National Library of Energy BETA

Sample records for arkansas power electronics

  1. Arkansas

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas

  2. Arkansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Arkansas Nuclear One Unit 1, Unit 2","1,835","15,023",100.0,"Entergy Arkansas Inc" "1 Plant 2 Reactors","1,835","15,023",100.0

  3. Alternative Fuels Data Center: CNG Powers Law Enforcement in Arkansas

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    CNG Powers Law Enforcement in Arkansas to someone by E-mail Share Alternative Fuels Data Center: CNG Powers Law Enforcement in Arkansas on Facebook Tweet about Alternative Fuels Data Center: CNG Powers Law Enforcement in Arkansas on Twitter Bookmark Alternative Fuels Data Center: CNG Powers Law Enforcement in Arkansas on Google Bookmark Alternative Fuels Data Center: CNG Powers Law Enforcement in Arkansas on Delicious Rank Alternative Fuels Data Center: CNG Powers Law Enforcement in Arkansas on

  4. Arkansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation ...,"1,835","15,023",100.0,"Entergy Arkansas Inc" "1 Plant 2 Reactors","1,835","15,023",100.0

  5. ,"Arkansas Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"1292016 12:16:40 AM" "Back to Contents","Data 1: Arkansas Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"...

  6. Arkansas - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas Arkansas

  7. Arkansas - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas Arkansas

  8. Arkansas - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas Arkansas

  9. Arkansas Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Form EIA-923, "Power Plant Operations Report." ... Fossil 10,965 11,807 11,756 11,753 12,451 Coal 3,846 3,846 ... Natural Gas includes single-fired and dual-fired plants ...

  10. Arkansas Renewable Electric Power Industry Net Summer Capacity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",1389,1321,1321,1337,1341 "Solar","-","-","-","-","-" "Wind","-","-","-","-"...

  11. Arkansas Renewable Electric Power Industry Net Generation, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",1551,3237,4660,4193,3659 "Solar","-","-","-","-","-" "Wind","-","-","-","-"...

  12. Arkansas Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "Energy Source",2006,2007,2008,2009,2010 "Fossil",33626,34203,34639,36385,40667 " Coal",24183,25744,26115,25075,28152 " Petroleum",161,94,64,88,45 " Natural ...

  13. Southwestern Electric Power Co (Arkansas) | Open Energy Information

    Open Energy Info (EERE)

    Arkansas Phone Number: 1-888-216-3523 Website: www.swepco.com Twitter: @SWEPCoNews Outage Hotline: 1-888-216-3523 Outage Map: www.swepco.comoutagesoutageM References: EIA...

  14. Arkansas Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "Energy Source",2006,2007,2008,2009,2010 "Fossil",10965,11807,11756,11753,12451 " Coal",3846,3846,3861,3864,4535 " Petroleum",23,22,22,22,22 " Natural ...

  15. Microsoft PowerPoint - Arkansa River System Operation.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control * * Navigation Navigation * * Hydroelectric Power Hydroelectric Power * * Water ... surcharge surcharge Navigation lock and dams Navigation lock and dams Navigation lock ...

  16. Nevada County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Arkansas Bluff City, Arkansas Bodcaw, Arkansas Cale, Arkansas Emmet, Arkansas Prescott, Arkansas Rosston, Arkansas Willisville, Arkansas Retrieved from "http:...

  17. Washington County, Arkansas: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Farmington, Arkansas Fayetteville, Arkansas Goshen, Arkansas Greenland, Arkansas Johnson, Arkansas Lincoln, Arkansas Prairie Grove, Arkansas Springdale, Arkansas Tontitown,...

  18. Crittenden County, Arkansas: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Gilmore, Arkansas Horseshoe Lake, Arkansas Jennette, Arkansas Jericho, Arkansas Marion, Arkansas Sunset, Arkansas Turrell, Arkansas West Memphis, Arkansas Retrieved from...

  19. Sebastian County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Arkansas Barling, Arkansas Bonanza, Arkansas Central City, Arkansas Fort Smith, Arkansas Greenwood, Arkansas Hackett, Arkansas Hartford, Arkansas Huntington,...

  20. Power Electronics Block Set

    Energy Science and Technology Software Center (OSTI)

    2008-12-31

    The software consists of code that will allow rapid prototyping of advanced power electronics for use in renewable energy systems.

  1. ,"Arkansas Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release

  2. White County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arkansas Kensett, Arkansas Letona, Arkansas McRae, Arkansas Pangburn, Arkansas Rose Bud, Arkansas Russell, Arkansas Searcy, Arkansas West Point, Arkansas Retrieved from...

  3. Craighead County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Black Oak, Arkansas Bono, Arkansas Brookland, Arkansas Caraway, Arkansas Cash, Arkansas Egypt, Arkansas Jonesboro, Arkansas Lake City, Arkansas Monette, Arkansas Retrieved from...

  4. Wide Bandgap Power Electronics

    Office of Environmental Management (EM)

    ... coal power plant. 463 In addition to power savings, an important benefit of using high frequency GaN electronics is that the 464 adapter size can be reduced by 10x. Consumers ...

  5. Energy Storage & Power Electronics 2008 Peer Review - Power Electronic...

    Office of Environmental Management (EM)

    Power Electronics (PE) Systems Presentations Energy Storage & Power Electronics 2008 Peer ... Compact SiC-Based Power Converter System - Timothy Lin, Aegis.pdf (370.13 KB) ...

  6. Lawrence County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Powhatan, Arkansas Ravenden, Arkansas Sedgwick, Arkansas Smithville, Arkansas Strawberry, Arkansas Walnut Ridge, Arkansas Retrieved from "http:en.openei.orgw...

  7. Carroll County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arkansas Alpena, Arkansas Beaver, Arkansas Berryville, Arkansas Blue Eye, Arkansas Eureka Springs, Arkansas Green Forest, Arkansas Oak Grove, Arkansas Retrieved from "http:...

  8. Boone County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Bellefonte, Arkansas Bergman, Arkansas Diamond City, Arkansas Everton, Arkansas Harrison, Arkansas Lead Hill, Arkansas Omaha, Arkansas South Lead Hill, Arkansas Valley...

  9. Perry County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Subtype A. Places in Perry County, Arkansas Adona, Arkansas Bigelow, Arkansas Casa, Arkansas Fourche, Arkansas Houston, Arkansas Perry, Arkansas Perryville, Arkansas...

  10. Power Electronics and Controls

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronics and Controls - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  11. Sandia National Laboratories: Power Electronics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Electronics Sensors Power electronics is the application of solid-state electronics for routing, control, and conversion of electrical power. Custom Solutions Wide-Bandgap Wide-bandgap semiconductor materials such as silicon carbide (SiC) and gallium nitride (GaN) have the potential to revolutionize the field of power electronics. Sandia National Laboratories is well-suited to understand both performance and reliability in wide-bandgap power electronics. Understanding Material Properties

  12. Searcy County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arkansas Gilbert, Arkansas Leslie, Arkansas Marshall, Arkansas Pindall, Arkansas St. Joe, Arkansas Retrieved from "http:en.openei.orgwindex.php?titleSearcyCounty,Arkansa...

  13. Poinsett County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Subtype A. Places in Poinsett County, Arkansas Fisher, Arkansas Harrisburg, Arkansas Lepanto, Arkansas Marked Tree, Arkansas Trumann, Arkansas Tyronza, Arkansas Waldenburg,...

  14. Energy Storage & Power Electronics 2008 Peer Review - Power Electronics

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (PE) Systems Presentations | Department of Energy Power Electronics (PE) Systems Presentations Energy Storage & Power Electronics 2008 Peer Review - Power Electronics (PE) Systems Presentations The 2008 Peer Review Meeting for the DOE Energy Storage and Power Electronics Program (ESPE) was held in Washington DC on Sept. 29-30, 2008. Current and completed program projects were presented and reviewed by a group of industry professionals. The 2008 agenda was composed of 28 projects that

  15. Southwest Arkansas E C C (Arkansas) | Open Energy Information

    Open Energy Info (EERE)

    Arkansas E C C (Arkansas) Jump to: navigation, search Name: Southwest Arkansas E C C Place: Arkansas Phone Number: (888) 265-2743 Website: www.swrea.com Twitter: @SWAECC Facebook:...

  16. Benton County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Retail Energy, LLC (Texas) Places in Benton County, Arkansas Avoca, Arkansas Bella Vista, Arkansas Bentonville, Arkansas Bethel Heights, Arkansas Cave Springs, Arkansas...

  17. Pope County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 3 Climate Zone Subtype A. Places in Pope County, Arkansas Atkins, Arkansas Dover, Arkansas Hector, Arkansas London, Arkansas Pottsville, Arkansas...

  18. Lonoke County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Lonoke County, Arkansas Allport, Arkansas Austin, Arkansas Cabot, Arkansas Carlisle, Arkansas Coy, Arkansas England,...

  19. Izard County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Guion, Arkansas Horseshoe Bend, Arkansas Melbourne, Arkansas Mount Pleasant, Arkansas Oxford, Arkansas Pineville, Arkansas Retrieved from "http:en.openei.orgw...

  20. Crawford County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Crawford County, Arkansas Alma, Arkansas Cedarville, Arkansas Chester, Arkansas Dyer, Arkansas Kibler, Arkansas...

  1. Randolph County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 3 Climate Zone Subtype A. Places in Randolph County, Arkansas Biggers, Arkansas Maynard, Arkansas O'Kean, Arkansas Pocahontas, Arkansas Ravenden Springs, Arkansas Reyno,...

  2. Woodruff County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 3 Climate Zone Subtype A. Places in Woodruff County, Arkansas Augusta, Arkansas Cotton Plant, Arkansas Hunter, Arkansas McCrory, Arkansas Patterson, Arkansas Retrieved from...

  3. Union County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 3 Climate Zone Subtype A. Places in Union County, Arkansas Calion, Arkansas El Dorado, Arkansas Felsenthal, Arkansas Huttig, Arkansas Junction City, Arkansas Norphlet,...

  4. Arkansas's 2nd congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Registered Energy Companies in Arkansas's 2nd congressional district North American Green Power,LLC Patriot BioFuels Solar Energy Squared, LLC Registered Financial...

  5. Power electronics cooling apparatus

    DOE Patents [OSTI]

    Sanger, Philip Albert; Lindberg, Frank A.; Garcen, Walter

    2000-01-01

    A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

  6. Power Electronics Thermal Control (Presentation)

    SciTech Connect (OSTI)

    Narumanchi, S.

    2010-05-05

    Thermal management plays an important part in the cost of electric drives in terms of power electronics packaging. Very promising results have been obtained by using microporous coatings and skived surfaces in conjunction with single-phase and two-phase flows. Sintered materials and thermoplastics with embedded fibers show significant promise as thermal interface materials, or TIMs. Appropriate cooling technologies depend on the power electronics package application and reliability.

  7. Vehicle Technologies Office: 2013 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2013 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The ...

  8. Vehicle Technologies Office: 2012 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2012 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The ...

  9. Vehicle Technologies Office: 2009 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics R&D Annual Progress Report Vehicle Technologies Office: 2009 Advanced Power Electronics R&D Annual Progress Report Annual report focusing on understanding and ...

  10. Vehicle Technologies Office: 2011 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2011 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The ...

  11. Vehicle Technologies Office: 2010 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2010 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The ...

  12. NREL: Transportation Research - Power Electronics Packaging Reliabilit...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Packaging Reliability A photo of a piece of power electronics testing equipment. NREL power electronics packaging reliability research investigates the performance and reliability ...

  13. Fulton County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 4 Climate Zone Subtype A. Places in Fulton County, Arkansas Ash Flat, Arkansas Cherokee Village, Arkansas Hardy, Arkansas Horseshoe Bend, Arkansas...

  14. Sharp County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 3 Climate Zone Subtype A. Places in Sharp County, Arkansas Ash Flat, Arkansas Cave City, Arkansas Cherokee Village, Arkansas Evening Shade, Arkansas...

  15. Lafayette County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Lafayette County, Arkansas Bradley, Arkansas Buckner, Arkansas Lewisville, Arkansas Stamps, Arkansas Retrieved from...

  16. Jefferson County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Pine Bluff, Arkansas Redfield, Arkansas Sherrill, Arkansas Wabbaseka, Arkansas White Hall, Arkansas Retrieved from "http:en.openei.orgwindex.php?titleJeffersonCounty,Arka...

  17. Cross County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    A. Places in Cross County, Arkansas Cherry Valley, Arkansas Hickory Ridge, Arkansas Parkin, Arkansas Wynne, Arkansas Retrieved from "http:en.openei.orgwindex.php?titleCross...

  18. Low inductance power electronics assembly

    DOE Patents [OSTI]

    Herron, Nicholas Hayden; Mann, Brooks S.; Korich, Mark D.; Chou, Cindy; Tang, David; Carlson, Douglas S.; Barry, Alan L.

    2012-10-02

    A power electronics assembly is provided. A first support member includes a first plurality of conductors. A first plurality of power switching devices are coupled to the first support member. A first capacitor is coupled to the first support member. A second support member includes a second plurality of conductors. A second plurality of power switching devices are coupled to the second support member. A second capacitor is coupled to the second support member. The first and second pluralities of conductors, the first and second pluralities of power switching devices, and the first and second capacitors are electrically connected such that the first plurality of power switching devices is connected in parallel with the first capacitor and the second capacitor and the second plurality of power switching devices is connected in parallel with the second capacitor and the first capacitor.

  19. Direct cooled power electronics substrate

    DOE Patents [OSTI]

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W. [Kingston, TN; Lowe, Kirk T. [Knoxville, TN

    2010-09-14

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  20. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electronic Thermal System Performance and Integration Power Electronic Thermal System Performance and Integration 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual ...

  1. Arkansas/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    Distributed Wind Energy Association Arkansas Wind Resources Arkansas Energy Office: Wind AWEA State Wind Energy Statistics: Arkansas Southeastern Wind Coalition...

  2. Hempstead County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    3 Climate Zone Subtype A. Utility Companies in Hempstead County, Arkansas City of Hope, Arkansas (Utility Company) Places in Hempstead County, Arkansas Blevins, Arkansas...

  3. Madison County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    A. Places in Madison County, Arkansas Hindsville, Arkansas Huntsville, Arkansas St. Paul, Arkansas Retrieved from "http:en.openei.orgwindex.php?titleMadisonCounty,Arkans...

  4. City of Augusta, Arkansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Augusta Light & Power Place: Arkansas Phone Number: 870-347-2041 Outage Hotline: 870-347-2041 References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form 861 Data...

  5. Next-Generation Power Electronics: Reducing Energy Waste and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future January 15, 2014 - ...

  6. Power Electronics Reliability Kick Off Meeting … Silicon Power...

    Energy Savers [EERE]

    Power Electronics Reliability Analysis Annual DOE Peer Review Meeting October 8, 2009 Mark A. Smith - Systems Readiness & Sustainment Technologies Department Stan Atcitty - Energy ...

  7. NREL: Transportation Research - Power Electronics Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Electronics Thermal Management A photo of water boiling in liquid cooling lab equipment. Power electronics thermal management research aims to help lower the cost and improve the performance of electric-drive vehicles. Photo by Dennis Schroeder, NREL NREL investigates and develops thermal management strategies for power electronics systems that use wide-bandgap technology, which enables the development of devices that are smaller than those based on other materials, demonstrating

  8. Micro Power Electronics Inc | Open Energy Information

    Open Energy Info (EERE)

    Micro Power Electronics Inc Place: Hillsboro, Oregon Zip: 97124-7165 Product: Leading battery system integrator. Coordinates: 43.651735, -90.341144 Show Map Loading map......

  9. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Motor Thermal Control Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Integrated Vehicle Thermal Management

  10. Opportunities for Wide Bandgap Semiconductor Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell ... kgd H2 produced) Fuel Cell System Cost Transportation projected to (500,000 ...

  11. Power electronics substrate for direct substrate cooling

    DOE Patents [OSTI]

    Le, Khiet; Ward, Terence G.; Mann, Brooks S.; Yankoski, Edward P.; Smith, Gregory S.

    2012-05-01

    Systems and apparatus are provided for power electronics substrates adapted for direct substrate cooling. A power electronics substrate comprises a first surface configured to have electrical circuitry disposed thereon, a second surface, and a plurality of physical features on the second surface. The physical features are configured to promote a turbulent boundary layer in a coolant impinged upon the second surface.

  12. Energy Storage Systems 2007 Peer Review - Power Electronics Presentati...

    Office of Environmental Management (EM)

    Power Electronics Presentations Energy Storage Systems 2007 Peer Review - Power Electronics ... 2007 Peer Review - SiC Power Converter System Thermal Mgmt and High Temp Packaging - ...

  13. Power Electronics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Device Letters, IEEE. Sept 2010 Lu, B.; Palacios ,T. "High Breakdown ( > 1500 V ) AlGaNGaN HEMTs by Substrate-Transfer Technology" Electron Device Letters, IEEE. Sept 2010. Lu, ...

  14. Advanced Power Electronics and Electric Motors Annual Report -- 2013

    SciTech Connect (OSTI)

    Narumanchi, S.; Bennion, K.; DeVoto, D.; Moreno, G.; Rugh, J.; Waye, S.

    2015-01-01

    This report describes the research into advanced liquid cooling, integrated power module cooling, high temperature air cooled power electronics, two-phase cooling for power electronics, and electric motor thermal management by NREL's Power Electronics group in FY13.

  15. Electronic and photonic power applications

    SciTech Connect (OSTI)

    Walko, R.J.; Ashley, C.S.; Brinker, C.J.; Reed, S.T.; Renschler, C.L. ); Shepodd, T.J. ); Ellefson, R.E.; Gill, J.T. ); Leonard, L.E. )

    1990-01-01

    Efficient conversion of radioactive decay to electrical power has been the goal of a number of past research efforts. One of these was the Elgin-Kidde nuclear battery. In this concept promethium-147 was used as a beta source which was then mixed with a phosphor to produce a radioluminescent (RL) source of light. The light source was coupled to silicon photovoltaic converters to create electricity. This photoelectric approach is being revisited using tritium based solid state compounds and advanced gas concepts to produce RL light sources being disclosed at this conference. Efficient conversion of the RL light energy to electrical energy imposes certain requirements on the semiconductor converter. These requirements will be discussed. Projections of power source electrical and physical characteristics will be presented based on reasonable design parameter assumptions. The words Power Supply'' usually evoke a vision of a rotating machine or chemical battery. However, today's technology is making increasing use of photonics, where information and even power can be moved through optical fibers. Brighter volumetric RL light sources open a whole new range of photonics-based applications, while solid state tritiated compounds provide the foundation for improved mechanical adaptability and safety. 4 refs., 6 figs., 1 tab.

  16. Opportunities for Wide Bandgap Semiconductor Power Electronics...

    Broader source: Energy.gov (indexed) [DOE]

    Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications" held on October 21, 2014. ... Vehicle Technologies Office Merit Review 2016: Advanced Low-Cost SiC and GaN Wide ...

  17. Materials Compatibility of Power Electronics | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon pm01wilson.pdf More Documents & Publications Materials Compatibility of Power Electronics Vehicle ...

  18. Pulaski County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Stephens, Inc Energy Generation Facilities in Pulaski County, Arkansas Fourche Creek Wastewater Biomass Facility Places in Pulaski County, Arkansas Alexander, Arkansas Cammack...

  19. Forrest City, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arkansas. It falls under Arkansas's 1st congressional district.12 US Recovery Act Smart Grid Projects in Forrest City, Arkansas Woodruff Electric Smart Grid Project Utility...

  20. Arkansas Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    for your school's state, county, city, or district. For more information, please visit the Middle School Coach page. Arkansas Region Middle School Regional Arkansas Arkansas...

  1. Arkansas Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    designated for your school's state, county, city, or district. For more information, please visit the High School Coach page. Arkansas Region High School Regional Arkansas Arkansas...

  2. Air Cooling Technology for Advanced Power Electronics and Electric...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Air Cooling Technology for Power Electronic Thermal Control Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric Machinery R&D ...

  3. Power electronics system modeling and simulation (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Title: Power electronics system modeling and simulation This paper introduces control system design based softwares, SIMNON and MATLABSIMULINK, for power electronics system ...

  4. Advnaced Power Electronics and Electric Machines (APEEM) R&D...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advnaced Power Electronics and Electric Machines (APEEM) R&D Program Overview Advnaced Power Electronics and Electric Machines (APEEM) R&D Program Overview 2010 DOE Vehicle ...

  5. AMO's New Institute Focused on Wide Bandgap Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Focused on Wide Bandgap Power Electronics Manufacturing AMO's New Institute Focused on Wide Bandgap Power Electronics Manufacturing January 15, 2014 - 11:34am Addthis The Next ...

  6. 2014 Annual Merit Review Results Report - Power Electronics and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electrical Machines Technologies 2014 Annual Merit Review Results Report - Power Electronics and Electrical Machines Technologies Merit review of DOE Vehicle ...

  7. 2011 Annual Merit Review Results Report - Power Electronics and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electrical Machines Technologies 2011 Annual Merit Review Results Report - Power Electronics and Electrical Machines Technologies Merit review of DOE Vehicle ...

  8. EV Everywhere Workshop: Power Electronics and Thermal Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Thermal Management Breakout Session Report EV Everywhere Workshop: Power Electronics and Thermal Management Breakout Session Report Presentation given at the ...

  9. Power Electronics and Thermal Management Breakout Session | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Thermal Management Breakout Session Power Electronics and Thermal Management Breakout Session Presentation given at the EV Everywhere Grand Challenge ...

  10. 2012 Annual Merit Review Results Report - Power Electronics and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electrical Machines Technologies 2012 Annual Merit Review Results Report - Power Electronics and Electrical Machines Technologies Merit review of DOE Vehicle ...

  11. 2013 Annual Merit Review Results Report - Power Electronics and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electrical Machines Technologies 2013 Annual Merit Review Results Report - Power Electronics and Electrical Machines Technologies Merit review of DOE Vehicle ...

  12. EV Everywhere Grand Challenge - Electric Drive (Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Electric Drive (Power Electronics and Electric Machines) Workshop EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop List of ...

  13. Energy Storage & Power Electronics 2008 Peer Review - Agenda...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Power Electronics 2008 Peer Review - AgendaPresentation List Energy Storage & Power Electronics 2008 Peer Review - AgendaPresentation List The 2008 Peer Review Meeting for the ...

  14. SkyPower Pekon Electronics JV | Open Energy Information

    Open Energy Info (EERE)

    search Name: SkyPower-Pekon Electronics JV Place: India Sector: Wind energy Product: Joint venture for development of Indian wind farms. References: SkyPower-Pekon Electronics...

  15. Thermal Stress and Reliability for Advanced Power Electronics...

    Broader source: Energy.gov (indexed) [DOE]

    Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Power Electronic Thermal System Performance and Integration Thermal Performance and Reliability ...

  16. Arkansas' Anemometer Loan Program

    SciTech Connect (OSTI)

    Fernando Vego

    2012-10-11

    The measurement campaign had one year duration from 04/01/2011 to 03/31/2012 and was taken at 20m and 34m with NRG instrumentation. The data was analyzed weekly to check inconsistencies and validity and processed using Excel, Flexpro and Windographer standard Edition Version 2.04. The site analyzed is located in the Waldron, Arkansas in Scott County. It is an open site for most of the direction sectors with immediate roughness class of 1.5. It has seasonally directional winds, of which the most energetic come from the southern direction. The vertical wind profile shows moderate wind shear that varies by season as well.

  17. Energy Incentive Programs, Arkansas | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arkansas Energy Incentive Programs, Arkansas Updated June 2015 Arkansas utilities collectively budgeted over $80 million for energy efficiency programs in 2014. What public-purpose-funded energy efficiency programs are available in my state? Arkansas has no public-purpose-funded energy efficiency programs; however, the Arkansas Public Services Commission requires utilities to include provisions for demand-side resources through an energy efficiency resource standard (EERS). What utility energy

  18. Electronic Position Sensor for Power Operated Accessory

    DOE Patents [OSTI]

    Haag, Ronald H.; Chia, Michael I.

    2005-05-31

    An electronic position sensor for use with a power operated vehicle accessory, such as a power liftgate. The position sensor includes an elongated resistive circuit that is mounted such that it is stationary and extends along the path of a track portion of the power operated accessory. The position sensor further includes a contact nub mounted to a link member that moves within the track portion such that the contact nub is slidingly biased against the elongated circuit. As the link member moves under the force of a motor-driven output gear, the contact nub slides along the surface of the resistive circuit, thereby affecting the overall resistance of the circuit. The position sensor uses the overall resistance to provide an electronic position signal to an ECU, wherein the signal is indicative of the absolute position of the power operated accessory. Accordingly, the electronic position sensor is capable of providing an electronic signal that enables the ECU to track the absolute position of the power operated accessory.

  19. Numerical Simulations of Boiling Jet Impingement Cooling in Power Electronics

    SciTech Connect (OSTI)

    Narumanchi, S.; Troshko, A.; Hassani, V.; Bharathan, D.

    2006-12-01

    This paper explores turbulent boiling jet impingement for cooling power electronic components in hybrid electric vehicles.

  20. Advanced Thermal Interface Materials (TIMs) for Power Electronics (Presentation)

    SciTech Connect (OSTI)

    Narumanchi, S.

    2009-05-01

    This presentation describes our progress in the area of thermal interface materials for power electronics applications.

  1. Power Electronics and Thermal Management Breakout Sessions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    POWER ELECTRONICS AND THERMAL MANAGEMENT EV Everywhere Workshop July 24, 2012 Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * Performance: Is achievable with these assumptions * Production Cost: $8/KW is achievable for PHEV40 and BEV300, $14/KW is okay for BEV100 * Production Efficiency: 95% system efficiency might be achievable * It is easier to achieve performance than cost targets * Integration of the different

  2. Adona, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Adona is a city in Perry County, Arkansas. It falls under Arkansas's 2nd congressional district.12...

  3. Elaine, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Elaine is a city in Phillips County, Arkansas. It falls under Arkansas's 1st congressional district.12...

