National Library of Energy BETA

Sample records for arizona site analysis

  1. Analysis of MSE Cores Tuba City, Arizona, Site | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MSE Cores Tuba City, Arizona, Site Analysis of MSE Cores Tuba City, Arizona, Site Analysis of MSE Cores Tuba City, Arizona, Site Analysis of MSE Cores Tuba City, Arizona, Site (3.46 MB) More Documents & Publications Analysis of Contaminant Rebound in Ground Water in Extraction Wells at the Tuba City, Arizona, Site Uranium-Bearing Evaporite Mineralization Influencing Plume Persistence: Literature Review and DOE-LM Site Surveys Diffusion Multilayer Sampling of Ground Water in Five Wells at the

  2. Arizona

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona

  3. Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remote Sens. 2012, 4, 327-353; doi:10.3390/rs4020327 Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing Jungho Im 1, *, John R. Jensen 2 , Ryan R. Jensen 3 , John Gladden 4 , Jody Waugh 5 and Mike Serrato 4 1 Department of Environmental Resources Engineering, College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA 2

  4. Monument Valley, Arizona, Processing Site Fact Sheet

    Office of Legacy Management (LM)

    Monument Valley, Arizona, Processing Site This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I processing site at Monument Valley, Arizona. This site is managed by the U.S. Department of Energy Office of Legacy Management. Site Description and History The Monument Valley processing site is located on the Navajo Nation in northeastern Arizona, approximately 15 miles south of Mexican Hat, Utah, on the west side of Cane Valley. A uranium-ore

  5. Tuba City, Arizona, Disposal Site Community Information

    Office of Legacy Management (LM)

    Tuba City, Arizona, Disposal Site Tuba City Site Background 1954-1955 Tuba City mill is built. 1956-1966 Rare Metals Corporation and El Paso Natural Gas Company operate the ...

  6. Arizona Transmission Line Siting Committee | Open Energy Information

    Open Energy Info (EERE)

    Line Siting Committee Jump to: navigation, search Name: Arizona Transmission Line Siting Committee Abbreviation: TLSC Address: 1200 West Washington Street Place: Phoenix, Arizona...

  7. VEGETATION COVER ANALYSIS OF HAZARDOUS WASTE SITES IN UTAH AND ARIZONA USING HYPERSPECTRAL REMOTE SENSING

    SciTech Connect (OSTI)

    Serrato, M.; Jungho, I.; Jensen, J.; Jensen, R.; Gladden, J.; Waugh, J.

    2012-01-17

    Remote sensing technology can provide a cost-effective tool for monitoring hazardous waste sites. This study investigated the usability of HyMap airborne hyperspectral remote sensing data (126 bands at 2.3 x 2.3 m spatial resolution) to characterize the vegetation at U.S. Department of Energy uranium processing sites near Monticello, Utah and Monument Valley, Arizona. Grass and shrub species were mixed on an engineered disposal cell cover at the Monticello site while shrub species were dominant in the phytoremediation plantings at the Monument Valley site. The specific objectives of this study were to: (1) estimate leaf-area-index (LAI) of the vegetation using three different methods (i.e., vegetation indices, red-edge positioning (REP), and machine learning regression trees), and (2) map the vegetation cover using machine learning decision trees based on either the scaled reflectance data or mixture tuned matched filtering (MTMF)-derived metrics and vegetation indices. Regression trees resulted in the best calibration performance of LAI estimation (R{sup 2} > 0.80). The use of REPs failed to accurately predict LAI (R{sup 2} < 0.2). The use of the MTMF-derived metrics (matched filter scores and infeasibility) and a range of vegetation indices in decision trees improved the vegetation mapping when compared to the decision tree classification using just the scaled reflectance. Results suggest that hyperspectral imagery are useful for characterizing biophysical characteristics (LAI) and vegetation cover on capped hazardous waste sites. However, it is believed that the vegetation mapping would benefit from the use of 1 higher spatial resolution hyperspectral data due to the small size of many of the vegetation patches (< 1m) found on the sites.

  8. Vegetation Cover Analysis of Hazardous Waste Sites in Utah and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona ...

  9. Tuba City, Arizona, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    This site is managed by the U.S. Department of Energy Office of Legacy Management under ... A lined solar evaporation pond receives the waste liquid (brine) and the softener ...

  10. UMTRA project water sampling and analysis plan, Tuba City, Arizona

    SciTech Connect (OSTI)

    1996-02-01

    Planned, routine ground water sampling activities at the U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site in Tuba City, Arizona, are described in the following sections of this water sampling and analysis plan (WSAP). This plan identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the stations routinely monitored at the site. The ground water data are used for site characterization and risk assessment. The regulatory basis for routine ground water monitoring at UMTRA Project sites is derived from the U.S. Environmental Protection Agency (EPA) regulations in 40 CFR Part 192 (1994) and the final EPA standards of 1995 (60 FR 2854). Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), and the most effective technical approach for the site.

  11. UMTRA project water sampling and analysis plan, Monument Valley, Arizona

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The Monument Valley Uranium Mill Tailings Remedial Action (UMTRA) Project site in Cane Valley is a former uranium mill that has undergone surface remediation in the form of tailings and contaminated materials removal. Contaminated materials from the Monument Valley (Arizona) UMTRA Project site have been transported to the Mexican Hat (Utah) UMTRA Project site for consolidation with the Mexican Hat tailings. Tailings removal was completed in February 1994. Three geologic units at the site contain water: the unconsolidated eolian and alluvial deposits (alluvial aquifer), the Shinarump Conglomerate (Shinarump Member), and the De Chelly Sandstone. Water quality analyses indicate the contaminant plume has migrated north of the site and is mainly in the alluvial aquifer. An upward hydraulic gradient in the De Chelly Sandstone provides some protection to that aquifer. This water sampling and analysis plan recommends sampling domestic wells, monitor wells, and surface water in April and September 1994. The purpose of sampling is to continue periodic monitoring for the surface program, evaluate changes to water quality for site characterization, and provide data for the baseline risk assessment. Samples taken in April will be representative of high ground water levels and samples taken in September will be representative of low ground water levels. Filtered and nonfiltered samples will be analyzed for plume indicator parameters and baseline risk assessment parameters.

  12. DOE - Office of Legacy Management -- Arizona

    Office of Legacy Management (LM)

    Arizona Arizona az_map Monument Valley Processing Site Tuba City Disposal

  13. Site observational work plan for the UMTRA Project site at Monument Valley, Arizona

    SciTech Connect (OSTI)

    1996-03-01

    The site observational work plan (SOWP) for the Monument Valley, Arizona, US Department of Energy (DOE) Uranium Mill Tailings Remedial Action(UMTRA) Project site is one of the first site-specific documents developed to achieve ground water compliance at the site. This SOWP applies information about the Monument Valley site to a regulatory compliance framework that identifies strategies that could be used to meet ground water compliance. The compliance framework was developed in the UMTRA Ground Water programmatic environmental impact statement (DOE, 1996). The DOE`s goal is to implement a cost-effective site strategy that complies with the US Environmental Protection Agency (EPA) ground water standards and protects human health and the environment. The compliance strategy that emerges in the final version of the SOWP will be evaluated in the site-specific environmental assessment to determine potential environmental impacts and provide stakeholders a forum for review and comment. When the compliance strategy is acceptable, it will be detailed in a remedial action plan that will be subject to review by the state and/or tribe and concurrence by the US Nuclear Regulatory Commission (NRC). Information for the preparation of this SOWP indicates active remediation is the most likely compliance strategy for the Monument Valley site. Additional data are needed to determine the most effective remediation technology.

  14. Site observational work plan for the UMTRA Project site at Monument Valley, Arizona

    SciTech Connect (OSTI)

    1995-09-01

    The site observational work plan (SOWP) for the Monument Valley, Arizona, US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site is one of the first site-specific documents developed to achieve ground water compliance at the site. This SOWP applies information about the Monument Valley site to a regulatory compliance framework that identifies strategies that could be used to meet ground water compliance. The compliance framework was developed in the UMTRA Ground Water programmatic environmental impact statement (DOE, 1995). The DOE`s goal is to implement a cost-effective site strategy that complies with the US Environmental Protection Agency (EPA) ground water standards and protects human health and the environment. The compliance strategy that emerges in the final version of the SOWP will assess potential environmental impacts and provide stakeholder a forum for review and comment. When the compliance strategy is acceptable, it will be detailed in a remedial action plan that will be subject to review by the state and/or tribe and concurrence by the US Nuclear Regulatory Commission (NRC). Information available for the preparation of this SOWP indicates active remediation is the most likely compliance strategy for the Monument Valley site. Additional data are needed to determine the most effective remediation technology.

  15. Arizona - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona Arizona

  16. Arizona - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona Arizona

  17. Arizona - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona Arizona

  18. Site observational work plan for the UMTRA Project site at Tuba City, Arizona

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The requirements for ground water compliance for Uranium Mill Tailings Remedial Action (UMTRA) Project sites, including the Tuba City, Arizona, site, are found in the Uranium Mill Tailings Radiation Control Act; Subparts B and C of the U.S. Environmental Protection Agency`s Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings (40 CFR 192 (1994)), and the associated proposed 1987 standards (52 FR 36000). During the surface remedial action, an estimated 1,400,000 cubic yards (yd{sup 3}) (1,100,000 cubic meters [m{sup 3}]) of uranium mill tailings and other contaminated materials were consolidated and stabilized in place in an unlined disposal cell covering 50 acres (20 hectares). The surface remedial action was completed in April 1990. Ground water beneath the Tuba City site was contaminated by subsurface migration of water from uranium ore processing activities. The main source of contaminants was water from the tailings piles that began in 1956 when the mill opened and ended in 1966 when the mill closed. 800,000 tons (725,000 tonnes) of uranium ore were processed onsite over a 10-year period. The wet tailings remaining after processing were placed as a slurry in three piles at the site. Water from these tailings then seeped into the ground and migrated downward to the ground water. The Tuba City site is currently in a post-stabilization, prelicensing status. The site is expected to remain in this status until licensed by the U.S. Nuclear Regulatory Commission (NRC) for long-term surveillance and maintenance. The preliminary ground water compliance strategy at the Tuba City site is active remediation-specific technology to be evaluated is in situ bioremediation. This selection was made because of the potential ability of bioremediation to reduce concentrations to lower levels than a conventional extraction system and to minimize disturbance of the water resource.

  19. Site observational work plan for the UMTRA Project Site at Tuba City, Arizona

    SciTech Connect (OSTI)

    1994-09-01

    The requirements for ground water compliance for Uranium Mill Tailings Remedial Action (UMTRA) Project sites, including the Tuba City, Arizona, site, are found in the Uranium Mill Tailings Radiation Control Act; Subparts B and C of the U.S. Environmental Protection Agency`s Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings (40 CFR 192 (1994)), and the associated proposed 1987 standards (52 FR 36000). During the surface remedial action, an estimated 1,400,000 cubic yards (yd{sup 3}) (1,100,000 cubic meters [m{sup 3}]) of uranium mill tailings and other contaminated materials were consolidated and stabilized in place in an unlined disposal cell covering 50 acres (20 hectares). The surface remedial action was completed in April 1990. Ground water beneath the Tuba City site was contaminated by subsurface migration of water from uranium ore processing activities. The main source of contaminants was water from the tailings piles that began in 1956 when the mill opened and ended in 1966 when the mill closed. A total of 800,000 tons (725,000 tonnes) of uranium ore were processed onsite over a 10-year period. Two processes were used to refine the ore: an acid leach process and a sodium carbonate alkaline process. Water from these tailings then seeped into the ground and migrated downward to the ground water. The Tuba City site is currently in a post-stabilization, prelicensing status. The preliminary ground water compliance strategy at the Tuba City site is active remediation. The specific technology to be evaluated is in situ bioremediation. This selection was made because of the potential ability of bioremediation to reduce concentrations to lower levels than a conventional extraction system and to minimize disturbance of the water resource.

  20. Long-term surveillance plan for the Tuba City, Arizona disposal site

    SciTech Connect (OSTI)

    1996-02-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Tuba City, Arizona, describes the site surveillance activities. The U.S. Department of Energy (DOE) will carry out these activities to ensure the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM) (10 CFR {section}40.27).

  1. Remedial action plan for stabilization of the inactive uranium mill tailings site at Monument Valley, Arizona

    SciTech Connect (OSTI)

    1986-02-01

    This Remedial Action Plan (RAP) has been developed to serve a two-fold purpose. It presents the series of activities which are proposed by the U.S. Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at the inactive uranium processing site located near Monument Valley, Arizona It also serves to document the concurrence of both the Navajo Nation and the U.S. Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by DOE and the Navajo Nation and concurrence by NRC, becomes Appendix B of the Cooperative Agreement.

  2. Final audit report of remedial action construction at the UMTRA Project Mexican Hat, Utah -- Monument Valley, Arizona, sites

    SciTech Connect (OSTI)

    1995-10-01

    The final audit report for remedial action at the Mexican Hat, Utah, Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites consists of a summary of the radiological surveillances/audits, quality assurance (QA) in-process surveillances, and QA remedial action close-out inspections performed by the US Department of Energy (DOE) and the Technical Assistance Contractor (TAC); on-site construction reviews (OSCR) performed by the US Nuclear Regulatory Commission (NRC); and a surveillance performed by the Navajo Nation. This report refers to remedial action activities performed at the Mexican Hat, Utah--Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites.

  3. Summary of the engineering assessment of inactive uranium mill tailings, Tuba City site, Tuba City, Arizona

    SciTech Connect (OSTI)

    1981-09-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Tuba City site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Tuba City, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 0.8 million tons of tailings at the Tuba City site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors.

  4. Engineering assessment of inactive uranium mill tailings, Tuba City site, Tuba City, Arizona

    SciTech Connect (OSTI)

    Not Available

    1981-09-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Tuba City site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Tuba City, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 0.8 million tons of tailings at the Tuba City site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors.

  5. Engineering assessment of inactive uranium mill tailings: Monument Valley Site, Monument Valley, Arizona

    SciTech Connect (OSTI)

    Not Available

    1981-10-01

    Ford, Bacon and Davis Utah Inc. has reevalated the Monument Valley site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Monument Valley, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposure of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.1 million tons of tailings at the Monument Valley site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through IV). Cost estimates for the four options range from about $6,600,000 for stabilization in-place, to about $15,900,000 for disposal at a distance of about 15 mi. Three principal alternatives for reprocessing the Monument Valley tailings were examined: heap leaching; Treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovery is economically unattractive.

  6. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Tuba City, Arizona

    SciTech Connect (OSTI)

    Not Available

    1989-08-01

    This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities which are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at the inactive uranium processing site near Tuba City, Arizona. It provides a characterization of the present conditions of the site. It also serves to document the concurrence of the Navajo Nation, the Hopi Tribe, US Bureau of Indian Affairs (BIA), and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by DOE, the Navajo Nation, and the Hopi Tribe, and concurrence by NRC, becomes Appendix B of the Cooperative Agreement. Following the introduction, contents are as follows: Section 2.0 presents the EPA standards, including a discussion of their objectives. Section 3.0 summarizes the present site characteristics and provides a definition of site-specific problems. Section 4.0 is the site design for the proposed action. Section 5.0 summarizes the plan for ensuring environmental, health, and safety protection for the surrounding community and the on-site workers. Section 6.0 presents a detailed listing of the responsibilities of the project participants. Section 7.0 describes the features of the long-term surveillance and maintenance plan. Section 8.0 presents the quality assurance aspects of the project. Section 9.0 documents the ongoing activities to keep the public informed and participating in the project.

  7. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Tuba City, Arizona: Phase 2, Construction, Subcontract documents: Appendix E, final report. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1989-08-01

    This appendix discusses Phase II construction and subcontract documents uranium mill site near Tuba City, Arizona. It contains the bid schedule, special conditions, specifications, and subcontract drawings.

  8. Evapotranspiration Within the Groundwater Model Domain of the Tuba City, Arizona, Disposal Site Interim Report

    SciTech Connect (OSTI)

    None, None

    2015-03-01

    The revised groundwater model includes estimates of evapotranspiration (ET). The types of vegetation and the influences of ET on groundwater hydrology vary within the model domain. Some plant species within the model domain, classified as phreatophytes, survive by extracting groundwater. ET within these plant communities can result in a net discharge of groundwater if ET exceeds precipitation. Other upland desert plants within the model domain survive on meteoric water, potentially limiting groundwater recharge if ET is equivalent to precipitation. For all plant communities within the model domain, excessive livestock grazing or other disturbances can tip the balance to a net groundwater recharge. This task characterized and mapped vegetation within the groundwater model domain at the Tuba City, Arizona, Site, and then applied a remote sensing algorithm to estimate ET for each vegetation type. The task was designed to address five objectives: 1. Characterize and delineate different vegetation or ET zones within the groundwater model domain, focusing on the separation of plant communities with phreatophytes that survive by tapping groundwater and upland plant communities that are dependent on precipitation. 2. Refine a remote sensing method, developed to estimate ET at the Monument Valley site, for application at the Tuba City site. 3. Estimate recent seasonal and annual ET for all vegetation zones, separating phreatophytic and upland plant communities within the Tuba City groundwater model domain. 4. For selected vegetation zones, estimate ET that might be achieved given a scenario of limited livestock grazing. 5. Analyze uncertainty of ET estimates for each vegetation zone and for the entire groundwater model domain.

  9. Analysis of Contaminant Rebound in Ground Water in Extraction Wells at the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tuba City, Arizona, Site | Department of Energy Contaminant Rebound in Ground Water in Extraction Wells at the Tuba City, Arizona, Site Analysis of Contaminant Rebound in Ground Water in Extraction Wells at the Tuba City, Arizona, Site Analysis of Contaminant Rebound in Ground Water in Extraction Wells at the Tuba City, Arizona, Site Analysis of Contaminant Rebound in Ground Water in Extraction Wells at the Tuba City, Arizona, Site (11.1 MB) More Documents & Publications Diffusion

  10. Baseline risk assessment for groundwater contamination at the uranium mill tailings site near Monument Valley, Arizona. Draft

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    This baseline risk assessment evaluates potential impact to public health or the environment resulting from groundwater contamination at the former uranium mill processing site near Monument Valley, Arizona. The tailings and other contaminated material at this site are being relocated and stabilized in a disposal cell at Mexican Hat, Utah, through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The tailings removal is planned for completion by spring 1994. After the tailings are removed, groundwater contamination at the site will continue to be evaluated. This risk assessment is the first document specific to this site for the Groundwater Project. It will be used to assist in determining what remedial action is needed for contaminated groundwater at the site.

  11. Baseline risk assessment of ground water contamination at the Monument Valley Uranium Mill Tailings Site, Cane Valley, Arizona. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This baseline risk assessment evaluates potential impact to public health or the environment from ground water contamination at the former uranium mill processing site in Cane Valley near Monument Valley, Arizona. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project has relocated and stabilized this site`s tailings and other contaminated material in a disposal cell at Mexican Hat, Utah. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project that evaluates potential health and environmental risks. It will help determine the approach required to address contaminated ground water at the site.

  12. FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT

    Office of Legacy Management (LM)

    UNIVERSITY OF ARIZONA (U.S. BUREAU OF MINES) TUCSON, ARIZONA Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects -- --- .- _- --__ CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES ii - ,. -- Page 1 4 4 ..I___ - ~-___- ELIMINATION REPORT UNIVERSITY OF ARIZONA (U.S. BUREAU OF MINES) TUCSON, ARIZONA INTRODUCTION The Department

  13. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Tuba City, Arizona. Text, Appendices A, B, and C: Final report

    SciTech Connect (OSTI)

    Not Available

    1989-08-01

    This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities which are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at the inactive uranium processing site near Tuba City, Arizona. It provides a characterization of the present conditions of the site. It also serves to document the concurrence of the Navajo Nation, the Hopi Tribe, US Bureau of Indian Affairs (BIA), and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by DOE, the Navajo Nation, and the Hopi Tribe, and concurrence by NRC, becomes Appendix B of the Cooperative Agreement. Following the introduction, contents are as follows: Section 2.0 presents the EPA standards, including a discussion of their objectives. Section 3.0 summarizes the present site characteristics and provides a definition of site-specific problems. Section 4.0 is the site design for the proposed action. Section 5.0 summarizes the plan for ensuring environmental, health, and safety protection for the surrounding community and the on-site workers. Section 6.0 presents a detailed listing of the responsibilities of the project participants. Section 7.0 describes the features of the long-term surveillance and maintenance plan. Section 8.0 presents the quality assurance aspects of the project. Section 9.0 documents the ongoing activities to keep the public informed and participating in the project.

  14. Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona

    SciTech Connect (OSTI)

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards.

  15. Arizona Department of Environmental Quality's Application Forms...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Web Site: Arizona Department of Environmental Quality's Application Forms and Guidance Website Abstract This site contains forms...

  16. Pinal County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Chuichu, Arizona Coolidge, Arizona Dudleyville, Arizona Eloy, Arizona Florence, Arizona Gold Camp, Arizona Hayden, Arizona Kearny, Arizona Mammoth, Arizona Maricopa, Arizona...

  17. Gila County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Day, Arizona Central Heights-Midland City, Arizona Claypool, Arizona Gisela, Arizona Globe, Arizona Hayden, Arizona Miami, Arizona Payson, Arizona Peridot, Arizona Pine, Arizona...

  18. Apache County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Houck, Arizona Lukachukai, Arizona Many Farms, Arizona McNary, Arizona Nazlini, Arizona Red Mesa, Arizona Rock Point, Arizona Rough Rock, Arizona Round Rock, Arizona Sawmill,...

  19. Pima County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona Flowing Wells, Arizona Green Valley, Arizona Littletown, Arizona Marana, Arizona Oro Valley, Arizona Picture Rocks, Arizona Pisinemo, Arizona Sahuarita, Arizona Santa Rosa,...

  20. Navajo County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mesa, Arizona Shongopovi, Arizona Shonto, Arizona Show Low, Arizona Snowflake, Arizona Taylor, Arizona Whiteriver, Arizona Winslow West, Arizona Winslow, Arizona Retrieved from...

  1. Arizona Department of Environmental Quality's AZPDES Website...

    Open Energy Info (EERE)

    AZPDES Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Arizona Department of Environmental Quality's AZPDES Website Abstract This website...

  2. Arizona Department of Environmental Quality's Individual Permits...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Web Site: Arizona Department of Environmental Quality's Individual Permits Website Abstract This website contains information...

  3. Arizona Department of Environmental Quality's General Permits...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Web Site: Arizona Department of Environmental Quality's General Permits Website Abstract This website provides information...

  4. Systems Analysis Sub site

    SciTech Connect (OSTI)

    EERE

    2012-03-16

    Systems analysis provides direction, focus, and support for the development and introduction of hydrogen production, storage, and end-use technologies, and provides a basis for recommendations on a balanced portfolio of activities.

  5. Cochise County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Douglas, Arizona Huachuca City, Arizona Naco, Arizona Pirtleville, Arizona Sierra Vista Southeast, Arizona Sierra Vista, Arizona St. David, Arizona Tombstone, Arizona...

  6. Yuma County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Solar Project Places in Yuma County, Arizona Fortuna Foothills, Arizona Gadsden, Arizona San Luis, Arizona Somerton, Arizona Tacna, Arizona Wellton, Arizona Yuma, Arizona...

  7. Microsoft Word - DOE-ID-13-056 Arizona State EC B3-6.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing and Multiscale Simulation for Creep Fatigue Damage Analysis of Alloy 617 - Arizona State University SECTION B. Project Description Arizona State University proposes to...

  8. DOE - Office of Legacy Management -- University of Arizona Southwest

    Office of Legacy Management (LM)

    Experiment Station Buildings - AZ 01 Arizona Southwest Experiment Station Buildings - AZ 01 FUSRAP Considered Sites Site: UNIVERSITY OF ARIZONA (SOUTHWEST EXPERIMENT STATION BUILDINGS) (AZ.01) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: U.S. Bureau of Mines AZ.01-1 Location: Tucson , Arizona AZ.01-1 Evaluation Year: 1987 AZ.01-2 AZ.01-3 Site Operations: Conducted research and development work on the processing of uranium ores. AZ.01-1 Site

  9. Coconino County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sedona, Arizona Supai, Arizona Tonalea, Arizona Tuba City, Arizona Tusayan, Arizona Williams, Arizona Winslow West, Arizona Retrieved from "http:en.openei.orgw...

  10. Arizona State Land Department Applications and Permits Website...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Arizona State Land Department Applications and Permits Website Abstract This website contains supplemental...

  11. 2015 Arizona Housing Forum

    Broader source: Energy.gov [DOE]

    The 12th annual Arizona Housing Forum provides a platform for affordable housing professionals to network and share ideas to improve and create housing choices for Arizona. Registration is $350.

  12. Interconnection Assessment Methodology and Cost Benefit Analysis for High-Penetration PV Deployment in the Arizona Public Service System

    SciTech Connect (OSTI)

    Baggu, Murali; Giraldez, Julieta; Harris, Tom; Brunhart-Lupo, Nicholas; Lisell, Lars; Narang, David

    2015-06-14

    In an effort to better understand the impacts of high penetrations of photovoltaic (PV) generators on distribution systems, Arizona Public Service and its partners completed a multi-year project to develop the tools and knowledge base needed to safely and reliably integrate high penetrations of utility- and residential-scale PV. Building upon the APS Community Power Project-Flagstaff Pilot, this project investigates the impact of PV on a representative feeder in northeast Flagstaff. To quantify and catalog the effects of the estimated 1.3 MW of PV that will be installed on the feeder (both smaller units at homes and large, centrally located systems), high-speed weather and electrical data acquisition systems and digital 'smart' meters were designed and installed to facilitate monitoring and to build and validate comprehensive, high-resolution models of the distribution system. These models are being developed to analyze the impacts of PV on distribution circuit protection systems (including coordination and anti-islanding), predict voltage regulation and phase balance issues, and develop volt/VAr control schemes. This paper continues from a paper presented at the 2014 IEEE PVSC conference that described feeder model evaluation and high penetration advanced scenario analysis, specifically feeder reconfiguration. This paper presents results from Phase 5 of the project. Specifically, the paper discusses tool automation; interconnection assessment methodology and cost benefit analysis.

  13. Graham County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    B. Places in Graham County, Arizona Peridot, Arizona Pima, Arizona Safford, Arizona Swift Trail Junction, Arizona Thatcher, Arizona Retrieved from "http:en.openei.orgw...

  14. Mohave County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Creek, Arizona Mohave Valley, Arizona Mojave Ranch Estates, Arizona New Kingman-Butler, Arizona Peach Springs, Arizona Willow Valley, Arizona Retrieved from "http:...

  15. Geothermal direct heat use: market potential/penetration analysis for Federal Region IX (Arizona, California, Hawaii, Nevada)

    SciTech Connect (OSTI)

    Powell, W.; Tang, K.

    1980-05-01

    A preliminary study was made of the potential for geothermal direct heat use in Arizona, California, Hawaii, and Nevada (Federal Region IX). The analysis for each state was performed by a different team, located in that state. For each state, the study team was asked to: (1) define the resource, based on the latest available data; (2) assess the potential market growth for geothermal energy; and (3) estimate the market penetration, projected to 2020. Each of the four states of interest in this study is unique in its own way. Rather than impose the same assumptions as to growth rates, capture rates, etc. on all of the study teams, each team was asked to use the most appropriate set of assumptions for its state. The results, therefore, should reflect the currently accepted views within each state. The four state reports comprise the main portion of this document. A brief regional overview section was prepared by the Jet Propulsion Laboratory, following completion of the state reports.

