Sample records for arizona electric pwr

  1. Arizona Electric Pwr Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources JumpAnaconda,AnzaArcade,theElectric Pwr Coop Inc Jump

  2. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    January 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-01 Utility Company Ak-Chin Electric Utility Authority (Arizona) Place Arizona Start Date 2008-01-01...

  3. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    December 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-12 Utility Company Ak-Chin Electric Utility Authority (Arizona) Place Arizona Start Date 2008-12-01...

  4. The Future of Electric Vehicles and Arizona State University...

    Broader source: Energy.gov (indexed) [DOE]

    State University | Photo Credit Arizona State University Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What does this mean for me? EV batteries will...

  5. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    August 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric Utility Authority for August 2008. Monthly Electric Utility Sales...

  6. ArizonaArizona''s Electricity Future:s Electricity Future: The Demand for WaterThe Demand for Water

    E-Print Network [OSTI]

    Keller, Arturo A.

    Groundwater Management ActAct ·· Assured Water Supply ProgramAssured Water Supply Program #12;Arizona water ­­ 20002000 Residential & Business 16% Self-supplied 4% Irrigation 80% #12;Year 2006 Water UseYear 2006 Water/crystallizer systems Dry cooling plantsDry cooling plants Hybrid cooling systemsHybrid cooling systems Renewable

  7. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    8 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric Utility Authority for March 2008. Monthly Electric Utility Sales and Revenue...

  8. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    April 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric Utility Authority for April 2008. Monthly Electric Utility Sales and...

  9. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Sales (MWh) 1889 Total Consumers 417 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data 1 Previous | Next...

  10. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Sales (MWh) 1777 Total Consumers 417 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data 1 Previous | Next...

  11. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Sales (MWh) 1656 Total Consumers 417 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data 1 Previous | Next...

  12. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Sales (MWh) 1588 Total Consumers 416 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data 1 Previous | Next...

  13. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Sales (MWh) 2604 Total Consumers 416 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data 1 Previous | Next...

  14. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Sales (MWh) 1786 Total Consumers 416 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data 1 Previous | Next...

  15. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Sales (MWh) 2434 Total Consumers 416 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data 1 Previous | Next...

  16. Duncan Valley Electric Cooperative- SunWatts Rebate Program (Arizona)

    Broader source: Energy.gov [DOE]

    Duncan Valley Electric Cooperative is providing rebates to for the purchase of renewable energy systems through its SunWatts program. Photovoltaic (PV) and wind energy systems 10 kilowatts (kW) or...

  17. Arizona State University | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources JumpAnaconda,AnzaArcade,theElectric PwrArizona State

  18. Arizona Transmission Line Siting Committee | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources JumpAnaconda,AnzaArcade,theElectric PwrArizona

  19. EA-1972: Electric District 2 to Saguaro No. 2 Transmission Line Rebuild, Pinal County, Arizona

    Broader source: Energy.gov [DOE]

    Western Area Power Administration issued a Draft EA that assesses the potential environmental impacts of the proposed rebuild of a 35.6-mile transmission line that Western operates and maintains under an agreement with the Central Arizona Project. Additional information is available on the project website, http://www.wapa.gov/dsw/environment/ED2DOEEA1972.htm.

  20. Environmental determinants of unscheduled residential outages in the electrical power distribution of Phoenix, Arizona

    E-Print Network [OSTI]

    service. The reliability of electrical power is important because many other infrastructures are directly of the electric power distribution infrastructure. There are many studies on the vulnerability of infrastructuresEnvironmental determinants of unscheduled residential outages in the electrical power distribution

  1. OutageMapURL Phases Energy Services

    Open Energy Info (EERE)

    Inc Missouri Arab Electric Coop Inc Arizona Corporation Commission Arizona Electric Pwr Coop Inc Arizona Power Authority Arizona Public Service Co Ark Valley Elec Coop Assn...

  2. Arizona: Solar Panels Replace Inefficient Fossil Fuel-Powered...

    Energy Savers [EERE]

    Energy Program project results in annual estimated cost savings of 313,000 for reduced consumption of gasoline, diesel, propane, and electricity. Location Arizona Partners State...

  3. Thermal Springs of Arizona

    SciTech Connect (OSTI)

    Witcher, J.C.; Ruscetta, C.A.; Foley, D. (eds.)

    1981-05-01T23:59:59.000Z

    An updated list of Arizona springs judged to be carrying anomalous heat. Possible heat sources are briefly outlined. (MHR)

  4. Graduate Programs University of Arizona

    E-Print Network [OSTI]

    GIS Graduate Programs University of Arizona Tucson, Arizona Program: Renewable Natural://www.srnr.arizona.edu/ucgis/gradprogram.html Ball State University Muncie, IN 473060470 Program: Geography http://www.bsu.edu/geog/ Boston University Boston, MA 02215 Program: Remote Sensing and Geographic Information Systems http

  5. University of Arizona Compressed Air Energy Storage

    SciTech Connect (OSTI)

    Simmons, Joseph; Muralidharan, Krishna

    2012-12-31T23:59:59.000Z

    Boiled down to its essentials, the grant’s purpose was to develop and demonstrate the viability of compressed air energy storage (CAES) for use in renewable energy development. While everyone agrees that energy storage is the key component to enable widespread adoption of renewable energy sources, the development of a viable scalable technology has been missing. The Department of Energy has focused on expanded battery research and improved forecasting, and the utilities have deployed renewable energy resources only to the extent of satisfying Renewable Portfolio Standards. The lack of dispatchability of solar and wind-based electricity generation has drastically increased the cost of operation with these components. It is now clear that energy storage coupled with accurate solar and wind forecasting make up the only combination that can succeed in dispatchable renewable energy resources. Conventional batteries scale linearly in size, so the price becomes a barrier for large systems. Flow batteries scale sub-linearly and promise to be useful if their performance can be shown to provide sufficient support for solar and wind-base electricity generation resources. Compressed air energy storage provides the most desirable answer in terms of scalability and performance in all areas except efficiency. With the support of the DOE, Tucson Electric Power and Science Foundation Arizona, the Arizona Research Institute for Solar Energy (AzRISE) at the University of Arizona has had the opportunity to investigate CAES as a potential energy storage resource.

  6. Arizona Power Authority | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources JumpAnaconda,AnzaArcade,theElectric Pwr Coop

  7. Arizona Solar Tech | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources JumpAnaconda,AnzaArcade,theElectric Pwr CoopJump to:

  8. Arizona State Land Department | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources JumpAnaconda,AnzaArcade,theElectric Pwr

  9. Climate Change Action in Arizona

    E-Print Network [OSTI]

    Owens, Steve

    2009-01-01T23:59:59.000Z

    could have drastic effects on the state's water supply.evaporation in Arizona's reservoirs and water bodiesmeans less water for consumption, irrigation, hy- dropower

  10. Recovery Act State Memos Arizona

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the city is reviewing a facility's solarization study draft report from Arizona State University (ASU) conducted this summer by ASU on behalf of the city. * City of Tucson -...

  11. A comparison of fuzzy logic-PID control strategies for PWR pressurizer control

    SciTech Connect (OSTI)

    Kavaklioglu, K.; Ikonomopoulos, A. (Univ. of Tennessee, Knoxville (United States))

    1993-01-01T23:59:59.000Z

    This paper describes the results obtained from a comparison performed between classical proportional-integral-derivative (PID) and fuzzy logic (FL) controlling the pressure in a pressurized water reactor (PWR). The two methodologies have been tested under various transient scenarios, and their performances are evaluated with respect to robustness and on-time response to external stimuli. One of the main concerns in the safe operation of PWR is the pressure control in the primary side of the system. In order to maintain the pressure in a PWR at the desired level, the pressurizer component equipped with sprayers, heaters, and safety relief valves is used. The control strategy in a Westinghouse PWR is implemented with a PID controller that initiates either the electric heaters or the sprayers, depending on the direction of the coolant pressure deviation from the setpoint.

  12. Geothermal energy in Arizona. Final report

    SciTech Connect (OSTI)

    Stone, C.; Witcher, J.C.

    1982-09-01T23:59:59.000Z

    Current knowledge and basic data on geothermal resources in Arizona are compiled. The following are covered: specific area investigations, thermal aspects of Arizona, and exploration methods. (MHR)

  13. ARIZONA COOPERATIVE College of Agriculture and Life Sciences

    E-Print Network [OSTI]

    Crimmins, Michael A.

    Electrical Energy production, water resources depletion and global warming are interconnected. In the past has heard of, and many have experienced the impact of climate change due to global warming as average Part to Help Conserve Arizona's Water Resources and Reduce Global Warming by Saving Energy at Home

  14. EIS-0441: Mohave County Wind Farm Project, Mohave County, Arizona

    Broader source: Energy.gov [DOE]

    This EIS, prepared by the Bureau of Land Management with DOE’s Western Area Power Administration as a cooperating agency, evaluated the environmental impacts of a proposed wind energy project on public lands in Mohave County, Arizona. Power generated by this project would tie to the electrical power grid through an interconnection to one of Western’s transmission lines.

  15. BWR Fuel Assembly BWR Fuel Assembly PWR Fuel Assembly

    National Nuclear Security Administration (NNSA)

    BWR Fuel Assembly BWR Fuel Assembly PWR Fuel Assembly PWR Fuel Assembly The PWR 17x17 assembly is approximately 160 inches long (13.3 feet), 8 inches across, and weighs 1,500 lbs....

  16. Arizona Electric Power Cooperative | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon Capture andsoftware and hardwareInformationBenson,

  17. Cuming County Public Pwr Dist | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCpWing County,ElectricCuming County Public Pwr Dist

  18. of Mining & www.mge.arizona.edu

    E-Print Network [OSTI]

    Holliday, Vance T.

    .621.8330 mgedept@email.arizona.edu ONLINE GRADUATE CERTIFICATE PROGRAM 15 UNITS YOUR CAREER GEOMECHANICS #12;GEOMECHANICS Department of Mining & Geological Engineering www.mge.arizona.edu Contact: John Kemeny Kemeny@email.arizona.edu REQUIRED COURSES (12 units) MNE 527 Geomechanics (3 units) MNE 580 Rock Fracture Mechanics (3 units) MNE

  19. THE CONTRIBUTION OF ARIZONA STATE UNIVERSITY

    E-Print Network [OSTI]

    Zhang, Junshan

    THE CONTRIBUTION OF ARIZONA STATE UNIVERSITY TO THE ARIZONA ECONOMY FY 2009 A Report from Tempe, Arizona 85287-4011 #12;1 Executive Summary One approach to measuring the contribution goods and services. Another round of economic impacts arises from the consumer spending of faculty

  20. A magnetotelluric investigation of crustal structure in southeastern Arizona

    E-Print Network [OSTI]

    Parizek, Daniel Joseph

    1983-01-01T23:59:59.000Z

    . The consistent deep electrical strike may also suggest that the NN-trend of surface structures in the region was controlled by pre-existing, deep seated, NW-trending structures. Correlation between heat flow and depth to the crustal conductive zone... cross-section wi th the apparent resistivity model Conductive temperature profiles for major heat flow provinces in the United States (from Shankland and Ander, in press) 51 52 56 Page Figure 15. Heat flow sites in southeastern Arizona...

  1. Proposed Open Access Requirement for International Electric Transmissi...

    Office of Environmental Management (EM)

    to the Federal Energy Regulatory Commission More Documents & Publications Ea-48-L El Paso Electric Company EA-134-APS Arizona Public Service Company EA-212 Coral Power, LLC...

  2. Arizona Oil and Gas Commission | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources JumpAnaconda,AnzaArcade,theElectric Pwr Coop Inc

  3. Arizona State Historic Preservation Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources JumpAnaconda,AnzaArcade,theElectric Pwr CoopJump

  4. The effects of indoor pollution on Arizona children

    SciTech Connect (OSTI)

    Dodge, R.

    1982-05-01T23:59:59.000Z

    The respiratory health of a large group of Arizona school children who have been exposed to indoor pollutants-tobacco smoke and home cooking fumes-is reported. A significant relationship was found between parental smoking and symptoms of cough, wheeze, and sputum production. Also, children in homes where gas cooking fuel was used had higher rates of cough than children in homes where electricity was used. No differences in pulmonary function or yearly lung growth rates occurred among subjects grouped by exposure to tobacco smoke or cooking fuel. Thus, parental smoking and home cooking fuel affected cross-sectional respiratory symptom rates in a large group of Arizona school children. Study of pulmonary function, however, revealed no lung function or lung growth effects during 4 yr of study.

  5. Preliminary study on direct recycling of spent PWR fuel in PWR system

    SciTech Connect (OSTI)

    Waris, Abdul; Nuha; Novitriana; Kurniadi, Rizal; Su'ud, Zaki [Nuclear Physics and Biophysics Research Division, Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung 40132 (Indonesia)

    2012-06-06T23:59:59.000Z

    Preliminary study on direct recycling of PWR spent fuel to support SUPEL (Straight Utilization of sPEnt LWR fuel in LWR system) scenario has been conducted. Several spent PWR fuel compositions in loaded PWR fuel has been evaluated to obtain the criticality of reactor. The reactor can achieve it criticality for U-235 enrichment in the loaded fresh fuel is at least 4.0 a% with the minimum fraction of the spent fuel in the core is 15.0 %. The neutron spectra become harder with the escalating of U-235 enrichment in the loaded fresh fuel as well as the amount of the spent fuel in the core.

