 , ...

  6. Atmospheric Radiation Measurement Program facilities newsletter, April 2000

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2000-05-05

    This issue of the Atmospheric Radiation Measurement Program (ARM Program) monthly newsletter is about the ARM Program goal to improve scientific understanding of the interactions of sunlight (solar radiation) with the atmosphere, then incorporate this understanding into computer models of climate change. To model climate accurately all around the globe, a variety of data must be collected from many locations on Earth. For its Cloud and Radiation Testbed (CART) sites, ARM chose locations in the US Southern Great Plains, the North Slope of Alaska, and the Tropical Western Pacific Ocean to represent different climate types around the world. In this newsletter they consider the North Slope of Alaska site, with locations at Barrow and Atqasuk, Alaska.

  7. ARM - Field Campaign - Evaluation of Routine Atmospheric Sounding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurements using Unmanned Systems (ERASMUS) govCampaignsEvaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS) Campaign Links Science Plan ERASMUS Backgrounder News & Press Images Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS) 2015.08.02 - 2016.10.31 Lead Scientist : Gijs de Boer For data sets, see

  8. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cover image Proceedings of the Eighth Atmospheric Radiation Measurement (ARM) Science Team ... Tropical Western Pacific Atmospheric Radiation and Cloud Station Evaluation of the ...

  9. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proceedings of the Sixth Atmospheric Radiation Measurement (ARM) Science Team Meeting DOE ... Concept Verification Using Atmospheric Radiation Measurement Southern Great Plains ...

  10. Atmospheric Radiation Measurement Program Facilities Newsletter - September 1999

    SciTech Connect (OSTI)

    Holdridge, D. J., ed

    1999-09-27

    The Atmospheric Radiation Measurement Program September 1999 Facilities Newsletter discusses the several Intensive Observation Periods (IOPs) that the ARM SGP CART site will host in the near future. Two projects of note are the International Pyrgeometer Intercomparison and the Fall Single Column Model (SCM)/Nocturnal Boundary Layer (NBL) IOP. Both projects will bring many US and international scientists to the SGP CART site to participate in atmospheric research.

  11. DOE/ER-0441 Atmospheric Radiation Measurement Plan - February 1990

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Atmospheric Radiation Measurement Program Plan ARM Program Plan Forward In 1978 the Department of Energy initiated the Carbon Dioxide Research Program to address climate change from the increasing concentration of carbon dioxide in the atmosphere. Over the years the Program has studied the many facets of the issue, from the carbon cycle, the climate diagnostics, the vegetative effects, to the societal impacts. The Program is presently the Department's principal entry in the U.S. Global Change

  12. ARM - 2008 ARM Science Team Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Science Team Meeting March 10 - 14 | Norfolk, Virginia | Sheraton Norfolk Waterside Hotel Meeting Highlights Sheraton Hotel - Norfolk, VA The eighteenth Atmospheric Radiation...

  13. ARM - Evaluation Product - Radiatively Important Parameters Best Estimate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (RIPBE) ProductsRadiatively Important Parameters Best Estimate (RIPBE) ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Radiatively Important Parameters Best Estimate (RIPBE) The Radiatively Important Parameters Best Estimate (RIPBE) VAP combines multiple input datastreams, each with their own temporal

  14. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research (d), Pacific Northwest National Laboratory (e), NOAA ETL (f), Naval Postgraduate School (g) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM...

  15. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement (ARM) Science Team Meeting The focus of this study is to estimate the confidence intervals of the Atmospheric Radiation Measurement (ARM) Enhanced Shortwave...

  16. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Analysis and Quality Control Software for ARM Datasets Moore, S.T., Sowle, D.H., and Fisk, M., Mission Research Corporation Eleventh Atmospheric Radiation Measurement (ARM)...

  17. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Global Climate Models Using ARM Data Stephens, G.L., Gabriel, P., and Wood, N.B., Colorado State University Twelfth Atmospheric Radiation Measurement (ARM)...

  18. ARM - Two-Column Aerosol Project (TCAP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science objectives, the Atmospheric Radiation Measurement (ARM) Climate Research Facility will deploy the ARM Mobile Facility and the Mobile Aerosol Observing System on Cape...

  19. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Best Estimate Data Product Shippert, T.R., Pacific Northwest National Laboratory Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting The first ARM best estimate...

  20. Development and Testing of A Radiation Model for Interpreting ARM Data

    SciTech Connect (OSTI)

    Qiang FU

    2004-11-01

    A research program devoted to improving the understanding of atmospheric radiation processes has been supported by DOE ARM Grant DE-FG03-00ER62931. This research effort was carried out at the University of Washington from March 16, 2000 to October 31, 2002 with Prof. Qiang Fu as the principal investigator. In this report, the major accomplishments from the research effort are first described in section one. The journal publications that acknowledge DOE ARM Grant DE-FG03-00ER62931 are listed in section two. In Section 3, the presentations in the ARM Science Meetings are listed from 2000 to 2002.

  1. ARM - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govPublications Publications Journal Articles Conference Documents Program Documents & Technical Reports Publications Database Public Information Materials Image Library Videos Publication Resources Submit a Publication Publishing Procedures ARM Style Guide (PDF, 448KB) Acronyms Glossary Logos Contacts RSS for Publications Publications Investigators who use Atmospheric Radiation Measurement (ARM) Climate Research Facility data are major contributors to atmospheric research aimed toward

  2. ARM - Field Campaign - The MOSAiC Atmosphere

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsThe MOSAiC Atmosphere Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : The MOSAiC Atmosphere 2019.09.01 - 2020.10.31 Lead Scientist : Matthew Shupe Abstract Arctic climate change is amplified relative to global change and is embodied by a dramatic decline in the perennial sea-ice pack. These cryospheric transitions carry significant implications for regional resource development, geopolitics, and global climate patterns.

  3. ARM - Field Campaign - Radiative Heating in Underexplored Bands Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (RHUBC) govCampaignsRadiative Heating in Underexplored Bands Campaign (RHUBC) Campaign Links RHUBC Website ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Radiative Heating in Underexplored Bands Campaign (RHUBC) 2007.02.22 - 2007.03.14 Website : http://www.arm.gov/campaigns/rhubc/ Lead Scientist : David Turner For data sets, see below. Abstract Radiative cooling and heating in the mid-to-upper

  4. FACT SHEET U.S. Department of Energy Atmospheric Radiation Measurement Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Radiation Measurement Climate Research Facility The Atmospheric Radiation Measurement (ARM) Climate Research Facility is a key component of the U.S. Department of Energy's efforts to better understand and predict Earth's climate in order to develop sustainable solutions to the nation's energy and environmental challenges. ARM was the first climate research program to deploy a comprehensive suite of cutting-edge instrumentation to continually measure cloud and aerosol properties and

  5. ARM - Evaluation Product - Barrow Radiation Data (2009 metric)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsBarrow Radiation Data (2009 metric) ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Barrow Radiation Data (2009 metric) Observations from a suite of radiometers including Precision Spectral Pyranometers (PSPs), Precision Infrared Radiometers (PIRs), and a Normal Incident Pyrheliometer (NIP) are

  6. ARM - Field Campaign - Carbonaceous Aerosol and Radiation Effects Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (CARES) - Surface Meteorological Sounding - Surface Meteorological Sounding Campaign Links ARM Data Discovery Browse Data Related Campaigns Carbonaceous Aerosol and Radiative Effects Study (CARES) 2010.06.02, Zaveri, AAF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Carbonaceous Aerosol and Radiation Effects Study (CARES) - Surface Meteorological Sounding 2010.05.26 - 2010.07.07 Lead Scientist : Rahul Zaveri For data sets, see

  7. ARM - Field Campaign - Carbonaceous Aerosol and Radiative Effects Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (CARES) Ground Based Instruments Ground Based Instruments ARM Data Discovery Browse Data Related Campaigns Carbonaceous Aerosol and Radiative Effects Study (CARES) 2010.06.02, Zaveri, AAF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Carbonaceous Aerosol and Radiative Effects Study (CARES) Ground Based Instruments 2010.04.01 - 2010.07.15 Lead Scientist : Daniel Cziczo For data sets, see below. Abstract New ARRA funded ARM

  8. ARM - Instrument - wacr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    radar General Overview The W-band Atmospheric Radiation Measurement (ARM) Program Cloud Radar (WACR) systems are zenith pointing Doppler radars that probe the extent and...

  9. ARM - Journal Articles 2003

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... ARM Min Photon path length distributions inferred from rotating shadowband spectrometer measurements at the Atmospheric Radiation Measurements Program Southern Great Plains site ...

  10. ARM - Publications: Science Team Meeting Documents: Radiative...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    residuals from total heat and moisture budgets, or satellite observations. The long time series of observations taken at the ARM sites on Nauru and Manus provides a more direct...

  11. Final Report: High Spectral Resolution Atmospheric Emitted Radiance Studies with the ARM UAV

    SciTech Connect (OSTI)

    Revercomb, Henry E.

    1999-12-31

    The active participation in the Atmospheric Radiation Measurement (ARM) Unmanned Airborne Vehicle (UAV) science team that was anticipated in the grant proposal was indefinitely delayed after the first year due to a programmatic decision to exclude the high spectral resolution observations from the existing ARM UAV program. However, this report shows that substantial progress toward the science objectives of this grant have made with the help of separate funding from NASA and other agencies. In the four year grant period (including time extensions), a new high spectral resolution instrument has been flown and has successfully demonstrated the ability to obtain measurements of the type needed in the conduct of this grant. In the near term, the third water vapor intensive observing period (WVIOP-3) in October 2000 will provide an opportunity to bring the high spectral resolution observations of upwelling radiance into the ARM program to complement the downwelling radiance observations from the existing ARM AERI instruments. We look forward to a time when the ARM-UAV program is able to extend its scope to include the capability for making these high spectral resolution measurements from a UAV platform.

  12. ARM - Radiative Heating in Underexplored Bands Campaign (RHUBC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Links RHUBC Home NSA Home ARM Data Discovery Browse Data Experiment Planning RHUBC Proposal Abstract Full Proposal (pdf, 420kb) Science Plan (pdf) Operations Plan (pdf, 144kb) Instruments Contacts News ARM Press Release (Feb. 26, 2007) Images flickr_dots Radiative Heating in Underexplored Bands Campaign (RHUBC) Now available: RHUBC-II website Between February and March 2007 at the ACRF North Slope of Alaska site in Barrow, high-spectral-resolution observations were collected by two

  13. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Data Information Flow Macduff, M., Creel, K., and Eagan, R., Pacific Northwest National Laboratory Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Poster depicts flow of data from various ARM sites to its final destination

  14. A Unified Approach for Reporting ARM Measurement Uncertainties...

    Office of Scientific and Technical Information (OSTI)

    The Atmospheric Radiation Measurement (ARM) Climate Research Facility is observationally ... measurements, the Facility relies on instrument mentors and the ARM Data Quality Office ...

  15. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University of Utah, National Oceanic and Atmospheric Administration-Environmental Technology Laboratory Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting We...

  16. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Atmospheric Sciences University of California, Los Angeles Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting A new cloud detection scheme has been...

  17. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence of Island Effects on Nauru Cole, H., and Miller, E., National Center for Atmospheric Research Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Nauru...

  18. Posters Single-Column Model for Atmospheric Radiation Measurement Sites: Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Posters Single-Column Model for Atmospheric Radiation Measurement Sites: Model Development and Sensitivity Test Q. Xu and M. Dong Cooperative Institute of Mesoscale Meteorological Studies University of Oklahoma Norman, Oklahoma A single-column model (SCM) is constructed by extracting the physical subroutines from the community climate model (CCM1) of the National Center for Atmospheric Research. Using observational data obtained from the Oklahoma Atmospheric Radiation Measurement (ARM) site

  19. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Office of Scientific and Technical Information (OSTI)

    Title: Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly ... are collected and sent to the Data Management Facility (DMF) at Pacific Northwest ...

  20. Atmospheric Radiation Measurement Program Climate Research Facility...

    Office of Scientific and Technical Information (OSTI)

    Title: Atmospheric Radiation Measurement Program Climate Research Facility Operations ... are collected and sent to the Data Management Facility (DMF) at Pacific Northwest ...

  1. Search for: "atmospheric radiation measurement" | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    measurement" 50 results for: "atmospheric radiation measurement" Full Text and Citations Filters Filter Search Results Everything (Citations and Full Text) (50 results) ...

  2. ARM - Historical Archive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govPublicationsHistorical Archive Publications Journal Articles Conference Documents Program Documents & Technical Reports Publications Database Public Information Materials Image Library Videos Publication Resources Submit a Publication Publishing Procedures ARM Style Guide (PDF, 448KB) Acronyms Glossary Logos Contacts RSS for Publications Historical Archive Science Plan for the Atmospheric Radiation Measurement Program (ARM), February 1996 (PDF, 1,325K) Atmospheric Radiation Measurement

  3. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proceedings of the Fifth Atmospheric Radiation Measurement (ARM) Science Team Meeting ... Using Southern Great Plains Cloud and Radiation Testbed (CART) Data A Comparison of ...

  4. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proceedings of the Fourth Atmospheric Radiation Measurement (ARM) Science Team Meeting DOE ... in the Tropical Pacific Arsky, N. Radiation Impacts on Global Climate Models A B C D ...

  5. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proceedings of the Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting ... Calibrations* Anderberg, M.H.L. Solar Radiation Data Quality: A Comparison of Gompertz ...

  6. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proceedings of the Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting ... Analyses* Effect of Stratus on Solar Radiation: A Study using Millimeter Wave Cloud ...

  7. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Radiation Measurement (ARM) Science Team Meeting Domain-averaged, broadband solar radiative budgets for an evolving tropical mesoscale convective cloud system are...

  8. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Team Meeting The Atmospheric Radiation Measurement (ARM) Program has deployed dual-frequency microwave water radiometers (MWRs) at its Cloud and Radiation Testbed (CART)...

  9. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The International Intercomparison of 3-Dimensional Radiation Codes Cahalan, R.F., NASAGoddard Space Flight Center Twelfth Atmospheric Radiation Measurement (ARM) Science Team...

  10. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effects of Pyrgeometer Dome Heating on Calculated Longwave Radiation Richardson, S.J., University of Oklahoma Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting...

  11. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigation of Atmospheric Water Vapor and Its Radiative Effects at the ARM North Slope of Alaska CART Site Delamere, J.S., Clough, S.A., Mlawer, E.J., and Shephard, M.W., Atmospheric and Environmental Research, Inc. Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Water vapor significantly regulates radiative energy flow through the Earth’s atmosphere. Since its inception the ARM program has worked to develop improved parameterizations of water vapor radiative

  12. Introductory Remarks: ARM AVP Workshop on Advances in Airborne Instrumentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Introductory Remarks: ARM AVP Workshop on Advances in Airborne Instrumentation Warren Wiscombe ARM Chief Scientist Brookhaven National Lab ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Genesis of this workshop * ARM UAV mutated into ARM Aerial Vehicles Program (AVP) in 2006 * Several key people believed strongly that AVP should have an instrument development component * Greg McFarquhar wrote the AVP whitepaper with three goals: - routine flights over ARM sites -

  13. ARM - Publications: Science Team Meeting Documents: ARM Data...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Graeme Colorado State University Wood, Norm Colorado State University Gabriel, Philip Colorado State University Data provided by the Atmospheric Radiation Measurement (ARM)...

  14. ARM Site Atmospheric State Best Estimates for AIRS Validation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... of the ARM unmanned aerospace vehicle (UAV) campaign, and a clear-sky case over the ... on November 16, 2002, as part of the ARM UAV campaign (top panel), and a Gulf of Mexico ...

  15. Final Report - Satellite Calibration and Verification of Remotely Sensed Cloud and Radiation Properties Using ARM UAV Data (February 28, 1995 - February 28, 1998)

    SciTech Connect (OSTI)

    Minnis, Patrick

    1998-02-28

    The work proposed under this agreement was designed to validate and improve remote sensing of cloud and radiation properties in the atmosphere for climate studies with special emphasis on the use of satellites for monitoring these parameters to further the goals of the Atmospheric Radiation Measurement (ARM) Program.

  16. ARM - Publications: Science Team Meeting Documents: Cloud Radiative...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    comparison is 0.86 with a normal deviation of 20% about this line. In addition to a case study where we examine the radiative feedback to the TOA, surface and atmosphere by a...