  16. Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Mesa, Arizona

    SciTech Connect (OSTI)

    Lucas, Robert G.

    2011-03-31

    The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the 2006 IECC and the 2003 IECC. The notable changes are: (1) Improved duct sealing verified by testing the duct system; (2) Increased duct insulation; (3) Improvement of window U-factors from 0.40 to 0.35; and (4) Efficient lighting requirements. An analysis of these changes resulted in estimated annual energy cost savings of $145 a year for an average new house compared to the 2003 IECC. This energy cost saving decreases to $125 a year for the 2009 IECC compared to the 2006 IECC. Construction cost increases (per home) for complying with the 2009 IECC are estimated at $1256 relative to the 2003 IECC and $800 for 2006 IECC. Home owners will experience an annual cost savings of about $80 a year by complying with the 2009 IECC because reduction to energy bills will more than compensate for increased mortgage payments and other costs.

  17. Putney Basketville Site Biomass CHP Analysis

    SciTech Connect (OSTI)

    Hunsberger, Randolph; Mosey, Gail

    2013-10-01

    The U.S. Environmental Protection Agency (EPA) Office of Solid Waste and Emergency Response Center for Program Analysis developed the RE-Powering America's Land initiative to reuse contaminated sites for renewable energy generation when aligned with the community's vision for the site. The Putney, Vermont, Basketville site, formerly the location of a basket-making facility and a paper mill andwoolen mill, was selected for a feasibility study under the program. Biomass was chosen as the renewable energy resource based on abundant woody-biomass resources available in the area. Biomass combined heat and power (CHP) was selected as the technology due to nearby loads, including Putney Paper and Landmark College.

  18. Arizona Electric Power Cooperative | Open Energy Information

    Open Energy Info (EERE)

    Arizona Electric Power Cooperative Jump to: navigation, search Name: Arizona Electric Power Cooperative Place: Benson, Arizona Zip: 85602 Product: AEPCO was originally founded in...

  19. Arizona Solar Center | Open Energy Information

    Open Energy Info (EERE)

    Center Jump to: navigation, search Logo: Arizona Solar Center Name: Arizona Solar Center Place: Mesa, Arizona Number of Employees: 1-10 Year Founded: 1999 Website:...

  20. Benson, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Act Smart Grid Projects in Benson, Arizona Southwest Transmission Cooperative, Inc. Smart Grid Project Registered Energy Companies in Benson, Arizona Arizona Electric Power...

  1. Independent Confirmatory Survey Report for the University of Arizona Nuclear Reactor Laboratory, Tucson, Arizona

    SciTech Connect (OSTI)

    Nick A. Altic

    2011-11-11

    The University of Arizona (University) research reactor is a TRIGA swimming pool type reactor designed by General Atomics and constructed at the University in 1958. The reactor first went into operation in December of 1958 under U.S. Nuclear Regulatory Commission (NRC) license R-52 until final shut down on May 18, 2010. Initial site characterization activities were conducted in February 2009 during ongoing reactor operations to assess the radiological status of the Nuclear Reactor Laboratory (NRL) excluding the reactor tank, associated components, and operating systems. Additional post-shutdown characterization activities were performed to complete characterization activities as well as verify assumptions made in the Decommissioning Plan (DP) that were based on a separate activation analysis (ESI 2009 and WMG 2009). Final status survey (FSS) activities began shortly after the issuance of the FSS plan in May 2011. The contractor completed measurement and sampling activities during the week of August 29, 2011.

  2. Arizona/Transmission/Agency Links | Open Energy Information

    Open Energy Info (EERE)

    and Fish Department Arizona State Historic Preservation Office Arizona Department of Transportation Arizona Department of Agriculture Arizona Department of Water Resources Central...

  3. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Vincent Mullins Landfill in Tucson, Arizona. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Steen, M.; Lisell, L.; Mosey, G.

    2013-01-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Vincent Mullins Landfill in Tucson, Arizona, for a feasibility study of renewable energy production. Under the RE-Powering America's Land initiative, the EPA provided funding to the National Renewable Energy Laboratory (NREL) to support the study. NREL provided technical assistance for this project but did not assess environmental conditions at the site beyond those related to the performance of a photovoltaic (PV) system. The purpose of this report is to assess the site for a possible PV installation and estimate the cost and performance of different PV configurations, as well as to recommend financing options that could assist in the implementation of a PV system. In addition to the Vincent Mullins site, four similar landfills in Tucson are included as part of this study.

  4. Geothermal development plan: northern Arizona counties

    SciTech Connect (OSTI)

    White, D.H.; Goldstone, L.A.

    1982-08-01

    The Northern Counties Area Development Plan evaluated the regional market potential for utilizing geothermal energy. This study identified five potential geothermal resource areas, four of which have low temperature (<90{sup 0}C, 194{sup 0}F) potential and one possible igneous system. The average population growth rate in the Northern Counties is expected to be five percent per year over the next 40 years, with Mohave and Yavapai Counties growing the fastest. Rapid growth is anticipated in all major employment sectors, including trade, service, manufacturing, mining and utilities. A regional energy use analysis is included, containing information on current energy use patterns for all user classes. Water supplies are expected to be adequate for expected growth generally, though Yavapai and Gila Counties will experience water deficiencies. A preliminary district heating analysis is included for the towns of Alpine and Springerville. Both communities are believed located on geothermal resource sites. The study also contains a section identifying potential geothermal resource users in northern Arizona.

  5. Distributed Wind Site Analysis Tool (DSAT) | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentdistributed-wind-site-analysis-tool-d Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance The...

  6. Arizona City, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    City, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.7558935, -111.6709584 Show Map Loading map... "minzoom":false,"mappingservice...

  7. Energy Exchange 2015: Phoenix, Arizona

    Broader source: Energy.gov [DOE]

    Presentations from Energy Exchange, a two-and-a-half day training scheduled for August 11-13, 2015, at the Phoenix Convention Center in Phoenix, Arizona.

  8. Grecycle Arizona LLC | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Grecycle Arizona LLC Place: Tucson, Arizona Product: Biodiesel producer out of cooking oil that operates a 1.2m liter plant in Tucson, Arizona....

  9. Phoenix, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is a stub. You can help OpenEI by expanding it. Phoenix is a city in Maricopa County, Arizona. It falls under Arizona's 2nd congressional district and Arizona's 3rd congressional...

  10. ANALYSIS OF CHP POTENTIAL AT FEDERAL SITES

    SciTech Connect (OSTI)

    HADLEY, S.W.

    2002-03-11

    This document was prepared at the request of the U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP) under its Technical Guidance and Assistance and Project Financing Programs. The purpose was to provide an estimate of the national potential for combined heat and power (also known as CHP; cogeneration; or cooling, heating, and power) applications at federal facilities and the associated costs and benefits including energy and emission savings. The report provides a broad overview for the U.S. Department of Energy (DOE) and other agencies on when and where CHP systems are most likely to serve the government's best interest. FEMP's mission is to reduce the cost to and environmental impact of the federal government by advancing energy efficiency and water conservation, promoting the use of renewable energy, and improving utility management decisions at federal sites. FEMP programs are driven by its customers: federal agency sites. FEMP monitors energy efficiency and renewable energy technology developments and mounts ''technology-specific'' programs to make technologies that are in strong demand by agencies more accessible. FEMP's role is often one of helping the federal government ''lead by example'' through the use of advanced energy efficiency/renewable energy (EERE) technologies in its own buildings and facilities. CHP was highlighted in the Bush Administration's National Energy Policy Report as a commercially available technology offering extraordinary benefits in terms of energy efficiencies and emission reductions. FEMP's criteria for emphasizing a technology are that it must be commercially available; be proven but underutilized; have a strong constituency and momentum; offer large energy savings and other benefits of interest to federal sites and FEMP mission; be in demand; and carry sufficient federal market potential. As discussed in the report, CHP meets all of these criteria. Executive Order 13123 directs federal facilities to use

  11. Arizona State Land Department | Open Energy Information

    Open Energy Info (EERE)

    Department Jump to: navigation, search Logo: Arizona State Land Department Name: Arizona State Land Department Abbreviation: ASLD Address: 1616 W. Adams St. Place: Phoenix, AZ Zip:...

  12. Arizona State University | Open Energy Information

    Open Energy Info (EERE)

    University Jump to: navigation, search Name: Arizona State University Place: Tempe, Arizona Zip: 85287 Website: asu.edu Coordinates: 33.4183159, -111.9311939 Show Map Loading...

  13. Arizona Corporation Commission | Open Energy Information

    Open Energy Info (EERE)

    Commission Jump to: navigation, search Name: Arizona Corporation Commission Abbreviation: ACC Service Territory: Arizona Website: www.azcc.gov EIA Form 861 Data This article is a...

  14. Arizona Solar Tech | Open Energy Information

    Open Energy Info (EERE)

    Tech Jump to: navigation, search Name: Arizona Solar Tech Place: Phoenix, Arizona Zip: 85040 Sector: Solar, Vehicles Product: Designs and installs solar PV systems for vehicles,...

  15. Arizona Administrative Code | Open Energy Information

    Open Energy Info (EERE)

    Arizona Administrative Code Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Arizona Administrative CodeLegal Abstract This...

  16. Energy Department, Arizona Utilities Announce Transmission Infrastruct...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    County, Arizona, and runs southeast to the ED5 Substation in Pinal County, Arizona. ... Area Power Administration Transmission Substation Federal Agencies to Assist with Clean ...

  17. Phoenix, Arizona Data Dashboard | Department of Energy

    Energy Savers [EERE]

    Data Dashboard Phoenix, Arizona Data Dashboard The data dashboard for Phoenix, Arizona, a partner in the Better Buildings Neighborhood Program. Phoenix Data Dashboard (300.58 KB) ...

  18. Arizona/Incentives | Open Energy Information

    Open Energy Info (EERE)

    Incentive Incentive Type Active APS - Energy Efficiency Solutions for Business (Arizona) Utility Rebate Program Yes APS - GEOSmart Financing Program (Arizona) Utility Loan Program...

  19. Geothermal energy in Arizona. Final report

    SciTech Connect (OSTI)

    Stone, C.; Witcher, J.C.

    1982-09-01

    Current knowledge and basic data on geothermal resources in Arizona are compiled. The following are covered: specific area investigations, thermal aspects of Arizona, and exploration methods. (MHR)

  20. On-site Analysis of Explosives in Various Matrices (Conference...

    Office of Scientific and Technical Information (OSTI)

    States) Atmospheric System Research Bartlesville ... Atmospheric Radiation Measurement (ARM) Program (United ... SciTech Connect Conference: On-site Analysis of Explosives ...

  1. Office of Energy Policy and Systems Analysis Site Upgrade

    Broader source: Energy.gov [DOE]

    Office of Energy Policy and Systems Analysis site is currently being upgraded to better serve on audience. Please check back shortly.

  2. 2012 Annual Workforce Analysis and Staffing Plan Report - Nevada Site

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office | Department of Energy 2 Annual Workforce Analysis and Staffing Plan Report - Nevada Site Office 2012 Annual Workforce Analysis and Staffing Plan Report - Nevada Site Office Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities. This workforce analysis process continues to cover technical capability needs to address defense

  3. Arizona's 7th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    in Arizona's 7th congressional district Agenera, LLC Amereco Biofuels Corp Arizona Public Service Company APS Arizona Solar Tech EDGE Energy LLC EGreenIdeas Ecotality North...

  4. Arizona's 4th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    in Arizona's 4th congressional district Agenera, LLC Amereco Biofuels Corp Arizona Public Service Company APS Arizona Solar Tech EDGE Energy LLC EGreenIdeas Ecotality North...

  5. Arizona's 2nd congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    in Arizona's 2nd congressional district Agenera, LLC Amereco Biofuels Corp Arizona Public Service Company APS Arizona Solar Tech EDGE Energy LLC EGreenIdeas Ecotality North...

  6. Yavapai County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    EV Solar Products Energy Generation Facilities in Yavapai County, Arizona Prescott Airport Solar Plant Solar Power Plant Places in Yavapai County, Arizona Ash Fork, Arizona...

  7. EA-108 Arizona Public Service Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA-108 Arizona Public Service Company Order authorizing Arizona Public Service to export electric energy to Mexico. PDF icon EA-108 Arizona Public Service.pdf More Documents & ...

  8. Arizona Solar Energy Industries Association | Open Energy Information

    Open Energy Info (EERE)

    Arizona Solar Energy Industries Association Name: Arizona Solar Energy Industries Association Place: Arizona Website: www.arizonasolarindustry.org Coordinates: 34.0489281,...

  9. Arizona Department of Environmental Quality | Open Energy Information

    Open Energy Info (EERE)

    Arizona Department of Environmental Quality Name: Arizona Department of Environmental Quality Abbreviation: ADEQ Address: 1110 West Washington Street Phoenix, Arizona 85007 Place:...

  10. Northern Arizona University Wind Projects | Open Energy Information

    Open Energy Info (EERE)

    Northern Arizona University Wind Projects (Redirected from Northern Arizona University Wind Project) Jump to: navigation, search Northern Arizona University ARD Wind Project...

  11. Arizona Oil and Gas Commission | Open Energy Information

    Open Energy Info (EERE)

    Commission Jump to: navigation, search Logo: Arizona Oil and Gas Commission Name: Arizona Oil and Gas Commission Address: 416 W. Congress Street, Suite 100 Place: Arizona Zip:...

  12. Phoenix, Arizona Summary of Reported Data | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary of Reported Data Phoenix, Arizona Summary of Reported Data Summary of data reported by Better Buildings Neighborhood Program partner Phoenix, Arizona. Phoenix, Arizona ...

  13. Sunshine Arizona Wind Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Sunshine Arizona Wind Energy LLC Jump to: navigation, search Name: Sunshine Arizona Wind Energy LLC Place: Flagstaff, Arizona Zip: 86001 Sector: Wind energy Product: Formed to...

  14. Arizona Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    is designated for your school's state, county, city, or district. For more information, please visit the High School Coach page. Arizona Region High School Regional Arizona Arizona...

  15. Arizona Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    for your school's state, county, city, or district. For more information, please visit the Middle School Coach page. Arizona Region Middle School Regional Arizona Arizona...

  16. Arizona Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Palo Verde Unit 1, Unit 2, Unit 3","3,937","31,200",100.0,"Arizona Public Service Co" "1 Plant 3 ...

  17. Arizona State Land Department Rights-of-Way Website | Open Energy...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Arizona State Land Department Rights-of-Way Website Abstract This website provides general information...

  18. SOURCE PHENOMENOLOGY EXPERIMENTS IN ARIZONA

    SciTech Connect (OSTI)

    Jessie L. Bonner; Brian Stump; Mark Leidig; Heather Hooper; Xiaoning Yang; Rongmao Zhou; Tae Sung Kim; William R. Walter; Aaron Velasco; Chris Hayward; Diane Baker; C. L. Edwards; Steven Harder; Travis Glenn; Cleat Zeiler; James Britton; James F. Lewkowicz

    2005-09-30

    The Arizona Source Phenomenology Experiments (SPE) have resulted in an important dataset for the nuclear monitoring community. The 19 dedicated single-fired explosions and multiple delay-fired mining explosions were recorded by one of the most densely instrumented accelerometer and seismometer arrays ever fielded, and the data have already proven useful in quantifying confinement and excitation effects for the sources. It is very interesting to note that we have observed differences in the phenomenology of these two series of explosions resulting from the differences between the relatively slow (limestone) and fast (granodiorite) media. We observed differences at the two SPE sites in the way the rock failed during the explosions, how the S-waves were generated, and the amplitude behavior as a function of confinement. Our consortium's goal is to use the synergy of the multiple datasets collected during this experiment to unravel the phenomenological differences between the two emplacement media. The data suggest that the main difference between single-fired chemical and delay-fired mining explosion seismograms at regional distances is the increased surface wave energy for the latter source type. The effect of the delay-firing is to decrease the high-frequency P-wave amplitudes while increasing the surface wave energy because of the longer source duration and spall components. The results suggest that the single-fired explosions are surrogates for nuclear explosions in higher frequency bands (e.g., 6-8 Hz Pg/Lg discriminants). We have shown that the SPE shots, together with the mining explosions, are efficient sources of S-wave energy, and our next research stage is to postulate the possible sources contributing to the shear-wave energy.

  19. Active mines in Arizona and Arizona exploration offices

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    This book is a directory that lists 91 mining operations and 107 sand and gravel operations. It lists the company name, address, key personnel, mine, mill, or smelter location, and a description of the operation. A map plotting the locations of all the active mines is also available ($2). Arizona Exploration Offices is a directory that lists 68 exploration companies in Arizona, 80% of whom list gold or silver as their principal exploration target. Other exploration companies are searching for industrial minerals, uranium, beryllium, rare earths, ferroalloys, and sulfur.

  20. ALTERNATIVES ANALYSIS FOR SELECTING ET #3 SITE

    SciTech Connect (OSTI)

    Collard, L.; Hamm, L.

    2012-02-13

    Engineered trenches (ETs) are considered to be a cost-effective method for disposing Low Level Waste (LLW). Based on waste forecasts from waste generators, the last engineered trench in operation (ET No.2) is anticipated to close in FY14, requiring development of a new ET. Solid Waste requested that SRNL develop an assessment report that reviews four disposal options for this new ET (ET No.3) and determine which option would provide the 'best' Performance Assessment (PA) disposal limits for LLW (Appendix A). Those four options (see option footprint locations in Figure 1-1) are: (1) Disposal at grade on TRU Pads 7-13 where soil would be mounded over waste packages; (2) Excavation at a slightly modified SLIT No.13 location - near the Used Equipment Storage Area; (3) Excavation at a modified SLIT No.12 location - near the 643-26E Naval Reactor Component Disposal Area; and (4) Excavation east of TRU Pad No.26 that replaces northeast portions of four slit trench (ST) disposal units in the eastern set of STs. The assessment consisted of both quantitative and qualitative analyses. The quantitative analysis captured key aspects that were readily quantifiable and had predictable impacts on limits and doses. A simplified modeling strategy stemming from current Special Analysis (SA) practices was employed. Both inventory capacity for a specific nuclide (a quasi-inventory limit) and overall performance for specified inventory mixtures (doses resulting from historical inventories) were considered. The qualitative analysis evaluated other key aspects based on engineering judgment in the form of pros and cons.

  1. Flagstaff, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    a stub. You can help OpenEI by expanding it. Flagstaff is a city in Coconino County, Arizona. It falls under Arizona's 1st congressional district.12 Contents 1 Registered...

  2. Arizona Power Authority | Open Energy Information

    Open Energy Info (EERE)

    Arizona Power Authority Place: Arizona Phone Number: 602-368-4265 Website: www.powerauthority.org Outage Hotline: 602-368-4265 References: EIA Form EIA-861 Final Data File for...

  3. Energy Incentive Programs, Arizona | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arizona Energy Incentive Programs, Arizona Updated February 2015 What public-purpose-funded energy efficiency programs are available in my state? Arizona's restructuring law provides for a systems benefits charge (SBC) to fund energy efficiency programs. The SBC is collected through a non-bypassable surcharge on electricity bills. Although some of these funds have been devoted to renewable energy programs, in 2013 Arizona utilities budgeted over $160 million to promote energy efficiency and load

  4. Arizona: Building Smart from the Start

    SciTech Connect (OSTI)

    2003-06-01

    A fact sheet that describes Arizona's Housing Tax Credit Program, to make sure houses were built more efficiently.

  5. Hanford Site-Wide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    L - Glossary of Key Terms and Symbols Hanford Site-Wide Probabilistic Seismic Hazard Analysis 2014 Appendix L Glossary of Key Terms and Symbols Definitions provided in this glossary were compiled from multiple sources, including the Senior Seismic Hazard Analysis Committee (SSHAC) guidance in NUREG/CR-6372 (Budnitz et al. 1997), NUREG-2117 (NRC 2012), and McGuire (2004). The glossary definitions are consistent with the use of the terms in the Hanford Probabilistic Seismic Hazard Analysis (PSHA)

  6. Tribal Water in Arizona Conference

    Broader source: Energy.gov [DOE]

    The Law Seminars International is hosting the Tribal Water in Arizona: New Development for Indian Water Rights, Regulations, and Settlement Processes. The two-day conference will present an overview of the law governing tribal water rights and impacting the development of tribal water projects.

  7. Decontamination analysis of the NUWAX-83 accident site using DECON

    SciTech Connect (OSTI)

    Tawil, J.J.

    1983-11-01

    This report presents an analysis of the site restoration options for the NUWAX-83 site, at which an exercise was conducted involving a simulated nuclear weapons accident. This analysis was performed using a computer program deveoped by Pacific Northwest Laboratory. The computer program, called DECON, was designed to assist personnel engaged in the planning of decontamination activities. The many features of DECON that are used in this report demonstrate its potential usefulness as a site restoration planning tool. Strategies that are analyzed with DECON include: (1) employing a Quick-Vac option, under which selected surfaces are vacuumed before they can be rained on; (2) protecting surfaces against precipitation; (3) prohibiting specific operations on selected surfaces; (4) requiring specific methods to be used on selected surfaces; (5) evaluating the trade-off between cleanup standards and decontamination costs; and (6) varying of the cleanup standards according to expected exposure to surface.

  8. Recovery Act State Memos Arizona

    Broader source: Energy.gov (indexed) [DOE]

    Arizona For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  9. Hanford Site-Wide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Example Application of Approach 3 to Develop Soil Hazard Curves Hanford Site-Wide Probabilistic Seismic Hazard Analysis 2014 Appendix K - Example Application of Approach 3 to Develop Soil Hazard Curves The seismic hazard results presented in Chapter 10.0 represent the hazard at the baserock horizon defined to be at the top of the Wanapum basalts, which is encountered at depths of between 332 and 446 m at the hazard calculation Sites A-E. As discussed in Section 10.5, the recommended approach

  10. Hanford Site-Wide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Revision 1) Example Application of Approach 3 to Develop Soil Hazard Curves Hanford Site-Wide Probabilistic Seismic Hazard Analysis 2014 K.1 Appendix K - Example Application of Approach 3 to Develop Soil Hazard Curves The seismic hazard results presented in Chapter 10.0 represent the hazard at the baserock horizon defined to be at the top of the Wanapum basalts, which is encountered at depths of between 332 and 446 m at the hazard calculation Sites A-E. As discussed in Section 10.5, the

  11. Microsoft Word - DOE-ID-15-033 Arizona State EC B3-6.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 SECTION A. Project Title: Automatic Imagery Data Analysis for Proactive Computer-Based Workflow Management during Nuclear Power Plant Outages - Arizona State University SECTION B. Project Description Arizona State University proposes to test the hypothesis that real-time imagery-based object tracking and spatial analysis, as well as human behavior modeling of outage participants, will significantly improve efficiency of outage control while lowering the rates of accidents and incidents.

  12. Categorical Exclusion Determinations: Arizona | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arizona Categorical Exclusion Determinations: Arizona Location Categorical Exclusion Determinations issued for actions in Arizona. DOCUMENTS AVAILABLE FOR DOWNLOAD July 20, 2016 CX-100662 Categorical Exclusion Determination Thermally Conductive Backsheets (TCB) for Reduced Operating Temperatures Award Number: DE-EE0007138 CX(s) Applied: A9, B3.6 Building Technologies Office Date: 7/12/2016 Location(s): AZ Office(s): Golden Field Office July 20, 2016 CX-100660 Categorical Exclusion Determination

  13. CRITICAL RADIONUCLIDE AND PATHWAY ANALYSIS FOR THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Jannik, T.

    2011-08-30

    This report is an update to the analysis, Assessment of SRS Radiological Liquid and Airborne Contaminants and Pathways, that was performed in 1997. An electronic version of this large original report is included in the attached CD to this report. During the operational history (1954 to the present) of the Savannah River Site (SRS), many different radionuclides have been released to the environment from the various production facilities. However, as will be shown by this updated radiological critical contaminant/critical pathway analysis, only a small number of the released radionuclides have been significant contributors to potential doses and risks to offsite people. The analysis covers radiological releases to the atmosphere and to surface waters, the principal media that carry contaminants offsite. These releases potentially result in exposure to offsite people. The groundwater monitoring performed at the site shows that an estimated 5 to 10% of SRS has been contaminated by radionuclides, no evidence exists from the extensive monitoring performed that groundwater contaminated with these constituents has migrated off the site (SRS 2011). Therefore, with the notable exception of radiological source terms originating from shallow surface water migration into site streams, onsite groundwater was not considered as a potential exposure pathway to offsite people. In addition, in response to the Department of Energy's (DOE) Order 435.1, several Performance Assessments (WSRC 2008; LWO 2009; SRR 2010; SRR 2011) and a Comprehensive SRS Composite Analysis (SRNO 2010) have recently been completed at SRS. The critical radionuclides and pathways identified in these extensive reports are discussed and, where applicable, included in this analysis.

  14. Williams, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Williams, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.2494566, -112.1910031 Show Map Loading map... "minzoom":false,"mappingser...

  15. Prescott, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    district.12 Energy Generation Facilities in Prescott, Arizona Prescott Airport Solar Plant Solar Power Plant References US Census Bureau Incorporated place and...

  16. Arizona Teachers Prepare Students for Green Economy

    Broader source: Energy.gov [DOE]

    Students led by their building trades teacher , are wiring parts of the Raymond S. Kellis High School in Glendale, Arizona for solar power.

  17. Flagstaff, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona Wind Energy LLC References US Census Bureau Incorporated place and minor civil division population dataset (All States, all geography) US Census Bureau...

  18. Arizona/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    source History View New Pages Recent Changes All Special Pages Semantic SearchQuerying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Arizona...

  19. Tucson, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Tucson, Arizona Environmentally Protective Power Generation EPPG Ethanol Capital Management Expert Solar Systems General Plasma Inc Genesis Solar LLC GeoInnovation Global...

  20. Burnside, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Burnside, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.7511228, -109.6245514 Show Map Loading map... "minzoom":false,"mappingser...

  1. Summit, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Summit, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.0670238, -110.9514796 Show Map Loading map... "minzoom":false,"mappingservi...

  2. Cameron, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.8758285, -111.4129207 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  3. Ganado, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Ganado, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.7114022, -109.5420492 Show Map Loading map... "minzoom":false,"mappingservi...

  4. Avondale, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Avondale, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.4355977, -112.3496021 Show Map Loading map... "minzoom":false,"mappingser...

  5. Jerome, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.7489107, -112.1137716 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  6. Northern Arizona University | Open Energy Information

    Open Energy Info (EERE)

    University Jump to: navigation, search Name: Northern Arizona University Place: Flagstaff, AZ Zip: 86011 Phone Number: 928-523-0715 Website: nau.edu Coordinates: 35.1905403,...

  7. Littletown, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Littletown, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.1303561, -110.8728658 Show Map Loading map... "minzoom":false,"mappings...

  8. Peoria, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Peoria, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.5805955, -112.2373779 Show Map Loading map... "minzoom":false,"mappingservi...

  9. Springerville, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Springerville, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.1333799, -109.2859196 Show Map Loading map... "minzoom":false,"mappi...

  10. Surprise, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Surprise, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.6305938, -112.333216 Show Map Loading map... "minzoom":false,"mappingserv...

  11. Cottonwood, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.7391876, -112.0098791 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  12. Maricopa, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.0581063, -112.0476423 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  13. Kaibab, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Kaibab, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.896652, -112.7407596 Show Map Loading map... "minzoom":false,"mappingservic...