  6. Performance evaluation of two-stage fuel cycle from SFR to PWR

    SciTech Connect (OSTI)

    Fei, T.; Hoffman, E.A.; Kim, T.K.; Taiwo, T.A. [Nuclear Engineering Division Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL (United States)

    2013-07-01T23:59:59.000Z

    One potential fuel cycle option being considered is a two-stage fuel cycle system involving the continuous recycle of transuranics in a fast reactor and the use of bred plutonium in a thermal reactor. The first stage is a Sodium-cooled Fast Reactor (SFR) fuel cycle with metallic U-TRU-Zr fuel. The SFRs need to have a breeding ratio greater than 1.0 in order to produce fissile material for use in the second stage. The second stage is a PWR fuel cycle with uranium and plutonium mixed oxide fuel based on the design and performance of the current state-of-the-art commercial PWRs with an average discharge burnup of 50 MWd/kgHM. This paper evaluates the possibility of this fuel cycle option and discusses its fuel cycle performance characteristics. The study focuses on an equilibrium stage of the fuel cycle. Results indicate that, in order to avoid a positive coolant void reactivity feedback in the stage-2 PWR, the reactor requires high quality of plutonium from the first stage and minor actinides in the discharge fuel of the PWR needs to be separated and sent back to the stage-1 SFR. The electricity-sharing ratio between the 2 stages is 87.0% (SFR) to 13.0% (PWR) for a TRU inventory ratio (the mass of TRU in the discharge fuel divided by the mass of TRU in the fresh fuel) of 1.06. A sensitivity study indicated that by increasing the TRU inventory ratio to 1.13, The electricity generation fraction of stage-2 PWR is increased to 28.9%. The two-stage fuel cycle system considered in this study was found to provide a high uranium utilization (>80%). (authors)

  7. Arizona Department of Environmental Quality's Application Forms...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Web Site: Arizona Department of Environmental Quality's Application Forms and Guidance Website Abstract This site contains forms...

  8. Phoenix, Arizona Data Dashboard | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The data dashboard for Phoenix, Arizona, a partner in the Better Buildings Neighborhood Program. bbnpbban0003563pmcdashboardy13-q3.xls More Documents & Publications Austin...

  9. ARIZONA RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Arizona has substantial natural resources, including coal, solar, and hydroelectric resources. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment...

  10. Energy Department, Arizona Utilities Announce Transmission Infrastruct...

    Energy Savers [EERE]

    Energy in Southwest States WASHINGTON - Today, the Department of Energy's Western Area Power Administration (Western) and a group of Arizona utilities celebrated the energizing of...

  11. Arizona Indian Gaming Association (AIGA) Expo

    Office of Energy Efficiency and Renewable Energy (EERE)

    This year’s EXPO will take place November 5-7, 2014 at the Radisson Fort McDowell Resort & Casino located in Scottsdale, Arizona.

  12. area tucson arizona: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Introduction to grasses Sanderson, Mike 73 ARIZONA COOPERATIVE ARIZONA AND THE NORTH AMERICAN Environmental Sciences and Ecology Websites Summary: , but from convective...

  13. Geothermal development plan: northern Arizona

    SciTech Connect (OSTI)

    White, D.H.; Goldstone, L.A.

    1981-01-01T23:59:59.000Z

    Much of the northern counties (Apache, Coconino, Gila, Mohave, Navajo and Yavapai) is located in the Colorado Plateau province, a region of low geothermal potential. Two areas that do show some potential are the Flagstaff - San Francisco Peaks area and the Springerville area. Flagstaff is rapidly becoming the manufacturing center of Arizona and will have many opportunities to use geothermal energy to satisfy part of its increasing need for energy. Using a computer simulation model, projections of geothermal energy on line as a function of time are made for both private and city-owned utility development of a resource.

  14. Fermilab Today | University of Arizona

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. CategoryFebruaryFebruaryInThe,Michigan0 Dec. 13,TechThe4Arizona

  15. Arizona Geological Society Digest 22

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AO 474.2 Chg 1KANSASVisit2 |Arizona

  16. Bisfuel links - Arizona State University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Site Map Printable VersiondiironArizona State

  17. of Mining & www.mge.arizona.edu

    E-Print Network [OSTI]

    Holliday, Vance T.

    Department of Mining & Geological www.mge.arizona.edu EXPAND Tel: 520.621.6063 Fax: 520.621.8330 mgedept@email.arizona.edu YOUR CAREER ONLINE GRADUATE CERTIFICATE PROGRAM 15 UNITS MINE PRODUCTION & TECHNOLOGY #12;Department of Mining & Geological Engineering Contact: Sean Dessureault dessure

  18. THE ARIZONA REPUBLIC April 11, 2009

    E-Print Network [OSTI]

    Fay, Noah

    particular area: science. Arizona is already a global leader, but it needs to build on that strength are explored, Arizona's geography will make it a focal point for solar- energy initiatives, and its expertise to its rightful place." The federal economic- stimulus package includes $21.5 billion for research

  19. ELECTRIC

    Office of Legacy Management (LM)

    you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY...

  20. Arizona

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department ofU.S. Offshore U.S. StateOil and< backC

  1. Climate Change in Arizona: Current Knowledge and Future

    E-Print Network [OSTI]

    Zhang, Junshan

    's premier climate scientists discuss the impacts of climate change on Arizona's water, energy, healthClimate Change in Arizona: Current Knowledge and Future Collaborations Among the State Universities 230 Arizona State University, Tempe Campus Join us for a cross-university climate forum, as Arizona

  2. applications pwr bwr: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reactivity and power distributions ... Inoue, Yuichiro, 1969- 2004-01-01 5 Ris9-R-609(EN) Simulation ofa PWR Power Plant Multidisciplinary Databases and Resources Websites Summary:...

  3. Ris9-R-609(EN) Simulation ofa PWR Power Plant

    E-Print Network [OSTI]

    Ris9-R-609(EN) Simulation ofa PWR Power Plant for Process Control and Diagnosis Finn Ravnsbjerg Nielsen Risø National Laboratory, Roskilde, Denmark December 1991 #12;Simulation of a PWR Power Plant *^R a compute simulation of a simplified pressurized nuclear power plant model directed towards process control

  4. Puerto Rico Electric Pwr Authority | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook icon TwitterZip JumpProwindPuda Coal Inc Jump

  5. Central Electric Pwr Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd: China DatangCentral El trica Anhanguera

  6. Twin County Electric Pwr Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin HydropowerTrinityTurnbull Hydro LLC Jump to:Page Edit withTwin

  7. Rushmore Electric Pwr Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:Roscommon County,Vermont: EnergyEasements

  8. SOURCE PHENOMENOLOGY EXPERIMENTS IN ARIZONA

    SciTech Connect (OSTI)

    Jessie L. Bonner; Brian Stump; Mark Leidig; Heather Hooper; Xiaoning (David) Yang; Rongmao Zhou; Tae Sung Kim; William R. Walter; Aaron Velasco; Chris Hayward; Diane Baker; C. L. Edwards; Steven Harder; Travis Glenn; Cleat Zeiler; James Britton; James F. Lewkowicz

    2005-09-30T23:59:59.000Z

    The Arizona Source Phenomenology Experiments (SPE) have resulted in an important dataset for the nuclear monitoring community. The 19 dedicated single-fired explosions and multiple delay-fired mining explosions were recorded by one of the most densely instrumented accelerometer and seismometer arrays ever fielded, and the data have already proven useful in quantifying confinement and excitation effects for the sources. It is very interesting to note that we have observed differences in the phenomenology of these two series of explosions resulting from the differences between the relatively slow (limestone) and fast (granodiorite) media. We observed differences at the two SPE sites in the way the rock failed during the explosions, how the S-waves were generated, and the amplitude behavior as a function of confinement. Our consortium's goal is to use the synergy of the multiple datasets collected during this experiment to unravel the phenomenological differences between the two emplacement media. The data suggest that the main difference between single-fired chemical and delay-fired mining explosion seismograms at regional distances is the increased surface wave energy for the latter source type. The effect of the delay-firing is to decrease the high-frequency P-wave amplitudes while increasing the surface wave energy because of the longer source duration and spall components. The results suggest that the single-fired explosions are surrogates for nuclear explosions in higher frequency bands (e.g., 6-8 Hz Pg/Lg discriminants). We have shown that the SPE shots, together with the mining explosions, are efficient sources of S-wave energy, and our next research stage is to postulate the possible sources contributing to the shear-wave energy.

  9. Automatic load follow control system for PWR plants

    SciTech Connect (OSTI)

    Nakakura, H.; Ishiguro, A.

    1987-01-01T23:59:59.000Z

    In Japan, load follow operation (daily load follow, automatic frequency control (AFC) operation, and governor free (GF) operation) of nuclear plants will be required in the near future to control grid frequency, as the ratio of nuclear plant electrical production to total grid production will increase. The AFC operation regulated power by demand from the central load dispatcher to control mainly the fringe component of the grid frequency fluctuation, and GF operation regulates power by turbine revolution or grid frequency to control mainly the cyclic component of grid frequency fluctuation. This paper deals with the automatic power distribution control system, which is important to load follow operation and possibly will be applied to pressurized water reactor (PWR) nuclear plants. The reactor control systems noted below are conventional design with some improvements for AFC/GF operation, so that the reactor operates the turbine as before: (1) rod control system (reactor power control); (2) pressurizer pressure control system; (3) pressurizer level control system; and (4) steam generator level control system.

  10. City of Phoenix- Energize Phoenix Commercial Incentives (Arizona)

    Broader source: Energy.gov [DOE]

    Through a partnership with Arizona State University and Arizona Public Service (APS), the City of Phoenix is providing incentives for businesses located along a 10-mile stretch of the Metro light...

  11. area northeastern arizona: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arizona's Riparian Areas Environmental Sciences and Ecology Websites Summary: management, riparian ecology, riparian restoration, soils and soil ecology. Recent and...

  12. Interdisciplinary Undergraduate Internship Opportunities Arizona PIRG Student Capters Interships

    E-Print Network [OSTI]

    Watkins, Joseph C.

    Interdisciplinary Undergraduate Internship Opportunities ARIZONA Arizona PIRG Student Capters of the internship program is to provide the opportunity to take education out of the classroom, to do hands-on work campuses, Arizona PIRG organizers work closely with university faculty to offer course credit internships

  13. Maricopa, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez PuebloManteca,Marana, Arizona:Ohio:Maribel,Arizona:

  14. DOE - Office of Legacy Management -- Arizona

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizona Arizona az_map Monument Valley Processing

  15. Zebra: An advanced PWR lattice code

    SciTech Connect (OSTI)

    Cao, L.; Wu, H.; Zheng, Y. [School of Nuclear Science and Technology, Xi'an Jiaotong Univ., No. 28, Xianning West Road, Xi'an, ShannXi, 710049 (China)

    2012-07-01T23:59:59.000Z

    This paper presents an overview of an advanced PWR lattice code ZEBRA developed at NECP laboratory in Xi'an Jiaotong Univ.. The multi-group cross-section library is generated from the ENDF/B-VII library by NJOY and the 361-group SHEM structure is employed. The resonance calculation module is developed based on sub-group method. The transport solver is Auto-MOC code, which is a self-developed code based on the Method of Characteristic and the customization of AutoCAD software. The whole code is well organized in a modular software structure. Some numerical results during the validation of the code demonstrate that this code has a good precision and a high efficiency. (authors)

  16. Fuel cycle optimization of thorium and uranium fueled PWR systems

    E-Print Network [OSTI]

    Garel, Keith Courtnay

    1977-01-01T23:59:59.000Z

    The burnup neutronics of uniform PWR lattices are examined with respect to reduction of uranium ore requirements with an emphasis on variation of the fuel-to-moderator ratio

  17. 2010Employee's Arizona Withholding Percentage Election

    E-Print Network [OSTI]

    Rhoads, James

    withholding percentage of zero, and I certify that I meet BOTH of the following qualifying conditions at the end of the calendar year (i.e. gross wages net of pretax deductions, such as your portion of health a Withholding Percentage of Zero You may elect an Arizona withholding percentage of zero if you meet BOTH

  18. Ecology of Montezuma Quail in Southeast Arizona

    E-Print Network [OSTI]

    Chavarria, Pedro Mazier

    2013-04-26T23:59:59.000Z

    and habitat use have remained as knowledge gaps until now. My study overcame these difficulties and I was able to trap and monitor 88 individuals from 2008–2010 at 3 study sites in southeast Arizona. Techniques for trapping and monitoring included the use...

  19. ARIZONA COOPERATIVE Climate Change and Wildfire

    E-Print Network [OSTI]

    Crimmins, Michael A.

    and Woodlands Summary of Issue Wildfire requires three things to burn: heat, fuel and oxygen. If one 1998) and warming temperatures coupled with recent drought conditions. In many cases, high force managers to consider new management #12;2 The University of Arizona Cooperative Extension

  20. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    81 Residential Sales (MWh) 647 Residential Consumers 290 Commercial Revenue(Thousand ) 168.985 Commercial Sales (MWh) 2306 Commercial Consumers 81 Industrial Revenue (Thousand )...

  1. Arizona Natural Gas Deliveries to Electric Power Consumers (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14Decade Year-0 Year-1 Year-221,6350

  2. Arizona Natural Gas Deliveries to Electric Power Consumers (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1Year Jan Feb Mar Apr May

  3. Columbus Electric Coop, Inc (Arizona) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCityCoated ConductorsColonial

  4. UNIVERSITY OF ARIZONA HIGH ENERGY PHYSICS PROGRAM

    SciTech Connect (OSTI)

    Rutherfoord, John P. [University of Arizona] [University of Arizona; Johns, Kenneth A. [University of Arizona] [University of Arizona; Shupe, Michael A. [University of Arizona] [University of Arizona; Cheu, Elliott C. [University of Arizona] [University of Arizona; Varnes, Erich W. [University of Arizona] [University of Arizona; Dienes, Keith [University of Arizona] [University of Arizona; Su, Shufang [University of Arizona] [University of Arizona; Toussaint, William Doug [University of Arizona] [University of Arizona; Sarcevic, Ina [University of Arizona] [University of Arizona

    2013-07-29T23:59:59.000Z

    The High Energy Physics Group at the University of Arizona has conducted forefront research in elementary particle physics. Our theorists have developed new ideas in lattice QCD, SUSY phenomenology, string theory phenomenology, extra spatial dimensions, dark matter, and neutrino astrophysics. The experimentalists produced significant physics results on the ATLAS experiment at CERN's Large Hadron Collider and on the D0 experiment at the Fermilab Tevatron. In addition, the experimentalists were leaders in detector development and construction, and on service roles in these experiments.

  5. Intern experience at Arizona Public Service Company: an internship report

    E-Print Network [OSTI]

    Land, Ronald Jay, 1957-

    2013-03-13T23:59:59.000Z

    ?s experience as an intern with the Arizona Nuclear Power Project. For the duration of the internship period, the author worked as an Engineer I in the Technical Projects Section of the Nuclear Fuel Management Department. During the internship period... for which the Technical Projects Section is responsible. iv TABLE OF CONTENTS PAGE INTRODUCTION 1 Internship Objectives 1 Internship Organization 3 Arizona Nuclear Power Project 3 Palo Verde Nuclear Generating Station 3 Arizona Public Service...

