National Library of Energy BETA

Sample records for arkansas power electronics

  1. Arkansas

    Gasoline and Diesel Fuel Update (EIA)

    Arkansas

  2. Arkansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Arkansas Nuclear One Unit 1, Unit 2","1,835","15,023",100.0,"Entergy Arkansas Inc" "1 Plant 2 Reactors","1,835","15,023",100.0

  3. Alternative Fuels Data Center: CNG Powers Law Enforcement in Arkansas

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    CNG Powers Law Enforcement in Arkansas to someone by E-mail Share Alternative Fuels Data Center: CNG Powers Law Enforcement in Arkansas on Facebook Tweet about Alternative Fuels Data Center: CNG Powers Law Enforcement in Arkansas on Twitter Bookmark Alternative Fuels Data Center: CNG Powers Law Enforcement in Arkansas on Google Bookmark Alternative Fuels Data Center: CNG Powers Law Enforcement in Arkansas on Delicious Rank Alternative Fuels Data Center: CNG Powers Law Enforcement in Arkansas on

  4. Alternative Fuels Data Center: Arkansas Launches Natural Gas-Powered Buses

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and Refueling Station Arkansas Launches Natural Gas-Powered Buses and Refueling Station to someone by E-mail Share Alternative Fuels Data Center: Arkansas Launches Natural Gas-Powered Buses and Refueling Station on Facebook Tweet about Alternative Fuels Data Center: Arkansas Launches Natural Gas-Powered Buses and Refueling Station on Twitter Bookmark Alternative Fuels Data Center: Arkansas Launches Natural Gas-Powered Buses and Refueling Station on Google Bookmark Alternative Fuels Data

  5. Arkansas - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas Arkansas

  6. Arkansas - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas Arkansas

  7. Arkansas - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas Arkansas

  8. Microsoft PowerPoint - Arkansa River System Operation.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Serving The Army and the Nation Tulsa District Tulsa District Tulsa District Arkansas River System Arkansas River System Operation Operation One Corps Serving The Army and the Nation Tulsa District Overview Overview * * Tulsa District Tulsa District * * Authorized Purposes Authorized Purposes * * Types of projects and storage zones Types of projects and storage zones * * Flood damage risk reduction operation. Flood damage risk reduction operation. * * Arkansas River System Operation Arkansas

  9. Southwestern Electric Power Co (Arkansas) | Open Energy Information

    Open Energy Info (EERE)

    Arkansas Phone Number: 1-888-216-3523 Website: www.swepco.com Twitter: @SWEPCoNews Outage Hotline: 1-888-216-3523 Outage Map: www.swepco.comoutagesoutageM References: EIA...

  10. Washington County, Arkansas: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Farmington, Arkansas Fayetteville, Arkansas Goshen, Arkansas Greenland, Arkansas Johnson, Arkansas Lincoln, Arkansas Prairie Grove, Arkansas Springdale, Arkansas Tontitown,...

  11. Sebastian County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Arkansas Barling, Arkansas Bonanza, Arkansas Central City, Arkansas Fort Smith, Arkansas Greenwood, Arkansas Hackett, Arkansas Hartford, Arkansas Huntington,...

  12. Crittenden County, Arkansas: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Gilmore, Arkansas Horseshoe Lake, Arkansas Jennette, Arkansas Jericho, Arkansas Marion, Arkansas Sunset, Arkansas Turrell, Arkansas West Memphis, Arkansas Retrieved from...

  13. Nevada County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Arkansas Bluff City, Arkansas Bodcaw, Arkansas Cale, Arkansas Emmet, Arkansas Prescott, Arkansas Rosston, Arkansas Willisville, Arkansas Retrieved from "http:...

  14. Power Electronics Block Set

    Energy Science and Technology Software Center (OSTI)

    2008-12-31

    The software consists of code that will allow rapid prototyping of advanced power electronics for use in renewable energy systems.

  15. White County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arkansas Kensett, Arkansas Letona, Arkansas McRae, Arkansas Pangburn, Arkansas Rose Bud, Arkansas Russell, Arkansas Searcy, Arkansas West Point, Arkansas Retrieved from...

  16. Craighead County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Black Oak, Arkansas Bono, Arkansas Brookland, Arkansas Caraway, Arkansas Cash, Arkansas Egypt, Arkansas Jonesboro, Arkansas Lake City, Arkansas Monette, Arkansas Retrieved from...

  17. Wide Bandgap Power Electronics

    Broader source: Energy.gov (indexed) [DOE]

    Wide Bandgap Power Electronics 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 1 4 2. Technology Assessment and Potential ................................................................................................. 3 5 2.1 Performance advances in SiC ........................................................................................................ 3 6 2.2

  18. Power Electronics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Integration » Power Electronics Power Electronics PowerElectronics graphic.png Power electronics, critical components in PV systems and the larger electric grid, are used to convert electricity from one form to another and deliver it from generation to end consumption. The objective of the Power Electronics activity area is to develop solutions that leverage transformative power electronics technologies-including wide band gap semiconductors, advanced magnetics, thin film capacitors,

  19. Lawrence County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Powhatan, Arkansas Ravenden, Arkansas Sedgwick, Arkansas Smithville, Arkansas Strawberry, Arkansas Walnut Ridge, Arkansas Retrieved from "http:en.openei.orgw...

  20. Boone County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Bellefonte, Arkansas Bergman, Arkansas Diamond City, Arkansas Everton, Arkansas Harrison, Arkansas Lead Hill, Arkansas Omaha, Arkansas South Lead Hill, Arkansas Valley...

  1. Perry County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Subtype A. Places in Perry County, Arkansas Adona, Arkansas Bigelow, Arkansas Casa, Arkansas Fourche, Arkansas Houston, Arkansas Perry, Arkansas Perryville, Arkansas...

  2. Carroll County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arkansas Alpena, Arkansas Beaver, Arkansas Berryville, Arkansas Blue Eye, Arkansas Eureka Springs, Arkansas Green Forest, Arkansas Oak Grove, Arkansas Retrieved from "http:...

  3. ARKANSAS RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Arkansas has substantial natural resources, including gas, oil, wind, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down ...

  4. Power Electronics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics Power Electronics Power electronics (PE) play a critical role in transforming the current electric grid into the next-generation grid. PE enable utilities to deliver power to their customers effectively while providing increased reliability, security, and flexibility to the electric power system. While approximately 30% of all power generation utilize PE somewhere between the point of generation and its end use today, by 2030 it is expected that up to 80% of generated

  5. Energy Storage & Power Electronics 2008 Peer Review - Power Electronics

    Office of Environmental Management (EM)

    (PE) Systems Presentations | Department of Energy Power Electronics (PE) Systems Presentations Energy Storage & Power Electronics 2008 Peer Review - Power Electronics (PE) Systems Presentations The 2008 Peer Review Meeting for the DOE Energy Storage and Power Electronics Program (ESPE) was held in Washington DC on Sept. 29-30, 2008. Current and completed program projects were presented and reviewed by a group of industry professionals. The 2008 agenda was composed of 28 projects that

  6. Poinsett County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Subtype A. Places in Poinsett County, Arkansas Fisher, Arkansas Harrisburg, Arkansas Lepanto, Arkansas Marked Tree, Arkansas Trumann, Arkansas Tyronza, Arkansas Waldenburg,...

  7. Searcy County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arkansas Gilbert, Arkansas Leslie, Arkansas Marshall, Arkansas Pindall, Arkansas St. Joe, Arkansas Retrieved from "http:en.openei.orgwindex.php?titleSearcyCounty,Arkansa...

  8. Arkansas Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arkansas Recovery Act State Memo Arkansas Recovery Act State Memo Arkansas has substantial natural resources, including gas, oil, wind, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Arkansas are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to advanced battery manufacturing and renewable energy.

  9. FACTSHEET: Next Generation Power Electronics Manufacturing Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute January 15, 2014 - ...

  10. Southwest Arkansas E C C (Arkansas) | Open Energy Information

    Open Energy Info (EERE)

    Arkansas E C C (Arkansas) Jump to: navigation, search Name: Southwest Arkansas E C C Place: Arkansas Phone Number: (888) 265-2743 Website: www.swrea.com Twitter: @SWAECC Facebook:...

  11. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronic Thermal System Performance and Integration Integrated Power Module Cooling Vehicle Technologies Office: 2009 Advanced Power Electronics R&D Annual Progress Report

  12. Izard County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Guion, Arkansas Horseshoe Bend, Arkansas Melbourne, Arkansas Mount Pleasant, Arkansas Oxford, Arkansas Pineville, Arkansas Retrieved from "http:en.openei.orgw...

  13. Lonoke County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Lonoke County, Arkansas Allport, Arkansas Austin, Arkansas Cabot, Arkansas Carlisle, Arkansas Coy, Arkansas England,...

  14. Pope County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 3 Climate Zone Subtype A. Places in Pope County, Arkansas Atkins, Arkansas Dover, Arkansas Hector, Arkansas London, Arkansas Pottsville, Arkansas...

  15. Crawford County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Crawford County, Arkansas Alma, Arkansas Cedarville, Arkansas Chester, Arkansas Dyer, Arkansas Kibler, Arkansas...

  16. Woodruff County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 3 Climate Zone Subtype A. Places in Woodruff County, Arkansas Augusta, Arkansas Cotton Plant, Arkansas Hunter, Arkansas McCrory, Arkansas Patterson, Arkansas Retrieved from...

  17. Benton County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Retail Energy, LLC (Texas) Places in Benton County, Arkansas Avoca, Arkansas Bella Vista, Arkansas Bentonville, Arkansas Bethel Heights, Arkansas Cave Springs, Arkansas...

  18. Union County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 3 Climate Zone Subtype A. Places in Union County, Arkansas Calion, Arkansas El Dorado, Arkansas Felsenthal, Arkansas Huttig, Arkansas Junction City, Arkansas Norphlet,...

  19. Randolph County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 3 Climate Zone Subtype A. Places in Randolph County, Arkansas Biggers, Arkansas Maynard, Arkansas O'Kean, Arkansas Pocahontas, Arkansas Ravenden Springs, Arkansas Reyno,...

  20. Power electronics cooling apparatus

    DOE Patents [OSTI]

    Sanger, Philip Albert (Monroeville, PA); Lindberg, Frank A. (Baltimore, MD); Garcen, Walter (Glen Burnie, MD)

    2000-01-01

    A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

  1. Arkansas's 2nd congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Registered Energy Companies in Arkansas's 2nd congressional district North American Green Power,LLC Patriot BioFuels Solar Energy Squared, LLC Registered Financial...

  2. Power Electronics Thermal Control (Presentation)

    SciTech Connect (OSTI)

    Narumanchi, S.

    2010-05-05

    Thermal management plays an important part in the cost of electric drives in terms of power electronics packaging. Very promising results have been obtained by using microporous coatings and skived surfaces in conjunction with single-phase and two-phase flows. Sintered materials and thermoplastics with embedded fibers show significant promise as thermal interface materials, or TIMs. Appropriate cooling technologies depend on the power electronics package application and reliability.

  3. Materials Compatibility of Power Electronics | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Materials Compatibility of Power Electronics Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric Machinery R&D Annual Progress ...

  4. Vehicle Technologies Office: 2008 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electric Machinery R&D Annual Progress Report Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric Machinery R&D Annual Progress Report ...

  5. Vehicle Technologies Office: 2012 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Advanced Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2012 Advanced Power Electronics and Electric Motors R&D Annual Progress ...

  6. Vehicle Technologies Office: 2011 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2011 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The ...

  7. Advanced Power Electronics and Electric Machines | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Machines Advanced Power Electronics and Electric Machines 2009 DOE Hydrogen Program and ... More Documents & Publications Advnaced Power Electronics and Electric Machines (APEEM) R&D ...

  8. Vehicle Technologies Office: 2013 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2013 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The ...

  9. Vehicle Technologies Office: 2009 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics R&D Annual Progress Report Vehicle Technologies Office: 2009 Advanced Power Electronics R&D Annual Progress Report Annual report focusing on understanding and ...

  10. Opportunities for Wide Bandgap Semiconductor Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen ...

  11. NREL: Transportation Research - Power Electronics and Electric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    subsystem at the appropriate time. Examples of power electronics components include inverters, converters, and chargers. Power electronics also determine the exact nature and...

  12. Low inductance power electronics assembly

    DOE Patents [OSTI]

    Herron, Nicholas Hayden; Mann, Brooks S.; Korich, Mark D.; Chou, Cindy; Tang, David; Carlson, Douglas S.; Barry, Alan L.

    2012-10-02

    A power electronics assembly is provided. A first support member includes a first plurality of conductors. A first plurality of power switching devices are coupled to the first support member. A first capacitor is coupled to the first support member. A second support member includes a second plurality of conductors. A second plurality of power switching devices are coupled to the second support member. A second capacitor is coupled to the second support member. The first and second pluralities of conductors, the first and second pluralities of power switching devices, and the first and second capacitors are electrically connected such that the first plurality of power switching devices is connected in parallel with the first capacitor and the second capacitor and the second plurality of power switching devices is connected in parallel with the second capacitor and the first capacitor.

  13. Direct cooled power electronics substrate

    DOE Patents [OSTI]

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W. [Kingston, TN; Lowe, Kirk T. [Knoxville, TN

    2010-09-14

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  14. Fulton County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 4 Climate Zone Subtype A. Places in Fulton County, Arkansas Ash Flat, Arkansas Cherokee Village, Arkansas Hardy, Arkansas Horseshoe Bend, Arkansas...

  15. Sharp County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 3 Climate Zone Subtype A. Places in Sharp County, Arkansas Ash Flat, Arkansas Cave City, Arkansas Cherokee Village, Arkansas Evening Shade, Arkansas...

  16. Cross County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    A. Places in Cross County, Arkansas Cherry Valley, Arkansas Hickory Ridge, Arkansas Parkin, Arkansas Wynne, Arkansas Retrieved from "http:en.openei.orgwindex.php?titleCross...

  17. Lafayette County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Lafayette County, Arkansas Bradley, Arkansas Buckner, Arkansas Lewisville, Arkansas Stamps, Arkansas Retrieved from...

  18. Jefferson County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Pine Bluff, Arkansas Redfield, Arkansas Sherrill, Arkansas Wabbaseka, Arkansas White Hall, Arkansas Retrieved from "http:en.openei.orgwindex.php?titleJeffersonCounty,Arka...

  19. NREL: Transportation Research - Power Electronics Packaging Reliability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Packaging Reliability A photo of a piece of power electronics testing equipment. NREL power electronics packaging reliability research investigates the performance and reliability of emerging interconnection, interface, and packaging materials. Findings help improve reliability and durability of emerging technologies. Photo by Dennis Schroeder, NREL Power electronics packaging around a semiconductor switching device determines the electrical, thermal, and mechanical properties of a power

  20. Power Electronics Reliability Kick Off Meeting … Silicon Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics Reliability Analysis Annual DOE Peer ... & Customers * Complex Systems Modeling & ... * Data is required to do basic reliability analysis ...

  1. Energy Storage & Power Electronics 2008 Peer Review - Power Electronic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ESPE 2008 Peer Review - Silicon Carbide Research for Reliable Electric Power - Alan ... High Temperature, High Voltage Fully Integrated Gate Driver Circuit Energy Storage & Power ...

  2. Arkansas/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    Distributed Wind Energy Association Arkansas Wind Resources Arkansas Energy Office: Wind AWEA State Wind Energy Statistics: Arkansas Southeastern Wind Coalition...

  3. Next-Generation Power Electronics: Reducing Energy Waste and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future January 15, 2014 - ...

  4. NREL: Transportation Research - Power Electronics Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Electronics Thermal Management A photo of water boiling in liquid cooling lab equipment. Power electronics thermal management research aims to help lower the cost and improve the performance of electric-drive vehicles. Photo by Dennis Schroeder, NREL NREL investigates and develops thermal management strategies for power electronics systems that use wide-bandgap technology, which enables the development of devices that are smaller than those based on other materials, demonstrating

  5. FACTSHEET: Next Generation Power Electronics Manufacturing Innovation

    Office of Environmental Management (EM)

    Institute | Department of Energy Next Generation Power Electronics Manufacturing Innovation Institute FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute January 15, 2014 - 9:20am Addthis The Obama Administration today announces the selection of North Carolina State University to lead a public-private manufacturing innovation institute for next generation power electronics. Supported by a $70 million Energy Department investment over five years as well as a

  6. Hempstead County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    3 Climate Zone Subtype A. Utility Companies in Hempstead County, Arkansas City of Hope, Arkansas (Utility Company) Places in Hempstead County, Arkansas Blevins, Arkansas...

  7. Madison County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    A. Places in Madison County, Arkansas Hindsville, Arkansas Huntsville, Arkansas St. Paul, Arkansas Retrieved from "http:en.openei.orgwindex.php?titleMadisonCounty,Arkans...

  8. City of Augusta, Arkansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Augusta Light & Power Place: Arkansas Phone Number: 870-347-2041 Outage Hotline: 870-347-2041 References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form 861 Data...

  9. Micro Power Electronics Inc | Open Energy Information

    Open Energy Info (EERE)

    Micro Power Electronics Inc Place: Hillsboro, Oregon Zip: 97124-7165 Product: Leading battery system integrator. Coordinates: 43.651735, -90.341144 Show Map Loading map......

  10. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Motor Thermal Control Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Integrated Vehicle Thermal Management

  11. Vehicle Technologies Office: 2010 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research is focused on developing revolutionary new power electronics (PE) and electric ... Temperature, High Voltage Fully Integrated Gate Driver Circuit High Temperature, High ...

  12. Arkansas Natural Gas Processed in Arkansas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    in Arkansas (Million Cubic Feet) Arkansas Natural Gas Processed in Arkansas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 5,611 6,872 7,781 8,058 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Processed Arkansas-Arkansas Natural Gas Plant Processing

  13. Arkansas Natural Gas Plant Liquids Production Extracted in Arkansas

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Extracted in Arkansas (Million Cubic Feet) Arkansas Natural Gas Plant Liquids Production Extracted in Arkansas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 582 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Arkansas-Arkansas Natural

  14. Power electronics substrate for direct substrate cooling

    DOE Patents [OSTI]

    Le, Khiet (Mission Viejo, CA); Ward, Terence G. (Redondo Beach, CA); Mann, Brooks S. (Redondo Beach, CA); Yankoski, Edward P. (Corona, CA); Smith, Gregory S. (Woodland Hills, CA)

    2012-05-01

    Systems and apparatus are provided for power electronics substrates adapted for direct substrate cooling. A power electronics substrate comprises a first surface configured to have electrical circuitry disposed thereon, a second surface, and a plurality of physical features on the second surface. The physical features are configured to promote a turbulent boundary layer in a coolant impinged upon the second surface.

  15. Advanced Power Electronics and Electric Motors Annual Report -- 2013

    SciTech Connect (OSTI)

    Narumanchi, S.; Bennion, K.; DeVoto, D.; Moreno, G.; Rugh, J.; Waye, S.

    2015-01-01

    This report describes the research into advanced liquid cooling, integrated power module cooling, high temperature air cooled power electronics, two-phase cooling for power electronics, and electric motor thermal management by NREL's Power Electronics group in FY13.

  16. Power Electronics and Thermal Management Breakout Session

    Broader source: Energy.gov [DOE]

    Presentation given at the EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare, Chicago, IL.

  17. Direct Cooled Power Electronics Substrate | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cooled Power Electronics Substrate Direct Cooled Power Electronics Substrate 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon apep_09_wiles.pdf More Documents & Publications Direct Water-Cooled Power Electronics Substrate Packaging Environmental Effects on Power Electronic Devices Environmental Effects on Power Electronic Devices

  18. PLZT film capacitors for power electronics and energy storage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PLZT film capacitors for power electronics and energy storage applications Title PLZT film capacitors for power electronics and energy storage applications Publication Type Journal...

  19. SkyPower Pekon Electronics JV | Open Energy Information

    Open Energy Info (EERE)

    search Name: SkyPower-Pekon Electronics JV Place: India Sector: Wind energy Product: Joint venture for development of Indian wind farms. References: SkyPower-Pekon Electronics...

  20. Fact Sheet: Award-Winning Silicon Carbide Power Electronics ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Award-Winning Silicon Carbide Power Electronics (October 2012) Fact Sheet: Award-Winning Silicon Carbide Power Electronics (October 2012) Operating at high temperatures and with ...

  1. Advnaced Power Electronics and Electric Machines (APEEM) R&D...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advnaced Power Electronics and Electric Machines (APEEM) R&D Program Overview Advnaced Power Electronics and Electric Machines (APEEM) R&D Program Overview 2010 DOE Vehicle ...

  2. Thermal Stress and Reliability for Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Power Electronic Thermal System Performance and Integration ...

  3. Improved Organics for Power Electronics and Electric Motors ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Improved Organics for Power Electronics and Electric Motors Thermally Conductive Organic Dielectrics for Power Electronics and Electric Motors John ...

  4. AMO's New Institute Focused on Wide Bandgap Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Focused on Wide Bandgap Power Electronics Manufacturing AMO's New Institute Focused on Wide Bandgap Power Electronics Manufacturing January 15, 2014 - 11:34am Addthis The Next ...

  5. Vehicle Technologies Office: Power Electronics Research and Developmen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics Research and Development Vehicle Technologies Office: Power Electronics Research and Development To reach the EV Everywhere Grand Challenge goal, the Vehicle ...

  6. Energy Storage & Power Electronics 2008 Peer Review - Agenda...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Power Electronics 2008 Peer Review - AgendaPresentation List Energy Storage & Power Electronics 2008 Peer Review - AgendaPresentation List The 2008 Peer Review Meeting for the ...

  7. EV Everywhere Workshop: Power Electronics and Thermal Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Thermal Management Breakout Session Report EV Everywhere Workshop: Power Electronics and Thermal Management Breakout Session Report Presentation given at the ...

  8. Power Electronics and Electrical Machines Review, August 2006...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrical Machines Review, August 2006 Power Electronics and Electrical Machines Review, ... (FCVT) Annual Review of Advanced Power Electronics and Electric Machine (APEEM) research ...

  9. Advanced Thermal Interface Materials (TIMs) for Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Interface Materials (TIMs) for Power Electronics Advanced Thermal Interface Materials (TIMs) for Power Electronics 2009 DOE Hydrogen Program and Vehicle Technologies ...

  10. 2014 Annual Merit Review Results Report - Power Electronics and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electrical Machines Technologies 2014 Annual Merit Review Results Report - Power Electronics and Electrical Machines Technologies Merit review of DOE Vehicle ...

  11. 2013 Annual Merit Review Results Report - Power Electronics and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electrical Machines Technologies 2013 Annual Merit Review Results Report - Power Electronics and Electrical Machines Technologies Merit review of DOE Vehicle ...

  12. Power Electronics and Electric Machines Merit Review, May 2005...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Machines Merit Review, May 2005 Power Electronics and Electric Machines Merit ... PDF icon Annual Review Report More Documents & Publications Power Electronics and ...

  13. 2011 Annual Merit Review Results Report - Power Electronics and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electrical Machines Technologies 2011 Annual Merit Review Results Report - Power Electronics and Electrical Machines Technologies Merit review of DOE Vehicle ...

  14. 2012 Annual Merit Review Results Report - Power Electronics and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electrical Machines Technologies 2012 Annual Merit Review Results Report - Power Electronics and Electrical Machines Technologies Merit review of DOE Vehicle ...

  15. Air Cooling Technology for Advanced Power Electronics and Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Power Electronics and Electric Machines Air Cooling Technology for Advanced Power Electronics and Electric Machines 2009 DOE Hydrogen Program and Vehicle Technologies ...

  16. Improved Organics for Power Electronics and Electric Motors ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Thermally Conductive Organic Dielectrics for Power Electronics and Electric Motors Improved Organics for Power Electronics and Electric Motors ORNL: ...

  17. EV Everywhere Grand Challenge - Electric Drive (Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Electric Drive (Power Electronics and Electric Machines) Workshop EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop List of ...

  18. Energy Storage & Power Electronics 2008 Peer Review - Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage & Power Electronics 2008 Peer Review - Energy Storage Systems (ESS) Presentations The 2008 Peer Review Meeting for the DOE Energy Storage and Power Electronics ...

  19. Energy Storage Systems 2007 Peer Review - Power Electronics Presentati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics Presentations Energy Storage Systems 2007 Peer Review - Power Electronics Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer ...

  20. Electronic Position Sensor for Power Operated Accessory

    DOE Patents [OSTI]

    Haag, Ronald H.; Chia, Michael I.

    2005-05-31

    An electronic position sensor for use with a power operated vehicle accessory, such as a power liftgate. The position sensor includes an elongated resistive circuit that is mounted such that it is stationary and extends along the path of a track portion of the power operated accessory. The position sensor further includes a contact nub mounted to a link member that moves within the track portion such that the contact nub is slidingly biased against the elongated circuit. As the link member moves under the force of a motor-driven output gear, the contact nub slides along the surface of the resistive circuit, thereby affecting the overall resistance of the circuit. The position sensor uses the overall resistance to provide an electronic position signal to an ECU, wherein the signal is indicative of the absolute position of the power operated accessory. Accordingly, the electronic position sensor is capable of providing an electronic signal that enables the ECU to track the absolute position of the power operated accessory.