  17. Posters Objective Analysis Schemes to Monitor Atmospheric Radiation Measurement Data in Near Real-Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Posters Objective Analysis Schemes to Monitor Atmospheric Radiation Measurement Data in Near Real-Time M. Splitt University of Oklahoma Norman, Oklahoma Recent work in this area by Charles Wade (1987) lays out the groundwork for monitoring data quality for projects with large networks of instruments such as the Atmospheric Radiation Measurement (ARM) Program. Wade generated objectively analyzed fields of meteorological variables (temperature, pressure, humidity, and wind) and then compared the

  18. The ARM Atmospheric Emitted Radiance Interferometer (AERI): Status...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sites and an AERI is in operation as part of the ARM mobile facility currently in Niger, Africa. Recent upgrades in AERI instrumentation and enhancements in operational data...

  19. Charter for the ARM Atmospheric Modeling Advisory Group (Program...

    Office of Scientific and Technical Information (OSTI)

    in the modeling and analysis workflow, making sure the modeling follows general best practices, and reviewing the recommendations provided to ARM for the workflow ...

  20. ARM - Amount of Greenhouse Gases in the Global Atmosphere

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox ...

  1. Atmospheric Radiation Measurement Program facilities newsletter, May 2000.

    SciTech Connect (OSTI)

    Sisterson, D.L.

    2000-06-01

    This month the authors will visit an ARM CART site with a pleasant climate: the Tropical Western Pacific (TWP) CART site, along the equator in the western Pacific Ocean. The TWP locale lies between 10 degrees North latitude and 10 degrees South latitude and extends from Indonesia east-ward beyond the international date line. This area was selected because it is in and around the Pacific warm pool, the area of warm sea-surface temperatures that determine El Nino/La Nina episodes. The warm pool also adds heat and moisture to the atmosphere and thus fuels cloud formation. Understanding the way tropical clouds and water vapor affect the solar radiation budget is a focus of the ARM Program. The two current island-based CART sites in the TWP are in Manus Province in Papua New Guinea and on Nauru Island.

  2. Validation of the ARchived CERES Surface and Atmosphere Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Archived CERES Surface and Atmosphere Radiation Budget at SGP T. P. Charlock National ... System (CERES) Surface and Atmosphere Radiation Budget (SARB) product (Charlock et al. ...

  3. Model-Observation "Data Cubes" for the DOE Atmospheric Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Model-Observation "Data Cubes" for the DOE Atmospheric Radiation Measurement Facility's ... Program through its Atmospheric Radiation Measurement Facility. 2. Data Cube ...

  4. ARM - Field Campaign - Measurement of Aerosols, Radiation and Clouds over

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Southern Ocean (MARCUS: Ice Nucleating Particle Measurements) Ocean (MARCUS: Ice Nucleating Particle Measurements) Related Campaigns Measurement of Aerosols, Radiation and Clouds over the Southern Oceans (MARCUS) 2017.09.01, McFarquhar, AMF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Measurement of Aerosols, Radiation and Clouds over the Southern Ocean (MARCUS: Ice Nucleating Particle Measurements) 2017.09.01 - 2018.04.30

  5. ARM - Field Campaign - Macquarie Island Cloud and Radiation Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (MICRE) govCampaignsMacquarie Island Cloud and Radiation Experiment (MICRE) Campaign Links Science Plan Backgrounder Baseline Instruments and Data Plots Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Macquarie Island Cloud and Radiation Experiment (MICRE) 2016.03.01 - 2018.03.31 Lead Scientist : Roger Marchand Abstract Clouds over the Southern Ocean are poorly represented in present day reanalysis products and global climate model

  6. Continuous Profiles of Cloud Microphysical Properties for the Fixed Atmospheric Radiation Measurement Sites

    SciTech Connect (OSTI)

    Jensen, M; Jensen, K

    2006-06-01

    The Atmospheric Radiation Measurement (ARM) Program defined a specific metric for the third quarter of Fiscal Year 2006 to produce and refine a one-year continuous time series of cloud microphysical properties based on cloud radar measurements for each of the fixed ARM sites. To accomplish this metric, we used a combination of recently developed algorithms that interpret radar reflectivity profiles, lidar backscatter profiles, and microwave brightness temperatures into the context of the underlying cloud microphysical structure.

  7. Boundary Layer The U.S. Department of Energy's Atmospheric Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol, and Precipitation in the Marine Boundary Layer The U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility is sponsoring a 20-month field study on Graciosa Island in the Azores. Scientists involved in the Clouds, Aerosol, and Precipitation in the Marine Boundary Layer field campaign are using the ARM Mobile Facility-a portable climate observatory-to study low-level clouds and aerosol in a marine environment. Collaborators from the Regional

  8. Atmospheric Radiation Measurement Program facilities newsletter, January 2000

    SciTech Connect (OSTI)

    Sisterson, D.L.

    2000-02-16

    The subject of this newsletter is the ARM unmanned aerospace vehicle program. The ARM Program's focus is on climate research, specifically research related to solar radiation and its interaction with clouds. The SGP CART site contains highly sophisticated surface instrumentation, but even these instruments cannot gather some crucial climate data from high in the atmosphere. The Department of Energy and the Department of Defense joined together to use a high-tech, high-altitude, long-endurance class of unmanned aircraft known as the unmanned aerospace vehicle (UAV). A UAV is a small, lightweight airplane that is controlled remotely from the ground. A pilot sits in a ground-based cockpit and flies the aircraft as if he were actually on board. The UAV can also fly completely on its own through the use of preprogrammed computer flight routines. The ARM UAV is fitted with payload instruments developed to make highly accurate measurements of atmospheric flux, radiance, and clouds. Using a UAV is beneficial to climate research in many ways. The UAV puts the instrumentation within the environment being studied and gives scientists direct measurements, in contrast to indirect measurements from satellites orbiting high above Earth. The data collected by UAVs can be used to verify and calibrate measurements and calculated values from satellites, therefore making satellite data more useful and valuable to researchers.

  9. ARM Data File Standards Version: 1.0 (Program Document) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM Data File Standards Version: 1.0 The Atmospheric Radiation Measurement (ARM) ... allow for development of automated monitoring and data health status tools, and ...

  10. Derivation of Seasonal Cloud Properties at ARM-NSA from Multispectral...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Derivation of Seasonal Cloud Properties at ARM-NSA from Multispectral MODIS Data D. A. ... over the Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) Barrow site. ...

  11. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    banner Home | People | Site Index Atmospheric Radiation Measurement Climate Research Facility US Department of Energy About Science Campaigns Sites Instruments Measurements Data News Publications Education Become a User Recovery Act Mission FAQ Outreach Displays History Organization Participants Facility Statistics Forms Contacts Research Themes LES ARM Symbiotic Simulation and Observation Workflow Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) ARM Science

  12. Observations of tropical cirrus properties in the pilot radiation observation experiment using lidar and the CSIRO ARM filter radiometer

    SciTech Connect (OSTI)

    Platt, C.M.R.; Young, S.A.; Manson, P.J.; Patterson, G.R.

    1995-04-01

    A narrow beam fast filter radiometer has been developed for the Atmospheric Radiation Measurement (ARM) Program. The radiometer is intended to operate alongside a lidar at ARM sites in a lidar/radiometer (LIRAD) configuration. The radiometer detects in three narrow bands at 8.62-, 10.86-, and 12.04-m central wavelengths in the atmospheric window. In addition, it has a variable field aperture that varies the radiance incident on the detector and also allows the field of view to be tailored to that of a lidar used in the LIRAD technique. The radiometer was deployed in the ARM Pilot Radiation Observation Experiment (PROBE) at Kavieng, Papua New Guinea in January-February 1993. The radiometer worked satisfactorily and appeared to be very stable. The radiometer was compared with a previous CSIRO radiometer and the improved performance of the ARM instrument was very evident. The ARM radiometer was also compared with a National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Laboratories (ETL) interferometer and gave closely equivalent radiances. The LIRAD method was used at Kavieng to obtain the optical properties of cirrus clouds. Continuous observations of water vapor path obtained by the NOAA ETL microwave radiometer were employed to allow for the strong tropical water vapor absorption and emission. Cirrus cells that developed on one morning, independent of other clouds, had measured infrared emittances varying from <0.1 to 1.0.

  13. ARM Airborne Carbon Measurements (ARM-ACME) and ARM-ACME 2.5 Final Campaign

    Office of Scientific and Technical Information (OSTI)

    Reports (Technical Report) | SciTech Connect ARM Airborne Carbon Measurements (ARM-ACME) and ARM-ACME 2.5 Final Campaign Reports Citation Details In-Document Search Title: ARM Airborne Carbon Measurements (ARM-ACME) and ARM-ACME 2.5 Final Campaign Reports We report on a 5-year multi-institution and multi-agency airborne study of atmospheric composition and carbon cycling at the Atmospheric Radiation Measurement (ARM) Climate Research Facility's Southern Great Plains (SGP) site, with

  14. ARM - Data Announcements Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alpha 1 of ARM's New Modeling Effort Now Released Bookmark and Share The Southern Great Plains megasite plays a crucial role in a new modeling effort to complement ARM's suite of instruments. The Southern Great Plains megasite plays a crucial role in a new modeling effort to complement ARM's suite of instruments. In May 2015, the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility began a pilot project to design a routine, high-resolution modeling

  15. ARM - Events Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 19, 2016 [Events] 2016 Joint User Facility/Principal Investigator Meeting Bookmark and Share The Atmospheric Radiation Measurement (ARM)/Atmospheric System Research (ASR) Joint User Facility/Principal Investigator Meeting (Joint PI Meeting) brings together the ASR Program and the ARM Climate Research Facility as world leaders in climate science. This meeting brings together nearly 350 ASR researchers and ARM Facility users and infrastructure members to review progress and plan future

  16. Evaluation of GCM Column Radiation Models Under Cloudy Conditions with The Arm BBHRP Value Added Product

    SciTech Connect (OSTI)

    Oreopoulos, Lazaros; Norris, Peter M.

    2010-03-14

    The overarching goal of the project was to improve the transfer of solar and thermal radiation in the most sophisticated computer tools that are currently available for climate studies, namely Global Climate Models (GCMs). This transfer can be conceptually separated into propagation of radiation under cloudy and under cloudless conditions. For cloudless conditions, the factors that affect radiation propagation are gaseous absorption and scattering, aerosol particle absorption and scattering and surface albedo and emissivity. For cloudy atmospheres the factors are the various cloud properties such as cloud fraction, amount of cloud condensate, the size of the cloud particles, and morphological cloud features such as cloud vertical location, cloud horizontal and vertical inhomogeneity and cloud shape and size. The project addressed various aspects of the influence of the above contributors to atmospheric radiative transfer variability. In particular, it examined: (a) the quality of radiative transfer for cloudless and non-complex cloudy conditions for a substantial number of radiation algorithms used in current GCMs; (b) the errors in radiative fluxes from neglecting the horizontal variabiity of cloud extinction; (c) the statistical properties of cloud horizontal and vertical cloud inhomogeneity that can be incorporated into radiative transfer codes; (d) the potential albedo effects of changes in the particle size of liquid clouds; (e) the gaseous radiative forcing in the presence of clouds; and (f) the relative contribution of clouds of different sizes to the reflectance of a cloud field. To conduct the research in the various facets of the project, data from both the DOE ARM project and other sources were used. The outcomes of the project will have tangible effects on how the calculation of radiative energy will be approached in future editions of GCMs. With better calculations of radiative energy in GCMs more reliable predictions of future climate states will be

  17. ARM - Field Campaign - MArine Stratus Radiation Aerosol and Drizzle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (MASRAD) IOP govCampaignsMArine Stratus Radiation Aerosol and Drizzle (MASRAD) IOP Campaign Links Science Plan AMF Point Reyes Website AMF Point Reyes Data Plots ARM Data Discovery Browse Data Related Campaigns MASRAD: Pt. Reyes Stratus Cloud and Drizzle Study 2005.07.07, Coulter, AMF MASRAD: Cloud Condensate Nuclei Chemistry Measurements 2005.07.01, Berkowitz, AMF MASRAD - Aerosol Optical Properties 2005.06.29, Strawa, AMF MASRAD:Sub-Micron Aerosol Measurements 2005.06.20, Wang, AMF MASRAD:

  18. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Use of the ARM WSI to Estimate the Atmospheric Optical Depth at Night Musat, I.C. and Ellingson, R.G., University of Maryland Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The shortwave extinction by atmospheric constituents can be studied during the night, with the light of stars as a radiation source, using the ARM Whole Sky Imager (WSI). The digital images obtained with the WSI are processed to infer the star radiance at the TOA and the broadband atmospheric

  19. ARM - Events Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 14, 2010 [Events, Facility News, Feature Stories and Releases] ARM Climate Research Facility - Highlights at AMS Annual Meeting Bookmark and Share Scientists from around the world use data from the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility to study the interactions between clouds, aerosol, and radiation. At this year's meeting of the American Meteorological Society, scientists present results of their research, using ARM data for

  20. Continuous Water Vapor Profiles for the Fixed Atmospheric Radiation Measurement Sites

    SciTech Connect (OSTI)

    Jensen, M; Troyan, D

    2006-01-09

    The Atmospheric Radiation Measurement (ARM) Program defined a specific metric for the first quarter of Fiscal Year 2006 to complete a continuous time series of the vertical profile of water vapor for selected 30-day periods from each of the fixed ARM sites. In order to accomplish this metric, a new technique devised to incorporate radiosonde data, microwave radiometer data and analysis information from numerical weather forecast models has been developed. The product of this analysis, referred to as the merged sounding value-added product, includes vertical profiles of atmospheric water vapor concentration and several other important thermodynamic state variables at 1-minute time intervals and 266 vertical levels.

  1. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research, Inc. (a) University of Wisconsin - Madison (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting For the first time since its inception, a...

  2. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Content from Two-Dimensional Imagery Baker, B., Lawson, P., Schmitt, C., and Mitchell, D., SPEC, Inc. Thirteenth Atmospheric Radiation Measurement (ARM) Science Team...

  3. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observational data from the Atmospheric Radiation Measurements (ARM) Program at the Southern Great Plain (SGP) Oklahoma Central Facility and the Tropical Western Pacific (TWP) ...

  4. ARM - Data Sharing and Distribution Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... collaboration with "U.S. Department of Energy as part of the Atmospheric Radiation Measurement (ARM) Climate Research Facility XXX sites, data, specific campaign data were used." ...

  5. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Algorithms for GRAMS Fisk, M., Moore, S., Sowle, D., and Terry, D., Mission Research Corporation Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Automated data...

  6. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis for the Shortwave Spectrometer Fisk, M., Moore, S., Sowle, D., and Terry, D., Mission Research Corporation Ninth Atmospheric Radiation Measurement (ARM) Science Team...

  7. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Ricchiazzi,P. (a), ICESS, University California Santa Barbara (a), LMDCNRS, Paris, France (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting...

  8. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting LES (large eddy simulation) models can explicitly resolve large turbulent eddies, which...

  9. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forecast System Morcrette, J.-J., European Centre for Medium-Range Weather Forecasts, United Kingdom Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The...

  10. ARM-UAV Mission Gateway System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM-UAV Mission Gateway System S. T. Moore and S. Bottone Mission Research Corporation Santa Barbara, California Introduction The Atmospheric Radiation Measurement-unmanned ...

  11. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    During the International H20 Project 2002 Using GPS Braun, J., Rocken, C., and Kuo, Y.H., UCARCOSMIC Fourteenth Atmospheric Radiation Measurement (ARM) Science Team...

  12. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using a High Resolution Numerical Weather Model Braun, J., Ha, S.Y., Rocken, C., and Kuo, Y.H., UCARCOSMIC Fourteenth Atmospheric Radiation Measurement (ARM) Science Team...

  13. ARM - Feature Stories and Releases Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    weather and climate models. Developed with funding from the Atmospheric Radiation Measurement (ARM) Program, the new components simulate the absorption and scattering of...

  14. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H.-L.(b), University of Utah (a), EMCNCEPNOAA (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Using cloud radar observations of cirrus cloud...

  15. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting We conducted 160 dual-radiosonde soundings during the fall 2000 Water Vapor Intensive Operations Period...

  16. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center(c) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The probability of occurrence of the cloud top height for a given altitude and relation to the...

  17. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jet Propulsion Laboratory, California Institute of Technology (a), University of Arizona (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting This poster...

  18. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Cloud Properties at Night and in Low Sun Conditions The Atmospheric Radiation Measurement (ARM) Program measurements at the surface allow for continued development and...