  6. Socioeconomic impact of photovoltaic power at Schuchulik, Arizona. Final report

    SciTech Connect (OSTI)

    Bahr, D.; Garrett, B.G.; Chrisman, C.

    1980-10-01T23:59:59.000Z

    Schuchuli, a small remote village on the Papago Indian Reservation in southwest Arizona, is 27 kilometers (17 miles) from the nearest available utility power. In some respects, Schuchuli resembles many of the rural villages in other parts of the world. For example, it's relatively small in size (about 60 residents), composed of a number of extended family groupings, and remotely situated relative to major population centers (190 km, or 120 miles, from Tucson). Its lack of conventional power is due to the prohibitive cost of supplying a small electrical load with a long-distance distribution line. Furthermore, alternate energy sources are expensive and place a burden on the resources of the villagers. On December 16, 1978, as part of a federally funded project, a solar cell power system was put into operation at Schuchuli. The system powers the village water pump, lighting for homes ad other village buildings, family refrigerators and a communal washing machine and sewing machine. The project, managed for the US Department of Energy by the NASA Lewis Research Center, provided for a one-year socio-economic study to assess the impact of a relatively small amount of electricity on the basic living environment of the villagers. The results of that study are presented, including village history, group life, energy use in general and the use of the photovoltaic-powered appliances. No significant impacts due to the photovoltaic power system were observed.

  7. RIS-M-2264 CONSTRUCTION OF PWR NUCLEAR CROSS SECTIONS FOR TRANSIENT

    E-Print Network [OSTI]

    RISØ-M-2264 CONSTRUCTION OF PWR NUCLEAR CROSS SECTIONS FOR TRANSIENT CALCULATIONS. TEST OF THE ANTI recent Westinghouse designs, representing two different PWR reactor cores, are calculated as functions oi; COMPUTER CALCULATIONS; COUPLING CONSTANTS; CROSS SECTIONS; POWER DISTRIBUTION; PWR TYPE REACTORS

  8. A Comparison Between Model Reduction and Controller Reduction: Application to a PWR Nuclear Planty

    E-Print Network [OSTI]

    Gevers, Michel

    A Comparison Between Model Reduction and Controller Reduction: Application to a PWR Nuclear Planty model reduction with controller reduction for the same PWR system. We show that closed-loop techniques to the design of a low-order con- troller for a realistic model of order 42 of a Pressurized Water Reactor (PWR

  9. PWR fuel performance and future trend in Japan

    SciTech Connect (OSTI)

    Kondo, Y.

    1988-01-01T23:59:59.000Z

    Since the first PWR power plant Mihama Unit 1 initiated its commercial operation in 1970, Japanese utilities and manufacturers have expended much of their resources and efforts to improve PWR technology. The results are already seen in significantly improved performance of 16 PWR plants now in operation. Mitsubishi Heavy Industries Ltd. (MHI) has been supplying them with nuclear fuel assemblies, which are over 5700. As the reliability of the current design fuel has been achieved, the direction of RandD on nuclear fuel has changed to make nuclear power more competitive to the other power generation methods. The most important RandD targets are the burnup extension, Gd contained fuel, utilization and the load follow capability.

  10. arizona state university: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ye, Jieping 231 ARIZONA STATE UNIVERSITY POWER SYSTEMS ENGINEERING RESEARCH CENTER Power Transmission, Distribution and Plants Websites Summary: and alternating current (AC)...

  11. Arizona Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act State Memo Arizona has substantial natural resources, including coal, solar, and hydroelectric resources. The American Recovery & Reinvestment Act (ARRA) is...

  12. Southwest Gas Corporation- Residential and Builder Efficiency Rebate Program (Arizona)

    Broader source: Energy.gov [DOE]

    Southwest Gas Corporation (SWG) offers rebates to residential customers in Arizona who purchase and install energy efficient natural gas tankless water heaters, clothes dryers, windows, attic...

  13. Leak before break application in French PWR plants under operation

    SciTech Connect (OSTI)

    Faidy, C. [EDF SEPTEN, Villeurbanne (France)

    1997-04-01T23:59:59.000Z

    Practical applications of the leak-before break concept are presently limited in French Pressurized Water Reactors (PWR) compared to Fast Breeder Reactors. Neithertheless, different fracture mechanic demonstrations have been done on different primary, auxiliary and secondary PWR piping systems based on similar requirements that the American NUREG 1061 specifications. The consequences of the success in different demonstrations are still in discussion to be included in the global safety assessment of the plants, such as the consequences on in-service inspections, leak detection systems, support optimization,.... A large research and development program, realized in different co-operative agreements, completes the general approach.

  14. arizona cloud-seeding experiment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extension exterior 1. Roof Ziurys, Lucy M. 13 ARIZONA COOPERATIVE ARIZONA AND THE NORTH AMERICAN Environmental Sciences and Ecology Websites Summary: , but from convective...

  15. Storage opportunities in Arizona bedded evaporites

    SciTech Connect (OSTI)

    Neal, J.T. [Sandia National Labs., Albuquerque, NM (United States); Rauzi, S.L. [Arizona Geological Survey, Tucson, AZ (United States)

    1996-10-01T23:59:59.000Z

    Arizona is endowed with incredibly diverse natural beauty, and has also been blessed with at least seven discrete deposits of bedded salt. These deposits are dispersed around the state and cover some 2, 500 square miles; they currently contain 14 LPG storage caverns, with preliminary plans for more in the future. The areal extent and thickness of the deposits creates the opportunity for greatly expanded storage of LPG, natural gas, and compressed air energy storage (CAES). The location of salt deposits near Tucson and Phoenix may make CAES an attractive prospect in the future. The diversity of both locations and evaporate characteristics allows for much tailoring of individual operations to meet specific requirements.

  16. Energy Incentive Programs, Arizona | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal RegisterHydrogenDistributionFact Sheet EnergyEnergyArizona Energy

  17. Categorical Exclusion Determinations: Arizona | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJuneWaste To Wisdom:EnergyJoshuaThisAgency-EnergyArizona.

  18. Lechee, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana: EnergyLands inLechee, Arizona: Energy

  19. Leupp, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana:New York:NewLeupp, Arizona: Energy Resources

  20. Goodyear, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to: navigation, searchGoodyear, Arizona: Energy

  1. Whetstone, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED JumpHills,2732°,WetzelTechnologiesWhetstone, Arizona: Energy

  2. Wilhoit, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird, Idaho:Wildwood Crest, New Jersey: EnergyWilhoit, Arizona:

  3. Williams, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird, Idaho:Wildwood Crest, NewKansas:Williams, Arizona: Energy

  4. Chuichu, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPower InternationalChuichu, Arizona: Energy Resources Jump

  5. Wellton, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation,Goff, 2002)Wellington MiddleWellton, Arizona:

  6. Prescott, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergyInformation toPower andPoyryArizona: Energy Resources

  7. Jerome, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias SolarJaneJefferson, Iowa:Jerome County, Idaho: EnergyArizona:

  8. Kaibito, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa: Energy ResourcesKACOKahaluu, Hawaii:Kaibito, Arizona:

  9. Kearny, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa: EnergyKanabec County,Kaolin ADKaw(CTI PFAN)Arizona:

  10. Summit, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to: navigation, searchNewOpen Energy(Colorado) |Park,Arizona:

  11. Supai, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:Holdings Co Ltd Place: Wuxi, JiangsuSunwattSupai, Arizona:

  12. Dudleyville, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, New Jersey:Jump to:Dudleyville, Arizona: Energy

  13. Eloy, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,Energy Information Elkhorn HotGrove,Elmore,Eloy, Arizona:

  14. Arizona/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy ResourcesInformation Arizona's 6thsource History View New

  15. Arizona/Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy ResourcesInformation Arizona's 6thsource History View

  16. Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy ResourcesInformation Arizona's 6thsource History

  17. Marana, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez PuebloManteca,Marana, Arizona: Energy Resources Jump

  18. Surprise, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained By FaultSunpods Inc JumpSurprise, Arizona: Energy Resources

  19. Tempe, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:HoldingsTechint Spa JumpTVCEt Al.,(Biasi,Tempe, Arizona:

  20. Florence, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmore County,and WildlifeFlashFlintFlixArizona: Energy

  1. Tucson, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, Indiana (UtilityTri-StateTucson Estates, Arizona: Energy

  2. Tusayan, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtle Airships Jump to: navigation, searchTusayan, Arizona:

  3. Vail, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies andVacant Jump to: navigation, searchArizona:

  4. Congress, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew| OpenCongress, Arizona: Energy Resources Jump to:

  5. EIS-0474: Southline Transmission Line Project; Arizona and New Mexico

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing this EIS to evaluate the environmental impacts of the proposed Southline Transmission Project, which would consist of a new 225-mile transmission line between existing substations at Afton, New Mexico, and Apache, Arizona, and improvements to approximately 130 miles of existing transmission lines between the Apache and Saguaro, Arizona substations.

  6. A Design Model for Subsurface Drip Irrigation in Arizona

    E-Print Network [OSTI]

    Fay, Noah

    and useful tool when applied to the design of subsurface irrigation systems #12;Acknowledgements This projectA Design Model for Subsurface Drip Irrigation in Arizona Michael Liga Advisor: Dr. Don Slack Biosystems Engineering University of Arizona #12;Water Issue Subsurface Drip Irrigation · Benefits ·Increased

  7. IN THE COURT OF APPEALS STATE OF ARIZONA

    E-Print Network [OSTI]

    Shamos, Michael I.

    1 IN THE COURT OF APPEALS STATE OF ARIZONA DIVISION ONE RODNEY L. JOFFE, Plaintiff-Appellee, v. ACACIA MORTGAGE CORPORATION, an Arizona corporation, f/k/a ACACIA NATIONAL MORTGAGE CORPORATION the superior court's order granting what was in effect partial summary judgment in favor of Rodney Joffe

  8. Analysis of PWR RCS Injection Strategy During Severe Accident

    SciTech Connect (OSTI)

    Wang, S.-J. [Institute of Nuclear Energy Research, Taiwan (China); Chiang, K.-S. [Institute of Nuclear Energy Research, Taiwan (China); Chiang, S.-C. [Taiwan Power Company, Taiwan (China)

    2004-05-15T23:59:59.000Z

    Reactor coolant system (RCS) injection is an important strategy for severe accident management of a pressurized water reactor (PWR) system. Maanshan is a typical Westinghouse PWR nuclear power plant (NPP) with large, dry containment. The severe accident management guideline (SAMG) of Maanshan NPP is developed based on the Westinghouse Owners Group (WOG) SAMG.The purpose of this work is to analyze the RCS injection strategy of PWR system in an overheated core condition. Power is assumed recovered as the vessel water level drops to the bottom of active fuel. The Modular Accident Analysis Program version 4.0.4 (MAAP4) code is chosen as a tool for analysis. A postulated station blackout sequence for Maanshan NPP is cited as a reference case for this analysis. The hot leg creep rupture occurs during the mitigation action with immediate injection after power recovery according to WOG SAMG, which is not desired. This phenomenon is not considered while developing the WOG SAMG. Two other RCS injection methods are analyzed by using MAAP4. The RCS injection strategy is modified in the Maanshan SAMG. These results can be applied for typical PWR NPPs.

  9. Effects of Burnable Absorbers on PWR Spent Nuclear Fuel

    SciTech Connect (OSTI)

    P.M. O'Leary; Dr. M.L. Pitts

    2000-08-21T23:59:59.000Z

    Burnup credit is an ongoing issue in designing and licensing transportation and storage casks for spent nuclear fuel (SNF). To address this issue, in July 1999, the U.S. Nuclear Regulatory Commission (NRC), Spent Fuel Project Office, issued Interim Staff Guidance-8 (ISG-8), Revision 1 allowing limited burnup credit for pressurized water reactor (PWR) spent nuclear fuel (SNF) to be used in transport and storage casks. However, one of the key limitations for a licensing basis analysis as stipulated in ISG-8, Revision 1 is that ''burnup credit is restricted to intact fuel assemblies that have not used burnable absorbers''. Because many PWR fuel designs have incorporated burnable-absorber rods for more than twenty years, this restriction places an unnecessary burden on the commercial nuclear power industry. This paper summarizes the effects of in-reactor irradiation on the isotopic inventory of PWR fuels containing different types of integral burnable absorbers (BAs). The work presented is illustrative and intended to represent typical magnitudes of the reactivity effects from depleting PWR fuel with different types of burnable absorbers.

  10. Condensate polishing guidelines for PWR and BWR plants

    SciTech Connect (OSTI)

    Robbins, P.; Crinigan, P.; Graham, B.; Kohlmann, R.; Crosby, C.; Seager, J.; Bosold, R.; Gillen, J.; Kristensen, J.; McKeen, A.; Jones, V.; Sawochka, S.; Siegwarth, D.; Keeling, D.; Polidoroff, T.; Morgan, D.; Rickertsen, D.; Dyson, A.; Mills, W.; Coleman, L.

    1993-03-01T23:59:59.000Z

    Under EPRI sponsorship, an industry committee, similar in form and operation to other guideline committees, was created to develop Condensate Polishing Guidelines for both PWR and BWR systems. The committee reviewed the available utility and water treatment industry experience on system design and performance and incorporated operational and state-of-the-art information into document. These guidelines help utilities to optimize present condensate polisher designs as well as be a resource for retrofits or new construction. These guidelines present information that has not previously been presented in any consensus industry document. The committee generated guidelines that cover both deep bed and powdered resin systems as an integral part of the chemistry of PWR and BWR plants. The guidelines are separated into sections that deal with the basis for condensate polishing, system design, resin design and application, data management and performance and management responsibilities.

  11. EIS-0336: Presidential Permit Application, Tucson Electric Power Company, Sahuarita, AZ

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to approve a Presidential Permit application to construct a double-circuit 345,000 volt (345-kV) electric transmission line to transmit 500 MW of electricity. The transmission line would begin south of Tucson, Arizona, in the vicinity of Sahuarita, cross the U.S.-Mexico border near Nogales, Arizona, and continue into Mexico. The proponent anticipates using 400 MW of capability for transport of energy between the United States and Mexico.