  1. Forrest City, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arkansas. It falls under Arkansas's 1st congressional district.12 US Recovery Act Smart Grid Projects in Forrest City, Arkansas Woodruff Electric Smart Grid Project Utility...

  2. Pulaski County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Stephens, Inc Energy Generation Facilities in Pulaski County, Arkansas Fourche Creek Wastewater Biomass Facility Places in Pulaski County, Arkansas Alexander, Arkansas Cammack...

  3. Arkansas' Anemometer Loan Program

    SciTech Connect (OSTI)

    Fernando Vego

    2012-10-11

    The measurement campaign had one year duration from 04/01/2011 to 03/31/2012 and was taken at 20m and 34m with NRG instrumentation. The data was analyzed weekly to check inconsistencies and validity and processed using Excel, Flexpro and Windographer standard Edition Version 2.04. The site analyzed is located in the Waldron, Arkansas in Scott County. It is an open site for most of the direction sectors with immediate roughness class of 1.5. It has seasonally directional winds, of which the most energetic come from the southern direction. The vertical wind profile shows moderate wind shear that varies by season as well.

  4. Direct Water-Cooled Power Electronics Substrate Packaging | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Water-Cooled Power Electronics Substrate Packaging Direct Water-Cooled Power Electronics Substrate Packaging 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ape001_wiles_2010_o.pdf More Documents & Publications Direct Cooled Power Electronics Substrate Environmental Effects on Power Electronic Devices Vehicle Technologies Office: 2010 Advanced Power Electronics and Electric Motors

  5. Florida Power Electronics Center FPEC | Open Energy Information

    Open Energy Info (EERE)

    Electronics Center FPEC Jump to: navigation, search Name: Florida Power Electronics Center (FPEC) Place: Orlando, Florida Sector: Renewable Energy Product: Research institute based...

  6. Two-Phase Cooling Technology for Power Electronics with Novel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electronics with Novel Coolants Two-Phase Cooling Technology for Power Electronics with Novel Coolants 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program ...

  7. Dalian Sengu New Power Electronic Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    axis wind turbines, solar components, solar-wind complementary power supply system, LED lighting system. References: Dalian Sengu New Power Electronic Co Ltd1 This article...

  8. Integrated Three-Dimensional Module Heat Exchange for Power Electronic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    application of the technology is not limited. Other applications include variable speed motor drives for energy efficiency, solar power and micro-scale grid power electronics,...

  9. Utilizing the Traction Drive Power Electronics System to Provide...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Traction Drive Power Electronics System to Provide Plug-in Capability for PHEVs Utilizing the Traction Drive Power Electronics System to Provide Plug-in Capability for PHEVs 2009 ...

  10. Advanced Power Electronics and Electric Motors R&D | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R&D Advanced Power Electronics and Electric Motors R&D 2011 DOE Hydrogen and Fuel Cells ... More Documents & Publications Advanced Power Electronics and Electric Motors (APEEM) R&D ...

  11. Interim Update: Global Automotive Power Electronics R&D Relevant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interim Update: Global Automotive Power Electronics R&D Relevant To DOE 2015 and 2020 Cost Targets Interim Update: Global Automotive Power Electronics R&D Relevant To DOE 2015 and ...

  12. Energy Secretary Chu to Visit Delphi Power Electronics Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Visit Delphi Power Electronics Plant in Kokomo Indiana Energy Secretary Chu to Visit Delphi Power Electronics Plant in Kokomo Indiana July 14, 2010 - 12:00am Addthis Washington ...

  13. Thermal Interface Materials for Power Electronics Applications: Preprint

    SciTech Connect (OSTI)

    Narumanchi, S.; Mihalic, M.; Kelly, K.; Eesley, G.

    2008-07-01

    The thermal resistance of the thermal interface material layer greatly affects the maximum temperature of the power electronics.

  14. 2010 DOE EERE Vehicle Technologies Program Merit Review - Power Electronics

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Electrical Machines | Department of Energy Power Electronics and Electrical Machines 2010 DOE EERE Vehicle Technologies Program Merit Review - Power Electronics and Electrical Machines APEEM research and development merit review results PDF icon 2010_amr_03.pdf More Documents & Publications 2012 Annual Merit Review Results Report - Power Electronics and Electrical Machines Technologies 2011 Annual Merit Review Results Report - Power Electronics and Electrical Machines Technologies

  15. 2011 Annual Merit Review Results Report - Power Electronics and Electrical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Machines Technologies | Department of Energy Power Electronics and Electrical Machines Technologies 2011 Annual Merit Review Results Report - Power Electronics and Electrical Machines Technologies Merit review of DOE Vehicle Technologies research activities PDF icon 2011_amr_03.pdf More Documents & Publications 2012 Annual Merit Review Results Report - Power Electronics and Electrical Machines Technologies 2010 DOE EERE Vehicle Technologies Program Merit Review - Power Electronics and

  16. 2012 Annual Merit Review Results Report - Power Electronics and Electrical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Machines Technologies | Department of Energy Power Electronics and Electrical Machines Technologies 2012 Annual Merit Review Results Report - Power Electronics and Electrical Machines Technologies Merit review of DOE Vehicle Technologies research activities PDF icon 2012_amr_03.pdf More Documents & Publications 2011 Annual Merit Review Results Report - Power Electronics and Electrical Machines Technologies 2010 DOE EERE Vehicle Technologies Program Merit Review - Power Electronics and

  17. Air Cooling Technology for Advanced Power Electronics and Electric Machines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Advanced Power Electronics and Electric Machines Air Cooling Technology for Advanced Power Electronics and Electric Machines 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ape_12_bharathan.pdf More Documents & Publications Air Cooling Technology for Power Electronic Thermal Control Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric

  18. Vehicle Technologies Office: Power Electronics Research and Development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Power Electronics Research and Development Vehicle Technologies Office: Power Electronics Research and Development To reach the EV Everywhere Grand Challenge goal, the Vehicle Technologies Office (VTO) is supporting research and development (R&D) to lower the cost and improve the performance of power electronics in electric drive vehicles. Vehicle power electronics primarily process and control the flow of electrical energy in hybrid and plug-in electric vehicles,

  19. Elaine, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Elaine is a city in Phillips County, Arkansas. It falls under Arkansas's 1st congressional district.12...

  20. Adona, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Adona is a city in Perry County, Arkansas. It falls under Arkansas's 2nd congressional district.12...

  1. 2013 Annual Merit Review Results Report - Power Electronics and Electrical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Machines Technologies | Department of Energy Power Electronics and Electrical Machines Technologies 2013 Annual Merit Review Results Report - Power Electronics and Electrical Machines Technologies Merit review of DOE Vehicle Technologies research activities PDF icon 2013_amr_03.pdf More Documents & Publications 2014 Annual Merit Review Results Report - Power Electronics and Electrical Machines Technologies Alnico and Ferrite Hybrid Excitation Electric Machines Permanent Magnet

  2. Novel Packaging to Reduce Stray Inductance in Power Electronics |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Packaging to Reduce Stray Inductance in Power Electronics Novel Packaging to Reduce Stray Inductance in Power Electronics 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ape022_tolbert_2010_p.pdf More Documents & Publications High Power Density Integrated Traction Machine Drive Power Device Packaging High Power Density Integrated Traction Machine Drive

  3. Power Electronic Thermal System Performance and Integration | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ape_13_bennion.pdf More Documents & Publications Power Electronic Thermal System Performance and Integration Integrated Power Module Cooling Vehicle Technologies Office: 2009 Advanced Power Electronics R&D Annual Progress Report

  4. Vehicle Technologies Office: 2010 Advanced Power Electronics and Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Motors R&D Annual Progress Report | Department of Energy Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2010 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The APEEM subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and

  5. Vehicle Technologies Office: 2011 Advanced Power Electronics and Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Motors R&D Annual Progress Report | Department of Energy Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2011 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing

  6. High Dialectric Constant Capacitors for Power Electronic Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Dialectric Constant Capacitors for Power Electronic Systems High Dialectric Constant Capacitors for Power Electronic Systems 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ape008_balachandran_2010_p.pdf More Documents & Publications High Dielectric Constant Capacitors for Power Electronic Systems High-Dialectric-Constant

  7. Air Cooling Technology for Power Electronic Thermal Control | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ape019_lustbader_2010_p.pdf More Documents & Publications Air Cooling Technology for Power Electronic Thermal Control Air Cooling Technology for Advanced Power Electronics and Electric Machines Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric Machinery R&D Annual Progress Report

  8. FY 2009 Annual Progress Report for Advanced Power Electronics

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROGRESS REPORT FOR ADVANCED POWER ELECTRONICS annual progress report 2009 2009 2009 2009 2009 2009 2009 2009 2009 U.S. Department of Energy FreedomCAR and Vehicle Technologies, EE-2G 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2009 Annual Progress Report for Advanced Power Electronics Prepared by: Susan A. Rogers, Technology Development Manager Submitted to: Energy Efficiency and Renewable Energy Vehicle Technologies Program January 2010 Advanced Power Electronics FY 2009

  9. EV Everywhere Workshop: Power Electronics and Thermal Management Breakout

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Session Report | Department of Energy Power Electronics and Thermal Management Breakout Session Report EV Everywhere Workshop: Power Electronics and Thermal Management Breakout Session Report Presentation given at the EV Everywhere Grand Challenge … Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare, Chicago, IL. PDF icon 9b_traction_drive_systems_ed.pdf More Documents & Publications EV Everywhere Batteries Workshop - Beyond

  10. Energy Storage Systems 2007 Peer Review - Power Electronics Presentations |

    Office of Environmental Management (EM)

    Department of Energy Power Electronics Presentations Energy Storage Systems 2007 Peer Review - Power Electronics Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September 27, 2007 in San Francisco, CA. Eighteen presentations were divided into categories; those related to power electronics are below. Other presentation categories were: Economics - Benefit Studies and Environment Benefit Studies Utility & Commercial Applications of Advanced

  11. Vehicle Technologies Office: 2013 Advanced Power Electronics and Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Motors R&D Annual Progress Report | Department of Energy Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2013 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The Advanced Power Electronics and Electric Motors (APEEM) technology area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on

  12. Rapid Modeling of Power Electronics Thermal Management Technologies: Preprint

    SciTech Connect (OSTI)

    Bennion, K.; Kelly, K.

    2009-08-01

    Describes a method of rapidly evaluating trade-offs associated with alternative packaging configurations and thermal management technologies for power electronics packaging.

  13. Two-Phase Heat Exchanger for Power Electronics Cooling - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact NREL About This Technology Technology Marketing Summary The size, weight, and cost of power electronic components are factors which influence the cost of hybrid and...

  14. Power Electronics and Balance of System Hardware Technologies

    Broader source: Energy.gov [DOE]

    DOE is targeting solar technology improvements related to power electronics and balance of system (BOS) hardware technologies to reduce the installed cost of solar photovoltaic (PV) electricity and...

  15. Thermal Stress and Reliability for Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Performance and Reliability of Bonded Interfaces Physics of Failure of Electrical Interconnects Thermal Stress and Reliability for Advanced Power Electronics and Electric ...

  16. Learning About Power Electronics in the Edison Program | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DCDC converters (buck and boost), and the applications of power electronics (wind, solar, appliances, etc.). As an Electrical Engineer, though not one who has focused on...

  17. Arkansas SoyEnergy Group | Open Energy Information

    Open Energy Info (EERE)

    SoyEnergy Group Jump to: navigation, search Name: Arkansas SoyEnergy Group Place: DeWitt, Arkansas Zip: 72042 Product: Arkansas SoyEnergy Group is a soybean crushing and biodiesel...

  18. Categorical Exclusion Determinations: Arkansas | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arkansas Categorical Exclusion Determinations: Arkansas Location Categorical Exclusion Determinations issued for actions in Arkansas. DOCUMENTS AVAILABLE FOR DOWNLOAD June 4, 2015 CX-100263 Categorical Exclusion Determination Akutan Geothermal Project Award Number: DE-EE0000329 CX(s) Applied: A9, B3.1 Geothermal Technologies Office Date: 06/04/2015 Location(s): AK Office(s): Golden Field Office February 2, 2015 CX-100183 Categorical Exclusion Determination Energy Efficiency Upgrades for the

  19. Arkansas Oil and Gas Commission | Open Energy Information

    Open Energy Info (EERE)

    Oil and Gas Commission Jump to: navigation, search Name: Arkansas Oil and Gas Commission Address: 301 Natural Resources Dr. Ste 102 Place: Arkansas Zip: 72205 Website:...

  20. Arkansas's 3rd congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Registered Energy Companies in Arkansas's 3rd congressional district Appro-Tec Renewable Energy Highline Hydrogen Hybrids Utility Companies in Arkansas's 3rd congressional...

  1. City of Hope, Arkansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Arkansas (Utility Company) Jump to: navigation, search Name: City of Hope Address: 105 N. Elm St. Place: Hope, AR Zip: 71801 Service Territory: Arkansas Phone Number:...

  2. Arkansas's 4th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Biofuels Inc Utility Companies in Arkansas's 4th congressional district City of Hope, Arkansas (Utility Company) Retrieved from "http:en.openei.orgw...

  3. Arkansas's 1st congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Act Smart Grid Projects in Arkansas's 1st congressional district Woodruff Electric Smart Grid Project Utility Companies in Arkansas's 1st congressional district City Water...

  4. Garland County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Subtype A. Registered Energy Companies in Garland County, Arkansas PRM Energy Phoenix Renewable Energy Phoenix Biomass Places in Garland County, Arkansas Fountain Lake,...

  5. ,"Arkansas Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  6. ,"Arkansas Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  7. Arkansas/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Arkansas Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  8. Arkansas Oklahoma Gas (AOG) Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Arkansas Oklahoma Gas (AOG) provides financial incentives to its residential and small commercial customers for both existing and new construction homes and small business whose primary fuel for...

  9. Clean Cities: Arkansas Clean Cities coalition

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Arkansas by using alternate modes of transportation. She is also a member of the Saline Green Committee that increases awareness of the importance of reducing Saline County's...

  10. Scott, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Scott, Arkansas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.6964808, -92.0962552 Show Map Loading map... "minzoom":false,"mappingservic...

  11. Opportunities and Challenges for Power Electronics in PV Modules (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Deline, C.; Wohlgemuth, J.; Marion, B.; Granata, J.

    2011-02-01

    The presentation describes the value of adding DC converters and other power electronics to modules to improve their output even when shading or bad cells would otherwise decrease the module output. The presentation was part of a workshop sponsored by ARPA-E exploring the opportunities for power electronics to support PV applications.

  12. Environmental Effects on Power Electronic Devices | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon pm017_wereszczak_2010_p.pdf More Documents & Publications Environmental Effects on Power Electronic Devices Improved Organics for Power Electronics and Electric Motors

  13. Recovery Act State Memos Arkansas

    Broader source: Energy.gov (indexed) [DOE]

    Arkansas For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  14. PLZT film capacitors for power electronics and energy storage applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Argonne National Laboratory PLZT film capacitors for power electronics and energy storage applications Title PLZT film capacitors for power electronics and energy storage applications Publication Type Journal Article Year of Publication 2015 Authors Ma, B, Hu, Z, Koritala, RE, Lee, TH, Dorris, SE, Balachandran, U Journal Journal of Materials Science: Materials in Electronics Start Page 1 Date Published 04102015 Abstract Ceramic film capacitors with high dielectric constant and high

  15. Power Electronics Research and Development Program Plan | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Electronics Research and Development Program Plan Power Electronics Research and Development Program Plan As the United States transitions to a digital economy, the need to upgrade the nation's aging electric grid is becoming increasingly evident. Electricity demand is projected to increase by 30% between 2008 and 2035,1 and the U.S. electricity delivery system must be able to meet this demand and ensure the continued supply of reliable, secure electricity. PDF icon Power Electronics

  16. 2014 Annual Merit Review Results Report - Power Electronics and Electrical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Machines Technologies | Department of Energy Power Electronics and Electrical Machines Technologies 2014 Annual Merit Review Results Report - Power Electronics and Electrical Machines Technologies Merit review of DOE Vehicle Technologies research activities PDF icon 2014_amr_03.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2015: Development of Radically Enhanced alnico Magnets (DREaM) for Traction Drive Motors 2013 Annual Merit Review Results Report - Power

  17. Power Electronics and Electric Machines Merit Review, May 2005 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Electric Machines Merit Review, May 2005 Power Electronics and Electric Machines Merit Review, May 2005 A report that lists Attendees, Webcast Attendance Report, Summary of Reviewer's Ratings Grouped by Research Areas and Reviewer Comments. PDF icon Annual Review Report More Documents & Publications Power Electronics and Electrical Machines Review, August 2006 Advanced Soft Switching Inverter for Reducing Switching and Power Losses Eliminating High Risk Work at Hanford

  18. Magnetek Power Electronics Group | Open Energy Information

    Open Energy Info (EERE)

    handling, telecoms, elevators, renewable energy projects, power grid monitoring and control and industrial controls. Coordinates: 39.817671, -74.533983 Show Map Loading...

  19. Power Electronics and Thermal Management Breakout Session

    Broader source: Energy.gov (indexed) [DOE]

    Reduce Energy Storage Requirements Year Cost (kW) Specific Power (kWkg) Power Density (kWl) Efficiency 2010* 19 1.08 2.60 >90% 2012 17 1.12 2.86 >91% 2015 12 1.17 3.53...

  20. EA-1629:Southwestern Power Administration Utility Corridor and Tower Site Vegetation Management; Ozark-St. Francis National Forest, Pope and Searcy Counties, Arkansas

    Broader source: Energy.gov [DOE]

    U.S. Forest Service prepared an EA that evaluated the potential environmental impacts of amending a Southwestern Area Power Administration (SWPA) permit to allow herbicide application within SWPA transmission line rights-of-way in the Ozark-St. Francis National Forest. SWPA initially was a cooperating agency, and later ended its involvement in preparing the EA.

  1. AMO's New Institute Focused on Wide Bandgap Power Electronics Manufacturing

    Broader source: Energy.gov [DOE]

    The Next Generation Power Electronics National Manufacturing Institute announced by President Obama today will use $70 million provided by the U.S. Department of Energy's Advanced Manufacturing Office to support and manage its programs over the next five years.

  2. 2008 Annual Merit Review Results Summary - 5. Advanced Power Electronics |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 5. Advanced Power Electronics 2008 Annual Merit Review Results Summary - 5. Advanced Power Electronics DOE Vehicle Technologies Annual Merit Review PDF icon 2008_merit_review_5.pdf More Documents & Publications 2008 Annual Merit Review Results Summary - 14. Vehicle Systems and Simulation 2008 Annual Merit Review Results Summary - 13. Health Impacts 2008 Annual Merit Review Results Summary - 10. Fuels Technologies

  3. Advanced Power Electronics and Electric Motors R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Vehicle Technologies Program Advanced Power Electronics and Electric Motors R&D Susan Rogers eere.energy.gov 2 | Vehicle Technologies Program CHARTER: Develop APEEM technologies to enable large market penetration of electric drive vehicles. Advanced Power Electronics and Electrical Motors (APEEM) HV Battery (200 - 450 V) DC Torque to Drive Wheels 120 V AC Bi-directional Converter Battery Charger Electric Motor Inverter Accessory Loads DC-DC Converter Technical Targets Traction Drive System

  4. Advanced Thermal Interface Materials (TIMs) for Power Electronics |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Thermal Interface Materials (TIMs) for Power Electronics Advanced Thermal Interface Materials (TIMs) for Power Electronics 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ape_10_narumanchi.pdf More Documents & Publications Thermal Performance and Reliability of Bonded Interfaces Thermal Performance and Reliability of Bonded Interfaces Vehicle Technologies Office:

  5. Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Machinery R&D Annual Progress Report | Department of Energy Power Electronics and Electric Machinery R&D Annual Progress Report Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric Machinery R&D Annual Progress Report PDF icon 2008_apeem_report.pdf More Documents & Publications Characterization and Development of Advanced Heat Transfer Technologies An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices

  6. Materials Compatibility of Power Electronics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon pm_01_wilson.pdf More Documents & Publications Materials Compatibility of Power Electronics Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric Machinery R&D Annual Progress Report High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells

  7. NREL: Transportation Research - Power Electronics and Electric Machines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications and Electric Machines Publications NREL and its partners have produced many papers and presentations related to power electronics and electric machines. For more information about the following publications, contact Sreekant Narumanchi. A photo of a group of researchers sitting around a table with printed publications and laptops. Reports from power electronics and electric machines research are available to the public. Photo by Pat Corkery, NREL Software Spray System Evaluation

  8. EV Everywhere Grand Challenge - Electric Drive (Power Electronics and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Machines) Workshop | Department of Energy - Electric Drive (Power Electronics and Electric Machines) Workshop EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop List of companies in attendance at the Electric Drive Workshop held on July 24, 2012 at the Doubletree O'Hare, Chicago, IL PDF icon companies_in_attendance_ed.pdf More Documents & Publications EV Everywhere Grand Challenge Introduction for Electric Drive Workshop EV

  9. Thermal Stress and Reliability for Advanced Power Electronics and Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Machines | Department of Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ape_14_okeefe.pdf More Documents & Publications Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Power Electronic Thermal System Performance and Integration Thermal Performance and Reliability of Bonded Interfaces

  10. Energy Storage & Power Electronics 2008 Peer Review - Energy Storage

    Office of Environmental Management (EM)

    Systems (ESS) Presentations | Department of Energy Energy Storage Systems (ESS) Presentations Energy Storage & Power Electronics 2008 Peer Review - Energy Storage Systems (ESS) Presentations The 2008 Peer Review Meeting for the DOE Energy Storage and Power Electronics Program (ESPE) was held in Washington DC on Sept. 29-30, 2008. Current and completed program projects were presented and reviewed by a group of industry professionals. The 2008 agenda was composed of 28 projects that

  11. Arkansas Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    3.84 1967-2010 Pipeline and Distribution Use 1967-2005 Citygate 6.76 6.27 5.36 4.99 5.84 4.76 1984-2015 Residential 11.53 11.46 11.82 10.46 10.39 11.20 1967-2015 Commercial 8.89 8.90 7.99 7.68 7.88 8.08 1967-2015 Industrial 7.28 7.44 6.38 6.74 6.99 6.97 1997-2015 Vehicle Fuel -- -- 9.04 1994-2012 Electric Power 5.11 W 3.19 4.32 W W 1997-2015 Dry Proved Reserves (Billion Cubic Feet) Proved Reserves as of 12/31 14,178 16,370 11,035 13,518 12,789 1977-2014 Adjustments -34 728 -743 -78 -3 1977-2014

  12. Distributed Power Electronics for PV Systems (Presentation)

    SciTech Connect (OSTI)

    Deline, C.

    2011-12-01

    An overview of the benefits and applications of microinverters and DC power optimizers in residential systems. Some conclusions from this report are: (1) The impact of shade is greater than just the area of shade; (2) Additional mismatch losses include panel orientation, panel distribution, inverter voltage window, soiling; (3) Per-module devices can help increase performance, 4-12% or more depending on the system; (4) Value-added benefits (safety, monitoring, reduced design constraints) are helping their adoption; and (5) The residential market is growing rapidly. Efficiency increases, cost reductions are improving market acceptance. Panel integration will further reduce price and installation cost. Reliability remains an unknown.

  13. SOUTHWESTERN POWER ADMINISTRATION ANNUAL REPORT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... In fulfilling its mission to market and reliably deliver renewable Federal hydroelectric ... United States, Southwestern markets hydroelectric power in Arkansas, Kansas, Louisiana, ...

  14. SOUTHWESTERN POWER ADMINISTRATION ANNUAL REPORT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In fulfilling its mission to market and reliably deliver renewable Federal hydroelectric ... United States, Southwestern markets hydroelectric power in Arkansas, Kansas, Louisiana, ...

  15. Advanced power electronics and electric machinery program

    SciTech Connect (OSTI)

    None, None

    2007-12-01

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as "FreedomCAR" (derived from "Freedom" and "Cooperative Automotive Research"), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieving the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001.

  16. Advanced Power Electronics and Electric Motors (APEEM) R&D Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Power Electronics and Electric Motors (APEEM) R&D Program Overview Advnaced Power Electronics and Electric Machines (APEEM) R&D Program ...

  17. Advanced Power Electronics and Electric Motors (APEEM) R&D Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VEHICLE TECHNOLOGIES PROGRAM Advanced Power Electronics & Electric Motors R&D Plenary Session Susan Rogers Advanced Power Electronics and Electric Motors (APEEM) R&D Vehicle ...

  18. Power Electronics Thermal Management R&D (Presentation)

    SciTech Connect (OSTI)

    Waye, S.

    2014-11-01

    This project will investigate and develop thermal-management strategies for wide bandgap (WBG)-based power electronics systems. Research will be carried out to deal with thermal aspects at the module- and system-level. Module-level research will focus on die- and substrate-integrated cooling strategies and heat-transfer enhancement technologies. System-level research will focus on thermal-management strategies for the entire power electronics system to enable smart packaging solutions. One challenge with WBG device-based power electronics is that although losses in the form of heat may be lower, the footprint of the components is also likely to be reduced to reduce cost, weight, and volume. Combined with higher operational temperatures, this creates higher heat fluxes which much be removed from a smaller footprint, requiring advanced cooling strategies.