  14. Coolidge, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Coolidge, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.977839, -111.517624 Show Map Loading map... "minzoom":false,"mappingservi...

  15. Gadsden, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Gadsden, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.5544974, -114.7849577 Show Map Loading map... "minzoom":false,"mappingserv...

  16. Whetstone, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Whetstone, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.701705, -110.340746 Show Map Loading map... "minzoom":false,"mappingserv...

  17. Chinle, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Chinle, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.1544483, -109.5526072 Show Map Loading map... "minzoom":false,"mappingservi...

  18. Blackwater, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Blackwater, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.0311702, -111.582627 Show Map Loading map... "minzoom":false,"mappingse...

  19. Vail, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.0478583, -110.7120272 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  20. Cornville, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Cornville, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.7177989, -111.9215438 Show Map Loading map... "minzoom":false,"mappingse...

  1. Tsaile, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tsaile, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.303712, -109.214705 Show Map Loading map... "minzoom":false,"mappingservice...

  2. Wilhoit, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wilhoit, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.4258586, -112.5868398 Show Map Loading map... "minzoom":false,"mappingserv...

  3. Mountainaire, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mountainaire, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.0852924, -111.6659925 Show Map Loading map... "minzoom":false,"mappin...

  4. Kingman, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.189443, -114.0530065 Show Map Loading map... "minzoom":false,"mappingservice":"goog...

  5. Oracle, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Oracle, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.6109054, -110.7709348 Show Map Loading map... "minzoom":false,"mappingservi...

  6. Fredonia, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.945542, -112.5265889 Show Map Loading map... "minzoom":false,"mappingservice":"goog...

  7. Chuichu, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Chuichu, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.752002, -111.7831837 Show Map Loading map... "minzoom":false,"mappingservi...

  8. Sahuarita, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sahuarita, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.9575818, -110.955646 Show Map Loading map... "minzoom":false,"mappingser...

  9. Tortolita, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tortolita, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.4005302, -111.0400795 Show Map Loading map... "minzoom":false,"mappingse...

  10. Sacaton, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sacaton, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.0767225, -111.7392993 Show Map Loading map... "minzoom":false,"mappingserv...

  11. Moenkopi, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Moenkopi, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.1111043, -111.2223624 Show Map Loading map... "minzoom":false,"mappingser...

  12. Paulden, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Paulden, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.8855756, -112.4682271 Show Map Loading map... "minzoom":false,"mappingserv...

  13. Parks, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Parks, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.2605664, -111.9487743 Show Map Loading map... "minzoom":false,"mappingservic...

  14. Arizona Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    12312015 Next Release Date: 01292016 Referring Pages: Natural Gas Used for Repressuring Arizona Natural Gas Gross Withdrawals and Production Natural Gas Used for Repressuring...

  15. Tacna, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tacna, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.6975472, -113.9535427 Show Map Loading map... "minzoom":false,"mappingservic...

  16. Houck, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Houck, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.2830803, -109.2070391 Show Map Loading map... "minzoom":false,"mappingservic...

  17. Tucson, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tucson, Arizona: Energy Resources (Redirected from Tucson, AZ) Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.2217429, -110.926479 Show Map Loading map......

  18. Congress, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Congress, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.162526, -112.8507374 Show Map Loading map... "minzoom":false,"mappingserv...

  19. Supai, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Supai, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.2369265, -112.6890791 Show Map Loading map... "minzoom":false,"mappingservic...

  20. Superior, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Superior, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.293945, -111.0962305 Show Map Loading map... "minzoom":false,"mappingserv...

  1. Wellton, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wellton, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.6728256, -114.1468821 Show Map Loading map... "minzoom":false,"mappingserv...

  2. Carefree, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Carefree, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.8222611, -111.918203 Show Map Loading map... "minzoom":false,"mappingserv...

  3. Willcox, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Willcox, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.2528519, -109.8320124 Show Map Loading map... "minzoom":false,"mappingserv...

  4. Chandler, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Chandler, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.3061605, -111.8412502 Show Map Loading map... "minzoom":false,"mappingser...

  5. Pirtleville, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Pirtleville, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.3570467, -109.561734 Show Map Loading map... "minzoom":false,"mappings...

  6. Dudleyville, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Dudleyville, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.914267, -110.733779 Show Map Loading map... "minzoom":false,"mappingse...

  7. Tonalea, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tonalea, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.3224923, -110.9634781 Show Map Loading map... "minzoom":false,"mappingserv...

  8. Mayer, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mayer, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.3978054, -112.2362734 Show Map Loading map... "minzoom":false,"mappingservic...

  9. Ajo, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Ajo, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.3717248, -112.8607099 Show Map Loading map... "minzoom":false,"mappingservice"...

  10. Wickenburg, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wickenburg, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.9686412, -112.729622 Show Map Loading map... "minzoom":false,"mappingse...

  11. Glendale, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.5386523, -112.1859866 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  12. Bisbee, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Bisbee, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.4481547, -109.9284084 Show Map Loading map... "minzoom":false,"mappingservi...

  13. Eloy, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Eloy, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.7558962, -111.554844 Show Map Loading map... "minzoom":false,"mappingservice"...

  14. Tolleson, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tolleson, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.4500425, -112.259321 Show Map Loading map... "minzoom":false,"mappingserv...

  15. Nazlini, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Nazlini, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.8963986, -109.4487147 Show Map Loading map... "minzoom":false,"mappingserv...

  16. Tombstone, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tombstone, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.7128683, -110.0675764 Show Map Loading map... "minzoom":false,"mappingse...

  17. Sedona, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sedona, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.8697395, -111.7609896 Show Map Loading map... "minzoom":false,"mappingservi...

  18. Sawmill, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sawmill, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.6181083, -110.3964911 Show Map Loading map... "minzoom":false,"mappingserv...

  19. Pisinemo, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Pisinemo, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.0378487, -112.3209689 Show Map Loading map... "minzoom":false,"mappingser...

  20. Sells, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sells, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.9120215, -111.881234 Show Map Loading map... "minzoom":false,"mappingservice...

  1. Hayden, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hayden, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.0047878, -110.7853836 Show Map Loading map... "minzoom":false,"mappingservi...

  2. Kearny, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.0570085, -110.9106656 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  3. Eagar, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Eagar, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.1111581, -109.291475 Show Map Loading map... "minzoom":false,"mappingservice...

  4. Stanfield, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Stanfield, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.8825531, -111.9620805 Show Map Loading map... "minzoom":false,"mappingse...

  5. Mammoth, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mammoth, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.722568, -110.6406547 Show Map Loading map... "minzoom":false,"mappingservi...

  6. Lukachukai, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lukachukai, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.416946, -109.2287125 Show Map Loading map... "minzoom":false,"mappingse...

  7. Florence, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.0314508, -111.3873431 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  8. Lechee, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lechee, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.0322421, -110.7529145 Show Map Loading map... "minzoom":false,"mappingservi...

  9. Guadalupe, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Guadalupe, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.3708798, -111.9629216 Show Map Loading map... "minzoom":false,"mappingse...

  10. Dennehotso, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Dennehotso, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.479167, -111.2375 Show Map Loading map... "minzoom":false,"mappingservi...

  11. Naco, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Naco, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.3353801, -109.9481297 Show Map Loading map... "minzoom":false,"mappingservice...

  12. Marana, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Marana, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.414432, -111.172754 Show Map Loading map... "minzoom":false,"mappingservice...

  13. Winkelman, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Winkelman, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.9875659, -110.7709387 Show Map Loading map... "minzoom":false,"mappingse...

  14. Somerton, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Somerton, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.5964404, -114.709677 Show Map Loading map... "minzoom":false,"mappingserv...

  15. Williamson, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Williamson, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.6900229, -112.5410052 Show Map Loading map... "minzoom":false,"mappings...

  16. Buckeye, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Buckeye, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.3703197, -112.5837766 Show Map Loading map... "minzoom":false,"mappingserv...

  17. Santan, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Santan, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.145476, -111.801546 Show Map Loading map... "minzoom":false,"mappingservice...

  18. Gilbert, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.3528264, -111.789027 Show Map Loading map... "minzoom":false,"mappingservice":"goog...

  19. Kaibito, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Kaibito, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.5972186, -111.0743114 Show Map Loading map... "minzoom":false,"mappingserv...

  20. Page, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Page, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.9147222, -111.4558333 Show Map Loading map... "minzoom":false,"mappingservice...

  1. Douglas, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Douglas, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.3445471, -109.5453447 Show Map Loading map... "minzoom":false,"mappingserv...

  2. Steamboat, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Steamboat, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.7513983, -109.8478915 Show Map Loading map... "minzoom":false,"mappingse...

  3. Phoenix, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Phoenix, Arizona: Energy Resources (Redirected from Phoenix, AZ) Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.4483771, -112.0740373 Show Map Loading map......

  4. Leupp, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Leupp, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.2980659, -111.0062528 Show Map Loading map... "minzoom":false,"mappingservic...

  5. Seligman, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Seligman, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.3255608, -112.8774057 Show Map Loading map... "minzoom":false,"mappingser...

  6. Tusayan, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tusayan, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.9735954, -112.1265569 Show Map Loading map... "minzoom":false,"mappingserv...

  7. Goodyear, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Goodyear, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.4353199, -112.3582135 Show Map Loading map... "minzoom":false,"mappingser...

  8. Catalina, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Catalina, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.5000731, -110.9212146 Show Map Loading map... "minzoom":false,"mappingser...

  9. Yarnell, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Yarnell, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.2216927, -112.7474007 Show Map Loading map... "minzoom":false,"mappingserv...

  10. Yuma, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Yuma, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.7253248, -114.624397 Show Map Loading map... "minzoom":false,"mappingservice"...

  11. Mesa, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Inc. ETA Engineering Renegy Holdings Inc The Arizona Center for Algae Technology and Innovation References US Census Bureau Incorporated place and minor civil division...

  12. Arizona Center for Innovation | Open Energy Information

    Open Energy Info (EERE)

    Innovation Jump to: navigation, search Name: Arizona Center for Innovation Place: United States Sector: Services Product: General Financial & Legal Services ( Academic Research...

  13. BLM Arizona State Office | Open Energy Information

    Open Energy Info (EERE)

    Arizona Address: One North Central Avenue, Suite 800 Place: Phoenix, AZ Zip: 85004 Phone Number: 602-417-9200 ParentHolding Organization: Bureau of Land Management...

  14. ARIZONA RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Arizona has substantial natural resources, including coal, solar, and hydroelectric resources. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment ...

  15. Arizona Indian Gaming Association (AIGA) Expo

    Broader source: Energy.gov [DOE]

    This year’s EXPO will take place November 5-7, 2014 at the Radisson Fort McDowell Resort & Casino located in Scottsdale, Arizona.

  16. EA-106 Arizona Public Service Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA-106 Arizona Public Service Company Order authorizing Arizona Public Service Company to export electric energy to Mexico. PDF icon EA-106 Arizona Public Service (MX).pdf More ...

  17. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Arizona

    SciTech Connect (OSTI)

    2008-10-01

    Analysis of the expected impacts of 1000 MW of wind power in Arizona, including economic benefits, CO2 emissions reductions, and water conservation.

  18. Arizona's 3rd congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    congressional district Agenera, LLC Alchemix Corporation Amereco Biofuels Corp Arizona Public Service Company APS Arizona Solar Tech EDGE Energy LLC EGreenIdeas Ecotality North...

  19. Arizona Public Service Company APS | Open Energy Information

    Open Energy Info (EERE)

    Public Service Company APS Jump to: navigation, search Name: Arizona Public Service Company (APS) Place: Phoenix, Arizona Zip: 85004 Product: Generates, transmits and distributes...

  20. Arizona Const. Art.15 - The Corporation Commission | Open Energy...

    Open Energy Info (EERE)

    Arizona Const. Art.15 - The Corporation CommissionLegal Abstract This article sets forth the Constitutional provisions governing the Arizona Corporations Commission. Published...

  1. City of Williams - AZ, Arizona (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Williams - AZ, Arizona (Utility Company) Jump to: navigation, search Name: City of Williams - AZ Place: Arizona Phone Number: 928-635-2667 or 928-635-4451 Website:...

  2. Final Report - Arizona Rooftop Solar Challenge | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Arizona Governor's Office of Energy Policy Location: Phoenix, AZ Subprogram: Soft Costs Funding Program: Rooftop Solar Challenge 1 The Arizona Rooftop Solar Challenge (ARC) is a ...

  3. Northern Arizona University Wind Projects | Open Energy Information

    Open Energy Info (EERE)

    Wind Projects Jump to: navigation, search Northern Arizona University ARD Wind Project Northern Arizona University SHRM Wind Project Retrieved from "http:en.openei.orgw...

  4. The Arizona Center for Algae Technology and Innovation | Open...

    Open Energy Info (EERE)

    Arizona Center for Algae Technology and Innovation Jump to: navigation, search Name: The Arizona Center for Algae Technology and Innovation Abbreviation: AzCATI Address: 7418 East...

  5. EIS-0474: Southline Transmission Line Project; Arizona and New...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transmission Line Project; Arizona and New Mexico EIS-0474: Southline Transmission Line Project; Arizona and New Mexico Summary The Bureau of Land Management and Western ...

  6. Arizona Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Palo Verde Unit 1, Unit 2, Unit 3","3,937","31,200",100.0,"Arizona Public Service Co" "1 Plant 3 Reactors","3,937","31,200",100.0 "Note: Totals may not equal sum of

  7. Bisfuel links - Arizona State University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arizona State University http://chemistry.asu.edu/" target="_blank">ASU Department of Chemistry and Biochemistry http://sustainability.asu.edu/index.php" target="_blank">ASU Global Institute of Sustainability http://asulightworks.com/" target="_blank">ASU Lightworks http://sols.asu.edu/" target="_blank">ASU School of Life Sciences http://www.biodesign.asu.edu/" target="_blank">Biodesign Institute

  8. Value of Information Analysis Project Gnome Site, New Mexico

    SciTech Connect (OSTI)

    Greg Pohll; Jenny Chapman

    2010-01-01

    The Project Gnome site in southeastern New Mexico was the location of an underground nuclear detonation in 1961 and a hydrologic tracer test using radionuclides in 1963. The tracer test is recognized as having greater radionuclide migration potential than the nuclear test because the tracer test radionuclides (tritium, 90Sr, 131I, and 137Cs) are in direct contact with the Culebra Dolomite aquifer, whereas the nuclear test is within a bedded salt formation. The tracer test is the topic here. Recognizing previous analyses of the fate of the Gnome tracer test contaminants (Pohll and Pohlmann, 1996; Pohlmann and Andricevic, 1994), and the existence of a large body of relevant investigations and analyses associated with the nearby Waste Isolation Pilot Plant (WIPP) site (summarized in US DOE, 2009), the Gnome Site Characterization Work Plan (U.S. DOE, 2002) called for a Data Decision Analysis to determine whether or not additional characterization data are needed prior to evaluating existing subsurface intrusion restrictions and determining long-term monitoring for the tracer test. Specifically, the Work Plan called for the analysis to weigh the potential reduction in uncertainty from additional data collection against the cost of such field efforts.

  9. Phoenix, Arizona Data Dashboard | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Dashboard Phoenix, Arizona Data Dashboard The data dashboard for Phoenix, Arizona, a partner in the Better Buildings Neighborhood Program. Phoenix Data Dashboard (300.58 KB) More Documents & Publications Austin Energy Data Dashboard Massachusetts -- SEP Data Dashboard Camden, New Jersey Data Dashboard

  10. Solar energy system performance evaluation: seasonal report for Elcam Tempe Arizona State University, Tempe, Arizona

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    The analysis used is based on instrumented system data monitored and collected for at least one full season of operation. The objective of the analysis is to report the long-term field performance of the installed system and to make technical contributions to the definition of techniques and requirements for solar energy system design. The solar system, Elcam-Tempe, was designed to supply commercial domestic hot water heating systems that utilize two, four by eight foot flat plate collectors to heat water in a fifty-two gallon preheat tank or a fifty-two gallon domestic hot water (DHW) tank. The DHW tank provides hot water to the Agriculture Department residence at Arizona State University. The system uses an automatic cascade control system to control three independent actuators, the coolant circulation pump, the cascade valve, and the electric heating element. The system provides freeze protection by automatically circulating hot water from the hot water tank through the collectors when the collector outlet temperature is below a specified value. The building is a single story residence located at the agriculture experiment farm of the Arizona State University. The Elcam-Tempe Solar Energy System has four modes of operation.

  11. Geospatial Analysis and Technical Assistance for Power Plant Siting Interagency

    SciTech Connect (OSTI)

    Neher, L A

    2002-03-07

    The focus of this contract (in the summer and fall of 2001) was originally to help the California Energy Commission (CEC) locate and evaluate potential sites for electric power generation facilities and to assist the CEC in addressing areas of congestion on transmission lines and natural gas supply line corridors. Subsequent events have reduced the immediate urgency, although not the ultimate need for such analyses. Software technology for deploying interactive geographic information systems (GIS) accessible over the Internet have developed to the point that it is now practical to develop and publish GIS web sites that have substantial viewing, movement, query, and even map-making capabilities. As part of a separate project not funded by the CEC, the GIS Center at LLNL, on an experimental basis, has developed a web site to explore the technical difficulties as well as the interest in such a web site by agencies and others concerned with energy research. This exploratory effort offers the potential or developing an interactive GIS web site for use by the CEC for energy research, policy analysis, site evaluation, and permit and regulatory matters. To help ground the geospatial capabilities in the realistic requirements and needs of the CEC staff, the CEC requested that the GIS Center conduct interviews of several CEC staff persons to establish their current and envisioned use of spatial data and requirements for geospatial analyses. This survey will help define a web-accessible central GIS database for the CEC, which will augment the well-received work of the CEC Cartography Unit. Individuals within each siting discipline have been contacted and their responses to three question areas have been summarized. The web-based geospatial data and analytical tools developed within this project will be available to CEC staff for initial area studies, queries, and informal, small-format maps. It is not designed for fine cartography or for large-format posters such as the

  12. FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT

    Office of Legacy Management (LM)

    ARIZONA Department of Energy Office of Nuclear Energy Office of Remedial Action and ... Formerly Utilized Sites Remedial Action Program and Remote Surplus Facilities Management ...

  13. Alternative Fuels Data Center: Arizona Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Arizona Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Arizona Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Arizona Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Arizona Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Arizona

  14. ,"Arizona Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"06292016 10:51:24 AM" "Back to Contents","Data 1: Arizona Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AZ2","N9011AZ2","N9012AZ2","NGME...

  15. ,"Arizona Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"06292016 10:51:23 AM" "Back to Contents","Data 1: Arizona Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AZ2","N9011AZ2","N9012AZ2","NGME...

  16. EIS-0322: Sundance Energy Project, Arizona

    Broader source: Energy.gov [DOE]

    This EIS analyzes Western Area Power Administration (Western) decision to approve Sundance Energy LLC (Sundance) to interconnect a planned generator facility to Westerns transmission system in the vicinity of Coolidge, Arizona.

  17. Northern Arizona University 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northern Arizona University 2014 Northern Arizona University 2014 Pictured: Torey Schreiner, Mariflor Caronan, Ian Mason, Andrew Hoffman, Jonathan Pepper, Carlos Tarango, Chris Feyen, Stephen Kuluris, Jared Parks, Nathan Croswell, Devon Martindale, Kyle Yates, Anna Manning, Kenny Saxer, Norman Khoo, Charles Burge, Melissa Head, Chris Bozworth, Gabriel O'Reilly, Lukas Loehr, Kelsey Morales, Ashley Jerome, Frank Spitznogle, Karin Wadsack, and David Willy. Photo by MIWhittakerPhotos. Pictured:

  18. DOE - Office of Legacy Management -- Tuba City Mill Site - AZ 0-02

    Office of Legacy Management (LM)

    Mill Site - AZ 0-02 Site ID (CSD Index Number): AZ.0-02 Site Name: Tuba City Mill Site Site Summary: Site Link: Tuba City, Arizona, Disposal Site External Site Link: Alternate Name(s): Tuba City Mill Site Uranium Mill in Tuba City Alternate Name Documents: Location: Tuba City, Arizona, Navajo Nation Location Documents: Historical Operations (describe contaminants): Rare Metals Corporation and its successor, El Paso Natural Gas Company, operated a uranium mill at the site between 1956 and 1966.

  19. DOE - Office of Legacy Management -- Monument Valley Mill Site - AZ 0-01

    Office of Legacy Management (LM)

    Monument Valley Mill Site - AZ 0-01 FUSRAP Considered Sites Site: Monument Valley Mill Site (AZ.0-01) Licensed to DOE for long-term custody and managed by the Office of Legacy Management Designated Name: Monument Valley, Arizona, Processing Site Alternate Name: Monument Valley Mill Site Uranium Mill in Monument Valley Location: Navajo Nation, northeastern Arizona Evaluation Year: Site Operations: Site Disposition: Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I site Radioactive

  20. ,"Arizona Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:22 AM" "Back to Contents","Data 1: Arizona Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AZ3" "Date","Arizona...

  1. Arizona Natural Gas Gross Withdrawals (Million Cubic Feet per...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Arizona Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Arizona Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct...

  2. Fort Defiance, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    OpenEI by expanding it. Fort Defiance is a census-designated place in Apache County, Arizona.1 US Recovery Act Smart Grid Projects in Fort Defiance, Arizona Navajo Tribal...

  3. San Luis, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. San Luis is a city in Yuma County, Arizona. It falls under Arizona's 7th congressional...

  4. Casa Grande, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Casa Grande is a city in Pinal County, Arizona. It falls under Arizona's 1st congressional...

  5. EA-134-APS Arizona Public Service Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4-APS Arizona Public Service Company EA-134-APS Arizona Public Service Company Order authorizing Arizona Public Service Company to export electric energy to Mexico. EA-134-APS Arizona Public Service Company (24.95 KB) More Documents & Publications EA-184 Morgan Stanley Capital Group Inc. EA-166 Duke Energy Trading and Marketing, L.L.C EA-181 H.Q Energy Services (U.S) Inc

  6. Federal Correctional Institution - Phoenix, Arizona | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Correctional Institution - Phoenix, Arizona Federal Correctional Institution - Phoenix, Arizona Photo of a Parabolic-Trough Solar Water-Heating System Installed at the Federal Correctional Institution Facility north of Phoenix, Arizona A parabolic-trough solar water-heating system was installed at the Federal Correctional Institution (FCI) facility north of Phoenix, Arizona. This medium security prison for males has a current population of about 1,200 inmates and uses an average of

  7. Integrated solid waste management of Scottsdale, Arizona

    SciTech Connect (OSTI)

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the city of Scottsdale, Arizona, integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. The document reports actual data from records kept by participants. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may per-form manipulation or further analysis of the data. As such, the report is a reference document for municipal solid waste (MSW) management professionals who are interested in the actual costs and energy consumption, for a 1-year period, of an operating IMSWM system. The report is organized into two main parts. The first part is the executive summary and case study portion of the report. The executive summary provides a basic description of the study area and selected economic and energy information. Within the case study are detailed descriptions of each component operating during the study period; the quantities of solid waste collected, processed, and marketed within the study boundaries; the cost of MSW in Scottsdale; an energy usage analysis; a review of federal, state, and local environmental requirement compliance; a reference section; and a glossary of terms. The second part of the report focuses on a more detailed discourse on the above topics. In addition, the methodology used to determine the economic costs and energy consumption of the system components is found in the second portion of this report. The methodology created for this project will be helpful for those professionals who wish to break out the costs of their own integrated systems.

  8. U.S. hydropower resource assessment for Arizona

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1997-10-01

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Arizona.

  9. Phoenix, Arizona Summary of Reported Data | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary of Reported Data Phoenix, Arizona Summary of Reported Data Summary of data reported by Better Buildings Neighborhood Program partner Phoenix, Arizona. Phoenix, Arizona Summary of Reported Data (2.15 MB) More Documents & Publications Virginia -- SEP Summary of Reported Data University Park Summary of Reported Data Alabama -- SEP Summary of Reported Data

  10. Arizona Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Repressuring (Million Cubic Feet) Arizona Natural Gas Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 103 1990's - 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Used for Repressuring Arizona Natural Gas Gross Withdrawals

  11. Analysis of the Monitoring Network at the Salmon, Mississippi, Site

    SciTech Connect (OSTI)

    2013-08-01

    The Salmon site in southern Mississippi was the location of two underground nuclear tests and two methane-oxygen gas explosion tests conducted in the Tatum Salt Dome at a depth of 2,715 feet below ground surface. The U.S. Atomic Energy Commission (a predecessor agency of the U.S. Department of Energy [DOE]) and the U.S. Department of Defense jointly conducted the tests between 1964 and 1970. The testing operations resulted in surface contamination at multiple locations on the site and contamination of shallow aquifers. No radionuclides from the nuclear tests were released to the surface or to groundwater, although radionuclide-contaminated drill cuttings were brought to the surface during re-entry drilling. Drilling operations generated the largest single volume of waste materials, including radionuclide-contaminated drill cuttings and drilling fluids. Nonradioactive wastes were also generated as part of the testing operations. Site cleanup and decommissioning began in 1971 and officially ended in 1972. DOE conducted additional site characterization between 1992 and 1999. The historical investigations have provided a reasonable understanding of current surface and shallow subsurface conditions at the site, although some additional investigation is desirable. For example, additional hydrologic data would improve confidence in assigning groundwater gradients and flow directions in the aquifers. The U.S. Environmental Protection Agency monitored groundwater at the site as part of its Long-Term Hydrologic Monitoring Program from 1972 through 2007, when DOE's Office of Legacy Management (LM) assumed responsibility for site monitoring. The current monitoring network consists of 28 monitoring wells and 11 surface water locations. Multiple aquifers which underlie the site are monitored. The current analyte list includes metals, radionuclides, and volatile organic compounds (VOCs).

  12. DOE - Office of Legacy Management -- LM Sites Map

    Office of Legacy Management (LM)

    LM Sites Map LM Sites 2016_USsitemap Puerto Rico Connecticut New Jersey Massachusetts Alaska Texas Florida Arizona Missouri Colorado Utah Idaho Washington South Dakota New Mexico California Oregon Tennessee Illinois Ohio Michigan New York Pennsylvania Wyoming Nebraska West Virginia Kentucky Mississippi Nevada Select a Site Acid/Pueblo Canyon Site Adrian Site Albany Site Aliquippa Site Ambrosia Lake Disposal Site Amchitka Site Ashtabula Site Bayo Canyon Site Berkeley Site Beverly Site Bluewater

  13. 2010 Annual Workforce Analysis and Staffing Plan Report - Los Alamos Site

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office | Department of Energy Annual Workforce Analysis and Staffing Plan Report - Los Alamos Site Office 2010 Annual Workforce Analysis and Staffing Plan Report - Los Alamos Site Office Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities. This workforce analysis process continues to cover technical capability needs to address defense

  14. Preliminary assessment report for Florence Military Reservation, Installation 04080, Florence, Arizona. Installation Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Arizona Army National Guard property near Florence, Arizona. Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing preremedial activities and to provide a basis for establishing corrective actions in response to releases of hazardous substances. The principal objective of the PA is to characterize the site accurately and determine the need for further action by examining site activities, quantities of hazardous substances present, and potential pathways by which contamination could affect public health and the environment. Florence Military Reservation is a 5,655-acre site located in the southern portion of Arizona, about 65 mi southeast of Phoenix, in the county of Pinal. Florence Military Reservation includes Unit Training Equipment Site (UTES) 1, an artillery firing range, and ammunition storage. The subject of this PA is the UTES. The environmentally significant operations associated with the UTES property are (1) vehicle maintenance and refueling, (2) supply/storage of materials, and (3) the vehicle washrack.