  12. Design study of long-life PWR using thorium cycle

    SciTech Connect (OSTI)

    Subkhi, Moh. Nurul; Su'ud, Zaki; Waris, Abdul [Physics.Dept., Bandung Institute of Technology.Ganesha 10, Bandung (Indonesia)

    2012-06-06T23:59:59.000Z

    Design study of long-life Pressurized Water Reactor (PWR) using thorium cycle has been performed. Thorium cycle in general has higher conversion ratio in the thermal spectrum domain than uranium cycle. Cell calculation, Burn-up and multigroup diffusion calculation was performed by PIJ-CITATION-SRAC code using libraries based on JENDL 3.2. The neutronic analysis result of infinite cell calculation shows that {sup 231}Pa better than {sup 237}Np as burnable poisons in thorium fuel system. Thorium oxide system with 8%{sup 233}U enrichment and 7.6{approx} 8%{sup 231}Pa is the most suitable fuel for small-long life PWR core because it gives reactivity swing less than 1%{Delta}k/k and longer burn up period (more than 20 year). By using this result, small long-life PWR core can be designed for long time operation with reduced excess reactivity as low as 0.53%{Delta}k/k and reduced power peaking during its operation.

  13. Arizona EV Infrastructure Plans Revealed | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    as one of the top Recovery Act projects Out in the desert, a revolution in automotive technology is happening. Some Arizona drivers are taking part in an innovative new...

  14. Water infrastructure : hybridized architecture along the Arizona canal

    E-Print Network [OSTI]

    Atwood, Alex (Wayne Alex)

    2012-01-01T23:59:59.000Z

    Due to budget issues, the Central Arizona Project (CAP) canal has been left exposed to the arid desert environment since its construction in the 1970s. As a result, 5% of the amount of water diverted from the Colorado River ...

  15. Argonne and Arizona State University sign five-year agreement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne and Arizona State University sign five-year agreement By Greg Cunningham * May 28, 2015 Tweet EmailPrint MOU clears way for expanded research opportunities The Department...

  16. ARIZONA STATE UNIVERSITY STETSON UNIVERSITY Phoenix, AZ Deland, FL

    E-Print Network [OSTI]

    Wu, Shin-Tson

    English Literature English BOWLING GREEN STATE UNIVERSITY Bowling Green, OH SYRACUSE UNIVERSITY IndustrialARIZONA STATE UNIVERSITY STETSON UNIVERSITY Phoenix, AZ Deland, FL Interdisciplinary Studies Leadership FLORIDA STATE UNIVERSITY Instructional Systems Design Tallahassee, FL Interdisciplinary Studies

  17. DOE - Office of Legacy Management -- University of Arizona Southwest...

    Office of Legacy Management (LM)

    of the University of Arizona under FUSRAP; October 13, 1987 AZ.01-4 - DOE Letter; Bauer to Liverman; Past Operations and a Survey by Messrs, Jascewsky, and Smith; February 7, 1978...

  18. Iman E. Mallakpour iman@email.arizona.edu

    E-Print Network [OSTI]

    Scott, Christopher

    2009- Present M. Sc. in Hydrology Department of Hydrology and Water resources The University of Arizona Valdes) ·A review paper on Effects of stream disconnection on local flow patterns (2009, Dr. Thomas

  19. Financial analysis of watermelon production in Central Arizona

    E-Print Network [OSTI]

    Ellsworth, Steven Jon

    1986-01-01T23:59:59.000Z

    Record of Study Financial Analysis of Watermelon Production in Central Arizona A Professional Paper by Steven Jon E11sworth Submitted to the College of Agriculture of Texas A II N University in partial fulfillment of the requirements... for the degree of WASTER OF AGRICULTURE January 1986 Department of Agricultural Economics Agricultural Finance Financial Analysis of watermelon Production in Central Arizona A Professional Paper by Steven Jon E11sworth Approved as . to tyle and content...

  20. DOE-University of Arizona Faculty Development Project. Final report

    SciTech Connect (OSTI)

    None

    1980-09-08T23:59:59.000Z

    The DOE-University of Arizona Faculty Development Project on Energy successfully completed a faculty development program. There were three phases of the program consisting of: a three week energy workshop for teachers, participation and cooperation with Students for Safe Energy in presentation of an Alternative Energy Festival at the University of Arizona, and workshops for teachers conducted at Flowing Wells School District. Each of these is described. Attendees are listed and a director's evaluation of the workshop is given.

  1. College of Agriculture and Life Sciences Map of Arizona. Source: Arizona Water Map Poster, 2002, Water Resources Research

    E-Print Network [OSTI]

    Cushing, Jim. M.

    of common minerals and contaminants found in Arizona water sources. · A description of drinking water of Water...............................................15 2. Properties of Water 2.1 Minerals in Water...............................................23 2.2 Contaminants in Water ......................................27 3. Water Quality

  2. Havasupai Indian Reservation, Supai Village, Arizona | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Three photovoltaic (PV) energy systems will supply up to 2 kilowatts of electrical power each to three facilities, which include a school, a jail, and a government complex...

  3. Arizona Corporation Commission Application for a Certificate...

    Open Energy Info (EERE)

    Application for a Certificate of Convenience and Necessity for Competitive Retail Electricity Services Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal...

  4. Testing and analyses of the TN-24P PWR spent-fuel dry storage cask loaded with consolidated fuel

    SciTech Connect (OSTI)

    McKinnon, M A; Michener, T E; Jensen, M F; Rodman, G R

    1989-02-01T23:59:59.000Z

    A performance test of a Transnuclear, Inc. TN-24P storage cask configured for pressurized water reactor (PWR) spent fuel was performed. The work was performed by the Pacific Northwest Laboratory (PNL) and Idaho National Engineering Laboratory (INEL) for the US Department of Energy Office of Civilian Radioactive Waste Management (OCRWM) and the Electric Power Research Institute. The performance test consisted of loading the TN-24P cask with 24 canisters of consolidated PWR spent fuel from Virginia Power's Surry and Florida Power and Light's Turkey Point reactors. Cask surface and fuel canister guide tube temperatures were measured, as were cask surface gamma and neutron dose rates. Testing was performed with vacuum, nitrogen, and helium backfill environments in both vertical and horizontal cask orientations. Transnuclear, Inc., arranged to have a partially insulated run added to the end of the test to simulate impact limiters. Limited spent fuel integrity data were also obtained. From both heat transfer and shielding perspectives, the TN-24P cask with minor refinements can be effectively implemented at reactor sites and central storage facilities for safe storage of unconsolidated and consolidated spent fuel. 35 refs., 93 figs., 17 tabs.

  5. Central Montana E Pwr Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd: China DatangCentral ElCentral Montana E Pwr Coop Inc

  6. Northwest Rural Pub Pwr Dist | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorth AmericaNorthwest Rural Pub Pwr Dist Jump to:

  7. Pearl River Valley El Pwr Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympiaAnalysis)Pearl River Valley El Pwr Assn Jump to:

  8. Federal Correctional Institution - Phoenix, Arizona | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (60C) when necessary and serves as preheated incoming water for the existing electric water heaters in each building. The system meets about 82% of the hot water needs for...

  9. Recent advances in analysis of PWR containment bypass accidents

    SciTech Connect (OSTI)

    Warman, E.A.; Metcalf, J.E.; Donahue, M.L. (Stone and Webster Engineering Corp., Boston, MA (United States))

    1991-01-01T23:59:59.000Z

    The Reactor Safety Study identified and quantified the contribution to off-site radiological risks of accident sequences at pressurized water reactors (PWRs) in which the release of fission products may be released by bypassing the containment building. These so-called bypass accidents were also referred to as interfacing systems loss-of-coolant accidents (LOCAs) or Event 5 sequences due to the postulated failure of valves separating the high-pressure reactor coolant system (RCS) from low-pressure piping located outside containment. Containment bypass sequence risks constitute a large fraction of the total pressurized water reactor (PWR) in NUREG-1150 in large part because estimates of competing risks from early containment failures have been greatly reduced since WASH-1400. Rigorous analyses of both SGTR and V sequence bypass sequences result in reductions in fission product release to such an extent that in-containment sequences are expected to dominate PWR risks at levels substantially lower than reported in NUREG-1150. It is important that these findings be confirmed by other investigators, particularly in light of the NRC's ongoing study of the frequency of occurrence of interfacing systems. LOCAs based on extensive investigations at operating plants. Progress in this latter effort should be matched by progress in the knowledge and understanding of the progression of bypass sequences, once initiated.

  10. Gamma and Neutron Radiolysis in the 21-PWR Waste Package

    SciTech Connect (OSTI)

    J.S. Tang

    2001-05-03T23:59:59.000Z

    The objective of this calculation is to compute gamma and neutron dose rates in order to determine the maximum radiolytic production of nitric acid and other chemical species inside the 21-PWR (pressurized-water reactor) waste package (WP). The scope of this calculation is limited to the time period between 5,000 and 100,000 years after emplacement. The information provided by the sketches attached to this calculation is that of the potential design for the type of WP considered in this calculation. The results of this calculation will be used to evaluate nitric acid corrosion of fuel cladding from radiolysis in the 21-PWR WP. This calculation was performed in accordance with the Technical Work Plan for: Waste Package Design Description for LA (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O) 2000a). AP-3.124, Calculations, is used to perform the calculation and develop the document. This calculation is associated with the total system performance assessment (TSPA) of which the spent fuel cladding integrity is to be evaluated.

  11. Independent Confirmatory Survey Report for the University of Arizona Nuclear Reactor Laboratory, Tucson, Arizona

    SciTech Connect (OSTI)

    Nick A. Altic

    2011-11-11T23:59:59.000Z

    The University of Arizona (University) research reactor is a TRIGA swimming pool type reactor designed by General Atomics and constructed at the University in 1958. The reactor first went into operation in December of 1958 under U.S. Nuclear Regulatory Commission (NRC) license R-52 until final shut down on May 18, 2010. Initial site characterization activities were conducted in February 2009 during ongoing reactor operations to assess the radiological status of the Nuclear Reactor Laboratory (NRL) excluding the reactor tank, associated components, and operating systems. Additional post-shutdown characterization activities were performed to complete characterization activities as well as verify assumptions made in the Decommissioning Plan (DP) that were based on a separate activation analysis (ESI 2009 and WMG 2009). Final status survey (FSS) activities began shortly after the issuance of the FSS plan in May 2011. The contractor completed measurement and sampling activities during the week of August 29, 2011.

  12. Frequency Modes of Monsoon Precipitation in Arizona and New Mexico ANNE W. NOLIN

    E-Print Network [OSTI]

    Kurapov, Alexander

    Frequency Modes of Monsoon Precipitation in Arizona and New Mexico ANNE W. NOLIN Department proportion of the annual precipitation for Arizona and New Mexico arrives during the summer monsoon. Forty-one years of daily monsoon season precipitation data for Arizona and New Mexico were studied using wavelet

  13. SALINITY AND SODICITY INTERACTIONS OF WEATHERED MINESOILS IN NORTHWESTERN NEW MEXICO AND NORTH EASTERN ARIZONA

    SciTech Connect (OSTI)

    Brent Musslewhite; Song Jin

    2006-05-01T23:59:59.000Z

    Weathering characteristics of minesoils and rooting patterns of key shrub and grass species were evaluated at sites reclaimed for 6 to 14 years from three surface coal mine operations in northwestern New Mexico and northeastern Arizona. Non-weathered minesoils were grouped into 11 classifications based on electrical conductivity (EC) and sodium adsorption ratio (SAR). Comparisons of saturated paste extracts, from non-weathered and weathered minesoils show significant (p < 0.05) reductions in SAR levels and increased EC. Weathering increased the apparent stability of saline and sodic minesoils thereby reducing concerns of aggregate slaking and clay particle dispersion. Root density of four-wing saltbush (Atriplex canascens), alkali sacaton (Sporobolus airoides), and Russian wildrye (Psathyrostachys junceus) were nominally affected by increasing EC and SAR levels in minesoil. Results suggest that saline and sodic minesoils can be successfully reclaimed when covered with topsoil and seeded with salt tolerant plant species.

  14. Potential of hybrid geothermal/coal fired power plants in Arizona

    SciTech Connect (OSTI)

    White, D.H.; Goldstone, L.A.

    1982-08-01T23:59:59.000Z

    The City of Burbank and the Ralph M. Parsons Company studies showed several advantages for hybrid geothermal/coal fired power plants, as follows: (1) the estimated cost of producing electricity in hybrid plant is about 18.3 mills/kWh, compared to 19.3 mills/kWh in an all-coal fired power plant; (2) the coal requirements for a given plant can be reduced about 12 to 17%; and (3) the geothermal brines can be used for power plant cooling water, and in some cases, as boiler feedwater. The pertinent results of the City of Burbank studies are summarized and applied to the geothermal and coal resources of Arizona for possible future utilization.