  19. Power Electronics and Electrical Machines Review, August 2006 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Electrical Machines Review, August 2006 Power Electronics and Electrical Machines Review, August 2006 This report is a summary of the Review Panel at the FY06 DOE FreedomCAR and Vehicle Technologies (FCVT) Annual Review of Advanced Power Electronics and Electric Machine (APEEM) research activities held on August 15-17, 2006. PDF icon Annual Review Report More Documents & Publications FY 2011 Annual Progress Report for Energy Storage R&D FY 2011 Annual Progress Report for

  20. Power Electronics Reliability Kick Off Meeting … Silicon Power Corp. & Sandia Labs

    Energy Savers [EERE]

    Funded by the Power Electronics Program of the U.S. Department Of Energy (DOE/PE) through Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Power Electronics Reliability Analysis Annual DOE Peer Review Meeting October 8, 2009 Mark A. Smith - Systems Readiness & Sustainment Technologies Department

  1. SiC Power Module

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R&D 100 Entry SiC Power Module 2 R&D 100 Entry SiC Power Module Submitting OrganizatiOn Sandia National Laboratories PO Box 5800, MS 1033 Albuquerque, NM 87185-1033 USA Stanley Atcitty Phone: 505-284-2701 Fax: 505-844-2890 satcitt@sandia.gov AFFIRMATION: I affirm that all information submitted as a part of, or supplemental to, this entry is a fair and accurate representation of this product. _____________________________________ Stanley Atcitty JOint Entry Arkansas Power Electronics

  2. Air Cooling Technology for Power Electronic Thermal Control | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ape019_lustbader_2012_o.pdf More Documents & Publications Air Cooling R&D Air Cooling Technology for Power Electronic Thermal Control

  3. Air Cooling Technology for Power Electronic Thermal Control | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ape019_lustbader_2011_o.pdf More Documents & Publications Air Cooling Technology for Power Electronic Thermal Control Air Cooling R&D

  4. Power Electronic Thermal System Performance and Integration | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ape016_bennion_2010_o.pdf More Documents & Publications Motor Thermal Control Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Integrated Vehicle Thermal Management

  5. Environmental Effects on Power Electronic Devices | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon pmp_20_wereszczak.pdf More Documents & Publications Environmental Effects on Power Electronic Devices ORNL: Low-Cost Direct Bonded Aluminum (DBA) Substrates (Agreement ID:23278)

  6. FY2009 Annual Progress Report for Advanced Power Electronics

    SciTech Connect (OSTI)

    Rogers, Susan A.

    2010-01-01

    The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency.

  7. Thermal Performance and Reliability of Bonded Interfaces for Power Electronics Packaging Applications (Presentation)

    SciTech Connect (OSTI)

    Devoto, D.

    2013-07-01

    This presentation discusses the thermal performance and reliability of bonded interfaces for power electronics packaging applications.

  8. Microsoft PowerPoint - AECC Hydroelectric Generation 2010.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arkansas Electric Cooperative Corporation Cooperative Corporation AECC H d l i AECC Hydroelectric Generation Facilities Generation Facilities Arkansas Electric Cooperative Corporation Cooperative Corporation * Generation and Transmission Cooperative headquartered in Little Rock * Wholesale power provider for 16 distribution cooperatives * Serves about 62% of Arkansas with over 400,000 consumers O b 2 600 MW f i 12 * Owns about 2,600 MW of generation at 12 different facilities. Arkansas Electric

  9. ,"Arkansas Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:21 AM" "Back to Contents","Data 1: Arkansas Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AR3" "Date","Arkansas...

  10. Siloam Springs, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Siloam Springs is a city in Benton County, Arkansas. It falls under Arkansas's 3rd congressional...

  11. Electron beam machining using rotating and shaped beam power distribution

    DOE Patents [OSTI]

    Elmer, J.W.; O`Brien, D.W.

    1996-07-09

    An apparatus and method are disclosed for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: (1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and (2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1,000 {micro}m (1 mm or larger), compared to the 250 {micro}m diameter of laser drilling. 5 figs.

  12. Electron beam machining using rotating and shaped beam power distribution

    DOE Patents [OSTI]

    Elmer, John W. (Pleasanton, CA); O'Brien, Dennis W. (Livermore, CA)

    1996-01-01

    An apparatus and method for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: 1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and 2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1000 .mu.m (1 mm or larger), compared to the 250 .mu.m diameter of laser drilling.

  13. Green Collar Courses Coming to Arkansas Colleges | Department of Energy

    Office of Environmental Management (EM)

    Collar Courses Coming to Arkansas Colleges Green Collar Courses Coming to Arkansas Colleges April 29, 2010 - 4:45pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE When more green jobs start to open up in northwest Arkansas, educators want to ensure they have the workforce to fill them. In anticipation of a growing sector, Bentonville's Northwest Arkansas Community College (NWACC) and Pulaski Technical College in North Little Rock are adding new green courses that

  14. Alternative Fuels Data Center: Arkansas Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Arkansas Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Arkansas Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Arkansas Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Arkansas Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center:

  15. Air Cooling for High Temperature Power Electronics (Presentation)

    SciTech Connect (OSTI)

    Waye, S.; Musselman, M.; King, C.

    2014-09-01

    Current emphasis on developing high-temperature power electronics, including wide-bandgap materials such as silicon carbide and gallium nitride, increases the opportunity for a completely air-cooled inverter at higher powers. This removes the liquid cooling system for the inverter, saving weight and volume on the liquid-to-air heat exchanger, coolant lines, pumps, and coolant, replacing them with just a fan and air supply ducting. We investigate the potential for an air-cooled heat exchanger from a component and systems-level approach to meet specific power and power density targets. A proposed baseline air-cooled heat exchanger design that does not meet those targets was optimized using a parametric computational fluid dynamics analysis, examining the effects of heat exchanger geometry and device location, fixing the device heat dissipation and maximum junction temperature. The CFD results were extrapolated to a full inverter, including casing, capacitor, bus bar, gate driver, and control board component weights and volumes. Surrogate ducting was tested to understand the pressure drop and subsequent system parasitic load. Geometries that met targets with acceptable loads on the system were down-selected for experimentation. Nine baseline configuration modules dissipated the target heat dissipation, but fell below specific power and power density targets. Six optimized configuration modules dissipated the target heat load, exceeding the specific power and power density targets. By maintaining the same 175 degrees C maximum junction temperature, an optimized heat exchanger design and higher device heat fluxes allowed a reduction in the number of modules required, increasing specific power and power density while still maintaining the inverter power.

  16. Electron beam collector for a microwave power tube

    DOE Patents [OSTI]

    Dandl, Raphael A. (Oak Ridge, TN)

    1980-01-01

    This invention relates to a cylindrical, electron beam collector that efficiently couples the microwave energy out of a high power microwave source while stopping the attendant electron beam. The interior end walls of the collector are a pair of facing parabolic mirrors and the microwave energy from an input horn is radiated between the two mirrors and reassembled at the entrance to the output waveguide where the transmitted mode is reconstructed. The mode transmission through the collector of the present invention has an efficiency of at least 94%.

  17. Tomographic determination of the power distribution in electron beams

    DOE Patents [OSTI]

    Teruya, Alan T. (Livermore, CA); Elmer, John W. (Pleasanton, CA)

    1996-01-01

    A tomographic technique for determining the power distribution of an electron beam using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. A refractory metal disk with a number of radially extending slits is placed above a Faraday cup. The beam is swept in a circular pattern so that its path crosses each slit in a perpendicular manner, thus acquiring all the data needed for a reconstruction in one circular sweep. Also, a single computer is used to generate the signals actuating the sweep, to acquire that data, and to do the reconstruction, thus reducing the time and equipment necessary to complete the process.

  18. Tomographic determination of the power distribution in electron beams

    DOE Patents [OSTI]

    Teruya, A.T.; Elmer, J.W.

    1996-12-10

    A tomographic technique for determining the power distribution of an electron beam using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams is disclosed. A refractory metal disk with a number of radially extending slits is placed above a Faraday cup. The beam is swept in a circular pattern so that its path crosses each slit in a perpendicular manner, thus acquiring all the data needed for a reconstruction in one circular sweep. Also, a single computer is used to generate the signals actuating the sweep, to acquire that data, and to do the reconstruction, thus reducing the time and equipment necessary to complete the process. 4 figs.

  19. Advanced Power Electronics for LED Drivers: Advanced Technologies for integrated Power Electronics

    SciTech Connect (OSTI)

    2010-09-01

    ADEPT Project: MIT is teaming with Georgia Institute of Technology, Dartmouth College, and the University of Pennsylvania (UPenn) to create more efficient power circuits for energy-efficient light-emitting diodes (LEDs) through advances in 3 related areas. First, the team is using semiconductors made of high-performing gallium nitride grown on a low-cost silicon base (GaN-on-Si). These GaN-on-Si semiconductors conduct electricity more efficiently than traditional silicon semiconductors. Second, the team is developing new magnetic materials and structures to reduce the size and increase the efficiency of an important LED power component, the inductor. This advancement is important because magnetics are the largest and most expensive part of a circuit. Finally, the team is creating an entirely new circuit design to optimize the performance of the new semiconductors and magnetic devices it is using.

  20. power electronics and machines | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Power Electronics and Electrical Machines Improvements in electric traction drives are essential to electric drive vehicles, and have the potential to significantly reduce petroleum consumption in the transportation sector as well as help meet national economic and energy security goals. Hybrid electric vehicles (HEVs) can reduce petroleum use compared to average conventional vehicles by as much as 50%, while plug-in electric vehicles (PEVs) extend these savings even further. Advanced

  1. NREL: Transportation Research - Power Electronics and Electric Machines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities and Electric Machines Facilities NREL's power electronics and electric machines thermal management test facilities feature a wide range of equipment and enable world-class experimental and modeling capabilities. NREL researchers excel at testing and measurement in the areas of heat transfer, reliability characterization, and thermal and thermomechanical modeling. The following list describes NREL's innovative testing capabilities and equipment. A photo of four researchers in

  2. Thermal Stress and Reliability for Advanced Power Electronics and Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Machines | Department of Energy 10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ape017_okeefe_2010_o.pdf More Documents & Publications Thermal Performance and Reliability of Bonded Interfaces Physics of Failure of Electrical Interconnects Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines

  3. Webinar: Opportunities for Wide Bandgap Semiconductor Power Electronics for

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen and Fuel Cell Applications | Department of Energy Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications," originally presented on October 21, 2014. In addition to this text version of the audio, you can access the presentation slides. Amit Talapatra: -recorded, so a recording, along with slides, will be posted to our website in about ten days, and we will send out an email once those are posted to our website. All participants in

  4. Arkansas Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) Arkansas Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 3 3 3 3 2010's 3 4 2 2 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Estimated Production Arkansas Coalbed Methane Proved Reserves, Reserves Changes, and

  5. Arkansas Shale Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) Arkansas Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 94 279 527 2010's 794 940 1,027 1,026 1,038 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Estimated Production Arkansas Shale Gas Proved Reserves, Reserves Changes, and

  6. Arkansas Shale Proved Reserves (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Arkansas Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,460 3,833 9,070 2010's 12,526 14,808 9,779 12,231 11,695 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 Arkansas Shale Gas

  7. Two-Phase Cooling Technology for Power Electronics with Novel Coolants |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Electronics with Novel Coolants Two-Phase Cooling Technology for Power Electronics with Novel Coolants 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ape037_moreno_2011_o.pdf More Documents & Publications Two-Phase Cooling Technology for Power Electronics Two-Phase Cooling of Power Electronics Vehicle Technologies Office Merit Review 2014: Two-Phase Cooling of Power Electronics

  8. Two-Phase Cooling Technology for Power Electronics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electronics Two-Phase Cooling Technology for Power Electronics 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ape037_moreno_2012_p.pdf More Documents & Publications Two-Phase Cooling of Power Electronics Vehicle Technologies Office Merit Review 2014: Two-Phase Cooling of Power Electronics Two-Phase Cooling Technology for Power Electronics with Novel Coolants

  9. Emerging Two-Phase Cooling Technologies for Power Electronic Inverters

    SciTech Connect (OSTI)

    Hsu, J.S.

    2005-08-17

    In order to meet the Department of Energy's (DOE's) FreedomCAR and Vehicle Technologies (FVCT) goals for volume, weight, efficiency, reliability, and cost, the cooling of the power electronic devices, traction motors, and generators is critical. Currently the power electronic devices, traction motors, and generators in a hybrid electric vehicle (HEV) are primarily cooled by water-ethylene glycol (WEG) mixture. The cooling fluid operates as a single-phase coolant as the liquid phase of the WEG does not change to its vapor phase during the cooling process. In these single-phase systems, two cooling loops of WEG produce a low temperature (around 70 C) cooling loop for the power electronics and motor/generator, and higher temperature loop (around 105 C) for the internal combustion engine. There is another coolant option currently available in automobiles. It is possible to use the transmission oil as a coolant. The oil temperature exists at approximately 85 C which can be utilized to cool the power electronic and electrical devices. Because heat flux is proportional to the temperature difference between the device's hot surface and the coolant, a device that can tolerate higher temperatures enables the device to be smaller while dissipating the same amount of heat. Presently, new silicon carbide (SiC) devices and high temperature direct current (dc)-link capacitors, such as Teflon capacitors, are available but at significantly higher costs. Higher junction temperature (175 C) silicon (Si) dies are gradually emerging in the market, which will eventually help to lower hardware costs for cooling. The development of high-temperature devices is not the only way to reduce device size. Two-phase cooling that utilizes the vaporization of the liquid to dissipate heat is expected to be a very effective cooling method. Among two-phase cooling methods, different technologies such as spray, jet impingement, pool boiling and submersion, etc. are being developed. The Oak Ridge National Laboratory (ORNL) is leading the research on a novel floating refrigerant loop that cools high-power electronic devices and the motor/generator with very low cooling energy. The loop can be operated independently or attached to the air conditioning system of the vehicle to share the condenser and other mutually needed components. The ability to achieve low cooling energy in the floating loop is attributable to the liquid refrigerant operating at its hot saturated temperature (around 50 C+). In an air conditioning system, the liquid refrigerant is sub-cooled for producing cool air to the passenger compartment. The ORNL floating loop avoids the sub-cooling of the liquid refrigerant and saves significant cooling energy. It can raise the coefficient of performance (COP) more than 10 fold from that of the existing air-conditioning system, where the COP is the ratio of the cooled power and the input power for dissipating the cooled power. In order to thoroughly investigate emerging two-phase cooling technologies, ORNL subcontracted three university/companies to look into three leading two-phase cooling technologies. ORNL's assessments on these technologies are summarized in Section I. Detailed descriptions of the reports by the three university/companies (subcontractors) are in Section II.

  10. Thermal Management of Power Electronics and Electric Motors for Electric-Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Narumanchi, S.

    2014-09-01

    This presentation is an overview of the power electronics and electric motor thermal management and reliability activities at NREL. The focus is on activities funded by the Department of Energy Vehicle Technologies Office Advanced Power Electronics and Electric Motors Program.

  11. Advanced Power Electronic Interfaces for Distributed Energy Systems Part 1: Systems and Topologies

    SciTech Connect (OSTI)

    Kramer, W.; Chakraborty, S.; Kroposki, B.; Thomas, H.

    2008-03-01

    This report summarizes power electronic interfaces for DE applications and the topologies needed for advanced power electronic interfaces. It focuses on photovoltaic, wind, microturbine, fuel cell, internal combustion engine, battery storage, and flywheel storage systems.

  12. Governor Cuomo, GE Announce Power Electronics Manufacturing Consortium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Governor Cuomo Announces 100 Businesses Led by GE to Join $500 Million Partnership with State to Develop Next-Generation Power Electronics, Creating Thousands of Jobs in Capital Region and Upstate Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Governor Cuomo Announces 100 Businesses Led by GE to Join $500 Million

  13. Electron beam diagnostic for profiling high power beams

    DOE Patents [OSTI]

    Elmer, John W. (Danville, CA); Palmer, Todd A. (Livermore, CA); Teruya, Alan T. (Livermore, CA)

    2008-03-25

    A system for characterizing high power electron beams at power levels of 10 kW and above is described. This system is comprised of a slit disk assembly having a multitude of radial slits, a conducting disk with the same number of radial slits located below the slit disk assembly, a Faraday cup assembly located below the conducting disk, and a start-stop target located proximate the slit disk assembly. In order to keep the system from over-heating during use, a heat sink is placed in close proximity to the components discussed above, and an active cooling system, using water, for example, can be integrated into the heat sink. During use, the high power beam is initially directed onto a start-stop target and after reaching its full power is translated around the slit disk assembly, wherein the beam enters the radial slits and the conducting disk radial slits and is detected at the Faraday cup assembly. A trigger probe assembly can also be integrated into the system in order to aid in the determination of the proper orientation of the beam during reconstruction. After passing over each of the slits, the beam is then rapidly translated back to the start-stop target to minimize the amount of time that the high power beam comes in contact with the slit disk assembly. The data obtained by the system is then transferred into a computer system, where a computer tomography algorithm is used to reconstruct the power density distribution of the beam.

  14. Overview of the DOE Advanced Power Electronics and Electric Motor R&D Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electric Motor R&D Program Susan Rogers Steven Boyd Advanced Power Electronics and Electric Motors Vehicle Technologies Office June 17, 2014 VEHICLE TECHNOLOGIES OFFICE 2 APEEM R&D Program Vehicle Technologies Office Hybrid Electric Systems R&D Vehicle Systems Advanced Power Electronics & Electric Motors (APEEM) R&D Industry Federal Agencies Academia National Labs Energy Storage 3 APEEM R&D Mission and Budget Develop advanced power electronics,

  15. High-Temperature Air-Cooled Power Electronics Thermal Design (Presentation)

    SciTech Connect (OSTI)

    Waye, S.

    2014-06-01

    This presentation discusses the status of research at NREL on high temperature air-cooled power electronics thermal design.

  16. Photovoltaic Shading Testbed for Module-Level Power Electronics

    SciTech Connect (OSTI)

    Deline, C.; Meydbray, J.; Donovan, M.; Forrest, J.

    2012-05-01

    This document describes a repeatable test procedure that attempts to simulate shading situations, as would be experienced by typical residential rooftop photovoltaic (PV) systems. This type of shading test is particularly useful to evaluate the impact of different power conversion setups, including microinverters, DC power optimizers and string inverters, on overall system performance. The performance results are weighted based on annual estimates of shade to predict annual performance improvement. A trial run of the test procedure was conducted with a side by side comparison of a string inverter with a microinverter, both operating on identical 8kW solar arrays. Considering three different shade weighting conditions, the microinverter was found to increase production by 3.7% under light shading, 7.8% under moderate shading, and 12.3% under heavy shading, relative to the reference string inverter case. Detail is provided in this document to allow duplication of the test method at different test installations and for different power electronics devices.

  17. Passive Two-Phase Cooling of Automotive Power Electronics: Preprint

    SciTech Connect (OSTI)

    Moreno, G.; Jeffers, J. R.; Narumanchi, S.; Bennion, K.

    2014-08-01

    Experiments were conducted to evaluate the use of a passive two-phase cooling strategy as a means of cooling automotive power electronics. The proposed cooling approach utilizes an indirect cooling configuration to alleviate some reliability concerns and to allow the use of conventional power modules. An inverter-scale proof-of-concept cooling system was fabricated, and tests were conducted using the refrigerants hydrofluoroolefin HFO-1234yf and hydrofluorocarbon HFC-245fa. Results demonstrated that the system can dissipate at least 3.5 kW of heat with 250 cm3 of HFC-245fa. An advanced evaporator design that incorporates features to improve performance and reduce size was conceived. Simulation results indicate its thermal resistance can be 37% to 48% lower than automotive dual side cooled power modules. Tests were also conducted to measure the thermal performance of two air-cooled condensers--plain and rifled finned tube designs. The results combined with some analysis were then used to estimate the required condenser size per operating conditions and maximum allowable system (i.e., vapor and liquid) temperatures.

  18. Georgia and Arkansas Residential Energy Code Field Studies | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Georgia and Arkansas Residential Energy Code Field Studies Georgia and Arkansas Residential Energy Code Field Studies Lead Performer: Southeast Energy Efficiency Alliance - Atlanta, GA Partners: - Advanced Energy - Raleigh, NC - Arkansas Economic Development Commission, Energy Office - Little Rock, AR - Georgia Department of Community Affairs - Atlanta, GA - Georgia Environmental Finance Authority - Atlanta, GA - Southface - Atlanta, GA DOE Total Funding: $1,399,999 Cost Share:

  19. Advanced Power Electronics Interfaces for Distributed Energy Workshop Summary: August 24, 2006, Sacramento, California

    SciTech Connect (OSTI)

    Treanton, B.; Palomo, J.; Kroposki, B.; Thomas, H.

    2006-10-01

    The Advanced Power Electronics Interfaces for Distributed Energy Workshop, sponsored by the California Energy Commission Public Interest Energy Research program and organized by the National Renewable Energy Laboratory, was held Aug. 24, 2006, in Sacramento, Calif. The workshop provided a forum for industry stakeholders to share their knowledge and experience about technologies, manufacturing approaches, markets, and issues in power electronics for a range of distributed energy resources. It focused on the development of advanced power electronic interfaces for distributed energy applications and included discussions of modular power electronics, component manufacturing, and power electronic applications.

  20. Hot Spring County, Arkansas: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Spring County, Arkansas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.3393795, -92.9775558 Show Map Loading map... "minzoom":false,"mappi...

  1. Clay County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arkansas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.3492244, -90.3748354 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  2. North Arkansas Electric Cooperative, Inc- Residential Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    North Arkansas Electric Cooperative (NAEC), a Touchstone Energy Cooperative, serves approximately 35,000 member accounts in seven different counties. The coop provides low interest rates for energy...

  3. Polk County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Polk County, Arkansas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.5268097, -94.1513764 Show Map Loading map... "minzoom":false,"mapping...

  4. Arkansas Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Arkansas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  5. Faulkner County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Faulkner County, Arkansas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.1035858, -92.3813621 Show Map Loading map... "minzoom":false,"map...

  6. Smart Meter Investments Support Rural Economy in Arkansas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Woodruff) serves customers in seven eastern Arkansas counties. The proportion of residents living in poverty in those counties is more than double the national average. ...

  7. Hot Springs, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Springs, Arkansas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.5037004, -93.0551795 Show Map Loading map... "minzoom":false,"mappingserv...

  8. ,"Arkansas Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  9. Scott County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Scott County, Arkansas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.8854732, -93.9878427 Show Map Loading map... "minzoom":false,"mappin...

  10. Arkansas Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Offshore U.S. State Offshore Federal Offshore U.S. Alaska Alaska Onshore Alaska Offshore Alaska State Offshore Arkansas California California Onshore California Offshore California State Offshore Federal Offshore California Colorado Federal Offshore Gulf of Mexico Federal Offshore Alabama Federal Offshore Louisiana Federal Offshore Texas Kansas Louisiana Louisiana Onshore Louisiana Offshore Louisiana State Offshore Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Texas

  11. Arkansas Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    Alaska Arkansas California Colorado Federal Offshore Gulf of Mexico Kansas Louisiana Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Utah West Virginia Wyoming Other States Total Alabama Arizona Florida Illinois Indiana Kentucky Maryland Michigan Mississippi Missouri Nebraska Nevada New York Oregon South Dakota Tennessee Virginia Period-Unit: Monthly-Million Cubic Feet Monthly-Million Cubic Feet per Day Annual-Million Cubic Feet Download Series History Download Series History

  12. Advnaced Power Electronics and Electric Machines (APEEM) R&D Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview | Department of Energy Advnaced Power Electronics and Electric Machines (APEEM) R&D Program Overview Advnaced Power Electronics and Electric Machines (APEEM) R&D Program Overview 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ape000_rogers_2010_o.pdf More Documents & Publications Advanced Power Electronics and Electric Motors (APEEM) R&D Program Overview Advanced Power

  13. Microsoft Word - Mid South and Southeast Wind Power Purchase Agreements

    Broader source: Energy.gov (indexed) [DOE]

    Mid-South and Southeast Wind Power Purchase Agreements Utility Purchaser Power (MW) Wind Project Name Location (State) TVA 300 Cayuga Ridge Iowa TVA 198 Pioneer Prairie Iowa TVA 101 Lost Lakes Iowa TVA 165 Cimmaron Kansas TVA 150 White Oak Illinois TVA 201 Caney River Illinois TVA 200 Bishop Hill Illinois TVA 200 California Ridge Oklahoma Subtotal 1515 Arkansas Electric Cooperative Corporation 150 Origin Wind Oklahoma Arkansas Electric Cooperative Corporation 51 Flat Ridge 2 Kansas Arkansas

  14. Fact Sheet: Award-Winning Silicon Carbide Power Electronics (October 2012)

    Energy Savers [EERE]

    | Department of Energy Award-Winning Silicon Carbide Power Electronics (October 2012) Fact Sheet: Award-Winning Silicon Carbide Power Electronics (October 2012) Operating at high temperatures and with reduced energy losses, two silicon carbide power electronics (PE) projects were awarded the prestigious R&D 100 Award. This technology was funded as a Small Business Innovation Research project as part of DOE's Energy Storage Program effort to develop and commercialize a new generation of

  15. Energy Storage & Power Electronics 2008 Peer Review - Agenda/Presentation

    Energy Savers [EERE]

    List | Department of Energy & Power Electronics 2008 Peer Review - Agenda/Presentation List Energy Storage & Power Electronics 2008 Peer Review - Agenda/Presentation List The 2008 Peer Review Meeting for the DOE Energy Storage and Power Electronics Program (ESPE) was held in Washington DC on Sept. 29-30, 2008. Current and completed program projects were presented and reviewed by a group of industry professionals. The 2008 agenda was composed of 28 projects that covered a broad range

  16. Technology Solutions Case Study: Photovoltaic Systems with Module-Level Power Electronics

    SciTech Connect (OSTI)

    Tim Merrigan

    2015-09-01

    This guide will show how DC power optimizers and microinverters (both known as module-level power electronics) are being used in new and/or retrofit, single and multifamily homes.