  4. Two-Phase Cooling Technology for Power Electronics with Novel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electronics with Novel Coolants Two-Phase Cooling Technology for Power Electronics with Novel Coolants 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program ...

  5. Florida Power Electronics Center FPEC | Open Energy Information

    Open Energy Info (EERE)

    Electronics Center FPEC Jump to: navigation, search Name: Florida Power Electronics Center (FPEC) Place: Orlando, Florida Sector: Renewable Energy Product: Research institute based...

  6. Power Electronics and Electric Machines Merit Review, May 2005...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Power Electronics and Electrical Machines Review, August 2006 Advanced Soft Switching Inverter for Reducing Switching and Power Losses Eliminating ...

  7. Dalian Sengu New Power Electronic Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    axis wind turbines, solar components, solar-wind complementary power supply system, LED lighting system. References: Dalian Sengu New Power Electronic Co Ltd1 This article...

  8. Interim Update: Global Automotive Power Electronics R&D Relevant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interim Update: Global Automotive Power Electronics R&D Relevant To DOE 2015 and 2020 Cost Targets Interim Update: Global Automotive Power Electronics R&D Relevant To DOE 2015 and ...

  9. Vehicle Technologies Office: Power Electronics Research and Development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Power Electronics Research and Development Vehicle Technologies Office: Power Electronics Research and Development To reach the EV Everywhere Grand Challenge goal, the Vehicle Technologies Office (VTO) is supporting research and development (R&D) to lower the cost and improve the performance of power electronics in electric drive vehicles. Vehicle power electronics primarily process and control the flow of electrical energy in hybrid and plug-in electric vehicles,

  10. 2010 DOE EERE Vehicle Technologies Program Merit Review - Power Electronics

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Electrical Machines | Department of Energy Power Electronics and Electrical Machines 2010 DOE EERE Vehicle Technologies Program Merit Review - Power Electronics and Electrical Machines APEEM research and development merit review results 2010_amr_03.pdf (1.38 MB) More Documents & Publications 2012 Annual Merit Review Results Report - Power Electronics and Electrical Machines Technologies 2011 Annual Merit Review Results Report - Power Electronics and Electrical Machines Technologies

  11. 2011 Annual Merit Review Results Report - Power Electronics and Electrical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Machines Technologies | Department of Energy Power Electronics and Electrical Machines Technologies 2011 Annual Merit Review Results Report - Power Electronics and Electrical Machines Technologies Merit review of DOE Vehicle Technologies research activities 2011_amr_03.pdf (5.61 MB) More Documents & Publications 2012 Annual Merit Review Results Report - Power Electronics and Electrical Machines Technologies 2010 DOE EERE Vehicle Technologies Program Merit Review - Power Electronics and

  12. 2012 Annual Merit Review Results Report - Power Electronics and Electrical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Machines Technologies | Department of Energy Power Electronics and Electrical Machines Technologies 2012 Annual Merit Review Results Report - Power Electronics and Electrical Machines Technologies Merit review of DOE Vehicle Technologies research activities 2012_amr_03.pdf (5.68 MB) More Documents & Publications 2011 Annual Merit Review Results Report - Power Electronics and Electrical Machines Technologies 2010 DOE EERE Vehicle Technologies Program Merit Review - Power Electronics and

  13. Thermal Interface Materials for Power Electronics Applications: Preprint

    SciTech Connect (OSTI)

    Narumanchi, S.; Mihalic, M.; Kelly, K.; Eesley, G.

    2008-07-01

    The thermal resistance of the thermal interface material layer greatly affects the maximum temperature of the power electronics.

  14. Arkansas SoyEnergy Group | Open Energy Information

    Open Energy Info (EERE)

    SoyEnergy Group Jump to: navigation, search Name: Arkansas SoyEnergy Group Place: DeWitt, Arkansas Zip: 72042 Product: Arkansas SoyEnergy Group is a soybean crushing and biodiesel...

  15. Alumni: Sarah Nurre, University of Arkansas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sarah Nurre, University of Arkansas Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Alumni: Sarah Nurre, University of Arkansas Optimizing complex systems July 1, 2015 Sarah Nurre Sarah Nurre Contact Linda Anderman Email Sarah Nurre Sarah Nurre moving to the University of Arkansas Even though Sarah Nurre only spent two months at the Lab, in what is now Defense Systems and Analysis, she says it was a great experience,

  16. Categorical Exclusion Determinations: Arkansas | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arkansas Categorical Exclusion Determinations: Arkansas Location Categorical Exclusion Determinations issued for actions in Arkansas. DOCUMENTS AVAILABLE FOR DOWNLOAD May 19, 2016 CX-100612 Categorical Exclusion Determination One-Step Super Emitters for High Efficiency Solar Cells Award Number: DE-EE0007191 CX(s) Applied: A9, B3.6 Solar Energy Technologies Office Date: 05/2/2016 Location(s): AR Office(s): Golden Field Office August 28, 2015 CX-014269: Categorical Exclusion Determination

  17. City of Hope, Arkansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Arkansas (Utility Company) Jump to: navigation, search Name: City of Hope Address: 105 N. Elm St. Place: Hope, AR Zip: 71801 Service Territory: Arkansas Phone Number:...

  18. Arkansas's 4th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Biofuels Inc Utility Companies in Arkansas's 4th congressional district City of Hope, Arkansas (Utility Company) Retrieved from "http:en.openei.orgw...

  19. Arkansas's 3rd congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Registered Energy Companies in Arkansas's 3rd congressional district Appro-Tec Renewable Energy Highline Hydrogen Hybrids Utility Companies in Arkansas's 3rd congressional...

  20. Arkansas Oil and Gas Commission | Open Energy Information

    Open Energy Info (EERE)

    Oil and Gas Commission Jump to: navigation, search Name: Arkansas Oil and Gas Commission Address: 301 Natural Resources Dr. Ste 102 Place: Arkansas Zip: 72205 Website:...

  1. Georgia and Arkansas Residential Energy Code Field Studies |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Georgia and Arkansas Residential Energy Code Field Studies Georgia and Arkansas Residential Energy Code Field Studies Lead Performer: Southeast Energy Efficiency Alliance - ...

  2. Garland County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Subtype A. Registered Energy Companies in Garland County, Arkansas PRM Energy Phoenix Renewable Energy Phoenix Biomass Places in Garland County, Arkansas Fountain Lake,...

  3. Arkansas's 1st congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Act Smart Grid Projects in Arkansas's 1st congressional district Woodruff Electric Smart Grid Project Utility Companies in Arkansas's 1st congressional district City Water...

  4. ,"Arkansas Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  5. ,"Arkansas Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  6. Arkansas/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Arkansas Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  7. Clean Cities: Arkansas Clean Cities coalition

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Arkansas by using alternate modes of transportation. She is also a member of the Saline Green Committee that increases awareness of the importance of reducing Saline County's...

  8. Arkansas Oklahoma Gas (AOG) Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Arkansas Oklahoma Gas (AOG) provides financial incentives to its residential and small commercial customers for both existing and new construction homes and small business whose primary fuel for...

  9. Scott, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Scott, Arkansas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.6964808, -92.0962552 Show Map Loading map... "minzoom":false,"mappingservic...

  10. ARKANSAS RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Arkansas are ...

  11. ,"Arkansas Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:28 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Arkansas Natural Gas in ...

  12. Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Fuel Cell Applications | Department of Energy for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications Download presentation slides from the DOE Fuel Cell Technologies Office webinar "Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications" held on October 21, 2014. Opportunities for Wide Bandgap

  13. Vehicle Technologies Office: 2011 Advanced Power Electronics and Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Motors R&D Annual Progress Report | Department of Energy Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2011 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing

  14. Vehicle Technologies Office: 2013 Advanced Power Electronics and Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Motors R&D Annual Progress Report | Department of Energy Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2013 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The Advanced Power Electronics and Electric Motors (APEEM) technology area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on

  15. Webinar: Opportunities for Wide Bandgap Semiconductor Power Electronics for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cell Applications | Department of Energy Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications Webinar: Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications Below is the text version of the webinar titled "Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications," originally presented on October 21, 2014. In addition to

  16. Energy Storage Systems 2007 Peer Review - Power Electronics Presentations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Power Electronics Presentations Energy Storage Systems 2007 Peer Review - Power Electronics Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September 27, 2007 in San Francisco, CA. Eighteen presentations were divided into categories; those related to power electronics are below. Other presentation categories were: Economics - Benefit Studies and Environment Benefit Studies Utility & Commercial Applications of Advanced

  17. EV Everywhere Workshop: Power Electronics and Thermal Management Breakout

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Session Report | Department of Energy Power Electronics and Thermal Management Breakout Session Report EV Everywhere Workshop: Power Electronics and Thermal Management Breakout Session Report Presentation given at the EV Everywhere Grand Challenge … Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare, Chicago, IL. 9b_traction_drive_systems_ed.pdf (122.88 KB) More Documents & Publications EV Everywhere Batteries Workshop -

  18. 2013 Annual Merit Review Results Report - Power Electronics and Electrical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Machines Technologies | Department of Energy Power Electronics and Electrical Machines Technologies 2013 Annual Merit Review Results Report - Power Electronics and Electrical Machines Technologies Merit review of DOE Vehicle Technologies research activities 2013_amr_03.pdf (5.87 MB) More Documents & Publications 2014 Annual Merit Review Results Report - Power Electronics and Electrical Machines Technologies Vehicle Technologies Office Merit Review 2016: Unique Lanthide-Free Motor

  19. 2014 Annual Merit Review Results Report - Power Electronics and Electrical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Machines Technologies | Department of Energy Power Electronics and Electrical Machines Technologies 2014 Annual Merit Review Results Report - Power Electronics and Electrical Machines Technologies Merit review of DOE Vehicle Technologies research activities 2014_amr_03.pdf (3.56 MB) More Documents & Publications 2013 Annual Merit Review Results Report - Power Electronics and Electrical Machines Technologies Vehicle Technologies Office Merit Review 2015: Development of Radically Enhanced

  20. Two-Phase Heat Exchanger for Power Electronics Cooling - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Two-Phase Heat Exchanger for Power Electronics ... Heat dissipation is a limiting factor in reducing the size and cost of the power ...

  1. Recovery Act State Memos Arkansas

    Broader source: Energy.gov (indexed) [DOE]

    Arkansas For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  2. FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Obama Administration announces the selection of North Carolina State University to lead a public-private manufacturing innovation institute for next generation power electronics.

  3. Thermal Stress and Reliability for Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Performance and Reliability of Bonded Interfaces Physics of Failure of Electrical Interconnects Thermal Stress and Reliability for Advanced Power Electronics and Electric ...

  4. Power Electronics and Balance of System Hardware Technologies

    Broader source: Energy.gov [DOE]

    DOE is targeting solar technology improvements related to power electronics and balance of system (BOS) hardware technologies to reduce the installed cost of solar photovoltaic (PV) electricity and...

  5. Utilizing the Traction Drive Power Electronics System to Provide...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Traction Drive Power Electronics System to Provide Plug-in Capability for PHEVs Utilizing ... More Documents & Publications Current Source Inverters for HEVs and FCVs Converter ...

  6. Learning About Power Electronics in the Edison Program | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DCDC converters (buck and boost), and the applications of power electronics (wind, solar, appliances, etc.). As an Electrical Engineer, though not one who has focused on...

  7. Rapid Modeling of Power Electronics Thermal Management Technologies: Preprint

    SciTech Connect (OSTI)

    Bennion, K.; Kelly, K.

    2009-08-01

    Describes a method of rapidly evaluating trade-offs associated with alternative packaging configurations and thermal management technologies for power electronics packaging.

  8. Power Electronic Thermal System Performance and Integration (Presentation)

    SciTech Connect (OSTI)

    Bennion, K.

    2009-05-01

    This presentation gives an overview of the status and FY09 accomplishments for the NREL Power Electronic Thermal System Performance and Integration Project.

  9. Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the United States, Southwestern markets hydroelectric power in Arkansas, Kansas, Louisiana, Missouri, Oklahoma, and Texas from 24 U.S. Army Corps of Engineers multipurpose dams. ...

  10. Opportunities and Challenges for Power Electronics in PV Modules (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Deline, C.; Wohlgemuth, J.; Marion, B.; Granata, J.

    2011-02-01

    The presentation describes the value of adding DC converters and other power electronics to modules to improve their output even when shading or bad cells would otherwise decrease the module output. The presentation was part of a workshop sponsored by ARPA-E exploring the opportunities for power electronics to support PV applications.

  11. High Dielectric Constant Capacitors for Power Electronic Systems |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ape_05_balachandran.pdf (912.46 KB) More Documents & Publications High Dialectric Constant Capacitors for Power Electronic Systems High Dialectric Constant Capacitors for Power Electronic Systems High Dialectric

  12. NREL: Transportation Research - Power Electronics and Electric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Paper Source: Bennion, Kevin; Moreno, Gilberto. (2015). Presented at the International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic ...

  13. FACTSHEET: Next Generation Power Electronics Manufacturing Innovation...

    Office of Environmental Management (EM)

    The Obama Administration today announces the selection of North Carolina State University to lead a public-private manufacturing innovation institute for next generation power ...

  14. Magnetek Power Electronics Group | Open Energy Information

    Open Energy Info (EERE)

    handling, telecoms, elevators, renewable energy projects, power grid monitoring and control and industrial controls. Coordinates: 39.817671, -74.533983 Show Map Loading...

  15. Vehicle Technologies Office: 2008 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles Advanced Soft Switching Inverter for Reducing Switching and Power Losses

  16. Power Electronics Research and Development Program Plan | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Electronics Research and Development Program Plan Power Electronics Research and Development Program Plan As the United States transitions to a digital economy, the need to upgrade the nation's aging electric grid is becoming increasingly evident. Electricity demand is projected to increase by 30% between 2008 and 2035,1 and the U.S. electricity delivery system must be able to meet this demand and ensure the continued supply of reliable, secure electricity. Power Electronics Research

  17. Power Electronic Thermal System Performance and Integration | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ape_13_bennion.pdf (1.2 MB) More Documents & Publications Power Electronic Thermal System Performance and Integration Integrated Power Module Cooling Vehicle Technologies Office: 2009 Advanced Power Electronics R&D Annual Progress Report

  18. Integrated Three-Dimensional Module Heat Exchange for Power Electronics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cooling - Energy Innovation Portal Vehicles and Fuels Vehicles and Fuels Find More Like This Return to Search Integrated Three-Dimensional Module Heat Exchange for Power Electronics Cooling National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary The power electronics market has started to grow dramatically with the onset of new technologies in automotive applications, power generation, energy storage, and other growing markets. A critical element

  19. Arkansas Regional High Science Bowl | U.S. DOE Office of Science...

    Office of Science (SC) Website

    ...a Hosted by: University of Arkansas-Fort Smith States andor Counties Served Arkansas ... Competition Location University of Arkansas-Fort Smith 5210 Grand Avenue Math-Science ...

  20. EA-1629:Southwestern Power Administration Utility Corridor and Tower Site Vegetation Management; Ozark-St. Francis National Forest, Pope and Searcy Counties, Arkansas

    Broader source: Energy.gov [DOE]

    U.S. Forest Service prepared an EA that evaluated the potential environmental impacts of amending a Southwestern Area Power Administration (SWPA) permit to allow herbicide application within SWPA transmission line rights-of-way in the Ozark-St. Francis National Forest. SWPA initially was a cooperating agency, and later ended its involvement in preparing the EA.

  1. DOE Traineeship In Power Engineering (Leveraging Wide Bandgap Power Electronics)

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office announced up to $10 million is available to establish 5-year graduate-level university-led DOE Traineeship(s) in Power Engineering (leveraging emerging Wide...

  2. Arkansas Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    3.84 1967-2010 Pipeline and Distribution Use 1967-2005 Citygate 6.76 6.27 5.36 4.99 5.84 4.76 1984-2015 Residential 11.53 11.46 11.82 10.46 10.39 11.20 1967-2015 Commercial 8.89 8.90 7.99 7.68 7.88 8.08 1967-2015 Industrial 7.28 7.44 6.38 6.74 6.99 6.97 1997-2015 Vehicle Fuel -- -- 9.04 1994-2012 Electric Power 5.11 W 3.19 4.32 W W 1997-2015 Dry Proved Reserves (Billion Cubic Feet) Proved Reserves as of 12/31 14,178 16,370 11,035 13,518 12,789 1977-2014 Adjustments -34 728 -743 -78 -3 1977-2014

  3. Arkansas Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    43 3.76 4.53 4.60 4.79 6.16 1989-2016 Residential 9.54 9.06 10.33 10.89 13.73 15.40 1989-2016 Commercial 7.16 6.74 7.11 6.85 7.11 7.22 1989-2016 Industrial 6.01 5.92 5.90 5.40 5.34 5.51 2001-2016 Electric Power W W W W W W 2002-2016 Production (Million Cubic Feet) Gross Withdrawals 77,842 71,967 74,543 70,831 71,769 67,293 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA

  4. Governor Cuomo, GE Announce Power Electronics Manufacturing Consortium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Governor Andrew M. Cuomo today announced that the State will partner with over 100 private ... The New York Power Electronics Manufacturing Consortium (NY-PEMC) is a public-private ...

  5. Power Electronics and Electrical Machines Review, August 2006

    Broader source: Energy.gov [DOE]

    This report is a summary of the Review Panel at the FY06 DOE FreedomCAR and Vehicle Technologies (FCVT) Annual Review of Advanced Power Electronics and Electric Machine (APEEM) research activities held on August 15-17, 2006

  6. Advanced Power Electronics and Electric Motors R&D | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R&D Advanced Power Electronics and Electric Motors R&D 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Vehicle ...

  7. AMO's New Institute Focused on Wide Bandgap Power Electronics Manufacturing

    Broader source: Energy.gov [DOE]

    The Next Generation Power Electronics National Manufacturing Institute announced by President Obama today will use $70 million provided by the U.S. Department of Energy's Advanced Manufacturing Office to support and manage its programs over the next five years.

  8. Power Electronics and Electrical Machines Review, August 2006...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrical Machines Review, August 2006 Power Electronics and Electrical Machines Review, August 2006 This report is a summary of the Review Panel at the FY06 DOE FreedomCAR and ...

  9. Arkansas Natural Gas Plant Liquids Production Extracted in Arkansas

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) Arkansas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60 60,355 61,630 61,848 1990's 61,530 61,731 62,221 62,952 63,821 65,490 67,293 68,413 69,974 71,389 2000's 72,933 71,875 71,530 71,016 70,655 69,990 69,475 69,495 69,144 69,043 2010's 67,987 67,815 68,765 68,791 69,011 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  10. NREL: Transportation Research - Power Electronics and Electric Machines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Electronics and Electric Machines A photo of a researcher using testing equipment in a lab. NREL R&D is making wide-scale adoption of electric-drive vehicles more feasible by developing technologies and components with superior reliability, efficiency, and durability, while dramatically decreasing costs. Photo by Dennis Schroeder, NREL NREL's power electronics and electric machines research focuses on systems for electric-drive vehicles (EDVs) that control the flow of electricity

  11. Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Machinery R&D Annual Progress Report | Department of Energy Power Electronics and Electric Machinery R&D Annual Progress Report Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric Machinery R&D Annual Progress Report 2008_apeem_report.pdf (6.95 MB) More Documents & Publications Characterization and Development of Advanced Heat Transfer Technologies An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices

  12. EV Everywhere Grand Challenge - Electric Drive (Power Electronics and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Machines) Workshop | Department of Energy - Electric Drive (Power Electronics and Electric Machines) Workshop EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop List of companies in attendance at the Electric Drive Workshop held on July 24, 2012 at the Doubletree O'Hare, Chicago, IL companies_in_attendance_ed.pdf (145.65 KB) More Documents & Publications EV Everywhere Grand Challenge Introduction for Electric Drive Workshop EV

  13. 2008 Annual Merit Review Results Summary - 5. Advanced Power Electronics |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 5. Advanced Power Electronics 2008 Annual Merit Review Results Summary - 5. Advanced Power Electronics DOE Vehicle Technologies Annual Merit Review 2008_merit_review_5.pdf (1.26 MB) More Documents & Publications 2008 Annual Merit Review Results Summary - 14. Vehicle Systems and Simulation 2008 Annual Merit Review Results Summary - 13. Health Impacts 2008 Annual Merit Review Results Summary - 10. Fuels Technologies

  14. Thermal Stress and Reliability for Advanced Power Electronics and Electric

    Broader source: Energy.gov (indexed) [DOE]

    Machines | Department of Energy 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ape_14_okeefe.pdf (969.92 KB) More Documents & Publications Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Power Electronic Thermal System Performance and Integration Thermal Performance and Reliability of Bonded Interfaces

  15. ,"Arkansas Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"06292016 10:51:23 AM" "Back to Contents","Data 1: Arkansas Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AR2","N9011AR2","N9012AR2","NGME...

  16. Arkansas Shale Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) Arkansas Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 94 279 527 2010's...

  17. Arkansas Shale Proved Reserves (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Arkansas Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,460...

  18. Distributed Power Electronics for PV Systems (Presentation)

    SciTech Connect (OSTI)

    Deline, C.

    2011-12-01

    An overview of the benefits and applications of microinverters and DC power optimizers in residential systems. Some conclusions from this report are: (1) The impact of shade is greater than just the area of shade; (2) Additional mismatch losses include panel orientation, panel distribution, inverter voltage window, soiling; (3) Per-module devices can help increase performance, 4-12% or more depending on the system; (4) Value-added benefits (safety, monitoring, reduced design constraints) are helping their adoption; and (5) The residential market is growing rapidly. Efficiency increases, cost reductions are improving market acceptance. Panel integration will further reduce price and installation cost. Reliability remains an unknown.

  19. Advanced power electronics and electric machinery program

    SciTech Connect (OSTI)

    None, None

    2007-12-01

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as "FreedomCAR" (derived from "Freedom" and "Cooperative Automotive Research"), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieving the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001.

  20. Arkansas Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" ... " Hydro Conventional",1341,8.4 " Solar","-","-" " Wind","-","-" " WoodWood ...

  1. Arkansas Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy ... - - Hydro Conventional 1,341 8.4 Solar - - Wind - - WoodWood Waste 312 2.0 MSW...

  2. Power Electronics Thermal Management R&D (Presentation)

    SciTech Connect (OSTI)

    Waye, S.

    2014-11-01

    This project will investigate and develop thermal-management strategies for wide bandgap (WBG)-based power electronics systems. Research will be carried out to deal with thermal aspects at the module- and system-level. Module-level research will focus on die- and substrate-integrated cooling strategies and heat-transfer enhancement technologies. System-level research will focus on thermal-management strategies for the entire power electronics system to enable smart packaging solutions. One challenge with WBG device-based power electronics is that although losses in the form of heat may be lower, the footprint of the components is also likely to be reduced to reduce cost, weight, and volume. Combined with higher operational temperatures, this creates higher heat fluxes which much be removed from a smaller footprint, requiring advanced cooling strategies.

  3. ,"Arkansas Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:21 AM" "Back to Contents","Data 1: Arkansas Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AR3" "Date","Arkansas...

  4. Siloam Springs, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Siloam Springs is a city in Benton County, Arkansas. It falls under Arkansas's 3rd congressional...

  5. Alternative Fuels Data Center: Arkansas Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Arkansas Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Arkansas Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Arkansas Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Arkansas Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center:

  6. High power free-electron laser concepts and problems

    SciTech Connect (OSTI)

    Goldstein, J.C.

    1995-03-01

    Free-electron lasers (FELs) have long been thought to offer the potential of high average power operation. That potential exists because of several unique properties of FELs, such as the removal of ``waste heat`` at the velocity of light, the ``laser medium`` (the electron beam) is impervious to damage by very high optical intensitites, and the technology of generating very high average power relativistic electron beams. In particular, if one can build a laser with a power extraction efficiency 11 which is driven by an electron beam of average Power P{sub EB}, one expects a laser output power of P{sub L} = {eta} P{sub EB}. One approach to FEL devices with large values of {eta} (in excess of 10 %) is to use a ``tapered`` (or nonuniform) wiggler. This approach was followed at several laboratories during the FEL development Program for the Strategic Defense Initiative (SDI) project. In this paper, we review some concepts and technical requirements for high-power tapered-wiggler FELs driven by radio-frequency linear accelerators (rf-linacs) which were developed during the SDI project. Contributions from three quite different technologies - rf-accelerators, optics, and magnets - are needed to construct and operate an FEL oscillator. The particular requirements on these technologies for a high-power FEL were far beyond the state of the art in those areas when the SDI project started, so significant advances had to be made before a working device could be constructed. Many of those requirements were not clearly understood when the project started, but were developed during the course of the experimental and theoretical research for the project. This information can be useful in planning future high-power FEL projects.

  7. Power Electronics Reliability Kick Off Meeting … Silicon Power Corp. & Sandia Labs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funded by the Power Electronics Program of the U.S. Department Of Energy (DOE/PE) through Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Power Electronics Reliability Analysis Annual DOE Peer Review Meeting October 8, 2009 Mark A. Smith - Systems Readiness & Sustainment Technologies Department

  8. High performance protection circuit for power electronics applications

    SciTech Connect (OSTI)

    Tudoran, Cristian D. Dădârlat, Dorin N.; Toşa, Nicoleta; Mişan, Ioan

    2015-12-23

    In this paper we present a high performance protection circuit designed for the power electronics applications where the load currents can increase rapidly and exceed the maximum allowed values, like in the case of high frequency induction heating inverters or high frequency plasma generators. The protection circuit is based on a microcontroller and can be adapted for use on single-phase or three-phase power systems. Its versatility comes from the fact that the circuit can communicate with the protected system, having the role of a “sensor” or it can interrupt the power supply for protection, in this case functioning as an external, independent protection circuit.

  9. FY2009 Annual Progress Report for Advanced Power Electronics

    SciTech Connect (OSTI)

    Rogers, Susan A.

    2010-01-01

    The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency.