  15. Composite Analysis for the Area 5 Radioactive Waste Management Site at the Nevada Test Site, Nye County, Nevada

    SciTech Connect (OSTI)

    V. Yucel

    2001-09-01

    This report summarizes the results of a Composite Analysis (CA) for the Area 5 Radioactive Waste Management Site (RWMS). The Area 5 RWMS is a US Department of Energy (DOE)-operated low-level radioactive waste (LLW) management site located in northern Frenchman Flat on the Nevada Test Site (NTS). The Area 5 RWMS has disposed of low-level radioactive waste in shallow unlined pits and trenches since 1960. Transuranic waste (TRU) and high-specific activity waste was disposed in Greater Confinement Disposal (GCD) boreholes from 1983 to 1989. The purpose of this CA is to determine if continuing operation of the Area 5 RWMS poses an acceptable or unacceptable risk to the public considering the total waste inventory and all other interacting sources of radioactive material in the vicinity. Continuing operation of the Area 5 RWMS will be considered acceptable if the total effective dose equivalent (TEDE) is less than 100 mrem in a year. If the TEDE exceeds 30 mrem in a year, a cost-benefit options analysis must be performed to determine if cost-effective management options exist to reduce the dose further. If the TEDE is found to be less than 30 mrem in a year, an analysis may be performed if warranted to determine if doses are as low as reasonably achievable (ALARA).

  16. DOE-SPR-EIS-0075-SA-03 SUPPLEMENT ANALYSIS OF SITE-SPECIFIC AND

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SPR-EIS-0075-SA-03 SUPPLEMENT ANALYSIS OF SITE-SPECIFIC AND PROGRAMMATIC ENVIRONMENTAL IMPACT STATEMENTS: OPERATIONAL AND ENGINEERING MODIFICATIONS AND REGULATORY REVIEW U.S. Department of Energy Strategic Petroleum Reserve 900 Commerce Road East New Orleans, Louisiana 70123 December 2014 SUPPLEMENT ANALYSIS DETERMINATION The Department of Energy (DOE), Strategic Petroleum Reserve (SPR) Project Management Office, has prepared a Supplement Analysis (SA) to determine whether the site-wide and

  17. Preliminary Safety Analysis of the Gorleben Site: Geological Database - 13300

    SciTech Connect (OSTI)

    Weber, Jan Richard; Mrugalla, Sabine; Dresbach, Christian; Hammer, Joerg

    2013-07-01

    The Gorleben salt dome is 4 km wide and nearly 15 km long. It is composed of different salt rock types of the Zechstein (Upper Permian) series and extends to the Zechstein basis in a depth of more than 3 km. In the course of the salt dome formation the salt was moved several kilometers. During the uplift of the salt the initially plane-bedded strata of the Zechstein series were extensively folded. In this process anhydrite as a competent layer was broken to isolated blocks. In the core of the salt dome the Hauptsalz, which is characterized by a particularly high creeping capacity, forms a homogeneous halite body with a volume of several cubic kilometres. The Hauptsalz contains gaseous and liquid hydrocarbons in separated zones of decimeter to meter dimensions. The overall hydrocarbon content is far below 0.01 %. At the flanks the salt dome consists of salt rocks with lower creeping capacities. Brine reservoirs with fluid volumes in the range of liters to hundreds of cubic meters exist in certain regions of this part of the salt dome. The water content of the Hauptsalz is below 0.02 %. Interconnected pores do not exist in the salt rock outside of fluid bearing or fractured areas, i.e. the salt rock is impermeable. The exploration of the Gorleben site as a potential site for a HLW-repository started in 1979 and is still in progress. To date no scientific findings contest the suitability of the site for a safe HLW-repository. (authors)

  18. Natural and Enhanced Attenuation of Soil and Groundwater at the Monument Valley, Arizona, DOE Legacy Waste Site—10281

    SciTech Connect (OSTI)

    Waugh, W.J.; Miller, D.E.; Morris, S.A.; Sheader, L.R.; Glenn, E.P.; Moore, D.; Carroll, K.C.; Benally, L.; Roanhorse, M.; Bush, R.P.; none,

    2010-03-07

    The U.S. Department of Energy (DOE), the Navajo Nation, and the University of Arizona are exploring natural and enhanced attenuation remedies for groundwater contamination at a former uranium-ore processing site near Monument Valley, Arizona. DOE removed radioactive tailings from the Monument Valley site in 1994. Nitrate and ammonium, waste products of the milling process, remain in an alluvial groundwater plume spreading from the soil source where tailings were removed. Planting and irrigating two native shrubs, fourwing saltbush and black greasewood, markedly reduced both nitrate and ammonium in the source area over an 8-year period. Total nitrogen dropped from 350 mg/kg in 2000 to less than 200 mg/kg in 2008. Most of the reduction is attributable to irrigation-enhanced microbial denitrification rather than plant uptake. However, soil moisture and percolation flux monitoring show that the plantings control the soil water balance in the source area, preventing additional leaching of nitrogen compounds. Enhanced denitrification and phytoremediation also look promising for plume remediation. Microcosm experiments, nitrogen isotopic fractionation analysis, and solute transport modeling results suggest that (1) up to 70 percent of nitrate in the plume has been lost through natural denitrification since the mill was closed in 1968, and (2) injection of ethanol may accelerate microbial denitrification in plume hot spots. A field-scale ethanol injection pilot study is underway. Landscape-scale remote sensing methods developed for the project suggest that transpiration from restored native phreatophyte populations rooted in the aquifer could limit further expansion of the plume. An evaluation of landfarm phytoremediation, the irrigation of native shrub plantings with high nitrate water pumped from the alluvial aquifer, is also underway.

  19. A Probabilistic Seismic Hazard Analysis Update Review for Two DOE Sites and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NGA-East Project Overview and Status | Department of Energy A Probabilistic Seismic Hazard Analysis Update Review for Two DOE Sites and NGA-East Project Overview and Status A Probabilistic Seismic Hazard Analysis Update Review for Two DOE Sites and NGA-East Project Overview and Status Presentation from the May 2015 Seismic Lessons-Learned Panel Meeting. A Probabilistic Seismic Hazard Analysis Update Review for Two DOE Sites and NGA-East Project Overview and Status (516.79 KB) More Documents

  20. Tuba City, Arizona, Disposal Site Groundwater Compliance Path...

    Office of Legacy Management (LM)

    2014, because of safety issues, unreliable operation, and concern about its effectiveness. ... The EPA established standards for UMTRCA remedial action, cell performance, and ...

  1. University of Arizona Compressed Air Energy Storage

    SciTech Connect (OSTI)

    Simmons, Joseph; Muralidharan, Krishna

    2012-12-31

    Boiled down to its essentials, the grant’s purpose was to develop and demonstrate the viability of compressed air energy storage (CAES) for use in renewable energy development. While everyone agrees that energy storage is the key component to enable widespread adoption of renewable energy sources, the development of a viable scalable technology has been missing. The Department of Energy has focused on expanded battery research and improved forecasting, and the utilities have deployed renewable energy resources only to the extent of satisfying Renewable Portfolio Standards. The lack of dispatchability of solar and wind-based electricity generation has drastically increased the cost of operation with these components. It is now clear that energy storage coupled with accurate solar and wind forecasting make up the only combination that can succeed in dispatchable renewable energy resources. Conventional batteries scale linearly in size, so the price becomes a barrier for large systems. Flow batteries scale sub-linearly and promise to be useful if their performance can be shown to provide sufficient support for solar and wind-base electricity generation resources. Compressed air energy storage provides the most desirable answer in terms of scalability and performance in all areas except efficiency. With the support of the DOE, Tucson Electric Power and Science Foundation Arizona, the Arizona Research Institute for Solar Energy (AzRISE) at the University of Arizona has had the opportunity to investigate CAES as a potential energy storage resource.

  2. A Solar Win for Arizona | Department of Energy

    Office of Environmental Management (EM)

    The 150 megawatt Mesquite Solar 1 installation in Maricopa County, Arizona. | Photo courtesy of Sempra Energy. The 150 megawatt Mesquite Solar 1 installation in Maricopa County, ...

  3. Sierra Vista, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Vista, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.5545394, -110.3036912 Show Map Loading map... "minzoom":false,"mappingservic...

  4. Sierra Vista Southeast, Arizona: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Vista Southeast, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.460592, -110.217428 Show Map Loading map... "minzoom":false,"mappi...

  5. Ajo Improvement Co (Arizona) EIA Revenue and Sales - April 2008...

    Open Energy Info (EERE)

    Ajo Improvement Co (Arizona) EIA Revenue and Sales - April 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ajo Improvement Co for April...

  6. Ajo Improvement Co (Arizona) EIA Revenue and Sales - October...

    Open Energy Info (EERE)

    Ajo Improvement Co (Arizona) EIA Revenue and Sales - October 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ajo Improvement Co for October...

  7. Camp Verde, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Verde, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.5636358, -111.8543178 Show Map Loading map... "minzoom":false,"mappingservic...

  8. Rio Verde, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Verde, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.7225429, -111.6756942 Show Map Loading map... "minzoom":false,"mappingservic...

  9. Tanque Verde, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tanque Verde, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.2517422, -110.7373056 Show Map Loading map... "minzoom":false,"mappin...

  10. Cottonwood-Verde Village, Arizona: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Cottonwood-Verde Village, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.6949847, -111.9820582 Show Map Loading map......

  11. Arizona Online Environmental Review Tool | Open Energy Information

    Open Energy Info (EERE)

    Online Environmental Review ToolInfo GraphicMapChart Abstract The Arizona Game and Fish Department's Heritage Data Management System (HDMS) and Project Evaluation Program...

  12. Prescott Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Page Edit with form History Prescott Valley, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.6100243, -112.315721 Show Map Loading...

  13. St. David, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    David, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.9042517, -110.2142399 Show Map Loading map... "minzoom":false,"mappingservic...

  14. Ash Fork, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Ash Fork, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.2250114, -112.4840675 Show Map Loading map... "minzoom":false,"mappingser...

  15. UNIVERSITY OF ARIZONA HIGH ENERGY PHYSICS PROGRAM (Technical...

    Office of Scientific and Technical Information (OSTI)

    The High Energy Physics Group at the University of Arizona has conducted forefront research in elementary particle physics. Our theorists have developed new ideas in lattice QCD, ...

  16. Arizona Electric Pwr Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    Facebook: https:www.facebook.compagesArizonas-GT-Cooperatives347352335037?refts Outage Hotline: (520) 586-3631 References: EIA Form EIA-861 Final Data File for 2010...

  17. New Kingman-Butler, Arizona: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Kingman-Butler, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.2593696, -114.0190671 Show Map Loading map... "minzoom":false,"mapp...

  18. Dewey-Humboldt, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Dewey-Humboldt, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.53, -112.2422222 Show Map Loading map... "minzoom":false,"mappingse...

  19. Flowing Wells, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wells, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.2939638, -111.0098178 Show Map Loading map... "minzoom":false,"mappingservic...

  20. Arizona's 1st congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    System Solar Power Plant Retrieved from "http:en.openei.orgwindex.php?titleArizona%27s1stcongressionaldistrict&oldid175300" Feedback Contact needs updating Image needs...

  1. EIS-0474: Southline Transmission Line Project; Arizona and New...

    Broader source: Energy.gov (indexed) [DOE]

    consist of a new 225-mile transmission line between existing substations at Afton, New Mexico, and Apache, Arizona, and improvements to approximately 130 miles of existing...

  2. Peach Springs, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Springs, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.5291589, -113.425491 Show Map Loading map... "minzoom":false,"mappingservi...

  3. PP-106 Arizona Public Service Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presidential permit authorizing Arizona Public Service Company to construct, operate, and maintain electric transmission facilities at the U.S-Mexico border. PDF icon PP-106 ...

  4. PP-107 Arizona Public Service Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presidential permit authorizing Arizona Public Service Company to construct, operate, and maintain electric transmission facilities at the U.S-Mexico border. PDF icon PP-107 ...

  5. PP-108 Arizona Public Service Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presidential Permit authorizing APSC to construct, operate and maintain electric transmission facitilites at the U.S. - Mexico Border. PDF icon PP-108 Arizona Public Service ...

  6. Arizona State Historic Preservation Office | Open Energy Information

    Open Energy Info (EERE)

    Historic Preservation Office Jump to: navigation, search Name: Arizona State Historic Preservation Office Abbreviation: SHPO Address: 1300 West Washington Street Place: Phoenix,...

  7. Arizona State University TUV Rheinland JV | Open Energy Information

    Open Energy Info (EERE)

    University TUV Rheinland JV Jump to: navigation, search Name: Arizona State University & TUV Rheinland JV Sector: Solar Product: Solar JV formed for technology testing and...

  8. Green Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.8542511, -110.9937019 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  9. RAPID/BulkTransmission/Arizona | Open Energy Information

    Open Energy Info (EERE)

    the Regional Entity responsible for coordinating and promoting Bulk Electric System reliability in the Western Interconnection, including Arizona. WECC also provides an...

  10. Sun City, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sun City, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.5975393, -112.2718239 Show Map Loading map... "minzoom":false,"mappingser...

  11. Arizona's 5th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Registered Energy Companies in Arizona's 5th congressional district AFV Solutions Inc AZ Biodiesel Advanced Energy Systems Inc AESI also Advanced Energy Inc AeroElektra...

  12. Desert Hills, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Desert Hills, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.5538996, -114.3724569 Show Map Loading map... "minzoom":false,"mappin...

  13. St. Johns, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Johns, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.5058698, -109.3609327 Show Map Loading map... "minzoom":false,"mappingservic...

  14. Greenlee County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Greenlee County, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.2405598, -109.2831531 Show Map Loading map... "minzoom":false,"map...

  15. South Tucson, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tucson, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.199521, -110.968425 Show Map Loading map... "minzoom":false,"mappingservice...

  16. Winslow West, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    West, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.0322421, -110.7529145 Show Map Loading map... "minzoom":false,"mappingservice...

  17. Chino Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Valley, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.7575227, -112.4537809 Show Map Loading map... "minzoom":false,"mappingservi...

  18. Arizona Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Date: 12312015 Next Release Date: 01292016 Referring Pages: Natural Gas Vented and Flared Arizona Natural Gas Gross Withdrawals and Production Natural Gas Vented and Flared...

  19. Apache Junction, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Junction, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.4150485, -111.5495777 Show Map Loading map... "minzoom":false,"mappingser...

  20. Queen Creek, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Creek, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.2486638, -111.6342993 Show Map Loading map... "minzoom":false,"mappingservic...

  1. McNary, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    McNary, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.0736564, -109.8570472 Show Map Loading map... "minzoom":false,"mappingservi...

  2. Bitter Springs, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Bitter Springs, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.6285991, -111.6543255 Show Map Loading map... "minzoom":false,"mapp...

  3. Bullhead City, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Bullhead City, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.1477774, -114.5682983 Show Map Loading map... "minzoom":false,"mappi...

  4. Mohave Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Valley, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.9330585, -114.5888533 Show Map Loading map... "minzoom":false,"mappingservi...

  5. Paradise Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Valley, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.5311541, -111.9426452 Show Map Loading map... "minzoom":false,"mappingservi...

  6. Drexel Heights, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Drexel Heights, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.1411888, -111.028427 Show Map Loading map... "minzoom":false,"mappi...

  7. Colorado City, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    City, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.9902621, -112.9757702 Show Map Loading map... "minzoom":false,"mappingservice...

  8. Huachuca City, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Huachuca City, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.6278703, -110.3339678 Show Map Loading map... "minzoom":false,"mappi...

  9. Cordes Lakes, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lakes, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.3078074, -112.1034912 Show Map Loading map... "minzoom":false,"mappingservic...

  10. Gila Bend, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Gila Bend, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.9478236, -112.7168305 Show Map Loading map... "minzoom":false,"mappingse...

  11. Arizona's 6th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    ETA Engineering Renegy Holdings Inc The Arizona Center for Algae Technology and Innovation WindPower Innovations Inc Retrieved from "http:en.openei.orgw...

  12. La Paz County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Paz County, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.0061091, -113.9536466 Show Map Loading map... "minzoom":false,"mappings...

  13. Oro Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Oro Valley, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.3909071, -110.966488 Show Map Loading map... "minzoom":false,"mappingse...

  14. Geothermal-Exploration In Arizona | Open Energy Information

    Open Energy Info (EERE)

    In Arizona Authors C. Stone and W. R. Hahman Published Journal Transactions-American Geophysical Union, 1978 DOI Not Provided Check for DOI availability: http:...

  15. Arizona Recovery Act State Memo | Department of Energy

    Office of Environmental Management (EM)

    Arizona has substantial natural resources, including coal, solar, and hydroelectric resources. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment ...

  16. Fort Defiance, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Act Smart Grid Projects in Fort Defiance, Arizona Navajo Tribal Utility Association Smart Grid Project References US Census Bureau 2005 Place to 2006 CBSA Retrieved from...

  17. ,"Arizona Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Arizona Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  18. Big Park, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.780297, -111.7626535 Show Map Loading map... "minzoom":false,"mappingservice"...

  19. Munds Park, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Munds Park, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.945574, -111.6401551 Show Map Loading map... "minzoom":false,"mappingse...

  20. Litchfield Park, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.4933743, -112.3579364 Show Map Loading map... "minzoom":false,"mappingservice...

  1. EIS-0441: Mohave County Wind Farm Project, Mohave County, Arizona...

    Office of Environmental Management (EM)

    as a cooperating agency, evaluated the environmental impacts of a proposed wind energy project on public lands in Mohave County, Arizona. Power generated by this project...

  2. A Probabilistic Seismic Hazard Analysis Updates Review for Two DOE Sites |

    Office of Environmental Management (EM)

    NGA-East Project Overview and Status | Department of Energy Update Review for Two DOE Sites and NGA-East Project Overview and Status A Probabilistic Seismic Hazard Analysis Update Review for Two DOE Sites and NGA-East Project Overview and Status Presentation from the May 2015 Seismic Lessons-Learned Panel Meeting. A Probabilistic Seismic Hazard Analysis Update Review for Two DOE Sites and NGA-East Project Overview and Status (516.79 KB) More Documents & Publications A Probabilistic

  3. Solar energy system performance evaluation - final report for Honeywell OTS 45, Salt River Project, Phoenix, Arizona

    SciTech Connect (OSTI)

    Mathur, A K

    1983-09-01

    This report describes the operation and technical performance of the Solar Operational Test Site (OTS 45) at Salt River Project in Phoenix, Arizona, based on the analysis of data collected between April 1981 and March 31, 1982. The following topics are discussed: system description, performance assessment, operating energy, energy savings, system maintenance, and conclusions. The solar energy system at OTS 45 is a hydronic heating and cooling system consisting of 8208 square feet of liquid-cooled flat-plate collectors; a 2500-gallon thermal storage tank; two 25-ton capacity organic Rankine-cycle-engine-assisted water chillers; a forced-draft cooling tower; and associated piping, pumps, valves, controls and heat rejection equipment. The solar system has eight basic modes of operation and several combination modes. The system operation is controlled automatically by a Honeywell-designed microprocessor-based control system, which also provides diagnostics. Based on the instrumented test data monitored and collected during the 8 months of the Operational Test Period, the solar system collected 1143 MMBtu of thermal energy of the total incident solar energy of 3440 MMBtu and provided 241 MMBtu for cooling and 64 MMBtu for heating. The projected net annual electrical energy savings due to the solar system was approximately 40,000 kWh(e).

  4. Analysis of Flood Hazards for the Materials and Fuels Complex at the Idaho National Laboratory Site

    SciTech Connect (OSTI)

    Skaggs, Richard; Breithaupt, Stephen A.; Waichler, Scott R.; Kim, Taeyun; Ward, Duane L.

    2010-11-01

    Researchers at Pacific Northwest National Laboratory conducted a flood hazard analysis for the Materials and Fuels Complex (MFC) site located at the Idaho National Laboratory (INL) site in southeastern Idaho. The general approach for the analysis was to determine the maximum water elevation levels associated with the design-basis flood (DBFL) and compare them to the floor elevations at critical building locations. Two DBFLs for the MFC site were developed using different precipitation inputs: probable maximum precipitation (PMP) and 10,000 year recurrence interval precipitation. Both precipitation inputs were used to drive a watershed runoff model for the surrounding upland basins and the MFC site. Outflows modeled with the Hydrologic Engineering Centers Hydrologic Modeling System were input to the Hydrologic Engineering Centers River Analysis System hydrodynamic flood routing model.

  5. White Oak Creek Embayment site characterization and contaminant screening analysis

    SciTech Connect (OSTI)

    Blaylock, B.G.; Ford, C.J.; Frank, M.L.; Hoffman, F.O.; Hook, L.A.

    1993-01-01

    Analyses of sediment samples collected near the mouth of White Oak Creek during the summer of 1990 revealed [sup 137]Cs concentrations [> 10[sup 6] Bq/kg dry wt (> 10[sup 4] pCi/g dry wt)] near the sediment surface. Available evidence indicates that these relatively high concentrations of [sup 137]Cs now at the sediment surface were released from White Oak Dam in the mid-1950s and had accumulated at depositionalsites in the embayment. These accumulated sediments are being eroded and transported downstream primarily during winter low-water levels by flood events and by a combination of normal downstream flow and the water turbulence created by the release of water from Melton Hill Dam during hydropower generation cycles. This report provides a more thorough characterization of the extent of contamination in WOCE than was previously available. Environmental samples collected from WOCE were analyzed for organic, inorganic, and radiological contaminants in fish, water, and sediment. These results were used to conduct a human health effects screening analysis. Walkover radiation surveys conducted inside the fenced area surrounding the WOCE at summer-pool (741 ft MSL) and at winter-pool (733 ft MSL) level, indicated a maximum exposure rate of 3 mR h[sup 1] 1 m above the soil surface.

  6. Microsoft Word - DOE-ID-13-047 Arizona State EC B3-6.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 SECTION A. Project Title: Radiation Hardened Electronics Destined for Severe Nuclear Reactor Environments - Arizona State University SECTION B. Project Description Arizona State ...

  7. Results from utility wind resource assessment programs in Nebraska, Colorado, and Arizona

    SciTech Connect (OSTI)

    Drapeau, C.L.

    1997-12-31

    Global Energy Concepts (GEC) has been retained by utilities in Colorado, Nebraska, and Arizona to site, install, and operate 21 wind monitoring stations as part of the Utility Wind Resource Assessment Program (U*WRAP). Preliminary results indicate wind speed averages at 40 meters (132 ft) of 6.5 - 7.4 m/s (14.5-16.5 mph) in Nebraska and 7.6 - 8.9 m/s (17.0-19.9 mph) in Colorado. The Arizona stations are not yet operational. This paper presents the history and current status of the 21 monitoring stations as well as preliminary data results. Information on wind speeds, wind direction, turbulence intensity, wind shear, frequency distribution, and data recovery rates are provided.

  8. County, Arizona RECORD OF CATEGORICAL EXCLUSION DETERMINATION

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    electrical equipment replacementat Gila Substation in Yuma County, Arizona RECORD OF CATEGORICAL EXCLUSION DETERMINATION A. Proposed Action: Western proposes to replace a 34.5-kV circuit breaker within the fenced area of Gila Substation. This will consist of removing the existing 34.5-kV circuit breaker and foundation, trenching to add control cables and conduit to the control building, laying a new foundation and adding a new 34.5-kV circuit breaker. Western will be using existing access roads

  9. Storage opportunities in Arizona bedded evaporites

    SciTech Connect (OSTI)

    Neal, J.T.; Rauzi, S.L.

    1996-10-01

    Arizona is endowed with incredibly diverse natural beauty, and has also been blessed with at least seven discrete deposits of bedded salt. These deposits are dispersed around the state and cover some 2, 500 square miles; they currently contain 14 LPG storage caverns, with preliminary plans for more in the future. The areal extent and thickness of the deposits creates the opportunity for greatly expanded storage of LPG, natural gas, and compressed air energy storage (CAES). The location of salt deposits near Tucson and Phoenix may make CAES an attractive prospect in the future. The diversity of both locations and evaporate characteristics allows for much tailoring of individual operations to meet specific requirements.

  10. Arizona RECORD OF CATEGORICAL EXCLUSION DETERMINATION

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a double circuit upgrade and structure replacement along the existing Casa Grande-Empire 11~-kV transmission line, Pinal County, Arizona RECORD OF CATEGORICAL EXCLUSION DETERMINATION A. Proposed Action: Western proposes to replace structures and upgrade to a double circuit 230-kV transmission line on its Casa Grande-Empire115-kV transmission line, from Thornton Road to its Empire Substation, within Western's existing right-of-way. This will include the rebuild of 13.2 miles of transmission line,

  11. Arizona State Historic Preservation Programmatic Agreement | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Arizona State Historic Preservation Programmatic Agreement Arizona State Historic Preservation Programmatic Agreement Fully executed programmatic agreement between DOE, State Energy Office and State Historic Preservation Office. state_historic_preservation_programmatic_agreement_az.pdf (492.93 KB) More Documents & Publications Delaware State Historic Preservation Programmatic Agreement Florida State Historic Preservation Programmatic Agreement Louisiana

  12. An economic analysis of a monitored retrievable storage site for Tennessee. Final report and appendices

    SciTech Connect (OSTI)

    Fox, W.F.; Mayo, J.W.; Hansen, L.T.; Quindry, K.E.

    1985-12-17

    The United States Department of Energy is charged with the task of identifying potential sites for a Monitored Retrievable Storage (MRS) Facility and reporting the results of its analysis to Congress by January 1986. DOE chose three finalist sites from 11 sites DOE analysts evaluated earlier. All three are in Tennessee, including two in Oak Ridge and one in Trousdale/Smith Counties. This paper is a summary of research undertaken on the economic effects of establishing the MRS facility in Tennessee. All three locations were considered in the analysis, but on some occasions attention is focused on the site preferred by DOE. The research was undertaken by the Center for Business and Economic Research (CBER), College of Business Administration, the University of Tennessee, Knoxville, under contract with the Tennessee Department of Economic and Community Development.

  13. An economic analysis of a monitored retrievable storage site for Tennessee

    SciTech Connect (OSTI)

    Fox, W.F.; Mayo, J.W.; Hansen, L.T.; Quindry, K.E.

    1985-12-17

    The United States Department of Energy is charged with the task of identifying potential sites for a Monitored Retrievable Storage (MRS) Facility and reporting the results of its analysis to Congress by January 1986. DOE chose three finalist sites from 11 sites DOE analysts evaluated earlier. All three are in Tennessee, including two in Oak Ridge and one in Trousdale/Smith Counties. This paper is a summary of research undertaken on the economic effects of establishing the MRS facility in Tennessee. All three locations were considered in the analysis, but on some occasions attention is focused on the site preferred by DOE. The research was undertaken by the Center for Business and Economic Research (CBER), College of Business Administration, the University of Tennessee, Knoxville, under contract with the Tennessee Department of Economic and Community Development.

  14. Geographic and Operational Site Parameters List (GOSPL) for the 2004 Composite Analysis

    SciTech Connect (OSTI)

    Last, George V.; Nichols, William E.; Kincaid, Charles T.

    2004-07-01

    This report briefly describes each of the key data fields, including the source(s) of data, and provides the resulting inputs to be used for the 2004 Composite Analysis. A master spreadsheet termed the Geographic and Operational Site Parameters List (GOSPL) was assembled to facilitate the generation of keyword input files containing general information on each waste site, its operational/disposal history, and its environmental settings (past, current, and future).