  17. Building America Technology Solutions Case Study: Photovoltaic Systems with Module-Level Power Electronics

    Broader source: Energy.gov [DOE]

    This guide will show how DC power optimizers and microinverters (both known as module-level power electronics) are being used in new and/or retrofit, single and multifamily homes.

  18. Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications

    Broader source: Energy.gov [DOE]

    Presentation slides from the DOE Fuel Cell Technologies Office webinar, Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications, held on October 21, 2014.

  19. Advanced Power Electronics and Electric Motors (APEEM) R&D Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon ape00arogers2013o.pdf More Documents & Publications Advanced Power Electronics and Electric Motors (APEEM) R&D Program Overview Electric Drive Status and ...

  20. Arkansas Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (mw)","Share of State total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","1,835",11.5,"15,023",24.6 "Coal","4,535",28.4,"28,152",46.2 "Hydro and Pumped

  1. Tectonic origin of Crowley's Ridge, northeastern Arkansas

    SciTech Connect (OSTI)

    VanArsdale, R.B. (Univ. of Arkansas, Fayetteville, AR (United States). Geology Dept.); Williams, R.A.; Shedlock, K.M.; King, K.W.; Odum, J.K. (Geological survey, Denver, CO (United States). Denver Federal Center); Schweig, E.S. III; Kanter, L.R. (Memphis State Univ., TN (United States))

    1992-01-01

    Crowley's Ridge is a 320 km long topographic ridge that extends from Thebes, Illinois to Helena, Arkansas. The ridge has been interpreted as an erosional remnant formed during Quaternary incision of the ancestral Mississippi and Ohio rivers; however, the Reelfoot Rift COCORP line identified a down-to-the-west fault bounding the western margin of Crowley's Ridge south of Jonesboro, Arkansas. Subsequent Mini-Sosie seismic reflection profiles confirmed the COCORP data and identified additional faults beneath other margins of the ridge. In each case the faults lie beneath the base of the ridge scarp. The Mini-Sosie data did not resolve the uppermost 150 m and so it was not possible to determine if the faults displace the near-surface Claiborne Group (middle Eocene). A shotgun source seismic reflection survey was subsequently conducted to image the uppermost 250 m across the faulted margins. The shotgun survey across the western margin of the ridge south of Jonesboro reveals displaced reflectors as shallow as 30 m depth. Claiborne Group strata are displaced approximately 6 m and it appears that some of the topographic relief of Crowley's Ridge at this location is due to post middle Eocene fault displacement. Based on the reflection data, the authors suggest that Crowley's Ridge is tectonic in origin.

  2. Advanced Power Electronics and Electric Motors (APEEM) R&D Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vtpn08_ape_rogers_2012_o.pdf More Documents & Publications Advanced Power Electronics and Electric Motors (APEEM) R&D Program Overview Advnaced Power Electronics and Electric Machines (APEEM) R&D Program Overview

  3. Power Electronics Thermal Management R&D; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Waye, Scot

    2015-06-10

    Presentation containing an update for the Power Electronics Thermal Management project in the Electric Drive Train task funded by the Vehicle Technology Office of DOE. This presentation outlines the purpose, plan, and results of research thus far for cooling and material selection strategies to manage heat in power electronic assemblies such as inverters, converters, and chargers.

  4. 2013 Annual Merit Review Results Report - Power Electronics and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electronics and Electrical Machines Technologies Alnico and Ferrite Hybrid Excitation Electric Machines Vehicle Technologies Office Merit Review 2015: Development of Radically...

  5. Comparison of Wide-Bandgap Semiconductors for Power Electronics Applications

    SciTech Connect (OSTI)

    Ozpineci, B.

    2004-01-02

    Recent developmental advances have allowed silicon (Si) semiconductor technology to approach the theoretical limits of the Si material; however, power device requirements for many applications are at a point that the present Si-based power devices cannot handle. The requirements include higher blocking voltages, switching frequencies, efficiency, and reliability. To overcome these limitations, new semiconductor materials for power device applications are needed. For high power requirements, wide-bandgap semiconductors like silicon carbide (SiC), gallium nitride (GaN), and diamond, with their superior electrical properties, are likely candidates to replace Si in the near future. This report compares wide-bandgap semiconductors with respect to their promise and applicability for power applications and predicts the future of power device semiconductor materials.

  6. Shanghai Electric Xantrex Power Electronics Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Product: JV company that will design, manufacture and sell solar and wind power inverters and control-monitoring system for the renewable energy market in China from a...

  7. Vehicle Technologies Office Merit Review 2014: Power Electronics Packaging

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Power...

  8. Pike County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Pike County is a county in Arkansas. Its FIPS County Code is 109. It is classified as ASHRAE...

  9. Phillips County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Phillips County is a county in Arkansas. Its FIPS County Code is 107. It is classified as...

  10. Baxter County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Baxter County is a county in Arkansas. Its FIPS County Code is 005. It is classified as...

  11. Characterization of a geothermal system in the Upper Arkansas...

    Open Energy Info (EERE)

    of a geothermal system in the Upper Arkansas Valley Authors T. Blum, K. van Wijk, L. Liberty, M. Batzle, R. Krahenbuhl, A. Revil and R. Reynolds Conference Society of...

  12. Johnson County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Johnson County is a county in Arkansas. Its FIPS County Code is 071. It is classified as...

  13. Logan County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Logan County is a county in Arkansas. Its FIPS County Code is 083. It is classified as...

  14. Bradley County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Bradley County is a county in Arkansas. Its FIPS County Code is 011. It is classified as...

  15. Marion County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Marion County is a county in Arkansas. Its FIPS County Code is 089. It is classified as...

  16. Miller County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Miller County is a county in Arkansas. Its FIPS County Code is 091. It is classified as...

  17. Geothermal resources of the Upper San Luis and Arkansas valleys...

    Open Energy Info (EERE)

    resources of the Upper San Luis and Arkansas valleys, Colorado Authors R.H. Pearl and J.K. Barrett Editors Epis, R.C. & Weimer and R.I. Published Colorado School of Mines:...

  18. Columbia County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is a stub. You can help OpenEI by expanding it. Columbia County is a county in Arkansas. Its FIPS County Code is 027. It is classified as ASHRAE 169-2006 Climate Zone Number 3...

  19. Montgomery County, Arkansas: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Montgomery County is a county in Arkansas. Its FIPS County Code is 097. It is classified as...

  20. Jackson County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Jackson County is a county in Arkansas. Its FIPS County Code is 067. It is classified as...

  1. Lee County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Lee County is a county in Arkansas. Its FIPS County Code is 077. It is classified as ASHRAE...

  2. Arkansas Natural Gas in Underground Storage (Base Gas) (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Base Gas) (Million Cubic Feet) Arkansas Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 19,202 19,202...

  3. Arkansas Natural Gas in Underground Storage (Working Gas) (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Gas) (Million Cubic Feet) Arkansas Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 8,676...

  4. Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  5. Arkansas Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Arkansas Regions National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2015 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: Email Us High School Regionals Arkansas Regions Print Text Size:

  6. Arkansas Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Arkansas Regions National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2015 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: Email Us Middle School Regionals Arkansas Regions Print

  7. Smart Meter Investments Support Rural Economy in Arkansas

    Energy Savers [EERE]

    Smart Meter Investments Support Rural Economy in Arkansas Woodruff Electric Cooperative (Woodruff) serves customers in seven eastern Arkansas counties. The proportion of residents living in poverty in those counties is more than double the national average. As a member-owned rural electric cooperative, Woodruff is connected to its customers and engaged in economic development efforts to bring more jobs and higher incomes to local communities. In order to bring the capital investment and its

  8. Electron Cross-field Transport in a Low Power Cylindrical Hall Thruster

    SciTech Connect (OSTI)

    A. Smirnov; Y. Raitses; N.J. Fisch

    2004-06-24

    Conventional annular Hall thrusters become inefficient when scaled to low power. Cylindrical Hall thrusters, which have lower surface-to-volume ratio, are therefore more promising for scaling down. They presently exhibit performance comparable with conventional annular Hall thrusters. Electron cross-field transport in a 2.6 cm miniaturized cylindrical Hall thruster (100 W power level) has been studied through the analysis of experimental data and Monte Carlo simulations of electron dynamics in the thruster channel. The numerical model takes into account elastic and inelastic electron collisions with atoms, electron-wall collisions, including secondary electron emission, and Bohm diffusion. We show that in order to explain the observed discharge current, the electron anomalous collision frequency {nu}{sub B} has to be on the order of the Bohm value, {nu}{sub B} {approx} {omega}{sub c}/16. The contribution of electron-wall collisions to cross-field transport is found to be insignificant.

  9. Toward integrated PV panels and power electronics using printing technologies

    SciTech Connect (OSTI)

    Ababei, Cristinel; Yuvarajan, Subbaraya; Schulz, Douglas L.

    2010-07-15

    In this paper, we review the latest developments in the area of printing technologies with an emphasis on the fabrication of control-embedded photovoltaics (PV) with on-board active and passive devices. We also review the use of power converters and maximum power point tracking (MPPT) circuits with PV panels. Our focus is on the investigation of the simplest implementations of such circuits in view of their integration with solar cells using printing technologies. We see this concept as potentially enabling toward further cost reduction. Besides a discussion as to feasibility, we shall also present some projections and guidelines toward possible integration. (author)

  10. Breakthrough in Power Electronics from SiC: May 25, 2004 - May 31, 2005

    SciTech Connect (OSTI)

    Marckx, D. A.

    2006-03-01

    This report explores the premise that silicon carbide (SiC) devices would reduce substantially the cost of energy of large wind turbines that need power electronics for variable speed generation systems.

  11. Webinar: Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications" on Tuesday, October 21, at 12:00 p...

  12. Vehicle Technologies Office: 2009 Advanced Power Electronics R&D Annual

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Progress Report | Department of Energy Power Electronics R&D Annual Progress Report Vehicle Technologies Office: 2009 Advanced Power Electronics R&D Annual Progress Report Annual report focusing on understanding and improving the way various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. PDF icon 2009_apeem_report.pdf More Documents & Publications Thermal Performance and Reliability of Bonded Interfaces Vehicle Technologies

  13. Utilizing the Traction Drive Power Electronics System to Provide Plug-in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capability for PHEVs | Department of Energy Traction Drive Power Electronics System to Provide Plug-in Capability for PHEVs Utilizing the Traction Drive Power Electronics System to Provide Plug-in Capability for PHEVs 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ape_04_su.pdf More Documents & Publications Current Source Inverters for HEVs and FCVs Inverter Using Current Source

  14. Enhanced thermoelectric power and electronic correlations in RuSe₂

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Kefeng; Wang, Aifeng; Tomic, A.; Wang, Limin; Abeykoon, A. M. Milinda; Dooryhee, E.; Billinge, S. J.L.; Petrovic, C.

    2015-03-03

    We report the electronic structure, electric and thermal transport properties of Ru₁₋xIrxSe₂ (x ≤ 0.2). RuSe₂ is a semiconductor that crystallizes in a cubic pyrite unit cell. The Seebeck coefficient of RuSe₂ exceeds -200 µV/K around 730 K. Ir substitution results in the suppression of the resistivity and the Seebeck coefficient, suggesting the removal of the peaks in density of states near the Fermi level. Ru₀.₈Ir₀.₂Se₂ shows a semiconductor-metal crossover at about 30 K. The magnetic field restores the semiconducting behavior. Our results indicate the importance of the electronic correlations in enhanced thermoelectricity of RuSb₂.

  15. Enhanced thermoelectric power and electronic correlations in RuSe?

    SciTech Connect (OSTI)

    Wang, Kefeng; Wang, Aifeng; Tomic, A.; Wang, Limin; Abeykoon, A. M. Milinda; Dooryhee, E.; Billinge, S. J.L.; Petrovic, C.

    2015-03-03

    We report the electronic structure, electric and thermal transport properties of Ru??xIrxSe? (x ? 0.2). RuSe? is a semiconductor that crystallizes in a cubic pyrite unit cell. The Seebeck coefficient of RuSe? exceeds -200 V/K around 730 K. Ir substitution results in the suppression of the resistivity and the Seebeck coefficient, suggesting the removal of the peaks in density of states near the Fermi level. Ru?.?Ir?.?Se? shows a semiconductor-metal crossover at about 30 K. The magnetic field restores the semiconducting behavior. Our results indicate the importance of the electronic correlations in enhanced thermoelectricity of RuSb?.

  16. Spread of natural gas lines in Arkansas hurts LPG marketers anew

    SciTech Connect (OSTI)

    Not Available

    1990-09-01

    This article discusses the marketing of LP gas in Arkansas. The reaction of natural gas marketers in the state is described. Federal subsidation, through the U.S. Department of Housing and Urban Development, of utilities in Arkansas is described.

  17. Arkansas Oklahoma Gas Company (AOG)- Commerial and Industrial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Arkansas Oklahoma Gas (AOG) programs are available to all commercial and industrial AOG customers in Arkansas. The Commercial and Industrial Prescriptive program offers rebates for the instal...

  18. Webinar October 21: Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications" on Tuesday, October 21, from 12:00 to 1:00 p.m. Eastern Daylight Time. Representatives of Cree Inc., leading innovators in the WBG electronics industry, will be presenting.

  19. Building America Case Study: Photovoltaic Systems with Module-Level Power Electronics

    SciTech Connect (OSTI)

    2015-09-01

    Direct current (DC) power optimizers and microinverters (together known as module-level power electronics, or MLPE) are one of the fastest growing market segments in the solar industry. According to GTM Research in The Global PV Inverter Landscape 2015, over 55% of all residential photovoltaic (PV) installations in the United States used some form of MLPE in 2014.

  20. Performance and Reliability of Interface Materials for Automotive Power Electronics (Presentation)

    SciTech Connect (OSTI)

    Narumanchi, S.; DeVoto, D.; Mihalic, M.; Paret, P.

    2013-07-01

    Thermal management and reliability are important because excessive temperature can degrade the performance, life, and reliability of power electronics and electric motors. Advanced thermal management technologies enable keeping temperature within limits; higher power densities; and lower cost materials, configurations and systems. Thermal interface materials, bonded interface materials and the reliability of bonded interfaces are discussed in this presentation.

  1. North American Green Power,LLC | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Logo: North American Green Power,LLC Name: North American Green Power,LLC Address: 1605 J.P Wright Loop Rd Place: Jacksonville, Arkansas Zip: 72076...

  2. Effect of electron density profile on power absorption of high frequency electromagnetic waves in plasma

    SciTech Connect (OSTI)

    Xi Yanbin; Liu Yue [MOE Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2012-07-15

    Considering different typical electron density profiles, a multi slab approximation model is built up to study the power absorption of broadband (0.75-30 GHz) electromagnetic waves in a partially ionized nonuniform magnetized plasma layer. Based on the model, the power absorption spectra for six cases are numerically calculated and analyzed. It is shown that the absorption strongly depends on the electron density fluctuant profile, the background electron number density, and the collision frequency. A potential optimum profile is also analyzed and studied with some particular parameters.

  3. Novel Power Electronics Three-Dimensional Heat Exchanger: Preprint

    SciTech Connect (OSTI)

    Bennion, K.; Cousineau, J.; Lustbader, J.; Narumanchi, S.

    2014-08-01

    Electric drive systems for vehicle propulsion enable technologies critical to meeting challenges for energy, environmental, and economic security. Enabling cost-effective electric drive systems requires reductions in inverter power semiconductor area. As critical components of the electric drive system are made smaller, heat removal becomes an increasing challenge. In this paper, we demonstrate an integrated approach to the design of thermal management systems for power semiconductors that matches the passive thermal resistance of the packaging with the active convective cooling performance of the heat exchanger. The heat exchanger concept builds on existing semiconductor thermal management improvements described in literature and patents, which include improved bonded interface materials, direct cooling of the semiconductor packages, and double-sided cooling. The key difference in the described concept is the achievement of high heat transfer performance with less aggressive cooling techniques by optimizing the passive and active heat transfer paths. An extruded aluminum design was selected because of its lower tooling cost, higher performance, and scalability in comparison to cast aluminum. Results demonstrated a heat flux improvement of a factor of two, and a package heat density improvement over 30%, which achieved the thermal performance targets.

  4. Arkansas Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Processed (Million Cubic Feet) Arkansas Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 93,452 88,011 56,190 1970's 37,816 31,387 17,946 26,135 19,784 17,918 20,370 18,630 18,480 1980's 29,003 31,530 33,753 34,572 258,648 174,872 197,781 213,558 228,157 1990's 272,278 224,625 156,573 198,074 218,710 100,720 219,477 185,244 198,148 179,524 2000's 207,045 207,352 12,635 13,725 10,139 16,756 13,702 11,532 6,531 2,352

  5. High energy density capacitors for power electronic applications using nano-structure multilayer technology

    SciTech Connect (OSTI)

    Barbee, T.W. Jr.; Johnson, G.W.

    1995-09-01

    Power electronics applications are currently limited by capacitor size and performance. Only incremental improvements are anticipated in existing capacitor technologies, while significant performance advances are required in energy density and overall performance to meet the technical needs of the applications which are important for U.S. economic competitiveness. One application, the Power Electronic Building Block (PEBB), promises a second electronics revolution in power electronic design. High energy density capacitors with excellent electrical thermal and mechanical performance represent an enabling technology in the PEBB concept. We propose a continuing program to research and develop LLNL`s nano-structure multilayer technologies for making high voltage, high energy density capacitors. Our controlled deposition techniques are capable of synthesizing extraordinarily smooth sub-micron thick layers of dielectric and conductor materials. We have demonstrated that, with this technology, high voltage capacitors with an order of magnitude improvement in energy density are achievable.

  6. The Use of a Solid State Analog Television Transmitter as a Superconducting Electron Gun Power Amplifier

    SciTech Connect (OSTI)

    J.G. Kulpin, K.J. Kleman, R.A. Legg

    2012-07-01

    A solid state analog television transmitter designed for 200 MHz operation is being commissioned as a radio frequency power amplifier on the Wisconsin superconducting electron gun cavity. The amplifier consists of three separate radio frequency power combiner cabinets and one monitor and control cabinet. The transmitter employs rugged field effect transistors built into one kilowatt drawers that are individually hot swappable at maximum continuous power output. The total combined power of the transmitter system is 33 kW at 200 MHz, output through a standard coaxial transmission line. A low level radio frequency system is employed to digitally synthesize the 200 MHz signal and precisely control amplitude and phase.

  7. Arkansas Coalbed Methane Proved Reserves (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Arkansas Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 30 34 31 31 22 2010's 28 21 10 13 15 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Arkansas Coalbed Methane Proved

  8. Arkansas Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Arkansas Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 343 5 80 82 52 30 5 280 5 36 2010's 807 6,880 6 9 80 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions Arkansas Dry Natural Gas

  9. Arkansas Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Arkansas Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 336 8 66 63 24 31 4 298 19 54 2010's 393 6,760 1 4 248 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Arkansas Dry Natural Gas Proved Reserves Dry

  10. FY2011 Advanced Power Electronics and Electric Motors Annual Progress Report

    SciTech Connect (OSTI)

    Rogers, Susan A.

    2012-01-31

    The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  11. FY2010 Annual Progress Report for Advanced Power Electronics and Electric Motors

    SciTech Connect (OSTI)

    Rogers, Susan A.

    2011-01-01

    The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  12. FY2012 Advanced Power Electronics and Electric Motors Annual Progress Report

    SciTech Connect (OSTI)

    Rogers, Susan A.

    2013-03-01

    The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency.

  13. FY2008 Annual Progress Report for the Advanced Power Electronics and Electric Machinery Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AnnuAl Progress rePort for the AdvAnced Power electronics And electric MAchinery technology AreA annual progress report 2008 V e h i c l e T e c h n o l o g i e s P r o g r a m U.S. Department of Energy FreedomCAR and Vehicle Technologies, EE-2G 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2008 Annual Progress Report for the Advanced Power Electronics and Electric Machinery Technology Area Submitted to: Energy Efficiency and Renewable Energy Vehicle Technologies Program Susan A.

  14. Vehicle Technologies Office: 2012 Advanced Power Electronics and Electric Motors R&D Annual Progress Report

    Broader source: Energy.gov [DOE]

    The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrows automobiles will function as a unified system to improve fuel efficiency.

  15. Modeling Single-Phase and Boiling Liquid Jet Impingement Cooling in Power Electronics

    SciTech Connect (OSTI)

    Narumanchi, S. V. J.; Hassani, V.; Bharathan, D.

    2005-12-01

    Jet impingement has been an attractive cooling option in a number of industries over the past few decades. Over the past 15 years, jet impingement has been explored as a cooling option in microelectronics. Recently, interest has been expressed by the automotive industry in exploring jet impingement for cooling power electronics components. This technical report explores, from a modeling perspective, both single-phase and boiling jet impingement cooling in power electronics, primarily from a heat transfer viewpoint. The discussion is from the viewpoint of the cooling of IGBTs (insulated-gate bipolar transistors), which are found in hybrid automobile inverters.

  16. Fact Sheet: Award-Winning Silicon Carbide Power Electronics (October 2012)

    Office of Environmental Management (EM)

    Silicon Carbide Technology Breakthrough Silicon carbide (SiC) is a semiconductor material under rapid development for use in power electronic (PE) systems due to its unique material and electronic properties. SiC potentially offers several advantages over conventional silicon (Si) for use in PE devices. Comparatively, individual SiC devices (in theory) can endure temperatures up to 600°C (standard Si PE devices are typically limited to 150°C), withstand more voltage, tolerate a larger current

  17. Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future

    Broader source: Energy.gov [DOE]

    From unleashing more powerful and energy-efficient laptops, cell phones and motors, to shrinking utility-scale inverters from 8,000 pound substations to the size of a suitcase, wide bandgap semiconductors could be one of the keys to our clean energy future.

  18. Power Electronics for Distributed Energy Systems and Transmission and Distribution Applications: Assessing the Technical Needs for Utility Applications

    SciTech Connect (OSTI)

    Tolbert, L.M.

    2005-12-21

    Power electronics can provide utilities the ability to more effectively deliver power to their customers while providing increased reliability to the bulk power system. In general, power electronics is the process of using semiconductor switching devices to control and convert electrical power flow from one form to another to meet a specific need. These conversion techniques have revolutionized modern life by streamlining manufacturing processes, increasing product efficiencies, and increasing the quality of life by enhancing many modern conveniences such as computers, and they can help to improve the delivery of reliable power from utilities. This report summarizes the technical challenges associated with utilizing power electronics devices across the entire spectrum from applications to manufacturing and materials development, and it provides recommendations for research and development (R&D) needs for power electronics systems in which the U.S. Department of Energy (DOE) could make a substantial impact toward improving the reliability of the bulk power system.

  19. Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWh Coal Power 25,075,250 MWh Gas Power 11,368,417 MWh Petroleum Power 87,674 MWh Nuclear Power 15,169,966 MWh Other 24,019 MWh Total Energy Production 57,499,169 MWh...

  20. Photovoltaic Shading Testbed for Module-Level Power Electronics: 2014 Update

    SciTech Connect (OSTI)

    Deline, C.; Meydbray, J.; Donovan, M.

    2014-08-01

    The 2012 NREL report 'Photovoltaic Shading Testbed for Module-Level Power Electronics' provides a standard methodology for estimating the performance benefit of distributed power electronics under partial shading conditions. Since the release of the report, experiments have been conducted for a number of products and for different system configurations. Drawing from these experiences, updates to the test and analysis methods are recommended. Proposed changes in data processing have the benefit of reducing the sensitivity to measurement errors and weather variability, as well as bringing the updated performance score in line with measured and simulated values of the shade recovery benefit of distributed PV power electronics. Also, due to the emergence of new technologies including sub-module embedded power electronics, the shading method has been extended to include power electronics that operate at a finer granularity than the module level. An update to the method is proposed to account for these emerging technologies that respond to shading differently than module-level devices. The partial shading test remains a repeatable test procedure that attempts to simulate shading situations as would be experienced by typical residential or commercial rooftop photovoltaic (PV) systems. Performance data for multiple products tested using this method are discussed, based on equipment from Enphase, Solar Edge, Maxim Integrated and SMA. In general, the annual recovery of shading losses from the module-level electronics evaluated is 25-35%, with the major difference between different trials being related to the number of parallel strings in the test installation rather than differences between the equipment tested.