  19. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Minnis, P., and Young, D.F., NASA Langley Research Center Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting Current retrievals of cloud properties at night...

  20. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute for Research in Environmental Sciences CMDL (c) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Data collected during the SHEBA (Surface Heat...

  1. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sky Cover and Cloud Fraction Kassianov, E., Long, C., and Ovtchinnikov, M., Pacific Northwest National Laboratory Fourteenth Atmospheric Radiation Measurement (ARM) Science Team...

  2. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Penner, J.E., Zhang, S., and Chuang, C., University of Michigan Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The effects of absorbing aerosols can...

  3. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ...UAV Payload McCoy, R.F, Tooman, T.T., and Bolton, W.B., Sandia National Laboratories Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The ARM-UAV payload is ...

  4. DOE/SC-ARM-TR-136

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D.1 J Mather, March 2013, DOESC-ARM-TR-136 1 1.0 Introduction Atmospheric Radiation Measurement (ARM) Program standard data format is NetCDF 3 (Network Common Data Form). The ...

  5. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with ARM WSI Musat, I.C.(a) and Ellingson, R.G.(b), University of Maryland at College Park (a), Florida State University (b) Twelfth Atmospheric Radiation Measurement (ARM)...

  6. DOE/SC-ARM-15-084

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 2015 ANNUAL REPORT Environmental Management ARM Climate Research Facility ANNUAL REPORT - 2015 ARM Climate Research Facility ANNUAL REPORT - 2015 3 From the ARM Program Manager Developing the Next-Generation ARM Facility For more than 20 years, the Atmospheric Radiation Measurement (ARM) Climate Research Facility has blazed the trail in providing the world's atmospheric scientists with continuous observations of cloud and aerosol properties and their impacts on Earth's energy balance. The

  7. ARM - Field Campaign - Lower Atmospheric Boundary Layer Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Campaigns 2013 Lower Atmospheric Boundary Layer Experiment 2013.05.28, Turner, SGP ... Lead Scientist : David Turner For data sets, see below. Abstract Boundary layer turbulence ...

  8. ARM - Field Campaign - 2013 Lower Atmospheric Boundary Layer...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lower Atmospheric Boundary Layer Experiment 2012.09.17, Turner, SGP Comments? We would ... Lead Scientist : David Turner For data sets, see below. Abstract Instruments were deployed ...

  9. ARM - Education Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 5, 2005 [Education] Oklahoma Climatological Survey (OCS) Hosts 12th Annual Atmospheric Radiation Measurement (ARM)/Mesonet Science Fair Bookmark and Share Students look at science projects at the Oklahoma Climatological Survey science fair in February. This year's best-of-show project on renewable energy. The Oklahoma Climatological Survey (OCS) hosted its 12th annual Atmospheric Radiation Measurement (ARM)/Mesonet Science Fair in February 2005. Nearly 100 students from across the state of

  10. Design of a differential radiometer for atmospheric radiative flux measurements

    SciTech Connect (OSTI)

    LaDelfe, P.C.; Weber, P.G.; Rodriguez, C.W.

    1994-11-01

    The Hemispherical Optimized NEt Radiometer (HONER) is an instrument under development at the Los Alamos National Laboratory for deployment on an unmanned aerospace vehicle as part of the Atmospheric Radiation Measurements (ARM/UAV) program. HONER is a differential radiometer which will measure the difference between the total upwelling and downwelling fluxes and is intended to provide a means of measuring the atmospheric radiative flux divergence. Unlike existing instruments which measure the upwelling and downwelling fluxes separately, HONER will achieve an optical difference by chopping the two fluxes alternately onto a common pyroelectric detector. HONER will provide data resolved into two spectral bands; one covering the solar dominated region from less than 0.4 micrometer to approximately 4.5 micrometers and the other covering the region from approximately 4.5 micrometers to greater than 50 micrometers, dominated by thermal radiation. The means of separating the spectral regions guarantees seamless summation to calculate the total flux. The fields-of-view are near-hemispherical, upward and downward. The instrument can be converted, in flight, from the differential mode to absolute mode, measuring the upwelling and downwelling fluxes separately and simultaneously. The instrument also features continuous calibration from on-board sources. We will describe the design and operation of the sensor head and the on-board reference sources as well as the means of deployment.

  11. Atmospheric Radiation Measurement Climate Research Facility ...

    Office of Scientific and Technical Information (OSTI)

    ARM Aerial Vehicles Program. * Successful deployment of the ARM Mobile Facility in Germany, including hosting nearly a dozen guest instruments and drawing almost 5000 visitors ...

  12. ARM - PI Product - Cloud Properties and Radiative Heating Rates for TWP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsCloud Properties and Radiative Heating Rates for TWP ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Cloud Properties and Radiative Heating Rates for TWP A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites

  13. SOAR Data: Data from Shipboard Oceanographic and Atmospheric...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Availability: Special Interface Available Language: ... interrelations; NOAA's Scientific Computer System (SCS); ARM; Atmospheric Radiation ...

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10, 2016 [Facility News, Publications] ACME/ARM/ASR, or AAA, Workshop Report Available on DOE Website Bookmark and Share CESD_Report_2016_ACME.indd While the U.S. Department of Energy's (DOE's) Atmospheric Radiation Measurement (ARM) Climate Research Facility and Atmospheric System Research (ASR) and Earth System Modeling (ESM) programs have made considerable contributions to the understanding of the atmospheric component of Earth's climate system and to development and evaluation of global

  15. Cloud Effects on Radiative Heating Rate Profiles over Darwin using ARM and A-train Radar/Lidar Observations

    SciTech Connect (OSTI)

    Thorsen, Tyler J.; Fu, Qiang; Comstock, Jennifer M.

    2013-06-11

    Observations of clouds from the ground-based U.S. Department of Energy Atmospheric Radiation Measurement program (ARM) and satellite-based A-train are used to compute cloud radiative forcing profiles over the ARM Darwin, Australia site. Cloud properties are obtained from both radar (the ARM Millimeter Cloud Radar (MMCR) and the CloudSat satellite in the A-train) and lidar (the ARM Micropulse lidar (MPL) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite in the A-train) observations. Cloud microphysical properties are taken from combined radar and lidar retrievals for ice clouds and radar only or lidar only retrievals for liquid clouds. Large, statistically significant differences of up to 1.43 K/day exist between the mean ARM and A-train net cloud radiative forcing profiles. The majority of the difference in cloud radiative forcing profiles is shown to be due to a large difference in the cloud fraction above 12 km. Above this altitude the A-train cloud fraction is significantly larger because more clouds are detected by CALIPSO than by the ground-based MPL. It is shown that the MPL is unable to observe as many high clouds as CALIPSO due to being more frequently attenuated and a poorer sensitivity even in otherwise clear-sky conditions. After accounting for cloud fraction differences and instrument sampling differences due to viewing platform we determined that differences in cloud radiative forcing due to the retrieved ice cloud properties is relatively small. This study demonstrates that A-train observations are better suited for the calculation cloud radiative forcing profiles. In addition, we find that it is necessary to supplement CloudSat with CALIPSO observations to obtain accurate cloud radiative forcing profiles since a large portion of clouds at Darwin are detected by CALIPSO only.

  16. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Processing of ARM Millimeter Wave Cloud Radar Signals at Low Signal to Noise Conditions Kollias, P. and Albrecht B.A., University of Miami Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Atmospheric Radiation Measurement (ARM) program has supported the deployment of several Millimeter Wave Cloud Radars (MMCRs) operating at 35-GHz for an accurate detection of all the hydrometeors in the atmosphere. Despite their short wavelength that increases the Rayleigh backscattering

  17. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Anomalous Radiative Absorption and Unbounded Cascade Models of Cloud Fields Schertzer, D., and Larchevêque, M., Université P.&M. Curie, Paris, France; Lovejoy, S., McGill University; Naud, C., Blackett Laboratory, Imperial College, London Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting One of the most achieving results of Atmospheric Radiation Measurement (ARM) Program could well have been the empirical finding of the anomalous radiative absorption of the atmosphere. We

  18. DEVELOPMENT OF IMPROVED TECHNIQUES FOR SATELLITE REMOTE SENSING OF CLOUDS AND RADIATION USING ARM DATA, FINAL REPORT

    SciTech Connect (OSTI)

    Minnis, Patrick

    2013-06-28

    During the period, March 1997 – February 2006, the Principal Investigator and his research team co-authored 47 peer-reviewed papers and presented, at least, 138 papers at conferences, meetings, and workshops that were supported either in whole or in part by this agreement. We developed a state-of-the-art satellite cloud processing system that generates cloud properties over the Atmospheric Radiation (ARM) surface sites and surrounding domains in near-real time and outputs the results on the world wide web in image and digital formats. When the products are quality controlled, they are sent to the ARM archive for further dissemination. These products and raw satellite images can be accessed at http://cloudsgate2.larc.nasa.gov/cgi-bin/site/showdoc?docid=4&cmd=field-experiment-homepage&exp=ARM and are used by many in the ARM science community. The algorithms used in this system to generate cloud properties were validated and improved by the research conducted under this agreement. The team supported, at least, 11 ARM-related or supported field experiments by providing near-real time satellite imagery, cloud products, model results, and interactive analyses for mission planning, execution, and post-experiment scientific analyses. Comparisons of cloud properties derived from satellite, aircraft, and surface measurements were used to evaluate uncertainties in the cloud properties. Multiple-angle satellite retrievals were used to determine the influence of cloud structural and microphysical properties on the exiting radiation field.

  19. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climatology of Stratus Clouds at the SGP: A Radiation Based Study Sengupta, M.(a), Ackerman, T.P.(a), and Clothiaux, E.E.(b), Pacific Northwest National Laboratory (a), The Pennsylvania State University (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Atmospheric Radiation Measurement (ARM) program is a source of continuous data that can be used for various short-term climatological studies. Using multiple datasets from ARM for the Southern Great Plains (SGP) Central

  20. ARM - Collaborations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Information Collaborations Meetings of Interest Data Sources ARM Data Discovery Browser NSA Data Past ARM NSA campaigns NCARUCAR National Oceanic and Atmospheric ...

  1. ARM - Events Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    37th Conference on Radar Meteorology Bookmark and Share Scott Collis, top, and Pavlos Kollias, bottom, are ARM radar scientists presenting at the radar conference. Scott Collis, top, and Pavlos Kollias, bottom, are ARM radar scientists presenting at the radar conference. Interested in learning more about open source radar software or cm- and mm-wavelength radar applications? Radar scientists from the Atmospheric Radiation Measurement (ARM) Climate Research Facility will be leading workshops on

  2. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1–December 31, 2012

    SciTech Connect (OSTI)

    Voyles, JW

    2013-01-11

    Individual datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile research sites are collected and routed to the Data Management Facility (DMF) for processing in near-real-time. Instrument and processed data are then delivered approximately daily to the ARM Data Archive, where they are made freely available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Data Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year dating back to 1998.

  3. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1–September 30, 2012

    SciTech Connect (OSTI)

    Voyles, JW

    2012-10-10

    Individual datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile research sites are collected and routed to the Data Management Facility (DMF) for processing in near-real-time. Instrument and processed data are then delivered approximately daily to the ARM Data Archive, where they are made freely available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Data Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  4. X:\\ARM_19~1\\P193-223.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of New York Albany, New York Introduction Our goals in the Atmospheric Radiation Measurement (ARM) Program are improved measurements of spectral shortwave radiation and...

  5. Application of Stochastic Radiative Transfer Theory to the ARM Cloud-Radiative Parameterization Problem

    SciTech Connect (OSTI)

    Dana E. Veron

    2012-04-09

    This project had two primary goals: (1) development of stochastic radiative transfer as a parameterization that could be employed in an AGCM environment, and (2) exploration of the stochastic approach as a means for representing shortwave radiative transfer through mixed-phase layer clouds. To achieve these goals, climatology of cloud properties was developed at the ARM CART sites, an analysis of the performance of the stochastic approach was performed, a simple stochastic cloud-radiation parameterization for an AGCM was developed and tested, a statistical description of Arctic mixed phase clouds was developed and the appropriateness of stochastic approach for representing radiative transfer through mixed-phase clouds was assessed. Significant progress has been made in all of these areas and is detailed in the final report.

  6. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of a Reference Sonde System in the ARM Program Wang, J., Carlson, D.J., and Cole, H.L., National Center for Atmospheric Research (NCAR) Eleventh Atmospheric Radiation...

  7. ARM - Field Campaign - Chile: Radiative Heating in Underexplored...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Website : http:www.arm.govcampaignsrhubcII Lead Scientist : David Turner For data ... Led by principal investigators David Turner and Eli Mlawer, RHUBC-II took place from ...

  8. Session Papers Atmospheric Radiation Measurement Program- Unmanned Aerospace Vehicle: The Follow-On Phase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Session Papers Atmospheric Radiation Measurement Program- Unmanned Aerospace Vehicle: The Follow-On Phase J. Vitko, Jr. ARM-UAV Technical Director Sandia National Laboratories Livermore, California A companion paper ("Unmanned Aerospace Vehicle Workshop," this volume) discusses the initial unmanned aerospace vehicle (UAV) demonstration flights (UDF). These flights are designed to provide an early demonstration of the scientific utility of UAVs by using an existing UAV and instruments

  9. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A WWW-Staged Prototype ARM Database Utility Mace, G.G. and Hudach, D., University of Utah Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Counting from when MMCR's were first intalled at the 4 ARM sites, the ARM dataset consists of nearly 10 years of total data collected. This volume of data presents significant opportunies to explore the relationships between various parameters important to characterizing the physical state of the atmospheric column in global models.

  10. ARM Southern Great Plains

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    With the rapid changes in the arctic environment, the North Slope of Alaska (NSA) has become a focal point for atmospheric and ecological research. Since 1997, the Atmospheric Radiation Measurement (ARM) Climate Research Facility has gathered climate data at its NSA site in Barrow, the northernmost city in the United States located on the edge of the Arctic Ocean. The ARM Facility established multiple climate research sites on the North Slope to provide data about Arctic clouds and

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 9, 2015 [Facility News] Joint Call for Research to Analyze Aerosol Samples Collected at ARM's Southern Great Plains Site Bookmark and Share A pilot call for proposals is now open for research in focused topics in atmospheric aerosol science that takes advantage of both the analytical instrumentation and capabilities in the Environmental Molecular Sciences Laboratory (EMSL) User Facility and the infrastructure and observational capabilities of the Atmospheric Radiation Measurement (ARM)

  12. ARM Climate Research Facility Quarterly Value-Added Product Report

    SciTech Connect (OSTI)

    Sivaraman, Chitra

    2014-11-21

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement (ARM) Climate Research Facility.

  13. ARM: AOS: Scanning-Mobility Particle Sizer (Dataset) | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Data Type: Numeric Data Research Org: Atmospheric Radiation Measurement (ARM) Archive, Oak Ridge National Laboratory ... MLA APA Chicago Bibtex Export Metadata Endnote Excel CSV XML ...

  14. A Year of Radiation Measurements at the North Slope of Alaska Second Quarter 2009 ARM and Climate Change Prediction Program Metric Report

    SciTech Connect (OSTI)

    S.A. McFarlane, Y. Shi, C.N. Long

    2009-04-15

    In 2009, the Atmospheric Radiation Measurement (ARM) Program and the Climate Change Prediction Program (CCPP) have been asked to produce joint science metrics. For CCPP, the second quarter metrics are reported in Evaluation of Simulated Precipitation in CCSM3: Annual Cycle Performance Metrics at Watershed Scales. For ARM, the metrics will produce and make available new continuous time series of radiative fluxes based on one year of observations from Barrow, Alaska, during the International Polar Year and report on comparisons of observations with baseline simulations of the Community Climate System Model (CCSM).

  15. ARM: Ka ARM Zenith Radar (KAZR): cirrus mode (Dataset) | Data...

    Office of Scientific and Technical Information (OSTI)

    OSTI Identifier: 1025213 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Dataset Data Type: Numeric Data Research Org: Atmospheric Radiation Measurement (ARM) Archive, Oak ...

  16. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Use of the MMCR to Estimate Finite-Size Cloud Effects on Longwave Radiation Cheng, Z., and Ellingson, R.G., University of Maryland Ninth Atmospheric Radiation Measurement (ARM)...

  17. DOE Science Showcase - Atmospheric Radiation Measurement | OSTI...

    Office of Scientific and Technical Information (OSTI)

    program to collect and make available these data to the global climate science community. ... The ARM scientific infrastructure helps to advance Earth systems science. Related Research ...