  10. Energy Storage & Power Electronics 2008 Peer Review- Energy Storage Systems (ESS) Presentations

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Storage Systems (ESS) Presentations from the 2008 Energy Storage and Power Electronics peer review.

  11. Thermal Performance and Reliability of Bonded Interfaces for Power Electronics Packaging Applications (Presentation)

    SciTech Connect (OSTI)

    Devoto, D.

    2013-07-01

    This presentation discusses the thermal performance and reliability of bonded interfaces for power electronics packaging applications.

  12. Electron beam machining using rotating and shaped beam power distribution

    DOE Patents [OSTI]

    Elmer, John W.; O'Brien, Dennis W.

    1996-01-01

    An apparatus and method for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: 1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and 2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1000 .mu.m (1 mm or larger), compared to the 250 .mu.m diameter of laser drilling.

  13. Electron beam machining using rotating and shaped beam power distribution

    DOE Patents [OSTI]

    Elmer, J.W.; O`Brien, D.W.

    1996-07-09

    An apparatus and method are disclosed for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: (1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and (2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1,000 {micro}m (1 mm or larger), compared to the 250 {micro}m diameter of laser drilling. 5 figs.

  14. Air Cooling for High Temperature Power Electronics (Presentation)

    SciTech Connect (OSTI)

    Waye, S.; Musselman, M.; King, C.

    2014-09-01

    Current emphasis on developing high-temperature power electronics, including wide-bandgap materials such as silicon carbide and gallium nitride, increases the opportunity for a completely air-cooled inverter at higher powers. This removes the liquid cooling system for the inverter, saving weight and volume on the liquid-to-air heat exchanger, coolant lines, pumps, and coolant, replacing them with just a fan and air supply ducting. We investigate the potential for an air-cooled heat exchanger from a component and systems-level approach to meet specific power and power density targets. A proposed baseline air-cooled heat exchanger design that does not meet those targets was optimized using a parametric computational fluid dynamics analysis, examining the effects of heat exchanger geometry and device location, fixing the device heat dissipation and maximum junction temperature. The CFD results were extrapolated to a full inverter, including casing, capacitor, bus bar, gate driver, and control board component weights and volumes. Surrogate ducting was tested to understand the pressure drop and subsequent system parasitic load. Geometries that met targets with acceptable loads on the system were down-selected for experimentation. Nine baseline configuration modules dissipated the target heat dissipation, but fell below specific power and power density targets. Six optimized configuration modules dissipated the target heat load, exceeding the specific power and power density targets. By maintaining the same 175 degrees C maximum junction temperature, an optimized heat exchanger design and higher device heat fluxes allowed a reduction in the number of modules required, increasing specific power and power density while still maintaining the inverter power.

  15. Electron beam collector for a microwave power tube

    DOE Patents [OSTI]

    Dandl, Raphael A.

    1980-01-01

    This invention relates to a cylindrical, electron beam collector that efficiently couples the microwave energy out of a high power microwave source while stopping the attendant electron beam. The interior end walls of the collector are a pair of facing parabolic mirrors and the microwave energy from an input horn is radiated between the two mirrors and reassembled at the entrance to the output waveguide where the transmitted mode is reconstructed. The mode transmission through the collector of the present invention has an efficiency of at least 94%.

  16. Tomographic determination of the power distribution in electron beams

    DOE Patents [OSTI]

    Teruya, Alan T.; Elmer, John W.

    1996-01-01

    A tomographic technique for determining the power distribution of an electron beam using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. A refractory metal disk with a number of radially extending slits is placed above a Faraday cup. The beam is swept in a circular pattern so that its path crosses each slit in a perpendicular manner, thus acquiring all the data needed for a reconstruction in one circular sweep. Also, a single computer is used to generate the signals actuating the sweep, to acquire that data, and to do the reconstruction, thus reducing the time and equipment necessary to complete the process.

  17. Tomographic determination of the power distribution in electron beams

    DOE Patents [OSTI]

    Teruya, A.T.; Elmer, J.W.

    1996-12-10

    A tomographic technique for determining the power distribution of an electron beam using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams is disclosed. A refractory metal disk with a number of radially extending slits is placed above a Faraday cup. The beam is swept in a circular pattern so that its path crosses each slit in a perpendicular manner, thus acquiring all the data needed for a reconstruction in one circular sweep. Also, a single computer is used to generate the signals actuating the sweep, to acquire that data, and to do the reconstruction, thus reducing the time and equipment necessary to complete the process. 4 figs.

  18. Advanced Power Electronics for LED Drivers: Advanced Technologies for integrated Power Electronics

    SciTech Connect (OSTI)

    2010-09-01

    ADEPT Project: MIT is teaming with Georgia Institute of Technology, Dartmouth College, and the University of Pennsylvania (UPenn) to create more efficient power circuits for energy-efficient light-emitting diodes (LEDs) through advances in 3 related areas. First, the team is using semiconductors made of high-performing gallium nitride grown on a low-cost silicon base (GaN-on-Si). These GaN-on-Si semiconductors conduct electricity more efficiently than traditional silicon semiconductors. Second, the team is developing new magnetic materials and structures to reduce the size and increase the efficiency of an important LED power component, the inductor. This advancement is important because magnetics are the largest and most expensive part of a circuit. Finally, the team is creating an entirely new circuit design to optimize the performance of the new semiconductors and magnetic devices it is using.

  19. NREL: Transportation Research - Power Electronics and Electric Machines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities and Electric Machines Facilities NREL's power electronics and electric machines thermal management test facilities feature a wide range of equipment and enable world-class experimental and modeling capabilities. NREL researchers excel at testing and measurement in the areas of heat transfer, reliability characterization, and thermal and thermomechanical modeling. The following list describes NREL's innovative testing capabilities and equipment. A photo of four researchers in

  20. power electronics and machines | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Power Electronics and Electrical Machines Improvements in electric traction drives are essential to electric drive vehicles, and have the potential to significantly reduce petroleum consumption in the transportation sector as well as help meet national economic and energy security goals. Hybrid electric vehicles (HEVs) can reduce petroleum use compared to average conventional vehicles by as much as 50%, while plug-in electric vehicles (PEVs) extend these savings even further. Advanced

  1. Emerging Two-Phase Cooling Technologies for Power Electronic Inverters

    SciTech Connect (OSTI)

    Hsu, J.S.

    2005-08-17

    In order to meet the Department of Energy's (DOE's) FreedomCAR and Vehicle Technologies (FVCT) goals for volume, weight, efficiency, reliability, and cost, the cooling of the power electronic devices, traction motors, and generators is critical. Currently the power electronic devices, traction motors, and generators in a hybrid electric vehicle (HEV) are primarily cooled by water-ethylene glycol (WEG) mixture. The cooling fluid operates as a single-phase coolant as the liquid phase of the WEG does not change to its vapor phase during the cooling process. In these single-phase systems, two cooling loops of WEG produce a low temperature (around 70 C) cooling loop for the power electronics and motor/generator, and higher temperature loop (around 105 C) for the internal combustion engine. There is another coolant option currently available in automobiles. It is possible to use the transmission oil as a coolant. The oil temperature exists at approximately 85 C which can be utilized to cool the power electronic and electrical devices. Because heat flux is proportional to the temperature difference between the device's hot surface and the coolant, a device that can tolerate higher temperatures enables the device to be smaller while dissipating the same amount of heat. Presently, new silicon carbide (SiC) devices and high temperature direct current (dc)-link capacitors, such as Teflon capacitors, are available but at significantly higher costs. Higher junction temperature (175 C) silicon (Si) dies are gradually emerging in the market, which will eventually help to lower hardware costs for cooling. The development of high-temperature devices is not the only way to reduce device size. Two-phase cooling that utilizes the vaporization of the liquid to dissipate heat is expected to be a very effective cooling method. Among two-phase cooling methods, different technologies such as spray, jet impingement, pool boiling and submersion, etc. are being developed. The Oak Ridge

  2. Advanced Power Electronic Interfaces for Distributed Energy Systems Part 1: Systems and Topologies

    SciTech Connect (OSTI)

    Kramer, W.; Chakraborty, S.; Kroposki, B.; Thomas, H.

    2008-03-01

    This report summarizes power electronic interfaces for DE applications and the topologies needed for advanced power electronic interfaces. It focuses on photovoltaic, wind, microturbine, fuel cell, internal combustion engine, battery storage, and flywheel storage systems.

  3. Thermal Management of Power Electronics and Electric Motors for Electric-Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Narumanchi, S.

    2014-09-01

    This presentation is an overview of the power electronics and electric motor thermal management and reliability activities at NREL. The focus is on activities funded by the Department of Energy Vehicle Technologies Office Advanced Power Electronics and Electric Motors Program.

  4. Advanced Power Electronics and Electric Motors (APEEM) R&D Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vtpn08aperogers2012o.pdf (2.34 MB) More Documents & Publications Advanced Power Electronics and Electric Motors (APEEM) R&D Program Overview Advnaced Power Electronics and ...

  5. Arkansas Regional Middle School Science Bowl | U.S. DOE Office...

    Office of Science (SC) Website

    Competition Location Math and Science Building University of Arkansas - Fort Smith 5120 Grand Avenue Fort Smith, Arkansas 72913 Regional Contact Information Regional Coordinator: ...

  6. Electron beam diagnostic for profiling high power beams

    DOE Patents [OSTI]

    Elmer, John W.; Palmer, Todd A.; Teruya, Alan T.

    2008-03-25

    A system for characterizing high power electron beams at power levels of 10 kW and above is described. This system is comprised of a slit disk assembly having a multitude of radial slits, a conducting disk with the same number of radial slits located below the slit disk assembly, a Faraday cup assembly located below the conducting disk, and a start-stop target located proximate the slit disk assembly. In order to keep the system from over-heating during use, a heat sink is placed in close proximity to the components discussed above, and an active cooling system, using water, for example, can be integrated into the heat sink. During use, the high power beam is initially directed onto a start-stop target and after reaching its full power is translated around the slit disk assembly, wherein the beam enters the radial slits and the conducting disk radial slits and is detected at the Faraday cup assembly. A trigger probe assembly can also be integrated into the system in order to aid in the determination of the proper orientation of the beam during reconstruction. After passing over each of the slits, the beam is then rapidly translated back to the start-stop target to minimize the amount of time that the high power beam comes in contact with the slit disk assembly. The data obtained by the system is then transferred into a computer system, where a computer tomography algorithm is used to reconstruct the power density distribution of the beam.

  7. Governor Cuomo, GE Announce Power Electronics Manufacturing Consortium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Governor Cuomo Announces 100 Businesses Led by GE to Join $500 Million Partnership with State to Develop Next-Generation Power Electronics, Creating Thousands of Jobs in Capital Region and Upstate Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Governor Cuomo Announces 100 Businesses Led by GE to Join $500 Million

  8. North Arkansas Electric Cooperative, Inc- Residential Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    North Arkansas Electric Cooperative (NAEC), a Touchstone Energy Cooperative, serves approximately 35,000 member accounts in seven different counties. The coop provides low interest rates for energy...

  9. Smart Meter Investments Support Rural Economy in Arkansas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Woodruff) serves customers in seven eastern Arkansas counties. The proportion of residents living in poverty in those counties is more than double the national average. ...

  10. Hot Springs, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Springs, Arkansas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.5037004, -93.0551795 Show Map Loading map... "minzoom":false,"mappingserv...

  11. Polk County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Polk County, Arkansas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.5268097, -94.1513764 Show Map Loading map... "minzoom":false,"mapping...

  12. Hot Spring County, Arkansas: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Spring County, Arkansas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.3393795, -92.9775558 Show Map Loading map... "minzoom":false,"mappi...

  13. Arkansas Crude Oil + Lease Condensate Proved Reserves (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Crude Oil plus ...

  14. Scott County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Scott County, Arkansas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.8854732, -93.9878427 Show Map Loading map... "minzoom":false,"mappin...

  15. Arkansas Recovery Act State Memo | Department of Energy

    Office of Environmental Management (EM)

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Arkansas are ...

  16. Clay County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arkansas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.3492244, -90.3748354 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  17. Faulkner County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Faulkner County, Arkansas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.1035858, -92.3813621 Show Map Loading map... "minzoom":false,"map...

  18. Arkansas Natural Gas Underground Storage Net Withdrawals (Million...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Underground Storage Net Withdrawals (Million Cubic Feet) Arkansas Natural Gas Underground Storage Net Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct...

  19. ,"Arkansas Natural Gas Underground Storage Net Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","102015" ,"Release...

  20. ,"Arkansas Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  1. Arkansas Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Arkansas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  2. Overview of the DOE Advanced Power Electronics and Electric Motor R&D Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electric Motor R&D Program Susan Rogers Steven Boyd Advanced Power Electronics and Electric Motors Vehicle Technologies Office June 17, 2014 VEHICLE TECHNOLOGIES OFFICE 2 APEEM R&D Program Vehicle Technologies Office Hybrid Electric Systems R&D Vehicle Systems Advanced Power Electronics & Electric Motors (APEEM) R&D Industry Federal Agencies Academia National Labs Energy Storage 3 APEEM R&D Mission and Budget Develop advanced power electronics,

  3. High-Temperature Air-Cooled Power Electronics Thermal Design (Presentation)

    SciTech Connect (OSTI)

    Waye, S.

    2014-06-01

    This presentation discusses the status of research at NREL on high temperature air-cooled power electronics thermal design.

  4. U.S. Department of Energy Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Field Office: Southwestern Power Administration Location(s) (CityCountyState): Rural Jackson and Craighead Counties, Arkansas SWPA F 450.4 (Rev. 0514) Proposed Action...

  5. Arkansas Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Offshore U.S. State Offshore Federal Offshore U.S. Alaska Alaska Onshore Alaska Offshore Alaska State Offshore Arkansas California California Onshore California Offshore California State Offshore Federal Offshore California Colorado Federal Offshore Gulf of Mexico Federal Offshore Alabama Federal Offshore Louisiana Federal Offshore Texas Kansas Louisiana Louisiana Onshore Louisiana Offshore Louisiana State Offshore Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Texas

  6. Arkansas Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Arkansas California Colorado Federal Offshore Gulf of Mexico Kansas Louisiana Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Utah West Virginia Wyoming Other States Total Alabama Arizona Florida Illinois Indiana Kentucky Maryland Michigan Mississippi Missouri Nebraska Nevada New York Oregon South Dakota Tennessee Virginia Period-Unit: Monthly-Million Cubic Feet Monthly-Million Cubic Feet per Day Annual-Million Cubic Feet Download Series History Download Series History

  7. Two-Phase Cooling Technology for Power Electronics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ape037_moreno_2012_p.pdf (1013.93 KB) More Documents & Publications Two-Phase Cooling of Power Electronics Vehicle Technologies Office Merit Review 2014: Two-Phase Cooling of Power Electronics Two-Phase Cooling Technology for Power Electronics with Novel Coolants

  8. Passive Two-Phase Cooling of Automotive Power Electronics: Preprint

    SciTech Connect (OSTI)

    Moreno, G.; Jeffers, J. R.; Narumanchi, S.; Bennion, K.

    2014-08-01

    Experiments were conducted to evaluate the use of a passive two-phase cooling strategy as a means of cooling automotive power electronics. The proposed cooling approach utilizes an indirect cooling configuration to alleviate some reliability concerns and to allow the use of conventional power modules. An inverter-scale proof-of-concept cooling system was fabricated, and tests were conducted using the refrigerants hydrofluoroolefin HFO-1234yf and hydrofluorocarbon HFC-245fa. Results demonstrated that the system can dissipate at least 3.5 kW of heat with 250 cm3 of HFC-245fa. An advanced evaporator design that incorporates features to improve performance and reduce size was conceived. Simulation results indicate its thermal resistance can be 37% to 48% lower than automotive dual side cooled power modules. Tests were also conducted to measure the thermal performance of two air-cooled condensers--plain and rifled finned tube designs. The results combined with some analysis were then used to estimate the required condenser size per operating conditions and maximum allowable system (i.e., vapor and liquid) temperatures.

  9. Passive Two-Phase Cooling for Automotive Power Electronics

    SciTech Connect (OSTI)

    Moreno, G.; Jeffers, J. R.; Narumanchi, S.; Bennion, K.

    2014-01-01

    Experiments were conducted to evaluate the use of a passive two-phase cooling strategy as a means of cooling automotive power electronics. The proposed cooling approach utilizes an indirect cooling configuration to alleviate some reliability concerns and to allow the use of conventional power modules. An inverter-scale proof-of-concept cooling system was fabricated and tested using the refrigerants hydrofluoroolefin HFO-1234yf and hydrofluorocarbon HFC-245 fa. Results demonstrated that the system can dissipate at least 3.5 kW of heat with 250 cm3 of HFC-245fa. An advanced evaporator concept that incorporates features to improve performance and reduce its size was designed. Simulation results indicate the concept's thermal resistance can be 58% to 65% lower than automotive dual-side-cooled power modules. Tests were also conducted to measure the thermal performance of two air-cooled condensers-plain and rifled finned tube designs. The results combined with some analysis were then used to estimate the required condenser size per operating conditions and maximum allowable system (i.e., vapor and liquid) temperatures.

  10. Photovoltaic Shading Testbed for Module-Level Power Electronics

    SciTech Connect (OSTI)

    Deline, C.; Meydbray, J.; Donovan, M.; Forrest, J.

    2012-05-01

    This document describes a repeatable test procedure that attempts to simulate shading situations, as would be experienced by typical residential rooftop photovoltaic (PV) systems. This type of shading test is particularly useful to evaluate the impact of different power conversion setups, including microinverters, DC power optimizers and string inverters, on overall system performance. The performance results are weighted based on annual estimates of shade to predict annual performance improvement. A trial run of the test procedure was conducted with a side by side comparison of a string inverter with a microinverter, both operating on identical 8kW solar arrays. Considering three different shade weighting conditions, the microinverter was found to increase production by 3.7% under light shading, 7.8% under moderate shading, and 12.3% under heavy shading, relative to the reference string inverter case. Detail is provided in this document to allow duplication of the test method at different test installations and for different power electronics devices.

  11. Advanced Power Electronics Interfaces for Distributed Energy Workshop Summary: August 24, 2006, Sacramento, California

    SciTech Connect (OSTI)

    Treanton, B.; Palomo, J.; Kroposki, B.; Thomas, H.

    2006-10-01

    The Advanced Power Electronics Interfaces for Distributed Energy Workshop, sponsored by the California Energy Commission Public Interest Energy Research program and organized by the National Renewable Energy Laboratory, was held Aug. 24, 2006, in Sacramento, Calif. The workshop provided a forum for industry stakeholders to share their knowledge and experience about technologies, manufacturing approaches, markets, and issues in power electronics for a range of distributed energy resources. It focused on the development of advanced power electronic interfaces for distributed energy applications and included discussions of modular power electronics, component manufacturing, and power electronic applications.

  12. Arkansas Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (mw)","Share of State total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","1,835",11.5,"15,023",24.6 "Coal","4,535",28.4,"28,152",46.2 "Hydro and Pumped

  13. Tectonic origin of Crowley's Ridge, northeastern Arkansas

    SciTech Connect (OSTI)

    VanArsdale, R.B. (Univ. of Arkansas, Fayetteville, AR (United States). Geology Dept.); Williams, R.A.; Shedlock, K.M.; King, K.W.; Odum, J.K. (Geological survey, Denver, CO (United States). Denver Federal Center); Schweig, E.S. III; Kanter, L.R. (Memphis State Univ., TN (United States))

    1992-01-01

    Crowley's Ridge is a 320 km long topographic ridge that extends from Thebes, Illinois to Helena, Arkansas. The ridge has been interpreted as an erosional remnant formed during Quaternary incision of the ancestral Mississippi and Ohio rivers; however, the Reelfoot Rift COCORP line identified a down-to-the-west fault bounding the western margin of Crowley's Ridge south of Jonesboro, Arkansas. Subsequent Mini-Sosie seismic reflection profiles confirmed the COCORP data and identified additional faults beneath other margins of the ridge. In each case the faults lie beneath the base of the ridge scarp. The Mini-Sosie data did not resolve the uppermost 150 m and so it was not possible to determine if the faults displace the near-surface Claiborne Group (middle Eocene). A shotgun source seismic reflection survey was subsequently conducted to image the uppermost 250 m across the faulted margins. The shotgun survey across the western margin of the ridge south of Jonesboro reveals displaced reflectors as shallow as 30 m depth. Claiborne Group strata are displaced approximately 6 m and it appears that some of the topographic relief of Crowley's Ridge at this location is due to post middle Eocene fault displacement. Based on the reflection data, the authors suggest that Crowley's Ridge is tectonic in origin.

  14. Energy Storage & Power Electronics 2008 Peer Review - Agenda/Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    List | Department of Energy & Power Electronics 2008 Peer Review - Agenda/Presentation List Energy Storage & Power Electronics 2008 Peer Review - Agenda/Presentation List The 2008 Peer Review Meeting for the DOE Energy Storage and Power Electronics Program (ESPE) was held in Washington DC on Sept. 29-30, 2008. Current and completed program projects were presented and reviewed by a group of industry professionals. The 2008 agenda was composed of 28 projects that covered a broad range

  15. Building America Technology Solutions Case Study: Photovoltaic Systems with Module-Level Power Electronics

    Broader source: Energy.gov [DOE]

    This guide will show how DC power optimizers and microinverters (both known as module-level power electronics) are being used in new and/or retrofit, single and multifamily homes.

  16. Technology Solutions Case Study: Photovoltaic Systems with Module-Level Power Electronics

    SciTech Connect (OSTI)

    Tim Merrigan

    2015-09-01

    This guide will show how DC power optimizers and microinverters (both known as module-level power electronics) are being used in new and/or retrofit, single and multifamily homes.

  17. Air Cooling Technology for Advanced Power Electronics and Electric Machines (Presentation)

    SciTech Connect (OSTI)

    Bharathan, D.

    2009-05-01

    This presentation gives an overview of the status and FY09 accomplishments for the NREL thermal management research project 'Air Cooling for Power Electronics'.

  18. Power electronics system modeling and simulation (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Subject: 42 ENGINEERING NOT INCLUDED IN OTHER CATEGORIES; 99 MATHEMATICS, COMPUTERS, INFORMATION SCIENCE, MANAGEMENT, LAW, MISCELLANEOUS; ELECTRONIC CIRCUITS; COMPUTERIZED ...

  19. Arkansas Dry Natural Gas Expected Future Production (Billion...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Arkansas Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  20. Jackson County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Jackson County is a county in Arkansas. Its FIPS County Code is 067. It is classified as...

  1. Johnson County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Johnson County is a county in Arkansas. Its FIPS County Code is 071. It is classified as...

  2. Arkansas Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Arkansas Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  3. Miller County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Miller County is a county in Arkansas. Its FIPS County Code is 091. It is classified as...

  4. Georgia and Arkansas Residential Energy Code Field Studies

    Broader source: Energy.gov [DOE]

    Lead Performer: Southeast Energy Efficiency Alliance – Atlanta, GAPartners:   -  Advanced Energy – Raleigh, NC  -  Arkansas Economic Development Commission, Energy Office – Little Rock, AR  - ...

  5. Phillips County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Phillips County is a county in Arkansas. Its FIPS County Code is 107. It is classified as...

  6. Marion County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Marion County is a county in Arkansas. Its FIPS County Code is 089. It is classified as...

  7. Hendrix College student named Goldwater Scholar (Arkansas, Online) |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Hendrix College student named Goldwater Scholar (Arkansas, Online) External Link: http://www.arkansasonline.com/news/2012/apr/08/hendrix-college-student-named-gol... By jlab_admin on Sun, 2012-04-08

  8. Lee County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Lee County is a county in Arkansas. Its FIPS County Code is 077. It is classified as ASHRAE...

  9. Bradley County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Bradley County is a county in Arkansas. Its FIPS County Code is 011. It is classified as...

  10. Characterization of a geothermal system in the Upper Arkansas...

    Open Energy Info (EERE)

    of a geothermal system in the Upper Arkansas Valley Authors T. Blum, K. van Wijk, L. Liberty, M. Batzle, R. Krahenbuhl, A. Revil and R. Reynolds Conference Society of...

  11. Montgomery County, Arkansas: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Montgomery County is a county in Arkansas. Its FIPS County Code is 097. It is classified as...

  12. Pike County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Pike County is a county in Arkansas. Its FIPS County Code is 109. It is classified as ASHRAE...

  13. Geothermal resources of the Upper San Luis and Arkansas valleys...

    Open Energy Info (EERE)

    resources of the Upper San Luis and Arkansas valleys, Colorado Authors R.H. Pearl and J.K. Barrett Editors Epis, R.C. & Weimer and R.I. Published Colorado School of Mines:...

  14. Baxter County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Baxter County is a county in Arkansas. Its FIPS County Code is 005. It is classified as...

  15. Columbia County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is a stub. You can help OpenEI by expanding it. Columbia County is a county in Arkansas. Its FIPS County Code is 027. It is classified as ASHRAE 169-2006 Climate Zone Number 3...

  16. Logan County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Logan County is a county in Arkansas. Its FIPS County Code is 083. It is classified as...

  17. Arkansas Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Arkansas Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  18. Green Collar Courses Coming to Arkansas Colleges | Department...

    Office of Environmental Management (EM)

    April 29, 2010 - 4:45pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE When more green jobs start to open up in northwest Arkansas, educators want to ensure ...

  19. Alternative Fuels Data Center: Arkansas Launches Natural Gas...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    The coalition, backed by the Arkansas Energy Office, helped educate the board about ... projects will come to fruition." Photo of blue and green CNG buses driving around a road.

  20. Arkansas - Seds - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas - Seds - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma

  1. Smart Meter Investments Support Rural Economy in Arkansas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Meter Investments Support Rural Economy in Arkansas Woodruff Electric Cooperative (Woodruff) serves customers in seven eastern Arkansas counties. The proportion of residents living in poverty in those counties is more than double the national average. As a member-owned rural electric cooperative, Woodruff is connected to its customers and engaged in economic development efforts to bring more jobs and higher incomes to local communities. In order to bring the capital investment and its

  2. Power Electronics Thermal Management R&D; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Waye, Scot

    2015-06-10

    Presentation containing an update for the Power Electronics Thermal Management project in the Electric Drive Train task funded by the Vehicle Technology Office of DOE. This presentation outlines the purpose, plan, and results of research thus far for cooling and material selection strategies to manage heat in power electronic assemblies such as inverters, converters, and chargers.