  1. Enhanced modified faraday cup for determination of power density distribution of electron beams

    DOE Patents [OSTI]

    Elmer, John W. (Danville, CA); Teruya, Alan T. (Livermore, CA)

    2001-01-01

    An improved tomographic technique for determining the power distribution of an electron or ion beam using electron beam profile data acquired by an enhanced modified Faraday cup to create an image of the current density in high and low power ion or electron beams. A refractory metal disk with a number of radially extending slits, one slit being about twice the width of the other slits, is placed above a Faraday cup. The electron or ion beam is swept in a circular pattern so that its path crosses each slit in a perpendicular manner, thus acquiring all the data needed for a reconstruction in one circular sweep. The enlarged slit enables orientation of the beam profile with respect to the coordinates of the welding chamber. A second disk having slits therein is positioned below the first slit disk and inside of the Faraday cup and provides a shield to eliminate the majority of secondary electrons and ions from leaving the Faraday cup. Also, a ring is located below the second slit disk to help minimize the amount of secondary electrons and ions from being produced. In addition, a beam trap is located in the Faraday cup to provide even more containment of the electron or ion beam when full beam current is being examined through the center hole of the modified Faraday cup.

  2. Modeling Photovoltaic Module-Level Power Electronics in the System Advisor Model; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-07-01

    Module-level power electronics, such as DC power optimizers, microinverters, and those found in AC modules, are increasing in popularity in smaller-scale photovoltaic (PV) systems as their prices continue to decline. Therefore, it is important to provide PV modelers with guidelines about how to model these distributed power electronics appropriately in PV modeling software. This paper extends the work completed at NREL that provided recommendations to model the performance of distributed power electronics in NREL’s popular PVWatts calculator [1], to provide similar guidelines for modeling these technologies in NREL's more complex System Advisor Model (SAM). Module-level power electronics - such as DC power optimizers, microinverters, and those found in AC modules-- are increasing in popularity in smaller-scale photovoltaic (PV) systems as their prices continue to decline. Therefore, it is important to provide PV modelers with guidelines about how to model these distributed power electronics appropriately in PV modeling software.

  3. Arkansas Natural Gas Deliveries to Electric Power Consumers ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 1,668 392 1,164 2,511 1,753 1,403 3,790 4,318 2,798 2,845 2,200 1,253 2002 1,580 1,857 1,919 2,681 2,524 5,309 8,423 6,460...

  4. Arkansas Natural Gas Deliveries to Electric Power Consumers ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 24,805 40,574 40,089 2000's 34,602 26,096 42,430 56,369 40,138 48,987 71,056 63,594 64,188...

  5. Air-Cooled Heat Exchanger for High-Temperature Power Electronics: Preprint

    SciTech Connect (OSTI)

    Waye, S. K.; Lustbader, J.; Musselman, M.; King, C.

    2015-05-06

    This work demonstrates a direct air-cooled heat exchanger strategy for high-temperature power electronic devices with an application specific to automotive traction drive inverters. We present experimental heat dissipation and system pressure curves versus flow rate for baseline and optimized sub-module assemblies containing two ceramic resistance heaters that provide device heat fluxes. The maximum allowable junction temperature was set to 175 deg.C. Results were extrapolated to the inverter scale and combined with balance-of-inverter components to estimate inverter power density and specific power. The results exceeded the goal of 12 kW/L and 12 kW/kg for power density and specific power, respectively.

  6. Tunable power law in the desynchronization events of coupled chaotic electronic circuits

    SciTech Connect (OSTI)

    Oliveira, Gilson F. de Lorenzo, Orlando di; Chevrollier, Martine; Passerat de Silans, Thierry; Ori, Marcos; Souza Cavalcante, Hugo L. D. de

    2014-03-15

    We study the statistics of the amplitude of the synchronization error in chaotic electronic circuits coupled through linear feedback. Depending on the coupling strength, our system exhibits three qualitatively different regimes of synchronization: weak coupling yields independent oscillations; moderate to strong coupling produces a regime of intermittent synchronization known as attractor bubbling; and stronger coupling produces complete synchronization. In the regime of moderate coupling, the probability distribution for the sizes of desynchronization events follows a power law, with an exponent that can be adjusted by changing the coupling strength. Such power-law distributions are interesting, as they appear in many complex systems. However, most of the systems with such a behavior have a fixed value for the exponent of the power law, while here we present an example of a system where the exponent of the power law is easily tuned in real time.

  7. Design of the fundamental power coupler and photocathode inserts for the 112MHz superconducting electron gun

    SciTech Connect (OSTI)

    Xin, T.; Ben-Zvi, I.; Belomestnykh, S.; Chang, X.; Rao, T.; Skaritka, J.; Wu, Q.; Wang, E.; Liang, X.

    2011-07-25

    A 112 MHz superconducting quarter-wave resonator electron gun will be used as the injector of the Coherent Electron Cooling (CEC) proof-of-principle experiment at BNL. Furthermore, this electron gun can be the testing cavity for various photocathodes. In this paper, we present the design of the cathode stalks and a Fundamental Power Coupler (FPC) designated to the future experiments. Two types of cathode stalks are discussed. Special shape of the stalk is applied in order to minimize the RF power loss. The location of cathode plane is also optimized to enable the extraction of low emittance beam. The coaxial waveguide structure FPC has the properties of tunable coupling factor and small interference to the electron beam output. The optimization of the coupling factor and the location of the FPC are discussed in detail. Based on the transmission line theory, we designed a half wavelength cathode stalk which significantly brings down the voltage drop between the cavity and the stalk from more than 5.6 kV to 0.1 kV. The transverse field distribution on cathode has been optimized by carefully choosing the position of cathode stalk inside the cavity. Moreover, in order to decrease the RF power loss, a variable diameter design of cathode stalk has been applied. Compared to the uniform shape of stalk, this design gives us much smaller power losses in important locations. Besides that, we also proposed a fundamental power coupler based on the designed beam parameters for the future proof-of-principle CEC experiment. This FPC should give a strong enough coupling which has the Q external range from 1.5e7 to 2.6e8.

  8. Arkansas Natural Gas Company Hosts Tour With U.S. Deputy Secretary of

    Energy Savers [EERE]

    Energy Poneman | Department of Energy Arkansas Natural Gas Company Hosts Tour With U.S. Deputy Secretary of Energy Poneman Arkansas Natural Gas Company Hosts Tour With U.S. Deputy Secretary of Energy Poneman February 3, 2012 - 12:54pm Addthis WASHINGTON, D.C. - Today, U.S. Deputy Secretary of Energy Daniel Poneman joined with Conway Mayor Tab Townsell and company officials to tour Southwestern Energy's natural gas operations near Conway, Arkansas. During the visit, Poneman highlighted

  9. Baxter County, Arkansas ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Baxter County, Arkansas ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone...

  10. FY2013 Advanced Power Electronics and Electric Motors R&D Annual Progress Report

    SciTech Connect (OSTI)

    Rogers, Susan A.

    2014-02-01

    The Advanced Power Electronics and Electric Motors (APEEM) technology area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor, and traction drive system (TDS) technologies that will leapfrog current on-the-road technologies, leading to lower cost and better efficiency in transforming battery energy to useful work. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency through research in more efficient TDSs.

  11. 2013 Annual Merit Review Results Report - Power Electronics and Electrical Machines Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 3. Power Electronics and Electrical Machines Technologies Because they are essential to electric drive vehicles, improvements in electric traction drives have the potential to significantly reduce petroleum consumption in the transportation sector as well as help meet national economic and energy security goals. Hybrid electric vehicles (HEVs) can reduce petroleum use compared to average conventional vehicles by as much as 50%, while plug-in electric vehicles (PEVs) extend these savings even

  12. Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications U.S. Department of Energy Fuel Cell Technologies Office Presenters: Jeff Casady and John Palmour of Cree Inc. DOE Hosts: Eric Miller and Anant Agarwal 2 Question and Answer * Please type your question into the question box hydrogenandfuelcells.energy.gov 3 | Fuel Cell Technologies Office eere.energy.gov DOE Fuel Cell Technologies Office covers Research, Development, Demonstration &

  13. Review of the State-of-the-Art in Power Electronics Suitable for 10-KW Military Power Systems

    SciTech Connect (OSTI)

    Staunton, R.H.

    2003-12-19

    The purpose of this report is to document the technological opportunities of integrating power electronics-based inverters into a TEP system, primarily in the 10-kW size range. The proposed enhancement offers potential advantages in weight reduction, improved efficiency, better performance in a wider range of generator operating conditions, greater versatility and adaptability, and adequate reliability. In order to obtain strong assurance of the availability of inverters that meet required performance and reliability levels, a market survey was performed. The survey obtained positive responses from several manufacturers in the motor drive and distributed generation industries. This study also includes technology reviews and assessments relating to circuit topologies, reliability issues, vulnerability to pulses of electromagnetic energy, potential improvements in semiconductor materials, and potential performance improvement through cryogenics.

  14. Non-Invasive Beam Detection in a High-Average Power Electron Accelerator

    SciTech Connect (OSTI)

    Williams, J.; Biedron, S.; Harris, J.; Martinez, J.; Milton, S. V.; Van Keuren, J.; Benson, Steve V.; Evtushenko, Pavel; Neil, George R.; Zhang, Shukui

    2013-12-01

    For a free-electron laser (FEL) to work effectively the electron beam quality must meet exceptional standards. In the case of an FEL operating at infrared wavelengths in an amplifier configuration the critical phase space tends to be in the longitudinal direction. Achieving high enough longitudinal phase space density directly from the electron injector system of such an FEL is difficult due to space charge effects, thus one needs to manipulate the longitudinal phase space once the beam energy reaches a sufficiently high value. However, this is fraught with problems. Longitudinal space charge and coherent synchrotron radiation can both disrupt the overall phase space, furthermore, the phase space disruption is exacerbated by the longitudinal phase space manipulation process required to achieve high peak current. To achieve and maintain good FEL performance one needs to investigate the longitudinal emittance and be able to measure it during operation preferably in a non-invasive manner. Using the electro-optical sampling (EOS) method, we plan to measure the bunch longitudinal profile of a high-energy (~120-MeV), high-power (~10kW or more FEL output power) beam.

  15. FY2009 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery

    SciTech Connect (OSTI)

    Olszewski, Mitchell

    2009-11-01

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), all electric vehicles, and fuel-cell-powered automobiles that meet the goals of the Vehicle Technologies Program. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency, with the ability to accommodate higher-temperature environments while achieving high reliability; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control and packaging technologies; and (6) integrated motor/inverter concepts. ORNL's Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2009 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work.

  16. Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect (OSTI)

    Olszewski, M.

    2008-10-15

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of hybrid propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve advanced vehicle efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors, and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs, and fuel-cell-powered automobiles that meet the goals of the Vehicle Technologies Program. A key element in making HEVs practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) more effective thermal control and packaging technologies; and (5) integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies.

  17. System for tomographic determination of the power distribution in electron beams

    DOE Patents [OSTI]

    Elmer, John W. (Pleasanton, CA); Teruya, Alan T. (Livermore, CA); O'Brien, Dennis W. (Livermore, CA)

    1995-01-01

    A tomographic technique for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees form 0.degree. to 360.degree. and the waveforms are recorded by a digitizing storage oscilloscope. Two-dimensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment.

  18. Formation of a laminar electron flow for 300 GHz high-power pulsed gyrotron

    SciTech Connect (OSTI)

    Yamaguchi, Yuusuke; Tatematsu, Yoshinori; Saito, Teruo; Ikeda, Ryosuke; Mudiganti, Jagadish C.; Ogawa, Isamu; Idehara, Toshitaka [Research Center for Development of Far-Infrared Region, University of Fukui, 3-9-1 Bunkyo, Fukui-shi 910-8507 (Japan)

    2012-11-15

    This paper describes the design of a triode magnetron injection gun for use in a 200 kW, 300 GHz gyrotron. As power and frequency increase, the performance of the gyrotron becomes quite sensitive to the quality of the electron beam. Formation of a laminar electron flow is essential for the realization of a high quality beam with a small velocity spread. In this study, a new method is developed for a quantitative evaluation of the laminarity and is applied to optimize the electrode design. The laminarity depends not only on conventional design parameters such as the cathode slant angle but also on the spatial distribution of the electric field along the beam trajectory. In the optimized design, the velocity pitch factors, {alpha}, larger than 1.2 are obtained at 65 kV, 10 A with spreads, {Delta}{alpha}, less than 5%.

  19. System for tomographic determination of the power distribution in electron beams

    DOE Patents [OSTI]

    Elmer, J.W.; Teruya, A.T.; O`Brien, D.W.

    1995-11-21

    A tomographic technique for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees form 0{degree} to 360{degree} and the waveforms are recorded by a digitizing storage oscilloscope. Two-dimensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment. 12 figs.

  20. System for tomographic determination of the power distribution in electron beams

    DOE Patents [OSTI]

    Elmer, J.W.; Teruya, A.T.; O'Brien, D.W.

    1995-01-17

    A tomographic technique is disclosed for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees form 0[degree] to 360[degree] and the waveforms are recorded by a digitizing storage oscilloscope. Two-dimensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment. 12 figures.

  1. High-power beam injectors for 100 KW free-electron lasers

    SciTech Connect (OSTI)

    Todd, A. M.; Wood R. L.; Bluem, H.; Young, L. M.; Wiseman, M.; Schultheiss, T.; Schrage, D. L.; Russell, S. J.; Rode, C. H.; Rimmer, R.; Nguyen, D. C.; Kelley, J. P.; Kurennoy, S.; wood, r

    2003-01-01

    A key technology issue on the path to high-power FEL operation is the demonstration of reliable, high-brightness, high-power injector operation. We describe two ongoing programs to produce 100 mA injectors as drivers for 100 kW free-electron lasers. In one approach, in collaboration with the Thomas Jefferson National Accelerator Facility, we are fabricating a 750 MHz superconducting RF cryomodule that will be integrated with a room-temperature DC photocathode gun and tested at the Laboratory. In the other approach, in collaboration with Los Alamos National Laboratory, a high-current 700 MHz, normal-conducting, RF photoinjector is being designed and will undergo thermal management testing at the Laboratory. We describe the design, the projected performance and the status of both injectors.

  2. Japanese power electronics inverter technology and its impact on the American air conditioning industry

    SciTech Connect (OSTI)

    Ushimaru, Kenji.

    1990-08-01

    Since 1983, technological advances and market growth of inverter- driven variable-speed heat pumps in Japan have been dramatic. The high level of market penetration was promoted by a combination of political, economic, and trade policies in Japan. A unique environment was created in which the leading domestic industries-- microprocessor manufacturing, compressors for air conditioning and refrigerators, and power electronic devices--were able to direct the development and market success of inverter-driven heat pumps. As a result, leading US variable-speed heat pump manufacturers should expect a challenge from the Japanese producers of power devices and microprocessors. Because of the vertically-integrated production structure in Japan, in contrast to the out-sourcing culture of the United States, price competition at the component level (such as inverters, sensors, and controls) may impact the structure of the industry more severely than final product sales. 54 refs., 47 figs., 1 tab.

  3. DOE FreedomCAR and vehicle technologies program advanced power electronic and electrical machines annual review report

    SciTech Connect (OSTI)

    Olszewski, Mitch

    2006-10-11

    This report is a summary of the Review Panel at the FY06 DOE FreedomCAR and Vehicle Technologies (FCVT) Annual Review of Advanced Power Electronics and Electric Machine (APEEM) research activities held on August 15-17, 2006.

  4. Arkansas Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    22,018 21,854 17,958 14,702 18,552 22,561 2001-2015 Residential 557 514 546 731 2,155 3,933 1989-2015 Commercial 2,308 2,444 2,571 3,048 3,863 4,724 1989-2015 Industrial 6,345 6,370 6,286 6,790 7,098 7,148 2001-2015 Vehicle Fuel 3 3 3 3 3 3 2010-2015 Electric Power 12,805 12,523 8,552 4,130 5,434 6,754

  5. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Wide Bandgap Semiconductors for Power Electronics Technology Assessment

    Energy Savers [EERE]

    Wide Bandgap Semiconductors for Power Electronics Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Wide Bandgap Semiconductors for Power Electronics is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR

  6. PROJECT PROFILE: Combined PV/Battery Grid Integration with High Frequency Magnetics Enabled Power Electronics (SuNLaMP)

    Broader source: Energy.gov [DOE]

    This project will develop new power electronics devices, systems, and materials to address power electronic and dispatchability challenges that result from connecting hundreds of gigawatts of solar energy onto the electricity grid. These devices will incorporate advanced high-frequency (HF) magnetics along with the latest wide bandgap silicon carbide (SiC) switches. This design enables cost-effective grid integration of PV while increasing its dispatchability.

  7. Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 166 1980's 194 184 174 194 189 157 150 145 157 145 1990's 67 136 133 93 85 104 89 56 38 41 2000's 39 30 38 37 40 46 44 37 12 20 2010's 29 46 82 135 189 - = No Data

  8. Arkansas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    + Lease Condensate Proved Reserves (Million Barrels) Arkansas Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 29 2010's 42 40 55 41 67 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31

  9. Arkansas Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Reserves in Nonproducing Reservoirs (Million Barrels) Arkansas Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 2 5 2000's 7 4 5 2 3 2 1 0 0 0 2010's 1 0 11 10 8 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved Nonproducing Reserves of Crude

  10. Arkansas Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Net Withdrawals (Million Cubic Feet) Arkansas Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 14 -19 -11 -34 36 -8 4 9 -12 -32 1990's 106 -11 -1 9 5 -27 -85 -11 2 -1 2000's -1 -2 4 52 -36 -20 12 -3 -21 -24 2010's 2 -7 9 12 14 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  11. Arkansas Natural Gas Liquids Lease Condensate, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Reserves Based Production (Million Barrels) Arkansas Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 1 1 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  12. Arkansas Natural Gas Plant Liquids, Expected Future Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Expected Future Production (Million Barrels) Arkansas Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 16 1980's 15 15 12 9 10 9 15 15 11 8 1990's 7 3 2 2 3 3 2 3 3 3 2000's 3 3 3 2 2 2 2 2 1 2 2010's 2 3 3 4 5 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  13. Arkansas Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) Arkansas Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 17 1980's 16 16 15 11 12 11 16 16 13 9 1990's 9 5 4 4 6 6 4 7 5 5 2000's 5 5 4 3 3 3 4 3 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Liquids

  14. Arkansas Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Billion Cubic Feet) Arkansas Dry Natural Gas Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's -1 22 -2 1980's -7 39 93 -15 90 -127 55 26 124 -46 1990's 94 110 183 -62 95 64 33 -21 -1 -48 2000's -3 28 27 21 13 8 -26 -27 -64 5 2010's -34 728 -743 -78 -3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  15. Arkansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Arkansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 109 120 100 1980's 117 121 158 206 188 175 123 129 159 166 1990's 164 173 204 188 186 182 200 189 170 163 2000's 154 160 157 166 170 174 188 269 456 698 2010's 951 1,079 1,151 1,140 1,142 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  16. Arkansas Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) Arkansas Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 175 32 58 1980's 89 76 116 157 167 178 262 229 232 288 1990's 118 195 175 123 95 92 108 101 653 376 2000's 48 88 107 134 91 142 113 146 189 621 2010's 301 324 6,610 284 1,094 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  17. Arkansas Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) Arkansas Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 50 76 48 1980's 116 61 87 181 146 105 180 215 118 202 1990's 100 163 182 98 147 107 96 205 596 761 2000's 207 128 114 148 200 122 101 321 1,249 1,912 2010's 1,072 631 1,754 560 171 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  18. Arkansas Natural Gas LNG Storage Additions (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Additions (Million Cubic Feet) Arkansas Natural Gas LNG Storage Additions (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 14 5 21 0 44 18 22 52 42 30 1990's 128 38 50 53 73 29 0 57 64 52 2000's 52 50 85 36 76 72 45 54 51 27 2010's 42 47 57 52 56 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  19. Arkansas Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals (Million Cubic Feet) Arkansas Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 24 32 34 8 26 18 43 54 62 1990's 23 49 51 44 68 56 85 68 62 53 2000's 52 52 81 88 40 51 57 57 72 51 2010's 40 53 48 40 42 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  20. Arkansas Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Arkansas Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 982 966 7,077 4,709 6,270 6,646 7,646 1990's 637 188 268 352 467 468 451 508 405 405 2000's 441 653 890 504 490 433 509 404 470 489 2010's 529 423 622 797 871 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  1. Using Wireless Power Meters to Measure Energy Use of Miscellaneous and Electronic Devices in Buildings

    SciTech Connect (OSTI)

    UC Berkeley, Berkeley, CA USA; Brown, Richard; Lanzisera, Steven; Cheung, Hoi Ying; Lai, Judy; Jiang, Xiaofan; Dawson-Haggerty, Stephen; Taneja, Jay; Ortiz, Jorge; Culler, David

    2011-05-24

    Miscellaneous and electronic devices consume about one-third of the primary energy used in U.S. buildings, and their energy use is increasing faster than other end-uses. Despite the success of policies, such as Energy Star, that promote more efficient miscellaneous and electronic products, much remains to be done to address the energy use of these devices if we are to achieve our energy and carbon reduction goals. Developing efficiency strategies for these products depends on better data about their actual usage, but very few studies have collected field data on the long-term energy used by a large sample of devices due to the difficulty and expense of collecting device-level energy data. This paper describes the development of an improved method for collecting device-level energy and power data using small, relatively inexpensive wireless power meters. These meters form a mesh network based on Internet standard protocols and can form networks of hundreds of metering points in a single building. Because the meters are relatively inexpensive and do not require manual data downloading, they can be left in the field for months or years to collect long time-series energy use data. In addition to the metering technology, we also describe a field protocol used to collect comprehensive, robust data on the miscellaneous and electronic devices in a building. The paper presents sample results from several case study buildings, in which all the plug-in devices for several homes were metered, and a representative sample of several hundred plug-in devices in a commercial office building were metered for several months.

  2. Update on electron-cloud power deposition for the LHC arcdipoles

    SciTech Connect (OSTI)

    Furman, Miguel A.; Chaplin, Vernon H.

    2006-01-30

    We revisit the estimation of the power deposited by the electron cloud (EC) in the arc dipoles of the LHC by means of simulations. We adopt, as simulation input, a set of electron-related parameters closely resembling those used in recent simulations at CERN [1]. We explore values for the bunch population Nb in the range 0.4 x 10^11 <= Nb <=1.6 x 10^11, peak secondary electron yield (SEY) delta max in the range 1.0 <= delta max <= 2.0, and bunch spacing tb either 25 or 75 ns. For tb=25 ns we find that the EC average power deposition per unit length of beam pipe, dPbar/dz, will exceed the available cooling capacity, which we take to be 1.7 W/m at nominal Nb [2], if delta max exceeds ~1.3, but dPbar/dz will be comfortably within the cooling capacity if delta max <= 1.2. For tb =75 ns dPbar/dz exceeds the cooling capacity only when delta max > 2 and Nb > 1.5 x 10^11 taken in combination. The rediffused component of the secondary electron emission spectrum plays a significant role: if we artificially suppress this component while keeping delta max fixed, dPbar/dz is roughly cut in half for most values of Nb explored here, and in this case we find good agreement with the results in Ref. 1, as expected. We provide a fairly detailed explanation of the mechanism responsible for such a relatively large effect. We assess the sensitivity of our results to numerical simulation parameters, and to physical parameters such as the photoelectric yield, bunch train length, etc. Owing to the lack of detailed knowledge of the electron emission spectrum, the sensitivity of dPbar/dz to the rediffused component appears to be the most significant source of uncertainty in our results. Nevertheless, taking our results as a whole, the condition delta max <= 1.2 seems to be a conservative requirement for the cooling capacity not to be exceeded.

  3. Stopping power for a charged particle moving through three-dimensional nonideal finite-temperature electron gases

    SciTech Connect (OSTI)

    Zhang Ya; Song Yuanhong; Wang Younian [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2011-07-15

    We investigate the interaction of a charged particle with nonideal 3D electron gases by using the quantum hydrodynamic (QHD) theory. The stopping power for a nonideal electron gas at a finite-temperature has been theoretically analyzed and numerically calculated. In our calculation, the impact of nonideality and temperature on stopping power is stressed and clearly presented. The QHD dielectric function is obtained and compared to random-phase approximation result. It is shown that the QHD theory can properly describe the stopping power for higher particle velocities greater than the Bohr velocity.

  4. Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect (OSTI)

    Olszewski, M.

    2006-10-31

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and DaimlerChrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Vehicle Systems subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive and heavy truck technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles and heavy trucks will function as a unified system to improve fuel efficiency. This work also supports the development of advanced automotive accessories and the reduction of parasitic losses (e.g., aerodynamic drag, thermal management, friction and wear, and rolling resistance). In supporting the development of hybrid propulsion systems, the Vehicle Systems subprogram has enabled the development of technologies that will significantly improve fuel economy, comply with projected emissions and safety regulations, and use fuels produced domestically. The Vehicle Systems subprogram supports the efforts of the FreedomCAR and Fuel Partnership and the 21st Century Truck Partnership through a three-phase approach intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the Vehicle Systems subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR Program. A key element in making hybrid electric vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) Novel traction motor designs that result in increased power density and lower cost; (2) Inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) Converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) More effective thermal control and packaging technologies; and (5) Integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, Power Electronics and Electric Machinery Program. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2006 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work. Summaries of major accomplishments for each technical project are give.

  5. Partial Shade Evaluation of Distributed Power Electronics for Photovoltaic Systems: Preprint

    SciTech Connect (OSTI)

    Deline, C.; Meydbrav, J.; Donovan, M.