  15. Uncertainty Analysis Framework - Hanford Site-Wide Groundwater Flow and Transport Model

    SciTech Connect (OSTI)

    Cole, Charles R.; Bergeron, Marcel P.; Murray, Christopher J.; Thorne, Paul D.; Wurstner, Signe K.; Rogers, Phillip M.

    2001-11-09

    Pacific Northwest National Laboratory (PNNL) embarked on a new initiative to strengthen the technical defensibility of the predictions being made with a site-wide groundwater flow and transport model at the U.S. Department of Energy Hanford Site in southeastern Washington State. In FY 2000, the focus of the initiative was on the characterization of major uncertainties in the current conceptual model that would affect model predictions. The long-term goals of the initiative are the development and implementation of an uncertainty estimation methodology in future assessments and analyses using the site-wide model. This report focuses on the development and implementation of an uncertainty analysis framework.

  16. Environmental analysis of the operation of Oak Ridge National Laboratory (X-10 site)

    SciTech Connect (OSTI)

    Boyle, J.W.; Blumberg, R.; Cotter, S.J.

    1982-11-01

    An environmental analysis of the operation of the Oak Ridge National Laboratory (ORNL) facilities in Bethel Valley and Melton Valley was conducted to present to the public information concerning the extent to which recognizable effects, or potential effects, on the environment may occur. The analysis addresses current operations of the ORNL X-10 site and completed operations that may continue to have residual effects. Solid wastes from ORNL operations at the Y-12 site which are transported to the X-10 site for burial (e.g., Biology Division animal wastes) are included as part of X-10 site operation. Socioeconomic effects are associated primarily with the communities where employees live and with the Knoxville Bureau of Economic Analysis economic area as a whole. Therefore, ORNL employees at both Y-12 and X-10 sites are included in the ORNL socioeconomic impact analysis. An extensive base of environmental data was accumulated for this report. Over 80 reports related to ORNL facilities and/or operations are cited as well as many open-literature citations. Environmental effects of the operation of ORNL result from operational discharges from the onsite facilities; construction and/or modification of facilities, transportation to and from the site of persons, goods and services; socioeconomic impacts to the local, regional, and general population; and accidental discharges if they should occur. Operational discharges to the environnment are constrained by federal, state, and local regulations and by criteria established by the US Department of Energy to minimize adverse impacts. It is the purpose of this document to evaluate the operation of the ORNL insofar as impacts beyond the site boundary may occur or have the potential for occurrence.

  17. Adapting a GIS-Based Multicriteria Decision Analysis Approach for Evaluating New Power Generating Sites

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A; Blevins, Brandon R; Jochem, Warren C; Mays, Gary T; Belles, Randy; Hadley, Stanton W; Harrison, Thomas J; Bhaduri, Budhendra L; Neish, Bradley S; Rose, Amy N

    2012-01-01

    There is a growing need to site new power generating plants that use cleaner energy sources due to increased regulations on air and water pollution and a sociopolitical desire to develop more clean energy sources. To assist utility and energy companies as well as policy-makers in evaluating potential areas for siting new plants in the contiguous United States, a geographic information system (GIS)-based multicriteria decision analysis approach is presented in this paper. The presented approach has led to the development of the Oak Ridge Siting Analysis for power Generation Expansion (OR-SAGE) tool. The tool takes inputs such as population growth, water availability, environmental indicators, and tectonic and geological hazards to provide an in-depth analysis for siting options. To the utility and energy companies, the tool can quickly and effectively provide feedback on land suitability based on technology specific inputs. However, the tool does not replace the required detailed evaluation of candidate sites. To the policy-makers, the tool provides the ability to analyze the impacts of future energy technology while balancing competing resource use.

  18. 230Th/U ages Supporting Hanford Site-Wide Probabilistic Seismic Hazard Analysis

    SciTech Connect (OSTI)

    Paces, James B.

    2014-08-31

    This product represents a USGS Administrative Report that discusses samples and methods used to conduct uranium-series isotope analyses and resulting ages and initial 234U/238U activity ratios of pedogenic cements developed in several different surfaces in the Hanford area middle to late Pleistocene. Samples were collected and dated to provide calibration of soil development in surface deposits that are being used in the Hanford Site-Wide probabilistic seismic hazard analysis conducted by AMEC. The report includes description of sample locations and physical characteristics, sample preparation, chemical processing and mass spectrometry, analytical results, and calculated ages for individual sites. Ages of innermost rinds on a number of samples from five sites in eastern Washington are consistent with a range of minimum depositional ages from 17 ka for cataclysmic flood deposits to greater than 500 ka for alluvium at several sites.

  19. Engineering evaluation/cost analysis for decontamination at the St. Louis Downtown Site, St. Louis, Missouri

    SciTech Connect (OSTI)

    Picel, M.H.; Hartmann, H.M.; Nimmagadda, M.R. ); Williams, M.J. )

    1991-05-01

    The US Department of Energy (DOE) is implementing a cleanup program for three groups of properties in the St. Louis, Missouri, area: the St. Louis Downtown Site (SLDS), the St. Louis Airport Site (SLAPS) and vicinity properties, and the Latty Avenue Properties, including the Hazelwood Interim Storage Site (HISS). The general location of these properties is shown in Figure 1; the properties are referred to collectively as the St. Louis Site. None of the properties are owned by DOE, but each property contains radioactive residues from federal uranium processing activities conducted at the SLDS during and after World War 2. The activities addressed in this environmental evaluation/cost analysis (EE/CA) report are being proposed as interim components of a comprehensive cleanup strategy for the St. Louis Site. As part of the Department's Formerly Utilized Sites Remedial Action Program (FUSRAP), DOE is proposing to conduct limited decontamination in support of proprietor-initiated activities at the SLDS, commonly referred to as the Mallinckrodt Chemical Works. The primary goal of FUSRAP activity at the SLDS is to eliminate potential environmental hazards associated with residual contamination resulting from the site's use for government-funded uranium processing activities. 17 refs., 3 figs., 5 tabs.

  20. Plant-Wide Energy Efficiency Assessment at the Arizona Portland Cement Plant in Rillito, Arizona

    SciTech Connect (OSTI)

    Stephen J. Coppinger, P.E.; Bruce Colburn, Ph.D., P.E., CEM

    2007-05-17

    A Department of Energy Plant-wide Assessment was undertaken by Arizona Portland Cement (APC) beginning in May 2005. The assessment was performed at APC’s cement production facility in Rillito, Arizona. The assessment included a compressed air evaluation along with a detailed process audit of plant operations and equipment. The purpose of this Energy Survey was to identify a series of energy cost savings opportunities at the Plant, and provide preliminary cost and savings estimates for the work. The assessment was successful in identifying projects that could provide annual savings of over $2.7 million at an estimated capital cost of $4.3 million. If implemented, these projects could amount to a savings of over 4.9 million kWh/yr and 384,420 MMBtu/year.

  1. Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model

    SciTech Connect (OSTI)

    P. Tucci

    2001-12-20

    This Analysis/Model Report (AMR) documents an updated analysis of water-level data performed to provide the saturated-zone, site-scale flow and transport model (CRWMS M&O 2000) with the configuration of the potentiometric surface, target water-level data, and hydraulic gradients for model calibration. The previous analysis was presented in ANL-NBS-HS-000034, Rev 00 ICN 01, Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model (USGS 2001). This analysis is designed to use updated water-level data as the basis for estimating water-level altitudes and the potentiometric surface in the SZ site-scale flow and transport model domain. The objectives of this revision are to develop computer files containing (1) water-level data within the model area (DTN: GS010908312332.002), (2) a table of known vertical head differences (DTN: GS0109083 12332.003), and (3) a potentiometric-surface map (DTN: GS010608312332.001) using an alternate concept from that presented in ANL-NBS-HS-000034, Rev 00 ICN 01 for the area north of Yucca Mountain. The updated water-level data include data obtained from the Nye County Early Warning Drilling Program (EWDP) and data from borehole USW WT-24. In addition to being utilized by the SZ site-scale flow and transport model, the water-level data and potentiometric-surface map contained within this report will be available to other government agencies and water users for ground-water management purposes. The potentiometric surface defines an upper boundary of the site-scale flow model, as well as provides information useful to estimation of the magnitude and direction of lateral ground-water flow within the flow system. Therefore, the analysis documented in this revision is important to SZ flow and transport calculations in support of total system performance assessment.

  2. Site-specific analysis of radiological and physical parameters for cobbly soils at the Gunnison, Colorado, processing site

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    The remedial action at the Gunnison, Colorado, processing site is being performed under the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 [Public Law (PL) 95-6041]. Under UMTRCA, the US Environmental Protection Agency (EPA) is charged with the responsibility of developing appropriate and applicable standards for the cleanup of radiologically contaminated land and buildings at 24 designated sites, including the Gunnison, Colorado, inactive processing site. The remedial action at the processing site will be conducted to remove the tailings and contaminated materials to meet the EPA bulk soil cleanup standards for surface and subsurface soils. The site areas disturbed by remedial action excavation will be either contoured or backfilled with radiologically uncontaminated soil and contoured to restore the site. The final contours will produce a final surface grade that will create positive drainage from the site.

  3. Renewable Energy Opportunities at Yuma Proving Ground, Arizona

    SciTech Connect (OSTI)

    Orrell, Alice C.; Kora, Angela R.; Russo, Bryan J.; Williamson, Jennifer L.; Weimar, Mark R.; Gorrissen, Willy J.; Dixon, Douglas R.

    2010-06-30

    This document provides an overview of renewable resource potential at Yuma Proving Ground, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations.

  4. Special Analysis of the Area 3 Radioactive Waste Management Site at the Nevada National Security Site, Nye County, Nevada

    SciTech Connect (OSTI)

    National Security Technologies, LLC, Environmental Management

    2012-09-30

    This report describes the methods and results of a special analysis (SA) of the Area 3 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). The purpose of the SA is to determine if the approved performance assessment (PA) and composite analysis (CA) (Shott et al., 2001) remain valid. The Area 3 RWMS PA and CA were prepared as a single document and received conditional approval on October 6, 1999. A conditional Disposal Authorization Statement (DAS) for the Area 3 RWMS was issued on October 20, 1999. Since preparation of the approved PA and CA, new information and additional environmental monitoring data have been used to update the PA and CA. At the same time, continual advancements in computer processors and software have allowed improvement to the PA and CA models. Annual reviews of the PA and CA required by U.S. Department of Energy (DOE) Order DOE O 435.1 have documented multiple changes occurring since preparation of the PA and CA. Potentially important changes include: Development of a new and improved baseline PA and CA model implemented in the probabilistic GoldSim simulation platform. A significant increase in the waste inventory disposed at the site. Revision and updating of model parameters based on additional years of site monitoring data and new research and development results. Although changes have occurred, many important PA/CA issues remain unchanged, including the site conceptual model, important features, events, and processes, and the points of compliance. The SA is performed to document the current status of the PA/CA model and to quantitatively assess the impact of cumulative changes on the PA and CA results. The results of the SA are used to assess the validity of the approved PA/CA and make a determination if revision of the PA or CA is necessary. The SA was performed using the Area 3 RWMS, version 2.102, GoldSim model, the current baseline PA/CA model. Comparison of the maximum SA results with the PA

  5. Department of Energy Offers Support for Arizona Solar Project | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Arizona Solar Project Department of Energy Offers Support for Arizona Solar Project January 20, 2011 - 12:00am Addthis Washington D.C. --- U.S. Energy Secretary Steven Chu today announced the offer of a conditional commitment to Agua Caliente Solar, LLC for a loan guarantee of up to $967 million. The loan guarantee will support the construction of a 290-megawatt photovoltaic solar generating facility located in Yuma County, Arizona that will use thin film solar panels from First

  6. Addendum 1 Composite Analysis for the Area 5 Radioactive Waste Management Site at the Nevada Test Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Vefa Yucel

    2001-11-01

    A disposal authorization statement (DAS) was issued by the U.S. Department of Energy/Headquarters (DOE/HQ) on December 5, 2000, authorizing the DOE's National Nuclear Security Administration Nevada Operations Office to continue the operation of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site for the disposal of low-level waste and mixed low-level waste. Prior to the issuance of the DAS, the Low-Level Waste Disposal Facility Federal Review Group (LFRG) had conducted reviews of the performance assessment (PA) and the composite analysis (CA) for the Area 5 RWMS, in accordance with the requirements of the DOE Radioactive Waste Management Order DOE O 435.1. A brief history of the reviews is as follows. (The reviews were conducted by independent review teams chartered by the LFRG; the review findings and recommendations were issued in review team reports to the LFRG.) The LFRG accepted the initial PA, with conditions, on August 30, 1996. Revision 2.1 to the PA was issued in January 1998, implementing the conditions of acceptance of the 1996 PA. The LFRG reviewed Revision 2.1 as part of the Area 5 RWMS CA review during 2000, and found it acceptable. The CA and the Supplemental Information provided in response to issues identified during the initial review of the CA were accepted by the LFRG. The Supplemental Information (including the responses to four key issues) is included in the Review Team Report to the LFRG, which recommends that it be incorporated into the CA and issued to all known holders of the CA. The Area 5 RWMS DAS requires that the Supplemental Information generated during the DOE/HQ review of the CA be incorporated into the CA within one year of the date of issuance of the DAS. This report, the first addendum to the Area 5 CA, is prepared to fulfill that requirement. The Supplemental Information includes the following: Issues Identified in the Review Team Report; Crosswalk Presentation; and Maintaining Doses As Low As Reasonably

  7. Oak Ridge National Laboratory site data for safety-analysis report

    SciTech Connect (OSTI)

    Fitzpatrick, F.C.

    1982-12-01

    The Oak Ridge National Laboratory site data contained herein were compiled in support of the United States Department of Energy (USDOE) Oak Ridge Operations Office Order OR 5481.1. That order sets forth assignment of responsibilities for safety analysis and review responsibilities and provides guidance relative to the content and format of safety analysis reports. The information presented in this document is intended for use by reference in individual safety analysis reports where applicable to support accident analyses or the establishment of design bases of significance to safety, and it is applicable only to Oak Ridge National Laboratory facilities in Bethel and Melton Valleys. This information includes broad descriptions of the site characteristics, radioactive waste handling and monitoring practices, and the organization and operating policies at Oak Ridge National Laboratory. The historical background of the Laboratory is discussed briefly and the overall physical situation of the facilities is described in the following paragraphs.

  8. Philippine Wind Farm Analysis and Site Selection Analysis, 1 January 2000 - 31 December 2000

    SciTech Connect (OSTI)

    Conover, K.

    2001-12-01

    The U.S. Department of Energy (DOE), through the National Renewable Energy Laboratory (NREL), has been working in partnership with the U.S. Agency for International Development (USAID) in an ongoing process to quantify the Philippine wind energy potential and foster wind farm development. As part of that process, NREL retained Global Energy Concepts, LLC (GEC) to review and update the policy needs as well as develop a site-screening process applicable for the Philippines. GEC worked closely with the Philippines National Power Corporation (NPC) in completing this work. This report provides the results of the policy needs and site selection analyses conducted by GEC.

  9. Microsoft Word - S12161_AltAnalysis 25AUG2014.docx

    Office of Legacy Management (LM)

    Alternatives Analysis of Contaminated Groundwater Treatment Technologies Tuba City, Arizona, Disposal Site February 2015 Prepared By: Golder Associates Inc. 44 Union Boulevard, Suite 300 Lakewood, Colorado, 80228 Project No. 1401485 LMS/TUB/S12161 This page intentionally left blank U.S. Department of Energy Alternatives Analysis of Contaminated GW Treatment Technologies, Tuba City February 2015 Doc. No. S12161 Page i Contents Abbreviations

  10. Arizona Renewable Electric Power Industry Net Summer Capacity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",2720,2720,2720,2720,2720 "Solar",9,9,9,11,20 "Wind","-","-","-",63,128 ...

  11. Arizona Renewable Electric Power Industry Net Generation, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",6793,6598,7286,6427,6622 "Solar",13,9,15,14,16 "Wind","-","-","-",30,135 ...

  12. Arizona Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "Energy Source",2006,2007,2008,2009,2010 "Fossil",73385,79794,82715,74509,73386 " Coal",40443,41275,43840,39707,43644 " Petroleum",73,49,52,63,66 " Natural ...

  13. Town of Wickenburg, Arizona (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    Name: Town of Wickenburg Place: Arizona Phone Number: (928) 684-5451 x1520 Website: www.ci.wickenburg.az.us694Ut Outage Hotline: 928-684-5411 References: EIA Form EIA-861 Final...

  14. Valencia West, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Valencia West is a census-designated place in Pima County, Arizona.1 References US...

  15. ,"Arizona Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"1292016 12:16:41 AM" "Back to Contents","Data 1: Arizona Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"...

  16. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - April 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric...

  17. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - November 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  18. Ajo Improvement Co (Arizona) EIA Revenue and Sales - June 2008...

    Open Energy Info (EERE)

    Ajo Improvement Co (Arizona) EIA Revenue and Sales - June 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ajo Improvement Co for June 2008....

  19. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - May 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric...

  20. Ajo Improvement Co (Arizona) EIA Revenue and Sales - July 2008...

    Open Energy Info (EERE)

    Ajo Improvement Co (Arizona) EIA Revenue and Sales - July 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ajo Improvement Co for July 2008....

  1. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - February 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  2. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - June 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric...

  3. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - February 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  4. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - January 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  5. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - March 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric...

  6. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - October 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  7. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - January 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  8. Garkane Energy Coop, Inc (Arizona) | Open Energy Information

    Open Energy Info (EERE)

    Garkane Energy Coop, Inc Place: Arizona Phone Number: Kanab Office: (888)644-5026 -- Loa Office (800) 747-5403 -- Hatch Office(888)735-4288 -- Hildale Office(435) 874-2810 Website:...

  9. Red Mesa, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Red Mesa is a census-designated place in Apache County, Arizona.1 References US...

  10. Corona de Tucson, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Corona de Tucson is a census-designated place in Pima County, Arizona.1 References US...

  11. DOI Approves Three Renewable Energy Projects in Arizona and Nevada...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The 100-megawatt Quartzsite Solar Energy Project, located on 1,600 acres of BLM-managed lands in La Paz County, Arizona, will use concentrating solar power (CSP) "power tower" ...

  12. Spring Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Spring Valley is a census-designated place in Yavapai County, Arizona.1 References US...

  13. DOI Approves Three Renewable Energy Projects in Arizona and Nevada

    Broader source: Energy.gov [DOE]

    The U.S. Department of the Interior (DOI) on June 3 announced the approval of three major renewable energy projects in Arizona and Nevada that are expected to deliver up to 520 megawatts to the electricity grid.

  14. Arizona Right-of-Way Instruction Sheet | Open Energy Information

    Open Energy Info (EERE)

    Right-of-Way Instruction Sheet Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Instructions: Arizona Right-of-Way Instruction...

  15. Gold Camp, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Gold Camp is a census-designated place in Pinal County, Arizona.1 References US Census...

  16. Arizona Natural Gas Lease Fuel Consumption (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Fuel Consumption (Million Cubic Feet) Arizona Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  17. Arizona Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Total Consumption (Million Cubic Feet) Arizona Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  18. Arizona Natural Gas Exports (No Intransit Deliveries) (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Exports (No Intransit Deliveries) (Million Cubic Feet) Arizona Natural Gas Exports (No Intransit Deliveries) (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  19. Arizona Natural Gas % of Total Residential Deliveries (Percent...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    % of Total Residential Deliveries (Percent) Arizona Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  20. Arizona Price of Natural Gas Sold to Commercial Consumers (Dollars...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sold to Commercial Consumers (Dollars per Thousand Cubic Feet) Arizona Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May...

  1. ,"Arizona Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"01042016 7:36:54 AM" "Back to Contents","Data 1: Arizona Dry Natural Gas Production (Million Cubic Feet)" "Sourcekey","NA1160SAZ2"...

  2. Arizona Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "Energy Source",2006,2007,2008,2009,2010 "Fossil",18784,18756,18942,19351,19338 " Coal",5830,5818,5818,6227,6233 " Petroleum",90,93,93,93,93 " Natural ...

  3. Santa Cruz County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Santa Cruz County is a county in Arizona. Its FIPS County Code is 023. It is classified as...

  4. Santa Rosa, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Santa Rosa is a census-designated place in Pima County, Arizona.1 References US Census...

  5. EECBG Success Story: Energy Upgrades to Save Small Arizona Town...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Oro Valley Energy Upgrades to Save Small Arizona Town Big Money Workers demonstrate the nitrogen tank used to inflate tires in St. Peters, MO. | Courtesy of the City of St. ...

  6. DOE - Office of Legacy Management -- University of Arizona Southwest...

    Office of Legacy Management (LM)

    of the University of Arizona under FUSRAP; October 13, 1987 AZ.01-4 - DOE Letter; Bauer to Liverman; Past Operations and a Survey by Messrs, Jascewsky, and Smith; February 7, 1978

  7. EIS-0427: Grapevine Canyon Wind Project, Coconino County, Arizona

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of a proposed wind energy generation project in Coconino County, Arizona, on privately owned ranch lands and trust lands administered by the Arizona State Land Department. The proposed project includes a new transmission tie-line that would cross lands administered by Coconino National Forest and interconnect with DOE’s Western Area Power Administration’s existing Glen Canyon-Pinnacle Peak transmission lines.

  8. Arizona - Natural Gas 2014 Million Cu. Feet Percent of

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Arizona - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S3. Summary statistics for natural gas - Arizona, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 5 5 5 5 5 Production (million cubic feet) Gross Withdrawals From Gas Wells 183 168 117 72 106 From

  9. DOE-University of Arizona Faculty Development Project. Final report

    SciTech Connect (OSTI)

    Fillerup, Joseph M.

    1980-09-08

    The DOE-University of Arizona Faculty Development Project on Energy successfully completed a faculty development program. There were three phases of the program consisting of: a three week energy workshop for teachers, participation and cooperation with Students for Safe Energy in presentation of an Alternative Energy Festival at the University of Arizona, and workshops for teachers conducted at Flowing Wells School District. Each of these is described. Attendees are listed and a director's evaluation of the workshop is given.

  10. Diffusion Multilayer Sampling of Ground Water in Five Wells at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis of MSE Cores Tuba City, Arizona, Site Analysis of Contaminant Rebound in Ground Water in Extraction Wells at the Tuba City, Arizona, Site Vertical Distribution of ...

  11. Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model

    SciTech Connect (OSTI)

    K. Rehfeldt

    2004-10-08

    This report is an updated analysis of water-level data performed to provide the ''Saturated Zone Site-Scale Flow Model'' (BSC 2004 [DIRS 170037]) (referred to as the saturated zone (SZ) site-scale flow model or site-scale SZ flow model in this report) with the configuration of the potentiometric surface, target water-level data, and hydraulic gradients for calibration of groundwater flow models. This report also contains an expanded discussion of uncertainty in the potentiometric-surface map. The analysis of the potentiometric data presented in Revision 00 of this report (USGS 2001 [DIRS 154625]) provides the configuration of the potentiometric surface, target heads, and hydraulic gradients for the calibration of the SZ site-scale flow model (BSC 2004 [DIRS 170037]). Revision 01 of this report (USGS 2004 [DIRS 168473]) used updated water-level data for selected wells through the year 2000 as the basis for estimating water-level altitudes and the potentiometric surface in the SZ site-scale flow and transport model domain based on an alternative interpretation of perched water conditions. That revision developed computer files containing: Water-level data within the model area (DTN: GS010908312332.002); A table of known vertical head differences (DTN: GS010908312332.003); and A potentiometric-surface map (DTN: GS010608312332.001) using an alternative concept from that presented by USGS (2001 [DIRS 154625]) for the area north of Yucca Mountain. The updated water-level data presented in USGS (2004 [DIRS 168473]) include data obtained from the Nye County Early Warning Drilling Program (EWDP) Phases I and II and data from Borehole USW WT-24. This document is based on Revision 01 (USGS 2004 [DIRS 168473]) and expands the discussion of uncertainty in the potentiometric-surface map. This uncertainty assessment includes an analysis of the impact of more recent water-level data and the impact of adding data from the EWDP Phases III and IV wells. In addition to being utilized

  12. Inadvertent Intruder Analysis For The Portsmouth On-Site Waste Disposal Facility (OSWDF)

    SciTech Connect (OSTI)

    Smith, Frank G.; Phifer, Mark A.

    2014-01-22

    The inadvertent intruder analysis considers the radiological impacts to hypothetical persons who are assumed to inadvertently intrude on the Portsmouth OSWDF site after institutional control ceases 100 years after site closure. For the purposes of this analysis, we assume that the waste disposal in the OSWDF occurs at time zero, the site is under institutional control for the next 100 years, and inadvertent intrusion can occur over the following 1,000 year time period. Disposal of low-level radioactive waste in the OSWDF must meet a requirement to assess impacts on such individuals, and demonstrate that the effective dose equivalent to an intruder would not likely exceed 100 mrem per year for scenarios involving continuous exposure (i.e. chronic) or 500 mrem for scenarios involving a single acute exposure. The focus in development of exposure scenarios for inadvertent intruders was on selecting reasonable events that may occur, giving consideration to regional customs and construction practices. An important assumption in all scenarios is that an intruder has no prior knowledge of the existence of a waste disposal facility at the site. Results of the analysis show that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, resides on the site and consumes vegetables from a garden established on the site using contaminated soil (chronic agriculture scenario) would receive a maximum chronic dose of approximately 7.0 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE chronic dose limit of 100 mrem/yr. Results of the analysis also showed that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, excavates a basement in the soil that reaches the waste (acute basement construction scenario) would receive a maximum acute dose of approximately 0.25 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE acute dose limit of 500 mrem/yr. Disposal inventory

  13. A Ten Step Protocol and Plan for CCS Site Characterization, Based on an Analysis of the Rocky Mountain Region, USA

    SciTech Connect (OSTI)

    McPherson, Brian; Matthews, Vince

    2013-09-15

    This report expresses a Ten-Step Protocol for CO2 Storage Site Characterization, the final outcome of an extensive Site Characterization analysis of the Rocky Mountain region, USA. These ten steps include: (1) regional assessment and data gathering; (2) identification and analysis of appropriate local sites for characterization; (3) public engagement; (4) geologic and geophysical analysis of local site(s); (5) stratigraphic well drilling and coring; (6) core analysis and interpretation with other data; (7) database assembly and static model development; (8) storage capacity assessment; (9) simulation and uncertainty assessment; (10) risk assessment. While the results detailed here are primarily germane to the Rocky Mountain region, the intent of this protocol is to be portable or generally applicable for CO2 storage site characterization.

  14. Analysis of core soil and water samples from the Cactus Crater Disposal Site at Enewetak atoll

    SciTech Connect (OSTI)

    Robison, W.L.; Noshkin, V.E.

    1981-02-18

    Core soil samples and water samples were collected from the Cactus Crater Disposal Site at Enewetak for analysis of /sup 137/Cs, /sup 90/Sr, /sup 239 +240/Pu and /sup 241/Am by both gamma spectroscopy and, through a contractor laboratory, by wet chemistry procedures. The samples processing methods, the analytical methods and the analytical quality control are all procedures developed for the continuing Marshall Island radioecology and dose assessment work.