  18. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ensemble Single Column Modelling at the Tropical Western Pacific ARM Sites Hume, T. and Jakob, C., Bureau of Meteorology Research Centre Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Single Column Models (SCM) are widely used to assess and improve the parameterizations of moist processes and radiation within atmospheric general circulation models. SCM research within ARM has so far concentrated on the Southern Great Plains Site (SGP), where high quality observations are

  19. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Radiosonde Humidity Measurements and Proposed Corrections Based On AWEX Radiosonde Intercomparisons Miloshevich, L.M.(a), Lesht, B.M.(b), and Voemel, H.(c), National Center for Atmospheric Research (a), Argonne National Laboratory (b), NOAA/CMDL (c) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM radiosonde relative humidity (RH) measurements are widely used in numerical modeling, remote sensor validation, and radiative transfer calculations, yet their accuracy as

  20. ARM Airborne Carbon Measurements (ARM-ACME) and ARM-ACME 2.5...

    Office of Scientific and Technical Information (OSTI)

    The goal of these measurements is to improve understanding of 1) the carbon exchange of the Atmospheric Radiation Measurement (ARM) SGP region; 2) how CO2 and associated water and ...

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    24, 2009 [Facility News] Merger of Science Programs Results in Atmospheric System Research Bookmark and Share Effective October 1, the Department of Energy's Atmospheric Radiation Measurement Program and Atmospheric Science Program will be merged and managed under a new name, Atmospheric System Research. A major benefit of the merger is expected to be a strengthening of the programs by bringing together ARM expertise in continuous remote sensing measurements of cloud properties and aerosol

  2. Use of ARM observations and numerical models to determine radiative...

    Office of Scientific and Technical Information (OSTI)

    We investigated whether the West African anvil clouds connected with squall line MCSs passing over the Niamey ARM site could be simulated in a numerical model by comparing the ...

  3. Search for: "atmospheric radiation measurement" | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... radiation (237) climate models (206) radar reflectivity (194) aerosols (188) climatic change (168) research programs (157) vertical velocity (155) atmospheric chemistry (146) ...

  4. A U. S. Department of Energy User Facility Atmospheric Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U. S. Department of Energy User Facility Atmospheric ... INCOMING SOLAR RADIATION Surface Instruments REFLECTED ... Unfortunately, many of these useful datasets reside with the ...

  5. Seasonal Variability in Clouds and Radiation at the Manus ARM Site

    SciTech Connect (OSTI)

    Mather, Jim H.

    2005-07-01

    The Atmospheric Radiation Measurement (ARM) program operates three climate observation stations in the tropical western Pacific region. Two of these sites, located on Manus island in Papua New Guinea and on the island republic of Nauru, have been operating for over five years. This data set provides an opportunity to examine variability in tropical cloudiness on a wide range of time scales. The focus of this study is on the annual cycle. The most obvious manifestation of the annual cycle in this region is the oscillation of monsoon convection between Asia and Australia. The impact of the annual cycle on Manus and Nauru is more subtle; however, analysis of radiation and cloud observations from the Manus and Nauru ARM sites reveals links to the annual monsoon cycle. One such link relates to the proximity of Manus to the Maritime Continent, the collection of islands separating the Pacific and Indian oceans. Convection over the large islands in the maritime continent exhibits a distinct annual cycle. Outflow from large-island convection is shown to modulate the cirrus population over Manus. During neutral or cool ENSO periods, convection over Nauru is relatively suppressed. During such periods, Nauru is shown to exhibit an annual cycle in local convective activity. During the inactive season, cirrus are often found near the tropopause over Nauru. These clouds are not formed directly by the outflow from convection. The seasonality and source of these clouds is also examined. Identifying the source of cirrus observed at Manus and Nauru is important because of the potential dependence of cirrus properties on the source of convection.

  6. ARM West Antarctic Radiation Experiment (AWARE) Science Plan

    SciTech Connect (OSTI)

    Lubin, D; Bromwich, DH; Russell, LM; Verlinde, J; Vogelmann, AM

    2015-10-01

    West Antarctica is one of the most rapidly warming regions on Earth, and this warming is closely connected with global sea level rise. The discovery of rapid climate change on the West Antarctic Ice Sheet (WAIS) has challenged previous explanations of Antarctic climate change that focused on strengthening of circumpolar westerlies in response to the positive polarity trend in the Southern Annular Mode. West Antarctic warming does not yet have a comprehensive explanation: dynamical mechanisms may vary from one season to the next, and these mechanisms very likely involve complex teleconnections with subtropical and tropical latitudes. The prime motivation for this proposal is that there has been no substantial atmospheric science or climatological field work on West Antarctica since the 1957 International Geophysical Year and that research continued for only a few years. Direct meteorological information on the WAIS has been limited to a few automatic weather stations for several decades, yet satellite imagery and meteorological reanalyses indicate that West Antarctica is highly susceptible to advection of warm and moist maritime air with related cloud cover, depending on the location and strength of low pressure cells in the Amundsen, Ross, and Bellingshausen Seas. There is a need to quantify the role of these changing air masses on the surface energy balance, including all surface energy components and cloud-radiative forcing. More generally, global climate model simulations are known to perform poorly over the Antarctic and Southern Oceans, and the marked scarcity of cloud information at southern high latitudes has so far inhibited significant progress. Fortunately, McMurdo Station, where the Atmospheric Radiation Measurement Facility’s (ARM’s) most advanced cloud and aerosol instrumentation is situated, has a meteorological relationship with the WAIS via circulation patterns in the Ross and Amundsen Seas. We can therefore gather sophisticated data with cloud

  7. ARM - Journal Articles 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Citation) Geoscience and Remote Sensing Letters ARM ... Atmospheric and Oceanic Technology ARM Liu Seasonal ... in Modeling Earth Systems ARM ASR Yang GEWEX Cloud ...

  8. Broadband Outdoor Radiometer Calibration Process for the Atmospheric Radiation Measurement Program

    SciTech Connect (OSTI)

    Dooraghi, Michael

    2015-09-01

    The Atmospheric Radiation Measurement program (ARM) maintains a fleet of monitoring stations to aid in the improved scientific understanding of the basic physics related to radiative feedback processes in the atmosphere, particularly the interactions among clouds and aerosols. ARM obtains continuous measurements and conducts field campaigns to provide data products that aid in the improvement and further development of climate models. All of the measurement campaigns include a suite of solar measurements. The Solar Radiation Research Laboratory at the National Renewable Energy Laboratory supports ARM's full suite of stations in a number of ways, including troubleshooting issues that arise as part of the data-quality reviews; managing engineering changes to the standard setup; and providing calibration services and assistance to the full fleet of solar-related instruments, including pyranometers, pyrgeometers, pyrheliometers, as well as the temperature/relative humidity probes, multimeters, and data acquisition systems that are used in the calibrations performed at the Southern Great Plains Radiometer Calibration Facility. This paper discusses all aspects related to the support provided to the calibration of the instruments in the solar monitoring fleet.

  9. Atmospheric Radiation Measurement (ARM) Data from the Tropical...

    Office of Scientific and Technical Information (OSTI)

    is the largest global change research program supported ... physics in global climate models in order to improve ... and researchers around the world use continuous data ...

  10. Atmospheric Radiation Measurement (ARM) Data from Steamboat Springs...

    Office of Scientific and Technical Information (OSTI)

    Werner), a cloud and aerosol research facility operated by the Desert Research Institute. STORMVEX datasets are freely available for viewing and download. Users are asked to ...

  11. Atmospheric Radiation Measurement (ARM) Data from Niamey, Niger...

    Office of Scientific and Technical Information (OSTI)

    Visit OSTI to utilize additional information resources in energy science and technology. ... order to provide the first well-sampled, direct estimates of the divergence of solar and ...

  12. Atmospheric Radiation Measurement (ARM) Data from Point Reyes...

    Office of Scientific and Technical Information (OSTI)

    Visit OSTI to utilize additional information resources in energy science and technology. Point Reyes National Seashore, on the California coast north of San Francisco, was the ...

  13. ARM - Events Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2016 ARM/ASR Joint Meeting Bookmark and Share You need to mark a new place in your calendar for the joint Atmospheric Radiation Measurement (ARM) Climate Research Facility User Group and Atmospheric System Research Principal Investigators meeting, which will take place the week of May 2, 2016, at the Sheraton Tysons Hotel in Tysons, Virginia. This is the same hotel that hosted the 2015 ARM and ASR joint meeting. Why move the meeting to May? Simply a lack of hotel room availability in the

  14. ARM - Data Announcements Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 29, 2008 [Data Announcements] Radiative Transfer Model Intercomparison Project Data Now Available Bookmark and Share The ARM Climate Research Facility Data Archive has published the Radiative Transfer Model Intercomparison Project (RTMIP) data set, compiled by Bill Collins. This data set compares the radiation models embedded in the Atmosphere-Ocean General Circulation Models used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. These radiation models

  15. ARM Mentor Selection Process

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2015-10-01

    The Atmospheric Radiation Measurement (ARM) Program was created in 1989 with funding from the U.S. Department of Energy (DOE) to develop several highly instrumented ground stations to study cloud formation processes and their influence on radiative transfer. In 2003, the ARM Program became a national scientific user facility, known as the ARM Climate Research Facility. This scientific infrastructure provides for fixed sites, mobile facilities, an aerial facility, and a data archive available for use by scientists worldwide through the ARM Climate Research Facility—a scientific user facility. The ARM Climate Research Facility currently operates more than 300 instrument systems that provide ground-based observations of the atmospheric column. To keep ARM at the forefront of climate observations, the ARM infrastructure depends heavily on instrument scientists and engineers, also known as lead mentors. Lead mentors must have an excellent understanding of in situ and remote-sensing instrumentation theory and operation and have comprehensive knowledge of critical scale-dependent atmospheric processes. They must also possess the technical and analytical skills to develop new data retrievals that provide innovative approaches for creating research-quality data sets. The ARM Climate Research Facility is seeking the best overall qualified candidate who can fulfill lead mentor requirements in a timely manner.

  16. Climate Science for a Sustainable Energy Future Atmospheric Radiation Measurement Best Estimate (CSSEFARMBE)

    SciTech Connect (OSTI)

    Riihimaki, Laura D.; Gaustad, Krista L.; McFarlane, Sally A.

    2012-09-28

    The Climate Science for a Sustainable Energy Future (CSSEF) project is working to improve the representation of the hydrological cycle in global climate models, critical information necessary for decision-makers to respond appropriately to predictions of future climate. In order to accomplish this objective, CSSEF is building testbeds to implement uncertainty quantification (UQ) techniques to objectively calibrate and diagnose climate model parameterizations and predictions with respect to local, process-scale observations. In order to quantify the agreement between models and observations accurately, uncertainty estimates on these observations are needed. The DOE Atmospheric Radiation Measurement (ARM) program takes atmospheric and climate related measurements at three permanent locations worldwide. The ARM VAP called the ARM Best Estimate (ARMBE) [Xie et al., 2010] collects a subset of ARM observations, performs quality control checks, averages them to one hour temporal resolution, and puts them in a standard format for ease of use by climate modelers. ARMBE has been widely used by the climate modeling community as a summary product of many of the ARM observations. However, the ARMBE product does not include uncertainty estimates on the data values. Thus, to meet the objectives of the CSSEF project and enable better use of this data with UQ techniques, we created the CSSEFARMBE data set. Only a subset of the variables contained in ARMBE is included in CSSEFARMBE. Currently only surface meteorological observations are included, though this may be expanded to include other variables in the future. The CSSEFARMBE VAP is produced for all extended facilities at the ARM Southern Great Plains (SGP) site that contain surface meteorological equipment. This extension of the ARMBE data set to multiple facilities at SGP allows for better comparison between model grid boxes and the ARM point observations. In the future, CSSEFARMBE may also be created for other ARM sites. As

  17. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Developing a Multi-Year Surface Radiation Budget Dataset in Support of Model Development Li,Z.(a), Cribb, M.(a), and Trishchenko, A.P.(b), University of Maryland (a), Canada Centre for Remote Sensing (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The surface radiation budget (SRB) is the primary force driving atmospheric circulation and is affected by radiatively important atmospheric constituents such as water vapor, aerosol and cloud. Testing and improving radiation

  18. Radiative transfer in atmosphere-sea ice-ocean system

    SciTech Connect (OSTI)

    Jin, Z.; Stamnes, K.; Weeks, W.F.; Tsay, S.C.

    1996-04-01

    Radiative energy is critical in controlling the heat and mass balance of sea ice, which significantly affects the polar climate. In the polar oceans, light transmission through the atmosphere and sea ice is essential to the growth of plankton and algae and, consequently, to the microbial community both in the ice and in the ocean. Therefore, the study of radiative transfer in the polar atmosphere, sea ice, and ocean system is of particular importance. Lacking a properly coupled radiative transfer model for the atmosphere-sea ice-ocean system, a consistent study of the radiative transfer in the polar atmosphere, snow, sea ice, and ocean system has not been undertaken before. The radiative transfer processes in the atmosphere and in the ice and ocean have been treated separately. Because the radiation processes in the atmosphere, sea ice, and ocean depend on each other, this separate treatment is inconsistent. To study the radiative interaction between the atmosphere, clouds, snow, sea ice, and ocean, a radiative transfer model with consistent treatment of radiation in the coupled system is needed and is under development.

  19. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Influence of Clouds, Aerosols, and Water Vapor on the Discrepancy Between Modeled and Observed Atmospheric Absorption Arking, A. Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Daily mean estimates of atmospheric absorption of solar radiation at the ARM/SGP site are obtained for 36 days during the fall season in 1995 and 1997. They are based on broadband observations of surface flux and satellite estimates of TOA albedo. Mean absorption in the vertical column is 0.246

  20. Atmospheric Radiation Measurement Madden-Julian Oscillation Investigation

    Office of Scientific and Technical Information (OSTI)

    Experiment Field Campaign Report (Technical Report) | SciTech Connect Atmospheric Radiation Measurement Madden-Julian Oscillation Investigation Experiment Field Campaign Report Citation Details In-Document Search Title: Atmospheric Radiation Measurement Madden-Julian Oscillation Investigation Experiment Field Campaign Report Every 30-90 days during the Northern Hemisphere winter, the equatorial tropical atmosphere experiences pulses of extraordinarily strong deep convection and rainfall.

  1. ARM - Journal Articles 2008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of deep convective systems to constrain atmospheric ... Atmospheric and Oceanic Technology ARM Dong Comparison of ... IEEE Geoscience Remote Sensing Letters ARM Mu ...

  2. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Final Analysis of the Comparison Between Theoretical and Observed Estimates of Broadband Absorptance During ARESE II O'Hirok, W. and Gautier, C., University of California, Santa Barbara Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The ARM Enhanced Shortwave Experiment (ARESE) II was conducted in spring 2000 to address unresolved issues about the absorption of solar radiation in the atmosphere in the presence of clouds. In a preliminary study comparing 3-D radiative

  3. ARM - VAP Process - lbl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Productslbl Documentation & Plots Data Management Facility Plots (Quick Looks) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP : Line-By-Line Radiative Transfer Model (LBL) Instrument Categories Radiometric, Atmospheric Profiling The Line-by-Line Radiative Transfer Model (LBLRTM) is a product of Atmospheric and Environmental Research, Incorporated (AER). The LBLRTM is based on the FASCODE line-by-line model,

  4. ARM - VAP Process - toacess

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Productstoacess Documentation & Plots Data Management Facility Plots (Quick Looks) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP : Top of atmosphere (TOA): radiative flux data, after R. Cess (TOACESS) Note:toacess is currently inactive and/or retired. Active Dates 1994.08.08 - 1994.12.11 Instrument Categories Other Output Products 1toacess : Top of atmosphere (TOA): radiative flux data, 1-min, after R.