    2012-06-01

    Site survey data for several residential installations are provided, showing the extent and frequency of shade throughout the year. This background information is used to design a representative shading test that is conducted on two side-by-side 8-kW photovoltaic (PV) installations. One system is equipped with a standard string inverter, while the other is equipped with microinverters on each solar panel. Partial shade is applied to both systems in a comprehensive range of shading conditions, simulating one of three shade extents. Under light shading conditions, the microinverter system produced the equivalent of 4% annual performance improvement, relative to the string inverter system. Under moderate shading conditions, the microinverter system outperformed the string inverter system by 8%, and under heavy shading the microinverter increased relative performance by 12%. In all three cases, the percentage of performance loss that is recovered by the use of distributed power electronics is 40%-50%. Additionally, it was found that certain shading conditions can lead to additional losses in string inverters due to peak-power tracking errors and voltage limitations.

  6. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Arkansas

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-26

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Arkansas.

  7. Arkansas Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Arkansas Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.92 0.86 0.85 0.88 0.85 0.85 0.77 2000's 0.85 0.78 0.80 0.75 0.71 0.70 0.72 0.69 0.73 0.70 2010's 0.76 0.72 0.63 0.71 0.75 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  8. Arkansas Natural Gas Liquids Lease Condensate, Proved Reserves (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Proved Reserves (Million Barrels) Arkansas Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 1980's 1 1 3 2 2 2 1 1 2 1 1990's 2 2 2 2 3 3 2 4 2 2 2000's 2 2 1 1 1 1 2 1 1 1 2010's 2 2 2 1 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring

  9. Arkansas Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Arkansas Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 1980's 1 1 1 1 1 1 1 1 1 1 1990's 1 0 0 0 0 0 0 0 0 0 2000's 0 1 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  10. Arkansas Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Arkansas Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,725 1980's 1,796 1,821 1,974 2,081 2,240 2,032 2,011 2,018 2,000 1,782 1990's 1,739 1,672 1,752 1,555 1,610 1,566 1,472 1,479 1,332 1,546 2000's 1,584 1,619 1,654 1,666 1,837 1,967 2,271 3,306 5,628 10,872 2010's 14,181 16,374 11,039 13,524

  11. Arkansas Nonassociated Natural Gas, Wet After Lease Separation, Proved

    Gasoline and Diesel Fuel Update (EIA)

    Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Arkansas Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,559 1980's 1,602 1,637 1,800 1,887 2,051 1,875 1,861 1,873 1,843 1,637 1990's 1,672 1,536 1,619 1,462 1,525 1,462 1,383 1,423 1,294 1,505 2000's 1,545 1,589 1,616 1,629 1,797 1,921 2,227

  12. Arkansas Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Billion Cubic Feet) Arkansas Dry Natural Gas Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 23 37 108 1980's 138 106 220 296 261 138 100 93 110 71 1990's 35 27 88 76 92 59 57 96 45 27 2000's 14 119 111 125 170 281 491 1,148 1,754 4,627 2010's 3,082 2,093 1,399 3,419 1,505 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  13. Arkansas Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) New Field Discoveries (Billion Cubic Feet) Arkansas Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4 1 3 1980's 5 17 7 4 2 13 0 0 0 0 1990's 3 0 1 0 1 0 2 0 0 1 2000's 0 0 24 0 4 4 7 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  14. Arkansas Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Arkansas Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 7 8 6 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  15. Arkansas Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Arkansas Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,402 4,956 5,362 4,353 5,720 5,469 3,940 1990's 6,464 1,218 5,570 6,053 4,283 5,083 5,124 6,349 7,980 1,822 2000's 1,468 849 536 615 1,364 1,288 1,351 1,502 2,521 4,091 2010's 5,340 6,173 6,599 6,605 6,452 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  16. Arkansas Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Arkansas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60 60,355 61,630 61,848 1990's 61,530 61,731 62,221 62,952 63,821 65,490 67,293 68,413 69,974 71,389 2000's 72,933 71,875 71,530 71,016 70,655 69,990 69,475 69,495 69,144 69,043 2010's 67,987 67,815 68,765 68,791 69,011 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  17. Arkansas Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Arkansas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1 1,410 1,151 1,412 1990's 1,396 1,367 1,319 1,364 1,417 1,366 1,488 1,336 1,300 1,393 2000's 1,414 1,122 1,407 1,269 1,223 1,120 1,120 1,055 1,104 1,025 2010's 1,079 1,133 990 1,020 1,009 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  18. Arkansas Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Arkansas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 475 480,839 485,112 491,110 1990's 488,850 495,148 504,722 513,466 521,176 531,182 539,952 544,460 550,017 554,121 2000's 560,055 552,716 553,192 553,211 554,844 555,861 555,905 557,966 556,746 557,355 2010's 549,970 551,795 549,959 549,764 549,034 - = No Data Reported; -- = Not Applicable; NA =

  19. Arkansas Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Arkansas Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 11,591 10,192 8,979 2000's 8,749 8,676 7,854 8,369 7,791 8,943 10,630 10,235 9,927 9,125 2010's 9,544 11,286 10,606 11,437 11,580 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  20. Arkansas Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Arkansas Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,499 3,667 3,475 1970's 3,235 2,563 1,197 1,118 952 899 823 674 883 1,308 1980's 1,351 1,327 1,287 1,258 1,200 1,141 1,318 1,275 1,061 849 1990's 800 290 413 507 553 488 479 554 451 431 2000's 377 408 395 320 254 231 212 162 139 168 2010's 213 268 424 486 582 - = No Data Reported; -- = Not Applicable; NA =

  1. Arkansas Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Arkansas Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 78,097 75,575 86,552 68,206 42,688 102,046 42,226 1990's 99,456 83,864 85,177 122,596 24,326 180,117 76,671 71,449 61,012 54,382 2000's 55,057 16,901 161,871 166,329 183,299 190,533 193,491 269,886 446,551 680,613

  2. Arkansas Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) Arkansas Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 260,113 266,485 252,853 2000's 251,329 227,943 242,325 246,916 215,124 213,609 233,868 226,439 234,901 244,193 2010's 271,515 284,076 296,132 282,120 268,453 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  3. Grid Interconnection and Performance Testing Procedures for Vehicle-To-Grid (V2G) Power Electronics: Preprint

    SciTech Connect (OSTI)

    Kramer, W.; Chakraborty, S.; Kroposki, B.; Hoke, A.; Martin, G.; Markel, T.

    2012-03-01

    Bidirectional power electronics can add vehicle-to-grid (V2G) capability in a plug-in vehicle, which then allows the vehicle to operate as a distributed resource (DR). The uniqueness of the battery-based V2G power electronics requires a test procedure that will not only maintain IEEE interconnection standards, but can also evaluate the electrical performance of the vehicle working as a DR. The objective of this paper is to discuss a recently published NREL technical report that provides interim test procedures for V2G vehicles for their integration into the electrical distribution systems and for their performance in terms of continuous output power, efficiency, and losses. Additionally, some other test procedures are discussed that are applicable to a V2G vehicle that desires to provide power reserve functions. A few sample test results are provided based on testing of prototype V2G vehicles at NREL.

  4. Table 2. Nuclear power plant data

    Gasoline and Diesel Fuel Update (EIA)

    Revised: February 3, 2016 (revision) Next release date: Late 2018 Table 2. Nuclear power plant data as of June 30, 2013 Reactor name State Reactor type Reactor vendora Core size (number of assemblies) Startup date (year) b License expiration (year) Actual retirement (year) Arkansas Nuclear 1 AR PWR B&W 177 1974 2034 Arkansas Nuclear 2 AR PWR CE 177 1978 2038 Beaver Valley 1 PA PWR WE 157 1976 2036 Beaver Valley 2 PA PWR WE 157 1987 2047 Big Rock Point MI BWR GE 84 1964 2057 1997 Braidwood 1

  5. Arkansas Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Arkansas Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,660 1,681 1,703 1980's 1,774 1,801 1,958 2,069 2,227 2,019 1,992 1,997 1,986 1,772 1990's 1,731 1,669 1,750 1,552 1,607 1,563 1,470 1,475 1,328 1,542 2000's 1,581 1,616 1,650 1,663 1,835 1,964 2,269 3,305 5,626 10,869 2010's 14,178 16,370 11,035 13,518 12,789 - = No Data Reported; -- = Not

  6. Arkansas Natural Gas Underground Storage Volume (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Underground Storage Volume (Million Cubic Feet) Arkansas Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 27,878 27,848 27,810 27,846 27,946 28,419 28,946 29,427 29,707 29,734 29,656 29,429 1991 27,498 27,132 26,811 26,616 26,747 27,086 27,573 27,587 27,587 27,587 26,958 26,294 1992 25,642 25,124 24,681 24,523 24,507 25,016 25,868 26,532 26,966 26,770 26,404 25,781 1993 25,148 24,276 23,798 23,676 22,852 22,866 22,856 22,856

  7. Arkansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Wellhead Price (Dollars per Thousand Cubic Feet) Arkansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.16 0.16 1970's 0.16 0.17 0.17 0.18 0.26 0.35 0.53 0.58 0.75 0.96 1980's 0.70 1.81 2.13 2.29 2.54 2.55 2.51 2.29 1.94 2.41 1990's 2.06 1.92 2.15 2.81 2.65 3.02 3.82 4.03 3.92 4.10 2000's 5.23 4.99 4.43 5.17 5.68 7.26 6.43 6.61 8.72 3.43 2010's 3.84 - = No Data Reported; -- = Not Applicable;

  8. Arkansas Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Arkansas Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.18 0.18 0.18 1970's 0.19 0.22 0.24 0.26 0.30 0.43 0.52 0.71 0.86 1.12 1980's 1.78 2.12 2.63 2.94 2.97 2.78 2.46 2.64 2.07 2.30 1990's 2.17 2.06 1.78 1.64 1.61 1.45 2.41 2.42 1.58 1.38 2000's 2.41 4.09 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  9. Slit disk for modified faraday cup diagnostic for determining power density of electron and ion beams

    DOE Patents [OSTI]

    Teruya, Alan T. (Livermore, CA); Elmer; John W. (Danville, CA); Palmer, Todd A. (State College, PA)

    2011-03-08

    A diagnostic system for characterization of an electron beam or an ion beam includes an electrical conducting disk of refractory material having a circumference, a center, and a Faraday cup assembly positioned to receive the electron beam or ion beam. At least one slit in the disk provides diagnostic characterization of the electron beam or ion beam. The at least one slit is located between the circumference and the center of the disk and includes a radial portion that is in radial alignment with the center and a portion that deviates from radial alignment with the center. The electron beam or ion beam is directed onto the disk and translated to the at least one slit wherein the electron beam or ion beam enters the at least one slit for providing diagnostic characterization of the electron beam or ion beam.

  10. Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems

    DOE Patents [OSTI]

    King, Robert Dean (Schenectady, NY); DeDoncker, Rik Wivina Anna Adelson (Malvern, PA)

    1998-01-01

    A method and apparatus for load leveling of a battery in an electrical power system includes a power regulator coupled to transfer power between a load and a DC link, a battery coupled to the DC link through a first DC-to-DC converter and an auxiliary passive energy storage device coupled to the DC link through a second DC-to-DC converter. The battery is coupled to the passive energy storage device through a unidirectional conducting device whereby the battery can supply power to the DC link through each of the first and second converters when battery voltage exceeds voltage on the passive storage device. When the load comprises a motor capable of operating in a regenerative mode, the converters are adapted for transferring power to the battery and passive storage device. In this form, resistance can be coupled in circuit with the second DC-to-DC converter to dissipate excess regenerative power.

  11. Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems

    DOE Patents [OSTI]

    King, R.D.; DeDoncker, R.W.A.A.

    1998-01-20

    A method and apparatus for load leveling of a battery in an electrical power system includes a power regulator coupled to transfer power between a load and a DC link, a battery coupled to the DC link through a first DC-to-DC converter and an auxiliary passive energy storage device coupled to the DC link through a second DC-to-DC converter. The battery is coupled to the passive energy storage device through a unidirectional conducting device whereby the battery can supply power to the DC link through each of the first and second converters when battery voltage exceeds voltage on the passive storage device. When the load comprises a motor capable of operating in a regenerative mode, the converters are adapted for transferring power to the battery and passive storage device. In this form, resistance can be coupled in circuit with the second DC-to-DC converter to dissipate excess regenerative power. 8 figs.

  12. Vehicle Technologies Office Merit Review 2015: Power Electronics Thermal Management R&D

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about power...

  13. Vehicle Technologies Office Merit Review 2014: North American Power Electronics Supply Chain Analysis

    Broader source: Energy.gov [DOE]

    Presentation given by Synthesis Partners at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about North American power...

  14. Powering microbes with electricity: direct electron transfer from electrodes to microbes

    SciTech Connect (OSTI)

    Lovley, DR

    2010-09-16

    P>The discovery of electrotrophs, microorganisms that can directly accept electrons from electrodes for the reduction of terminal electron acceptors, has spurred the investigation of a wide range of potential applications. To date, only a handful of pure cultures have been shown to be capable of electrotrophy, but this process has also been inferred in many studies with undefined consortia. Potential electron acceptors include: carbon dioxide, nitrate, metals, chlorinated compounds, organic acids, protons and oxygen. Direct electron transfer from electrodes to cells has many advantages over indirect electrical stimulation of microbial metabolism via electron shuttles or hydrogen production. Supplying electrons with electrodes for the bioremediation of chlorinated compounds, nitrate or toxic metals may be preferable to adding organic electron donors or hydrogen to the subsurface or bioreactors. The most transformative application of electrotrophy may be microbial electrosynthesis in which carbon dioxide and water are converted to multi-carbon organic compounds that are released extracellularly. Coupling photovoltaic technology with microbial electrosynthesis represents a novel photosynthesis strategy that avoids many of the drawbacks of biomass-based strategies for the production of transportation fuels and other organic chemicals. The mechanisms for direct electron transfer from electrodes to microorganisms warrant further investigation in order to optimize envisioned applications.

  15. Integrated three-dimensional module heat exchanger for power electronics cooling

    DOE Patents [OSTI]

    Bennion, Kevin; Lustbader, Jason

    2013-09-24

    Embodiments discussed herein are directed to a power semiconductor packaging that removes heat from a semiconductor package through one or more cooling zones that are located in a laterally oriented position with respect to the semiconductor package. Additional embodiments are directed to circuit elements that are constructed from one or more modular power semiconductor packages.

  16. Electron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    density measurement by differential interferometry W. X. Ding, D. L. Brower, B. H. Deng, and T. Yates Electrical Engineering Department, University of California-Los Angeles, Los Angeles, California 90095 ͑Received 5 May 2006; presented on 10 May 2006; accepted 16 June 2006; published online 26 September 2006͒ A novel differential interferometer is being developed to measure the electron density gradient and its fluctuations. Two separate laser beams with slight spatial offset and frequency

  17. Trigger probe for determining the orientation of the power distribution of an electron beam

    DOE Patents [OSTI]

    Elmer, John W. (Danville, CA); Palmer, Todd A. (Livermore, CA); Teruya, Alan T. (Livermore, CA)

    2007-07-17

    The present invention relates to a probe for determining the orientation of electron beams being profiled. To accurately time the location of an electron beam, the probe is designed to accept electrons from only a narrowly defined area. The signal produced from the probe is then used as a timing or triggering fiducial for an operably coupled data acquisition system. Such an arrangement eliminates changes in slit geometry, an additional signal feedthrough in the wall of a welding chamber and a second timing or triggering channel on a data acquisition system. As a result, the present invention improves the accuracy of the resulting data by minimizing the adverse effects of current slit triggering methods so as to accurately reconstruct electron or ion beams.

  18. Electron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron thermal transport within magnetic islands in the reversed-field pinch a... H. D. Stephens, 1,b͒ D. J. Den Hartog, 1,3 C. C. Hegna, 1,2 and J. A. Reusch 1 1 Department of Physics, University of Wisconsin-Madison, 1150 University Ave., Madison, Wisconsin 53706, USA 2 Department of Engineering Physics, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, Wisconsin 53706, USA 3 Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, University of

  19. Performance and Economic Analysis of Distributed Power Electronics in Photovoltaic Systems

    SciTech Connect (OSTI)

    Deline, C.; Marion, B.; Granata, J.; Gonzalez, S.

    2011-01-01

    Distributed electronics like micro-inverters and DC-DC converters can help recover mismatch and shading losses in photovoltaic (PV) systems. Under partially shaded conditions, the use of distributed electronics can recover between 15-40% of annual performance loss or more, depending on the system configuration and type of device used. Additional value-added features may also increase the benefit of using per-panel distributed electronics, including increased safety, reduced system design constraints and added monitoring and diagnostics. The economics of these devices will also become more favorable as production volume increases, and integration within the solar panel?s junction box reduces part count and installation time. Some potential liabilities of per-panel devices include increased PV system cost, additional points of failure, and an insertion loss that may or may not offset performance gains under particular mismatch conditions.

  20. Synergy of inelastic and elastic energy loss. Temperature effects and electronic stopping power dependence

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zarkadoula, Eva; Xue, Haizhou; Zhang, Yanwen; Weber, William J.

    2015-06-16

    A combination of an inelastic thermal spike model suitable for insulators and molecular dynamics simulations is used to study the effects of temperature and electronic energy loss on ion track formation, size and morphology in SrTiO3 systems with pre-existing disorder. We find temperature dependence of the ion track size. In addition, we find a threshold in the electronic energy loss for a given pre-existing defect concentration, which indicates a threshold in the synergy between the inelastic and elastic energy loss.

  1. Synergy of inelastic and elastic energy loss. Temperature effects and electronic stopping power dependence

    SciTech Connect (OSTI)

    Zarkadoula, Eva; Xue, Haizhou; Zhang, Yanwen; Weber, William J.

    2015-06-16

    A combination of an inelastic thermal spike model suitable for insulators and molecular dynamics simulations is used to study the effects of temperature and electronic energy loss on ion track formation, size and morphology in SrTiO3 systems with pre-existing disorder. We find temperature dependence of the ion track size. In addition, we find a threshold in the electronic energy loss for a given pre-existing defect concentration, which indicates a threshold in the synergy between the inelastic and elastic energy loss.

  2. FY 2005 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect (OSTI)

    Olszewski, M

    2005-11-22

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and DaimlerChrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from ''Freedom'' and ''Cooperative Automotive Research''), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Vehicle Systems subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive and heavy truck technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles and heavy trucks will function as a unified system to improve fuel efficiency. This work also supports the development of advanced automotive accessories and the reduction of parasitic losses (e.g., aerodynamic drag, thermal management, friction and wear, and rolling resistance). In supporting the development of hybrid propulsion systems, the Vehicle Systems subprogram has enabled the development of technologies that will significantly improve fuel economy, comply with projected emissions and safety regulations, and use fuels produced domestically. The Vehicle Systems subprogram supports the efforts of the FreedomCAR and Fuel and the 21st Century Truck Partnerships through a three-phase approach intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements, then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the Vehicle Systems subprogram will help remove technical and cost barriers to enable technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR Program. A key element in making hybrid electric vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include: (1) Novel traction motor designs that result in increased power density and lower cost; (2) Inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) Converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) More effective thermal control and packaging technologies; and (5) Integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, Power Electronics and Electric Machinery Program. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2004 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work.

  3. FY2007 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect (OSTI)

    Olszewski, Mitchell

    2007-10-01

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as 'FreedomCAR' (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieving the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of hybrid propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve advanced vehicle efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR and Vehicle Technologies Program. A key element in making hybrid electric vehicles (HEVs) practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) more effective thermal control and packaging technologies; and (5) integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2007 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work.

  4. Nano-structure multilayer technology fabrication of high energy density capacitors for the power electronic building book

    SciTech Connect (OSTI)

    Barbee, T.W.; Johnson, G.W.; Wagner, A.V.

    1997-10-21

    Commercially available capacitors do not meet the specifications of the Power Electronic Building Block (PEBB) concept. We have applied our propriety nanostructure multilayer materials technology to the fabrication of high density capacitors designed to remove this impediment to PEBB progress. Our nanostructure multilayer capacitors will also be enabling technology in many industrial and military applications. Examples include transient suppression (snubber capacitors), resonant circuits, and DC filtering in PEBB modules. Additionally, weapon applications require compact energy storage for detonators and pulsed-power systems. Commercial applications run the gamut from computers to lighting to communications. Steady progress over the last five years has brought us to the threshold of commercial manufacturability. We have demonstrated a working dielectric energy density of > 11 J/cm3 in 20 nF devices designed for 1 kV operation.

  5. FY2010 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect (OSTI)

    Olszewski, Mitchell

    2010-10-01

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from ''Freedom'' and ''Cooperative Automotive Research''), it represents DOE's commitment to developing public-private partnerships to fund high risk, high payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Advanced Power Electronics and Electric Machines (APEEM) subprogram within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the APEEM subprogram has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three phase approach intended to: (1) identify overall propulsion and vehicle related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and PE; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), battery electric vehicles, and fuel-cell-powered automobiles that meet the goals of the VTP. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the PE and electrical machines subsystems of the traction drive system. Areas of development include: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency, with the ability to accommodate higher temperature environments while achieving high reliability; (3) converter concepts that use methods of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control through innovative packaging technologies; and (6) integrated motor/inverter concepts. ORNL's Power Electronics and Electric Machines Research Program conducts fundamental research, evaluates hardware, and assists in the technical direction of the VTP APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2010 and conveys highlights of their accomplishment

  6. Interpretation of the effects of electron cyclotron power absorption in pre-disruptive tokamak discharges in ASDEX Upgrade

    SciTech Connect (OSTI)

    Nowak, S.; Lazzaro, E.; Granucci, G.; Esposito, B.; Maraschek, M.; Zohm, H.; Sauter, O.; Brunetti, D.; Collaboration: ASDEX Upgrade Team

    2012-09-15

    Tokamak disruptions are events of fatal collapse of the magnetohydrodynamic (MHD) confinement configuration, which cause a rapid loss of the plasma thermal energy and the impulsive release of magnetic energy and heat on the tokamak first wall components. The physics of the disruptions is very complex and non-linear, strictly associated with the dynamics of magnetic tearing perturbations. The crucial problem of the response to the effects of localized heat deposition and current driven by external (rf) sources to avoid or quench the MHD tearing instabilities has been investigated both experimentally and theoretically on the ASDEX Upgrade tokamak. The analysis of the conditions under which a disruption can be prevented by injection of electron cyclotron (EC) rf power, or, alternatively, may be caused by it, shows that the local EC heating can be more significant than EC current drive in ensuring neoclassical tearing modes (NTMs) stability, due to two main reasons: first, the drop of temperature associated with the island thermal short circuit tends to reduce the neoclassical character of the instability and to limit the EC current drive generation; second, the different effects on the mode evolution of both the location of the power deposition relative to the island separatrix and the island shape deformation lead to less strict requirements of precise power deposition focussing. A contribution to the validation of theoretical models of the events associated with NTM is given and can be used to develop concepts for their control, relevant also for ITER-like scenarios.

  7. FY2011 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect (OSTI)

    Olszewski, Mitchell

    2011-10-01

    The U.S. Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the U.S. Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE's commitment to developing public-private partnerships to fund high risk-high reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research') that ran from 2002 through 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machines (PEEM) subprogram within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the PEEM subprogram has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The PEEM subprogram supports the efforts of the U.S. DRIVE partnership through a three phase approach intended to: (1) identify overall propulsion and vehicle related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component R&D activities; (2) develop and validate individual subsystems and components, including EMs and PE; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), battery electric vehicles, and fuel-cell-powered automobiles that meet the goals of the VTP. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, efficiency, and cost targets for the PE and EM subsystems of the traction drive system. Areas of development include: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency with the ability to accommodate higher temperature environments while achieving high reliability; (3) converter concepts that use methods of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control through innovative packaging technologies; and (6) integrated motor-inverter traction drive system concepts. ORNL's PEEM research program conducts fundamental research, evaluates hardware, and assists in the technical direction of the VTP Advanced Power Electronics and Electric Motors (APEEM) program. In this role, ORNL serves on the U.S. DRIVE Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. DOE's continuing R&D into advanced vehicle technologies for transportation offers the possibility of reducing the nation's dependence on foreign oil and the negative economic impacts of crude oil price fluctuations. It also supports the Administration's goal of deploying 1 million PHEVs by 2015.

  8. Interfacial electron and phonon scattering processes in high-powered nanoscale applications.

    SciTech Connect (OSTI)

    Hopkins, Patrick E.

    2011-10-01

    The overarching goal of this Truman LDRD project was to explore mechanisms of thermal transport at interfaces of nanomaterials, specifically linking the thermal conductivity and thermal boundary conductance to the structures and geometries of interfaces and boundaries. Deposition, fabrication, and post possessing procedures of nanocomposites and devices can give rise to interatomic mixing around interfaces of materials leading to stresses and imperfections that could affect heat transfer. An understanding of the physics of energy carrier scattering processes and their response to interfacial disorder will elucidate the potentials of applying these novel materials to next-generation high powered nanodevices and energy conversion applications. An additional goal of this project was to use the knowledge gained from linking interfacial structure to thermal transport in order to develop avenues to control, or 'tune' the thermal transport in nanosystems.