  3. 2013 Annual Merit Review Results Report - Power Electronics and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electronics and Electrical Machines Technologies Alnico and Ferrite Hybrid Excitation Electric Machines Vehicle Technologies Office Merit Review 2015: Development of Radically...

  4. Comparison of Wide-Bandgap Semiconductors for Power Electronics Applications

    SciTech Connect (OSTI)

    Ozpineci, B.

    2004-01-02

    Recent developmental advances have allowed silicon (Si) semiconductor technology to approach the theoretical limits of the Si material; however, power device requirements for many applications are at a point that the present Si-based power devices cannot handle. The requirements include higher blocking voltages, switching frequencies, efficiency, and reliability. To overcome these limitations, new semiconductor materials for power device applications are needed. For high power requirements, wide-bandgap semiconductors like silicon carbide (SiC), gallium nitride (GaN), and diamond, with their superior electrical properties, are likely candidates to replace Si in the near future. This report compares wide-bandgap semiconductors with respect to their promise and applicability for power applications and predicts the future of power device semiconductor materials.

  5. Shanghai Electric Xantrex Power Electronics Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Product: JV company that will design, manufacture and sell solar and wind power inverters and control-monitoring system for the renewable energy market in China from a...

  6. Vehicle Technologies Office Merit Review 2014: Power Electronics Packaging

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Power...

  7. Energy Storage & Power Electronics 2008 Peer Review - Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (1.31 MB) ESPE 2008 Peer Review - 300kW Energy Storage Demonstration Project - Ib Olsen, Gaia Power.pdf (242.3 KB) ESPE 2008 Peer Review - Lead-Carbon Devices for Utility ...

  8. 2013 Annual Merit Review Results Report - Power Electronics and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... In addition, the project has completed DBC design for WBG switch phase-leg modules for CREE, Inc. SiC MOSFETs. The project also conducted tests of efficient power conversion (EPC) ...

  9. Vehicle Technologies Office: Power Electronics Research and Developmen...

    Energy Savers [EERE]

    energy from a battery to AC power to drive the motor. An inverter also acts as a motor controller and as a filter to isolate the battery from potential damage from stray currents. ...

  10. Arkansas Oklahoma Gas Company (AOG)- Commerial and Industrial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Arkansas Oklahoma Gas (AOG) programs are available to all commercial and industrial AOG customers in Arkansas. The Commercial and Industrial Prescriptive program offers rebates for the instal...

  11. Spread of natural gas lines in Arkansas hurts LPG marketers anew

    SciTech Connect (OSTI)

    Not Available

    1990-09-01

    This article discusses the marketing of LP gas in Arkansas. The reaction of natural gas marketers in the state is described. Federal subsidation, through the U.S. Department of Housing and Urban Development, of utilities in Arkansas is described.

  12. Electron Cross-field Transport in a Low Power Cylindrical Hall Thruster

    SciTech Connect (OSTI)

    A. Smirnov; Y. Raitses; N.J. Fisch

    2004-06-24

    Conventional annular Hall thrusters become inefficient when scaled to low power. Cylindrical Hall thrusters, which have lower surface-to-volume ratio, are therefore more promising for scaling down. They presently exhibit performance comparable with conventional annular Hall thrusters. Electron cross-field transport in a 2.6 cm miniaturized cylindrical Hall thruster (100 W power level) has been studied through the analysis of experimental data and Monte Carlo simulations of electron dynamics in the thruster channel. The numerical model takes into account elastic and inelastic electron collisions with atoms, electron-wall collisions, including secondary electron emission, and Bohm diffusion. We show that in order to explain the observed discharge current, the electron anomalous collision frequency {nu}{sub B} has to be on the order of the Bohm value, {nu}{sub B} {approx} {omega}{sub c}/16. The contribution of electron-wall collisions to cross-field transport is found to be insignificant.

  13. Toward integrated PV panels and power electronics using printing technologies

    SciTech Connect (OSTI)

    Ababei, Cristinel; Yuvarajan, Subbaraya; Schulz, Douglas L.

    2010-07-15

    In this paper, we review the latest developments in the area of printing technologies with an emphasis on the fabrication of control-embedded photovoltaics (PV) with on-board active and passive devices. We also review the use of power converters and maximum power point tracking (MPPT) circuits with PV panels. Our focus is on the investigation of the simplest implementations of such circuits in view of their integration with solar cells using printing technologies. We see this concept as potentially enabling toward further cost reduction. Besides a discussion as to feasibility, we shall also present some projections and guidelines toward possible integration. (author)

  14. Arkansas Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 1 1 1 1 1 1 1 1 1 1 1 1 2011 2 2 2 2 2 2 2 2 2 2 2 2 2012 2 2 2 2 2 2 2 2 2 2 2 2 2013 2 2 2 2 2 2 2 2 2 2 2 2 2014 3 2 3 3 3 3 3 3 3 3 3 3 2015 2 2 2 2 2 2 3 3 3 3 3 3 2016 3 3 3 3 3 3

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Arkansas Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4.29 3.94 3.86 5.21 5.35 5.03 2000's 6.12

  15. Arkansas Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Processed (Million Cubic Feet) Arkansas Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 93,452 88,011 56,190 1970's 37,816 31,387 17,946 26,135 19,784 17,918 20,370 18,630 18,480 1980's 29,003 31,530 33,753 34,572 258,648 174,872 197,781 213,558 228,157 1990's 272,278 224,625 156,573 198,074 218,710 100,720 219,477 185,244 198,148 179,524 2000's 207,045 207,352 12,635 13,725 10,139 16,756 13,702 11,532 6,531 2,352

  16. Breakthrough in Power Electronics from SiC: May 25, 2004 - May 31, 2005

    SciTech Connect (OSTI)

    Marckx, D. A.

    2006-03-01

    This report explores the premise that silicon carbide (SiC) devices would reduce substantially the cost of energy of large wind turbines that need power electronics for variable speed generation systems.

  17. Fact Sheet: Award-Winning Silicon Carbide Power Electronics (October 2012)

    Broader source: Energy.gov [DOE]

    Operating at high temperatures and with reduced energy losses, two silicon carbide power electronics (PE) projects were awarded the prestigious R&D 100 Award. This technology was funded as a...

  18. Advanced Power Electronics and Electric Motors (APEEM) R&D Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting ape00arogers2013o.pdf (2.77 MB) More Documents & Publications Advanced Power Electronics and Electric Motors (APEEM) R&D Program Overview Electric Drive Status and ...

  19. Webinar: Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications" on Tuesday, October 21, at 12:00 p...

  20. North American Green Power,LLC | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Logo: North American Green Power,LLC Name: North American Green Power,LLC Address: 1605 J.P Wright Loop Rd Place: Jacksonville, Arkansas Zip: 72076...

  1. Energy Secretary Chu to Visit Delphi Power Electronics Plant in Kokomo

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Indiana | Department of Energy Visit Delphi Power Electronics Plant in Kokomo Indiana Energy Secretary Chu to Visit Delphi Power Electronics Plant in Kokomo Indiana July 14, 2010 - 12:00am Addthis Washington D.C. - On Friday, July 16, Energy Secretary Steven Chu will travel to Kokomo, Indiana to tour Delphi Automotive Systems manufacturing plant with Mayor Greg Goodnight. Remarks will be given following the tour. The trip is part of a nationwide initiative led by President Obama and members

  2. NREL Helps Cool the Power Electronics in Electric Vehicles (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    Researchers at the National Renewable Energy Laboratory (NREL) are developing and demonstrating innovative heat-transfer technologies for cooling power electronics devices in hybrid and electric vehicles. In collaboration with 3M and Wolverine Tube, Inc., NREL is using surface enhancements to dissipate heat more effectively, permitting a reduction in the size of power electronic systems and potentially reducing the overall costs of electric vehicles.

  3. Enhanced thermoelectric power and electronic correlations in RuSe₂

    SciTech Connect (OSTI)

    Wang, Kefeng; Wang, Aifeng; Tomic, A.; Wang, Limin; Abeykoon, A. M. Milinda; Dooryhee, E.; Billinge, S. J.L.; Petrovic, C.

    2015-03-03

    We report the electronic structure, electric and thermal transport properties of Ru₁₋xIrxSe₂ (x ≤ 0.2). RuSe₂ is a semiconductor that crystallizes in a cubic pyrite unit cell. The Seebeck coefficient of RuSe₂ exceeds -200 µV/K around 730 K. Ir substitution results in the suppression of the resistivity and the Seebeck coefficient, suggesting the removal of the peaks in density of states near the Fermi level. Ru₀.₈Ir₀.₂Se₂ shows a semiconductor-metal crossover at about 30 K. The magnetic field restores the semiconducting behavior. Our results indicate the importance of the electronic correlations in enhanced thermoelectricity of RuSb₂.

  4. Enhanced thermoelectric power and electronic correlations in RuSe₂

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Kefeng; Wang, Aifeng; Tomic, A.; Wang, Limin; Abeykoon, A. M. Milinda; Dooryhee, E.; Billinge, S. J.L.; Petrovic, C.

    2015-03-03

    We report the electronic structure, electric and thermal transport properties of Ru₁₋xIrxSe₂ (x ≤ 0.2). RuSe₂ is a semiconductor that crystallizes in a cubic pyrite unit cell. The Seebeck coefficient of RuSe₂ exceeds -200 µV/K around 730 K. Ir substitution results in the suppression of the resistivity and the Seebeck coefficient, suggesting the removal of the peaks in density of states near the Fermi level. Ru₀.₈Ir₀.₂Se₂ shows a semiconductor-metal crossover at about 30 K. The magnetic field restores the semiconducting behavior. Our results indicate the importance of the electronic correlations in enhanced thermoelectricity of RuSb₂.

  5. Webinar October 21: Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications" on Tuesday, October 21, from 12:00 to 1:00 p.m. Eastern Daylight Time. Representatives of Cree Inc., leading innovators in the WBG electronics industry, will be presenting.

  6. Building America Case Study: Photovoltaic Systems with Module-Level Power Electronics

    SciTech Connect (OSTI)

    2015-09-01

    Direct current (DC) power optimizers and microinverters (together known as module-level power electronics, or MLPE) are one of the fastest growing market segments in the solar industry. According to GTM Research in The Global PV Inverter Landscape 2015, over 55% of all residential photovoltaic (PV) installations in the United States used some form of MLPE in 2014.

  7. Performance and Reliability of Interface Materials for Automotive Power Electronics (Presentation)

    SciTech Connect (OSTI)

    Narumanchi, S.; DeVoto, D.; Mihalic, M.; Paret, P.

    2013-07-01

    Thermal management and reliability are important because excessive temperature can degrade the performance, life, and reliability of power electronics and electric motors. Advanced thermal management technologies enable keeping temperature within limits; higher power densities; and lower cost materials, configurations and systems. Thermal interface materials, bonded interface materials and the reliability of bonded interfaces are discussed in this presentation.

  8. Arkansas Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Arkansas Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 343 5 80 82 52 30 5 280 5 36 2010's 807 6,880 6 9 80 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions Arkansas Dry Natural Gas

  9. Arkansas Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Arkansas Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 336 8 66 63 24 31 4 298 19 54 2010's 393 6,760 1 4 248 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Arkansas Dry Natural Gas Proved Reserves Dry

  10. Novel Power Electronics Three-Dimensional Heat Exchanger: Preprint

    SciTech Connect (OSTI)

    Bennion, K.; Cousineau, J.; Lustbader, J.; Narumanchi, S.

    2014-08-01

    Electric drive systems for vehicle propulsion enable technologies critical to meeting challenges for energy, environmental, and economic security. Enabling cost-effective electric drive systems requires reductions in inverter power semiconductor area. As critical components of the electric drive system are made smaller, heat removal becomes an increasing challenge. In this paper, we demonstrate an integrated approach to the design of thermal management systems for power semiconductors that matches the passive thermal resistance of the packaging with the active convective cooling performance of the heat exchanger. The heat exchanger concept builds on existing semiconductor thermal management improvements described in literature and patents, which include improved bonded interface materials, direct cooling of the semiconductor packages, and double-sided cooling. The key difference in the described concept is the achievement of high heat transfer performance with less aggressive cooling techniques by optimizing the passive and active heat transfer paths. An extruded aluminum design was selected because of its lower tooling cost, higher performance, and scalability in comparison to cast aluminum. Results demonstrated a heat flux improvement of a factor of two, and a package heat density improvement over 30%, which achieved the thermal performance targets.

  11. Effect of electron density profile on power absorption of high frequency electromagnetic waves in plasma

    SciTech Connect (OSTI)

    Xi Yanbin; Liu Yue [MOE Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2012-07-15

    Considering different typical electron density profiles, a multi slab approximation model is built up to study the power absorption of broadband (0.75-30 GHz) electromagnetic waves in a partially ionized nonuniform magnetized plasma layer. Based on the model, the power absorption spectra for six cases are numerically calculated and analyzed. It is shown that the absorption strongly depends on the electron density fluctuant profile, the background electron number density, and the collision frequency. A potential optimum profile is also analyzed and studied with some particular parameters.

  12. High energy density capacitors for power electronic applications using nano-structure multilayer technology

    SciTech Connect (OSTI)

    Barbee, T.W. Jr.; Johnson, G.W.

    1995-09-01

    Power electronics applications are currently limited by capacitor size and performance. Only incremental improvements are anticipated in existing capacitor technologies, while significant performance advances are required in energy density and overall performance to meet the technical needs of the applications which are important for U.S. economic competitiveness. One application, the Power Electronic Building Block (PEBB), promises a second electronics revolution in power electronic design. High energy density capacitors with excellent electrical thermal and mechanical performance represent an enabling technology in the PEBB concept. We propose a continuing program to research and develop LLNL`s nano-structure multilayer technologies for making high voltage, high energy density capacitors. Our controlled deposition techniques are capable of synthesizing extraordinarily smooth sub-micron thick layers of dielectric and conductor materials. We have demonstrated that, with this technology, high voltage capacitors with an order of magnitude improvement in energy density are achievable.

  13. The Use of a Solid State Analog Television Transmitter as a Superconducting Electron Gun Power Amplifier

    SciTech Connect (OSTI)

    J.G. Kulpin, K.J. Kleman, R.A. Legg

    2012-07-01

    A solid state analog television transmitter designed for 200 MHz operation is being commissioned as a radio frequency power amplifier on the Wisconsin superconducting electron gun cavity. The amplifier consists of three separate radio frequency power combiner cabinets and one monitor and control cabinet. The transmitter employs rugged field effect transistors built into one kilowatt drawers that are individually hot swappable at maximum continuous power output. The total combined power of the transmitter system is 33 kW at 200 MHz, output through a standard coaxial transmission line. A low level radio frequency system is employed to digitally synthesize the 200 MHz signal and precisely control amplitude and phase.

  14. Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWh Coal Power 25,075,250 MWh Gas Power 11,368,417 MWh Petroleum Power 87,674 MWh Nuclear Power 15,169,966 MWh Other 24,019 MWh Total Energy Production 57,499,169 MWh...

  15. Arkansas Natural Gas Underground Storage Volume (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 27,878 27,848 27,810 27,846 27,946 28,419 28,946 ...

  16. Arkansas Natural Gas Price Sold to Electric Power Consumers ...

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 W W W W W W W W 3.49 4.14 W W 2003 6.04 6.42 7.25 4.34 W 3.71 2.88 3.38 3.31 5.00 W W 2004 6.35 5.63 5.74 W 6.70 6.48 6.31 ...

  17. Arkansas Natural Gas Deliveries to Electric Power Consumers (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 1,668 392 1,164 2,511 1,753 1,403 3,790 4,318 2,798 2,845 2,200 1,253 2002 1,580 1,857 1,919 2,681 2,524 5,309 8,423 6,460 5,298 3,676 1,415 1,288 2003 2,616 3,165 2,530 3,278 5,252 6,844 8,883 9,093 5,199 4,109 3,382 2,018 2004 2,308 3,105 2,888 2,298 3,950 4,978 5,639 5,291 2,578 3,784 1,789 1,531 2005 1,819 1,725 2,640 2,356 4,185 6,114 8,057 8,276 4,441 3,327 3,215 2,832 2006 1,786 2,436 2,788 5,482 7,993 9,918 10,440 10,944

  18. Arkansas Natural Gas Deliveries to Electric Power Consumers ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 24,805 40,574 40,089 2000's 34,602 26,096 42,430 56,369 40,138 48,987 71,056 63,594 64,188...

  19. Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future

    Broader source: Energy.gov [DOE]

    From unleashing more powerful and energy-efficient laptops, cell phones and motors, to shrinking utility-scale inverters from 8,000 pound substations to the size of a suitcase, wide bandgap semiconductors could be one of the keys to our clean energy future.

  20. FY2011 Advanced Power Electronics and Electric Motors Annual Progress Report

    SciTech Connect (OSTI)

    Rogers, Susan A.

    2012-01-31

    The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  1. Modeling Single-Phase and Boiling Liquid Jet Impingement Cooling in Power Electronics

    SciTech Connect (OSTI)

    Narumanchi, S. V. J.; Hassani, V.; Bharathan, D.

    2005-12-01

    Jet impingement has been an attractive cooling option in a number of industries over the past few decades. Over the past 15 years, jet impingement has been explored as a cooling option in microelectronics. Recently, interest has been expressed by the automotive industry in exploring jet impingement for cooling power electronics components. This technical report explores, from a modeling perspective, both single-phase and boiling jet impingement cooling in power electronics, primarily from a heat transfer viewpoint. The discussion is from the viewpoint of the cooling of IGBTs (insulated-gate bipolar transistors), which are found in hybrid automobile inverters.

  2. Vehicle Technologies Office: 2012 Advanced Power Electronics and Electric Motors R&D Annual Progress Report

    Broader source: Energy.gov [DOE]

    The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrows automobiles will function as a unified system to improve fuel efficiency.

  3. FY2012 Advanced Power Electronics and Electric Motors Annual Progress Report

    SciTech Connect (OSTI)

    Rogers, Susan A.

    2013-03-01

    The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency.

  4. FY2010 Annual Progress Report for Advanced Power Electronics and Electric Motors

    SciTech Connect (OSTI)

    Rogers, Susan A.

    2011-01-01

    The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  5. Power Electronics for Distributed Energy Systems and Transmission and Distribution Applications: Assessing the Technical Needs for Utility Applications

    SciTech Connect (OSTI)

    Tolbert, L.M.

    2005-12-21

    Power electronics can provide utilities the ability to more effectively deliver power to their customers while providing increased reliability to the bulk power system. In general, power electronics is the process of using semiconductor switching devices to control and convert electrical power flow from one form to another to meet a specific need. These conversion techniques have revolutionized modern life by streamlining manufacturing processes, increasing product efficiencies, and increasing the quality of life by enhancing many modern conveniences such as computers, and they can help to improve the delivery of reliable power from utilities. This report summarizes the technical challenges associated with utilizing power electronics devices across the entire spectrum from applications to manufacturing and materials development, and it provides recommendations for research and development (R&D) needs for power electronics systems in which the U.S. Department of Energy (DOE) could make a substantial impact toward improving the reliability of the bulk power system.

  6. Welcoming Remarks Imre Gyuk US Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Power) Very High Temperature (400+ C) High-Power Silicon Carbide (SiC) Power Electronics Converter Marcelo Schupback (Arkansas Power Electronics Int'l) Power Electronics ...

  7. Photovoltaic Shading Testbed for Module-Level Power Electronics: 2014 Update

    SciTech Connect (OSTI)

    Deline, C.; Meydbray, J.; Donovan, M.

    2014-08-01

    The 2012 NREL report 'Photovoltaic Shading Testbed for Module-Level Power Electronics' provides a standard methodology for estimating the performance benefit of distributed power electronics under partial shading conditions. Since the release of the report, experiments have been conducted for a number of products and for different system configurations. Drawing from these experiences, updates to the test and analysis methods are recommended. Proposed changes in data processing have the benefit of reducing the sensitivity to measurement errors and weather variability, as well as bringing the updated performance score in line with measured and simulated values of the shade recovery benefit of distributed PV power electronics. Also, due to the emergence of new technologies including sub-module embedded power electronics, the shading method has been extended to include power electronics that operate at a finer granularity than the module level. An update to the method is proposed to account for these emerging technologies that respond to shading differently than module-level devices. The partial shading test remains a repeatable test procedure that attempts to simulate shading situations as would be experienced by typical residential or commercial rooftop photovoltaic (PV) systems. Performance data for multiple products tested using this method are discussed, based on equipment from Enphase, Solar Edge, Maxim Integrated and SMA. In general, the annual recovery of shading losses from the module-level electronics evaluated is 25-35%, with the major difference between different trials being related to the number of parallel strings in the test installation rather than differences between the equipment tested.

  8. Modeling Photovoltaic Module-Level Power Electronics in the System Advisor Model; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-07-01

    Module-level power electronics, such as DC power optimizers, microinverters, and those found in AC modules, are increasing in popularity in smaller-scale photovoltaic (PV) systems as their prices continue to decline. Therefore, it is important to provide PV modelers with guidelines about how to model these distributed power electronics appropriately in PV modeling software. This paper extends the work completed at NREL that provided recommendations to model the performance of distributed power electronics in NREL’s popular PVWatts calculator [1], to provide similar guidelines for modeling these technologies in NREL's more complex System Advisor Model (SAM). Module-level power electronics - such as DC power optimizers, microinverters, and those found in AC modules-- are increasing in popularity in smaller-scale photovoltaic (PV) systems as their prices continue to decline. Therefore, it is important to provide PV modelers with guidelines about how to model these distributed power electronics appropriately in PV modeling software.

  9. Enhanced modified faraday cup for determination of power density distribution of electron beams

    DOE Patents [OSTI]

    Elmer, John W. (Danville, CA); Teruya, Alan T. (Livermore, CA)

    2001-01-01

    An improved tomographic technique for determining the power distribution of an electron or ion beam using electron beam profile data acquired by an enhanced modified Faraday cup to create an image of the current density in high and low power ion or electron beams. A refractory metal disk with a number of radially extending slits, one slit being about twice the width of the other slits, is placed above a Faraday cup. The electron or ion beam is swept in a circular pattern so that its path crosses each slit in a perpendicular manner, thus acquiring all the data needed for a reconstruction in one circular sweep. The enlarged slit enables orientation of the beam profile with respect to the coordinates of the welding chamber. A second disk having slits therein is positioned below the first slit disk and inside of the Faraday cup and provides a shield to eliminate the majority of secondary electrons and ions from leaving the Faraday cup. Also, a ring is located below the second slit disk to help minimize the amount of secondary electrons and ions from being produced. In addition, a beam trap is located in the Faraday cup to provide even more containment of the electron or ion beam when full beam current is being examined through the center hole of the modified Faraday cup.

  10. Air-Cooled Heat Exchanger for High-Temperature Power Electronics: Preprint

    SciTech Connect (OSTI)

    Waye, S. K.; Lustbader, J.; Musselman, M.; King, C.

    2015-05-06

    This work demonstrates a direct air-cooled heat exchanger strategy for high-temperature power electronic devices with an application specific to automotive traction drive inverters. We present experimental heat dissipation and system pressure curves versus flow rate for baseline and optimized sub-module assemblies containing two ceramic resistance heaters that provide device heat fluxes. The maximum allowable junction temperature was set to 175 deg.C. Results were extrapolated to the inverter scale and combined with balance-of-inverter components to estimate inverter power density and specific power. The results exceeded the goal of 12 kW/L and 12 kW/kg for power density and specific power, respectively.

  11. Vehicle Technologies Office: 2010 Advanced Power Electronics and Electric Motors R&D Annual Progress Report

    Broader source: Energy.gov [DOE]

    The APEEM subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies.

  12. Energy Department to Fund Master’s and Doctoral Training in Power Electronics

    Broader source: Energy.gov [DOE]

    As part of the Obama Administration’s commitment to accelerating American manufacturing and Energy Secretary Ernest Moniz’s support of STEM education to create the next generation of engineers and manufacturers, the Energy Department has announced up to $10 million available to establish one or more graduate-level training programs at colleges and universities for engineers in power electronics.

  13. Powerful electrostatic FEL: Regime of operation, recovery of the spent electron beam and high voltage generator

    SciTech Connect (OSTI)

    Boscolo, I.; Gong, J.

    1995-02-01

    FEL, driven by a Cockcroft-Walton electrostatic accelerator with the recovery of the spent electron beam, is proposed as powerful radiation source for plasma heating. The low gain and high gain regimes are compared in view of the recovery problem and the high gain regime is shown to be much more favourable. A new design of the onion Cockcroft-Walton is presented.

  14. Arkansas Natural Gas Company Hosts Tour With U.S. Deputy Secretary of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Poneman | Department of Energy Arkansas Natural Gas Company Hosts Tour With U.S. Deputy Secretary of Energy Poneman Arkansas Natural Gas Company Hosts Tour With U.S. Deputy Secretary of Energy Poneman February 3, 2012 - 12:54pm Addthis WASHINGTON, D.C. - Today, U.S. Deputy Secretary of Energy Daniel Poneman joined with Conway Mayor Tab Townsell and company officials to tour Southwestern Energy's natural gas operations near Conway, Arkansas. During the visit, Poneman highlighted

  15. Arkansas Natural Gas Company Hosts Tour With U.S. Deputy Secretary...

    Energy Savers [EERE]

    Arkansas Natural Gas Company Hosts Tour With U.S. Deputy Secretary of Energy Poneman ... to Highlight Obama Administration's Investments in American Energy and Innovation at ...

  16. Baxter County, Arkansas ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Baxter County, Arkansas ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone...

  17. Power consumption and byproducts in electron beam and electrical discharge processing of volatile organic compounds

    SciTech Connect (OSTI)

    Penetrante, B.M.; Hsiao, M.C.; Bardsley, J.N.