  15. Analysis of Selected Radiosonde Data from the ARM/NSA Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of Selected Radiosonde Data from the ARM/NSA Site B. Petracca, H. W. Church, and B. D. Zak Sandia National Laboratories Albuquerque, New Mexico R. Storvold and C. Marty Geophysical Institute University of Alaska Fairbanks, Alaska B. M. Lesht Argonne National Laboratories Argonne, Illinois Introduction The purpose of this study was to analyze differences in temperature and relative humidity (RH) profiles obtained from near-simultaneous radiosonde soundings made from different locations

  16. Addendum to Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site

    SciTech Connect (OSTI)

    Bergeron, Marcel P.; Freeman, Eugene J.; Wurstner, Signe K.; Kincaid, Charles T.; Coony, Mike M.; Strenge, Dennis L.; Aaberg, Rosanne L.; Eslinger, Paul W.

    2001-09-28

    This report summarizes efforts to complete an addendum analysis to the first iteration of the Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site (Composite Analysis). This document describes the background and performance objectives of the Composite Analysis and this addendum analysis. The methods used, results, and conclusions for this Addendum analysis are summarized, and recommendations are made for work to be undertaken in anticipation of a second analysis.

  17. EVENT TREE ANALYSIS AT THE SAVANNAH RIVER SITE: A CASE HISTORY

    SciTech Connect (OSTI)

    Williams, R

    2009-05-25

    At the Savannah River Site (SRS), a Department of Energy (DOE) installation in west-central South Carolina there is a unique geologic stratum that exists at depth that has the potential to cause surface settlement resulting from a seismic event. In the past the particular stratum in question has been remediated via pressure grouting, however the benefits of remediation have always been debatable. Recently the SRS has attempted to frame the issue in terms of risk via an event tree or logic tree analysis. This paper describes that analysis, including the input data required.

  18. Active mines in Arizona - 1993. Directory 40

    SciTech Connect (OSTI)

    Phillips, K.A.; Niemuth, N.J.; Bain, D.R.

    1992-01-01

    A directory of the active mines in Arizona is presented. The directory was compiled in November, 1992 from field visits and information received by the Department's technical staff. For the purpose of this directory, an active mine is defined as a mine in continuous operation, either in production or under full-time development for production. Custom milling operations that are active or available on a full-time basis are also included in the directory. It is acknowledged that there are additional mines not listed that are in an exploration, evaluation, or part-time development phase. There are others where production is on an intermittent basis that are not listed. The report is dependent on the cooperation of government agencies, private industry, and individuals who voluntarily provide information on their projects and activities. The directory is arranged alphabetically by company name. Each listing includes corporate addresses, mine name and location, operation description, and key personnel. The listing for the sand and gravel operations include name, address, and phone number.

  19. Analysis of 2011 Meteorological Data from the Knolls Atomic Power Laboratory and Kesselring Site Operations Facilities

    SciTech Connect (OSTI)

    Aluzzi, F J

    2012-02-27

    Both the Knolls Atomic Power Laboratory (KAPL) in Schenectady, NY and the Kesselring Site Operations (KSO) facility near Ballston Spa, NY are required to estimate the effects of hypothetical emissions of radiological material from their respective facilities by the US Environmental Protection Agency (EPA), which regulates these facilities. An atmospheric dispersion model known as CAP88, which was developed and approved by the EPA for such purposes, is used by KAPL and KSO to meet this requirement. CAP88 calculations over a given time period are based on statistical data on the meteorological conditions for that period. Both KAPL and KSO have on-site meteorological towers which take atmospheric measurements at a frequency ideal for EPA regulatory model input. However, an independent analysis and processing of the meteorological data from each tower is required to derive a data set appropriate for use in the CAP88 model. The National Atmospheric Release Advisory Center (NARAC) was contracted by KAPL to process the on-site data for the calendar year 2011. The purpose of this document is to: (1) summarize the procedures used in the preparation/analysis of the 2011 meteorological data; and (2) document adherence of these procedures to the guidance set forth in 'Meteorological Monitoring Guidance for Regulatory Modeling Applications', EPA document - EPA-454/R-99-005 (EPA-454). This document outlines the steps in analyzing and processing meteorological data from the Knolls Atomic Power Laboratory and Kesselring Site Operations facilities into a format that is compatible with the steady state dispersion model CAP88. This process is based on guidance from the EPA regarding the preparation of meteorological data for use in regulatory dispersion models. The analysis steps outlined in this document can be easily adapted to process data sets covering time period other than one year. The procedures will need to be modified should the guidance in EPA-454 be updated or revised.

  20. Investigations on the Structure Tectonics, Geophysics, Geochemistry, and Hydrocarbon Potential of the Black Mesa Basin, Northeastern Arizona

    SciTech Connect (OSTI)

    Barker, Colin; Carroll, Herbert; Erickson, Richard; George, Steve; Guo, Genliang; Reeves,T.K.; Sharma, Bijon; Szpakiewicz, Michael; Volk, Len

    1999-04-27

    The U.S. Department of Energy (DOE) has instituted a basin-analysis study program to encourage drilling in underexplored and unexplored areas and increase discovery rates for hydrocarbons by independent oil companies within the continental United States. The work is being performed at the DOE's National Institute for Petroleum and Energy Research (NIPER) in Bartlesville, Oklahoma, by the Exploration and Drilling Group within BDM-Oklahoma (BDM), the manager of the facility for DOE. Several low-activity areas in the Mid-Continent, west, and southwest were considered for the initial study area (Reeves and Carroll 1994a). The Black Mesa region in northwestern Arizona is shown on the U.S. Geological Survey 1995 oil and gas map of the United States as an undrilled area, adapted from Takahashi and Gautier 1995. This basin was selected by DOE s the site for the initial NIPER-BDM survey to develop prospects within the Lower-48 states (Reeves and Carroll 1994b).

  1. Analysis of 2014 Meteorological Data from the Knolls Atomic Power Laboratory and Kesselring Site Operations Facilities

    SciTech Connect (OSTI)

    Aluzzi, Fernando J.

    2015-02-25

    Both the Knolls Atomic Power Laboratory (KAPL) in Schenectady, N.Y. and the Kesselring Site Operations (KSO) facility near Ballston Spa, N.Y. are required to estimate the effects of hypothetical emissions of radiological material from their respective facilities by the U.S. Environmental Protection Agency (EPA), which regulates both sites. An atmospheric dispersion model known as CAP88, which was developed and approved by the EPA for such purposes, is used by KAPL and KSO to meet this requirement. CAP88 calculations over a given time period are based on statistical data on the meteorological conditions for that period. Both KAPL and KSO have on-site meteorological towers which take atmospheric measurements at a frequency ideal for EPA regulatory model input. However, an independent analysis and processing of the meteorological data from each tower is required to derive a data set appropriate for use in the CAP88 model. The National Atmospheric Release Advisory Center (NARAC) was contracted by KAPL to process the on-site data for the calendar year 2014.

  2. A sensitivity analysis of hazardous waste disposal site climatic and soil design parameters using HELP3

    SciTech Connect (OSTI)

    Adelman, D.D.; Stansbury, J.

    1997-12-31

    The Resource Conservation and Recovery Act (RCRA) Subtitle C, Comprehensive Environmental Response, Compensation, And Liability Act (CERCLA), and subsequent amendments have formed a comprehensive framework to deal with hazardous wastes on the national level. Key to this waste management is guidance on design (e.g., cover and bottom leachate control systems) of hazardous waste landfills. The objective of this research was to investigate the sensitivity of leachate volume at hazardous waste disposal sites to climatic, soil cover, and vegetative cover (Leaf Area Index) conditions. The computer model HELP3 which has the capability to simulate double bottom liner systems as called for in hazardous waste disposal sites was used in the analysis. HELP3 was used to model 54 combinations of climatic conditions, disposal site soil surface curve numbers, and leaf area index values to investigate how sensitive disposal site leachate volume was to these three variables. Results showed that leachate volume from the bottom double liner system was not sensitive to these parameters. However, the cover liner system leachate volume was quite sensitive to climatic conditions and less sensitive to Leaf Area Index and curve number values. Since humid locations had considerably more cover liner system leachate volume than and locations, different design standards may be appropriate for humid conditions than for and conditions.

  3. Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites

    SciTech Connect (OSTI)

    2012-10-24

    This plan incorporates U.S. Department of Energy (DOE) Office of Legacy Management (LM) standard operating procedures (SOPs) into environmental monitoring activities and will be implemented at all sites managed by LM. This document provides detailed procedures for the field sampling teams so that samples are collected in a consistent and technically defensible manner. Site-specific plans (e.g., long-term surveillance and maintenance plans, environmental monitoring plans) document background information and establish the basis for sampling and monitoring activities. Information will be included in site-specific tabbed sections to this plan, which identify sample locations, sample frequencies, types of samples, field measurements, and associated analytes for each site. Additionally, within each tabbed section, program directives will be included, when developed, to establish additional site-specific requirements to modify or clarify requirements in this plan as they apply to the corresponding site. A flowchart detailing project tasks required to accomplish routine sampling is displayed in Figure 1. LM environmental procedures are contained in the Environmental Procedures Catalog (LMS/PRO/S04325), which incorporates American Society for Testing and Materials (ASTM), DOE, and U.S. Environmental Protection Agency (EPA) guidance. Specific procedures used for groundwater and surface water monitoring are included in Appendix A. If other environmental media are monitored, SOPs used for air, soil/sediment, and biota monitoring can be found in the site-specific tabbed sections in Appendix D or in site-specific documents. The procedures in the Environmental Procedures Catalog are intended as general guidance and require additional detail from planning documents in order to be complete; the following sections fulfill that function and specify additional procedural requirements to form SOPs. Routine revision of this Sampling and Analysis Plan will be conducted annually at the

  4. Site specific seismic hazard analysis at the DOE Kansas City Plant

    SciTech Connect (OSTI)

    Lynch, D.T.; Drury, M.A.; Meis, R.C.; Bieniawski, A.; Savy, J.B.; Llopis, J.L.; Constantino, C.; Hashimoto, P.S.; Campbell, K.W.

    1995-10-01

    A site specific seismic hazard analysis is being conducted for the Kansas City Plant to support an on-going structural evaluation of existing buildings. This project is part of the overall review of facilities being conducted by DOE. The seismic hazard was probabilistically defined at the theoretical rock outcrop by Lawrence Livermore National Laboratory. The USArmy Engineer Waterways Experiment Station conducted a subsurface site investigation to characterize in situ S-wave velocities and other subsurface physical properties related to the geology in the vicinity of the Main Manufacturing Building (MMB) at the Bannister Federal Complex. The test program consisted of crosshole S-wave, seismic cone penetrometer testing,and laboratory soil analyses. The information acquired from this investigation was used in a site response analysis by City College of New York to determine the earthquake motion at grade. Ground response spectra appropriate for design and evaluation of Performance Category 1 and 2 structures, systems, and components were recommended. Effects of seismic loadings on the buildings will be used to aid in designing any structural modifications.

  5. Oil and gas exploration and development in Arizona

    SciTech Connect (OSTI)

    Nations, D.; Doss, A.K.; Ubarra, R.

    1984-07-01

    Recent oil and gas exploration activity has been widespread throughout Arizona. Development drilling has continued in the Dineh-bi-keyah and Teec-nos-Pos fields in the northeastern corner, and exploratory drilling continues to test potential Paleozoic reservoirs elsewhere on the plateau. Several shallow wells north of the Grand Canyon encountered shows and limited recoveries of oil from Permian and Triassic rocks. The greatest activity has occurred along the Overthrust trend from northwestern to southeastern Arizona. Several million acres were leased and eight exploratory wells drilled along this trend. None were discoveries, but the presence of a Laramide thrust fault in the vicinity of Tombstone was established. The other tests have neither proved nor disproved the concept of the Overthrust belt in southern Arizona. Recent discoveries in the nonmarine Tertiary and marine Paleozoic of southern Nevada have stimulated interest in the oil potential of similar rocks and structures in the Basin and Range province of Arizona, which are coincident with the Overthrust trend. Reported gas discoveries by Pemex in Miocene marine sediments of the Gulf of California have stimulated leasing in the Yuma area, where one uncompleted well is reported to be a potential producer. The Pedregosa basin of extreme southeastern Arizona remains an area of great interest to explorationists because of the presence of a 25,000-ft (7600-m) sequence of Paleozoic marine sediments similar to those of the Permian basin, and Cretaceous marine rocks, including coral-rudist reefs, similar to those that produce in Texas and Mexico.

  6. Fracture analysis and rock quality designation estimation for the Yucca Mountain Site Characterization Project; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Lin, M.; Hardy, M.P.; Bauer, S.J.

    1993-02-01

    Within the Yucca Mountain Site Characterization Project, the design of drifts and ramps and evaluation of the impacts of thermomechanical loading of the host rock requires definition of the rock mass mechanical properties. Ramps and exploratory drifts will intersect both welded and nonwelded tuffs with varying abundance of fractures. The rock mass mechanical properties are dependent on the intact rock properties and the fracture joint characteristics. An understanding of the effects of fractures on the mechanical properties of the rock mass begins with a detailed description of the fracture spatial location and abundance, and includes a description of their physical characteristics. This report presents a description of the abundance, orientation, and physical characteristics of fractures and the Rock Quality Designation in the thermomechanical stratigraphic units at the Yucca Mountain site. Data was reviewed from existing sources and used to develop descriptions for each unit. The product of this report is a data set of the best available information on the fracture characteristics.

  7. Dry Deposition Velocity Estimation for the Savannah River Site: Part 2 -- Parametric and Site-Specific Analysis

    SciTech Connect (OSTI)

    Napier, Bruce A.; Rishel, Jeremy P.; Cook, Kary M.

    2013-09-12

    Values for the dry deposition velocity of airborne particles were estimated with the GENII Version 2.10.1 computer code for the Savannah River site using assumptions about surface roughness parameters and particle size and density. Use of the GENII code is recommended by the U.S. Department of Energy for this purpose. Meteorological conditions evaluated include atmospheric stability classes D, E, and F and wind speeds of 0.5, 1.0, 1.5, and 2.0 m/s. Local surface roughness values ranging from 0.03 to 2 meters were evaluated. Particles with mass mean diameters of 1, 5, and 10 microns and densities of 1, 3, 4, and 5 g/cm3 were evaluated. Site specific meteorology was used to predict deposition velocity for Savannah River conditions for a range of distances from 670 to 11,500 meters.

  8. SWTC v. Arizona Corp. Comn, 142 P3d 1240 (2006) | Open Energy...

    Open Energy Info (EERE)

    SWTC v. Arizona Corp. Comn, 142 P3d 1240 (2006) Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal CaseHearing: SWTC v. Arizona Corp. Comn, 142 P3d 1240...

  9. Apache County, Arizona ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    Apache County, Arizona ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Apache County, Arizona ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

  10. Fire hazards analysis for the replacement cross-site transfer system, project W-058

    SciTech Connect (OSTI)

    Sepahpur, J.B.

    1996-02-14

    The fire hazards analysis assess the risk from fire and determines compliance with the applicable criteria of DOE 5480.7A, DOE 6430.1A, and RLID 5480.7. (Project W-058 will provide encased pipelines to connect the SY Tank Farms in 200 West Area with the tank farms in 200 East Area via an interface with the 244-A lift station. Function of the cross-site transfer system will be to transfer radioactive waste from the SY Tank Farm to treatment, storage, and disposal facilities in 200 East Area.)

  11. Lead test assembly irradiation and analysis Watts Bar Nuclear Plant, Tennessee and Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    1997-07-01

    The U.S. Department of Energy (DOE) needs to confirm the viability of using a commercial light water reactor (CLWR) as a potential source for maintaining the nation`s supply of tritium. The Proposed Action discussed in this environmental assessment is a limited scale confirmatory test that would provide DOE with information needed to assess that option. This document contains the environmental assessment results for the Lead test assembly irradiation and analysis for the Watts Bar Nuclear Plant, Tennessee, and the Hanford Site in Richland, Washington.

  12. Analysis Summary of an Assembled Western U.S. Dataset

    SciTech Connect (OSTI)

    Ryall, F

    2005-03-22

    The dataset for this report is described in Walter et al. (2004) and consists primarily of Nevada Test Site (NTS) explosions, hole collapse and earthquakes. In addition, there were several earthquakes in California and Utah; earthquakes recorded near Cataract Creek, Arizona; mine blasts at two areas in Arizona; and two mine collapses in Wyoming. In the vicinity of NTS there were mainshock/aftershock sequences at Little Skull Mt, Scotty's Junction and Hector ere mine. All the events were shallow and distances ranged from about 0.1 degree to regional distances. All of the data for these events were carefully reviewed and analyzed. In the following sections of the report, we describe analysis procedures, problems with the data and results of analysis.

  13. In Arizona, Helping Communities Realize the Promise of Solar Power |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy In Arizona, Helping Communities Realize the Promise of Solar Power In Arizona, Helping Communities Realize the Promise of Solar Power May 15, 2012 - 3:07pm Addthis 1 of 4 Image: Darrylee Cohen 2 of 4 Image: Darrylee Cohen 3 of 4 Image: Darrylee Cohen 4 of 4 Image: Darrylee Cohen Greg Stanton Greg Stanton Mayor, City of Phoenix What are the key facts? The City of Phoenix launched Solar Phoenix 2, the largest city-sponsored residential solar program. Solar Phoenix 2 puts

  14. EMP Attachment 1 DOE-SC PNNL Site Sampling and Analysis Plan

    SciTech Connect (OSTI)

    Meier, Kirsten M.

    2011-11-10

    This Sampling and Analysis Plan (SAP) is written for the radiological environmental air surveillance program for the DOE-SC PNNL Site, Richland Washington. It provides the requirements for planning sampling events, and the requirements imposed on the analytical laboratory analyzing the air samples. The actual air sampling process is in procedure EPRP-AIR-029. The rationale for analyte selection, media, and sampling site location has been vetted through the data quality objectives (DQO) process (Barnett et al. 2010). The results from the DQO process have been reviewed and approved by the Washington State Department of Health. The DQO process (Barnett et al. 2010) identified seven specific radionuclides for analysis along with the need for gross alpha and gross beta radiological analyses. The analytes are {sup 241}Am, {sup 243}Am, {sup 244}Cm, {sup 60}Co, {sup 238}Pu, {sup 239}Pu, and {sup 233}U. The report also determined that air samples for particulates are the only sample matrix required for the monitoring program. These samples are collected on 47-mm glass-fiber filters.

  15. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Arizona (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Arizona. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Arizona to be $1.15 billion, annual CO2 reductions are estimated at 2.0 million tons, and annual water savings are 818 million gallons.

  16. Enterprise Assessments, Review of the Hanford Site Sludge Treatment Project Engineered Container Retrieval and Transfer System Preliminary Documented Safety Analysis, Revision 00- April 2015

    Office of Energy Efficiency and Renewable Energy (EERE)

    Review of Hanford Site Sludge Treatment Project Engineering Container Retrieval and Transfer System Preliminary Documented Safety Analysis

  17. Energy Department, Arizona Utilities Announce Transmission Infrastructure Project Energization

    Broader source: Energy.gov [DOE]

    Today, the Department of Energy’s Western Area Power Administration (Western) and a group of Arizona utilities celebrated the energizing of a new transmission infrastructure project that will serve the state’s growing electrical energy needs, attract renewable energy development to the area, and strengthen the transmission system in the Southwestern United States.

  18. EIS-0417: South Mountain Freeway (Loop 202); Phoenix, Arizona

    Broader source: Energy.gov [DOE]

    Federal Highway Administration and Arizona Department of Transportation, with Western Area Power Administration as a cooperating agency, prepared an EIS that analyzes the potential environmental impacts of the proposed South Mountain Freeway (Loop 202) project in the Greater Metropolitan Phoenix Area.

  19. EA-1989: Cliffrose Solar Energy Interconnection Project, Mohave County, Arizona

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration (Western) is preparing an EA that will assess the potential environmental impacts of interconnecting the proposed Cliffrose Solar Energy Project in Mohave County, Arizona, to Western’s transmission system at the existing Griffith Substation. Additional information is available at http://www.wapa.gov/dsw/environment/CliffroseSolarEnergyProject.html.

  20. EIS-0297: Griffith Energy Project, Mohave County, Arizona

    Broader source: Energy.gov [DOE]

    Western Area Power Administration (Western) intends to prepare an environmental impact statement (EIS) regarding the proposal by Griffith Energy (GE), LLC, to construct an electric generating facility on private property and to interconnect this facility with Western’s system in the vicinity of Kingman, Arizona.

  1. EIS-0441: Mohave County Wind Farm Project, Mohave County, Arizona

    Broader source: Energy.gov [DOE]

    This EIS, prepared by the Bureau of Land Management with DOE’s Western Area Power Administration as a cooperating agency, evaluated the environmental impacts of a proposed wind energy project on public lands in Mohave County, Arizona. Power generated by this project would tie to the electrical power grid through an interconnection to one of Western’s transmission lines.

  2. Lower Columbia River and Estuary Ecosystem Restoration Program Reference Site Study: 2011 Restoration Analysis - FINAL REPORT

    SciTech Connect (OSTI)

    Borde, Amy B.; Cullinan, Valerie I.; Diefenderfer, Heida L.; Thom, Ronald M.; Kaufmann, Ronald M.; Zimmerman, Shon A.; Sagar, Jina; Buenau, Kate E.; Corbett, C.

    2012-05-31

    The Reference Site (RS) study is part of the research, monitoring, and evaluation (RME) effort developed by the Action Agencies (Bonneville Power Administration [BPA], U.S. Army Corps of Engineers, Portland District [USACE], and U.S. Bureau of Reclamation) in response to Federal Columbia River Power System (FCRPS) Biological Opinions (BiOp). While the RS study was initiated in 2007, data have been collected at relatively undisturbed reference wetland sites in the LCRE by PNNL and collaborators since 2005. These data on habitat structural metrics were previously summarized to provide baseline characterization of 51 wetlands throughout the estuarine and tidal freshwater portions of the 235-km LCRE; however, further analysis of these data has been limited. Therefore, in 2011, we conducted additional analyses of existing field data previously collected for the Columbia Estuary Ecosystem Restoration Program (CEERP) - including data collected by PNNL and others - to help inform the multi-agency restoration planning and ecosystem management work underway in the LCRE.

  3. Siting and Barrier Mitigation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Tool for Siting, Planning, and Encroachment Analysis for Renewables The Department of ... the Tool for Siting, Planning, and Encroachment Analysis for Renewables (TSPEAR). ...

  4. EIS-0308-SA-01: Supplement Analysis | Department of Energy

    Energy Savers [EERE]

    with the Western Area Power Administration's (Western) Parker-Davis project in western Arizona. PDF icon DOEEIS-0308-SA-1: Supplement Analysis Southpoint Power Project (March...

  5. Structure analysis reveals the flexibility of the ADAMTS-5 active site

    SciTech Connect (OSTI)

    Shieh, Huey-Sheng; Tomasselli, Alfredo G.; Mathis, Karl J.; Schnute, Mark E.; Woodard, Scott S.; Caspers, Nicole; Williams, Jennifer M.; Kiefer, James R.; Munie, Grace; Wittwer, Arthur; Malfait, Anne-Marie; Tortorella, Micky D.

    2012-03-02

    A ((1S,2R)-2-hydroxy-2,3-dihydro-1H-inden-1-yl) succinamide derivative (here referred to as Compound 12) shows significant activity toward many matrix metalloproteinases (MMPs), including MMP-2, MMP-8, MMP-9, and MMP-13. Modeling studies had predicted that this compound would not bind to ADAMTS-5 (a disintegrin and metalloproteinase with thrombospondin motifs-5) due to its shallow S1' pocket. However, inhibition analysis revealed it to be a nanomolar inhibitor of both ADAMTS-4 and -5. The observed inconsistency was explained by analysis of crystallographic structures, which showed that Compound 12 in complex with the catalytic domain of ADAMTS-5 (cataTS5) exhibits an unusual conformation in the S1' pocket of the protein. This first demonstration that cataTS5 can undergo an induced conformational change in its active site pocket by a molecule like Compound 12 should enable the design of new aggrecanase inhibitors with better potency and selectivity profiles.

  6. Analysis of loss of off-site power ATWS in VVER-440 concept

    SciTech Connect (OSTI)

    Hoeppner, G.; Siltanen, P.; Kotro, J.

    1987-01-01

    During 1985 the Finnish state-owned utility Imatran Voima Oy signed a work order with Gesellschaft fuer Reaktorsicherheit mbH of the Federal Republic of Germany (GRS) for the analysis of abnormal transients in a pressurized water reactor (PWR) concept based on a Soviet design. The results of these calculations were intended to be introduced into the licensing process and to support a decision to build such a nuclear power station. A computer model was constructed of the VVER-440 concept, a 500-MW(electric) PWR designed in the USSR and modified for Finland. The ALMOD4 code, developed at GRS, was used for the investigation. The ALMOD4 code is a fast running code for the analysis of operational and abnormal transients in PWRs. Input data were set up to calculate anticipated transients without scram, most notably the loss of off-site power case. One-dimensional neutron kinetics was used to correctly model the neutronics feedback of axially distributed moderator density and fuel temperature in a changing axial power profile. Interlocking signals and the engineered safety systems were modeled to assess the overall systems response to this abnormal transient. Special analytical problems were encountered since a detailed and verified model of the steam generator (SG) with horizontally positioned heat exchanger tubes was not available. Therefore, two bounding calculations were performed with different SG models.

  7. Surface Spectral Albedo Intensive Operational Period at the ARM SGP Site in august 2002: Results, Analysis, and Future Plans

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectral Albedo Intensive Operational Period at the ARM SGP Site in August 2002: Results, Analysis, and Future Plans A. P. Trishchenko and Y. Luo Canada Centre for Remote Sensing Ottawa, Ontario, Canada M. C. Cribb and Z. Li University of Maryland College Park, Maryland K. Hamm University of Oklahoma Norman, Oklahoma Introduction A surface spectral albedo Intensive Operational Period (IOP) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site was conducted during August

  8. SALINITY AND SODICITY INTERACTIONS OF WEATHERED MINESOILS IN NORTHWESTERN NEW MEXICO AND NORTH EASTERN ARIZONA

    SciTech Connect (OSTI)

    Brent Musslewhite; Song Jin

    2006-05-01

    Weathering characteristics of minesoils and rooting patterns of key shrub and grass species were evaluated at sites reclaimed for 6 to 14 years from three surface coal mine operations in northwestern New Mexico and northeastern Arizona. Non-weathered minesoils were grouped into 11 classifications based on electrical conductivity (EC) and sodium adsorption ratio (SAR). Comparisons of saturated paste extracts, from non-weathered and weathered minesoils show significant (p < 0.05) reductions in SAR levels and increased EC. Weathering increased the apparent stability of saline and sodic minesoils thereby reducing concerns of aggregate slaking and clay particle dispersion. Root density of four-wing saltbush (Atriplex canascens), alkali sacaton (Sporobolus airoides), and Russian wildrye (Psathyrostachys junceus) were nominally affected by increasing EC and SAR levels in minesoil. Results suggest that saline and sodic minesoils can be successfully reclaimed when covered with topsoil and seeded with salt tolerant plant species.

  9. Heteromorphism and crystallization paths of katungites, Navajo volcanic field, Arizona, USA

    SciTech Connect (OSTI)

    Laughlin, A.W.; Charles, R.W.; Aldrich, M.J. Jr.