  5. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Latitude Cloud Microphysical Properties from FTIR Data Lubin, D., Scripps Institution of Oceanography Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The ARM AERI instruments record downwelling radiance spectra with sufficient radiometric calibration to enable the retrieval of important cloud microphysical properties. This poster will describe how radiative transfer simulations that include cloud thermodynamic phase (liquid water, ice, mixed phase) can be utilized

  6. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated Measurements from ARM SCM IOPs Relevant to GCM Parameterizations Zhang, M.(a), Cederwall, R.T.(b), Xie, S.C.(b), and Yio, J.J.(b), SUNY at Stony Brook (a), Lawrence Livermore National Laboratory (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting This study describes vertical heating profiles from cases selected from eight ARM SCM IOPs at the SGP as derived from the ARM constrained variational analysis. These heating profiles are the subject of GCM

  7. ARM - Instrument - twr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentstwr Documentation TWR : Handbook ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Facility-specific multi-level Meteorological Instrumentation (TWR) Instrument Categories Surface Meteorology Picture of the 60-m Tower General Overview Three tall towers are installed at Atmospheric Radiation Measurement Climate Research Facility sites: a 60-m triangular tower at the Southern Great Plains

  8. ARM - Events Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    27, 2014 [Events, Facility News] International Collaborations Highlighted at EGU Assembly Bookmark and Share At the 2014 European Geophysical Union's (EGU) General Assembly in Vienna, Austria, researchers will hear how data from the Atmospheric Radiation Measurement (ARM) Climate Research Facility is contributing to advances in climate models. Through its fixed, mobile, and aerial observatories, ARM provides the global science community with free data about clouds, aerosols, precipitation, and

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    31, 2007 [Facility News] Long-term Radiosonde Validation Campaign Concludes Bookmark and Share In 2007, sonde launches at ARM sites supported validation of the IASI instrument onboard the Metop-A satellite. As the satellite scans a "swath" of the Earth below it, the IASI scanning mirror directs emitted infrared radiation into the uncovered interferometer to derive atmospheric temperature and humidity profiles. (Image source: European Space Agency) Since 2002, ARM operations staff have

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 15, 2008 [Facility News] Extract This! Enhanced Visualization Tool Available at the Data Archive Bookmark and Share Custom 2-day plot of downwelling shortwave and longwave radiation made using the enhanced NCVweb feature. Like many scientific organizations, the ARM Data Archive stores and distributes atmospheric data from the ARM sites in Network common data form, or NetCDF. This file format applies names or attributes to the various layers of data for efficient identification and

  11. ARM: Portable Radiation Package: Broadband Radiometers, 1 second...

    Office of Scientific and Technical Information (OSTI)

    Portable Radiation Package: Broadband Radiometers, 1 second resolution Authors: Annette Koontz ; R. Reynolds Publication Date: 2012-11-02 OSTI Identifier: 1095574 DOE Contract ...

  12. ARM: Portable Radiation Package: Fast Rotating Shadowband Radiometer...

    Office of Scientific and Technical Information (OSTI)

    Portable Radiation Package: Fast Rotating Shadowband Radiometer full resolution 6-s sampling Authors: Annette Koontz ; R. Reynolds Publication Date: 2012-11-02 OSTI Identifier: ...

  13. ARM: Portable Radiation Package: Position and Heading Data with...

    Office of Scientific and Technical Information (OSTI)

    Portable Radiation Package: Position and Heading Data with 1 second resolution Authors: Annette Koontz ; R. Reynolds Publication Date: 2015-01-09 OSTI Identifier: 1181874 DOE ...

  14. ARM - Field Campaign - RAdiative Divergence using AMF, GERB and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    could not be obtained. A fundamental problem with all airborne experiments is the limited spatial and temporal sampling of the variability of the radiative fluxes, because of the...

  15. ARM - Field Campaign - Measurement of Aerosols, Radiation and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Southern Ocean Clouds Radiation Transport Aerosol Transport Experimental Study (SOCRATES) has been proposed to improve our understanding of clouds, aerosols, air-sea...

  16. Preliminary Analysis of Surface Radiation Measurement Data Quality...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface Radiation Measurement Data Quality at the SGP Extended Facilities Y. Shi and C. N. ... Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program operates ...

  17. Development and Evaluation of RRTMG_SW, a Shortwave Radiative...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The k-distribution shortwave radiation model developed for the Atmospheric Radiation Measurement (ARM) Program, RRTMSWV2.4 (Clough et al. 2004), utilizes the discrete ordinates...

  18. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sub-Grid-Scale Isentropic Transports on McRAS Evaluations Using ARM-CART SCM Datasets Sud, Y.C., Walker, G.K., and Tao, W.-K., Climate and Radiation Branch, Laboratory for Atmospheres, NASA/Goddard Space Flight Center Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Influence of Sub-grid-Scale Isentropic Transports on McRAS: Evaluation using ARM-CART SCM Datasets. Y. C. Sud, G. K. Walker and W.-K. Tao In GCM-physics evaluations with the currently available ARM-CART SCM

  19. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Atmospheric Clear-sky Shortwave Radiation Models to Collocated Satellite and Surface Measurements in Canada Jing, X., and Cess, R.D., State University of New York at Stony Brook Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting Measurements of the top of the atmosphere (TOA) reflected shortwave radiation from the Earth Radiation Budget Satellite (ERBS) have been collocated with surface insolation measurements made at 24 Canadian stations located below 57 degrees

  20. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Boundary Layer Cloud Properties using Surface and GOES Measurements at the ARM SGP Site Dong, X. (a), Minnis, P. (b), Smith, W.L., Jr. (b), and Mace, G.G. (a), University of Utah (a), NASA Langley Research Center (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Boundary layer cloud microphysical and radiative properties derived from GOES data during March 2000 cloud IOP at ARM SGP site are compared with simultaneous surface-based observations. The

  1. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Daily Broadband Surface Albedos Measured at Six Extended Facilities in the ARM Southern Great Plains Cloud and Radiation Testbed Hamm, K.G., University of Oklahoma Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting An analysis of time series of daily hemispherical broadband surface albedo for 1998-1999 from six ARM Extended Facilities has been performed. The results show that the mean annual albedo differs by as much as 30% among the six sites. The annual range of

  2. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Sites in the BSRN Database - Year 2002 Update Hodges, G.B., University of Colorado at Boulder CIRES and NOAA Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The current status and availability of ARM data in the Baseline Surface Radiation Network (BSRN) database is shown. The author is currently submitting data from BRS and E13 located in the Southern Great Plains Central Facility, and Manus and Nauru from the Tropical Western Pacific (TWP). These four sites comprise

  3. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Aerosol Forcing Calculated at the ARM Southern Great Plains Site Ackerman, T.P., Flynn, D.M., and Long, C.N., Pacific Northwest National Laboratory Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The continuous measurements of direct and diffuse solar radiation, water vapor column amount, and aerosol optical depth provided at the ARM SGP site permit us to calculate directly the actual magnitude of the direct aerosol forcing. Our methodology employs the clear sky

  4. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1–December 31, 2011

    SciTech Connect (OSTI)

    Voyles, JW

    2012-01-09

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  5. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1–September 30, 2011

    SciTech Connect (OSTI)

    Voyles, JW

    2011-10-10

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  6. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report: October 1 - December 31, 2010

    SciTech Connect (OSTI)

    Sisterson, DL

    2011-03-02

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  7. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report January 1–March 31, 2012

    SciTech Connect (OSTI)

    Voyles, JW

    2012-04-13

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Data Archive, where they are made available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  8. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 - September 30, 2007

    SciTech Connect (OSTI)

    DL Sisterson

    2007-10-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  9. A Study of Longwave Radiation Codes for Climate Studies: Validation with ARM Observations and Tests in General Circulation Models

    SciTech Connect (OSTI)

    Robert G. Ellingson

    2004-09-28

    One specific goal of the Atmospheric Radiation Measurements (ARM) program is to improve the treatment of radiative transfer in General Circulation Models (GCMs) under clear-sky, general overcast and broken cloud conditions. Our project was geared to contribute to this goal by attacking major problems associated with one of the dominant radiation components of the problem --longwave radiation. The primary long-term project objectives were to: (1) develop an optimum longwave radiation model for use in GCMs that has been calibrated with state-of-the-art observations for clear and cloudy conditions, and (2) determine how the longwave radiative forcing with an improved algorithm contributes relatively in a GCM when compared to shortwave radiative forcing, sensible heating, thermal advection and convection. The approach has been to build upon existing models in an iterative, predictive fashion. We focused on comparing calculations from a set of models with operationally observed data for clear, overcast and broken cloud conditions. The differences found through the comparisons and physical insights have been used to develop new models, most of which have been tested with new data. Our initial GCM studies used existing GCMs to study the climate model-radiation sensitivity problem. Although this portion of our initial plans was curtailed midway through the project, we anticipate that the eventual outcome of this approach will provide both a better longwave radiative forcing algorithm and from our better understanding of how longwave radiative forcing influences the model equilibrium climate, how improvements in climate prediction using this algorithm can be achieved.

  10. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parameterization of Cloud/Radiation Processes in the UCLA General Circulation Model Gu, Y., Farrara, J., Liou, K.N., and Mechoso, C.R., University of California, Los Angeles Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The importance of cloud-radiation interactions in climate and climate simulation has been well recognized and demonstrated by the DOE/ARM researchers. To be successful, physically based and accurate parameterizations for radiation and cloud processes must

  11. ARM-99-005 Science and Experiment Plan Spring 1999 Flight Series

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM - UAV Atmospheric Radiation Measurement - Unmanned Aerospace Vehicle Science and Experiment Plan Spring 1999 Flight Series Robert Ellingson and Tim Tooman, eds. Version 1.2 - ...

  12. X:\\ARM_19~1\\PGS19-27.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    meteorological variables will be set up on Manus Island as the first site of the tropical western pacific (TWP) locale of the Atmospheric Radiation Measurements (ARM) program. ...

  13. X:\\ARM_19~1\\P155-184.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    empirically, the radiative processes in the earth's normalized-difference vegetative index (NDVI) can be atmosphere with improved resolution and accuracy (ARM used to determine...

  14. DOE/SC-ARM-10-021 STORMVEX: The Storm Peak Lab Cloud Property...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Observing System ARM Atmospheric Radiation Measurement ... thermometer IWC ice water content JPL Jet Propulsion ... around the area (e.g., weekly testing of diesel generators). ...

  15. Use of ARM/NSA Data to Validate and Improve the Remote Sensing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARMNSA Data to Validate and Improve the Remote Sensing Retrieval of Cloud and Surface ... North Slope of Alaska (NSA) through the Atmospheric Radiation Measurement (ARM) Program. ...

  16. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1–September 30, 2010

    SciTech Connect (OSTI)

    Sisterson, DL

    2010-10-15

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  17. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1–June 30, 2010

    SciTech Connect (OSTI)

    Sisterson, DL

    2010-07-09

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  18. An Instrumentation Complex for Atmospheric Radiation Measurements in Siberia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instrumentation Complex for Atmospheric Radiation Measurements in Siberia S. M. Sakerin, F. V. Dorofeev, D. M. Kabanov, V. S. Kozlov, M. V. Panchenko, Yu. A. Pkhalagov, V. V. Polkin, V. P. Shmargunov, S. A. Terpugova, S. A. Turchinovich, and V. N. Uzhegov Institute of Atmospheric Optics Tomsk, Russia Introduction The instrumentation complex is described, which has been prepared for radiative experiments in the region of Tomsk (West Siberia). The complex consists of three groups of devices to

  19. Observations of the impact of a major Saharan dust storm on the atmospheric radiation balance

    SciTech Connect (OSTI)

    Slingo, A.; Ackerman, Thomas P.; Allan, R. P.; Kassianov, Evgueni I.; McFarlane, Sally A.; Robinson, G. J.; Barnard, James C.; Miller, Mark; Harries, J. E.; Russell, J. E.; Dewitte, S.

    2006-12-01

    Saharan dust storms transport large quantities of material across the African continent and beyond, causing widespread disruption and hazards to health. The dust may be deposited into the Atlantic Ocean, where it provides an important source of nutrients1, and may be carried as far as the West Indies. Such events may also influence the growth of Atlantic tropical cyclones. Satellite observations have enabled estimates to be made of the effect of the dust on the radiation budget seen from space, but only limited in situ observations have hitherto been made at the surface. Here we present the first simultaneous and continuous observations of the effect of a major dust storm in March 2006 on the radiation budget both at the top of the atmosphere (TOA) and at the surface. We combine data from the Geostationary Earth Radiation Budget (GERB) broadband radiometer and the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) on the Meteosat-8 weather satellite with remote sensing and in situ measurements from a new Mobile Facility located in Niamey, Niger (13{sup o} 29'N, 2{sup o} 10'E), operated by the US Atmospheric Radiation Measurement (ARM) program. We show that the dust produced major perturbations to the radiation budget seen from space and from the surface. By combining the two datasets, we estimate the impact on the radiation budget of the atmosphere itself. Using independent data from the Mobile Facility, we derive the optical properties of the dust and input these and other information into radiation codes to simulate the radiative fluxes. Comparisons with the observed fluxes provides a stringent test of the ability of the codes to represent the radiative properties of this important component of the global aerosol burden.

  20. ARM - Carbonaceous Aerosols and Radiative Effects Study (CARES...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News & Press Backgrounder (PDF, 1.45MB) G-1 Aircraft Fact Sheet (PDF, 1.3MB) Contacts Rahul Zaveri, Lead Scientist Carbonaceous Aerosols and Radiative Effects Study (CARES)...

  1. ARM Carbon Cycle Gases Flasks at SGP Site (Dataset) | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Carbon Cycle Gases Flasks at SGP Site Title: ARM Carbon Cycle Gases Flasks at SGP Site Data from flasks are sampled at the Atmospheric Radiation Measurement Program ARM, Southern ...

  2. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instrumentation for the AMR-UAV Payload McCoy, R.F., Tooman, T.T., and Bolton, W.B., Sandia National Laboratories Thirteenth Atmospheric Radiation Measurement (ARM) Science Team ...

  3. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Detection of Thin Cirrus Using MODIS 1.38 Micron Reflection Roskovensky, J.K. and Liou, K.N., University of California, Los Angeles Twelfth Atmospheric Radiation Measurement (ARM)...

  4. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EPIC Hazen, D.A.(a), Westwater, E.R.(b), and Fairall, C.W.(a), NOAA-ETL (a), CIRES (University of ColoradoNOAA-ETL (b) Twelfth Atmospheric Radiation Measurement (ARM)...

  5. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probability of Clear Line-of-Sight Determined from the VTLC and WSI Ma, Y. and Ellingson, R.G., University of Maryland Eleventh Atmospheric Radiation Measurement (ARM) Science Team...

  6. ARM Airborne Continuous carbon dioxide measurements (Dataset...

    Office of Scientific and Technical Information (OSTI)

    3 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Dataset Data Type: Numeric Data Research Org: Atmospheric Radiation Measurement (ARM) Archive, Oak Ridge National Laboratory ...

  7. ARM Airborne Continuous carbon dioxide measurements (Dataset...

    Office of Scientific and Technical Information (OSTI)

    1 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Dataset Data Type: Numeric Data Research Org: Atmospheric Radiation Measurement (ARM) Archive, Oak Ridge National Laboratory ...

  8. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of MODIS Cloud Mask Products (MOD35) with MMCR Data Zhang, Q. and Mace, G.G., University of Utah Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting...

  9. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    K.-M.(c), BMRC (a), NOAACIRES CDC (b), NASA Langley (c) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting It is highly desirable to use cloud radar data in...

  10. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrieval of Ice Water Path, Ice Particle Size, and Shape Mitchell, D.L., Arnott, W.P., and Ivanova, D.C., Desert Research Institute Twelfth Atmospheric Radiation Measurement (ARM)...

  11. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    View Observations Ma, Y.-T.(a) and Ellingson, R. G.(b), University of Maryland at College Park (a), Florida State University (b) Twelfth Atmospheric Radiation Measurement (ARM)...