  15. Development and Application of Laser Peening System for PWR Power Plants

    SciTech Connect (OSTI)

    Masaki Yoda; Itaru Chida; Satoshi Okada; Makoto Ochiai; Yuji Sano; Naruhiko Mukai; Gaku Komotori; Ryoichi Saeki [Toshiba Corporation (Japan); Toshimitsu Takagi; Masanori Sugihara; Hirokata Yoriki [Shikoku Electric Co., Inc. (Japan)

    2006-07-01T23:59:59.000Z

    Laser peening is a process to improve residual stress from tensile to compressive in surface layer of materials by irradiating high-power laser pulses on the material in water. Toshiba has developed a laser peening system composed of Q-switched Nd:YAG laser oscillators, laser delivery equipment and underwater remote handling equipment. We have applied the system for Japanese operating BWR power plants as a preventive maintenance measure for stress corrosion cracking (SCC) on reactor internals like core shrouds or control rod drive (CRD) penetrations since 1999. As for PWRs, alloy 600 or 182 can be susceptible to primary water stress corrosion cracking (PWSCC), and some cracks or leakages caused by the PWSCC have been discovered on penetrations of reactor vessel heads (RVHs), reactor bottom-mounted instrumentation (BMI) nozzles, and others. Taking measures to meet the unconformity of the RVH penetrations, RVHs themselves have been replaced in many PWRs. On the other hand, it's too time-consuming and expensive to replace BMI nozzles, therefore, any other convenient and less expensive measures are required instead of the replacement. In Toshiba, we carried out various tests for laser-peened nickel base alloys and confirmed the effectiveness of laser peening as a preventive maintenance measure for PWSCC. We have developed a laser peening system for PWRs as well after the one for BWRs, and applied it for BMI nozzles, core deluge line nozzles and primary water inlet nozzles of Ikata Unit 1 and 2 of Shikoku Electric Power Company since 2004, which are Japanese operating PWR power plants. In this system, laser oscillators and control devices were packed into two containers placed on the operating floor inside the reactor containment vessel. Laser pulses were delivered through twin optical fibers and irradiated on two portions in parallel to reduce operation time. For BMI nozzles, we developed a tiny irradiation head for small tubes and we peened the inner surface around J-groove welds after laser ultrasonic testing (LUT) as the remote inspection, and we peened the outer surface and the weld for Ikata Unit 2 supplementary. For core deluge line nozzles and primary water inlet nozzles, we peened the inner surface of the dissimilar metal welding, which is of nickel base alloy, joining a safe end and a low alloy metal nozzle. In this paper, the development and the actual application of the laser peening system for PWR power plants will be described. (authors)

  16. Aridity and Algae: Biodiesel Production in Arizona Jenna Bloxom

    E-Print Network [OSTI]

    Fay, Noah

    Aridity and Algae: Biodiesel Production in Arizona Jenna Bloxom Advisor: Dr. Scott Whiteford Center, the world is looking to alternative fuels to eradicate its reliance upon petroleum. While biofuels may represent a fundamental component in the panacea to this global dilemma, their production and application

  17. First Record of a Mangrove Yellow Warbler in Arizona

    E-Print Network [OSTI]

    ... corresponded to the schedule of the North American monsoon system, on the northern fringe of which Arizona is located. During the monsoon, ... The North American monsoon system. Proceedings of the Third International Workshop on Monsoons (IWM-III), Hangzhou, China, 2–6 Nov. 2004. ...

  18. MS in Water, Society, and Policy University of Arizona

    E-Print Network [OSTI]

    Fay, Noah

    MS in Water, Society, and Policy University of Arizona Biological Sciences East, Room 325 Phone of scholarship. The Water, Society and Policy Program draws on the expertise of scientists, social scientists and the Environment School of Geography and Development Water Resources Research Center Institute

  19. February 3 Kimberly Ogden "Cultivation Strategies for Microalgae to Produce 1:15 pm University of Arizona Biofuels"

    E-Print Network [OSTI]

    Reisslein, Martin

    of Arizona Biofuels" SCOB 228 Department of Chemical and Environmental Engineering February 17 Daven Henze

  20. Fracture mechanics evaluation for at typical PWR primary coolant pipe

    SciTech Connect (OSTI)

    Tanaka, T. [Kansai Electric Power Company, Osaka (Japan); Shimizu, S.; Ogata, Y. [Mitsubishi Heavy Industries, Ltd., Kobe (Japan)

    1997-04-01T23:59:59.000Z

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years.

  1. SENSITIVITY STUDIES FOR THE PWR ROD EJECTION ACCIDENT

    SciTech Connect (OSTI)

    DIAMOND,D.J.; YANG,C.Y.; ARONSON,A.L.

    1999-11-14T23:59:59.000Z

    The objective of this study was to understand the uncertainty in fuel enthalpy calculated for the rod ejection accident (REA) in a pressurized water reactor (PWR). This is to help the US Nuclear Regulatory Commission in making judgments about acceptance criteria for the REA when high burnup fuel is used and for assessing the validity of licensee methods for calculating the REA. The approach is twofold. Sensitivity studies were first done to determine the effect on calculated fuel enthalpy of uncertainties in the important parameters which determine the outcome of the REA. The second step, which will be carried out at a later date, is to use the sensitivity to estimate the random error in the fuel enthalpy due to random errors in these key parameters once the variance of these parameters is determined.

  2. WAPD-SC-545 HYDROGEN FLAMMABILITY DATA AND APPLICATION TO PWR

    Office of Scientific and Technical Information (OSTI)

    WAPD-SC-545 HYDROGEN FLAMMABILITY DATA AND APPLICATION TO PWR LOSS-OF-COOLANT ACCIDENT CONTRACT A T - I M - G E N - H BETTIS PLANT PITTSBURGH, PENNSYLVANIA Operated for the U.S....

  3. Bias identification in PWR pressurizer instrumentation using the generalized liklihood-ratio technique

    SciTech Connect (OSTI)

    Tylee, J.L.

    1981-01-01T23:59:59.000Z

    A method for detecting and identifying biases in the pressure and level sensors of a pressurized water reactor (PWR) pressurizer is described. The generalized likelihood ratio (GLR) technique performs statistical tests on the innovations sequence of a Kalman filter state estimator and is capable of determining when a bias appears, in what sensor the bias exists, and estimating the bias magnitude. Simulation results using a second-order linear, discrete PWR pressurizer model demonstrate the capabilities of the GLR method.

  4. Tucson, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin HydropowerTrinity Thermal Systems JumpTrue Electric2217429°,

  5. Tsaile, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, Indiana (UtilityTri-State ElectricSolarTruRead

  6. Effect of component aging on PWR control rod drive systems

    SciTech Connect (OSTI)

    Grove, E.; Gunther, W.; Sullivan, K.

    1992-01-01T23:59:59.000Z

    An aging assessment of PWR control rod drive (CRD) systems has been completed as part of the US NRC Nuclear Plant Aging Research (NPAR) Program. The design, construction, maintenance, and operation of the Babcock Wilcox (B W), Combustion Engineering (CE), and Westinghouse (W) systems were evaluated to determine the potential for degradation as each system ages. Operating experience data were evaluated to identify the predominant failure modes, causes, and effects. This, coupled with an assessment of the materials of construction and operating environment, demonstrate that each design is subject to degradation, which if left unchecked, could affect its safety function as the plant ages. An industry survey, conducted with the assistance of EPRI and NUMARC, identified current CRD system maintenance and inspection practices. The results of this survey indicate that some plants have performed system modifications, replaced components, or augmented existing preventive maintenance practices in response to system aging. The survey results also supported the operating experience data, which concluded that the timely replacement of degraded components, prior to failure, was not always possible using existing condition monitoring techniques. The recommendations presented in this study also include a discussion of more advanced monitoring techniques, which provide trendable results capable of detecting aging.

  7. Effect of component aging on PWR control rod drive systems

    SciTech Connect (OSTI)

    Grove, E.; Gunther, W.; Sullivan, K.

    1992-06-01T23:59:59.000Z

    An aging assessment of PWR control rod drive (CRD) systems has been completed as part of the US NRC Nuclear Plant Aging Research (NPAR) Program. The design, construction, maintenance, and operation of the Babcock & Wilcox (B & W), Combustion Engineering (CE), and Westinghouse (W) systems were evaluated to determine the potential for degradation as each system ages. Operating experience data were evaluated to identify the predominant failure modes, causes, and effects. This, coupled with an assessment of the materials of construction and operating environment, demonstrate that each design is subject to degradation, which if left unchecked, could affect its safety function as the plant ages. An industry survey, conducted with the assistance of EPRI and NUMARC, identified current CRD system maintenance and inspection practices. The results of this survey indicate that some plants have performed system modifications, replaced components, or augmented existing preventive maintenance practices in response to system aging. The survey results also supported the operating experience data, which concluded that the timely replacement of degraded components, prior to failure, was not always possible using existing condition monitoring techniques. The recommendations presented in this study also include a discussion of more advanced monitoring techniques, which provide trendable results capable of detecting aging.

  8. www.engineering.arizona.edu Accredited by the Engineering Accreditation Commission of ABET,

    E-Print Network [OSTI]

    Wong, Pak Kin

    Container Controls 1 1 Aker Kvaerner 1 1 Aklapo 1 1 APS/Raytheon 1 1 ARAMCO Oil Company 1 1 Arizona Youth

  9. E-Print Network 3.0 - arizona source phenomenology Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2007 Access Details... in Applied Mathematics, University of Arizona, Tucson, AZ, USA Online Publication Date: 01 January 1998... , formulae and drug doses should be...

  10. Could Gila Bend, Arizona, Become the Solar Capital of the World?

    Broader source: Energy.gov [DOE]

    Serving approximately 9,000 homes with clean renewable energy, the Paloma and Cotton Center solar plants highlight the rapidly rising solar corridor in Gila Bend, Arizona.

  11. E-Print Network 3.0 - arizona installation restoration Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    surrounding a hydropower decommissioning in Fossil Creek, Arizona... consequences of stream restoration on an exotic crayfish population. Master's ... Source: Marks, Jane -...

  12. From Barbies to Boycotts: How Immigration Raids in Arizona Created a Ten-Year Old Activist

    E-Print Network [OSTI]

    Rodriguez Vega, Silvia

    2015-01-01T23:59:59.000Z

    Policy Perspective. O'Leary, A. O. (2014). UndocumentedArizona on a daily basis (O'Leary, 2014). The state is also

  13. Study on Equilibrium Characteristics of Thorium-Plutonium-Minor Actinides Mixed Oxides Fuel in PWR

    SciTech Connect (OSTI)

    Waris, A.; Permana, S.; Kurniadi, R.; Su'ud, Z. [Bosscha Laboratory, Department of Physics, Nuclear Physics and Biophysics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung (Indonesia); Sekimoto, H. [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology (Japan)

    2010-06-22T23:59:59.000Z

    A study on characteristics of thorium-plutonium-minor actinides utilization in the pressurized water reactor (PWR) with the equilibrium burnup model has been conducted. For a comprehensive evaluation, several fuel cycles scenario have been included in the present study with the variation of moderator-to-fuel volume ratio (MFR) of PWR core design. The results obviously exhibit that the neutron spectra grow to be harder with decreasing of the MFR. Moreover, the neutron spectra also turn into harder with the rising number of confined heavy nuclides. The required {sup 233}U concentration for criticality of reactor augments with the increasing of MFR for all heavy nuclides confinement and thorium and uranium confinement in PWR.

  14. Arizona Geological Society Digest 22 e-mail: Dorsey: rdorsey@uoregon.edu; LaMaskin: tlamaski@uoregon.edu

    E-Print Network [OSTI]

    Dorsey, Becky

    Arizona Geological Society Digest 22 2008 325 e-mail: Dorsey: rdorsey@uoregon.edu; La evolution, and ore deposits: Arizona Geological Society Digest 22, p. 325-332. Mesozoic collision

  15. WG-MOX Fuel Zr-tube Neutron Spectrum Comparison in ATR and PWR

    SciTech Connect (OSTI)

    Gray S. Chang

    2005-02-01T23:59:59.000Z

    An experiment containing WG-MOX fuel has been designed and irradiated from 1998 to 2004 in the Advanced Test Reactor (ATR) at the Idaho National Engineering and Environmental Laboratory (INEEL). Important neutronics parameters were computed using novel Monte Carlo methods. The purpose of this summary is to compare the Weapons-Grade Mixed Oxide fuel (WG-MOX) Zr-tube’s neutron spectrum in ATR and PWR. The results indicate that the Zrtube’s neutron spectrum in ATR are softer than in PWR.

  16. Categorization of PWR accident sequences and guidelines for fault trees: seismic initiators

    SciTech Connect (OSTI)

    Kimura, C.Y.

    1984-09-01T23:59:59.000Z

    This study developed a set of dominant accident sequences that could be applied generically to domestic commercial PWRs as a standardized basis for a probabilistic seismic risk assessment. This was accomplished by ranking the Zion 1 accident sequences. The pertinent PWR safety systems were compared on a plant-by-plant basis to determine the applicability of the dominant accident sequences of Zion 1 to other PWR plants. The functional event trees were developed to describe the system functions that must work or not work in order for a certain accident sequence to happen, one for pipe breaks and one for transients.

  17. Lake Montezuma, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groupsIllinois: EnergyFlorida:Montezuma, Arizona: Energy

  18. Winslow West, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird,Wilsonville,Winneconne,Winslow West, Arizona: Energy

  19. Casa Grande, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermitsGreenCarrizoCarteretGrande, Arizona: Energy

  20. Casas Adobes, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermitsGreenCarrizoCarteretGrande, Arizona:Casas Adobes,

  1. San Manuel, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBYSalton SeaBasin EC Jump to:Lorenzo,Manuel, Arizona:

  2. Santa Cruz County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBYSalton SeaBasinSandusky,SanpeteSantaArizona: Energy

  3. PP-107 Arizona Public Service Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse(Expired) | Department ofINCREASES |POlicy Flash Arizona

  4. PP-108 Arizona Public Service Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse(Expired) | Department ofINCREASES |POlicy Flash Arizona-18

  5. Lake Havasu City, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii9969995°,ILEDSGP/joinHavasu City, Arizona:

  6. Northern Arizona University Wind Projects | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jumpsource History View NewNorthern Arizona University Wind

  7. PP-107 Arizona Public Service Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartmentOutreachDepartment56703 Federal PowerPP-107 Arizona

  8. Huachuca City, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania:County, Wyoming:Iowa:Huachuca City, Arizona:

  9. Litchfield Park, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other AlternativePark, Arizona: Energy Resources

  10. City of Mesa, Arizona (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban TransportMartinsville, VirginiaMeade,Mesa, Arizona

  11. Geothermal-Exploration In Arizona | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005)EnergyAmatitlan GeothermalEnergyArizona Jump to:

  12. Graham County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGove County, Kansas:Graham County, Arizona: Energy

  13. Green Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGoveNebraska:EthanolHabitsArizona: Energy Resources

  14. Spring Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,Southeast ColoradoOhio: EnergyIndiana: EnergyMills,Park,Arizona:

  15. Sunshine Arizona Wind Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to: navigation,SunElectraSunnyside,SunrepsSunsetArizona Wind

  16. El Mirage, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois:Edinburgh UniversityMirage, Arizona: Energy Resources

  17. Northern Arizona University SHRM Wind Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: Energy ResourcesGranby,Plains,Northampton,St.Northern Arizona

  18. Northern Arizona University Wind Projects | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: Energy ResourcesGranby,Plains,Northampton,St.Northern ArizonaNorthern

  19. Oro Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:Energy InformationOregon: EnergyOrlovista,Oro Valley, Arizona:

  20. Arizona Department of Environmental Quality | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources JumpAnaconda,AnzaArcade,the Caribbean12321°,Arizona

  1. Arizona's 6th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy ResourcesInformation Arizona's 6th congressional district

  2. Arizona's 7th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy ResourcesInformation Arizona's 6th congressional

  3. Arizona's 8th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy ResourcesInformation Arizona's 6th

  4. Maricopa County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez PuebloManteca,Marana, Arizona:Ohio:Maribel,

  5. McNary, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy8429°, -88.864698° Show MapMcMinnMcNary, Arizona: Energy

  6. Sun City, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained By Fault PropagationSummerside Wind FarmSummit, NewArizona:

  7. Cordes Lakes, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew| ExplorationCooperstown,Terrace,Lakes, Arizona: Energy

  8. Dewey-Humboldt, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility DatabaseMichigan:Dewey-Humboldt, Arizona: Energy Resources Jump to:

  9. Arizona Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » HighAbstractsAprilArgonne NationalArizona

  10. Sierra Vista, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AGShandongShirkeSichuan MiyiSichuanVista, Arizona: Energy

  11. Colorado City, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier Technologies IncCity, Arizona: Energy

  12. Avra Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to:Auriga EnergyAuxinWisconsin:Avra Valley, Arizona:

  13. Big Park, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouth Carolina:EnergyPark, Arizona: Energy Resources Jump to:

  14. Queen Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:ThisPublicPutnamQuailValley, Arizona: Energy

  15. Round Rock, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:Roscommon County, Michigan:Rotokawa Geothermal Power PlantArizona:

  16. Tucson Estates, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, Indiana (UtilityTri-StateTucson Estates, Arizona: Energy Resources

  17. Valencia West, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies andVacant Jump to:Vale HotWest, Arizona:

  18. Fellowships in Comparative Genomics Graduate education at the University of Arizona

    E-Print Network [OSTI]

    Watkins, Joseph C.