    1996-02-20

    Among the new methods being investigated for the post-process reduction of volatile organic compounds (VOCs) in atmospheric-pressure air streams are based on non-thermal plasmas. Electron beam, pulsed corona and dielectric-barrier discharge methods are among the more extensively investigated techniques for producing non-thermal plasmas. In order to apply non-thermal plasmas in an industrial scale, it is important to establish the electrical power requirements and byproducts of the process. In this paper the authors present experimental results using a compact electron beam reactor, a pulsed corona and a dielectric-barrier discharge reactor. They have used these reactors to study the removal of a wide variety of VOCs. The effects of background gas composition and gas temperature on the decomposition chemistry have been studied. They present a description of the reactions that control the efficiency of the plasma process. They have found that pulsed corona and other types of electrical discharge reactors are most suitable only for processes requiring O radicals. For VOCs requiring copious amounts of electrons, ions, N atoms or OH radicals, the use of electron beam reactors is generally the best way of minimizing the electrical power consumption. Electron beam processing is remarkably more effective for all of the VOCs tested. For control of VOC emissions from dilute, large volume sources such as paint spray booths, cost analysis shows that the electron beam method is cost-competitive to thermal and catalytic methods that employ heat recovery or hybrid techniques.

  18. Tunable power law in the desynchronization events of coupled chaotic electronic circuits

    SciTech Connect (OSTI)

    Oliveira, Gilson F. de Lorenzo, Orlando di; Chevrollier, Martine; Passerat de Silans, Thierry; Oriá, Marcos; Souza Cavalcante, Hugo L. D. de

    2014-03-15

    We study the statistics of the amplitude of the synchronization error in chaotic electronic circuits coupled through linear feedback. Depending on the coupling strength, our system exhibits three qualitatively different regimes of synchronization: weak coupling yields independent oscillations; moderate to strong coupling produces a regime of intermittent synchronization known as attractor bubbling; and stronger coupling produces complete synchronization. In the regime of moderate coupling, the probability distribution for the sizes of desynchronization events follows a power law, with an exponent that can be adjusted by changing the coupling strength. Such power-law distributions are interesting, as they appear in many complex systems. However, most of the systems with such a behavior have a fixed value for the exponent of the power law, while here we present an example of a system where the exponent of the power law is easily tuned in real time.

  19. Design of the fundamental power coupler and photocathode inserts for the 112MHz superconducting electron gun

    SciTech Connect (OSTI)

    Xin, T.; Ben-Zvi, I.; Belomestnykh, S.; Chang, X.; Rao, T.; Skaritka, J.; Wu, Q.; Wang, E.; Liang, X.

    2011-07-25

    A 112 MHz superconducting quarter-wave resonator electron gun will be used as the injector of the Coherent Electron Cooling (CEC) proof-of-principle experiment at BNL. Furthermore, this electron gun can be the testing cavity for various photocathodes. In this paper, we present the design of the cathode stalks and a Fundamental Power Coupler (FPC) designated to the future experiments. Two types of cathode stalks are discussed. Special shape of the stalk is applied in order to minimize the RF power loss. The location of cathode plane is also optimized to enable the extraction of low emittance beam. The coaxial waveguide structure FPC has the properties of tunable coupling factor and small interference to the electron beam output. The optimization of the coupling factor and the location of the FPC are discussed in detail. Based on the transmission line theory, we designed a half wavelength cathode stalk which significantly brings down the voltage drop between the cavity and the stalk from more than 5.6 kV to 0.1 kV. The transverse field distribution on cathode has been optimized by carefully choosing the position of cathode stalk inside the cavity. Moreover, in order to decrease the RF power loss, a variable diameter design of cathode stalk has been applied. Compared to the uniform shape of stalk, this design gives us much smaller power losses in important locations. Besides that, we also proposed a fundamental power coupler based on the designed beam parameters for the future proof-of-principle CEC experiment. This FPC should give a strong enough coupling which has the Q external range from 1.5e7 to 2.6e8.

  20. FY2013 Advanced Power Electronics and Electric Motors R&D Annual Progress Report

    SciTech Connect (OSTI)

    Rogers, Susan A.

    2014-02-01

    The Advanced Power Electronics and Electric Motors (APEEM) technology area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor, and traction drive system (TDS) technologies that will leapfrog current on-the-road technologies, leading to lower cost and better efficiency in transforming battery energy to useful work. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency through research in more efficient TDSs.

  1. Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications U.S. Department of Energy Fuel Cell Technologies Office Presenters: Jeff Casady and John Palmour of Cree Inc. DOE Hosts: Eric Miller and Anant Agarwal 2 Question and Answer * Please type your question into the question box hydrogenandfuelcells.energy.gov 3 | Fuel Cell Technologies Office eere.energy.gov DOE Fuel Cell Technologies Office covers Research, Development, Demonstration &

  2. Electron-Beam Switches For A High Peak Power Sled-II Pulse Compressor

    SciTech Connect (OSTI)

    Hirshfield, Jay, L.

    2015-12-02

    Omega-P demonstrated triggered electron-beam switches on the L=2 m dual-delay-line X-band pulse compressor at Naval Research Laboratory (NRL). In those experiments, with input pulses of up to 9 MW from the Omega-P/NRL X-band magnicon, output pulses having peak powers of 140-165 MW and durations of 16-20 ns were produced, with record peak power gains M of 18-20. Switch designs are described based on the successful results that should be suitable for use with the existing SLAC SLED-II delay line system, to demonstrate C=9, M=7, and n>>78%, yielding 173ns compressed pulses with peak powers up to 350MW with input of a single 50-MW.

  3. Review of the State-of-the-Art in Power Electronics Suitable for 10-KW Military Power Systems

    SciTech Connect (OSTI)

    Staunton, R.H.

    2003-12-19

    The purpose of this report is to document the technological opportunities of integrating power electronics-based inverters into a TEP system, primarily in the 10-kW size range. The proposed enhancement offers potential advantages in weight reduction, improved efficiency, better performance in a wider range of generator operating conditions, greater versatility and adaptability, and adequate reliability. In order to obtain strong assurance of the availability of inverters that meet required performance and reliability levels, a market survey was performed. The survey obtained positive responses from several manufacturers in the motor drive and distributed generation industries. This study also includes technology reviews and assessments relating to circuit topologies, reliability issues, vulnerability to pulses of electromagnetic energy, potential improvements in semiconductor materials, and potential performance improvement through cryogenics.

  4. Relativistic electron motion in cylindrical waveguide with strong guiding magnetic field and high power microwave

    SciTech Connect (OSTI)

    Wu, Ping; Sun, Jun; Cao, Yibing

    2015-06-15

    In O-type high power microwave (HPM) devices, the annular relativistic electron beam is constrained by a strong guiding magnetic field and propagates through an interaction region to generate HPM. Some papers believe that the E × B drift of electrons may lead to beam breakup. This paper simplifies the interaction region with a smooth cylindrical waveguide to research the radial motion of electrons under conditions of strong guiding magnetic field and TM{sub 01} mode HPM. The single-particle trajectory shows that the radial electron motion presents the characteristic of radial guiding-center drift carrying cyclotron motion. The radial guiding-center drift is spatially periodic and is dominated by the polarization drift, not the E × B drift. Furthermore, the self fields of the beam space charge can provide a radial force which may pull electrons outward to some extent but will not affect the radial polarization drift. Despite the radial drift, the strong guiding magnetic field limits the drift amplitude to a small value and prevents beam breakup from happening due to this cause.

  5. Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 166 1980's 194 184 174 194 189 157 150 145 157 145 1990's 67 136 133 93 85 104 89 56 38 41 2000's 39 30 38 37 40 46 44 37 12 20 2010's 29 46 82 135 189 - = No Data

  6. Arkansas Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves in Nonproducing Reservoirs (Million Barrels) Arkansas Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 2 5 2000's 7 4 5 2 3 2 1 0 0 0 2010's 1 0 11 10 8 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved Nonproducing Reserves of Crude

  7. Arkansas Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Net Withdrawals (Million Cubic Feet) Arkansas Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 14 -19 -11 -34 36 -8 4 9 -12 -32 1990's 106 -11 -1 9 5 -27 -85 -11 2 -1 2000's -1 -2 4 52 -36 -20 12 -3 -21 -24 2010's 2 -7 9 12 14 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  8. Arkansas Natural Gas Liquids Lease Condensate, Proved Reserves (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids Lease Condensate, Proved Reserves (Million Barrels) Arkansas Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 1980's 1 1 3 2 2 2 1 1 2 1 1990's 2 2 2 2 3 3 2 4 2 2 2000's 2 2 1 1 1 1 2 1 1 1 2010's 2 2 2 1 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  9. Arkansas Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Arkansas Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 16 1980's 15 15 12 9 10 9 15 15 11 8 1990's 7 3 2 2 3 3 2 3 3 3 2000's 3 3 3 2 2 2 2 2 1 2 2010's 2 3 3 4 5 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  10. Arkansas Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Billion Cubic Feet) Arkansas Dry Natural Gas Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's -1 22 -2 1980's -7 39 93 -15 90 -127 55 26 124 -46 1990's 94 110 183 -62 95 64 33 -21 -1 -48 2000's -3 28 27 21 13 8 -26 -27 -64 5 2010's -34 728 -743 -78 -3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  11. Arkansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Arkansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 109 120 100 1980's 117 121 158 206 188 175 123 129 159 166 1990's 164 173 204 188 186 182 200 189 170 163 2000's 154 160 157 166 170 174 188 269 456 698 2010's 951 1,079 1,151 1,140 1,142 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  12. Arkansas Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) Arkansas Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 175 32 58 1980's 89 76 116 157 167 178 262 229 232 288 1990's 118 195 175 123 95 92 108 101 653 376 2000's 48 88 107 134 91 142 113 146 189 621 2010's 301 324 6,610 284 1,094 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  13. Arkansas Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) Arkansas Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 50 76 48 1980's 116 61 87 181 146 105 180 215 118 202 1990's 100 163 182 98 147 107 96 205 596 761 2000's 207 128 114 148 200 122 101 321 1,249 1,912 2010's 1,072 631 1,754 560 171 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  14. Arkansas Natural Gas LNG Storage Additions (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Additions (Million Cubic Feet) Arkansas Natural Gas LNG Storage Additions (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 14 5 21 0 44 18 22 52 42 30 1990's 128 38 50 53 73 29 0 57 64 52 2000's 52 50 85 36 76 72 45 54 51 27 2010's 42 47 57 52 56 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  15. Arkansas Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals (Million Cubic Feet) Arkansas Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 24 32 34 8 26 18 43 54 62 1990's 23 49 51 44 68 56 85 68 62 53 2000's 52 52 81 88 40 51 57 57 72 51 2010's 40 53 48 40 42 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  16. Arkansas Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Arkansas Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 982 966 7,077 4,709 6,270 6,646 7,646 1990's 637 188 268 352 467 468 451 508 405 405 2000's 441 653 890 504 490 433 509 404 470 489 2010's 529 423 622 797 871 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next

  17. Simulative research on the anode plasma dynamics in the high-power electron beam diode

    SciTech Connect (OSTI)

    Cai, Dan; Liu, Lie; Ju, Jin-Chuan; Zhang, Tian-Yang; Zhao, Xue-Long; Zhou, Hong-Yu

    2015-07-15

    Anode plasma generated by electron beams could limit the electrical pulse-length, modify the impedance and stability of diode, and affect the generator to diode power coupling. In this paper, a particle-in-cell code is used to study the dynamics of anode plasma in the high-power electron beam diode. The effect of gas type, dynamic characteristic of ions on the diode operation with bipolar flow model are presented. With anode plasma appearing, the amplitude of diode current is increased due to charge neutralizations of electron flow. The lever of neutralization can be expressed using saturation factor. At same pressure of the anode gas layer, the saturation factor of CO{sub 2} is bigger than the H{sub 2}O vapor, namely, the generation rate of C{sup +} ions is larger than the H{sup +} ions at the same pressure. The transition time of ions in the anode-cathode gap could be used to estimate the time of diode current maximum.

  18. Non-Invasive Beam Detection in a High-Average Power Electron Accelerator

    SciTech Connect (OSTI)

    Williams, J.; Biedron, S.; Harris, J.; Martinez, J.; Milton, S. V.; Van Keuren, J.; Benson, Steve V.; Evtushenko, Pavel; Neil, George R.; Zhang, Shukui

    2013-12-01

    For a free-electron laser (FEL) to work effectively the electron beam quality must meet exceptional standards. In the case of an FEL operating at infrared wavelengths in an amplifier configuration the critical phase space tends to be in the longitudinal direction. Achieving high enough longitudinal phase space density directly from the electron injector system of such an FEL is difficult due to space charge effects, thus one needs to manipulate the longitudinal phase space once the beam energy reaches a sufficiently high value. However, this is fraught with problems. Longitudinal space charge and coherent synchrotron radiation can both disrupt the overall phase space, furthermore, the phase space disruption is exacerbated by the longitudinal phase space manipulation process required to achieve high peak current. To achieve and maintain good FEL performance one needs to investigate the longitudinal emittance and be able to measure it during operation preferably in a non-invasive manner. Using the electro-optical sampling (EOS) method, we plan to measure the bunch longitudinal profile of a high-energy (~120-MeV), high-power (~10kW or more FEL output power) beam.

  19. FY2009 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery

    SciTech Connect (OSTI)

    Olszewski, Mitchell

    2009-11-01

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion

  20. Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect (OSTI)

    Olszewski, M.

    2008-10-15

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of hybrid propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve advanced vehicle efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors, and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and

  1. Formation of a laminar electron flow for 300 GHz high-power pulsed gyrotron

    SciTech Connect (OSTI)

    Yamaguchi, Yuusuke; Tatematsu, Yoshinori; Saito, Teruo; Ikeda, Ryosuke; Mudiganti, Jagadish C.; Ogawa, Isamu; Idehara, Toshitaka [Research Center for Development of Far-Infrared Region, University of Fukui, 3-9-1 Bunkyo, Fukui-shi 910-8507 (Japan)

    2012-11-15

    This paper describes the design of a triode magnetron injection gun for use in a 200 kW, 300 GHz gyrotron. As power and frequency increase, the performance of the gyrotron becomes quite sensitive to the quality of the electron beam. Formation of a laminar electron flow is essential for the realization of a high quality beam with a small velocity spread. In this study, a new method is developed for a quantitative evaluation of the laminarity and is applied to optimize the electrode design. The laminarity depends not only on conventional design parameters such as the cathode slant angle but also on the spatial distribution of the electric field along the beam trajectory. In the optimized design, the velocity pitch factors, {alpha}, larger than 1.2 are obtained at 65 kV, 10 A with spreads, {Delta}{alpha}, less than 5%.

  2. System for tomographic determination of the power distribution in electron beams

    DOE Patents [OSTI]

    Elmer, John W.; Teruya, Alan T.; O'Brien, Dennis W.

    1995-01-01

    A tomographic technique for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees form 0.degree. to 360.degree. and the waveforms are recorded by a digitizing storage oscilloscope. Two-dimensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment.

  3. System for tomographic determination of the power distribution in electron beams

    DOE Patents [OSTI]

    Elmer, J.W.; Teruya, A.T.; O`Brien, D.W.

    1995-11-21

    A tomographic technique for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees form 0{degree} to 360{degree} and the waveforms are recorded by a digitizing storage oscilloscope. Two-dimensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment. 12 figs.

  4. System for tomographic determination of the power distribution in electron beams

    DOE Patents [OSTI]

    Elmer, J.W.; Teruya, A.T.; O'Brien, D.W.

    1995-01-17

    A tomographic technique is disclosed for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees form 0[degree] to 360[degree] and the waveforms are recorded by a digitizing storage oscilloscope. Two-dimensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment. 12 figures.

  5. High-power beam injectors for 100 KW free-electron lasers

    SciTech Connect (OSTI)

    Todd, A. M.; Wood R. L.; Bluem, H.; Young, L. M.; Wiseman, M.; Schultheiss, T.; Schrage, D. L.; Russell, S. J.; Rode, C. H.; Rimmer, R.; Nguyen, D. C.; Kelley, J. P.; Kurennoy, S.; wood, r

    2003-01-01

    A key technology issue on the path to high-power FEL operation is the demonstration of reliable, high-brightness, high-power injector operation. We describe two ongoing programs to produce 100 mA injectors as drivers for 100 kW free-electron lasers. In one approach, in collaboration with the Thomas Jefferson National Accelerator Facility, we are fabricating a 750 MHz superconducting RF cryomodule that will be integrated with a room-temperature DC photocathode gun and tested at the Laboratory. In the other approach, in collaboration with Los Alamos National Laboratory, a high-current 700 MHz, normal-conducting, RF photoinjector is being designed and will undergo thermal management testing at the Laboratory. We describe the design, the projected performance and the status of both injectors.

  6. Japanese power electronics inverter technology and its impact on the American air conditioning industry

    SciTech Connect (OSTI)

    Ushimaru, Kenji.

    1990-08-01

    Since 1983, technological advances and market growth of inverter- driven variable-speed heat pumps in Japan have been dramatic. The high level of market penetration was promoted by a combination of political, economic, and trade policies in Japan. A unique environment was created in which the leading domestic industries-- microprocessor manufacturing, compressors for air conditioning and refrigerators, and power electronic devices--were able to direct the development and market success of inverter-driven heat pumps. As a result, leading US variable-speed heat pump manufacturers should expect a challenge from the Japanese producers of power devices and microprocessors. Because of the vertically-integrated production structure in Japan, in contrast to the out-sourcing culture of the United States, price competition at the component level (such as inverters, sensors, and controls) may impact the structure of the industry more severely than final product sales. 54 refs., 47 figs., 1 tab.

  7. Onset of chaos in a single-phase power electronic inverter

    SciTech Connect (OSTI)

    Avrutin, Viktor; Mosekilde, Erik; Zhusubaliyev, Zhanybai T.; Gardini, Laura

    2015-04-15

    Supported by experiments on a power electronic DC/AC converter, this paper considers an unusual transition from the domain of stable periodic dynamics (corresponding to the desired mode of operation) to chaotic dynamics. The behavior of the converter is studied by means of a 1D stroboscopic map derived from a non-autonomous ordinary differential equation with discontinuous right-hand side. By construction, this stroboscopic map has a high number of border points. It is shown that the onset of chaos occurs stepwise, via irregular cascades of different border collisions, some of which lead to bifurcations while others do not.

  8. Energy Department Awards $6 Million to Universities in Tennessee and Virginia to Advance Master's and Doctoral Training in Power Electronics

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) today announced the two universities selected to receive nearly $6 million to establish one or more graduate-level training programs for engineers in power electronics.

  9. DOE FreedomCAR and vehicle technologies program advanced power electronic and electrical machines annual review report

    SciTech Connect (OSTI)

    Olszewski, Mitch

    2006-10-11

    This report is a summary of the Review Panel at the FY06 DOE FreedomCAR and Vehicle Technologies (FCVT) Annual Review of Advanced Power Electronics and Electric Machine (APEEM) research activities held on August 15-17, 2006.

  10. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Wide Bandgap Semiconductors for Power Electronics Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wide Bandgap Semiconductors for Power Electronics Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Wide Bandgap Semiconductors for Power Electronics is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR

  11. Using Wireless Power Meters to Measure Energy Use of Miscellaneous and Electronic Devices in Buildings

    SciTech Connect (OSTI)

    UC Berkeley, Berkeley, CA USA; Brown, Richard; Lanzisera, Steven; Cheung, Hoi Ying; Lai, Judy; Jiang, Xiaofan; Dawson-Haggerty, Stephen; Taneja, Jay; Ortiz, Jorge; Culler, David

    2011-05-24

    Miscellaneous and electronic devices consume about one-third of the primary energy used in U.S. buildings, and their energy use is increasing faster than other end-uses. Despite the success of policies, such as Energy Star, that promote more efficient miscellaneous and electronic products, much remains to be done to address the energy use of these devices if we are to achieve our energy and carbon reduction goals. Developing efficiency strategies for these products depends on better data about their actual usage, but very few studies have collected field data on the long-term energy used by a large sample of devices due to the difficulty and expense of collecting device-level energy data. This paper describes the development of an improved method for collecting device-level energy and power data using small, relatively inexpensive wireless power meters. These meters form a mesh network based on Internet standard protocols and can form networks of hundreds of metering points in a single building. Because the meters are relatively inexpensive and do not require manual data downloading, they can be left in the field for months or years to collect long time-series energy use data. In addition to the metering technology, we also describe a field protocol used to collect comprehensive, robust data on the miscellaneous and electronic devices in a building. The paper presents sample results from several case study buildings, in which all the plug-in devices for several homes were metered, and a representative sample of several hundred plug-in devices in a commercial office building were metered for several months.

  12. Update on electron-cloud power deposition for the LHC arcdipoles

    SciTech Connect (OSTI)

    Furman, Miguel A.; Chaplin, Vernon H.

    2006-01-30

    We revisit the estimation of the power deposited by the electron cloud (EC) in the arc dipoles of the LHC by means of simulations. We adopt, as simulation input, a set of electron-related parameters closely resembling those used in recent simulations at CERN [1]. We explore values for the bunch population Nb in the range 0.4 x 10^11 <= Nb <=1.6 x 10^11, peak secondary electron yield (SEY) delta max in the range 1.0 <= delta max <= 2.0, and bunch spacing tb either 25 or 75 ns. For tb=25 ns we find that the EC average power deposition per unit length of beam pipe, dPbar/dz, will exceed the available cooling capacity, which we take to be 1.7 W/m at nominal Nb [2], if delta max exceeds ~1.3, but dPbar/dz will be comfortably within the cooling capacity if delta max <= 1.2. For tb =75 ns dPbar/dz exceeds the cooling capacity only when delta max > 2 and Nb > 1.5 x 10^11 taken in combination. The rediffused component of the secondary electron emission spectrum plays a significant role: if we artificially suppress this component while keeping delta max fixed, dPbar/dz is roughly cut in half for most values of Nb explored here, and in this case we find good agreement with the results in Ref. 1, as expected. We provide a fairly detailed explanation of the mechanism responsible for such a relatively large effect. We assess the sensitivity of our results to numerical simulation parameters, and to physical parameters such as the photoelectric yield, bunch train length, etc. Owing to the lack of detailed knowledge of the electron emission spectrum, the sensitivity of dPbar/dz to the rediffused component appears to be the most significant source of uncertainty in our results. Nevertheless, taking our results as a whole, the condition delta max <= 1.2 seems to be a conservative requirement for the cooling capacity not to be exceeded.

  13. Stopping power for a charged particle moving through three-dimensional nonideal finite-temperature electron gases

    SciTech Connect (OSTI)

    Zhang Ya; Song Yuanhong; Wang Younian [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2011-07-15

    We investigate the interaction of a charged particle with nonideal 3D electron gases by using the quantum hydrodynamic (QHD) theory. The stopping power for a nonideal electron gas at a finite-temperature has been theoretically analyzed and numerically calculated. In our calculation, the impact of nonideality and temperature on stopping power is stressed and clearly presented. The QHD dielectric function is obtained and compared to random-phase approximation result. It is shown that the QHD theory can properly describe the stopping power for higher particle velocities greater than the Bohr velocity.

  14. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Arkansas

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-26

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Arkansas.

  15. Arkansas Regional High Science Bowl | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Arkansas Regional High Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Arkansas Regional High Science Bowl Print Text

  16. Arkansas Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Arkansas Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Arkansas Regional Middle

  17. Microsoft Word - DOE-ID-14-074 Arkansas EC B3-6.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 SECTION A. Project Title: - Computational & Experimental Studies of Microstructure-Scale Porosity in Metallic - University of Arkansas SECTION B. Project Description The University of Arkansas, in collaboration with Texas A & M University (TAMU) and Georgia Tech, proposes to investigate the stability of bimodal pore size distributions, and the potential to microstructurally design metallic fuels along such lines, by closely- coordinated computational modeling and experiments. SECTION

  18. Arkansas Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Arkansas Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,725 1980's 1,796 1,821 1,974 2,081 2,240 2,032 2,011 2,018 2,000 1,782 1990's 1,739 1,672 1,752 1,555 1,610 1,566 1,472 1,479 1,332 1,546 2000's 1,584 1,619 1,654 1,666 1,837 1,967 2,271 3,306 5,628 10,872 2010's 14,181 16,374 11,039 13,524

  19. Arkansas Nonassociated Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Arkansas Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,559 1980's 1,602 1,637 1,800 1,887 2,051 1,875 1,861 1,873 1,843 1,637 1990's 1,672 1,536 1,619 1,462 1,525 1,462 1,383 1,423 1,294 1,505 2000's 1,545 1,589 1,616 1,629 1,797 1,921 2,227

  20. Arkansas Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Arkansas Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 1980's 1 1 1 1 1 1 1 1 1 1 1990's 1 0 0 0 0 0 0 0 0 0 2000's 0 1 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  1. Arkansas Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Billion Cubic Feet) Arkansas Dry Natural Gas Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 23 37 108 1980's 138 106 220 296 261 138 100 93 110 71 1990's 35 27 88 76 92 59 57 96 45 27 2000's 14 119 111 125 170 281 491 1,148 1,754 4,627 2010's 3,082 2,093 1,399 3,419 1,505 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  2. Arkansas Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) New Field Discoveries (Billion Cubic Feet) Arkansas Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4 1 3 1980's 5 17 7 4 2 13 0 0 0 0 1990's 3 0 1 0 1 0 2 0 0 1 2000's 0 0 24 0 4 4 7 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  3. Arkansas Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Arkansas Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 7 8 6 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  4. Arkansas Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Arkansas Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,402 4,956 5,362 4,353 5,720 5,469 3,940 1990's 6,464 1,218 5,570 6,053 4,283 5,083 5,124 6,349 7,980 1,822 2000's 1,468 849 536 615 1,364 1,288 1,351 1,502 2,521 4,091 2010's 5,340 6,173 6,599 6,605 6,452 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  5. Arkansas Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Arkansas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60 60,355 61,630 61,848 1990's 61,530 61,731 62,221 62,952 63,821 65,490 67,293 68,413 69,974 71,389 2000's 72,933 71,875 71,530 71,016 70,655 69,990 69,475 69,495 69,144 69,043 2010's 67,987 67,815 68,765 68,791 69,011 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  6. Arkansas Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Arkansas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1 1,410 1,151 1,412 1990's 1,396 1,367 1,319 1,364 1,417 1,366 1,488 1,336 1,300 1,393 2000's 1,414 1,122 1,407 1,269 1,223 1,120 1,120 1,055 1,104 1,025 2010's 1,079 1,133 990 1,020 1,009 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  7. Arkansas Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Arkansas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 475 480,839 485,112 491,110 1990's 488,850 495,148 504,722 513,466 521,176 531,182 539,952 544,460 550,017 554,121 2000's 560,055 552,716 553,192 553,211 554,844 555,861 555,905 557,966 556,746 557,355 2010's 549,970 551,795 549,959 549,764 549,034 - = No Data Reported; -- = Not Applicable; NA =

  8. Arkansas Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Arkansas Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 11,591 10,192 8,979 2000's 8,749 8,676 7,854 8,369 7,791 8,943 10,630 10,235 9,927 9,125 2010's 9,544 11,286 10,606 11,437 11,580 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring

  9. Arkansas Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Arkansas Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,499 3,667 3,475 1970's 3,235 2,563 1,197 1,118 952 899 823 674 883 1,308 1980's 1,351 1,327 1,287 1,258 1,200 1,141 1,318 1,275 1,061 849 1990's 800 290 413 507 553 488 479 554 451 431 2000's 377 408 395 320 254 231 212 162 139 168 2010's 213 268 424 486 582 - = No Data Reported; -- = Not Applicable; NA =

  10. Arkansas Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Arkansas Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 260,113 266,485 252,853 2000's 251,329 227,943 242,325 246,916 215,124 213,609 233,868 226,439 234,901 244,193 2010's 271,515 284,076 296,132 282,120 268,453 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next

  11. Arkansas Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Arkansas Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 78,097 75,575 86,552 68,206 42,688 102,046 42,226 1990's 99,456 83,864 85,177 122,596 24,326 180,117 76,671 71,449 61,012 54,382 2000's 55,057 16,901 161,871 166,329 183,299 190,533 193,491 269,886 446,551 680,613

  12. Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect (OSTI)

    Olszewski, M.