  12. ARM - What is the ARM Climate Research Facility Doing About Global Warming?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WarmingWhat is the ARM Climate Research Facility Doing About Global Warming? Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans What is the ARM Climate Research Facility Doing About Global Warming? Atmospheric Radiation Measurement (ARM) scientists are studying the effects of clouds on weather

  13. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development of a Stochastic Cloud-Radiation Parameterization Lane, D.E., Rutgers University Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Stochastic radiative transfer modeling has recently been shown to be a promising approach to modeling the domain-averaged shortwave radiation fields that occur in scattered cloud conditions. A parameterization of the stochastic approach to modeling cloud-radiation interactions is being developed using archived data from the Atmospheric

  14. ARM - Field Campaign - Azores: Above-Cloud Radiation Budget near Graciosa

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Island Above-Cloud Radiation Budget near Graciosa Island Campaign Links "Clouds, aerosols, and precipitation in the marine boundary layer: An ARM Mobile Facility deployment." Bulletin of the American Meteorological Society, 96(3), doi: 10.1175/bams-d-13-00180.1 ARM Data Discovery Browse Data Related Campaigns Azores: Clouds, Aerosol and Precipitation in the Marine Boundary Layer (CAP-MBL) 2009.05.01, Wood, AMF Comments? We would love to hear from you! Send us a note below or call

  15. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CAGEX Version 3: Tightening Shortwave Fluxes and Measurements of Surface Spectral Characteristics Alberta, T.L., Analytical Services and Materials, Inc.; Charlock, T.P., National Aeronautics and Space Administration-Langley Research Center Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Version 3 of the CAGEX (Clouds and Earth's Radiant Energy System [CERES]/Atmospheric Radiation Measurement [ARM]/Global Energy and Water Experiment [GEWEX]) is introduced. As with Version 2

  16. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diurnal Cycle of Cloud Microphysical Properties from GOES Over the ARM Southern Great Plains Minnis, P., and Young, D.F., National Aeronautics and Space Administration-Langley Research Center; Smith, W.L., Jr., and Heck, P.W., Analytical Services and Materials, Inc. Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Cloud coverage, height and optical depth have been derived from the Geostationary Operational Environmental Satellite (GOES) data taken over the Atmospheric Radiation

  17. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Formation of Fair-Weather Cumuli Zhu, P. and Albrecht, B., University of Miami Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting This study includes two related parts. In the first part, The formation of fair-weather cumuli has been analyzed based on both a simple mixed layer model and the data collected from the Atmospheric Radiation Measurement (ARM) program at the Southern Great Plains (SGP) site. By analyzing the conditions for the formation of fair-weather cumuli, we

  18. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact of Intermodel Differences in Cloud Microphysics on Radiation: Diagnosis from Case 3 CRM Intercomparison Data Xu, K.-M., Atmospheric Sciences, NASA Langley Research Center Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Cloud microphysics parameterizations have been identified as one of the main differences among th e eight cloud-resolving models (CRMs) participating in the recent ARM/GCSS intercomparison study (Xu et al., 2002). How do these differences impact the

  19. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical-Microphysical-Optical CCN Closure Experiments during the May 2003 ARM-ACP Aerosol IOP Schwartz, S.E., Brookhaven National Laboratory Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Aerosols exert a substantial influence on atmospheric radiation through direct light scattering and through modification of the microphysical properties of clouds. Description of these effects locally requires characterization of the optical and cloud nucleating properties of the

  20. ARM - Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial Ecosystem Science Performance Metrics User Meetings Past ARM Science Team ...

  1. ARM - Acronyms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALFA AER local forecast and assimilation (model) AMF ARM Mobile Facility AMIE ACRF MJO Investigation Experiment AMIP Atmospheric Model Intercomparison Project AMMA African Monsoon ...

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM's New Radar Operating Paradigm Aims to Maximize Performance Bookmark and Share Maintaining the pulse of the radar network is vital to research A Scanning ARM Cloud Radar is deployed with the ARM Mobile Facility on Antarctica for the ARM West Antarctic Radiation Experiment campaign. A Scanning ARM Cloud Radar is deployed with the ARM Mobile Facility on Antarctica for the ARM West Antarctic Radiation Experiment campaign. Radars have been getting a lot of attention at ARM in the last few

  3. Use of the ARM Measurements of Spectral Zenith Radiance for Better Understanding of 3D Cloud-Radiation Processes & Aerosol-Cloud Interaction

    SciTech Connect (OSTI)

    Chiu, Jui-Yuan Christine

    2014-04-10

    This project focuses on cloud-radiation processes in a general three-dimensional cloud situation, with particular emphasis on cloud optical depth and effective particle size. The proposal has two main parts. Part one exploits the large number of new wavelengths offered by the Atmospheric Radiation Measurement (ARM) zenith-pointing ShortWave Spectrometer (SWS), to develop better retrievals not only of cloud optical depth but also of cloud particle size. We also take advantage of the SWS’ high sampling resolution to study the “twilight zone” around clouds where strong aerosol-cloud interactions are taking place. Part two involves continuing our cloud optical depth and cloud fraction retrieval research with ARM’s 2-channel narrow vield-of-view radiometer and sunphotometer instrument by, first, analyzing its data from the ARM Mobile Facility deployments, and second, making our algorithms part of ARM’s operational data processing.

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    , 2016 [Facility News] Research Balloon Lost in Alaska Bookmark and Share A tethered balloon used for atmospheric measurements was being prepared July 27 at Oliktok Point, Alaska, when an unexpected gust of wind lifted the balloon and severed its tether cord. The balloon rose and drifted north across the Beaufort Sea, dropping to the sea roughly 60 km north of Oliktok. The balloon, which carried Atmospheric Radiation Measurement (ARM) Climate Research Facility equipment worth approximately

  5. An Evaluation of the Nonlinearity Correction Applied to Atmospheric...

    Office of Scientific and Technical Information (OSTI)

    used in the Atmospheric Radiation Measurement (ARM) Program's AERIs. Authors: Turner, DD ; Revercomb, HE ; Knuteson, RO ; Dedecker, RG ; Feltz, WF Publication Date: ...

  6. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud-Radiation-Aerosol Experiment (1996) at IAPh, Russia Golitsyn, G.S., Anikine, P.P., and Sviridenkov, M.A., Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting In 1996, local measurements of the optical properties of the near-surface aerosol were carried out parallel with aureole measurements of the aerosol in the atmospheric column. The spectral radiation was measured by a complex of spectrometers. Global

  7. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    radiation Aerosols Cloud Properties microphysical optical and radiative properties Black carbon concentration Aerosols Atmospheric Carbon particulate microphysical and...

  8. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On Problems in Simulating Boundary-layer Cumulus Clouds with Third-Order Turbulence Closure Models Cheng, A.(a) and Xu, K.-M.(b), Atmospheric Sciences, NASA Langley Research Center (a), Center for Atmospheric Sciences, Hampton University (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting A hierarchy of third-order turbulence closure models are used to simulate boundary-layer cumulus clouds from the Atmospheric Radiation Measurement in this study. A moist spurious

  9. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spurious Oscillation in Simulating Boundary-Layer Cumulus Clouds with Third-Order Turbulence Closure Models Cheng, A.(a) and Xu, K.-M.(b), Center for Atmospheric Sciences, Hampton University, Hampton, VA (a), Atmospheric Sciences, NASA Langley Research Center (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting A hierarchy of third-order turbulence closure models are used to simulate boundary-layer cumulus clouds from the Atmospheric Radiation Measurement in this study. A

  10. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Change of Atmospheric Boundary Layer Thermal Regime Induced by Aerosol as Measured by MTP-5 Koldaev, A.V.(a), Kadygrov, E.N.(a), Khaikine, M.N.(a), Kuznetsova, I.N.(b), and Golitsyn, G.S.(c), Central Aerological Observatory (a), Hydrometeorological Center (b), A.M.Obukhov Institute of Atmospheric Physics Russian Academy of Science (c) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Change in atmospheric boundary layer (ABL) radiation balance as caused by natural and

  11. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multifractal Analysis of Column Liquid Water Above ARM's SGP Site Using Continuous Wavelet Transforms and the Maximum Modulus Formulation Roux, S.G., Marshak, A., Wiscombe, W.J., and Cahalan, R.F., NASA Goddard Space Flight Center, Climate & Radiation Branch; Davis, A.B., Los Alamos National Laboratory, Astrophysics & Radiation Measurements Group Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting A limited amount of liquid water path (LWP) data from the microwave water

  12. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wavelet-Based Characterization of Long-Range Correlations in 2D Liquid Water Content Fields from ARM's Cloud Radars Davis, A.B., Los Alamos National Laboratory, Astrophysics & Radiation Measurements Group; Roux, S.G., Marshak, A., Wiscombe, W.J., and Pincus, R., NASA Goddard Space Flight Center, Climate & Radiation Branch Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting We report on wavelet-based methods under development to process the cloud-radar datastreams into

  13. ARM - Events Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 23, 2012 [Events, Facility News] News Tips from AMS 2012 Bookmark and Share Scientists from around the world use data from the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility to study the interactions between clouds, aerosol, and radiation. At the American Meteorological Society's Annual Meeting, held this year in New Orleans from January 23-27, scientists are presenting dozens of oral and poster sessions describing their research using data

  14. DOE/SC-ARM/TR-097 Radiatively Important Parameters Best Estimate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Radiatively Important Parameters Best Estimate (RIPBE): An ARM Value-Added Product S McFarlane T Shippert J Mather June 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

  15. Atmospheric Radiation Measurement program climate research facility operations quarterly report.

    SciTech Connect (OSTI)

    Sisterson, D. L.; Decision and Information Sciences

    2006-09-06

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,074.80 hours (0.95 x 2,184 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,965.60 hours (0.90 x 2,184), and that for the Tropical Western Pacific (TWP) locale is 1,856.40 hours (0.85 x 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.80 hours (0.95 x 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive

  16. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Spectroscopic Measurements in Support of ARM Varanasi, P., State University of New York at Stony Brook Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting The most recent data obtained in our laboratory on water vapor and chlorofluorocarbons will be presented along with plans for activities during 1998-99

  17. Atmospheric transmittance model for photosynthetically active radiation

    SciTech Connect (OSTI)

    Paulescu, Marius; Stefu, Nicoleta; Gravila, Paul; Paulescu, Eugenia; Boata, Remus; Pacurar, Angel; Mares, Oana; Pop, Nicolina; Calinoiu, Delia

    2013-11-13

    A parametric model of the atmospheric transmittance in the PAR band is presented. The model can be straightforwardly applied for calculating the beam, diffuse and global components of the PAR solar irradiance. The required inputs are: air pressure, ozone, water vapor and nitrogen dioxide column content, Ångström's turbidity coefficient and single scattering albedo. Comparison with other models and ground measured data shows a reasonable level of accuracy for this model, making it suitable for practical applications. From the computational point of view the calculus is condensed into simple algebra which is a noticeable advantage. For users interested in speed-intensive computation of the effective PAR solar irradiance, a PC program based on the parametric equations along with a user guide are available online at http://solar.physics.uvt.ro/srms.

  18. ARM - Journal Articles 2007

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from ARM ground-based remote sensing (Citation) ... Atmospheric and Oceanic Technology ARM Guo Examination of ... in Ice-Over-Water Cloud Systems Using Tropical Rainfall ...

  19. ARM - Journal Articles 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... satellite data (Citation) Remote Sensing ARM Painemal The ... mesoscale convective systems: radar observations and ... Atmospheric and Oceanic Technology Yes ARM Shen ...

  20. ARM - Journal Articles 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric and Oceanic Technology Yes ARM Johnson The ... of tropical cloud systems observed during the ... on Geoscience and Remote Sensing ARM Long Correcting ...

  1. ARM - International Arctic Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Information Collaborations Meetings of Interest Data Sources ARM Data Discovery Browser NSA Data Past ARM NSA campaigns NCARUCAR National Oceanic and Atmospheric ...

  2. ARM Virtual Tour

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and mirrors ARM's other long-term atmospheric measurement facilities around the world. Virtual Tour Coming in 2016 Heavily instrumented ARM facilities are strategically located at...

  3. ARM News &#187; Data Announcements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sun, 31 Jul 2016 23:22:09 +0000 http://www.arm.gov en Alpha 1 of ARM&#8217;s New Modeling Effort Now Released Sun, 31 Jul 2016 23:22:09 +0000 Data Announcements http://www.arm.gov/news/data/post/38004 <img src="http://www.arm.gov/images/cms/SGP.png:100w" style="float:left;margin-right:5px;margin-bottom:5px"/><p>In May 2015, the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility began a pilot project to design a

  4. ARM - Publications: Science Team Meeting Documents: Modeling the vertical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    profiles of aerosol characteristics and radiative impacts over the ARM sites Modeling the vertical profiles of aerosol characteristics and radiative impacts over the ARM sites Chuang, Catherine DOE/Lawrence Livermore National Laboratory Chin, Steve DOE/Lawrence Livermore National Laboratory Atmospheric aerosols play an important role in mediating the radiative balance of the Earth-atmosphere system. A global high-resolution aerosol modeling system developed by the Lawrence Livermore National

  5. ARM - VAP Product - 1toacess

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Productstoacess1toacess Documentation Data Management Facility Plots (Quick Looks) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP Output : 1TOACESS Top of atmosphere (TOA): radiative flux data, 1-min, after R. Cess Active Dates 1994.08.08 - 1994.12.11 Originating VAP Process Top of atmosphere (TOA): radiative flux data, after R. Cess : TOACESS Measurements The measurements below provided by this product are

  6. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Shipboard Fast-Rotating Shadowband Spectral Radiometer Reynolds, R.M., Miller, M.A., and Bartholemew, M.J., Brookhaven National Laboratory Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Brookhaven National Laboratory has developed a shipboard radiation instrument platform called the Portable Radiation Package (PRP). This poster presents design details, calibration information and results from ship cruises

  7. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of ARM Cloud Property Observations with CRM Simulations Xu, K.-M. (a), Cederwall, R.T. (b), Xie, S.C. (b), and Yio, J.J. (b), NASA Langley Research Center (a), Lawrence Livermore National Laboratory (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The cloud property observations are compared with cloud-resolving model simulated cloud properties in this study, using the Summer 1997 Intensive Observation Period (IOP) data of the ARM program. Midlatitude

  8. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Overview of Water Vapor IOP (WVIOP) 2000 and ARM/FIRE Water Vapor EXperiment (AFWEX) Tobin, D., Revercomb, H., and Turner, D.D., University of Wisconsin-Madison Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting WVIOP 2000 and AFWEX, two field experiments with focus on the accuracy of ARM water vapor measurements, have recently been conducted. WVIOP 2000, the third in a series of WVIOPs which have studied the accuracy of lower tropospheric water vapor measurements, ran from

  9. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Spectral and Broadband Measurements of Surface Flux with Model Calculations on Clear Days at the ARM SGP Site Arking, A. (a), Liu, F. (a), Harrison, L. C. (b), Pilewskie, P. (c), and Chou, M.-D. (d), Johns Hopkins University (a), State University of New York, Albany (b), NASA Ames Research Center (c), NASA Goddard Space Flight Center (d) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Observations of spectral and broadband solar irradiance at the ARM/SGP site

  10. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM External Data: Recent Developments and Future Plans Wagener, R., Gregory, L., Ma, L.L., and Cialella, A., Brookhaven National Laboratory Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting This poster lists new datastreams collected and processed by the ARM External Data Center since the last update in 1999 (MOLTS, TOMS, 30 min OK Mesonet, CSPHOT, TWP AVHRR, ECMWF, RUC, TAO Buoy, IAP). We describe briefly the software tools employed in converting these data to netCDF files,

  11. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Cloud Imager (ICI) Measurements of Cloud Statistics During the 2003 Cloudiness Intercomparison Campaign Gregory, L., Wagener, R., Ma, L.L., and Cialella, A., Brookhaven National Laboratory Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The process of creating ARM data-streams from external data sources is described from identification of scientific need as determined by the science working groups to implementation and documentation, which involves ARM's task

  12. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agents in ARM: Applying Artificial Intelligence to ARM Data Mining Kuchar, O.A. and Reyes-Spindola, J., Pacific Northwest National Laboratory Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting We present a vision of a prototype environment that utilizes a co-operative community of intelligent software agents (a computer program that behaves in a manner analogous to a human agent) for the creation of an integrative, computer-based data analysis architecture to mine massive

  13. Introduction to Reading and Visualizing ARM Data

    SciTech Connect (OSTI)

    Mather, James

    2014-02-18

    Atmospheric Radiation Measurement (ARM) Program standard data format is NetCDF 3 (Network Common Data Form). The object of this tutorial is to provide a basic introduction to NetCDF with an emphasis on aspects of the ARM application of NetCDF. The goal is to provide basic instructions for reading and visualizing ARM NetCDF data with the expectation that these examples can then be applied to more complex applications.

  14. ARM Climate Research Facility Annual Report 2005

    SciTech Connect (OSTI)

    J. Voyles

    2005-12-31

    Through the ARM Program, the DOE funded the development of several highly instrumented ground stations for studying cloud formation processes and their influence on radiative transfer, and for measuring other parameters that determine the radiative properties of the atmosphere. This scientific infrastructure, and resultant data archive, is a valuable national and international asset for advancing scientific knowledge of Earth systems. In fiscal year (FY) 2003, the DOE designated ARM sites as a national scientific user facility: the ARM Climate Research (ACRF). The ACRF has enormous potential to contribute to a wide range interdisciplinary science in areas such as meteorology, atmospheric aerosols, hydrology, biogeochemical cycling, and satellite validation, to name only a few.