    Fellowships in Comparative Genomics Graduate education at the University of Arizona Supported Traineeships (IGERT) The NSF-IGERT Program in Comparative Genomics is an interdisciplinary program designed genomics More information, application instructions, and deadlines at: www.genomics.arizona.edu Biosciences

  19. Reverse osmosis (RO) treatment of Tucson's share of Central Arizona Project (CAP) water is being con-

    E-Print Network [OSTI]

    Fay, Noah

    Reverse osmosis (RO) treatment of Tucson's share of Central Arizona Project (CAP) water is being for RO Treatment of CAP Water PROJECT TEAM This Arizona Water Institute PROJECT FACT SHEET is part to treat CAP water and to minimize the amount of concentrate produced. More research and significant

  20. Pressures on Arizona Water and Energy Policy: Case Study of the Navajo Generating Station

    E-Print Network [OSTI]

    Fay, Noah

    largest user of energy in the state of Arizona. It is powered by a coal plant in Northern Arizona, the Navajo Generating Station (NGS), that is among the dirtiest coal power plants in the country. The future of this power plant is currently being debated by the U.S. Environmental Protection Agency (EPA

  1. Sustainability Scientists and Scholars at Arizona State University: A Community of Scholars

    E-Print Network [OSTI]

    Hall, Sharon J.

    Sustainability Scientists and Scholars at Arizona State University: A Community of Scholars of sustainability is a new and growing area of university responsibility and scholarly research called "sustainability science." This new field is a vital element of Arizona State University's research portfolio

  2. Changes in Snag Populations in Northern Arizona Mixed-Conifer and Ponderosa Pine Forests, 19972002

    E-Print Network [OSTI]

    Changes in Snag Populations in Northern Arizona Mixed-Conifer and Ponderosa Pine Forests, 1997 (Pinus ponderosa, n 60 plots) forests in north-central Arizona from 1997 to 2002. Of 2,240 snags marked in 1997, at least 76% remained standing in 2002, 17% had fallen and were relocated as logs, 0.5% were cut

  3. High-Penetration PV Deployment in the Arizona Public Service System, Phase 1 Update: Preprint

    SciTech Connect (OSTI)

    Hambrick, J.; Narang, D.

    2012-06-01T23:59:59.000Z

    In an effort to better understand the impacts of high penetrations of photovoltaic generators on distribution systems, Arizona Public Service and its partners have begun work on a multi-year project to develop the tools and knowledge base needed to safely and reliably integrate high penetrations of utility- and residential-scale photovoltaics (PV). Building upon the APS Community Power Project -- Flagstaff Pilot, this project will analyze the impact of PV on a representative feeder in northeast Flagstaff. To quantify and catalog the effects of the estimated 1.3 MW of PV that will be installed on the feeder (both smaller units at homes as well as large, centrally located systems), high-speed weather and electrical data acquisition systems and digital 'smart' meters are being designed and installed to facilitate monitoring and to build and validate comprehensive, high-resolution models of the distribution system. These models will be used to analyze the impacts of the PV on distribution circuit protection systems (including anti-islanding), predict voltage regulation and phase balance issues, and develop volt/var control schemes. This paper continues from a paper presented at the 2011 IEEE PVSC conference that introduces the project and describes some of the preliminary consideration, as well as project plans and early results. This paper gives a status update of the project and presents selected results from Phase 2 of the project. It discusses baseline feeder modeling, load allocation, data acquisition, utility-scale PV integration, preliminary model validation, and plans for future phases.

  4. Solar energy system performance evaluation - final report for Honeywell OTS 45, Salt River Project, Phoenix, Arizona

    SciTech Connect (OSTI)

    Mathur, A K

    1983-09-01T23:59:59.000Z

    This report describes the operation and technical performance of the Solar Operational Test Site (OTS 45) at Salt River Project in Phoenix, Arizona, based on the analysis of data collected between April 1981 and March 31, 1982. The following topics are discussed: system description, performance assessment, operating energy, energy savings, system maintenance, and conclusions. The solar energy system at OTS 45 is a hydronic heating and cooling system consisting of 8208 square feet of liquid-cooled flat-plate collectors; a 2500-gallon thermal storage tank; two 25-ton capacity organic Rankine-cycle-engine-assisted water chillers; a forced-draft cooling tower; and associated piping, pumps, valves, controls and heat rejection equipment. The solar system has eight basic modes of operation and several combination modes. The system operation is controlled automatically by a Honeywell-designed microprocessor-based control system, which also provides diagnostics. Based on the instrumented test data monitored and collected during the 8 months of the Operational Test Period, the solar system collected 1143 MMBtu of thermal energy of the total incident solar energy of 3440 MMBtu and provided 241 MMBtu for cooling and 64 MMBtu for heating. The projected net annual electrical energy savings due to the solar system was approximately 40,000 kWh(e).

  5. PWR FLECHT SEASET 21-rod bundle flow blockage task data and analysis report. NRC/EPRI/Westinghouse Report No. 11. Appendices K-P

    SciTech Connect (OSTI)

    Loftus, M.J.; Hochreiter, L.E.; Lee, N.; McGuire, M.F.; Wenzel, A.H.; Valkovic, M.M.

    1982-09-01T23:59:59.000Z

    This report presents data and limited analysis from the 21-Rod Bundle Flow Blockage Task of the Full-Length Emergency Cooling Heat Transfer Separate Effects and Systems Effects Test Program (FLECHT SEASET). The tests consisted of forced and gravity reflooding tests utilizing electrical heater rods with a cosine axial power profile to simulate PWR nuclear core fuel rod arrays. Steam cooling and hydraulic characteristics tests were also conducted. These tests were utilized to determine effects of various flow blockage configurations (shapes and distributions) on reflooding behavior, to aid in development/assessment of computational models in predicting reflooding behavior of flow blockage configurations, and to screen flow blockage configurations for future 163-rod flow blockage bundle tests.

  6. Ris-M-2209 THE THREE-DIMENSIONAL PWR TRANSIENT CODE

    E-Print Network [OSTI]

    , REACTOR KINETICS, ROD DROP ACCIDENTS, THREE- DIMENSIONAL CALCULATIONS, TRANSIENTS. UDC 621 more or less by change. The calculation is there- fore not representative of any existing reactorRisø-M-2209 THE THREE-DIMENSIONAL PWR TRANSIENT CODE ANTI; ROD EJECTION TEST CALCULATION A

  7. Westinghouse Approach and Experience on Operating VVER (PWR)1000 I and C Modernization

    SciTech Connect (OSTI)

    Mahlab Moshe [Kozloduy Project Director, Westinghouse Electric Company (Bulgaria); Naydenov, Nayden [Kozloduy NPP Modernization Manager (Bulgaria); Sechensky, Boyan [Chief Engineer, Westinghouse Energy Systems Bulgaria (Bulgaria)

    2004-07-01T23:59:59.000Z

    The paper will describe the background, current implementation approach and experience on the largest ever modernization program on operating units VVER 1000 (PWR) at Kozloduy Nuclear Power Plant in Bulgaria. The Modernization Program itself includes more than 212 measures. Westinghouse is modernizing the major I and C Systems at VVER 1000. (authors)

  8. Reactor analysis support package (RASP). Volume 7. PWR set-point methodology. Final report

    SciTech Connect (OSTI)

    Temple, S.M.; Robbins, T.R.

    1986-09-01T23:59:59.000Z

    This report provides an overview of the basis and methodology requirements for determining Pressurized Water Reactor (PWR) technical specifications related setpoints and focuses on development of the methodology for a reload core. Additionally, the report documents the implementation and typical methods of analysis used by PWR vendors during the 1970's to develop Protection System Trip Limits (or Limiting Safety System Settings) and Limiting Conditions for Operation. The descriptions of the typical setpoint methodologies are provided for Nuclear Steam Supply Systems as designed and supplied by Babcock and Wilcox, Combustion Engineering, and Westinghouse. The description of the methods of analysis includes the discussion of the computer codes used in the setpoint methodology. Next, the report addresses the treatment of calculational and measurement uncertainties based on the extent to which such information was available for each of the three types of PWR. Finally, the major features of the setpoint methodologies are compared, and the principal effects of each particular methodology on plant operation are summarized for each of the three types of PWR.

  9. Crack growth rates of nickel alloy welds in a PWR environment.

    SciTech Connect (OSTI)

    Alexandreanu, B.; Chopra, O. K.; Shack, W. J.; Energy Technology

    2006-05-31T23:59:59.000Z

    In light water reactors (LWRs), vessel internal components made of nickel-base alloys are susceptible to environmentally assisted cracking. A better understanding of the causes and mechanisms of this cracking may permit less conservative estimates of damage accumulation and requirements on inspection intervals. A program is being conducted at Argonne National Laboratory to evaluate the resistance of Ni alloys and their welds to environmentally assisted cracking in simulated LWR coolant environments. This report presents crack growth rate (CGR) results for Alloy 182 shielded-metal-arc weld metal in a simulated pressurized water reactor (PWR) environment at 320 C. Crack growth tests were conducted on 1-T compact tension specimens with different weld orientations from both double-J and deep-groove welds. The results indicate little or no environmental enhancement of fatigue CGRs of Alloy 182 weld metal in the PWR environment. The CGRs of Alloy 182 in the PWR environment are a factor of {approx}5 higher than those of Alloy 600 in air under the same loading conditions. The stress corrosion cracking for the Alloy 182 weld is close to the average behavior of Alloy 600 in the PWR environment. The weld orientation was found to have a profound effect on the magnitude of crack growth: cracking was found to propagate faster along the dendrites than across them. The existing CGR data for Ni-alloy weld metals have been compiled and evaluated to establish the effects of key material, loading, and environmental parameters on CGRs in PWR environments. The results from the present study are compared with the existing CGR data for Ni-alloy welds to determine the relative susceptibility of the specific Ni-alloy weld to environmentally enhanced cracking.

  10. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    experiencing year-over-year declines between 5-10%. Only six states (Wyoming, North Dakota, Arizona, West Virginia, North Carolina, and South Carolina) had higher retail sales...

  11. UMTRA project water sampling and analysis plan, Tuba City, Arizona

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    Planned, routine ground water sampling activities at the U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site in Tuba City, Arizona, are described in the following sections of this water sampling and analysis plan (WSAP). This plan identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the stations routinely monitored at the site. The ground water data are used for site characterization and risk assessment. The regulatory basis for routine ground water monitoring at UMTRA Project sites is derived from the U.S. Environmental Protection Agency (EPA) regulations in 40 CFR Part 192 (1994) and the final EPA standards of 1995 (60 FR 2854). Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), and the most effective technical approach for the site.

  12. National uranium resource evaluation: Clifton Quadrangle, Arizona and New Mexico

    SciTech Connect (OSTI)

    White, D L; Foster, M

    1982-05-01T23:59:59.000Z

    The Clifton Quadrangle, Arizona and New Mexico, was evaluated to identify environments and delineate areas favorable for uranium deposits. The evaluation used criteria formulated for the National Uranium Resource Evaluation program. Evidence for the evaluation was based on surface studies, hydrogeochemical and stream-sediment reconnaissance, and aerial radiometric surveys. The quadrangle encompasses parts of three physiographic provinces: the Colorado Plateau, the transition zone, and the Basin and Range. The one environment determined, during the present study, to be favorable for uranium deposits is the Whitewater Creek member of the Cooney tuff, which is favorable for magmatic-hydrothermal uranium deposits on the west side of the Bursum caldera. No other areas were favorable for uranium deposits in sandstone, limestone, volcanogenic, igneous, or metamorphic environments. The subsurface is unevaluated because of lack of information, as are areas where access is a constraint.

  13. TITAN code development for application to a PWR steam line break accident : final report 1983-1984

    E-Print Network [OSTI]

    Tsai, Chon-Kwo

    1984-01-01T23:59:59.000Z

    Modification of the TITAN computer code which enables it to be applied to a PWR steam line break accident has been accomplished. The code now has the capability of simulating an asymmetric inlet coolant temperature transient ...

  14. Transient thermal analysis of PWR’s by a single-pass procedure using a simplified nodal layout

    E-Print Network [OSTI]

    Liu, Jack S. H.

    1979-01-01T23:59:59.000Z

    PWR accident conditions and analysis methods have been reviewed. Limitations of the simplified method with respect to analysis of these accident conditions are drawn and two transients ( loss of coolant flow, seized rotor) ...