    2006-10-31

    , subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the Vehicle Systems subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR Program. A key element in making hybrid electric vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) Novel traction motor designs that result in increased power density and lower cost; (2) Inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) Converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) More effective thermal control and packaging technologies; and (5) Integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, Power Electronics and Electric Machinery Program. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to

  13. Partial Shade Evaluation of Distributed Power Electronics for Photovoltaic Systems: Preprint

    SciTech Connect (OSTI)

    Deline, C.; Meydbrav, J.; Donovan, M.

    2012-06-01

    Site survey data for several residential installations are provided, showing the extent and frequency of shade throughout the year. This background information is used to design a representative shading test that is conducted on two side-by-side 8-kW photovoltaic (PV) installations. One system is equipped with a standard string inverter, while the other is equipped with microinverters on each solar panel. Partial shade is applied to both systems in a comprehensive range of shading conditions, simulating one of three shade extents. Under light shading conditions, the microinverter system produced the equivalent of 4% annual performance improvement, relative to the string inverter system. Under moderate shading conditions, the microinverter system outperformed the string inverter system by 8%, and under heavy shading the microinverter increased relative performance by 12%. In all three cases, the percentage of performance loss that is recovered by the use of distributed power electronics is 40%-50%. Additionally, it was found that certain shading conditions can lead to additional losses in string inverters due to peak-power tracking errors and voltage limitations.

  14. Grid Interconnection and Performance Testing Procedures for Vehicle-To-Grid (V2G) Power Electronics: Preprint

    SciTech Connect (OSTI)

    Kramer, W.; Chakraborty, S.; Kroposki, B.; Hoke, A.; Martin, G.; Markel, T.

    2012-03-01

    Bidirectional power electronics can add vehicle-to-grid (V2G) capability in a plug-in vehicle, which then allows the vehicle to operate as a distributed resource (DR). The uniqueness of the battery-based V2G power electronics requires a test procedure that will not only maintain IEEE interconnection standards, but can also evaluate the electrical performance of the vehicle working as a DR. The objective of this paper is to discuss a recently published NREL technical report that provides interim test procedures for V2G vehicles for their integration into the electrical distribution systems and for their performance in terms of continuous output power, efficiency, and losses. Additionally, some other test procedures are discussed that are applicable to a V2G vehicle that desires to provide power reserve functions. A few sample test results are provided based on testing of prototype V2G vehicles at NREL.

  15. Arkansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Arkansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.16 0.16 1970's 0.16 0.17 0.17 0.18 0.26 0.35 0.53 0.58 0.75 0.96 1980's 0.70 1.81 2.13 2.29 2.54 2.55 2.51 2.29 1.94 2.41 1990's 2.06 1.92 2.15 2.81 2.65 3.02 3.82 4.03 3.92 4.10 2000's 5.23 4.99 4.43 5.17 5.68 7.26 6.43 6.61 8.72 3.43 2010's 3.84 - = No Data Reported; -- = Not Applicable;

  16. Arkansas Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) Arkansas Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 8,676 8,646 8,608 8,644 8,745 9,217 9,744 10,226 10,505 10,532 10,454 10,227 1991 8,296 7,930 7,609 7,414 7,545 7,884 8,371 8,385 8,385 8,385 7,756 7,093 1992 6,440 5,922 5,569 5,501 5,499 6,009 6,861 7,525 7,959 7,883 7,656 7,166 1993 6,541 5,752 5,314 5,204 4,696 4,969 4,969 4,969 4,969 4,897 4,421 3,711 1994 2,383

  17. Arkansas Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,016 1,016 1,016 1,017 1,018 1,016 1,016 1,014 1,012 1,012 1,015 2014 1,017 1,015 1,015 1,018 1,017 1,019 1,021 1,021 1,019 1,018 1,011 1,017 2015 1,021 1,023 1,023 1,025 1,022 1,020 1,023 1,022 1,019 1,029 1,014 1,015 2016 1,019 1,015 1,017 1,019 1,018 1,020

    % of Total Residential Deliveries (Percent) Arkansas Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5

  18. Arkansas Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Arkansas Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.18 0.18 0.18 1970's 0.19 0.22 0.24 0.26 0.30 0.43 0.52 0.71 0.86 1.12 1980's 1.78 2.12 2.63 2.94 2.97 2.78 2.46 2.64 2.07 2.30 1990's 2.17 2.06 1.78 1.64 1.61 1.45 2.41 2.42 1.58 1.38 2000's 2.41 4.09 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  19. Effect of surface produced secondary electrons on the sheath structure induced by high-power microwave window breakdown

    SciTech Connect (OSTI)

    Cheng Guoxin; Liu Lie

    2011-03-15

    Dielectric window breakdown, whose mechanism is not thoroughly understood, is a major factor of limiting the transmission and radiation of high-power microwave on the order of 1 GW. In this paper, a one-dimensional fluid-like sheath model is developed to investigate the sheath structures formed at different gas pressures. The dominant processes during the surface flashover are isolated by this model. In vacuum, electron multipactor is self-sustained by secondary electron emission, a positive space-charge potential is formed on the dielectric surface. With increasing gas pressure, electron-neutral ionization prevails against secondary electron emission. The multipactor effect is suppressed by the shielding of plasma electrons. This leads to the sheath potential changing gradually from a positive space-charge potential to a negative space-charge potential. For argon gas pressure lower than 14 Torr, the sheath is space charge limited. A potential minimum could be formed in front of the dielectric which traps secondary electrons emitted from the wall. With the higher argon gas pressure, the number density of ions becomes comparable to that of electrons, all surface produced electrons are accelerated toward the presheath region. Therefore, the normal sheath is formed and the resulting surface flashover on the dielectric surface becomes rf-driven volumetric breakdown.

  20. Interaction of an ultrarelativistic electron bunch train with a W-band accelerating structure: High power and high gradient

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, D.; Antipov, S.; Jing, C.; Power, J. G.; Conde, M.; Wisniewski, E.; Liu, W.; Qiu, J.; Ha, G.; Dolgashev, V.; et al

    2016-02-05

    Electron beam interaction with high frequency structures (beyond microwave regime) has a great impact on future high energy frontier machines. We report on the generation of multimegawatt pulsed rf power at 91 GHz in a planar metallic accelerating structure driven by an ultrarelativistic electron bunch train. This slow-wave wakefield device can also be used for high gradient acceleration of electrons with a stable rf phase and amplitude which are controlled by manipulation of the bunch train. To achieve precise control of the rf pulse properties, a two-beam wakefield interferometry method was developed in which the rf pulse, due to themore » interference of the wakefields from the two bunches, was measured as a function of bunch separation. As a result, measurements of the energy change of a trailing electron bunch as a function of the bunch separation confirmed the interferometry method.« less

  1. Arkansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Arkansas Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 30 34 31 31 22 2010's 28 21 10 13 15 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Arkansas Coalbed Methane Proved

  2. Slit disk for modified faraday cup diagnostic for determining power density of electron and ion beams

    DOE Patents [OSTI]

    Teruya, Alan T.; Elmer; John W.; Palmer, Todd A.

    2011-03-08

    A diagnostic system for characterization of an electron beam or an ion beam includes an electrical conducting disk of refractory material having a circumference, a center, and a Faraday cup assembly positioned to receive the electron beam or ion beam. At least one slit in the disk provides diagnostic characterization of the electron beam or ion beam. The at least one slit is located between the circumference and the center of the disk and includes a radial portion that is in radial alignment with the center and a portion that deviates from radial alignment with the center. The electron beam or ion beam is directed onto the disk and translated to the at least one slit wherein the electron beam or ion beam enters the at least one slit for providing diagnostic characterization of the electron beam or ion beam.

  3. Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems

    DOE Patents [OSTI]

    King, Robert Dean; DeDoncker, Rik Wivina Anna Adelson

    1998-01-01

    A method and apparatus for load leveling of a battery in an electrical power system includes a power regulator coupled to transfer power between a load and a DC link, a battery coupled to the DC link through a first DC-to-DC converter and an auxiliary passive energy storage device coupled to the DC link through a second DC-to-DC converter. The battery is coupled to the passive energy storage device through a unidirectional conducting device whereby the battery can supply power to the DC link through each of the first and second converters when battery voltage exceeds voltage on the passive storage device. When the load comprises a motor capable of operating in a regenerative mode, the converters are adapted for transferring power to the battery and passive storage device. In this form, resistance can be coupled in circuit with the second DC-to-DC converter to dissipate excess regenerative power.

  4. Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems

    DOE Patents [OSTI]

    King, R.D.; DeDoncker, R.W.A.A.

    1998-01-20

    A method and apparatus for load leveling of a battery in an electrical power system includes a power regulator coupled to transfer power between a load and a DC link, a battery coupled to the DC link through a first DC-to-DC converter and an auxiliary passive energy storage device coupled to the DC link through a second DC-to-DC converter. The battery is coupled to the passive energy storage device through a unidirectional conducting device whereby the battery can supply power to the DC link through each of the first and second converters when battery voltage exceeds voltage on the passive storage device. When the load comprises a motor capable of operating in a regenerative mode, the converters are adapted for transferring power to the battery and passive storage device. In this form, resistance can be coupled in circuit with the second DC-to-DC converter to dissipate excess regenerative power. 8 figs.

  5. DOE FreedomCAR and Vehicle Technologies Program Advanced Power Electronics and Electrical Machines Annual Review Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FreedomCAR and Vehicle Technologies Program Advanced Power Electronics and Electrical Machines Annual Review Report Pollard Technology Center Oak Ridge, Tennessee May 3-5, 2005 Prepared by Oak Ridge National Laboratory June 16, 2005 For DOE Internal Use Only Table of Contents Page Attendee List 3 Webcast Attendance Report 5 Evaluation Form Results 6 Summary of Reviewers' Ratings (grouped by research area) 9 Reviewers Rating Descriptions 12 Reviewers' Comments (grouped by title) 13 Appendix A

  6. Vehicle Technologies Office Merit Review 2014: North American Power Electronics Supply Chain Analysis

    Broader source: Energy.gov [DOE]

    Presentation given by Synthesis Partners at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about North American power...

  7. Vehicle Technologies Office Merit Review 2015: Power Electronics Thermal Management R&D

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about power...

  8. Powering microbes with electricity: direct electron transfer from electrodes to microbes

    SciTech Connect (OSTI)

    Lovley, DR

    2010-09-16

    P>The discovery of electrotrophs, microorganisms that can directly accept electrons from electrodes for the reduction of terminal electron acceptors, has spurred the investigation of a wide range of potential applications. To date, only a handful of pure cultures have been shown to be capable of electrotrophy, but this process has also been inferred in many studies with undefined consortia. Potential electron acceptors include: carbon dioxide, nitrate, metals, chlorinated compounds, organic acids, protons and oxygen. Direct electron transfer from electrodes to cells has many advantages over indirect electrical stimulation of microbial metabolism via electron shuttles or hydrogen production. Supplying electrons with electrodes for the bioremediation of chlorinated compounds, nitrate or toxic metals may be preferable to adding organic electron donors or hydrogen to the subsurface or bioreactors. The most transformative application of electrotrophy may be microbial electrosynthesis in which carbon dioxide and water are converted to multi-carbon organic compounds that are released extracellularly. Coupling photovoltaic technology with microbial electrosynthesis represents a novel photosynthesis strategy that avoids many of the drawbacks of biomass-based strategies for the production of transportation fuels and other organic chemicals. The mechanisms for direct electron transfer from electrodes to microorganisms warrant further investigation in order to optimize envisioned applications.

  9. Integrated three-dimensional module heat exchanger for power electronics cooling

    DOE Patents [OSTI]

    Bennion, Kevin; Lustbader, Jason

    2013-09-24

    Embodiments discussed herein are directed to a power semiconductor packaging that removes heat from a semiconductor package through one or more cooling zones that are located in a laterally oriented position with respect to the semiconductor package. Additional embodiments are directed to circuit elements that are constructed from one or more modular power semiconductor packages.

  10. First Arkansas Mill of its kind turns sawdust into stove pellets

    SciTech Connect (OSTI)

    1994-12-31

    This article describes a new mill in Arkansas that converts waste sawdust into pellets for use in a new kind of stove like the ones two Resource Conservation and Development Districts placed in 20 districts as a demonstration project. A review of the wood pellet industry and of this particular project is provided.

  11. Trigger probe for determining the orientation of the power distribution of an electron beam

    DOE Patents [OSTI]

    Elmer, John W. (Danville, CA); Palmer, Todd A. (Livermore, CA); Teruya, Alan T. (Livermore, CA)

    2007-07-17

    The present invention relates to a probe for determining the orientation of electron beams being profiled. To accurately time the location of an electron beam, the probe is designed to accept electrons from only a narrowly defined area. The signal produced from the probe is then used as a timing or triggering fiducial for an operably coupled data acquisition system. Such an arrangement eliminates changes in slit geometry, an additional signal feedthrough in the wall of a welding chamber and a second timing or triggering channel on a data acquisition system. As a result, the present invention improves the accuracy of the resulting data by minimizing the adverse effects of current slit triggering methods so as to accurately reconstruct electron or ion beams.

  12. High-power free-electron lasers driven by r-f (radio-frequency) linear accelerators. Memorandum report (Interim)

    SciTech Connect (OSTI)

    Godlove, T.F.; Sprangle, P.

    1989-05-16

    The free-electron laser (FEL) has been developed to the point where projections of its high-power capability have made it an important component of the directed-energy research program within the Strategic Defense Initiative. To achieve the desired near-visible wavelength and high intensity, stringent demands are placed on the electron beam that drives the FEL. Typical requirements are high peak current (0.2 to 2 kA) at a kinetic energy of 100 to 150 MeV, small energy spread (<1%), small diameter (<3mm), and low divergence (<0.1 mrad). Either an induction linear accelerator (linac) or an rf linac may be a suitable candidate to provide the electron beam. This review describes the technical issues and technology needed to achieve a visible light FEL driven by an rf linac. A recently installed linac at Boeing Aerospace is used as the principal illustrative example. Keywords: Free electron laser; Particle accelerator; RF linac; Strategic defense initiative; Electron beam. (jhd)

  13. Electron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    density measurement by differential interferometry W. X. Ding, D. L. Brower, B. H. Deng, and T. Yates Electrical Engineering Department, University of California-Los Angeles, Los Angeles, California 90095 ͑Received 5 May 2006; presented on 10 May 2006; accepted 16 June 2006; published online 26 September 2006͒ A novel differential interferometer is being developed to measure the electron density gradient and its fluctuations. Two separate laser beams with slight spatial offset and frequency

  14. Performance and Economic Analysis of Distributed Power Electronics in Photovoltaic Systems

    SciTech Connect (OSTI)

    Deline, C.; Marion, B.; Granata, J.; Gonzalez, S.

    2011-01-01

    Distributed electronics like micro-inverters and DC-DC converters can help recover mismatch and shading losses in photovoltaic (PV) systems. Under partially shaded conditions, the use of distributed electronics can recover between 15-40% of annual performance loss or more, depending on the system configuration and type of device used. Additional value-added features may also increase the benefit of using per-panel distributed electronics, including increased safety, reduced system design constraints and added monitoring and diagnostics. The economics of these devices will also become more favorable as production volume increases, and integration within the solar panel?s junction box reduces part count and installation time. Some potential liabilities of per-panel devices include increased PV system cost, additional points of failure, and an insertion loss that may or may not offset performance gains under particular mismatch conditions.

  15. Synergy of inelastic and elastic energy loss. Temperature effects and electronic stopping power dependence

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zarkadoula, Eva; Xue, Haizhou; Zhang, Yanwen; Weber, William J.

    2015-06-16

    A combination of an inelastic thermal spike model suitable for insulators and molecular dynamics simulations is used to study the effects of temperature and electronic energy loss on ion track formation, size and morphology in SrTiO3 systems with pre-existing disorder. We find temperature dependence of the ion track size. In addition, we find a threshold in the electronic energy loss for a given pre-existing defect concentration, which indicates a threshold in the synergy between the inelastic and elastic energy loss.

  16. Synergy of inelastic and elastic energy loss. Temperature effects and electronic stopping power dependence

    SciTech Connect (OSTI)

    Zarkadoula, Eva; Xue, Haizhou; Zhang, Yanwen; Weber, William J.

    2015-06-16

    A combination of an inelastic thermal spike model suitable for insulators and molecular dynamics simulations is used to study the effects of temperature and electronic energy loss on ion track formation, size and morphology in SrTiO3 systems with pre-existing disorder. We find temperature dependence of the ion track size. In addition, we find a threshold in the electronic energy loss for a given pre-existing defect concentration, which indicates a threshold in the synergy between the inelastic and elastic energy loss.

  17. Electron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron thermal transport within magnetic islands in the reversed-field pinch a... H. D. Stephens, 1,b͒ D. J. Den Hartog, 1,3 C. C. Hegna, 1,2 and J. A. Reusch 1 1 Department of Physics, University of Wisconsin-Madison, 1150 University Ave., Madison, Wisconsin 53706, USA 2 Department of Engineering Physics, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, Wisconsin 53706, USA 3 Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, University of

  18. FY2007 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect (OSTI)

    Olszewski, Mitchell

    2007-10-01

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as 'FreedomCAR' (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieving the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of hybrid propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve advanced vehicle efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether

  19. FY 2005 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect (OSTI)

    Olszewski, M

    2005-11-22

    component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the Vehicle Systems subprogram will help remove technical and cost barriers to enable technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR Program. A key element in making hybrid electric vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include: (1) Novel traction motor designs that result in increased power density and lower cost; (2) Inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) Converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) More effective thermal control and packaging technologies; and (5) Integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, Power Electronics and Electric Machinery Program. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and

  20. Nano-structure multilayer technology fabrication of high energy density capacitors for the power electronic building book

    SciTech Connect (OSTI)

    Barbee, T.W.; Johnson, G.W.; Wagner, A.V.

    1997-10-21

    Commercially available capacitors do not meet the specifications of the Power Electronic Building Block (PEBB) concept. We have applied our propriety nanostructure multilayer materials technology to the fabrication of high density capacitors designed to remove this impediment to PEBB progress. Our nanostructure multilayer capacitors will also be enabling technology in many industrial and military applications. Examples include transient suppression (snubber capacitors), resonant circuits, and DC filtering in PEBB modules. Additionally, weapon applications require compact energy storage for detonators and pulsed-power systems. Commercial applications run the gamut from computers to lighting to communications. Steady progress over the last five years has brought us to the threshold of commercial manufacturability. We have demonstrated a working dielectric energy density of > 11 J/cm3 in 20 nF devices designed for 1 kV operation.

  1. Effect of electron-cyclotron resonance plasma heating conditions on the low-frequency modulation of the gyrotron power at the L-2M stellarator

    SciTech Connect (OSTI)

    Batanov, G. M.; Borzosekov, V. D.; Kolik, L. V.; Konchekov, E. M. Malakhov, D. V.; Petelin, M. I.; Petrov, A. E.; Sarksyan, K. A.; Skvortsova, N. N.; Stepakhin, V. D.; Kharchev, N. K.

    2015-08-15

    Low-frequency modulation of the gyrotron power at the L-2M stellarator was studied at different modes of plasma confinement. The plasma was heated at the second harmonic of the electron gyrofrequency. The effect of reflection of gyrotron radiation from the region of electron-cyclotron resonance plasma heating, as well as of backscattering of gyrotron radiation from fluctuations of the plasma density, on the modulation of the gyrotron power was investigated.

  2. Small Solar Businesses Earn Vouchers to Develop Next-Generation Solar

    Energy Savers [EERE]

    Energy in Arkansas Show How America Competes Small Businesses in Arkansas Show How America Competes May 24, 2012 - 5:58pm Addthis Deputy Secretary Poneman tours Arkansas Power Electronics International as part of National Small Business Week. | Energy Department photo by Teryn Norris. Deputy Secretary Poneman tours Arkansas Power Electronics International as part of National Small Business Week. | Energy Department photo by Teryn Norris. Teryn Norris Teryn Norris Special Advisor What are the

  3. Measurements of the critical power for self-injection of electrons in a laser wakefield accelerator

    SciTech Connect (OSTI)

    Froula, D H; Clayton, C E; Doppner, T; Fonseca, R A; Marsh, K A; Barty, C J; Divol, L; Glenzer, S H; Joshi, C; Lu, W; Martins, S F; Michel, P; Mori, W; Palastro, J P; Pollock, B B; Pak, A; Ralph, J E; Ross, J S; Siders, C; Silva, L O; Wang, T

    2009-06-02

    A laser wakefield acceleration study has been performed in the matched, self-guided, blow-out regime where a 10 J, 60 fs laser produced 720 {+-} 50 MeV quasi-monoenergetic electrons with a divergence of {Delta}{theta} = 2.85 {+-} 0.15 mRad. While maintaining a nearly constant plasma density (3 x 10{sup 18} cm{sup -3}), a linear electron energy gain was measured from 100 MeV to 700 MeV when the plasma length was scaled from 3 mm to 8 mm. Absolute charge measurements indicate that self-injection occurs when P/P{sub cr} > 4 and saturates around 100 pC for P/P{sub cr} > 12. The results are compared with both analytical scalings and full 3D particle-in-cell simulations.

  4. FY2010 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect (OSTI)

    Olszewski, Mitchell

    2010-10-01

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from ''Freedom'' and ''Cooperative Automotive Research''), it represents DOE's commitment to developing public-private partnerships to fund high risk, high payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Advanced Power Electronics and Electric Machines (APEEM) subprogram within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the APEEM subprogram has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three phase approach intended to: (1) identify overall propulsion and vehicle related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2

  5. Interpretation of the effects of electron cyclotron power absorption in pre-disruptive tokamak discharges in ASDEX Upgrade

    SciTech Connect (OSTI)

    Nowak, S.; Lazzaro, E.; Granucci, G.; Esposito, B.; Maraschek, M.; Zohm, H.; Sauter, O.; Brunetti, D.; Collaboration: ASDEX Upgrade Team

    2012-09-15

    Tokamak disruptions are events of fatal collapse of the magnetohydrodynamic (MHD) confinement configuration, which cause a rapid loss of the plasma thermal energy and the impulsive release of magnetic energy and heat on the tokamak first wall components. The physics of the disruptions is very complex and non-linear, strictly associated with the dynamics of magnetic tearing perturbations. The crucial problem of the response to the effects of localized heat deposition and current driven by external (rf) sources to avoid or quench the MHD tearing instabilities has been investigated both experimentally and theoretically on the ASDEX Upgrade tokamak. The analysis of the conditions under which a disruption can be prevented by injection of electron cyclotron (EC) rf power, or, alternatively, may be caused by it, shows that the local EC heating can be more significant than EC current drive in ensuring neoclassical tearing modes (NTMs) stability, due to two main reasons: first, the drop of temperature associated with the island thermal short circuit tends to reduce the neoclassical character of the instability and to limit the EC current drive generation; second, the different effects on the mode evolution of both the location of the power deposition relative to the island separatrix and the island shape deformation lead to less strict requirements of precise power deposition focussing. A contribution to the validation of theoretical models of the events associated with NTM is given and can be used to develop concepts for their control, relevant also for ITER-like scenarios.

  6. FY2011 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect (OSTI)

    Olszewski, Mitchell

    2011-10-01

    The U.S. Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the U.S. Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE's commitment to developing public-private partnerships to fund high risk-high reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research') that ran from 2002 through 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machines (PEEM) subprogram within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the PEEM subprogram has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The PEEM subprogram supports the efforts of the U.S. DRIVE partnership through a three phase approach intended to: (1) identify overall propulsion and vehicle related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then

  7. Interfacial electron and phonon scattering processes in high-powered nanoscale applications.

    SciTech Connect (OSTI)

    Hopkins, Patrick E.