    1986-01-01

    A swarm of thin, isochemical but heteromorphic dikes crops out in the valley of Hasbidito Creek in NE Arizona. The swarm is part of the dominantly potassic, mid-Tertiary Navajo volcanic field of the Colorado Plateau. Whole-rock chemical analyses of five samples from four of the dikes indicate that they are chemically identical to the katungites of Uganda. These dikes show the characteristic seriate-porphyritic texture of lamprophyres. Samples of an olivine-melilitite dike from the same swarm lack this texture and the chemical analysis, while similar to those of the other dikes, shows effects from the incorporation of xenocrystic olivine. Over 20 mineral phases have been identified in the Arizona samples and as many as 18 phases may occur in a single sample. The major phases are phlogopite, olivine, perovskite, opaque oxides, +- melilite and +- clinopyroxene. Based upon the modal mineralogies and textures of ten dike samples, we recognize five general non-equilibrium assemblages. Comparison of these assemblages with recent experimental results shows that they represent various combinations of complete and incomplete reactions. Reaction relations were determined by entering melt and phase compositions into the computer program GENMIX to obtain balanced reactions. By combining petrographic observations with mineral chemical data, balanced reactions from GENMIX, and the recently determined phase diagrams we are able to trace crystallization paths for the katungite magma.

  10. Dingell_to_Bodman_0206.pdf

    Office of Environmental Management (EM)

    City, Arizona, Site | Department of Energy Diffusion Multilayer Sampling of Ground Water in Five Wells at the Tuba City, Arizona, Site Diffusion Multilayer Sampling of Ground Water in Five Wells at the Tuba City, Arizona, Site Diffusion Multilayer Sampling of Ground Water in Five Wells at the Tuba City, Arizona, Site Diffusion Multilayer Sampling of Ground Water in Five Wells at the Tuba City, Arizona, Site (1.57 MB) More Documents & Publications Analysis of MSE Cores Tuba City, Arizona,

  11. The effects of indoor pollution on Arizona children

    SciTech Connect (OSTI)

    Dodge, R.

    1982-05-01

    The respiratory health of a large group of Arizona school children who have been exposed to indoor pollutants-tobacco smoke and home cooking fumes-is reported. A significant relationship was found between parental smoking and symptoms of cough, wheeze, and sputum production. Also, children in homes where gas cooking fuel was used had higher rates of cough than children in homes where electricity was used. No differences in pulmonary function or yearly lung growth rates occurred among subjects grouped by exposure to tobacco smoke or cooking fuel. Thus, parental smoking and home cooking fuel affected cross-sectional respiratory symptom rates in a large group of Arizona school children. Study of pulmonary function, however, revealed no lung function or lung growth effects during 4 yr of study.

  12. EA-2023: Crossman Peak Communications Facility; Mohave County, Arizona

    Broader source: Energy.gov [DOE]

    Western Area Power Administration is preparing an EA that assesses the potential environmental impacts of a proposed new microwave communication facility to be located adjacent to a privately-owned one near Crossman Peak, east of Lake Havasu City in Mohave County, Arizona. The proposal would consist of a microwave communication facility, an access road, and an approximately 8-mile electrical service distribution line across private land and land administered by the Bureau of Land Management.

  13. Northern Arizona University Final Report: Telecom Energy Solutions

    Broader source: Energy.gov (indexed) [DOE]

    Written Report Submitted to: U.S. Department of Energy Submitted toward fulfillment of the 2016 Collegiate Wind Competition Due: May 1 st , 2016 Submitted: April 30 th , 2016 From: Northern Arizona University Collegiate Wind Competition Team Flagstaff, AZ 86011 Principal Investigator: Karin Wadsack (Karin.Wadsack@nau.edu) NAU Student Team Lead: Michael Wertz (mcw233@nau.edu) Team comprised of: 3 Faculty Mentors 18 Undergraduate Engineering Students 16 Undergraduate Business Students Engineering

  14. Analysis of Fracture in Cores from the Tuff Confining Unit beneath Yucca Flat, Nevada Test Site

    SciTech Connect (OSTI)

    Lance Prothro

    2008-03-01

    The role fractures play in the movement of groundwater through zeolitic tuffs that form the tuff confining unit (TCU) beneath Yucca Flat, Nevada Test Site, is poorly known. This is an important uncertainty, because beneath most of Yucca Flat the TCU lies between the sources of radionuclide contaminants produced by historic underground nuclear testing and the regional carbonate aquifer. To gain a better understanding of the role fractures play in the movement of groundwater and radionuclides through the TCU beneath Yucca Flat, a fracture analysis focusing on hydraulic properties was performed on conventional cores from four vertical exploratory holes in Area 7 of Yucca Flat that fully penetrate the TCU. The results of this study indicate that the TCU is poorly fractured. Fracture density for all fractures is 0.27 fractures per vertical meter of core. For open fractures, or those observed to have some aperture, the density is only 0.06 fractures per vertical meter of core. Open fractures are characterized by apertures ranging from 0.1 to 10 millimeter, and averaging 1.1 millimeter. Aperture typically occurs as small isolated openings along the fracture, accounting for only 10 percent of the fracture volume, the rest being completely healed by secondary minerals. Zeolite is the most common secondary mineral occurring in 48 percent of the fractures observed.

  15. A Low-threshold Analysis of CDMS Shallow-site Data

    SciTech Connect (OSTI)

    Akerib, D.S.; Attisha, M.J.; Baudis, L.; Bauer, D.A.; Bolozdynya, A.I.; Brink, P.L.; Bunker, R.; Cabrera, B.; Caldwell, D.O.; Chang, C.L.; Clarke, R.M.; Cooley, J.; Crisler, M.B.; Cushman, P.; DeJongh, F.; Dixon, R.; Driscoll, D.D.; Filippini, J.; Funkhouser, S.; Gaitskell, R.J.; Golwala, S.R.; /Caltech /Fermilab /Fermilab /Colorado U., Denver /Case Western Reserve U. /Texas A-M /Minnesota U. /UC, Berkeley /UC, Berkeley /Caltech /Stanford U., Phys. Dept. /UC, Santa Barbara /Stanford U., Phys. Dept. /Minnesota U. /Queen's U., Kingston /Minnesota U. /St. Olaf Coll. /Florida U. /LBL, Berkeley /UC, Berkeley /Texas A-M /UC, Santa Barbara /Syracuse U. /UC, Berkeley /Princeton U. /Case Western Reserve U. /Stanford U., Phys. Dept. /UC, Santa Barbara /Fermilab /Santa Clara U.

    2012-06-04

    Data taken during the final shallow-site run of the first tower of the Cryogenic Dark Matter Search (CDMS II) detectors have been reanalyzed with improved sensitivity to small energy depositions. Four {approx}224 g germanium and two {approx}105 g silicon detectors were operated at the Stanford Underground Facility (SUF) between December 2001 and June 2002, yielding 118 live days of raw exposure. Three of the germanium and both silicon detectors were analyzed with a new low-threshold technique, making it possible to lower the germanium and silicon analysis thresholds down to the actual trigger thresholds of {approx}1 and {approx}2 keV, respectively. Limits on the spin-independent cross section for weakly interacting massive particles (WIMPs) to elastically scatter from nuclei based on these data exclude interesting parameter space for WIMPs with masses below 9 GeV/c{sup 2}. Under standard halo assumptions, these data partially exclude parameter space favored by interpretations of the DAMA/LIBRA and CoGeNT experiments data as WIMP signals, and exclude new parameter space for WIMP masses between 3 and 4 GeV/c{sup 2}.

  16. Analysis of source spectra, attenuation, and site effects from central and eastern United States earthquakes

    SciTech Connect (OSTI)

    Lindley, G.

    1998-02-01

    This report describes the results from three studies of source spectra, attenuation, and site effects of central and eastern United States earthquakes. In the first study source parameter estimates taken from 27 previous studies were combined to test the assumption that the earthquake stress drop is roughly a constant, independent of earthquake size. 200 estimates of stress drop and seismic moment from eastern North American earthquakes were combined. It was found that the estimated stress drop from the 27 studies increases approximately as the square-root of the seismic moment, from about 3 bars at 10{sup 20} dyne-cm to 690 bars at 10{sup 25} dyne-cm. These results do not support the assumption of a constant stress drop when estimating ground motion parameters from eastern North American earthquakes. In the second study, broadband seismograms recorded by the United States National Seismograph Network and cooperating stations have been analysed to determine Q{sub Lg} as a function of frequency in five regions: the northeastern US, southeastern US, central US, northern Basin and Range, and California and western Nevada. In the third study, using spectral analysis, estimates have been made for the anelastic attenuation of four regional phases, and estimates have been made for the source parameters of 27 earthquakes, including the M{sub b} 5.6, 14 April, 1995, West Texas earthquake.

  17. Technical Scope and Approach for the 2004 Composite Analysis of Low Level Waste Disposal at the Hanford Site

    SciTech Connect (OSTI)

    Kincaid, Charles T.; Bryce, Robert W.; Buck, John W.

    2004-07-09

    A composite analysis is required by U.S. Department of Energy (DOE) Manual 435.1-1 to ensure public safety through the management of active and planned low-level radioactive waste disposal facilities associated with the Hanford Site (DOE/HQ-Manual 435.1-1). A Composite Analysis is defined as ''a reasonably conservative assessment of the cumulative impact from active and planned low-level waste disposal facilities, and all other sources from radioactive contamination that could interact with the low-level waste disposal facility to affect the dose to future members of the public''. At the Hanford Site, a composite analysis is required for continued disposal authorization for the immobilized low-activity waste, tank waste vitrification plant melters, low level waste in the 200 East and 200 West Solid Waste Burial Grounds, and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) waste in the Environmental Restoration Disposal Facility. The 2004 Composite Analysis will be a site-wide analysis, considering final remedial actions for the Columbia River corridor and the Central Plateau at the Hanford Site. The river corridor includes waste sites and facilities in each of the 100 Areas as well as the 300, 400, and 600 Areas. The remedial actions for the river corridor are being conducted to meet residential land use standards with the vision of the river corridor being devoted to a combination of recreation and preservation. The ''Central Plateau'' describes the region associated with operations and waste sites of the 200 Areas. DOE is developing a strategy for closure of the Central Plateau area by 2035. At the time of closure, waste management activities will shrink to a Core Zone within the Central Plateau. The Core Zone will contain the majority of Hanford's permanently disposed waste

  18. Analysis of long-term impacts of TRU waste remaining at generator/storage sites for No Action Alternative 2

    SciTech Connect (OSTI)

    Buck, J.W.; Bagaasen, L.M.; Bergeron, M.P.; Streile, G.P.

    1997-09-01

    This report is a supplement to the Waste Isolation Pilot Plant Disposal-Phase Final Supplemental Environmental Impact Statement (SEIS-II). Described herein are the underlying information, data, and assumptions used to estimate the long-term human-health impacts from exposure to radionuclides and hazardous chemicals in transuranic (TRU) waste remaining at major generator/storage sites after loss of institutional control under No Action Alternative 2. Under No Action Alternative 2, TRU wastes would not be emplaced at the Waste Isolation Pilot Plant (WIPP) but would remain at generator/storage sites in surface or near-surface storage. Waste generated at smaller sites would be consolidated at the major generator/storage sites. Current TRU waste management practices would continue, but newly generated waste would be treated to meet the WIPP waste acceptance criteria. For this alternative, institutional control was assumed to be lost 100 years after the end of the waste generation period, with exposure to radionuclides and hazardous chemicals in the TRU waste possible from direct intrusion and release to the surrounding environment. The potential human-health impacts from exposure to radionuclides and hazardous chemicals in TRU waste were analyzed for two different types of scenarios. Both analyses estimated site-specific, human-health impacts at seven major generator/storage sites: the Hanford Site (Hanford), Idaho National Engineering and Environmental Laboratory (INEEL), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Rocky Flats Environmental Technology Site (RFETS), and Savannah River Site (SRS). The analysis focused on these seven sites because 99 % of the estimated TRU waste volume and inventory would remain there under the assumptions of No Action Alternative 2.

  19. EPA RE-Powering America's Lands: Kansas City Municipal Farm Site -- Biomass Power Analysis

    SciTech Connect (OSTI)

    Hunsberger, R.; Mosey, G.

    2015-01-01

    Through the RE-Powering America's Land initiative, the economic and technical feasibility of utilizing biomass at the Kansas City, Missouri, Municipal Farm site, a group of City-owned properties, is explored. The study that none of the technologies we reviewed--biomass heat, power and CHP--are economically viable options for the Municipal Farms site. However, if the site were to be developed around a future central biomass heating or CHP facility, biomass could be a good option for the site.

  20. Impacts of High Penetration of PV with Energy Storage at Flagstaff Arizona

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Impacts of High Penetration of PV with Energy Storage at Flagstaff Arizona Impacts of High Penetration of PV with Energy Storage at Flagstaff Arizona aps-logo.gif --This project is inactive -- The project team, led by Arizona Public Service, will evaluate the impacts of high penetrations of distributed PV and energy storage on a dedicated feeder to identify the technical and operational modifications that could be deployed in future feeder designs. APPROACH Models

  1. PP-107-1 Arizona Public Service Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presidential permit authorizing Arizona Public Service Company to construct, operate, and maintain electric transmission facilities at the U.S-Mexico border. PDF icon PP-107-1 ...

  2. Could Gila Bend, Arizona, Become the Solar Capital of the World?

    Broader source: Energy.gov [DOE]

    Serving approximately 9,000 homes with clean renewable energy, the Paloma and Cotton Center solar plants highlight the rapidly rising solar corridor in Gila Bend, Arizona.

  3. Top-of-the-World, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Top-of-the-World, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.3494997, -110.9926154 Show Map Loading map......

  4. Remote Sensing Analysis of the Sierra Blanca (Faskin Ranch) Low-Level Radioactive Waste Disposal Site, Hudspeth County, Texas

    SciTech Connect (OSTI)

    LeMone, D. V.; Dodge, R.; Xie, H.; Langford, R. P.; Keller, G. R.

    2002-02-26

    Remote sensing images provide useful physical information, revealing such features as geological structure, vegetation, drainage patterns, and variations in consolidated and unconsolidated lithologies. That technology has been applied to the failed Sierra Blanca (Faskin Ranch) shallow burial low-level radioactive waste disposal site selected by the Texas Low-Level Radioactive Waste Disposal Authority. It has been re-examined using data from LANDSAT satellite series. The comparison of the earlier LANDSAT V (5/20/86) (30-m resolution) with the later new, higher resolution ETM imagery (10/23/99) LANDSAT VII data (15-m resolution) clearly shows the superiority of the LANDSAT VII data. The search for surficial indications of evidence of fatal flaws at the Sierra Blanca site utilizing was not successful, as it had been in the case of the earlier remote sensing analysis of the failed Fort Hancock site utilizing LANDSAT V data. The authors conclude that the tectonic activity at the Sierra Blanca site is much less recent and active than in the previously studied Fort Hancock site. The Sierra Blanca site failed primarily on the further needed documentation concerning a subsurface fault underneath the site and environmental justice issues. The presence of this fault was not revealed using the newer LANDSAT VII data. Despite this fact, it must be remembered that remote sensing provides baseline documentation for determining future physical and financial remediation responsibilities. On the basis of the two sites examined by LANDSAT remote sensing imaging, it is concluded that it is an essential, cost-effective tool that should be utilized not only in site examination but also in all nuclear-related facilities.

  5. Recommendations on Alternative Analysis in Site-wide NEPA Reviews (1992)

    Broader source: Energy.gov [DOE]

    The purpose of this memorandum is to recommend the treatment of the proposed action and the no action alternatives in site-wide National Environmental Policy Act reivews that are prepared for continuing and reasonably foreseeable future actions at DOE sites.

  6. Recommendations on Alternative Analysis in Site-wide NEPA Reviews (DOE, 1992)

    Broader source: Energy.gov [DOE]

    The purpose of this memorandum is to recommend the treatment of the proposed action and the no action alternatives in site-wide National Environmental Policy Act reivews that are prepared for continuing and reasonably foreseeable future actions at DOE sites.

  7. Enterprise Assessments Review of the Hanford Site Waste Treatment and Immobilization Plant Hazards Analysis Report for the Low-Activity Waste Facility Reagent Systems – July 2015

    Office of Energy Efficiency and Renewable Energy (EERE)

    Review of the Hanford Site Waste Treatment and Immobilization Plant Hazards Analysis Report for the Low-Activity Waste Facility Reagent Systems

  8. Preliminary Analysis of Grande Ronde Basalt Formation Flow Top Transmissivity as it Relates to Assessment and Site Selection Applications for Fluid/Energy Storage and Sequestration Projects

    SciTech Connect (OSTI)

    Spane, Frank A.

    2013-04-29

    Preliminary Analysis of Grande Ronde Basalt Formation Flow Top Transmissivity as it Relates to Assessment and Site Selection Applications for Fluid/Energy Storage and Sequestration Projects

  9. Double ended chilled water distribution system flow control at the Univeristy of Arizona

    SciTech Connect (OSTI)

    Johnstone, H.; Womack, W.; Notary, B.

    1996-12-31

    This paper describes the analysis effort and resultant primary flow control strategy for an intensely interconnected chilled water distribution system that is fed by production plants at opposing ends. A brief description of the evolution of the existing campus chilled water distribution systems at the University of Arizona is followed by a statement of a problem common to many expanding chilled water distribution systems. This problem relates to the optimal control of dissimilar yet interconnected pumping and production plants. A simple hydraulic modeling spreadsheet with coupled graphical representation developed for the UA system is presented. The surprisingly simple control strategies designed for the UA system will be explained. The use of the simplified modeling approach as a long range production and distribution system planning tool will be explored. Conclusions on the applicability of the simplified approach and the extension of the UA distribution system control strategies to other district chilled water systems will be drawn.

  10. Soil structural analysis tools and properties for Hanford site waste tank evaluation

    SciTech Connect (OSTI)

    Moore, C.J.; Holtz, R.D.; Wagenblast, G.R.; Weiner, E.D.; Marlow, R.S.

    1995-09-01

    As Hanford Site contractors address future structural demands on nuclear waste tanks, built as early as 1943, it is necessary to address their current safety margins and ensure safe margins are maintained. Although the current civil engineering practice guidelines for soil modeling are suitable as preliminary design tools, future demands potentially result in loads and modifications to the tanks that are outside the original design basis and current code based structural capabilities. For example, waste removal may include cutting a large hole in a tank. This report addresses both spring modeling of site soils and finite-element modeling of soils. Additionally seismic dynamic modeling of Hanford Site soils is also included. Of new and special interest is Section 2.2 that Professor Robert D. Holtz of the University of Washington wrote on plane strain soil testing versus triaxial testing with Hanford Site application to large buried waste tanks.

  11. Bescorp soil washing system for lead battery site treatment. Applications analysis report. Project report

    SciTech Connect (OSTI)

    Gaire, R.J.

    1995-01-01

    The Brice Environmental Services Corporation (BESCORP) Soil Washing System (BSWS) and its applicability in remediating lead-contaminated soil at lead battery sites was evaluated. The report presents performance and economic data, developed from the U.S. Environmental Protection Agency Superfund Innovative Technology Evaluation (SITE) demonstration (three test runs) and additional data provided by the developer. The demonstration took place at the Alaskan Battery Enterprises (ABE) site in Fairbanks, Alaska. Economic data for a commercial 20-tph unit processing wastes similar to those treated in the SITE Demonstration, including disposal of waste effluents, project operating costs to be about $165/ton of soil (dry basis) containing 6.6 wt percent moisture. This figure does not reflect any revenue from recycling of metallic lead or cashing chips.

  12. ALL-PATHWAYS DOSE ANALYSIS FOR THE PORTSMOUTH ON-SITE WASTE DISPOSAL FACILITY

    SciTech Connect (OSTI)

    Smith, F.; Phifer, M.

    2014-04-10

    A Portsmouth On-Site Waste Disposal Facility (OSWDF) All-Pathways analysis has been conducted that considers the radiological impacts to a resident farmer. It is assumed that the resident farmer utilizes a farm pond contaminated by the OSWDF to irrigate a garden and pasture and water livestock from which food for the resident farmer is obtained, and that the farmer utilizes groundwater from the Berea sandstone aquifer for domestic purposes (i.e. drinking water and showering). As described by FBP 2014b the Hydrologic Evaluation of Landfill Performance (HELP) model (Schroeder et al. 1994) and the Surface Transport Over Multiple Phases (STOMP) model (White and Oostrom 2000, 2006) were used to model the flow and transport from the OSWDF to the Points of Assessment (POAs) associated with the 680-ft elevation sandstone layer (680 SSL) and the Berea sandstone aquifer. From this modeling the activity concentrations radionuclides were projected over time at the POAs. The activity concentrations were utilized as input to a GoldSimTM (GTG 2010) dose model, described herein, in order to project the dose to a resident farmer over time. A base case and five sensitivity cases were analyzed. The sensitivity cases included an evaluation of the impacts of using a conservative inventory, an uncased well to the Berea sandstone aquifer, a low waste zone uranium distribution coefficient (Kd), different transfer factors, and reference person exposure parameters (i.e. at 95 percentile). The maximum base case dose within the 1,000 year assessment period was projected to be 1.5E-14 mrem/yr, and the maximum base case dose at any time less than 10,000 years was projected to be 0.002 mrem/yr. The maximum projected dose of any sensitivity case was approximately 2.6 mrem/yr associated with the use of an uncased well to the Berea sandstone aquifer. This sensitivity case is considered very unlikely because it assumes leakage from the location of greatest concentration in the 680 SSL in to the

  13. Implementation of Revision 19 of the TRUPACT-II Safety Analysis Report at Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    D'Amico, E.; O'Leary, J.; Bell, S.; Djordjevic, S.; Givens, C,; Shokes, T.; Thompson, S.; Stahl, S.

    2003-02-25

    The U.S. Nuclear Regulatory Commission on July 27, 2001 approved Revision 19 of the TRUPACT-II Safety Analysis Report (SAR) and the associated TRUPACT-II Authorized Methods for Payload Control (TRAMPAC). Key initiatives in Revision 19 included matrix depletion, unlimited mixing of shipping categories, a flammability assessment methodology, and an alternative methodology for the determination of flammable gas generation rates. All U.S. Department of Energy (DOE) sites shipping transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) were required to implement Revision 19 methodology into their characterization and waste transportation programs by May 20, 2002. An implementation process was demonstrated by the Rocky Flats Environmental Technology Site (RFETS) in Golden, Colorado. The three-part process used by RFETS included revision of the site-specific TRAMPAC, an evaluation of the contact-handled TRU waste inventory against the regulations in Revision 19, and design and development of software to facilitate future inventory analyses.

  14. FTCP Site Specific Information - Nuclear Energy Oak Ridge Site...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Energy Oak Ridge Site Office FTCP Site Specific Information - Nuclear Energy Oak Ridge Site Office Annual Workforce Analysis and Staffing Plan Report Calendar Year 2013...

  15. Analysis of the Interaction of the Eg5 Loop5 with the Nucleotide Site

    SciTech Connect (OSTI)

    Harrington, Timothy D.; Naber, Nariman; Larson, Adam G.; Cooke, Roger; Rice, Sarah E.; Pate, Edward F.

    2011-11-21

    Loop 5 (L5) is a conserved loop that projects from the α2-helix adjacent to the nucleotide site of all kinesin-family motors. L5 is critical to the function of the mito tickinesin-5 family motors and is the binding site for several kinesin-5 inhibitors that are currently in clinical trials. Its conformational dynamics and its role in motor function are not fully understood. Our previous work using EPR spectroscopy suggested that L5 alters the nucleotide pocket conformation of the kinesin-5 motor Eg5 (Larsonetal.,2010). EPR spectra of a spin-labeled nucleotide analog bound at the nucleotide site of Eg5 display a highly immobilized component that is absent if L5 is shortened or if the inhibitor STLC is added (Larson etal.,2010), which X-ray structures suggest stabilizes an L5 conformation pointing away from the nucleotide site. These data, coupled with the proximity of L5 to the nucleotide site suggest L5 could interact with a bound nucleotide, modulating function. Here we use molecular dynamics (MD) simulations of Eg5 to explore the interaction of L5 with the nucleotide site in greater detail. We performed MD simulations in which the L5-domain of the Eg5•ADP X-ray structure was manually deformed via backbone bond rotations. The L5-domain of Eg5 was sufficiently lengthy that portions of L5 could belocated in proximity to bound ADP. The MD simulations evolved to thermodynamically stable structures at 300K showing that L5 can interact directly with bound nucleotide with significant impingement on the ribosehydroxyls, consistent with the EPR spectroscopy results. Taken together, these data provide support for the hypothes is that L5 modulates Eg5 function via interaction with the nucleotide-binding site.

  16. Evaluation of geothermal energy in Arizona. Arizona geothermal planning/commercialization team. Quarterly topical progress report, April 1-June 30, 1980

    SciTech Connect (OSTI)

    White, D.H.; Mancini, F.; Goldstone, L.A.; Malysa, L.

    1980-06-30

    Progress is reported on the following: geothermal prospect identification, area development plans, site specific development analysis, time phased project plans, institutional analysis, hydrothermal commercialization baseline report, and the public outreach program. (MHR)

  17. National Uranium Resource Evaluation: Kingman Quadrangle, Arizona, Nevada, and California

    SciTech Connect (OSTI)

    Luning, R.H.; Penley, H.M.; Johnson, C.L.; Dotterrer, F.E.

    1982-09-01

    Literature research, surface geologic investigations, and rock sampling were conducted for the Kingman Quadrangle, Arizona, Nevada, and California, to identify geologic environments and delineate areas favorable for uranium deposits. Favorability criteria developed during the National Uranium Resource Evaluation program were used. The studies were augmented by aerial radiometric and hydrogeochemical and stream-sediment surveys. No environments favorable for uranium deposits of at least 100 tons U/sub 3/O/sub 8/ were found. Unfavorable environments include all sedimentary, igneous, and metamorphic rocks of Precambrian to Laramide age; Tertiary volcanic sequences; and Quaternary caliche. Unevaluated environments include the Bird Spring Formation and the intermontane valleys.

  18. Arizona Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Arizona Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 358 344 354 1990's 526 532 532 526 519 530 534 480 514 555 2000's 526 504 488 450 414 425 439 395 383 390 2010's 368 371 379 383 386 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  19. Arizona Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Arizona Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 26 10 0 0 0 0 1,360 1990's 2,125 1,225 730 548 691 500 405 401 411 439 2000's 332 266 243 426 306 211 588 634 503 695 2010's 165 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  20. GATEWAY Demonstrations: Trial Demonstration of Area Lighting Retrofit, Yuma Border Patrol, Yuma, Arizona

    SciTech Connect (OSTI)

    Wilkerson, A. M.; McCullough, J. J.

    2014-12-31

    Along the Yuma Sector Border Patrol Area in Yuma, Arizona, the GATEWAY program conducted a trial demonstration in which the incumbent quartz metal halide area lighting was replaced with LED at three pole locations at the Yuma Sector Border Patrol Area in Yuma, Arizona. The retrofit was documented to better understand LED technology performance in high-temperature environments.