  15. Engaging With Industry Capitalizing on the Integrated Tech Launch Arizona Structure

    E-Print Network [OSTI]

    Wong, Pak Kin

    / Mineral Resources 4. Biomedical Innova5on 5. Clinical & Transla5onal Sciences to the global marketplace David Allen Vice President, Tech Launch Arizona About Build strategic, high impact relaEonships between the UA and global companies

  16. FIA-12-0059- In the Matter of California Arizona Nevada District Organization

    Broader source: Energy.gov [DOE]

    On October 31, 2012, the Department of Energy’s (DOE) Office of Hearings and Appeals (OHA) denied a Freedom of Information Act (FOIA) Appeal filed by the California Arizona Nevada District...

  17. FIA-12-0053- In the Matter of Arizona Nevada District Organization

    Broader source: Energy.gov [DOE]

    On October 11, 2012, the Department of Energy’s (DOE) Office of Hearings and Appeals (OHA) denied a Freedom of Information Act (FOIA) Appeal filed by the California Arizona Nevada District...

  18. FIA-12-0054- In the Matter of California-Arizona-Nevada District Organization Contract Compliance

    Broader source: Energy.gov [DOE]

    On September 14, 2012, California-Arizona-Nevada District Organization Contract Compliance (CANDO) filed an appeal from a final determination issued by the Loan Guarantee Program Office (LGPO) of...

  19. Arizona Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14Decade Year-0IndustrialThousand

  20. Arizona Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1Year Jan Feb

  1. Searching For An Electrical-Grade Geothermal Resource In Northern Arizona

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScotts Corners, New York:You must include at least oneTo

  2. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales -

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seiki G60 Jump to:EnergyEnergy

  3. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales -

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seiki G60 Jump to:EnergyEnergyFebruary 2008 | Open

  4. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales -

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seiki G60 Jump to:EnergyEnergyFebruary 2008 |

  5. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales -

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seiki G60 Jump to:EnergyEnergyFebruary 2008 |January

  6. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales -

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seiki G60 Jump to:EnergyEnergyFebruary 2008

  7. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales -

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seiki G60 Jump to:EnergyEnergyFebruary 2008November

  8. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales -

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seiki G60 Jump to:EnergyEnergyFebruary

  9. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales -

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seiki G60 Jump to:EnergyEnergyFebruarySeptember 2008

  10. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - April

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seiki G60 Jump to:EnergyEnergyFebruarySeptember

  11. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - August

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seiki G60 Jump to:EnergyEnergyFebruarySeptember2008 |

  12. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - July

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seiki G60 Jump to:EnergyEnergyFebruarySeptember2008

  13. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - June

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seiki G60 Jump

  14. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - March

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seiki G60 Jump2008 | Open Energy Information

  15. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - March

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seiki G60 Jump2008 | Open Energy Information2009

  16. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - May

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seiki G60 Jump2008 | Open Energy

  17. Conceptual design study of small long-life PWR based on thorium cycle fuel

    SciTech Connect (OSTI)

    Subkhi, M. Nurul [Nuclear Physics and Biophysics Research Group, Faculty of Mathematics and Natural Science, Bandung Institute of Technology (Ganesha 10 Bandung, Indonesia) and Physics Dept., Faculty of Science and Technology, State Islamic University of Sunan Gunung (Indonesia); Su'ud, Zaki; Waris, Abdul; Permana, Sidik [Nuclear Physics and Biophysics Research Group, Faculty of Mathematics and Natural Science, Bandung Institute of Technology (Ganesha 10 Bandung) (Indonesia)

    2014-09-30T23:59:59.000Z

    A neutronic performance of small long-life Pressurized Water Reactor (PWR) using thorium cycle based fuel has been investigated. Thorium cycle which has higher conversion ratio in thermal region compared to uranium cycle produce some significant of {sup 233}U during burn up time. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.3, while the multi-energy-group diffusion calculations were optimized in whole core cylindrical two-dimension R-Z geometry by SRAC-CITATION. this study would be introduced thorium nitride fuel system which ZIRLO is the cladding material. The optimization of 350 MWt small long life PWR result small excess reactivity and reduced power peaking during its operation.

  18. Safety analysis of B and W Standard PWR using thorium-based fuels

    SciTech Connect (OSTI)

    Uotinen, V.O.; Carroll, W.P.; Jones, H.M.; Toops, E.C.

    1980-06-01T23:59:59.000Z

    A study was performed to assess the safety and licenseability of the Babcock and Wilcox standard 205-fuel assembly PWR when it is fueled with three types of thoria-based fuels denatured (/sup 233/U//sup 238/U-Th)O/sub 2/, denatured (/sup 235//U/sup 238/U-Th)O/sub 2/, and (Th-Pu)O/sub 2/. Selected transients were analyzed using typical PWR safety analysis calculational methods. The results support the conclusion that it is feasible from a safety standpoint to utilize either of the denatured urania-thoria fuels in the standard B and W plant. In addition, it appears that the use of thoria-plutonia fuels would probably also be feasible. These tentative conclusions depend on a data that is more limited than that available for UO/sub 2/ fuels.

  19. An Empirical Approach to Bounding the Axial Reactivity Effects of PWR Spent Nuclear Fuel

    SciTech Connect (OSTI)

    P. M. O'Leary; J. M. Scaglione

    2001-04-04T23:59:59.000Z

    One of the significant issues yet to be resolved for using burnup credit (BUC) for spent nuclear fuel (SNF) is establishing a set of depletion parameters that produce an adequately conservative representation of the fuel's isotopic inventory. Depletion parameters (such as local power, fuel temperature, moderator temperature, burnable poison rod history, and soluble boron concentration) affect the isotopic inventory of fuel that is depleted in a pressurized water reactor (PWR). However, obtaining the detailed operating histories needed to model all PWR fuel assemblies to which BUC would be applied is an onerous and costly task. Simplifications therefore have been suggested that could lead to using ''bounding'' depletion parameters that could be broadly applied to different fuel assemblies. This paper presents a method for determining a set of bounding depletion parameters for use in criticality analyses for SNF.

  20. Vermont Public Pwr Supply Auth | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt ManagementVera Irrigation DistrictVermont Electric

  1. AVTA: 2010 Electric Vehicles International Neighborhood Electric...

    Energy Savers [EERE]

    10 Electric Vehicles International Neighborhood Electric Vehicle Testing Results AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results The...

  2. Arizona/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    Requirements Most utilities and other electricity providers require you to enter into a formal agreement with them before you interconnect your wind turbine with the...

  3. MELCOR model for an experimental 17x17 spent fuel PWR assembly.

    SciTech Connect (OSTI)

    Cardoni, Jeffrey

    2010-11-01T23:59:59.000Z

    A MELCOR model has been developed to simulate a pressurized water reactor (PWR) 17 x 17 assembly in a spent fuel pool rack cell undergoing severe accident conditions. To the extent possible, the MELCOR model reflects the actual geometry, materials, and masses present in the experimental arrangement for the Sandia Fuel Project (SFP). The report presents an overview of the SFP experimental arrangement, the MELCOR model specifications, demonstration calculation results, and the input model listing.

  4. UMTRA project water sampling and analysis plan, Monument Valley, Arizona

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    The Monument Valley Uranium Mill Tailings Remedial Action (UMTRA) Project site in Cane Valley is a former uranium mill that has undergone surface remediation in the form of tailings and contaminated materials removal. Contaminated materials from the Monument Valley (Arizona) UMTRA Project site have been transported to the Mexican Hat (Utah) UMTRA Project site for consolidation with the Mexican Hat tailings. Tailings removal was completed in February 1994. Three geologic units at the site contain water: the unconsolidated eolian and alluvial deposits (alluvial aquifer), the Shinarump Conglomerate (Shinarump Member), and the De Chelly Sandstone. Water quality analyses indicate the contaminant plume has migrated north of the site and is mainly in the alluvial aquifer. An upward hydraulic gradient in the De Chelly Sandstone provides some protection to that aquifer. This water sampling and analysis plan recommends sampling domestic wells, monitor wells, and surface water in April and September 1994. The purpose of sampling is to continue periodic monitoring for the surface program, evaluate changes to water quality for site characterization, and provide data for the baseline risk assessment. Samples taken in April will be representative of high ground water levels and samples taken in September will be representative of low ground water levels. Filtered and nonfiltered samples will be analyzed for plume indicator parameters and baseline risk assessment parameters.

  5. Weatherization Assistance Program: Final monitoring report for: Arizona, California, Nevada

    SciTech Connect (OSTI)

    Not Available

    1988-09-01T23:59:59.000Z

    Stroud, Inc., was awarded a contract by the Department of Energy San Francisco Operations Office (DOE-SAN) to evaluate the weatherization programs for selected grantees and subgrantees in Arizona, California, and Nevada. The provisions of the contract specified an initial year and renewable optional periods of two (2) additional years. The first year of the contract began on October 1, 1985, and expired on September 30, 1986. The final report for that first year was submitted to DOE-SAN in August, 1986. The second year of the contract began on October 1, 1986, and expired on September 30, 1987. The final report for that second year was submitted to DOE-SAN in August, 1987. This report covers the monitoring of grantees and subgrantees for the second option year, or what is the third year of the contract. The first two (2) weeks of the third year's activities were devoted to scheduling the agencies to be monitored. The actual field monitoring began on November 16, 1987, and was completed on August 19, 1988. During this nine-month period, twenty-nine (29) agencies, both grantees and subgrantees, were visited and evaluated under this contract.

  6. The Arizona Health Sciences Center at the University of Arizona is a network of health-related organizations that had its beginnings on the UA campus in Tucson

    E-Print Network [OSTI]

    Arizona, University of

    Hospital (UPH Hospital). Known today as The University of Arizona Medical Center ­ South Campus, the hospital is a secondary teaching hospital for the UA College of Medicine. · In July 2010, the integration work to eradicate health disparities in Native American and Hispanic communities, particularly

  7. Electricity Reliability

    E-Print Network [OSTI]

    electric power equipment with more energy efficiency and higher capacity than today's systems of modernizing the electric grid to meet the nations's need for reliable, electric power, enhancing security continues to increase within the electricity infrastructure. DOE is conducting research, development

  8. Spent fuel dry storage technology development: fuel temperature measurements under imposed dry storage conditions (I kW PWR spent fuel assembly)

    SciTech Connect (OSTI)

    Unterzuber, R.; Wright, J.B.

    1980-09-01T23:59:59.000Z

    A spent fuel assembly temperature test under imposed dry storage conditions was conducted at the Engine Maintenance Assembly and Disassembly (E-MAD) facility on the Nevada Test Site in support of spent fuel dry storage technology development. This document presents the test data and results obtained from an approximately 1.0 kW decay heat level PWR spent fuel assembly. A spent fuel test apparatus was designed to utilize a representative stainless steel spent fuel canister, a canister lid containing internal temperature instrumentation to measure fuel cladding temperatures, and a carbon steel liner that encloses the canister and lid. Electrical heaters along the liner length, on the lid, and below the canister are used to impose dry storage canister temperature profiles. Temperature instrumentation is provided on the liner and canister. The liner and canister are supported by a test stand in one of the large hot cells (West Process Cell) inside E-MAD. Fuel temperature measurements have been performed using imposed canister temperature profiles from the electrically heated and spent fuel drywell tests being conducted at E-MAD as well as for four constant canister temperature profiles, each with a vacuum, helium and air backfill. Computer models have been utilized in conjunction with the test to predict the thermal response of the fuel cladding. Computer predictions are presented, and they show good agreement with the test data.

  9. Proceedings of 2004 NSF DMII Grantees Conference, Scottsdale, Arizona Grant: #DMI-01-15486 Flow Dynamics and Inclusion Transport in Continuous Casting of Steel

    E-Print Network [OSTI]

    Thomas, Brian G.

    Proceedings of 2004 NSF DMII Grantees Conference, Scottsdale, Arizona Grant: #DMI- 01-15486 Flow;Proceedings of 2004 NSF DMII Grantees Conference, Scottsdale, Arizona Grant: #DMI- 01-15486 inclusion removal

  10. Proceedings of ASME 2010 4th International Conference on Energy Sustainability May 17-22, 2010 Phoenix, Arizona, USA

    E-Print Network [OSTI]

    Agogino, Alice M.

    1 Proceedings of ASME 2010 4th International Conference on Energy Sustainability ES2010 May 17 International Conference on Energy Sustainability ES2010 May 17-22, 2010, Phoenix, Arizona, USA ES2010- 0 #12-22, 2010 Phoenix, Arizona, USA ES2010-90190 CO-DESIGN OF ENERGY-EFFICIENT HOUSING WITH THE PINOLEVILLE

  11. Eco-Loco Arizona Renewable Energy Conference Friday, September 7th, 2012 9 AM to 4 PM

    E-Print Network [OSTI]

    Hall, Sharon J.

    Eco-Loco Arizona Renewable Energy Conference Friday, September 7th, 2012 9 AM to 4 PM Keynote Speaker Ms. Leisa Brug director of the Governor's office of Energy Policy Renewable Energy projects projects that would benefit them. The Arizona Renewable Energy Conference provides an opportunity for all

  12. Application of LBB to high energy piping systems in operating PWR

    SciTech Connect (OSTI)

    Swamy, S.A.; Bhowmick, D.C. [Westinghouse Nuclear Technology Division, Pittsburgh, PA (United States)

    1997-04-01T23:59:59.000Z

    The amendment to General Design Criterion 4 allows exclusion, from the design basis, of dynamic effects associated with high energy pipe rupture by application of leak-before-break (LBB) technology. This new approach has resulted in substantial financial savings to utilities when applied to the Pressurized Water Reactor (PWR) primary loop piping and auxiliary piping systems made of stainless steel material. To date majority of applications pertain to piping systems in operating plants. Various steps of evaluation associated with the LBB application to an operating plant are described in this paper.