  15. Radiative Energy Balance in the Tropical Tropopause Layer: An Investigation with ARM Data

    SciTech Connect (OSTI)

    Fu, Qiang

    2013-10-22

    The overall objective of this project is to use the ARM observational data to improve our understanding of cloud-radiation effects in the tropical tropopause layer (TTL), which is crucial for improving the simulation and prediction of climate and climate change. In last four and half years, we have been concentrating on (i) performing the comparison of the ice cloud properties from the ground-based lidar observations with those from the satellite CALIPSO lidar observations at the ARM TWP sites; (ii) analyzing TTL cirrus and its relation to the tropical planetary waves; (iii) calculating the radiative heating rates using retrieved cloud microphysical properties by combining the ground-based lidar and radar observations at the ARM TWP sites and comparing the results with those using cloud properties retrieved from CloudSat and CALIPSO observations; (iv) comparing macrophysical properties of tropical cirrus clouds from the CALIPSO satellite and from ground-based micropulse and Raman lidar observations; (v) improving the parameterization of optical properties of cirrus clouds with small effective ice particle sizes; and (vi) evaluating the enhanced maximum warming in the tropical upper troposphere simulated by the GCMs. The main results of our research efforts are reported in the 12 referred journal publications that acknowledge the DOE Grant No. DE-FG02-09ER64769.

  16. Integrated Study of MFRSR-derived Parameters of Atmospheric Aerosols and Trace Gases Over the ARM CART Site Extended Facili...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated Study of MFRSR-Derived Parameters of Atmospheric Aerosols and Trace Gases Over the ARM CART Site Extended Facilities - Comparison with Satellite and Other Ground-Based Measurements M. D. Alexandrov and B. Cairns Columbia University National Aeronautics and Space Administration Goddard Institute for Space Studies New York, New York A. A. Lacis and B. E. Carlson National Aeronautics and Space Administration Goddard Institute for Space Studies New York, New York Comparison of SGP MFRSR

  17. Atmospheric Radiation Measurement Climate Research Facility - annual report 2004

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ER-ARM-0403 3 Table of Contents Program Overview ............................................................................................................................................................ 4 The Role of Clouds in Climate .................................................................................................................................... 4 ARM Science Goals

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20, 2008 Facility News ARM Scientists Lead International Radiation Symposium in Brazil Bookmark and Share The ARM Science Team showed up in force at the 2008 International...

  19. The ARM Unmanned Aerospace Vehicle Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The ARM Unmanned Aerospace Vehicle Program The ARM Program's focus is on climate research, specifi- cally research related to solar radiation and its interaction with clouds. The SGP CART site contains highly sophisti- cated surface instrumentation, but even these instruments cannot gather some crucial climate data from high in our atmosphere. The lowest layer of our atmosphere, known as the "troposphere," is where our weather events take place. The troposphere contains virtually all

  20. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collocated Satellite, Surface and Sounding Data Emerges On-line from CAVE (CERES ARM Validation Experiment) at SGP Rose, F.G., Rutan, D.A., Smith, N.M., and Alberta, T.L., Analytical Services and Materials, Inc.; Charlock, T.P., National Aeronautics and Space Administration-Langley Research Center Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Top-of-the-atmosphere (TOA) broadband observations from the Clouds and the Earth's Radiant Energy System (CERES) instrument on the

  1. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Long Term AERI Data Summaries or Spectral Radiance Data for Testing Climate Models Tobin, D., Revercomb, H., Knuteson, R.O., Best, F., Dedecker, R., Howell, H.B., Garcia, R., and Feltz, W., University of Wisconsin-Madison Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Atmospheric Emitted Radiance Interferometer (AERI) data collection has been on-going at the SGP, NSA, and TWP ARM sites for a number of years now. This poster presents long term trends and distributions of

  2. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization and Calibration of the Commercial RSS Slated for Permanent Deployment at SGP Kiedron, P., Berndt, J., Yager, E., Harrison, L., and Michalsky, J., Atmospheric Sciences Research Center, SUNY at Albany, New York Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The ARM program purchased a rotating shadowband spectroradiometer (RSS) that was manufactured by Yankee Environmental Systems, Inc. At ASRC the instrument went through initial acceptance tests and after

  3. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boundary Layer Structure and Fair-Weather Cumulus Characteristics at the TWP ARM Site - Comparisons with Other Tropical and Subtropical Sites Albrecht, B. and Kollias, P., University of Miami Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Fair-weather cumuli are fundamental in regulating the vertical structure of water vapor and entropy in the lowest 2 km of the Earths atmosphere over vast areas of the oceans. Boundary layer structures and cloud characteristics observed

  4. Technical progress report: Completion of spectral rotating shadowband radiometers and analysis of atmospheric radiation measurement spectral shortwave data

    SciTech Connect (OSTI)

    Michalsky, J.; Harrison, L.

    1996-04-01

    Our goal in the Atmospheric Radiation Measurement (ARM) Program is the improvement of radiation models used in general circulation models (GCMs), especially in the shortwave, (1) by providing improved shortwave radiometric measurements for the testing of models and (2) by developing methods for retrieving climatologically sensitive parameters that serve as input to shortwave and longwave models. At the Atmospheric Sciences Research Center (ASRC) in Albany, New York, we are acquiring downwelling direct and diffuse spectral irradiance, at six wavelengths, plus downwelling broadband longwave, and upwelling and downwelling broadband shortwave irradiances that we combine with National Weather Service surface and upper air data from the Albany airport as a test data set for ARM modelers. We have also developed algorithms to improve shortwave measurements made at the Southern Great Plains (SGP) ARM site by standard thermopile instruments and by the multifilter rotating shadowband radiometer (MFRSR) based on these Albany data sets. Much time has been spent developing techniques to retrieve column aerosol, water vapor, and ozone from the direct beam spectral measurements of the MFRSR. Additionally, we have had success in calculating shortwave surface albedo and aerosol optical depth from the ratio of direct to diffuse spectral reflectance.

  5. Clouds and more: ARM climate modeling best estimate data: A new data product for climate studies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xie, Shaocheng; McCoy, Renata B.; Klein, Stephen A.; Cederwall, Richard T.; Wiscombe, Warren J.; Clothiaux, Eugene E.; Gaustad, Krista L.; Golaz, Jean -Christophe; Hall, Stephanie D.; Jensen, Michael P.; et al

    2010-01-01

    The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program (www.arm.gov) was created in 1989 to address scientific uncertainties related to global climate change, with a focus on the crucial role of clouds and their influence on the transfer of radiation atmosphere. Here, a central activity is the acquisition of detailed observations of clouds and radiation, as well as related atmospheric variables for climate model evaluation and improvement.

  6. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Absorption, Optical Depth and Vertical Extent Estimates Using UV/blue Satellite Measurements Cairns, B., and Alexandrov, M.D., Columbia University; Carlson, B.E., and Lacis, A.A., NASA Goddard Institute for Space Studies Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting The radiative balance of the atmosphere and the climatological response of the atmospheric circulation to changes in aerosol loading is principally determined by the vertical extent and single-scatter

  7. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiative Transfer in a Medium Containing Non-spherical Particles: Applications to the Atmosphere Eide, H.A. and Stamnes, K., Stevens Institute of Technology Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting We present results obtained for problems involving energy transmission in a medium containing non-spherical particles, specifically for the case of light propagating in the atmosphere-ocean system. We have developed new algorithms that enables us to solve rigorously the

  8. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrieval of Cirrus Particle Sizes Using a Spit-Window Technique: A Sensitivity Study Fu, Q. (a) and Sun, W.B. (b), University of Washington (a), Dalhousie University (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The 8 - 12 um atmospheric window is an important spectral region for the remote sensing of the earth-atmosphere system. Since clouds are the major regulator of the global radiative energy budget, numerous methods have been developed to detect clouds and cloud

  9. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Ship-Based Facility for Cloud and Radiation Measurements on the Cruise Liner the "Explorer of the Seas" Albrecht, B., Minnett, P. J., and Brown, O., University of Miami, Rosenstiel School of Marine and Atmospheric Sciences Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Atmospheric and oceanic laboratories have been constructed on Royal Caribbean Cruise Lines (RCCL) "Explorer of the Seas". A suite of instruments on this 140,000-ton ship was

  10. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tropical Cloud Radiative Forcing and the Large-Scale Atmospheric Energy Transport Tian, B. (a) and Ramanathan, V. (b), Scripps Institution of Oceanography, UCSD Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Moist static energy is exported within the atmosphere column, from equatorial latitudes to the subtropics by the Hadley circulation and from the western Pacific warm pool to the eastern Pacific cold tongue by the Walker circulation. It is the net energy fluxes into the

  11. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrieval of Mean Cosine of Aerosol Phase Function from Extinction and Sky Brightness Measurements Zhuravleva, T.B.(a), Sviridenkov, M.A.(b), and Anikin, P.P.(b), Institute of Atmospheric Optics SB RAS, Tomsk, Russia (a), A.M. Obukhov Institute of Atmospheric Physics RAS, Moscow, Russia (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Asymmetry of the aerosol phase function together with optical thickness drive the magnitude of the aerosol radiative forcing. Two

  12. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 September 30, 2006

    SciTech Connect (OSTI)

    DL Sisterson

    2006-10-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998.

  13. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 – September 30, 2009

    SciTech Connect (OSTI)

    DL Sisterson

    2009-10-15

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data then are sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by 1) individual data stream, site, and month for the current year and 2) site and fiscal year (FY) dating back to 1998.

  14. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - July 1 - September 30, 2008

    SciTech Connect (OSTI)

    DL Sisterson

    2008-09-30

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  15. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 – March 31, 2007

    SciTech Connect (OSTI)

    DL Sisterson

    2007-04-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  16. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2007

    SciTech Connect (OSTI)

    DL Sisterson

    2007-07-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  17. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - January 1 - March 31, 2008

    SciTech Connect (OSTI)

    Sisterson, DL

    2008-04-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  18. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 - March 31, 2009

    SciTech Connect (OSTI)

    DL Sisterson

    2009-03-17

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  19. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2007

    SciTech Connect (OSTI)

    DL Sisterson

    2008-01-08

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  20. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2008

    SciTech Connect (OSTI)

    DL Sisterson

    2008-06-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  1. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 – June 30, 2006

    SciTech Connect (OSTI)

    DL Sisterson

    2006-07-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year; and (2) site and fiscal year dating back to 1998.

  2. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - October 1 - December 31, 2008

    SciTech Connect (OSTI)

    Sisterson, DL

    2009-01-15

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  3. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Incorporating Correlations Between Optical Thickness and Direct Incident Radiation in a One-Dimensional Radiative Transfer Algorithm Kato, S., Hampton University Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting A one-dimensional radiative transfer algorithm that accounts for correlations between the optical thickness and the incident direct solar radiation is developed to compute the domain-averaged shortwave irradiance profile. It divides the direct irradiance into four

  4. DOE/SC-ARM-13-023 ARM Climate Research Facility ANNUAL REPORT - 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3-023 ARM Climate Research Facility ANNUAL REPORT - 2013 On the cover: From October 2012 through September 2013, the second ARM Mobile Facility (AMF2) was deployed on the container ship, Spirit, operated by Horizon Lines, for the Marine ARM GPCI Investigation of Clouds (MAGIC) field campaign. During approximately 20 round trips between Los Angeles, California, and Honolulu, Hawaii, AMF2 obtained continuous on-board measurements of cloud and precipitation, aerosols, and atmospheric radiation;

  5. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparisons of Measurements of Cloud Lower Boundaries by the MPL, BLC, MMCR, BBSS and AERI Han, D., and Ellingson, R.G., University of Maryland Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting The cloud lower boundary is an important factor in radiative transfer under various cloud conditions. Several ground-based instruments at the ARM CART Central Facility, including the micro pulse lidar (MPL), the Belfort laser ceilometer (BLC), and the MilliMeter Cloud profiling Radar

  6. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Comparison of Surface- and Satellite-Derived Cloud Fractions for the ARM SGP Long, C. N., and Ackerman, T. P., The Pennsylvania State University; Minnis, P., and Smith, W. L., National Aeronautics Space Administration-Langley Research Center Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Determinations of cloud fractions are essential for radiative energy balance studies. Only satellites afford the global coverage needed to extend these studies to global climate research.

  7. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pyrgeometer Calibrations at NREL Reda, I. and Stoffel, T., National Renewable Energy Laboratory Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The ARM Program has acquired a new Pyrgeometer Blackbody Calibration System to improve the data quality of longwave measurements from the SIRS, GNDRAD, and SKYRAD instrument platforms. Results of the acceptance tests and subsequent indoor and outdoor pyrgeometer calibrations at NREL's Solar Radiation Research Laboratory are

  8. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exploration of Statistical Angular Radiance Closure in Cloudy Skies Evans, K.F.(a) and Wiscombe, W.J.(b), University of Colorado (a), NASA/Goddard (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Most ARM cloudy sky radiation closure experiments have been performed with broadband fluxes. However, it is difficult to understand the causes of the inevitable discrepencies between the modeled and observed broadband fluxes in those closure experiments because the fluxes are

  9. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Aerosol IOP May 2003 Schwartz, S.E.(a), Ferrare R.(b), Ogren, J.E.(c), Daum, P.H.(a), Schmid, B.(d), and Ghan, S.(e), Brookhaven National Laboratory (a), NASA Langley Research Center (b), NOAA Climate Monitoring and Diagnostics Laboratory (c), Bay Area Environmental Research (d), Pacific Northwest National Laboratory (e) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Aerosol influences on shortwave radiation are substantial locally and globally. An aerosol optical

  10. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Pyrheliometer Comparisons - 2002 Reda, I. and Stoffel, T.L., National Renewable Energy Laboratory Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting All broadband shortwave radiometers used by the ARM Program are calibrated with absolute cavity radiometers traceable to the World Radiometric Reference (WRR). The WRR was developed and is maintained by the World Radiation Center under the auspices of the World Meteorological Organization. Each fall, the National Renewable

  11. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ice Cloud Microphysics Retrievals for the Broadband Radiative Heating Project Haynes, J.M., Stephens, G.L., and Leesman, K.J., Colorado State University Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting A new cloud microphysics retrieval is applied to cirrus observed by the Millimeter-Wavelength Cloud Radar over the ARM Southern Great Plains site. The retrieval has been developed in an optimal estimation framework which allows accurate characterization of the uncertainty of

  12. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence of High Ice Supersaturation in Cirrus Clouds Using ARM Raman Lidar Measurements Comstock, J.M., Ackerman, T.P., and Turner, D.D., Pacific Northwest National Laboratory Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Water vapor amounts in the upper troposphere are crucial to understanding the radiative feedback of cirrus clouds on the Earth’s climate. We use a unique, year-long dataset of water vapor mixing ratio inferred from ground-based Raman lidar

  13. Interpolation Uncertainties Across the ARM SGP Area

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interpolation Uncertainties Across the ARM SGP Area J. E. Christy, C. N. Long, and T. R. Shippert Pacific Northwest National Laboratory Richland, Washington Interpolation Grids Across the SGP Network Area The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program operates a network of surface radiation measurement sites across north central Oklahoma and south central Kansas. This Southern Great Plains (SGP) network consists of 21 sites unevenly spaced from 95.5 to 99.5

  14. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Initial Cloud Properties Derived from GMS Over the Tropical Western Pacific Doelling, D.R., Ho, S.-P., Smith, W.L., Jr., Analytical Services and Materials, Inc.; Minnis, P., National Aeronautics and Space Administration-Langley Research Center Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Satellite data are needed to provide measurements of the earth-atmosphere shortwave (SW) albedo, outgoing longwave radiation (OLR), and cloud and surface radiative properties for the

  15. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Assessment of the Change in Temperature Structure Associated with Carbonaceous Aerosols Penner, J.E. (a), Zhang, S.Y. (a), and Chuang, C.C. (b), University of Michigan (a), Lawrence Livermore National Laboratory (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Carbonaceous aerosols from anthropogenic activities can act to both scatter and absorb solar radiation. The absorption of solar radiation acts to heat the atmospheric layer containing the aerosol. If sufficient

  16. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Monte Carlo Independent Column Approximation (McICA) Barker, H.W.(a), Pincus, R.(b), and Morcrette, J.-J.(c), Meteorological Service of Canada (a), NOAA (b), ECMWF (c) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Within the existing paradigm of modelling radiative transfer for large-scale atmospheric models (LSAMs), assumptions about the nature of subgrid-scale cloud structure are woven inextricably into the fabric of the radiative transfer solver. This makes for

  17. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1-September 30, 2010 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

  18. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1-December 31, 2010 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

  19. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1-March 31, 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

  20. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1-June 30, 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

  1. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1-September 30, 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

  2. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1-December 31, 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

  3. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report January 1-March 31, 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that

  4. ARM Airborne Carbon Measurements (ARM-ACME) and ARM-ACME 2.5 Final Campaign Reports

    SciTech Connect (OSTI)

    Biraud, S. C.; Tom, M. S.; Sweeney, C.