    2011-10-01

    The overarching goal of this Truman LDRD project was to explore mechanisms of thermal transport at interfaces of nanomaterials, specifically linking the thermal conductivity and thermal boundary conductance to the structures and geometries of interfaces and boundaries. Deposition, fabrication, and post possessing procedures of nanocomposites and devices can give rise to interatomic mixing around interfaces of materials leading to stresses and imperfections that could affect heat transfer. An understanding of the physics of energy carrier scattering processes and their response to interfacial disorder will elucidate the potentials of applying these novel materials to next-generation high powered nanodevices and energy conversion applications. An additional goal of this project was to use the knowledge gained from linking interfacial structure to thermal transport in order to develop avenues to control, or 'tune' the thermal transport in nanosystems.

  8. FY2014 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Motors Program

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-11-01

    The US Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the US Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE’s commitment to developing public–private partnerships to fund high-risk–high-reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from “Freedom” and “Cooperative Automotive Research”) that ran from 2002 through 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. Oak Ridge National Laboratory’s (ORNL’s) Advanced Power Electronics and Electric Motors (APEEM) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor, and traction drive system (TDS) technologies that will leapfrog current on-the-road technologies, leading to lower cost and better efficiency in transforming battery energy to useful work. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency through research in more efficient TDSs.

  9. Arkansas Natural Gas Price Sold to Electric Power Consumers (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.69 2.29 2.59 2000's 4.46 4.44 3.59 4.37 6.19 8.59 6.38 7.04 9.23 4.14 2010's 5.11 W 3.19 4.32

  10. U.S. Department of Energy Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 Structure 38-44, 59 and 60 Transmission Structure Movement Project Program or Field Office: Southwestern Power Administration Location(s) (City/County/State): Jonesboro, Arkansas, Craighead County Proposed Action Description: Southwestern Power Administration proposes to move several transmission line pole structures which are currently located on elevated gravel mounds and relocate several other structures. Categorical Exclusion(s) Applied: 10 CFR 1021, Appendix B to Subpart D, Part B2.5-

  11. ,"Arkansas Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  12. ,"Arkansas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  13. ,"Arkansas Natural Gas Underground Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Underground Storage Withdrawals (MMcf)",1,"Monthly","5/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  14. ,"Arkansas Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  15. ,"Arkansas Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas LNG Storage Net Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  16. ,"Arkansas Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  17. ,"Arkansas Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  18. ,"Arkansas Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290ar2m.xls"

  19. ,"Arkansas Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  20. ,"Arkansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  1. ,"Arkansas Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  2. ,"Arkansas Shale Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Shale Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  3. The development of a one microsecond pulse length, repetitively pulsed, high power modulator and a long-pulse electron beam diode for the production of intense microwaves

    SciTech Connect (OSTI)

    Stringfield, R.M.; Faehl, R.J.; Fazio, M.V.; Hoeberling, R.F.; Kwan, T.J.T.; Rickel, D.G.; VanHaaften, F.; Wasierski, R.F.; Erickson, A.; Rust, K.

    1992-07-01

    This paper discusses the pulse power and explosive emission electron beam diode development effort we have undertaken to power a relativistic klystron amplifier (RKA) microwave source. The pulsed power and electron beam must enable the RKA to Produce one kilojoule of 13 GHz radiation per pulse at a 5 Hz repetition frequency. These efforts include tests and improvements of a 1 {mu}s pulse length thyratron switched modulator, and the computational and experimental design of a 1-{mu}s-pulse-length explosive emission electron gun. The one microsecond pulse length is almost an order of magnitude beyond what has been achieved heretofore with an RKA. Achieving a peak power approaching 1 GW for 1 {mu}s requires a well behaved electron beam on that time scale. An electron beam diode has been developed that delivers a peak current of 4 to 5 kA for a pulse duration exceeding 1 {mu}s, at a beam kinetic energy above 600 keV. BANSHEE is the high voltage modulator designed for use as an electron beam driver for high power microwave tube development. The BANSHEE output pulse design parameters are 1 MV and 10 kA, with a 1 {mu}s pulse width at a repetition rate of 3--5 Hz, driving a load of impedance of 100 ohms. BANSHEE is a thyratron-switched line-type modular with a pulse transformer output stage. The modulator design is pushing the state of the art in thyratron technology and capacitor lifetime. The results of the BANSHEE modulator testing are described.

  4. A fresh look at electron cyclotron current drive power requirements for stabilization of tearing modes in ITER

    SciTech Connect (OSTI)

    La Haye, R. J.

    2015-12-10

    ITER is an international project to design and build an experimental fusion reactor based on the “tokamak” concept. ITER relies upon localized electron cyclotron current drive (ECCD) at the rational safety factor q=2 to suppress or stabilize the expected poloidal mode m=2, toroidal mode n=1 neoclassical tearing mode (NTM) islands. Such islands if unmitigated degrade energy confinement, lock to the resistive wall (stop rotating), cause loss of “H-mode” and induce disruption. The International Tokamak Physics Activity (ITPA) on MHD, Disruptions and Magnetic Control joint experiment group MDC-8 on Current Drive Prevention/Stabilization of Neoclassical Tearing Modes started in 2005, after which assessments were made for the requirements for ECCD needed in ITER, particularly that of rf power and alignment on q=2 [1]. Narrow well-aligned rf current parallel to and of order of one percent of the total plasma current is needed to replace the “missing” current in the island O-points and heal or preempt (avoid destabilization by applying ECCD on q=2 in absence of the mode) the island [2-4]. This paper updates the advances in ECCD stabilization on NTMs learned in DIII-D experiments and modeling during the last 5 to 10 years as applies to stabilization by localized ECCD of tearing modes in ITER. This includes the ECCD (inside the q=1 radius) stabilization of the NTM “seeding” instability known as sawteeth (m/n=1/1) [5]. Recent measurements in DIII-D show that the ITER-similar current profile is classically unstable, curvature stabilization must not be neglected, and the small island width stabilization effect from helical ion polarization currents is stronger than was previously thought [6]. The consequences of updated assumptions in ITER modeling of the minimum well-aligned ECCD power needed are all-in-all favorable (and well-within the ITER 24 gyrotron capability) when all effects are included. However, a “wild card” may be broadening of the localized

  5. Wide Bandgap Power Electronics

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  6. ISSUANCE 2016-03-24: Notice of Application from Green Electronics for a Small Business Exemption Regarding Certain Products from the Department of Energy’s External Power Supply Energy Conservation Standards

    Office of Energy Efficiency and Renewable Energy (EERE)

    Notice of Application from Green Electronics for a Small Business Exemption Regarding Certain Products from the Department of Energy’s External Power Supply Energy Conservation Standards

  7. Unraveling resistive versus collisional contributions to relativistic electron beam stopping power in cold-solid and in warm-dense plasmas

    SciTech Connect (OSTI)

    Vauzour, B.; Laboratoire d'Optique Applique, ENSTA-CNRS-Ecole Polytechnique, UMR 7639, 91761 Palaiseau ; Debayle, A.; CEA, DAM, DIF, F-91297 Arpajon ; Vaisseau, X.; Hulin, S.; Nicola, Ph.; Dorchies, F.; Fourment, C.; D'Humires, E.; Tikhonchuk, V. T.; Santos, J. J.; Schlenvoigt, H.-P.; Baton, S. D.; Yahia, V.; Dipartimento di Fisica, Universit di Milano-Bicocca, Milano 20126 ; Honrubia, J. J.; Beg, F. N.; Chawla, S.; Jarrot, L. C.; Benocci, R.; Volpe, L.; and others

    2014-03-15

    We present results on laser-driven relativistic electron beam propagation through aluminum samples, which are either solid and cold or compressed and heated by laser-induced shock. A full numerical description of fast electron generation and transport is found to reproduce the experimental absolute K{sub ?} yield and spot size measurements for varying target thicknesses, and to sequentially quantify the collisional and resistive electron stopping powers. The results demonstrate that both stopping mechanisms are enhanced in compressed Al samples and are attributed to the increase in the medium density and resistivity, respectively. For the achieved time- and space-averaged electronic current density, ?j{sub h}??810{sup 10}?A/cm{sup 2} in the samples, the collisional and resistive stopping powers in warm and compressed Al are estimated to be 1.5?keV/?m and 0.8?keV/?m, respectively. By contrast, for cold and solid Al, the corresponding estimated values are 1.1?keV/?m and 0.6?keV/?m. Prospective numerical simulations involving higher j{sub h} show that the resistive stopping power can reach the same level as the collisional one. In addition to the effects of compression, the effect of the transient behavior of the resistivity of Al during relativistic electron beam transport becomes progressively more dominant, and for a significantly high current density, j{sub h}?10{sup 12}?A/cm{sup 2}, cancels the difference in the electron resistive stopping power (or the total stopping power in units of areal density) between solid and compressed samples. Analytical calculations extend the analysis up to j{sub h}=10{sup 14}?A/cm{sup 2} (representative of the full-scale fast ignition scenario of inertial confinement fusion), where a very rapid transition to the Spitzer resistivity regime saturates the resistive stopping power, averaged over the electron beam duration, to values of ?1?keV/?m.

  8. Applications of electron lenses: scraping of high-power beams, beam-beam compensation, and nonlinear optics

    SciTech Connect (OSTI)

    Stancari, Giulio

    2014-09-11

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complement the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles. At Fermilab, we are planning to install an electron lens in the Integrable Optics Test Accelerator (IOTA, a 40-m ring for 150-MeV electrons) as one of the proof-of-principle implementations of nonlinear integrable optics to achieve large tune spreads and more stable beams without loss of dynamic aperture.

  9. Arkansas Natural Gas Delivered to Commercial Consumers for the Account of

    Gasoline and Diesel Fuel Update (EIA)

    Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Arkansas Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 1,723 1,870 1990's 1,939 2,198 2,343 2,393 1,351 1,104 1,550 1,699 2,576 2,983 2000's 3,354 4,164 6,336 5,751 5,874 8,173 8,843 9,534 13,112 14,776 2010's 17,862 19,402 24,772 26,797 27,604 - = No

  10. Arkansas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Arkansas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 10,267 4,027 6,268 1970's 9,184 6,433 4,740 3,000 4,246 4,200 4,049 4,032 3,760 7,661 1980's 1,949 2,549 5,096 5,384 5,922 12,439 9,062 11,990 12,115 11,586 1990's 7,101 1,406 5,838 6,405 4,750 5,551 5,575 6,857 8,385 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  11. Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,830 1990's 2,952 2,780 3,500 3,500 3,500 3,988 4,020 3,700 3,900 3,650 2000's 4,000 4,825 6,755 7,606 3,460 3,462 3,814 4,773 5,592 6,314 2010's 7,397 8,388 8,538 9,843 10,150 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  12. Arkansas Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Arkansas Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4.29 3.94 3.86 5.21 5.35 5.03 2000's 6.12 7.75 4.43 5.28 6.86 10.16 8.51 8.39 -- -- 2010's -- -- 9.04 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring

  13. Arkansas Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Arkansas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -925 -513 -486 -557 -855 -813 -453 -125 98 112 82 297 1991 -381 -716 -999 -1,230 -1,199 -1,333 -1,373 -1,840 -2,119 -2,147 -2,697 -3,134 1992 -1,855 -2,008 -2,040 -1,913 -2,046 -1,875 -1,510 -861 -426 -502 -100 73 1993 100 -170 -256 -297 -803 -1,041

  14. Determination of the electron temperature by optical emission spectroscopy in a 13.56 MHz dusty methane plasma: Influence of the power

    SciTech Connect (OSTI)

    Massereau-Guilbaud, Veronique; Geraud-Grenier, Isabelle; Plain, Andre

    2009-12-01

    Optical emission spectroscopy is applied to the study of a radiofrequency (13.56 MHz) discharge in methane used to obtain hydrogenated carbon films and particles. The methane dissociation allows the creation of species in the plasma bulk as H{sub 2}, H, and CH. The emission lines of these species are studied as a function of time and of incident rf power. The electron temperature is determined from the two line radiance ratio method and the corona balance model using the Balmer lines (H{sub alpha}, H{sub beta}, and H{sub gamma}). The incident rf power enhancement in the range 40-120 W leads to the increase in the emission line intensities as the electron temperature decreases. The temporal variations of CH and hydrogen emission lines, of the dc self-bias voltage, and of the electron temperature are correlated both with the particle behavior and growth in the plasma, and with the coating that grows onto the powered electrode.

  15. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... CLEARWATER RESERVOIR MISSOURI ARKANSAS Lock and Dam No 1 10 CACHE RIVER LEGEND EXISTING ... Little Rock District, Southwestern Division Pine Mountain Dam * Authorized in 1965 and ...

  16. Power America - Advanced Manufacturing Office Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    bandgap semiconductor-based power electronics, which allow electronic systems to be smaller, faster and more efficient than power electronics made from silicon. - US ...

  17. Enclosure Requirements to Protect Personnel from Spinning Rotor Frailures at the Power Electronics and Electric Machinery Research Center

    SciTech Connect (OSTI)

    McKeever, John W

    2007-08-01

    Performance evaluation of electric motors is a major function of the Power Electronics and Electric Machinery Research Center (PEEMRC). Normally these motors have a fixed wire-wound stator and a rotating rotor, which may have conductors embedded in a ferromagnetic core (induction motors), magnets mounted on the surface of the ferromagnetic core with a thin metal or composite cylinder or ring to hold them in place, or magnets embedded in the ferromagnetic core. Most of the work currently involves the last two permanent magnet (PM) configurations. Although the stator of a radial-gap motor can absorb energy from many of the fragments ejected from the rotor during operation, the stator of an axial-gap motor is not positioned to provide significant protection. The housing of each motor can also absorb some of the energy. The most conservative approach, however, is to assume that all fragments from the rotor must be contained by a protective enclosure. An ideal enclosure is transparent. Manufacturers of such plastics as Lexan, Tuffak, and Cyrolon sell different variations of transparent enclosure material. Lexan is a polycarbonate sheet. Lexgard{reg_sign} is a penetration resistant material made by layering polycarbonate material between pieces of ordinary glass. A fragment striking a sheet of enclosure material will pierce the surface layer, but the layered polycarbonate-glass material is able to absorb the fragment's energy before it completes penetration. Tuffak{reg_sign} is Lexan polycarbonate. Cyrolon{reg_sign} bullet resistant material is acrylic sheet. The ability of the enclosure to stop a fragment depends on its thickness as well as the penetration capability of the fragment; for example, a lead fragment has much less penetrating capability than a steel fragment. Enclosure thicknesses are commercially available to provide several levels of protection. These levels depend on the momentum of the fragments and have been evaluated for some common types of ammunition

  18. Common cause failure analysis of the rodded scram system of the Arkansas Nuclear One-Unit 1 Plant

    SciTech Connect (OSTI)

    Montague, D.F.; Campbell, D.J.; Flanagan, G.F.

    1986-10-01

    This study demonstrates the use of a formal method for common cause failure analysis in a reliability analysis of the Arkansas Nuclear One - Unit 1 rodded scram system. The scram system failure of interest is loss of capability of the system to shut the reactor down when required. The results of this analysis support the ATWS program sponsored by the US Nuclear Regulatory Commission. The methods used in this analysis support the NRC's Risk Methods Integration and Evaluation Program (RMIEP).

  19. Proposed Action Title: U.S. Department of Energy Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storm Shelter Construction Project Program or Field Office: Southwestern Power Administration Location(s) (City/County/State): Gore/Muskogee/Oklahoma; Jonesboro/Craighead/ Arkansas SWPAF 450.4 (Rev. 05/14) Proposed Action Description: Southwestern Power Administration proposes to construct aboveground storm shelters at at the Gore and Jonesboro Maintenance Facilities. Categorical Exclusion(s) Applied: 10 CFR 1021, Appendix 8 to Subpart D, Part 82.3. Installation of, or improvements to, equipment

  20. Talbot-Lau X-ray Deflectometer electron density diagnostic for laser and pulsed power high energy density plasma experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Valdivia, M. P.; Stutman, D.; Stoeckl, C.; Mileham, C.; Begishev, I.; Theobald, W.; Bromage, J.; Regan, S. P.; Klein, S. R.; Munoz-Cordoves, G.; et al

    2016-04-21

    Talbot-Lau X-ray Deflectometry has been developed as an electron density diagnostic for High Energy Density plasmas. The technique can deliver x-ray refraction, attenuation, elemental composition, and scatter information from a single Moiré image. An 8 keV Talbot-Lau interferometer was deployed using laser and x-pinch backlighters. Grating survival and electron density mapping was demonstrated for 25-29 J, 8-30 ps laser pulses using copper foil targets. Moire pattern formation and grating survival was also observed using a copper x-pinch driven at 400 kA, ~1 kA/ns. Lastly, these results demonstrate the potential of TXD as an electron density diagnostic for HED plasmas.

  1. DOE Traineeship In Power Engineering (Leveraging Wide Bandgap...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Traineeship In Power Engineering (Leveraging Wide Bandgap Power Electronics) DOE Traineeship In Power Engineering (Leveraging Wide Bandgap Power Electronics) July 20, 2015 -...

  2. Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FOIAPrivacy Act Submit a FOIA Request DOE FOIA Requester Service Center Electronic Reading Room FOIA Links Power Marketing Administrations' FOIA Links Bonneville Power ...

  3. Channeling of high-power radio waves under conditions of strong anomalous absorption in the presence of an averaged electron heating source

    SciTech Connect (OSTI)

    Vas'kov, V. V.; Ryabova, N. A.

    2010-02-15

    Strong anomalous absorption of a high-power radio wave by small-scale plasma inhomogeneities in the Earth's ionosphere can lead to the formation of self-consistent channels (solitons) in which the wave propagates along the magnetic field, but has a soliton-like intensity distribution across the field. The structure of a cylindrical soliton as a function of the wave intensity at the soliton axis is analyzed. Averaged density perturbations leading to wave focusing were calculated using the model proposed earlier by Vas'kov and Gurevich (Geomagn. Aeron. 16, 1112 (1976)), in which an averaged electron heating source was used. It is shown that, under conditions of strong electron recombination, the radii of individual solitons do not exceed 650 m.

  4. Pseudopotential approach for dust acoustic solitary waves in dusty plasmas with kappa-distributed ions and electrons and dust grains having power law size distribution

    SciTech Connect (OSTI)

    Banerjee, Gadadhar; Maitra, Sarit

    2015-04-15

    Sagdeev's pseudopotential method is used to study small as well as arbitrary amplitude dust acoustic solitons in a dusty plasma with kappa distributed electrons and ions with dust grains having power law size distribution. The existence of potential well solitons has been shown for suitable parametric region. The criterion for existence of soliton is derived in terms of upper and lower limit for Mach numbers. The numerical results show that the size distribution can affect the existence as well as the propagation characteristics of the dust acoustic solitons. The effect of kappa distribution is also highlighted.

  5. Xtreme Power | Open Energy Information

    Open Energy Info (EERE)

    Zip: 78640 Product: Xtreme Power designs and manufactures power systems using power electronics and efficient storage technologies. Coordinates: 29.98837, -97.877369 Show Map...

  6. Federal Power Act Amendments of 1995. Introduced in the Senate of the United States, One Hundred Fourth Congress, First Session, April 27, 1995

    SciTech Connect (OSTI)

    1995-12-31

    The report addresses bill S. 737 which is to extend the deadlines under the Federal Power Act applicable to construction of FERC-licensed hydroelectric projects in the States of West Virginia, Kentucky, Washington, Oregon, Arkansas, New Mexico, Alaska, and Hawaii and for other purposes. The background, legislative history and need for the extension is presented. Statements of government officials are included.

  7. Transistors for Electric Motor Drives: High-Performance GaN HEMT Modules for Agile Power Electronics

    SciTech Connect (OSTI)

    2010-09-01

    ADEPT Project: Transphorm is developing transistors with gallium nitride (GaN) semiconductors that could be used to make cost-effective, high-performance power converters for a variety of applications, including electric motor drives which transmit power to a motor. A transistor acts like a switch, controlling the electrical energy that flows around an electrical circuit. Most transistors today use low-cost silicon semiconductors to conduct electrical energy, but silicon transistors don’t operate efficiently at high speeds and voltage levels. Transphorm is using GaN as a semiconductor material in its transistors because GaN performs better at higher voltages and frequencies, and it is more energy efficient than straight silicon. However, Transphorm is using inexpensive silicon as a base to help keep costs low. The company is also packaging its transistors with other electrical components that can operate quickly and efficiently at high power levels—increasing the overall efficiency of both the transistor and the entire motor drive.

  8. Disposal of chemical agents and munitions stored at Pine Bluff Arsenal, Pine Bluff, Arkansas

    SciTech Connect (OSTI)

    Ensminger, J.T.; Hillsman, E.L.; Johnson, R.D.; Morrisey, J.A.; Staub, W.P.; Boston, C.R.; Hunsaker, D.B.; Leibsch, E.; Rickert, L.W.; Tolbert, V.R.; Zimmerman, G.P.

    1991-09-01

    The Pine Bluff Arsenal (PBA) near Pine Bluff, Arkansas, is one of eight continental United States (CONUS) Army installations where lethal unitary chemical agents and munitions are stored and where destruction of agents and munitions is proposed under the Chemical Stockpile Disposal Program (CSDP). The chemical agent inventory at PBA consists of approximately 12%, by weight, of the total US stockpile. The destruction of the stockpile is necessary to eliminate the risk to the public from continued storage and to dispose of obsolete and leaking munitions. In 1988 the US Army issued a Final Programmatic Environmental Impact Statement (FPEIS) for the CSDP that identified on-site disposal of agents and munitions as the environmentally preferred alternative (i.e., the alternative with the least potential to cause significant adverse impacts). The purpose of this report is to examine the proposed implementation of on-site disposal at PBA in light of more recent and more detailed data than those on which the FPEIS is based. New population data were used to compute fatalities using the same computation methods and values for all other parameters as in the FPEIS. Results indicate that all alternatives are indistinguishable when the potential health impacts to the PBA community are considered. However, risks from on-site disposal are in all cases equal to or less than risks from other alternatives. Furthermore, no unique resources with the potential to prevent or delay implementation of on-site disposal at PBA have been identified.

  9. Arkansas Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas) (Million Cubic Feet) Arkansas Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 19,202 19,202 19,202 19,202 19,202 19,202 19,202 19,202 19,202 19,202 19,202 19,202 1991 19,202 19,202 19,202 19,202 19,202 19,202 19,202 19,202 19,202 19,202 19,202 19,202 1992 19,202 19,202 19,112 19,021 19,007 19,007 19,007 19,007 19,007 18,887 18,748 18,615 1993 18,607 18,523 18,484 18,472 18,156 17,897 17,888 17,888 17,888

  10. Arkansas Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Arkansas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -4.4 -8.3 -11.6 -14.2 -13.7 -14.5 -14.1 -18.0 -20.2 -20.4 -25.8 -30.6 1992 -22.4 -25.3 -26.8 -25.8 -27.1 -23.8 -18.0 -10.3 -5.1 -6.0 -1.3 1.0 1993 1.6 -2.9 -4.6 -5.4 -14.6 -17.3 -27.6 -34.0 -37.6 -37.9 -42.3 -48.2 1994 -63.6 -74.6 -86.5 -87.0 -71.6 -60.3 -47.2 -35.4 -31.0 -29.2 -21.3

  11. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Reliability: Automotive Power Module Perspective Zhenxian Liang R&D Staff Power Electronics and Electric Machinery Group OAK RIDGE NATIONAL LABORATORY 2360 Cherahala Boulevard Knoxville, Tennessee 37932 TEL: (865) 946-1467 FAX: (865) 946-1262 EMAIL: liangz@ornl.gov http://peemrc.ornl.gov 2013 PV System Symposium April 30, 2013, Santa Clara, CA 2 Outline * Introduction Power Electronics in Electric Drive Vehicles Automotive Power Electronics Module Operation Automotive Power

  12. ,"Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  13. ,"Arkansas Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015"

  14. Shongaloo field: A recent smackover (Jurassic) discovery in the Arkansas-Louisiana state-line graben

    SciTech Connect (OSTI)

    DeMis, W.D.; Milliken, J.V. )

    1993-09-01

    The new North Shongaloo/Red Rock/Haynesville/East Haynesville (herein called Shongaloo) field is a recent discovery (1988) with reserves of 20-30 MMBOE. The field has over 50 wells producing from the Smackover Formation at about 11,000 ft depth, and is the largest field discovered in the very mature Arkansas-Louisiana state-line Smackover play in the past 20 yr. More significantly, the field is locate within the state-line graben, an area considered by industry as barren of Smackover potential because Smackover reservoir rocks were assumed absent. Shongaloo field pay is from the Smackover. The [open quotes]C[close quotes] sand has average porosity of 5-7% and average permeability of less than 1 md (average initial flow rate is 1500 MCFGD with 430 BCPD). The [open quotes]B[close quotes] carbonate reservoirs consist of ooid grainstones with average porosity of 14% and average permeability of 60 md, ranging up to 1800 md (average initial flow rate is 550 BOPD and 950 MCFGD). Shongaloo field is an upthrown fault trap within the overall downthrown central graben. Shongaloo field was found by overcoming two technical hurdles. First, reservoir rock distribution was shown to follow paleoshorelines through the graben. Porous ooid grainstones facies within a mappable cycle of the Smackover [open quotes]B[close quotes] are parallel to, and immediately downdip (<1.5 mi) of paleoshorelines. Paleoshorelines are documented by the updip pinchout of [open quotes]B[close quotes] cycles into time-equivalent Buckner red beds. Second, the critical trapping fault was resolved by shooting and interpreting modern proprietary seismic data. The discovery of Shongaloo field proves that significant reserves can be found in mature domestic plays by applying new technology and stratigraphic concepts.

  15. Optically pulsed electron accelerator

    DOE Patents [OSTI]

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  16. Optically pulsed electron accelerator

    DOE Patents [OSTI]

    Fraser, John S.; Sheffield, Richard L.