  9. Demonstration of Modular BioPower Using Poultry Litter

    Office of Scientific and Technical Information (OSTI)

    Demonstration of a Small Modular BioPower System Using Poultry Litter DOE SBIR Phase-I Final Report Contract: DE-FG03-01ER83214 Community Power Corporation Prepared by: John P. Reardon, Art Lilley, Kingsbury Browne and Kelly Beard Community Power Corporation 8420 S. Continental Divide Rd., Suite 100 Littleton, CO 80228 with Jim Wimberly Foundation for Organic Resources Management 101 W. Mountain St., Ste 200 Fayetteville, Arkansas 72701 and Dr. Jack Avens Department of Food Science and Human

  10. FY2014 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Motors Program

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-11-01

    The US Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the US Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE’s commitment to developing public–private partnerships to fund high-risk–high-reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from “Freedom” and “Cooperative Automotive Research”) that ran from 2002 through 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. Oak Ridge National Laboratory’s (ORNL’s) Advanced Power Electronics and Electric Motors (APEEM) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor, and traction drive system (TDS) technologies that will leapfrog current on-the-road technologies, leading to lower cost and better efficiency in transforming battery energy to useful work. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency through research in more efficient TDSs.

  11. The development of a one microsecond pulse length, repetitively pulsed, high power modulator and a long-pulse electron beam diode for the production of intense microwaves

    SciTech Connect (OSTI)

    Stringfield, R.M.; Faehl, R.J.; Fazio, M.V.; Hoeberling, R.F.; Kwan, T.J.T.; Rickel, D.G.; VanHaaften, F.; Wasierski, R.F.; Erickson, A.; Rust, K.

    1992-07-01

    This paper discusses the pulse power and explosive emission electron beam diode development effort we have undertaken to power a relativistic klystron amplifier (RKA) microwave source. The pulsed power and electron beam must enable the RKA to Produce one kilojoule of 13 GHz radiation per pulse at a 5 Hz repetition frequency. These efforts include tests and improvements of a 1 {mu}s pulse length thyratron switched modulator, and the computational and experimental design of a 1-{mu}s-pulse-length explosive emission electron gun. The one microsecond pulse length is almost an order of magnitude beyond what has been achieved heretofore with an RKA. Achieving a peak power approaching 1 GW for 1 {mu}s requires a well behaved electron beam on that time scale. An electron beam diode has been developed that delivers a peak current of 4 to 5 kA for a pulse duration exceeding 1 {mu}s, at a beam kinetic energy above 600 keV. BANSHEE is the high voltage modulator designed for use as an electron beam driver for high power microwave tube development. The BANSHEE output pulse design parameters are 1 MV and 10 kA, with a 1 {mu}s pulse width at a repetition rate of 3--5 Hz, driving a load of impedance of 100 ohms. BANSHEE is a thyratron-switched line-type modular with a pulse transformer output stage. The modulator design is pushing the state of the art in thyratron technology and capacitor lifetime. The results of the BANSHEE modulator testing are described.

  12. Arkansas Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Gasoline and Diesel Fuel Update (EIA)

    Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 W W W W W W W W 3.49 4.14 W W 2003 6.04 6.42 7.25 4.34 W 3.71 2.88 3.38 3.31 5.00 W W 2004 6.35 5.63 5.74 W 6.70 6.48 6.31 6.07 5.16 6.41 W W 2005 W W W 7.78 6.73 7.55 7.59 9.18 11.49 W 8.83 W 2006 8.17 7.66 6.81 7.12 6.33 6.15 5.99 7.26 5.61 4.81 7.02 7.48 2007 7.84 8.33 7.43 7.64 7.67 7.66 6.69 6.49 6.08 7.11 6.57 7.72 2008 8.26 8.85 9.94 10.49 11.39 12.72 11.87 9.33 7.28 4.47 W W 2009 5.14 4.38 3.99 3.59 3.61

  13. Arkansas Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Gasoline and Diesel Fuel Update (EIA)

    Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.69 2.29 2.59 2000's 4.46 4.44 3.59 4.37 6.19 8.59 6.38 7.04 9.23 4.14 2010's 5.11 W 3.19 4.32

  14. ISSUANCE 2016-03-24: Notice of Application from Green Electronics for a Small Business Exemption Regarding Certain Products from the Department of Energy’s External Power Supply Energy Conservation Standards

    Broader source: Energy.gov [DOE]

    Notice of Application from Green Electronics for a Small Business Exemption Regarding Certain Products from the Department of Energy’s External Power Supply Energy Conservation Standards

  15. U.S. Department of Energy Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 Structure 38-44, 59 and 60 Transmission Structure Movement Project Program or Field Office: Southwestern Power Administration Location(s) (City/County/State): Jonesboro, Arkansas, Craighead County Proposed Action Description: Southwestern Power Administration proposes to move several transmission line pole structures which are currently located on elevated gravel mounds and relocate several other structures. Categorical Exclusion(s) Applied: 10 CFR 1021, Appendix B to Subpart D, Part B2.5-

  16. U.S. Department of Energy Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Witts Springs Radio Station Erosion Control Project Program or Field Office: Southwestern Power Administration--Department of Energy Location(s) (City/County/State): Witts Springs, Searcy County, Arkansas Proposed Action Description: Southwestern Power Administration proposes to construct two berms inside the station and spread new gravel. On the adjoining private property, Southwestern proposes to fill and revegetate the eroded landform to provide soil stability. Categorical Exclusion(s)

  17. ,"Arkansas Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5030ar2m.xls"

  18. Arkansas Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Arkansas Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 26 37 23 1980's 25 1 24 8 14 16 23 29 28 13 1990's 9 6 6 1 1 0 27 15 36 12 2000's 16 11 8 0 18 31 32 27 41 36 2010's 27 23 11 1 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  19. ,"Arkansas Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  20. ,"Arkansas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  1. ,"Arkansas Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  2. ,"Arkansas Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  3. ,"Arkansas Natural Gas Underground Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Underground Storage Withdrawals (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  4. ,"Arkansas Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas LNG Storage Net Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  5. ,"Arkansas Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  6. ,"Arkansas Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  7. ,"Arkansas Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5290ar2m.xls"

  8. ,"Arkansas Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  9. ,"Arkansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  10. ,"Arkansas Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  11. ,"Arkansas Shale Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Shale Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  12. Unraveling resistive versus collisional contributions to relativistic electron beam stopping power in cold-solid and in warm-dense plasmas

    SciTech Connect (OSTI)

    Vauzour, B.; Laboratoire d'Optique Applique, ENSTA-CNRS-Ecole Polytechnique, UMR 7639, 91761 Palaiseau ; Debayle, A.; CEA, DAM, DIF, F-91297 Arpajon ; Vaisseau, X.; Hulin, S.; Nicola, Ph.; Dorchies, F.; Fourment, C.; D'Humires, E.; Tikhonchuk, V. T.; Santos, J. J.; Schlenvoigt, H.-P.; Baton, S. D.; Yahia, V.; Dipartimento di Fisica, Universit di Milano-Bicocca, Milano 20126 ; Honrubia, J. J.; Beg, F. N.; Chawla, S.; Jarrot, L. C.; Benocci, R.; Volpe, L.; and others

    2014-03-15

    We present results on laser-driven relativistic electron beam propagation through aluminum samples, which are either solid and cold or compressed and heated by laser-induced shock. A full numerical description of fast electron generation and transport is found to reproduce the experimental absolute K{sub ?} yield and spot size measurements for varying target thicknesses, and to sequentially quantify the collisional and resistive electron stopping powers. The results demonstrate that both stopping mechanisms are enhanced in compressed Al samples and are attributed to the increase in the medium density and resistivity, respectively. For the achieved time- and space-averaged electronic current density, ?j{sub h}??810{sup 10}?A/cm{sup 2} in the samples, the collisional and resistive stopping powers in warm and compressed Al are estimated to be 1.5?keV/?m and 0.8?keV/?m, respectively. By contrast, for cold and solid Al, the corresponding estimated values are 1.1?keV/?m and 0.6?keV/?m. Prospective numerical simulations involving higher j{sub h} show that the resistive stopping power can reach the same level as the collisional one. In addition to the effects of compression, the effect of the transient behavior of the resistivity of Al during relativistic electron beam transport becomes progressively more dominant, and for a significantly high current density, j{sub h}?10{sup 12}?A/cm{sup 2}, cancels the difference in the electron resistive stopping power (or the total stopping power in units of areal density) between solid and compressed samples. Analytical calculations extend the analysis up to j{sub h}=10{sup 14}?A/cm{sup 2} (representative of the full-scale fast ignition scenario of inertial confinement fusion), where a very rapid transition to the Spitzer resistivity regime saturates the resistive stopping power, averaged over the electron beam duration, to values of ?1?keV/?m.

  13. ARPA-E Announces Start-up Companies, Strategic Partnerships and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The new videos feature project teams from AutoGrid, Arkansas Power Electronics International, Inc., Ambri, Inc., BlackPak, Inc., Baldor Electric Company and EaglePicher ...

  14. Power America - Advanced Manufacturing Office Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    bandgap semiconductor-based power electronics, which allow electronic systems to be smaller, faster and more efficient than power electronics made from silicon. - US ...

  15. Enclosure Requirements to Protect Personnel from Spinning Rotor Frailures at the Power Electronics and Electric Machinery Research Center

    SciTech Connect (OSTI)

    McKeever, John W

    2007-08-01

    Performance evaluation of electric motors is a major function of the Power Electronics and Electric Machinery Research Center (PEEMRC). Normally these motors have a fixed wire-wound stator and a rotating rotor, which may have conductors embedded in a ferromagnetic core (induction motors), magnets mounted on the surface of the ferromagnetic core with a thin metal or composite cylinder or ring to hold them in place, or magnets embedded in the ferromagnetic core. Most of the work currently involves the last two permanent magnet (PM) configurations. Although the stator of a radial-gap motor can absorb energy from many of the fragments ejected from the rotor during operation, the stator of an axial-gap motor is not positioned to provide significant protection. The housing of each motor can also absorb some of the energy. The most conservative approach, however, is to assume that all fragments from the rotor must be contained by a protective enclosure. An ideal enclosure is transparent. Manufacturers of such plastics as Lexan, Tuffak, and Cyrolon sell different variations of transparent enclosure material. Lexan is a polycarbonate sheet. Lexgard{reg_sign} is a penetration resistant material made by layering polycarbonate material between pieces of ordinary glass. A fragment striking a sheet of enclosure material will pierce the surface layer, but the layered polycarbonate-glass material is able to absorb the fragment's energy before it completes penetration. Tuffak{reg_sign} is Lexan polycarbonate. Cyrolon{reg_sign} bullet resistant material is acrylic sheet. The ability of the enclosure to stop a fragment depends on its thickness as well as the penetration capability of the fragment; for example, a lead fragment has much less penetrating capability than a steel fragment. Enclosure thicknesses are commercially available to provide several levels of protection. These levels depend on the momentum of the fragments and have been evaluated for some common types of ammunition. This summary quantifies four typical worst-case fragments which have maximum translational kinetic energy when ejected from a rotating annulus. (1) The first fragment is released from a rotating annular titanium ring. (2) The second fragment is a magnet released from the Oak Ridge National Laboratory's (ORNL's) 30-kW axial-gap PM motor. Analysis of the second fragment which is like a segment of half-angle, {alpha}, from a thin annular ring is similar to that of the titanium ring segment except that the angle is 10{sup o} instead of 133{sup o}. (3) The third fragment is a magnet from the radial-gap 6-kW fractional-slot surface-mounted PM (SPM) motor with concentrated windings. Analysis of the third fragment is similar to the analysis of the second fragment. (4) The fourth fragment is a 133{sup o} segment of an entire rotor which assumes that the laminates and magnets in the rotor fail as a single fragment, truly a worst case assumption.

  16. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... CLEARWATER RESERVOIR MISSOURI ARKANSAS Lock and Dam No 1 10 CACHE RIVER LEGEND EXISTING ... Little Rock District, Southwestern Division Pine Mountain Dam * Authorized in 1965 and ...

  17. Arkansas Natural Gas Delivered to Commercial Consumers for the Account of

    Gasoline and Diesel Fuel Update (EIA)

    Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Arkansas Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 1,723 1,870 1990's 1,939 2,198 2,343 2,393 1,351 1,104 1,550 1,699 2,576 2,983 2000's 3,354 4,164 6,336 5,751 5,874 8,173 8,843 9,534 13,112 14,776 2010's 17,862 19,402 24,772 26,797 27,604 - = No

  18. Arkansas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Arkansas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 10,267 4,027 6,268 1970's 9,184 6,433 4,740 3,000 4,246 4,200 4,049 4,032 3,760 7,661 1980's 1,949 2,549 5,096 5,384 5,922 12,439 9,062 11,990 12,115 11,586 1990's 7,101 1,406 5,838 6,405 4,750 5,551 5,575 6,857 8,385 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  19. Arkansas Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Arkansas Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4.29 3.94 3.86 5.21 5.35 5.03 2000's 6.12 7.75 4.43 5.28 6.86 10.16 8.51 8.39 -- -- 2010's -- -- 9.04 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  20. Arkansas Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Arkansas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -925 -513 -486 -557 -855 -813 -453 -125 98 112 82 297 1991 -381 -716 -999 -1,230 -1,199 -1,333 -1,373 -1,840 -2,119 -2,147 -2,697 -3,134 1992 -1,855 -2,008 -2,040 -1,913 -2,046 -1,875 -1,510 -861 -426 -502 -100 73 1993 100 -170 -256 -297 -803 -1,041

  1. DOE Traineeship In Power Engineering (Leveraging Wide Bandgap...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Traineeship In Power Engineering (Leveraging Wide Bandgap Power Electronics) DOE Traineeship In Power Engineering (Leveraging Wide Bandgap Power Electronics) July 20, 2015 -...

  2. DOE Traineeship In Power Engineering (Leveraging Wide Bandgap...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Traineeship In Power Engineering (Leveraging Wide Bandgap Power Electronics) DOE Traineeship In Power Engineering (Leveraging Wide Bandgap Power Electronics) July 20, 2015 - ...

  3. Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FOIAPrivacy Act Submit a FOIA Request DOE FOIA Requester Service Center Electronic Reading Room FOIA Links Power Marketing Administrations' FOIA Links Bonneville Power ...

  4. Proposed Action Title: U.S. Department of Energy Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storm Shelter Construction Project Program or Field Office: Southwestern Power Administration Location(s) (City/County/State): Gore/Muskogee/Oklahoma; Jonesboro/Craighead/ Arkansas SWPAF 450.4 (Rev. 05/14) Proposed Action Description: Southwestern Power Administration proposes to construct aboveground storm shelters at at the Gore and Jonesboro Maintenance Facilities. Categorical Exclusion(s) Applied: 10 CFR 1021, Appendix 8 to Subpart D, Part 82.3. Installation of, or improvements to, equipment

  5. DOE Traineeship In Power Engineering (Leveraging Wide Bandgap Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electronics) | Department of Energy DOE Traineeship In Power Engineering (Leveraging Wide Bandgap Power Electronics) DOE Traineeship In Power Engineering (Leveraging Wide Bandgap Power Electronics) July 20, 2015 - 1:00pm Addthis DOE Traineeship In Power Engineering (Leveraging Wide Bandgap Power Electronics) The Advanced Manufacturing Office announced up to $10 million is available to establish 5-year graduate-level university-led DOE Traineeship(s) in Power Engineering (leveraging emerging

  6. Xtreme Power | Open Energy Information

    Open Energy Info (EERE)

    Zip: 78640 Product: Xtreme Power designs and manufactures power systems using power electronics and efficient storage technologies. Coordinates: 29.98837, -97.877369 Show Map...

  7. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Reliability: Automotive Power Module Perspective Zhenxian Liang R&D Staff Power Electronics and Electric Machinery Group OAK RIDGE NATIONAL LABORATORY 2360 Cherahala Boulevard Knoxville, Tennessee 37932 TEL: (865) 946-1467 FAX: (865) 946-1262 EMAIL: liangz@ornl.gov http://peemrc.ornl.gov 2013 PV System Symposium April 30, 2013, Santa Clara, CA 2 Outline * Introduction Power Electronics in Electric Drive Vehicles Automotive Power Electronics Module Operation Automotive Power

  8. Arkansas Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Arkansas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -4.4 -8.3 -11.6 -14.2 -13.7 -14.5 -14.1 -18.0 -20.2 -20.4 -25.8 -30.6 1992 -22.4 -25.3 -26.8 -25.8 -27.1 -23.8 -18.0 -10.3 -5.1 -6.0 -1.3 1.0 1993 1.6 -2.9 -4.6 -5.4 -14.6 -17.3 -27.6 -34.0 -37.6 -37.9 -42.3 -48.2 1994 -63.6 -74.6 -86.5 -87.0 -71.6 -60.3 -47.2 -35.4 -31.0 -29.2 -21.3

  9. Disposal of chemical agents and munitions stored at Pine Bluff Arsenal, Pine Bluff, Arkansas

    SciTech Connect (OSTI)

    Ensminger, J.T.; Hillsman, E.L.; Johnson, R.D.; Morrisey, J.A.; Staub, W.P.; Boston, C.R.; Hunsaker, D.B.; Leibsch, E.; Rickert, L.W.; Tolbert, V.R.; Zimmerman, G.P.

    1991-09-01

    The Pine Bluff Arsenal (PBA) near Pine Bluff, Arkansas, is one of eight continental United States (CONUS) Army installations where lethal unitary chemical agents and munitions are stored and where destruction of agents and munitions is proposed under the Chemical Stockpile Disposal Program (CSDP). The chemical agent inventory at PBA consists of approximately 12%, by weight, of the total US stockpile. The destruction of the stockpile is necessary to eliminate the risk to the public from continued storage and to dispose of obsolete and leaking munitions. In 1988 the US Army issued a Final Programmatic Environmental Impact Statement (FPEIS) for the CSDP that identified on-site disposal of agents and munitions as the environmentally preferred alternative (i.e., the alternative with the least potential to cause significant adverse impacts). The purpose of this report is to examine the proposed implementation of on-site disposal at PBA in light of more recent and more detailed data than those on which the FPEIS is based. New population data were used to compute fatalities using the same computation methods and values for all other parameters as in the FPEIS. Results indicate that all alternatives are indistinguishable when the potential health impacts to the PBA community are considered. However, risks from on-site disposal are in all cases equal to or less than risks from other alternatives. Furthermore, no unique resources with the potential to prevent or delay implementation of on-site disposal at PBA have been identified.

  10. Power Right. Power Smart. Efficient Computer Power Supplies and Monitors. |

    Energy Savers [EERE]

    Department of Energy Power Right. Power Smart. Efficient Computer Power Supplies and Monitors. Power Right. Power Smart. Efficient Computer Power Supplies and Monitors. March 10, 2009 - 6:00am Addthis John Lippert Power supplies convert the AC power that you get from your electric company into the DC power consumed by most electronics, including your computer. We expect our power supplies to be safe, reliable, and durable. If they meet those criteria, then they're all alike, except for cost,

  11. Optically pulsed electron accelerator

    DOE Patents [OSTI]

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  12. Optically pulsed electron accelerator

    DOE Patents [OSTI]

    Fraser, John S. (Los Alamos, NM); Sheffield, Richard L. (Los Alamos, NM)

    1987-01-01

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  13. High-power green and blue electron-beam pumped surface-emitting lasers using dielectric and epitaxial distributed Bragg reflectors

    SciTech Connect (OSTI)

    Klein, T.; Klembt, S.; Kozlovsky, V. I.; Zheng, A.; Tiberi, M. D.; Kruse, C.

    2015-03-21

    ZnSe-based electron-beam pumped vertical-cavity surface-emitting lasers for the green (λ = 530 nm) and blue (λ = 462 nm) spectral region have been realized. Structures with and without epitaxial bottom distributed Bragg reflector have been fabricated and characterized. The samples consist of an active region containing 20 quantum wells with a cavity length varying between an optical thickness of 10 λ to 20 λ. The active material is ZnCdSSe in case of the green devices and ZnSe for the blue ones. Room temperature single mode lasing for structures with and without epitaxial bottom mirror with a maximum output power up to 5.9 W (green) and 3.3 W (blue) is achieved, respectively.

  14. Tim Kuneli, Electronics Maintenance Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tim Kuneli, Electronics Maintenance Group Print The recent ALS power supply failure was one of the most challenging projects that Electronics Engineer Technical Superintendent Tim...

  15. U.S. Department of Energy Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Line 3007 Structure Replacement Project for Flood Prone Areas Program or Field Office: Southwestern Power Administration Location(s) (City/County/State): Rural Jackson and Craighead Counties, Arkansas SWPA F 450.4 (Rev. 05/14) Proposed Action Description: Southwestern Power Administration proposes to replace electrical transmission line structure numbers 496-497, 519-522, and 562-569 along Line 3007. Categorical Exclusion(s) Applied: IO CFR I 021, Appendix B to Subpart D, Part 84.6. Additions

  16. ,"Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  17. ,"Arkansas Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015"

  18. Accelerating Innovation: PowerAmerica Is Up and Running | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PowerAmerica, also called the Next Generation Power Electronics Manufacturing Innovation ... student training in WBG-based power electronics because it will create R&D and ...

  19. National Uranium Resource Evaluation Program. Data report: Arkansas, Louisiana, Mississippi, Missouri, Oklahoma, and Texas. Hydrogeochemical and stream sediment reconnaissance

    SciTech Connect (OSTI)

    Fay, W M; Sargent, K A; Cook, J R

    1982-02-01

    This report presents the results of ground water, stream water, and stream sediment reconnaissance in Arkansas, Louisiana, Mississippi, Missouri, Oklahoma, and Texas. The following samples were collected: Arkansas-3292 stream sediments, 5121 ground waters, 1711 stream waters; Louisiana-1017 stream sediments, 0 ground waters, 0 stream waters; Misissippi-0 stream sediments, 814 ground waters, 0 stream waters; Missouri-2162 stream sediments, 3423 ground waters 1340 stream waters; Oklahoma-2493 stream sediments, 2751 ground waters, 375 stream waters; and Texas-279 stream sediments, 0 ground waters, 0 stream waters. Neutron activation analyses are given for U, Br, Cl, F, Mn, Na, Al, V, and Dy in ground water and stream water, and for U, Th, Hf, Ce, Fe, Mn, Na, Sc, Ti, V, Al, Dy, Eu, La, Sm, Yb, and Lu in sediments. The results of mass spectroscopic analysis for He are given for 563 ground water sites in Mississippi. Field measurements and observations are reported for each site. Oak Ridge National Laboratory analyzed sediment samples which were not analyzed by Savannah River Laboratory neutron activation.

  20. ,"Arkansas Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3045ar3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3045ar3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:25:04 PM" "Back to

  1. ,"Arkansas Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3045ar3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3045ar3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:25:03 PM" "Back to

  2. Sandia National Laboratories: Power Electronics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    but requires continued progress toward low-cost, high-reliability, and high-performance PV systems. High reliability is an essential element in achieving low-cost solar...

  3. Property:ServiceTerritory | Open Energy Information

    Open Energy Info (EERE)

    +, West Virginia +, Tennessee + Arizona Corporation Commission + Arizona + Arizona Public Service Co + Arizona + Arkansas River Power Authority + Colorado + Arkansas Valley...

  4. Hydrogeochemical and stream-sediment reconnaissance, orientation study, Ouachita Mountain area, Arkansas. National Uranium Resource Evaluation Program

    SciTech Connect (OSTI)

    Steele, K. F.

    1982-08-01

    A hydrogeochemical ground water orientation study was conducted in the multi-mineralized area of the Ouachita Mountains, Arkansas in order to evaluate the usefulness of ground water as a sampling medium for uranium exploration in similar areas. Ninety-three springs and nine wells were sampled in Clark, Garland, Hot Springs, Howard, Montgomery, Pike, Polk, and Sevier Counties. Manganese, barite, celestite, cinnabar, stibnite, copper, lead, and zinc are present. The following parameters were determined: pH, conductivity, alkalinity, U, Br, Cl, F, He, Mn, Na, V, Al, Dy, NO/sub 3/, NH/sub 3/, SO/sub 4/, and PO/sub 4/. The minerals appear to significantly affect the chemistry of the ground water. This report is issued in draft form, without detailed technical and copy editing. This was done to make the report available to the public before the end of the National Uranium Resource Evaluation.

  5. Power America | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities » Power America Power America Power America Lead by NC State University, PowerAmerica will work to make wide bandgap (WBG) semiconductor technologies cost-competitive with the silicon-based power electronics that are currently used. The Institute is establishing a collaborative community that will create, showcase, and deploy new power electronic capabilities, products, and processes that can impact commercial production, build workforce skills, enhance manufacturing capabilities,

  6. High-Power Zinc-Air Energy Storage: Enhanced Metal-Air Energy Storage System with Advanced Grid-Interoperable Power Electronics Enabling Scalability and Ultra-Low Cost

    SciTech Connect (OSTI)

    2010-10-01

    GRIDS Project: Fluidic is developing a low-cost, rechargeable, high-power module for Zinc-air batteries that will be used to store renewable energy. Zinc-air batteries are traditionally found in small, non-rechargeable devices like hearing aids because they are well-suited to delivering low levels of power for long periods of time. Historically, Zinc-air batteries have not been as useful for applications which require periodic bursts of power, like on the electrical grid. Fluidic hopes to fill this need by combining the high energy, low cost, and long run-time of a Zinc-air battery with new chemistry providing high power, high efficiency, and fast response. The battery module could allow large grid-storage batteries to provide much more power on very short demandthe most costly kind of power for utilitiesand with much more versatile performance.