  1. Site Index - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Index Site Index Calendar Hanford Blog Archive Search Site Feeds Site Index Weather What's New Site Index Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size About Us About Hanford Cleanup Regulators, Boards, Councils Hanford Advisory Board Hanford Natural Resource Trustee Council Environmental Protection Agency Washington State Department of Ecology Defense Nuclear Facilities Safety Board Hanford History Hanford Site Wide Programs DOE Human Resources Management

  2. Engineering evaluation/cost analysis for the proposed removal of contaminated materials at the Elza Gate site, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1991-06-01

    This engineering evaluation/cost analysis (EE/CA) has been prepared in support of the proposed removal action for cleanup of radioactive and chemically contaminated soil at the Elza Gate site in Oak Ridge, Tennessee. This property became contaminated as a result of storage of ore residues, equipment, and other materials for the US Atomic Energy Commission. The US Department of Energy is responsible for cleanup of portions of the site under its Formerly Utilized Sites Remedial Action Program. In December 1990 an area known as Pad 1 was abrasively scoured to remove surface contamination, and in March 1991 removal of Pad 1 contamination was begun under a separate EE/CA. This EE/CA is intended to cover the remaining portions of the site for which the Department of Energy has responsibility. It has been determined that an EE/CA report is appropriate documentation for the proposed removal action. This EE/CA covers removal of contaminated soils and contaminated concrete rubble from the Elza Gate site. The primary objectives of this EE/CA report are to identify and describe the preferred removal action, and to document the selection of response activities that will mitigate the potential for release of contaminants from the property into the environment and that will minimize the associated threats to human health or welfare and the environment. The preferred alternative is disposition on the Oak Ridge Reservation. 30 refs., 7 figs., 12 tabs.

  3. Special Analysis of Transuranic Waste in Trench T04C at the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada, Revision 1

    SciTech Connect (OSTI)

    Greg Shott, Vefa Yucel, Lloyd Desotell

    2008-05-01

    This Special Analysis (SA) was prepared to assess the potential impact of inadvertent disposal of a limited quantity of transuranic (TRU) waste in classified Trench 4 (T04C) within the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS). The Area 5 RWMS is a low-level radioactive waste disposal site in northern Frenchman Flat on the Nevada Test Site (NTS). The Area 5 RWMS is regulated by the U.S. Department of Energy (DOE) under DOE Order 435.1 and DOE Manual (DOE M) 435.1-1. The primary objective of the SA is to evaluate if inadvertent disposal of limited quantities of TRU waste in a shallow land burial trench at the Area 5 RWMS is in compliance with the existing, approved Disposal Authorization Statement (DAS) issued under DOE M 435.1-1. In addition, supplemental analyses are performed to determine if there is reasonable assurance that the requirements of Title 40, Code of Federal Regulations (CFR), Part 191, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes, can be met. The 40 CFR 191 analyses provide supplemental information regarding the risk to human health and the environment of leaving the TRU waste in T04C. In 1989, waste management personnel reviewing classified materials records discovered that classified materials buried in trench T04C at the Area 5 RWMS contained TRU waste. Subsequent investigations determined that a total of 102 55-gallon drums of TRU waste from Rocky Flats were buried in trench T04C in 1986. The disposal was inadvertent because unclassified records accompanying the shipment indicated that the waste was low-level. The exact location of the TRU waste in T04C was not recorded and is currently unknown. Under DOE M 435.1-1, Chapter IV, Section P.5, low-level waste disposal facilities must obtain a DAS. The DAS specifies conditions that must be met to operate within the radioactive waste management basis, consisting of a

  4. Sampling and analysis plan for site assessment during the closure or replacement of nonradioactive underground storage tanks

    SciTech Connect (OSTI)

    Gitt, M.J.

    1990-08-01

    The Tank Management Program is responsible for closure or replacement of nonradioactive underground storage tanks throughout the Idaho National Engineering Laboratory (INEL). A Sampling and Analysis Plan (SAP) has been developed that complies with EPA regulations and with INEL Tank Removal Procedures for sampling activities associated with site assessment during these closure or replacement activities. The SAP will ensure that all data are valid, and it also will function as a Quality Assurance Project Plan. 18 refs., 8 figs., 11 tabs.

  5. Composite analysis for low-level waste disposal in the 200 area plateau of the Hanford Site

    SciTech Connect (OSTI)

    Kincaid, C.T.; Bergeron, M.P.; Cole, C.R.

    1998-03-01

    This report presents the first iteration of the Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site (Composite Analysis) prepared in response to the U.S. Department of Energy Implementation Plan for the Defense Nuclear Facility Safety Board Recommendation 94-2. The Composite Analysis is a companion document to published analyses of four active or planned low-level waste disposal actions: the solid waste burial grounds in the 200 West Area, the solid waste burial grounds in the 200 East Area, the Environmental Restoration Disposal Facility, and the disposal facilities for immobilized low-activity waste. A single Composite Analysis was prepared for the Hanford Site considering only sources on the 200 Area Plateau. The performance objectives prescribed in U.S. Department of Energy guidance for the Composite Analysis were 100 mrem in a year and examination of a lower dose (30 mrem in a year) to ensure the {open_quotes}as low as reasonably achievable{close_quotes} concept is followed. The 100 mrem in a year limit was the maximum allowable all-pathways dose for 1000 years following Hanford Site closure, which is assumed to occur in 2050. These performance objectives apply to an accessible environment defined as the area between a buffer zone surrounding an exclusive waste management area on the 200 Area Plateau, and the Columbia River. Estimating doses to hypothetical future members of the public for the Composite Analysis was a multistep process involving the estimation or simulation of inventories; waste release to the environment; migration through the vadose zone, groundwater, and atmospheric pathways; and exposure and dose. Doses were estimated for scenarios based on agriculture, residential, industrial, and recreational land use. The radionuclides included in the vadose zone and groundwater pathway analyses of future releases were carbon-14, chlorine-36, selenium-79, technetium-99, iodine-129, and uranium isotopes.

  6. October 1999 Groundwater Sampling and Data Analysis, Distler Brickyard Site, Hardin County, Kentucky

    SciTech Connect (OSTI)

    J. P. Martin, L. N. Peterson; C. J. Taylor

    2000-03-01

    This report describes the results of a sampling event conducted at the Distler Brickyard Superfund Site, Hardin County, Kentucky, October 1999. The purpose of the sampling event was to evaluate the extent of natural biodegradation of chlorinated aliphatic hydrocarbons (CAH) occurring at the Site. Sampling locations were selected to evaluate three areas of the suspected CAH plume: the source area, an axial cross-section, and a downgradient transect. Due to inadequate recharge to and the poor physical condition of some monitoring wells at the Site, the sampling approach was modified to reflect wells that could be sampled. Results indicate that natural anaerobic degradation of chlorinated aliphatic hydrocarbons is occurring in the presumed source area around monitoring well GW-11. The primary contaminant of concern, trichloroethene, migrates downgradient from the source area into the Coarse Grained Alluvium Aquifer at concentrations slightly greater than the Maximum Contaminant Level (MCL). Based on the available, the following hypothesis is proposed: the source area has been remediated through soil removal activities and subsequent anaerobic reductive dechlorination. If this is the case, this Site may be a good candidate for implementation of a monitored natural attenuation remedy. However, more data are necessary before this hypothesis can be confirmed.

  7. Area 5 Site Characterization Project: Report of hydraulic property analysis through August 1993

    SciTech Connect (OSTI)

    Estrella, R.; Tyler, S.; Chapman, J.; Miller, M.

    1993-12-01

    The Area 5 Site Characterization Project is designed to determine the suitability of the Radioactive Waste Management Site (RWMS) for disposal of low-level waste (LLW), mixed waste (MW) and transuranic waste (TRU). The Desert Research Institute (DRI) has supported the Area 5 Site Characterization Project for the US Department of Energy, Nevada Operations Office (DOE/NV), Environmental Restoration and Waste Management Division (ERWM), Waste Operations Branch (WOB). The purpose of DRI`s Area 5 Site Characterization project is to characterize important properties of the upper vadose zone which influence infiltration and redistribution of water and transport of solutes as well as to characterize the water quality and hydrologic conditions of the uppermost aquifer. This report describes methods and presents a summary of all data and results from laboratory physical and chemical testing from Pilot Wells and Science Trench borehole samples through August 1993. DRI laboratories performed soil water content, soil water potential, soil bulk density, soil water extract isotope analyses and soil water chemistry analyses.

  8. AASG Wells Data for the EGS Test Site Planning and Analysis Task

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Augustine, Chad

    2013-10-09

    AASG Wells Data for the EGS Test Site Planning and Analysis Task Temperature measurement data obtained from boreholes for the Association of American State Geologists (AASG) geothermal data project. Typically bottomhole temperatures are recorded from log headers, and this information is provided through a borehole temperature observation service for each state. Service includes header records, well logs, temperature measurements, and other information for each borehole. Information presented in Geothermal Prospector was derived from data aggregated from the borehole temperature observations for all states. For each observation, the given well location was recorded and the best available well identified (name), temperature and depth were chosen. The “Well Name Source,” “Temp. Type” and “Depth Type” attributes indicate the field used from the original service. This data was then cleaned and converted to consistent units. The accuracy of the observation’s location, name, temperature or depth was note assessed beyond that originally provided by the service. - AASG bottom hole temperature datasets were downloaded from repository.usgin.org between the dates of May 16th and May 24th, 2013. - Datasets were cleaned to remove “null” and non-real entries, and data converted into consistent units across all datasets - Methodology for selecting ”best” temperature and depth attributes from column headers in AASG BHT Data sets: • Temperature: • CorrectedTemperature – best • MeasuredTemperature – next best • Depth: • DepthOfMeasurement – best • TrueVerticalDepth – next best • DrillerTotalDepth – last option • Well Name/Identifier • APINo – best • WellName – next best • ObservationURI - last option. The column headers are as follows: • gid = internal unique ID • src_state = the state from which the well was downloaded (note: the low temperature wells in Idaho are coded as “ID_LowTemp”, while all other wells are

  9. Dipayan Ghosh | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    City, Arizona, Site | Department of Energy Diffusion Multilayer Sampling of Ground Water in Five Wells at the Tuba City, Arizona, Site Diffusion Multilayer Sampling of Ground Water in Five Wells at the Tuba City, Arizona, Site (1.57 MB) More Documents & Publications Analysis of MSE Cores Tuba City, Arizona, Site Analysis of Contaminant Rebound in Ground Water in Extraction Wells at the Tuba City, Arizona, Site Vertical Distribution of Contamination in Ground Water at the Tuba City,

  10. Chemical characteristics of urban stormwater sediments and implications for environmental management, Maricopa County, Arizona

    SciTech Connect (OSTI)

    Parker, J.T.C.; Fossum, K.D.; Ingersoll, T.L.

    2000-07-01

    Investigations of the chemical characteristics of urban stormwater sediments in the rapidly growing Phoenix metropolitan area of Maricopa County, Arizona, showed that the inorganic component of these sediments generally reflects geologic background values. Some concentrations of metals were above background values, especially cadmium, copper, lead, and zinc, indicating an anthropogenic contribution of these elements to the sediment chemistry. Concentrations, however, were not at levels that would require soil remediation according to guidelines of the US Environmental Protection Agency. Arsenic concentrations generally were above recommended values for remediation at a few sites, but these concentrations seem to reflect geologic rather than anthropogenic factors. Several organochlorine compounds no longer in use were ubiquitous in the Phoenix area, although concentrations generally were low. Chlordane, DDT and its decay products DDE and DDD, dieldrin, toxaphene, and PCBs were found at almost all sites sampled, although some of the pesticides in which these compounds are found have been banned for almost 30 years. A few sites showed exceptionally high concentrations of organochlorine compounds. On the basis of published guidelines, urban stormwater sediments do not appear to constitute a major regional environmental problem with respect to the chemical characteristics investigated here. At individual sites, high concentrations of organic compounds--chlordane, dieldrin, PCBs, and toxaphene--may require some attention. The possible environmental hazard presented by low-level organochlorine contamination is not addresses in this paper; however, high levels of toxicity in urban sediments are difficult to explain. Sediment toxicity varied significantly with time, which indicates that these tests should be evaluated carefully before they are used for management decisions.

  11. Crystallographic Analysis of Active Site Contributions to Regiospecificity in the Diiron Enzyme Toluene 4-Monooxygenase

    SciTech Connect (OSTI)

    Bailey, Lucas J.; Acheson, Justin F.; McCoy, Jason G.; Elsen, Nathaniel L.; Phillips, Jr., George N.; Fox, Brian G.

    2014-10-02

    Crystal structures of toluene 4-monooxygenase hydroxylase in complex with reaction products and effector protein reveal active site interactions leading to regiospecificity. Complexes with phenolic products yield an asymmetric {mu}-phenoxo-bridged diiron center and a shift of diiron ligand E231 into a hydrogen bonding position with conserved T201. In contrast, complexes with inhibitors p-NH{sub 2}-benzoate and p-Br-benzoate showed a {mu}-1,1 coordination of carboxylate oxygen between the iron atoms and only a partial shift in the position of E231. Among active site residues, F176 trapped the aromatic ring of products against a surface of the active site cavity formed by G103, E104 and A107, while F196 positioned the aromatic ring against this surface via a {pi}-stacking interaction. The proximity of G103 and F176 to the para substituent of the substrate aromatic ring and the structure of G103L T4moHD suggest how changes in regiospecificity arise from mutations at G103. Although effector protein binding produced significant shifts in the positions of residues along the outer portion of the active site (T201, N202, and Q228) and in some iron ligands (E231 and E197), surprisingly minor shifts (<1 {angstrom}) were produced in F176, F196, and other interior residues of the active site. Likewise, products bound to the diiron center in either the presence or absence of effector protein did not significantly shift the position of the interior residues, suggesting that positioning of the cognate substrates will not be strongly influenced by effector protein binding. Thus, changes in product distributions in the absence of the effector protein are proposed to arise from differences in rates of chemical steps of the reaction relative to motion of substrates within the active site channel of the uncomplexed, less efficient enzyme, while structural changes in diiron ligand geometry associated with cycling between diferrous and diferric states are discussed for their potential

  12. Statistical Analysis of Occupational Safety Data of Voluntary Protection Program (VPP) and Non-VPP Sites

    Broader source: Energy.gov [DOE]

    The Voluntary Protection Program (VPP) was originally developed by Occupational Safety and Health Administration (OSHA) in 1982 to foster greater ownership of safety and health in the workplace. The Department of Energy (DOE) adopted VPP in 1992; currently 23 sites across the DOE complex participate in the program. As its name implies, it is a voluntary program; i.e. not required by laws or regulations.

  13. TRITIUM UNCERTAINTY ANALYSIS FOR SURFACE WATER SAMPLES AT THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Atkinson, R.

    2012-07-31

    Radiochemical analyses of surface water samples, in the framework of Environmental Monitoring, have associated uncertainties for the radioisotopic results reported. These uncertainty analyses pertain to the tritium results from surface water samples collected at five locations on the Savannah River near the U.S. Department of Energy's Savannah River Site (SRS). Uncertainties can result from the field-sampling routine, can be incurred during transport due to the physical properties of the sample, from equipment limitations, and from the measurement instrumentation used. The uncertainty reported by the SRS in their Annual Site Environmental Report currently considers only the counting uncertainty in the measurements, which is the standard reporting protocol for radioanalytical chemistry results. The focus of this work is to provide an overview of all uncertainty components associated with SRS tritium measurements, estimate the total uncertainty according to ISO 17025, and to propose additional experiments to verify some of the estimated uncertainties. The main uncertainty components discovered and investigated in this paper are tritium absorption or desorption in the sample container, HTO/H{sub 2}O isotopic effect during distillation, pipette volume, and tritium standard uncertainty. The goal is to quantify these uncertainties and to establish a combined uncertainty in order to increase the scientific depth of the SRS Annual Site Environmental Report.

  14. Protective barrier materials analysis: Fine soil site characterization: A research report for Westinghouse Hanford Company

    SciTech Connect (OSTI)

    Last, G.V.; Glennon, M.A.; Young, M.A.; Gee, G.W.

    1987-11-01

    We collected soil samples for the physical characterization of a potential fine-soil quarry site at the McGee Ranch, which is located approximately 1 km northwest of the Hanford Site's Yakima Barricade. Forty test borings were made using a hollow-stem auger. Field moisture content and grain-size distribution were determined. The samples were classified into one of 19 sediment classes based on their grain-size distributions. Maps and cross sections were constructed from both the field and laboratory data to delineate the distributions of the various sediment classes. Statistical evaluations were made to determine the variations within the fine-soil fraction of the various sediment classes. Volume estimates were then made of the amounts of soil meeting the preliminary grain-size criteria. The physical characterization of the fine soils sampled near the McGee Ranch site indicated that approximately 3.4 million cubic meters of soil met or exceeded the minimum grain-size criteria for the fine soils needed for the protective barriers program. 11 refs., 14 figs., 6 tabs.

  15. Mobile on-site sample collection, preparation, and analysis in Iraq. Final report, January-April 1995

    SciTech Connect (OSTI)

    Swahn, I.D.; Brzezinski, J.H.

    1996-11-01

    The U.S. Army Edgewood Research, Development and Engineering Center has developed mobile on-site sample collection, preparation, and analysis equipment to collect environmental samples in highly contaminated areas. This equipment is being used by the United Nations Special Commission at the Baghdad Monitoring and Verification Center (BMVC), which provides long-term monitoring of dual-purpose chemical sites in Iraq, especially those with potential for chemical warfare (CW) production. A mobile laboratory was set-up in the BMVC to prepare and analyze samples collected throughout Iraq. Automatic air samplers were installed at various sites to collect vapor samples on absorption tubes that were analyzed using a gas chromatographic (GC) flame photometric detector (FPD). Mobile sample collection kits were used to collect solid, liquid, air, and wipe samples during challenge inspections. These samples were prepared using a sample preparation kit, which concentrates CW agent, breakdown products, and their precursors in complex matrices down to sub part per million levels for chemical analysis by a GC mass selective detector (MSD). This report describes the problems and solutions encountered with setting up a self-sufficient mobile analytical laboratory. Details of the various components associated with the laboratory and the collection kits are included.

  16. Analysis of ground response data at Lotung large-scale soil- structure interaction experiment site. Final report

    SciTech Connect (OSTI)

    Chang, C.Y.; Mok, C.M.; Power, M.S.

    1991-12-01

    The Electric Power Research Institute (EPRI), in cooperation with the Taiwan Power Company (TPC), constructed two models (1/4-scale and 1/2-scale) of a nuclear plant containment structure at a site in Lotung (Tang, 1987), a seismically active region in northeast Taiwan. The models were constructed to gather data for the evaluation and validation of soil-structure interaction (SSI) analysis methodologies. Extensive instrumentation was deployed to record both structural and ground responses at the site during earthquakes. The experiment is generally referred to as the Lotung Large-Scale Seismic Test (LSST). As part of the LSST, two downhole arrays were installed at the site to record ground motions at depths as well as at the ground surface. Structural response and ground response have been recorded for a number of earthquakes (i.e. a total of 18 earthquakes in the period of October 1985 through November 1986) at the LSST site since the completion of the installation of the downhole instruments in October 1985. These data include those from earthquakes having magnitudes ranging from M{sub L} 4.5 to M{sub L} 7.0 and epicentral distances range from 4.7 km to 77.7 km. Peak ground surface accelerations range from 0.03 g to 0.21 g for the horizontal component and from 0.01 g to 0.20 g for the vertical component. The objectives of the study were: (1) to obtain empirical data on variations of earthquake ground motion with depth; (2) to examine field evidence of nonlinear soil response due to earthquake shaking and to determine the degree of soil nonlinearity; (3) to assess the ability of ground response analysis techniques including techniques to approximate nonlinear soil response to estimate ground motions due to earthquake shaking; and (4) to analyze earth pressures recorded beneath the basemat and on the side wall of the 1/4 scale model structure during selected earthquakes.

  17. Hanford Site Safety Standards - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Site Safety Standards Documents Documents Hanford Site Cleanup Completion Framework Tri-Party Agreement Freedom of Information and Privacy Act Hanford Site Budget Hanford Site Safety Standards Hanford Hoisting and Rigging Manual DOE - ORP Contracts/Procurements DOE - RL Contracts/Procurements Integrated Waste Feed Delivery Plan Single-Shell Tank Evaluations Deep Vadose Zone 100-F RI/FS 100-D/H Operable Units RI/FS Sitewide Probabilistic Seismic Hazard Analysis Environmental Hanford Site

  18. 2015 Annual Workforce Analysis and Staffing Plan Report- Pacific Northwest Site Office

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  19. 2014 Annual Workforce Analysis and Staffing Plan Report- Pacific Northwest Site Office

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  20. Analysis of consequences of postulated solvent fires in Hanford site waste tanks

    SciTech Connect (OSTI)

    Cowley, W.L., Westinghouse Hanford

    1996-08-12

    This document contains the calculations that support the accident analyses for accidents involving organic solvents. This work was performed to support the Basis for Interim Operation (BIO) and the Final Safety Analysis Report (FSAR) for Tank Waste Remediation Systems (TWRS).

  1. 2012 Annual Workforce Analysis and Staffing Plan Report- Pacific Northwest Site Office

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  2. 2013 Annual Workforce Analysis and Staffing Plan Report- Pacific Northwest Site Office

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  3. 2011 Annual Workforce Analysis and Staffing Plan Report- Savannah River Site Office

    Office of Energy Efficiency and Renewable Energy (EERE)

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  4. 2012 Annual Workforce Analysis and Staffing Plan Report- Nuclear Energy Oak Ridge Site Office

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  5. 2011 Annual Workforce Analysis and Staffing Plan Report- Los Alamos Site Office

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  6. 2010 Annual Workforce Analysis and Staffing Plan Report- Y-12 Site Office

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  7. 2012 Annual Workforce Analysis and Staffing Plan Report- Sandia Site Office

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  8. 2011 Annual Workforce Analysis and Staffing Plan Report- Pantex Site Office

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  9. 2011 Annual Workforce Analysis and Staffing Plan Report- Pacific Northwest Site Office

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  10. 2010 Annual Workforce Analysis and Staffing Plan Report- Pacific Northwest Site Office

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  11. Documentation of Hanford Site independent review of the Hanford Waste Vitrification Plant Preliminary Safety Analysis Report

    SciTech Connect (OSTI)

    Herborn, D.I.

    1992-10-01

    This manual describes the overall WHC safety analysis process in terms of requirements for safety analyses, responsibilities of the various contributing organizations, and required reviews and approvals for the Hanford Waste Vitrification Plant.

  12. 2010 Annual Workforce Analysis and Staffing Plan Report- Sandia Site Office

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  13. 2011 Annual Workforce Analysis and Staffing Plan Report- Sandia Site Office

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  14. 2013 Annual Workforce Analysis and Staffing Plan Report- Nuclear Energy Oak Ridge Site Office

    Office of Energy Efficiency and Renewable Energy (EERE)

    anagers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  15. 2011 Annual Workforce Analysis and Staffing Plan Report- Livermore Site Office

    Office of Energy Efficiency and Renewable Energy (EERE)

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  16. 2010 Annual Workforce Analysis and Staffing Plan Report- Livermore Site Office

    Office of Energy Efficiency and Renewable Energy (EERE)

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  17. Information on Hydrologic Conceptual Models, Parameters, Uncertainty Analysis, and Data Sources for Dose Assessments at Decommissioning Sites

    SciTech Connect (OSTI)

    Meyer, Philip D.; Gee, Glendon W.; Nicholson, Thomas J.

    2000-02-28

    This report addresses issues related to the analysis of uncertainty in dose assessments conducted as part of decommissioning analyses. The analysis is limited to the hydrologic aspects of the exposure pathway involving infiltration of water at the ground surface, leaching of contaminants, and transport of contaminants through the groundwater to a point of exposure. The basic conceptual models and mathematical implementations of three dose assessment codes are outlined along with the site-specific conditions under which the codes may provide inaccurate, potentially nonconservative results. In addition, the hydrologic parameters of the codes are identified and compared. A methodology for parameter uncertainty assessment is outlined that considers the potential data limitations and modeling needs of decommissioning analyses. This methodology uses generic parameter distributions based on national or regional databases, sensitivity analysis, probabilistic modeling, and Bayesian updating to incorporate site-specific information. Data sources for best-estimate parameter values and parameter uncertainty information are also reviewed. A follow-on report will illustrate the uncertainty assessment methodology using decommissioning test cases.

  18. Site-specific earthquake response analysis for Paducah Gaseous Diffusion Plant, Paducah, Kentucky. Final report

    SciTech Connect (OSTI)

    Sykora, D.W.; Davis, J.J.

    1993-08-01

    The Paducah Gaseous Diffusion Plant (PGDP), owned by the US Department of Energy (DOE) and operated under contract by Martin Marietta Energy systems, Inc., is located southwest of Paducah, Kentucky. An aerial photograph and an oblique sketch of the plant are shown in Figures 1 and 2, respectively. The fenced portion of the plant consists of 748 acres. This plant was constructed in the 1950`s and is one of only two gaseous diffusion plants in operation in the United States; the other is located near Portsmouth, Ohio. The facilities at PGDP are currently being evaluated for safety in response to natural seismic hazards. Design and evaluation guidelines to evaluate the effects of earthquakes and other natural hazards on DOE facilities follow probabilistic hazard models that have been outlined by Kennedy et al. (1990). Criteria also established by Kennedy et al. (1990) classify diffusion plants as ``moderate hazard`` facilities. The US Army Engineer Waterways Experiment Station (WES) was tasked to calculate the site response using site-specific design earthquake records developed by others and the results of previous geotechnical investigations. In all, six earthquake records at three hazard levels and four individual and one average soil columns were used.

  19. West Valley low-level radioactive waste site revisited: Microbiological analysis of leachates

    SciTech Connect (OSTI)

    Gillow, J.B.; Francis, A.J.

    1990-10-01

    The abundance and types of microorganisms in leachate samples from the West Valley low-level radioactive waste disposal site were enumerated. This study was undertaken in support of the study conducted by Ecology and Environment, Inc., to assess the extent of radioactive gas emissions from the site. Total aerobic and anaerobic bacteria were enumerated as colony forming units (CFU) by dilution agar plate technique, and denitrifiers, sulfate-reducers and methanogens by the most probable number technique (MPN). Of the three trenches 3, 9, and 11 sampled, trench 11 contained the most number of organisms in the leachate. Concentrations of carbon-14 and tritium were highest in trench 11 leachate. Populations of aerobes and anaerobes in trench 9 leachate were one order of magnitude less than in trench 11 leachate while the methanogens were three orders of magnitude greater than in trench 11 leachate. The methane content from trench 9 was high due to the presence of a large number of methanogens; the gas in this trench also contained the most radioactivity. Trench 3 leachate contained the least number of microorganisms. Comparison of microbial populations in leachates sampled from trenches 3 and 9 during October 1978 and 1989 showed differences in the total number of microbial types. Variations in populations of the different types of organisms in the leachate reflect the changing nutrient conditions in the trenches. 14 refs., 3 figs., 4 tabs.

  20. Wind Power Opportunities in St. Thomas, USVI: A Site-Specific Evaluation and Analysis

    SciTech Connect (OSTI)

    Lantz, E.; Warren, A.; Roberts, J. O.; Gevorgian, V.

    2012-09-01

    This NREL technical report utilizes a development framework originated by NREL and known by the acronym SROPTTC to assist the U.S. Virgin Islands in identifying and understanding concrete opportunities for wind power development in the territory. The report covers each of the seven components of the SROPTTC framework: Site, Resource, Off-take, Permitting, Technology, Team, and Capital as they apply to wind power in the USVI and specifically to a site in Bovoni, St. Thomas. The report concludes that Bovoni peninsula is a strong candidate for utility-scale wind generation in the territory. It represents a reasonable compromise in terms of wind resource, distance from residences, and developable terrain. Hurricane risk and variable terrain on the peninsula and on potential equipment transport routes add technical and logistical challenges but do not appear to represent insurmountable barriers. In addition, integration of wind power into the St. Thomas power system will present operational challenges, but based on experience in other islanded power systems, there are reasonable solutions for addressing these challenges.