    1987-01-01

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  17. High-power green and blue electron-beam pumped surface-emitting lasers using dielectric and epitaxial distributed Bragg reflectors

    SciTech Connect (OSTI)

    Klein, T.; Klembt, S.; Kozlovsky, V. I.; Zheng, A.; Tiberi, M. D.; Kruse, C.

    2015-03-21

    ZnSe-based electron-beam pumped vertical-cavity surface-emitting lasers for the green (λ = 530 nm) and blue (λ = 462 nm) spectral region have been realized. Structures with and without epitaxial bottom distributed Bragg reflector have been fabricated and characterized. The samples consist of an active region containing 20 quantum wells with a cavity length varying between an optical thickness of 10 λ to 20 λ. The active material is ZnCdSSe in case of the green devices and ZnSe for the blue ones. Room temperature single mode lasing for structures with and without epitaxial bottom mirror with a maximum output power up to 5.9 W (green) and 3.3 W (blue) is achieved, respectively.

  18. 1,"Union Power Partners LP","Natural gas","Union Power Partners...

    U.S. Energy Information Administration (EIA) Indexed Site

    8,"Hot Spring Generating Facility","Natural gas","Entergy Arkansas Inc",596.8 9,"Harry L. Oswald","Natural gas","Arkansas Electric Coop Corp",548 10,"Flint Creek","Coal","Southwe...

  19. Advanced Power Electronic Interfaces for Distributed Energy Systems, Part 2: Modeling, Development, and Experimental Evaluation of Advanced Control Functions for Single-Phase Utility-Connected Inverter

    SciTech Connect (OSTI)

    Chakraborty, S.; Kroposki, B.; Kramer, W.

    2008-11-01

    Integrating renewable energy and distributed generations into the Smart Grid architecture requires power electronic (PE) for energy conversion. The key to reaching successful Smart Grid implementation is to develop interoperable, intelligent, and advanced PE technology that improves and accelerates the use of distributed energy resource systems. This report describes the simulation, design, and testing of a single-phase DC-to-AC inverter developed to operate in both islanded and utility-connected mode. It provides results on both the simulations and the experiments conducted, demonstrating the ability of the inverter to provide advanced control functions such as power flow and VAR/voltage regulation. This report also analyzes two different techniques used for digital signal processor (DSP) code generation. Initially, the DSP code was written in C programming language using Texas Instrument's Code Composer Studio. In a later stage of the research, the Simulink DSP toolbox was used to self-generate code for the DSP. The successful tests using Simulink self-generated DSP codes show promise for fast prototyping of PE controls.

  20. National Uranium Resource Evaluation Program. Data report: Arkansas, Louisiana, Mississippi, Missouri, Oklahoma, and Texas. Hydrogeochemical and stream sediment reconnaissance

    SciTech Connect (OSTI)

    Fay, W M; Sargent, K A; Cook, J R

    1982-02-01

    This report presents the results of ground water, stream water, and stream sediment reconnaissance in Arkansas, Louisiana, Mississippi, Missouri, Oklahoma, and Texas. The following samples were collected: Arkansas-3292 stream sediments, 5121 ground waters, 1711 stream waters; Louisiana-1017 stream sediments, 0 ground waters, 0 stream waters; Misissippi-0 stream sediments, 814 ground waters, 0 stream waters; Missouri-2162 stream sediments, 3423 ground waters 1340 stream waters; Oklahoma-2493 stream sediments, 2751 ground waters, 375 stream waters; and Texas-279 stream sediments, 0 ground waters, 0 stream waters. Neutron activation analyses are given for U, Br, Cl, F, Mn, Na, Al, V, and Dy in ground water and stream water, and for U, Th, Hf, Ce, Fe, Mn, Na, Sc, Ti, V, Al, Dy, Eu, La, Sm, Yb, and Lu in sediments. The results of mass spectroscopic analysis for He are given for 563 ground water sites in Mississippi. Field measurements and observations are reported for each site. Oak Ridge National Laboratory analyzed sediment samples which were not analyzed by Savannah River Laboratory neutron activation.

  1. Tim Kuneli, Electronics Maintenance Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tim Kuneli, Electronics Maintenance Group Print The recent ALS power supply failure was one of the most challenging projects that Electronics Engineer Technical Superintendent Tim...

  2. Property:ServiceTerritory | Open Energy Information

    Open Energy Info (EERE)

    +, West Virginia +, Tennessee + Arizona Corporation Commission + Arizona + Arizona Public Service Co + Arizona + Arkansas River Power Authority + Colorado + Arkansas Valley...

  3. Power Electronics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    critical components in PV systems and the larger electric grid, are used to convert electricity from one form to another and deliver it from generation to end consumption. ...

  4. Solder Joints of Power Electronics

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  5. Materials Compatibility of Power Electronics

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  6. Direct Cooled Power Electronics Substrate

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  7. Hydrogeochemical and stream-sediment reconnaissance, orientation study, Ouachita Mountain area, Arkansas. National Uranium Resource Evaluation Program

    SciTech Connect (OSTI)

    Steele, K. F.

    1982-08-01

    A hydrogeochemical ground water orientation study was conducted in the multi-mineralized area of the Ouachita Mountains, Arkansas in order to evaluate the usefulness of ground water as a sampling medium for uranium exploration in similar areas. Ninety-three springs and nine wells were sampled in Clark, Garland, Hot Springs, Howard, Montgomery, Pike, Polk, and Sevier Counties. Manganese, barite, celestite, cinnabar, stibnite, copper, lead, and zinc are present. The following parameters were determined: pH, conductivity, alkalinity, U, Br, Cl, F, He, Mn, Na, V, Al, Dy, NO/sub 3/, NH/sub 3/, SO/sub 4/, and PO/sub 4/. The minerals appear to significantly affect the chemistry of the ground water. This report is issued in draft form, without detailed technical and copy editing. This was done to make the report available to the public before the end of the National Uranium Resource Evaluation.

  8. Lasers, Electron Beams and New Years Resolutions

    Broader source: Energy.gov [DOE]

    The electron beam that powers Jefferson Lab's Free-Electron Laser pumped out a record power input of 500 kilvolts using an innovative energy-recovery system that amplifies energy with far less power.

  9. PowerPoint Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrical and Computer Engineering, Georgia Tech - National Acad. of Engineers, IEEE Fellow, past President IEEE Power Electronics Society, & recipient IEEE William E Newell Field ...

  10. PowerPoint Presentation

    Broader source: Energy.gov (indexed) [DOE]

    Systems Program 1 DOE Energy Storage & Power Electronics Research Programs October 8, 2009 ... Si 208ns Energy Storage Systems Program 10 Efficiency Passive Cooling System California ...

  11. PowerPoint Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Space - University, Small Business, Large ... more reliable power electronic components 1 Lux Research, 2012. Institute ... 3.3 B market opportunity by 2020. ...

  12. 807,"Arkansas Electric Corp",11,"Fitzhugh","OG&E North",100,0...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...614323.27,2117608.11,"applicationvnd.ms-excel" 5580,"East Kentucky Power Coop Inc",1,"Smith","Lake Reba",100,11.59,"OH","AC",138,138,954,"ACSR","Single",1,1,"TH-Wood ...

  13. High-Power Zinc-Air Energy Storage: Enhanced Metal-Air Energy Storage System with Advanced Grid-Interoperable Power Electronics Enabling Scalability and Ultra-Low Cost

    SciTech Connect (OSTI)

    2010-10-01

    GRIDS Project: Fluidic is developing a low-cost, rechargeable, high-power module for Zinc-air batteries that will be used to store renewable energy. Zinc-air batteries are traditionally found in small, non-rechargeable devices like hearing aids because they are well-suited to delivering low levels of power for long periods of time. Historically, Zinc-air batteries have not been as useful for applications which require periodic bursts of power, like on the electrical grid. Fluidic hopes to fill this need by combining the high energy, low cost, and long run-time of a Zinc-air battery with new chemistry providing high power, high efficiency, and fast response. The battery module could allow large grid-storage batteries to provide much more power on very short demandthe most costly kind of power for utilitiesand with much more versatile performance.

  14. Fusion Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power www.pppl.gov FACT SHEET FUSION POWER Check us out on YouTube. http://www.youtube.com/ppplab Find us on Facebook. http://www.facebook.com/PPPLab Follow us on Twitter. @PPPLab Access our RSS feed @PPPLab Deuterium Electron Proton Hydrogen Tritium Neutron For centuries, the way in which the sun and stars produce their energy remained a mystery to man. During the twentieth century, scientists discovered that they produce their energy by the fusion process. E=mc 2 , Albert Einstein's familiar

  15. 2010 DOE EERE Vehicle Technologies Program Merit Review - Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electrical Machines 2010 DOE EERE Vehicle Technologies Program Merit Review - Power Electronics and Electrical Machines APEEM research and development merit ...

  16. 2008 Annual Merit Review Results Summary - 5. Advanced Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5. Advanced Power Electronics 2008 Annual Merit Review Results Summary - 5. Advanced Power Electronics DOE Vehicle Technologies Annual Merit Review 2008meritreview5.pdf (1.26 ...

  17. DOE Vehicle Technologies Program 2009 Merit Review Report - Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electric Motors DOE Vehicle Technologies Program 2009 Merit Review Report - Power Electronics and Electric Motors 2009meritreview3.pdf (747.75 KB) More ...

  18. Free-Electron Laser | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free-Electron Laser Jefferson Lab's Free-Electron Laser is the world's highest-power tunable infrared laser and was developed using the lab's expertise in superconducting ...

  19. Disposal of chemical agents and munitions stored at Pine Bluff Arsenal, Pine Bluff, Arkansas. Final phase 1, Environmental report

    SciTech Connect (OSTI)

    Ensminger, J.T.; Hillsman, E.L.; Johnson, R.D.; Morrisey, J.A.; Staub, W.P.; Boston, C.R.; Hunsaker, D.B.; Leibsch, E.; Rickert, L.W.; Tolbert, V.R.; Zimmerman, G.P.

    1991-09-01

    The Pine Bluff Arsenal (PBA) near Pine Bluff, Arkansas, is one of eight continental United States (CONUS) Army installations where lethal unitary chemical agents and munitions are stored and where destruction of agents and munitions is proposed under the Chemical Stockpile Disposal Program (CSDP). The chemical agent inventory at PBA consists of approximately 12%, by weight, of the total US stockpile. The destruction of the stockpile is necessary to eliminate the risk to the public from continued storage and to dispose of obsolete and leaking munitions. In 1988 the US Army issued a Final Programmatic Environmental Impact Statement (FPEIS) for the CSDP that identified on-site disposal of agents and munitions as the environmentally preferred alternative (i.e., the alternative with the least potential to cause significant adverse impacts). The purpose of this report is to examine the proposed implementation of on-site disposal at PBA in light of more recent and more detailed data than those on which the FPEIS is based. New population data were used to compute fatalities using the same computation methods and values for all other parameters as in the FPEIS. Results indicate that all alternatives are indistinguishable when the potential health impacts to the PBA community are considered. However, risks from on-site disposal are in all cases equal to or less than risks from other alternatives. Furthermore, no unique resources with the potential to prevent or delay implementation of on-site disposal at PBA have been identified.

  20. Forecasting changes in water quality in rivers associated with growing biofuels in the Arkansas-White-Red river drainage, USA

    SciTech Connect (OSTI)

    Jager, Henriette I.; Baskaran, Latha M.; Schweizer, Peter E.; Turhollow, Anthony F.; Brandt, Craig C.; Srinivasan, Raghavan

    2014-05-15

    We study that the mid-section of the Arkansas-White-Red (AWR) river basin near the 100th parallel is particularly promising for sustainable biomass production using cellulosic perennial crops and residues. Along this longitudinal band, precipitation becomes limiting to competing crops that require irrigation from an increasingly depleted groundwater aquifer. In addition, the deep-rooted perennial, switchgrass, produces modest-to-high yields in this region with minimal inputs and could compete against alternative crops and land uses at relatively low cost. Previous studies have also suggested that switchgrass and other perennial feedstocks offer environmentally benign alternatives to corn and corn stover. However, water quality implications remain a significant concern for conversion of marginal lands to bioenergy production because excess nutrients produced by agriculture for food or for energy contribute to eutrophication in the dead-zone in the Gulf of Mexico. This study addresses water quality implications for the AWR river basin. We used the SWAT model to compare water quality in rivers draining a baseline, pre-cellulosic-bioenergy and post-cellulosic-bioenergy landscapes for 2022 and 2030. Simulated water quality responses varied across the region, but with a net tendency toward decreased amounts of nutrient and sediment, particularly in subbasins with large areas of bioenergy crops in 2030 future scenarios. We conclude that water quality is one aspect of sustainability for which cellulosic bioenergy production in this region holds promise.

  1. Forecasting changes in water quality in rivers associated with growing biofuels in the Arkansas-White-Red river basin, USA

    SciTech Connect (OSTI)

    Jager, Yetta; Brandt, Craig C; Baskaran, Latha Malar; Srinivasan, Raghavan; Turhollow Jr, Anthony F; Schweizer, Peter E

    2015-01-01

    The mid-section of the Arkansas-White-Red (AWR) river basin near the 100th parallel is particularly promising for sustainable biomass production using cellulosic perennial crops and residues. Along this longitudinal band, precipitation becomes limiting to competing crops that require irrigation from an increasingly depleted groundwater aquifer. In addition, the deep-rooted perennial, switchgrass, produces modest-to-high yields in this region with minimal inputs and could compete against alternative crops and land uses at relatively low cost. Previous studies have also suggested that switchgrass and other perennial feedstocks offer environmentally benign alternatives to corn and corn stover. However, water quality implications remain a significant concern for conversion of marginal lands to bioenergy production because excess nutrients produced by agriculture for food or for energy contribute to eutrophication in the dead-zone in the Gulf of Mexico. This study addresses water quality implications for the AWR river basin. We used the SWAT model to compare water quality in rivers draining a baseline, pre-cellulosic-bioenergy and post-cellulosic-bioenergy landscapes for 2022 and 2030. Simulated water quality responses varied across the region, but with a net tendency toward decreased amounts of nutrient and sediment, particularly in subbasins with large areas of bioenergy crops in 2030 future scenarios. We conclude that water quality is one aspect of sustainability for which cellulosic bioenergy production in this region holds promise.

  2. Forecasting changes in water quality in rivers associated with growing biofuels in the Arkansas-White-Red river drainage, USA

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jager, Henriette I.; Baskaran, Latha M.; Schweizer, Peter E.; Turhollow, Anthony F.; Brandt, Craig C.; Srinivasan, Raghavan

    2014-05-15

    We study that the mid-section of the Arkansas-White-Red (AWR) river basin near the 100th parallel is particularly promising for sustainable biomass production using cellulosic perennial crops and residues. Along this longitudinal band, precipitation becomes limiting to competing crops that require irrigation from an increasingly depleted groundwater aquifer. In addition, the deep-rooted perennial, switchgrass, produces modest-to-high yields in this region with minimal inputs and could compete against alternative crops and land uses at relatively low cost. Previous studies have also suggested that switchgrass and other perennial feedstocks offer environmentally benign alternatives to corn and corn stover. However, water quality implications remainmore » a significant concern for conversion of marginal lands to bioenergy production because excess nutrients produced by agriculture for food or for energy contribute to eutrophication in the dead-zone in the Gulf of Mexico. This study addresses water quality implications for the AWR river basin. We used the SWAT model to compare water quality in rivers draining a baseline, pre-cellulosic-bioenergy and post-cellulosic-bioenergy landscapes for 2022 and 2030. Simulated water quality responses varied across the region, but with a net tendency toward decreased amounts of nutrient and sediment, particularly in subbasins with large areas of bioenergy crops in 2030 future scenarios. We conclude that water quality is one aspect of sustainability for which cellulosic bioenergy production in this region holds promise.« less

  3. Forecasting changes in water quality in rivers associated with growing biofuels in the Arkansas-White-Red river basin, USA

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jager, Yetta; Brandt, Craig C; Baskaran, Latha Malar; Srinivasan, Raghavan; Turhollow Jr, Anthony F; Schweizer, Peter E

    2015-01-01

    The mid-section of the Arkansas-White-Red (AWR) river basin near the 100th parallel is particularly promising for sustainable biomass production using cellulosic perennial crops and residues. Along this longitudinal band, precipitation becomes limiting to competing crops that require irrigation from an increasingly depleted groundwater aquifer. In addition, the deep-rooted perennial, switchgrass, produces modest-to-high yields in this region with minimal inputs and could compete against alternative crops and land uses at relatively low cost. Previous studies have also suggested that switchgrass and other perennial feedstocks offer environmentally benign alternatives to corn and corn stover. However, water quality implications remain a significant concernmore » for conversion of marginal lands to bioenergy production because excess nutrients produced by agriculture for food or for energy contribute to eutrophication in the dead-zone in the Gulf of Mexico. This study addresses water quality implications for the AWR river basin. We used the SWAT model to compare water quality in rivers draining a baseline, pre-cellulosic-bioenergy and post-cellulosic-bioenergy landscapes for 2022 and 2030. Simulated water quality responses varied across the region, but with a net tendency toward decreased amounts of nutrient and sediment, particularly in subbasins with large areas of bioenergy crops in 2030 future scenarios. We conclude that water quality is one aspect of sustainability for which cellulosic bioenergy production in this region holds promise.« less

  4. Tyco Electronics | Open Energy Information

    Open Energy Info (EERE)

    Product: Pennsylvania-based passive component manufacturer. The firm produces power storage devices. References: Tyco Electronics1 This article is a stub. You can help OpenEI...

  5. Arkansas-Arkansas Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    13,472 13,037 12,709 12,271 12,715 13,517 1990-2016 Base Gas 11,664 11,664 11,652 11,652 12,091 12,542 1990-2016 Working Gas 1,808 1,374 1,057 619 625 974 1990-2016 Net Withdrawals -127 434 328 438 -444 -801 1990-2016 Injections 538 127 208 68 574 808 1990-2016 Withdrawals 411 562 537 506 130 7 1990-2016 Change in Working Gas from Same Period Previous Year Volume -461 -464 -214 -418 -321 -382 1990-2016 Percent -20.3 -25.3 -16.8 -40.3 -34.0 -28.2

    1,760 21,760 21,359 21,853 21,853 21,853

  6. Arkansas-Arkansas Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    5,611 6,872 7,781 8,058 2011-2014 Total Liquids Extracted (Thousand Barrels) 336 378 457 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 582

  7. Arkansas Nuclear Profile - Arkansas Nuclear One

    U.S. Energy Information Administration (EIA) Indexed Site

    ...vnd.ms-excel" 2,993,"8,416",96.7,"PWR","applicationvnd.ms-excel","applicationvnd.ms-excel" ,"1,835","15,023",93.5 "Data for 2010" "PWR Pressurized Light Water Reactor."

  8. Arkansas Nuclear Profile - Arkansas Nuclear One

    U.S. Energy Information Administration (EIA) Indexed Site

    Nuclear One" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,842,"6,607",89.6,"PWR","application/vnd.ms-excel","application/vnd.ms-excel" 2,993,"8,416",96.7,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  9. Jadoo Power Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    Product: US-based fuel cell developer, Jadoo Power Systems Inc, produces high energy density power products for the law enforcement, military and electronic news gathering...

  10. PowerPoint Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Program 1 DOE Energy Storage & Power Electronics Research Programs October 8, 2009 Marcelo Schupbach, Ph.D. Chief Technology Officer APEI, Inc. 535 Research Center Blvd. Fayetteville, AR 72701 Phone: (479)-443-5759 Email: mschupb@apei.net Website: www.apei.net Very High Temperature (400+ °C) High-Power Silicon Carbide (SiC) Power Electronics Converter Energy Storage Systems Program 2 Overview * Broader Impact of SiC-based Power Converter * Phase I Review * Phase II Review * Related

  11. Curriculum Development in Sustainable Electric Power Generation

    SciTech Connect (OSTI)

    Miller, Ruth Douglas

    2012-08-31

    Final report of a project to develop university laboratory curricula in power electronics for wind and solar energy.

  12. Superfund Record of Decision (EPA Region 6): Mid-South Wood Products, Polk County, Arkansas, November 1986. First remedial action. Final report

    SciTech Connect (OSTI)

    Not Available

    1986-11-14

    The Mid-South Wood Products site is located in Polk County, Arkansas, approximately 1/2 mile southwest of Mena, Arkansas. The 57-acre site includes the following areas: the Old Plant site, the Small Old Pond and Old Pond areas, the North and South Landfarms, the landfill, Clear Lake and an existing chromated copper arsenate (CCA) treatment plant. The Old Plant site was used to treat wood with pentachlorophenol (PCP) and creosote; the Small Old Pond was the original impoundment for waste PCP and creosote. These two areas have been covered with soil. The Old Pond area was used to store PCP and creosote sludge and has since been graded and covered with soil; materials from the Old Pond were spread over the Landfarm areas and mixed into the soil; the Landfill area contains deposits of sawdust, woodchips, and other waste-wood products; Clear Lake receives runoff from all the above areas; the CCA treatment plant contains an ongoing wood-treating operation where the surface drainage from the plant is put in sumps.

  13. PowerPoint Presentation

    Broader source: Energy.gov (indexed) [DOE]

    Funded by the Power Electronics Program of the U.S. Department Of Energy (DOE/PE) through Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Power Electronics Reliability Analysis Annual DOE Peer Review Meeting October 8, 2009 Mark A. Smith - Systems Readiness & Sustainment Technologies Department

  14. Photonic-powered cable assembly

    DOE Patents [OSTI]

    Sanderson, Stephen N.; Appel, Titus James; Wrye, IV, Walter C.

    2013-01-22

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  15. Photonic-powered cable assembly

    DOE Patents [OSTI]

    Sanderson, Stephen N; Appel, Titus James; Wrye, IV, Walter C

    2014-06-24

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  16. High power microwave generator

    DOE Patents [OSTI]

    Minich, Roger W.

    1988-01-01

    A device (10) for producing high-powered and coherent microwaves is described. The device comprises an evacuated, cylindrical, and hollow real cathode (20) that is driven to inwardly field emit relativistic electrons. The electrons pass through an internally disposed cylindrical and substantially electron-transparent cylindrical anode (24), proceed toward a cylindrical electron collector electrode (26), and form a cylindrical virtual cathode (32). Microwaves are produced by spatial and temporal oscillations of the cylindrical virtual cathode (32), and by electrons that reflex back and forth between the cylindrical virtual cathode (32) and the cylindrical real cathode (20).

  17. Power Device Packaging | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D.C. ape023wang2010p.pdf (2.42 MB) More Documents & Publications Power Device Packaging Power Device Packaging Direct Water-Cooled Power Electronics Substrate Packaging

  18. Southwestern Power Administration Annual Report 2011

    SciTech Connect (OSTI)

    2013-04-01

    Dear Secretary Chu: I am pleased to present the financial statements and operating data for Southwestern Power Administration (Southwestern) for Fiscal Year (FY) 2011. In FY 2011, Southwestern delivered over 4.1 billion kilowatt-hours of energy to its wholesale customers in Arkansas, Kansas, Louisiana, Missouri, Oklahoma, and Texas, generating $167 million in revenue. In fulfilling its mission to market and reliably deliver renewable Federal hydroelectric power, Southwestern maintains 1,380 miles of high-voltage transmission lines, substations, and communications sites, contributing to the reliability of the regional and National electric grid. Southwestern also actively partners with the Department of Energy, the U.S. Army Corps of Engineers, Southwestern’s customers, and other Federal power stakeholders to most effectively balance their diverse interests with Southwestern’s mission while continuing to maximize Federal assets to repay the Federal investment in the 24 hydropower facilities within Southwestern’s marketing region. Southwestern is proud of its past successes, and we look forward to continuing to serve the Nation’s energy needs in the future. Sincerely, Christopher M. Turner Administrator

  19. Southwestern Power Administration Annual Report 2012

    SciTech Connect (OSTI)

    2013-09-01

    Dear Secretary Moniz: I am pleased to present the financial statements and operating data for Southwestern Power Administration (Southwestern) for Fiscal Year (FY) 2012. In FY 2012, Southwestern delivered over 4.1 billion kilowatt-hours of energy to its wholesale customers in Arkansas, Kansas, Louisiana, Missouri, Oklahoma, and Texas, generating $195 million in revenue. In fulfilling its mission to market and reliably deliver renewable Federal hydroelectric power, Southwestern maintains 1,380 miles of high-voltage transmission lines, substations, and communications sites, contributing to the reliability of the regional and National electric grid. Southwestern also actively partners with the Department of Energy, the U.S. Army Corps of Engineers, Southwestern’s customers, and other Federal power stakeholders to most effectively balance their diverse interests with Southwestern’s mission while continuing to maximize Federal assets to repay the Federal investment in the 24 hydropower facilities within Southwestern’s marketing region. Southwestern is proud of its past successes, and we look forward to continuing to serve the Nation’s energy needs in the future. Sincerely, Christopher M. Turner Administrator

  20. Southwestern Power Administration Annual Report 2010

    SciTech Connect (OSTI)

    2012-09-01

    Dear Secretary Chu: I am pleased to present the financial statements and operating data for Southwestern Power Administration (Southwestern) for Fiscal Year (FY) 2010. In FY 2010, Southwestern delivered nearly 7.6 billion kilowatt-hours of energy to its wholesale customers in Arkansas, Kansas, Louisiana, Missouri, Texas, and Oklahoma, generating $189 million in revenue. In fulfilling its mission to market and reliably deliver renewable Federal hydroelectric power, Southwestern maintains 1,380 miles of high-voltage transmission lines, substations, and communications sites, contributing to the reliability of the regional and National electric grid. Southwestern also actively partners with the Department of Energy, the U.S. Army Corps of Engineers, Southwestern’s customers, and other Federal power stakeholders to most effectively balance their diverse interests with Southwestern’s mission while continuing to maximize Federal assets to repay the Federal investment in the 24 hydropower facilities within Southwestern’s marketing region. Southwestern is proud of its past successes, and we look forward to continuing to serve the Nation’s energy needs in the future. Sincerely, Christopher M. Turner Administrator