  7. Fusion Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power www.pppl.gov FACT SHEET FUSION POWER Check us out on YouTube. http://www.youtube.com/ppplab Find us on Facebook. http://www.facebook.com/PPPLab Follow us on Twitter. @PPPLab Access our RSS feed @PPPLab Deuterium Electron Proton Hydrogen Tritium Neutron For centuries, the way in which the sun and stars produce their energy remained a mystery to man. During the twentieth century, scientists discovered that they produce their energy by the fusion process. E=mc 2 , Albert Einstein's familiar

  8. 2010 DOE EERE Vehicle Technologies Program Merit Review - Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electrical Machines 2010 DOE EERE Vehicle Technologies Program Merit Review - Power Electronics and Electrical Machines APEEM research and development merit ...

  9. DOE Vehicle Technologies Program 2009 Merit Review Report - Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electric Motors DOE Vehicle Technologies Program 2009 Merit Review Report - Power Electronics and Electric Motors PDF icon 2009meritreview3.pdf More ...

  10. 2008 Annual Merit Review Results Summary - 5. Advanced Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5. Advanced Power Electronics 2008 Annual Merit Review Results Summary - 5. Advanced Power Electronics DOE Vehicle Technologies Annual Merit Review PDF icon 2008meritreview5.pdf ...

  11. SOUTHWESTERN POWER ADMINISTRATION CATEGORICAL EXCLUSION (CX)...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration proposes to modify andor construct several Oklahoma and Arkansas communication tower facilities as part of the Spectrum Relocation Project. Communication tower...

  12. Tyco Electronics | Open Energy Information

    Open Energy Info (EERE)

    Product: Pennsylvania-based passive component manufacturer. The firm produces power storage devices. References: Tyco Electronics1 This article is a stub. You can help OpenEI...

  13. Home Office and Electronics | Department of Energy

    Energy Savers [EERE]

    Home Office and Electronics Home Office and Electronics Addthis Keep Your Home Office Efficient with ENERGY STAR. 1 of 2 Keep Your Home Office Efficient with ENERGY STAR. Laptops are far more efficient than desktop computers, especially ENERGY STAR qualified models. Use Smart Power Strips to Save Energy. 2 of 2 Use Smart Power Strips to Save Energy. Many electronics go into standby mode when you turn them off. Reduce wasted (vampire) power by plugging electronics into a smart power strip, which

  14. Forecasting changes in water quality in rivers associated with growing biofuels in the Arkansas-White-Red river basin, USA

    SciTech Connect (OSTI)

    Jager, Yetta; Brandt, Craig C; Baskaran, Latha Malar; Srinivasan, Raghavan; Turhollow Jr, Anthony F; Schweizer, Peter E

    2015-01-01

    The mid-section of the Arkansas-White-Red (AWR) river basin near the 100th parallel is particularly promising for sustainable biomass production using cellulosic perennial crops and residues. Along this longitudinal band, precipitation becomes limiting to competing crops that require irrigation from an increasingly depleted groundwater aquifer. In addition, the deep-rooted perennial, switchgrass, produces modest-to-high yields in this region with minimal inputs and could compete against alternative crops and land uses at relatively low cost. Previous studies have also suggested that switchgrass and other perennial feedstocks offer environmentally benign alternatives to corn and corn stover. However, water quality implications remain a significant concern for conversion of marginal lands to bioenergy production because excess nutrients produced by agriculture for food or for energy contribute to eutrophication in the dead-zone in the Gulf of Mexico. This study addresses water quality implications for the AWR river basin. We used the SWAT model to compare water quality in rivers draining a baseline, pre-cellulosic-bioenergy and post-cellulosic-bioenergy landscapes for 2022 and 2030. Simulated water quality responses varied across the region, but with a net tendency toward decreased amounts of nutrient and sediment, particularly in subbasins with large areas of bioenergy crops in 2030 future scenarios. We conclude that water quality is one aspect of sustainability for which cellulosic bioenergy production in this region holds promise.

  15. Disposal of chemical agents and munitions stored at Pine Bluff Arsenal, Pine Bluff, Arkansas. Final phase 1, Environmental report

    SciTech Connect (OSTI)

    Ensminger, J.T.; Hillsman, E.L.; Johnson, R.D.; Morrisey, J.A.; Staub, W.P.; Boston, C.R.; Hunsaker, D.B.; Leibsch, E.; Rickert, L.W.; Tolbert, V.R.; Zimmerman, G.P.

    1991-09-01

    The Pine Bluff Arsenal (PBA) near Pine Bluff, Arkansas, is one of eight continental United States (CONUS) Army installations where lethal unitary chemical agents and munitions are stored and where destruction of agents and munitions is proposed under the Chemical Stockpile Disposal Program (CSDP). The chemical agent inventory at PBA consists of approximately 12%, by weight, of the total US stockpile. The destruction of the stockpile is necessary to eliminate the risk to the public from continued storage and to dispose of obsolete and leaking munitions. In 1988 the US Army issued a Final Programmatic Environmental Impact Statement (FPEIS) for the CSDP that identified on-site disposal of agents and munitions as the environmentally preferred alternative (i.e., the alternative with the least potential to cause significant adverse impacts). The purpose of this report is to examine the proposed implementation of on-site disposal at PBA in light of more recent and more detailed data than those on which the FPEIS is based. New population data were used to compute fatalities using the same computation methods and values for all other parameters as in the FPEIS. Results indicate that all alternatives are indistinguishable when the potential health impacts to the PBA community are considered. However, risks from on-site disposal are in all cases equal to or less than risks from other alternatives. Furthermore, no unique resources with the potential to prevent or delay implementation of on-site disposal at PBA have been identified.

  16. Jadoo Power Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    Product: US-based fuel cell developer, Jadoo Power Systems Inc, produces high energy density power products for the law enforcement, military and electronic news gathering...

  17. custom electronic circuitry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    custom electronic circuitry - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  18. Atmosphere to Electrons program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Electrons program - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  19. PowerPoint Presentation

    Energy Savers [EERE]

    Systems Program 1 DOE Energy Storage & Power Electronics Research Programs October 8, 2009 Marcelo Schupbach, Ph.D. Chief Technology Officer APEI, Inc. 535 Research Center Blvd. Fayetteville, AR 72701 Phone: (479)-443-5759 Email: mschupb@apei.net Website: www.apei.net Very High Temperature (400+ °C) High-Power Silicon Carbide (SiC) Power Electronics Converter Energy Storage Systems Program 2 Overview * Broader Impact of SiC-based Power Converter * Phase I Review * Phase II Review * Related

  20. Arkansas Nuclear Profile - Arkansas Nuclear One

    U.S. Energy Information Administration (EIA) Indexed Site

    Nuclear One" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,842,"6,607",89.6,"PWR","application/vnd.ms-excel","application/vnd.ms-excel" 2,993,"8,416",96.7,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  1. Arkansas-Arkansas Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 5,611 6,872 7,781 8,058 2011-2014 Total Liquids Extracted (Thousand Barrels) 336 378 457 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 582 2014

  2. Arkansas Share of Total U.S. Natural Gas Delivered to Consumers

    Gasoline and Diesel Fuel Update (EIA)

    7 0.6 0.7 0.7 1993-2014 Commercial 1.2 1.3 1.3 1.4 1.4 1.5 1993-2014 Industrial 1.3 1.2 1.2 1.1 1.2 1.2 1993-2014 Vehicle Fuel 0.0 0.1 0.1 0.1 0.1 0.1 1994-2014 Electric Power 1.2 1.3 1.4 1.4 1.1 0.9

  3. Power America | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Power America Lead by NC State University, PowerAmerica will work to make wide bandgap (WBG) semiconductor technologies cost-competitive with the silicon-based power electronics that are currently used. The Institute is establishing a collaborative community that will create, showcase, and deploy new power electronic capabilities, products, and processes that can impact commercial production, build workforce skills, enhance manufacturing capabilities, and foster long-term economic growth in the

  4. High power microwave generator

    DOE Patents [OSTI]

    Minich, Roger W. (Patterson, CA)

    1988-01-01

    A device (10) for producing high-powered and coherent microwaves is described. The device comprises an evacuated, cylindrical, and hollow real cathode (20) that is driven to inwardly field emit relativistic electrons. The electrons pass through an internally disposed cylindrical and substantially electron-transparent cylindrical anode (24), proceed toward a cylindrical electron collector electrode (26), and form a cylindrical virtual cathode (32). Microwaves are produced by spatial and temporal oscillations of the cylindrical virtual cathode (32), and by electrons that reflex back and forth between the cylindrical virtual cathode (32) and the cylindrical real cathode (20).

  5. Photonic-powered cable assembly

    DOE Patents [OSTI]

    Sanderson, Stephen N.; Appel, Titus James; Wrye, IV, Walter C.

    2013-01-22

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  6. Photonic-powered cable assembly

    DOE Patents [OSTI]

    Sanderson, Stephen N; Appel, Titus James; Wrye, IV, Walter C

    2014-06-24

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  7. Electron radiography

    DOE Patents [OSTI]

    Merrill, Frank E.; Morris, Christopher

    2005-05-17

    A system capable of performing radiography using a beam of electrons. Diffuser means receive a beam of electrons and diffuse the electrons before they enter first matching quadrupoles where the diffused electrons are focused prior to the diffused electrons entering an object. First imaging quadrupoles receive the focused diffused electrons after the focused diffused electrons have been scattered by the object for focusing the scattered electrons. Collimator means receive the scattered electrons and remove scattered electrons that have scattered to large angles. Second imaging quadrupoles receive the collimated scattered electrons and refocus the collimated scattered electrons and map the focused collimated scattered electrons to transverse locations on an image plane representative of the electrons' positions in the object.

  8. Superfund Record of Decision (EPA Region 6): Mid-South Wood Products, Polk County, Arkansas, November 1986. First remedial action. Final report

    SciTech Connect (OSTI)

    Not Available

    1986-11-14

    The Mid-South Wood Products site is located in Polk County, Arkansas, approximately 1/2 mile southwest of Mena, Arkansas. The 57-acre site includes the following areas: the Old Plant site, the Small Old Pond and Old Pond areas, the North and South Landfarms, the landfill, Clear Lake and an existing chromated copper arsenate (CCA) treatment plant. The Old Plant site was used to treat wood with pentachlorophenol (PCP) and creosote; the Small Old Pond was the original impoundment for waste PCP and creosote. These two areas have been covered with soil. The Old Pond area was used to store PCP and creosote sludge and has since been graded and covered with soil; materials from the Old Pond were spread over the Landfarm areas and mixed into the soil; the Landfill area contains deposits of sawdust, woodchips, and other waste-wood products; Clear Lake receives runoff from all the above areas; the CCA treatment plant contains an ongoing wood-treating operation where the surface drainage from the plant is put in sumps.

  9. Southwestern Power Administration Annual Report 2012

    SciTech Connect (OSTI)

    2013-09-01

    Dear Secretary Moniz: I am pleased to present the financial statements and operating data for Southwestern Power Administration (Southwestern) for Fiscal Year (FY) 2012. In FY 2012, Southwestern delivered over 4.1 billion kilowatt-hours of energy to its wholesale customers in Arkansas, Kansas, Louisiana, Missouri, Oklahoma, and Texas, generating $195 million in revenue. In fulfilling its mission to market and reliably deliver renewable Federal hydroelectric power, Southwestern maintains 1,380 miles of high-voltage transmission lines, substations, and communications sites, contributing to the reliability of the regional and National electric grid. Southwestern also actively partners with the Department of Energy, the U.S. Army Corps of Engineers, Southwestern’s customers, and other Federal power stakeholders to most effectively balance their diverse interests with Southwestern’s mission while continuing to maximize Federal assets to repay the Federal investment in the 24 hydropower facilities within Southwestern’s marketing region. Southwestern is proud of its past successes, and we look forward to continuing to serve the Nation’s energy needs in the future. Sincerely, Christopher M. Turner Administrator

  10. Southwestern Power Administration Annual Report 2011

    SciTech Connect (OSTI)

    2013-04-01

    Dear Secretary Chu: I am pleased to present the financial statements and operating data for Southwestern Power Administration (Southwestern) for Fiscal Year (FY) 2011. In FY 2011, Southwestern delivered over 4.1 billion kilowatt-hours of energy to its wholesale customers in Arkansas, Kansas, Louisiana, Missouri, Oklahoma, and Texas, generating $167 million in revenue. In fulfilling its mission to market and reliably deliver renewable Federal hydroelectric power, Southwestern maintains 1,380 miles of high-voltage transmission lines, substations, and communications sites, contributing to the reliability of the regional and National electric grid. Southwestern also actively partners with the Department of Energy, the U.S. Army Corps of Engineers, Southwestern’s customers, and other Federal power stakeholders to most effectively balance their diverse interests with Southwestern’s mission while continuing to maximize Federal assets to repay the Federal investment in the 24 hydropower facilities within Southwestern’s marketing region. Southwestern is proud of its past successes, and we look forward to continuing to serve the Nation’s energy needs in the future. Sincerely, Christopher M. Turner Administrator

  11. Southwestern Power Administration Annual Report 2010

    SciTech Connect (OSTI)

    2012-09-01

    Dear Secretary Chu: I am pleased to present the financial statements and operating data for Southwestern Power Administration (Southwestern) for Fiscal Year (FY) 2010. In FY 2010, Southwestern delivered nearly 7.6 billion kilowatt-hours of energy to its wholesale customers in Arkansas, Kansas, Louisiana, Missouri, Texas, and Oklahoma, generating $189 million in revenue. In fulfilling its mission to market and reliably deliver renewable Federal hydroelectric power, Southwestern maintains 1,380 miles of high-voltage transmission lines, substations, and communications sites, contributing to the reliability of the regional and National electric grid. Southwestern also actively partners with the Department of Energy, the U.S. Army Corps of Engineers, Southwestern’s customers, and other Federal power stakeholders to most effectively balance their diverse interests with Southwestern’s mission while continuing to maximize Federal assets to repay the Federal investment in the 24 hydropower facilities within Southwestern’s marketing region. Southwestern is proud of its past successes, and we look forward to continuing to serve the Nation’s energy needs in the future. Sincerely, Christopher M. Turner Administrator

  12. Inverter power module with distributed support for direct substrate cooling

    DOE Patents [OSTI]

    Miller, David Harold (San Pedro, CA); Korich, Mark D. (Chino Hills, CA); Ward, Terence G. (Redondo Beach, CA); Mann, Brooks S. (Redondo Beach, CA)

    2012-08-21

    Systems and/or methods are provided for an inverter power module with distributed support for direct substrate cooling. An inverter module comprises a power electronic substrate. A first support frame is adapted to house the power electronic substrate and has a first region adapted to allow direct cooling of the power electronic substrate. A gasket is interposed between the power electronic substrate and the first support frame. The gasket is configured to provide a seal between the first region and the power electronic substrate. A second support frame is adapted to house the power electronic substrate and joined to the first support frame to form the seal.

  13. Power converter connection configuration

    DOE Patents [OSTI]

    Beihoff, Bruce C. (Wauwatosa, WI); Kehl, Dennis L. (Milwaukee, WI); Gettelfinger, Lee A. (Brown Deer, WI); Kaishian, Steven C. (Milwaukee, WI); Phillips, Mark G. (Brookfield, WI); Radosevich, Lawrence D. (Muskego, WI)

    2008-11-11

    EMI shielding is provided for power electronics circuits and the like via a direct-mount reference plane support and shielding structure. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support forms a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  14. Precision electron polarimetry

    SciTech Connect (OSTI)

    Chudakov, Eugene A.

    2013-11-01

    A new generation of precise Parity-Violating experiments will require a sub-percent accuracy of electron beam polarimetry. Compton polarimetry can provide such accuracy at high energies, but at a few hundred MeV the small analyzing power limits the sensitivity. M{\\o}ller polarimetry provides a high analyzing power independent on the beam energy, but is limited by the properties of the polarized targets commonly used. Options for precision polarimetry at ~300 MeV will be discussed, in particular a proposal to use ultra-cold atomic hydrogen traps to provide a 100\\%-polarized electron target for M{\\o}ller polarimetry.

  15. A Photo-Stimulated Low Electron Temperature High Current Diamond...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applications: Medical X-ray devices High through-put industrial electron sheet beam processing High volume electron beam food and material sterilization High power RF systems...

  16. Browse by Discipline -- E-print Network Subject Pathways: Power...

    Office of Scientific and Technical Information (OSTI)

    P. (Stephen P. Yanoviak) - Department of Biology, University of Arkansas at Little Rock Yeager, Kevin M. (Kevin M. Yeager) - Department of Marine Science, University of ...

  17. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal...

  18. ECR ion source with electron gun

    DOE Patents [OSTI]

    Xie, Z.Q.; Lyneis, C.M.

    1993-10-26

    An Advanced Electron Cyclotron Resonance ion source having an electron gun for introducing electrons into the plasma chamber of the ion source is described. The ion source has a injection enclosure and a plasma chamber tank. The plasma chamber is defined by a plurality of longitudinal magnets. The electron gun injects electrons axially into the plasma chamber such that ionization within the plasma chamber occurs in the presence of the additional electrons produced by the electron gun. The electron gun has a cathode for emitting electrons therefrom which is heated by current supplied from an AC power supply while bias potential is provided by a bias power supply. A concentric inner conductor and outer conductor carry heating current to a carbon chuck and carbon pusher which hold the cathode in place and also heat the cathode. In the Advanced Electron Cyclotron Resonance ion source, the electron gun replaces the conventional first stage used in prior electron cyclotron resonance ion generators. 5 figures.

  19. Leader Electronics: Data Request (2010-SE-2301)

    Broader source: Energy.gov [DOE]

    DOE requested test data from Leader Electronics Inc. for various models of external power supplies after Leader Electronics certified energy values that did not meet federal energy conservation standards.

  20. PowerPoint Presentation

    Gasoline and Diesel Fuel Update (EIA)

    Notes: For 2015, natural gas production represents monthly natural gas gross withdrawals estimated from data collected on the EIA-914 survey. Volumes through 2014 reflect EIA's final reported state data. Starting in 2015, 10 states (Arkansas, California, Colorado, Kansas, Montana, North Dakota, Ohio, Pennsylvania, Utah, and West Virginia) were added to the EIA-914 data collection and are reported individually. The remaining states/areas (Alabama, Arizona, Federal Offshore Pacific, Florida,

  1. Arkansas Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet) Gross Withdrawals 85,763 83,954 81,546 83,309 79,278 80,492 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA ...

  2. Arkansas Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    3.84 1967-2010 Pipeline and Distribution Use Price 1967-2005 Citygate Price 6.76 6.27 5.36 4.99 5.84 4.76 1984-2015 Residential Price 11.53 11.46 11.82 10.46 10.39 11.20 1967-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 1989-2015 Commercial Price 8.89 8.90 7.99 7.68 7.88 8.08 1967-2015 Percentage of Total Commercial Deliveries included in Prices 55.6 51.5 40.2 43.7 45.5 42.5 1990-2015 Industrial Price 7.28 7.44 6.38 6.74 6.99 6.97

  3. Arkansas Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    1 0 11 10 8 1996-2014 Lease Condensate (million bbls) 0 0 0 0 0 0 1998-2014 Total Gas (billion cu ft) 5,872 7,274 5,919 3,520 4,844 4,011 1996-2014 Nonassociated Gas (billion cu ft) 5,872 7,273 5,919 3,450 4,774 3,951 1996-2014 Associated Gas (billion cu ft) 0 1 0 70 70 6

  4. ,"Arkansas Natural Gas Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","3312016" ,"Excel File Name:","ngprisumdcusarm.xls" ,"Available from Web Page:","http:www.eia.govdnavngngprisumdcusarm.htm" ,"Source:","Energy ...

  5. Arkansas Natural Gas Prices

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Citygate Price 6.97 6.92 5.58 5.63 4.16 4.00 1989-2015 Residential Price 17.53 19.19 18.15 17.40 13.80 10.34 1989-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 2002-2015 Commercial Price 8.09 8.19 8.00 7.71 7.86 7.29 1989-2015 Percentage of Total Commercial Deliveries included in Prices 28.0 25.0 25.7 28.1 28.2 41.8 1989-2015 Industrial Price 6.71 6.62 6.47 6.46 6.02 5.67 2001-2015

  6. Lutron Electronics: Proposed Penalty (2012-SE-3796)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Lutron Electronics Co., Inc. manufactured and distributed noncompliant class A external power supplies in the U.S.

  7. Delta Electronics Inc | Open Energy Information

    Open Energy Info (EERE)

    Zip: 114 Product: Provider of power management solutions, electronics components, visual displays, and networkwireless solutions. Coordinates: 25.080441, 121.564194 Show...

  8. Electron emitting filaments for electron discharge devices

    DOE Patents [OSTI]

    Leung, K.N.; Pincosy, P.A.; Ehlers, K.W.

    1983-06-10

    Electrons are copiously emitted by a device comprising a loop-shaped filament made of lanthanum hexaboride. The filament is directly heated by an electrical current produced along the filament by a power supply connected to the terminal legs of the filament. To produce a filament, a diamond saw or the like is used to cut a slice from a bar made of lanthanum hexaboride. The diamond saw is then used to cut the slice into the shape of a loop which may be generally rectangular, U-shaped, hairpin-shaped, zigzag-shaped, or generally circular. The filaments provide high electron emission at a relatively low operating temperature, such as 1600/sup 0/C. To achieve uniform heating, the filament is formed with a cross section which is tapered between the opposite ends of the filament to compensate for nonuniform current distribution along the filament due to the emission of electrons from the filament.

  9. Electron emitting filaments for electron discharge devices

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Pincosy, Philip A. (Oakland, CA); Ehlers, Kenneth W. (Alamo, CA)

    1988-01-01

    Electrons are copiously emitted by a device comprising a loop-shaped filament made of lanthanum hexaboride. The filament is directly heated by an electrical current produced along the filament by a power supply connected to the terminal legs of the filament. To produce a filament, a diamond saw or the like is used to cut a slice from a bar made of lanthanum hexaboride. The diamond saw is then used to cut the slice into the shape of a loop which may be generally rectangular, U-shaped, hairpin-shaped, zigzag-shaped, or generally circular. The filaments provide high electron emission at a relatively low operating temperature, such as 1600.degree. C. To achieve uniform heating, the filament is formed with a cross section which is tapered between the opposite ends of the filament to compensate for non-uniform current distribution along the filament due to the emission of electrons from the filament.

  10. Lasers, Electron Beams and New Years Resolutions | Department of Energy

    Office of Environmental Management (EM)

    Lasers, Electron Beams and New Years Resolutions Lasers, Electron Beams and New Years Resolutions March 2, 2011 - 3:43pm Addthis Charles Rousseaux Charles Rousseaux Senior Communications Specialist (detailee) What are the key facts? The electron beam that powers Jefferson Lab's Free-Electron Laser pumped out a record power input of 500 kilvolts using an innovative energy-recovery system that amplifies energy with far less power. A sufficiently powerful laser could make an effective defensive

  11. Tips: Home Office and Electronics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home Office and Electronics Tips: Home Office and Electronics Keep Your Home Office Efficient with ENERGY STAR. 1 of 2 Keep Your Home Office Efficient with ENERGY STAR. Laptops are far more efficient than desktop computers, especially ENERGY STAR qualified models. Use Smart Power Strips to Save Energy. 2 of 2 Use Smart Power Strips to Save Energy. Many electronics go into standby mode when you turn them off. Reduce wasted (vampire) power by plugging electronics into a smart power strip, which

  12. Entergy Power, Inc | Open Energy Information

    Open Energy Info (EERE)

    Arkansas Phone Number: 1-800-968-8243 Website: www.entergy.com Twitter: @EntergyArk Facebook: https:www.facebook.comEntergyARK Outage Hotline: 1-800-968-8243 Outage Map:...

  13. Electron Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Pierre Kennepohl1,2 and Edward Solomon1* 1Department of Chemistry, Stanford University, Stanford, CA 94305 Electron transfer, or the act of moving an electron from one place to another, is amongst the simplest of chemical processes, yet certainly one of the most critical. The process of efficiently and controllably moving electrons around is one of the primary regulation mechanisms in biology. Without stringent control of electrons in living organisms, life could simply not exist. For example,

  14. Two-Phase Cooling of Power Electronics

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. Power Electronics Architecture R&D

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. Opportunities for Wide Bandgap Semiconductor Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Si SiC GaN In-direct band gap In-direct direct > LED Max. Temp. 125 C 200 C 250 C ... to do this in silicon Items 3-level FB w Si MOS @ 120kHZ resonant freq. 2-level FB w ...

  17. Power Electronics and Thermal Management Breakout Sessions

    Broader source: Energy.gov (indexed) [DOE]

    THERMAL MANAGEMENT EV Everywhere Workshop July 24, 2012 Breakout Session 1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets *...

  18. Wide Bandgap Power Electronics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon apep_04_chinthavali.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2015: Electric Drive Inverter R&D Wide Bandgap Materials Wide Bandgap Materials

  19. CX-007795: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Easement Acquisition, Carroll County, Arkansas CX(s) Applied: B1.24 Date: 02/07/2011 Location(s): Arkansas Offices(s): Southwestern Power Administration

  20. CX-007794: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Grandview, Arkansas Interconnection CX(s) Applied: B4.12 Date: 04/08/2011 Location(s): Arkansas Offices(s): Southwestern Power Administration