    2016-01-01

    We report on a 5-year multi-institution and multi-agency airborne study of atmospheric composition and carbon cycling at the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) site, with scientific objectives that are central to the carbon-cycle and radiative-forcing goals of the U.S. Global Change Research Program and the North American Carbon Program (NACP). The goal of these measurements is to improve understanding of 1) the carbon exchange of the Atmospheric Radiation Measurement (ARM) SGP region; 2) how CO2 and associated water and energy fluxes influence radiative-forcing, convective processes, and CO2 concentrations over the ARM SGP region, and 3) how greenhouse gases are transported on continental scales.

  5. ARM: GRAMS: calibration information for the total direct diffuse...

    Office of Scientific and Technical Information (OSTI)

    OSTI Identifier: 1025194 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Dataset Data Type: Numeric Data Research Org: Atmospheric Radiation Measurement (ARM) Archive, Oak ...

  6. ARM - Events Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 9, 2008 [Events] Preliminary Agenda Now Available for AVP Instrumentation Workshop Bookmark and Share A preliminary agenda is now available for the upcoming 3-day workshop on aircraft instrumentation sponsored by the Department of Energy's Atmospheric Radiation Measurement (ARM) Aerial Vehicles Program (AVP). The workshop will be hosted at the University of Illinois in Urbana-Champaign, Illinois, 14-16 of October 2008. To learn more about the workshop, see the August 13 post. Tuesday 14

  7. ARM - Events Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Call for Abstracts for the IAMAS General Assembly 2009 Bookmark and Share The International Association of Meteorology and Atmospheric Sciences (IAMAS) General Assembly 2009 will be held in Montreal, Canada, July 19-29, 2009. This will be a joint assembly for the IAMAS, International Association for the Physical Sciences of the Oceans (IAPSO), and International Association of Cryospheric Sciences (IACS). Of interest to the ARM community, the IAMAS Session M14, 3D Radiative Transfer in the

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 23, 2008 [Facility News] FY 2009 ARM Science Solicitation Announced Bookmark and Share DOE's Office of Biological and Environmental Research (BER) is now accepting applications to develop innovative methods for observational data analysis and utilize the resulting knowledge from such analyses to improve cloud parameterizations. The intent is to improve the modeling of cloud properties and processes and their impact on the atmospheric radiation balance. Selected research would be part of

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 21, 2008 [Facility News] Request for Small Aircraft Preproposals Bookmark and Share Requests are now being accepted for routine use of small aircraft, like this Cessna 206, in FY 2008-2010 at the Southern Great Plains site. Note: The request for proposals is now closed. The call for proposals for FY 2011 will open in the late fall. Preproposals are now being accepted for scientific research at the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research

  10. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1–March 31, 2011

    SciTech Connect (OSTI)

    Sisterson, DL

    2011-04-11

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Data Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Data Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  11. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1–June 30, 2011

    SciTech Connect (OSTI)

    Voyles, JW

    2011-07-25

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  12. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1–December 31, 2009

    SciTech Connect (OSTI)

    DL Sisterson

    2010-01-15

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Data Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  13. Application of Stochastic Radiative Transfer Theory to the ARM Cloud-Radiative Parameterization Problem

    SciTech Connect (OSTI)

    Veron, Dana E

    2009-03-12

    This project had two primary goals: 1) development of stochastic radiative transfer as a parameterization that could be employed in an AGCM environment, and 2) exploration of the stochastic approach as a means for representing shortwave radiative transfer through mixed-phase layer clouds. To achieve these goals, an analysis of the performance of the stochastic approach was performed, a simple stochastic cloud-radiation parameterization for an AGCM was developed and tested, a statistical description of Arctic mixed phase clouds was developed and the appropriateness of stochastic approach for representing radiative transfer through mixed-phase clouds was assessed. Significant progress has been made in all of these areas and is detailed below.

  14. Atmospheric Radiation Measurements Program facilities newsletter, November 1999

    SciTech Connect (OSTI)

    Sisterson, D.L.

    1999-12-07

    This newletter begins a discussion on Lightning--Natures's light show. This issue explains what lightning is. Fortunately, lightning strikes on ARM's instruments occurs infrequently. Next month's issue will explain lightning safety and how ARM has dealt with lightning safety.

  15. Development of Aerosol Models for Radiative Flux Calculations at ARM Sites

    SciTech Connect (OSTI)

    Ogren, John A.; Dutton, Ellsworth G.; McComiskey, Allison C.

    2006-09-30

    The direct radiative forcing (DRF) of aerosols, the change in net radiative flux due to aerosols in non-cloudy conditions, is an essential quantity for understanding the human impact on climate change. Our work has addressed several key issues that determine the accuracy, and identify the uncertainty, with which aerosol DRF can be modeled. These issues include the accuracy of several radiative transfer models when compared to measurements and to each other in a highly controlled closure study using data from the ARM 2003 Aerosol IOP. The primary focus of our work has been to determine an accurate approach to assigning aerosol properties appropriate for modeling over averaged periods of time and space that represent the observed regional variability of these properties. We have also undertaken a comprehensive analysis of the aerosol properties that contribute most to uncertainty in modeling aerosol DRF, and under what conditions they contribute the most uncertainty. Quantification of these issues enables the community to better state accuracies of radiative forcing calculations and to concentrate efforts in areas that will decrease uncertainties in these calculations in the future.

  16. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shortwave Spectrometer Quality Assessment Griffin, J., Pacific Northwest National Laboratory; Fisk, M., Sowle, D., and Terry, D., Mission Research Corporation Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting Initial plans and efforts for data quality assessment on the shortwave spectrometer recently installed at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site are described

  17. ARM - Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 1, 2009 [Facility News] Mobile Facility Begins Marine Cloud Study in the Azores Bookmark and Share Located next to the airport on Graciosa Island, the ARM Mobile Facility's comprehensive and sophisticated instrument suite will obtain atmospheric measurements from the marine boundary layer. Located next to the airport on Graciosa Island, the ARM Mobile Facility's comprehensive and sophisticated instrument suite will obtain atmospheric measurements from the marine boundary layer. Extended

  18. Improvement in Clouds and the Earth's Radiant Energy System/Surface and Atmosphere Radiation Budget Dust Aerosol Properties, Effects on Surface Validation of Clouds and Radiative Swath

    SciTech Connect (OSTI)

    Rutan, D.; Rose, F.; Charlock, T.P.

    2005-03-18

    at the Atmospheric Radiation Measurement (ARM), Southern Great Plains (SGP) central facility.

  19. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fair - Weather Cumuli Climatology at the TWP ARM Site Kollias, P. and Albrecht B.A., University of Miami Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Fair-weather cumuli are fundamental in regulating the vertical structure of water vapor and entropy in the lowest 2 km of the Earths atmosphere over vast areas of the oceans. Over two years of data from the mm-wavelength cloud radar, at the Nauru (TWP-ARM) site, are analyzed and a statistical description of the field of fair

  20. ARM - What are Greenhouse Gases?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans What are Greenhouse Gases? Carbon Dioxide Methane Gas Oxides of Nitrogen Halocarbons Ozone Water Vapor Greenhouse gases are atmospheric gases that trap infrared radiation emitted from the earth, lower atmosphere, or clouds or aerosols and, as

  1. Improving Convection Parameterization Using ARM Observations and NCAR Community Atmosphere Model

    SciTech Connect (OSTI)

    Zhang, Guang J

    2013-07-29

    Highlight of Accomplishments: We made significant contribution to the ASR program in this funding cycle by better representing convective processes in GCMs based on knowledge gained from analysis of ARM/ASR observations. In addition, our work led to a much improved understanding of the interaction among aerosol, convection, clouds and climate in GCMs.

  2. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Role of Cloud Scale Resolution on Radiative Properties of Oceanic Low-Level Clouds Kassianov, E.I.(a), Ackerman, T.P.(a), and Kollias P.(b), Pacific Northwest National Laboratory (a), University of Miami (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Millimeter radars have been commonly used to examine the spatial/temporal evolution of clouds. To asses the impact of the cloud scale resolution on the solar radiative transfer, two sets of radiative experiments were

  3. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Radiative Forcing of the Arctic Surface: The Influence of Cloud Properties, Surface Albedo, and Solar Zenith Angle Shupe, M.D. and Intrieri, J.M., NOAA - Environmental Technology Laboratory Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting An annual cycle of cloud and radiation measurements made as part of the Surface Heat Budget of the Arctic program are utilized to determine which properties of Arctic clouds control the surface radiation balance. Surface cloud

  4. Optical remote diagnostics of atmospheric propagating beams of ionizing radiation

    DOE Patents [OSTI]

    Karl, Jr., Robert R. (Los Alamos, NM)

    1990-01-01

    Data is obtained for use in diagnosing the characteristics of a beam of ionizing radiation, such as charged particle beams, neutral particle beams, and gamma ray beams. In one embodiment the beam is emitted through the atmosphere and produces nitrogen fluorescence during passage through air. The nitrogen fluorescence is detected along the beam path to provide an intensity from which various beam characteristics can be calculated from known tabulations. Optical detecting equipment is preferably located orthogonal to the beam path at a distance effective to include the entire beam path in the equipment field of view.

  5. ARM - Arctic Meetings of Interest

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Information Collaborations Meetings of Interest Data Sources ARM Data Discovery Browser NSA Data Past ARM NSA campaigns NCARUCAR National Oceanic and Atmospheric ...

  6. Improved ARM-SGP TOA OLR Fluxes from GOES-8 IR Radiances Based on CERES Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM-SGP TOA OLR Fluxes from GOES-8 IR Radiances Based on CERES Data D. R. Doelling and M. M. Khaiyer Analytical Services and Materials, Inc. Hampton, Virginia P. Minnis National Aeronautics and Space Administration Langley Research Center Hampton, Virginia Introduction The radiation budget at the top of the atmosphere (TOA) is a quantity of fundamental importance to the Atmospheric Radiation Measurement (ARM) Program. Thus, it is necessary to measure the radiation budget components, broadband

  7. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Compact Millimeter-Wave Radar for UAV Applications Bambha, R., Carswell, J., and Swift, C., University of Massachusetts Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Assembly of the Compact Millimeter-wave Radar (CMR) has been completed at the University of Massachusetts, and ground-based cloud measurements have been acquired. The CMR is a 95-GHz solid-state radar intended for airborne cloud measurements. Funding for the project was provided by the Atmospheric Radiation

  8. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for Aerosol Effects on AERI Clear-Sky Radiance at the SGP Ma, Y., and Ellingson, R.G., University of Maryland Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Atmospheric Emitted Radiance Interferometer (AERI) Line-by-Line Radiative Transfer Model (LBLRTM) Quality Measurement Experiment (QME) 10-micron window residuals have been examined relative to the Multifilter Rotating Shadowband Radiometer (MFRSR) 0.87-micron optical depth for clear-sky periods during

  9. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combination of Temperature and Humidity Profiles from a Scanning 5-mm Radiometer and MWR-Scaled Radiosondes During the 1999 Winter NSA/AAO Radiometer Experiment Westwater, E.R.(a), Leuski, V.(a), and Racette, P.(b), CIRES, University of Colorado/NOAA-ETL (a), NASA/ Goddard Space Flight Center (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting A scanning 5-mm-wavelength radiometer was deployed during an Intensive Operating Periods (IOP) at the Atmospheric Radiation

  10. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Hyperspectral Imaging Interferometer for Measurements of Surface Albedo Minnett, P.J.(a) and Sellar, R.G.(b), Rosenstiel School of Marine and Atmospheric Sciences, University of Miami (a), Florida Space Institute (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Uncertainties in the bidirectional reflection coefficient of the surface is a major component of the errors in the measurements of the surface radiation budget. A new instrument will be presented that

  11. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Semianalytic Technique to Speed Up Successive Order of Scattering Model for Optically Thick Media Duan, M. and Min, Q., Atmospheric Sciences Research Center, State University of New York Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting A semianalytic technique has been developed to speed up integration of radiative transfer over optically thick media for the successive order of scattering method. Based on characteristics of internal distribution of scattering intensity,

  12. The ARM unpiloted aerospace vehicle (UAV) program

    SciTech Connect (OSTI)

    Sowle, D.

    1995-09-01

    Unmanned aerospace vehicles (UAVs) are an important complement to the DOE`s Atmospheric Radiation Measurement (ARM) Program. ARM is primarily a ground-based program designed to extensively quantify the radiometric and meteorological properties of an atmospheric column. There is a need for airborne measurements of radiative profiles, especially flux at the tropopause, cloud properties, and upper troposphere water vapor. There is also a need for multi-day measurements at the tropopause; for example, in the tropics, at 20 km for over 24 hours. UAVs offer the greatest potential for long endurance at high altitudes and may be less expensive than piloted flights. 2 figs.

  13. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physical Retrieval of PWV and CLW with MonoRTM Using ARM MWR Data Clough, S.A.(a), Cady-Pereira, K.(a), Boukabara, S.(a), and Liljegren, J.C.(b), Atmospheric and Environmental Research, Inc. (a), Argonne National Laboratory (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The newly developed radiative transfer model, MonoRTM, has been utilized as the forward model in a physical retrieval method to obtain Precipitable Water Vapor (PWV) and Cloud Liquid Water (CLW) using

  14. ARM Operations and Engineering Procedure Mobile Facility Site Startup

    SciTech Connect (OSTI)

    Voyles, Jimmy W

    2015-05-01

    This procedure exists to define the key milestones, necessary steps, and process rules required to commission and operate an Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF), with a specific focus toward on-time product delivery to the ARM Data Archive. The overall objective is to have the physical infrastructure, networking and communications, and instrument calibration, grooming, and alignment (CG&A) completed with data products available from the ARM Data Archive by the Operational Start Date milestone.

  15. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact of Clouds on the Atmospheric Absorption of SW - Comparing Theory and Observation at SGP Rose, F.G. (a), Charlock, T.P. (b), and Rutan, D.A. (a), Analytical Services & Materials Inc. (a), NASA Langley Research Center (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting This group, and also Li and Trishchenko, have earlier determined the cloud forcing to the atmospheric absorption of SW by combining surface data at SGP with CERES at TOA. Detailed analysis of our

  16. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Variations in the Ratio of IR Window Radiance to Microwave Water Path Observed Under Cloudless Convection Platt, C.M.(a) and Austin, R.T.(b), Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The measurement of the radiance of cirrus (and other) clouds at atmospheric window 8-13 micron wavelengths requires a correction for the water vapor radiance and transmittance below the clouds.

  17. LASSO: Tying ARM Data and LES Modeling Together to Improve Climate Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LASSO: Tying ARM Data and LES Modeling Together to Improve Climate Science New Routine Modeling The pilot modeling project, called LASSO-the LES ARM Symbiotic Simulation and Observation workflow-is laying the groundwork to produce routine LES modeling at the ARM Southern Great Plains (SGP) megasite starting in 2017. The initial LASSO implementation will target shallow clouds and will later expand to other phenomena and ARM sites. A key to creating the next-generation Atmospheric Radiation

  18. DOE/SC-ARM-15-027 Radon Measurements of Atmospheric Mixing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Atmospheric Mixing (RAMIX) 2006-2014 Final Campaign Summary ML Fischer SC Biraud A Hirsch May 2015 DISCLAIMER This report was prepared as an account of work sponsored by the...

  19. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Science Team Meeting 1992 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Proceedings of the Third Atmospheric Radiation Measurement (ARM) Science Team Meeting CONF-9303112, March 1-4,1993 Norman, Oklahoma For proper viewing, many of these proceedings should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. History and Status of the ARM Program - March

  20. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Science Team Meeting 1994 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Proceedings of the Fourth Atmospheric Radiation Measurement (ARM) Science Team Meeting DOE CONF-940277, March 1994 Charleston, South Carolina For proper viewing, many of these proceedings should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. History and Status of the ARM Program -