  13. Nuclear data uncertainties by the PWR MOX/UO{sub 2} core rod ejection benchmark

    SciTech Connect (OSTI)

    Pasichnyk, I.; Klein, M.; Velkov, K.; Zwermann, W.; Pautz, A. [Boltzmannstr. 14, D-85748 Garching b. Muenchen (Germany)

    2012-07-01T23:59:59.000Z

    Rod ejection transient of the OECD/NEA and U.S. NRC PWR MOX/UO{sub 2} core benchmark is considered under the influence of nuclear data uncertainties. Using the GRS uncertainty and sensitivity software package XSUSA the propagation of the uncertainties in nuclear data up to the transient calculations are considered. A statistically representative set of transient calculations is analyzed and both integral as well as local output quantities are compared with the benchmark results of different participants. It is shown that the uncertainties in nuclear data play a crucial role in the interpretation of the results of the simulation. (authors)

  14. MELCOR analyses of severe accident scenarios in Oconee, a B W PWR plant

    SciTech Connect (OSTI)

    Madni, I.K.; Nimnual, S. (Brookhaven National Lab., Upton, NY (United States)); Foulds, R. (Nuclear Regulatory Commission, Washington, DC (United States))

    1993-01-01T23:59:59.000Z

    This paper presents the results and insights gained from MELCOR analyses of two severe accident scenarios, a Loss of Coolant Accident (LOCA) and a Station Blackout (TMLB) in Oconee, a Babcock Wilcox (B W) designed PWR with a large dry containment, and comparisons with Source Term Code Package (STCP) calculations of the same sequences. Results include predicted timing of key events, thermal-hydraulic response in the reactor coolant system and containment, and environmental releases of fission products. The paper also explores the impact of varying concrete type, vessel failure temperature, and break location on the accident progression, containment pressurization, and environmental releases of radionuclides.

  15. MELCOR analyses of severe accident scenarios in Oconee, a B&W PWR plant

    SciTech Connect (OSTI)

    Madni, I.K.; Nimnual, S. [Brookhaven National Lab., Upton, NY (United States); Foulds, R. [Nuclear Regulatory Commission, Washington, DC (United States)

    1993-03-01T23:59:59.000Z

    This paper presents the results and insights gained from MELCOR analyses of two severe accident scenarios, a Loss of Coolant Accident (LOCA) and a Station Blackout (TMLB) in Oconee, a Babcock & Wilcox (B&W) designed PWR with a large dry containment, and comparisons with Source Term Code Package (STCP) calculations of the same sequences. Results include predicted timing of key events, thermal-hydraulic response in the reactor coolant system and containment, and environmental releases of fission products. The paper also explores the impact of varying concrete type, vessel failure temperature, and break location on the accident progression, containment pressurization, and environmental releases of radionuclides.

  16. THE SOUTHWEST ECOLOGICAL RESTORATION INSTITUTES In 2004, the Southwest Forest Health and Wildfire Prevention Act established institutes in Arizona, Colorado, and New Mexico for

    E-Print Network [OSTI]

    Prevention Act established institutes in Arizona, Colorado, and New Mexico for the purpose of ensuring Institute (ERI) at Northern Arizona University in Flagstaff, Arizona New Mexico Forest & Watershed Restoration Institute (NMFWRI) at New Mexico Highlands University in Las Vegas, New Mexico. The SWERI

  17. EA-1948: Gila-North Gila Transmission Line Rebuild and Upgrade Project, Yuma County, Arizona

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration (Western) prepared this EA to analyze the potential environmental impacts of a proposal to rebuild and upgrade two parallel 4.8-mile transmission lines between the Gila and North Gila Substations and take actions in support of portions of Arizona Public Service’s construction of a new, 12.8 mile 230-kV transmission line between North Gila and a proposed substation in Yuma County, Arizona. The U.S. Bureau of Reclamation and U.S. Army Corps of Engineers are cooperating agencies.

  18. Population ecology of rodents in a mixed coniferous forest ecosystem, North Rim, Arizona

    E-Print Network [OSTI]

    Ruffner, George Andrew

    1975-01-01T23:59:59.000Z

    in northern Arizona. These data are compared with similar data, available from the literature, on desert shrub ecosystems in the southwest. METHODS AND MATERIALS This study was conducted on Point Sublime, Grand Canyon National Park, Arizona. This area... 100 100 100 100 100 100 300 300 300 a) Raw data on SC were collected using the quadrat method (U. S. Forest Service, 1963) b) Raw data on SD were collected using the Point-quarter method (Cottam and Curtis, 1956) Table 4. Parameters of vegetation...

  19. Secondary Startup Neutron Sources as a Source of Tritium in a Pressurized Water Reactor (PWR) Reactor Coolant System (RCS)

    SciTech Connect (OSTI)

    Shaver, Mark W.; Lanning, Donald D.

    2010-02-01T23:59:59.000Z

    The hypothesis of this paper is that the Zircaloy clad fuel source is minimal and that secondary startup neutron sources are the significant contributors of the tritium in the RCS that was previously assigned to release from fuel. Currently there are large uncertainties in the attribution of tritium in a Pressurized Water Reactor (PWR) Reactor Coolant System (RCS). The measured amount of tritium in the coolant cannot be separated out empirically into its individual sources. Therefore, to quantify individual contributors, all sources of tritium in the RCS of a PWR must be understood theoretically and verified by the sum of the individual components equaling the measured values.

  20. Application of the MELCOR code to design basis PWR large dry containment analysis.

    SciTech Connect (OSTI)

    Phillips, Jesse; Notafrancesco, Allen (USNRC, Office of Nuclear Regulatory Research, Rockville, MD); Tills, Jack Lee (Jack Tills & Associates, Inc., Sandia Park, NM)

    2009-05-01T23:59:59.000Z

    The MELCOR computer code has been developed by Sandia National Laboratories under USNRC sponsorship to provide capability for independently auditing analyses submitted by reactor manufactures and utilities. MELCOR is a fully integrated code (encompassing the reactor coolant system and the containment building) that models the progression of postulated accidents in light water reactor power plants. To assess the adequacy of containment thermal-hydraulic modeling incorporated in the MELCOR code for application to PWR large dry containments, several selected demonstration designs were analyzed. This report documents MELCOR code demonstration calculations performed for postulated design basis accident (DBA) analysis (LOCA and MSLB) inside containment, which are compared to other code results. The key processes when analyzing the containment loads inside PWR large dry containments are (1) expansion and transport of high mass/energy releases, (2) heat and mass transfer to structural passive heat sinks, and (3) containment pressure reduction due to engineered safety features. A code-to-code benchmarking for DBA events showed that MELCOR predictions of maximum containment loads were equivalent to similar predictions using a qualified containment code known as CONTAIN. This equivalency was found to apply for both single- and multi-cell containment models.

  1. Development of a new lattice physics code robin for PWR application

    SciTech Connect (OSTI)

    Zhang, S.; Chen, G. [Shanghai NuStar Nuclear Power Technology Co., Ltd., 81 South Qinzhou Road, Shanghai 200235 (China)

    2013-07-01T23:59:59.000Z

    This paper presents a description of methodologies and preliminary verification results of a new lattice physics code ROBIN, being developed for PWR application at Shanghai NuStar Nuclear Power Technology Co., Ltd. The methods used in ROBIN to fulfill various tasks of lattice physics analysis are an integration of historical methods and new methods that came into being very recently. Not only these methods like equivalence theory for resonance treatment and method of characteristics for neutron transport calculation are adopted, as they are applied in many of today's production-level LWR lattice codes, but also very useful new methods like the enhanced neutron current method for Dancoff correction in large and complicated geometry and the log linear rate constant power depletion method for Gd-bearing fuel are implemented in the code. A small sample of verification results are provided to illustrate the type of accuracy achievable using ROBIN. It is demonstrated that ROBIN is capable of satisfying most of the needs for PWR lattice analysis and has the potential to become a production quality code in the future. (authors)

  2. Bi-content Gadolinia as Burnable Absorber in PWR to Improve the Reactor Core Behaviour

    SciTech Connect (OSTI)

    Zheng, S. [AREVA, AREVA NP Fuel Sector, 10, Rue Juliette Recamier 69456 Lyon cedex (France)

    2007-07-01T23:59:59.000Z

    The gadolinia product is one of the standard burnable absorbers used in the PWR long and low leakage fuel cycle in order to control the radial power distribution and to hold down the initial core reactivity. This product presents a large number of advantages such as the high efficiency with only a small number of gadolinia-bearing rods, the easy adjustment between the number and the content of the gadolinia-bearing rods according to the cycle length need and the initial reactivity hold-down, no increasing of boron concentration versus cycle depletion, no additional increasing of internal pressure in poisoned rods, very low additional manufacture cost. On the other hand, some unfavourable phenomena are also observed during the utilization of the gadolinia: amplification of the asymmetrical power distribution and more negative axial offset. Based on the correlation between the gadolinia burnout and its content, the use of gadolinia bi-content will improve the parameters indicated here above. The gadolinia bi-content have been used in BWR for more than 20 years. In this paper, the comparison of the main reactor core physical parameters in PWR, calculated with the AREVA NP standard neutronic code package SCIENCE, is made by using the mono- and bi-content of the gadolinia products in the same fuel assembly. The results show that the asymmetrical axial and azimuthal power distribution can be improved in the case of the bi-content gadolinia product. (authors)

  3. Investigation of optimal reactor control for a load-following PWR

    SciTech Connect (OSTI)

    Yim, M.S.

    1987-01-01T23:59:59.000Z

    Characteristics of optimal load-follow control of PWR plants are investigated in this study. A simple system model that describes main features of physical processes in the system was developed. The system model includes core neutronics with all the spatial dependent feedback effects, Xe-I dynamics, core thermal balances, primary-loop thermal balances, and steam-generator dynamic responses to turbine load changes. An optimal control problem that describes power-level control and power-distribution control problem together and considers all the important system operation limits as hard inquality constraints was formulated. The full-length control rod bank positions, part-length control rod positions, and boron concentration changes were modeled as control variables and turbine load variations were used as the forcing variable. Because modern PWR operating policy is to leave the part-length rods uninserted, the part-length rods were not used as a control variable in the optimal control calculations. The optimal control problem was converted to unconstrained nonlinear optimization problem by using the discretization approximation and the penalty function technique. The converted problem was solved by the nonlinear Gauss-Newton method which showed superior performance over all of the other tested optimization methods.

  4. Validation of the new code package APOLLO2.8 for accurate PWR neutronics calculations

    SciTech Connect (OSTI)

    Santamarina, A.; Bernard, D.; Blaise, P.; Leconte, P.; Palau, J. M.; Roque, B.; Vaglio, C.; Vidal, J. F. [Commissariat a l'Energie Atomique et aux Energies Alternatives, CEA, DEN, DER, SPRC, Cadarache, F-13108 Saint-Paul-Lez-Durance (France)

    2013-07-01T23:59:59.000Z

    This paper summarizes the Qualification work performed to demonstrate the accuracy of the new APOLLO2.S/SHEM-MOC package based on JEFF3.1.1 nuclear data file for the prediction of PWR neutronics parameters. This experimental validation is based on PWR mock-up critical experiments performed in the EOLE/MINERVE zero-power reactors and on P.I. Es on spent fuel assemblies from the French PWRs. The Calculation-Experiment comparison for the main design parameters is presented: reactivity of UOX and MOX lattices, depletion calculation and fuel inventory, reactivity loss with burnup, pin-by-pin power maps, Doppler coefficient, Moderator Temperature Coefficient, Void coefficient, UO{sub 2}-Gd{sub 2}O{sub 3} poisoning worth, Efficiency of Ag-In-Cd and B4C control rods, Reflector Saving for both standard 2-cm baffle and GEN3 advanced thick SS reflector. From this qualification process, calculation biases and associated uncertainties are derived. This code package APOLLO2.8 is already implemented in the ARCADIA new AREVA calculation chain for core physics and is currently under implementation in the future neutronics package of the French utility Electricite de France. (authors)

  5. Non-Linear Dynamics Analysis of a PWR with Up-to-date Fuel Design

    SciTech Connect (OSTI)

    Riverola Gurruchaga, Javier [ENUSA Industrias Avanzadas S.A., Santiago Rusinol 12, 28040 Madrid (Spain)

    2007-07-01T23:59:59.000Z

    The Lyapunov stability theorems are applied to a simplified system of non-linear differential equations representative of a current 3 loop /12 feet contemporary PWR (Generation II) with up-to-date 17x17 lattice fuel design. The one-speed non-linear point kinetics model with six delayed neutron groups and lumped parameter heat transfer equations in the fuel rod and coolant along with a reactivity function with Doppler and moderator feedback effects is considered. First, local asymptotic stability is demonstrated at a variety of equilibrium state-points ranging from start-up to 150% nominal power. Then, a Lyapunov V function is found with the mathematical condition for sign definiteness and the stability region of attraction around the equilibrium HFP state is obtained. This study is complemented with the application of the Welton criterion for non linear kinetics and linear feedback in the frequency domain. As expected and consistently with Reactor Physics theory and experience, the strong asymptotic stable trend of a PWR is confirmed again for all analyzed conditions. This method is general and adaptable to other fuel assembly designs and reactor types. (authors)

  6. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01T23:59:59.000Z

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  7. The Arizona Poison and Drug Information Center's toll-free line

    E-Print Network [OSTI]

    Arizona, University of

    The Arizona Poison and Drug Information Center's toll-free line is always open. Call us if: · You think someone has been poisoned. · You have questions about any type of poison. · You want information about poison prevention. Storing Safely · Lock up poisonous products and medicines out of reach and out

  8. The Arizona Poison and Drug Information Center's toll free line is

    E-Print Network [OSTI]

    Arizona, University of

    The Arizona Poison and Drug Information Center's toll free line is always open. Call us if: · You think someone has been poisoned. · You have questions about any type of poison. · You want information about poison prevention. Storing Safely · Lock up poisonous products and medicines out of reach and out

  9. The University of Arizona College of Agriculture and Life Sciences12 Trace Minerals for Cattle

    E-Print Network [OSTI]

    Guerriero, Vince

    The University of Arizona College of Agriculture and Life Sciences12 Trace Minerals for Cattle deficiency of range forage as a potential culprit, zeroing in on its lack of the trace minerals selenium lacks these critical minerals, but also figured out a more efficient way to get cattle to consume them

  10. Topography affected landscape fire history patterns in southern Arizona, USA Jose M. Iniguez a,

    E-Print Network [OSTI]

    Topography affected landscape fire history patterns in southern Arizona, USA Jose M. Iniguez a frequent surface fires burned in forests of the western United States prior to Euro-American settlement influenced by stand (0.1­1 km2 ) and landscape (1­10 km2 ) scale topography. Such knowledge would inform

  11. Peak discharge of a Pleistocene lava-dam outburst flood in Grand Canyon, Arizona, USA

    E-Print Network [OSTI]

    Received 6 May 2005 Availble online 7 February 2006 Abstract The failure of a lava dam 165,000 yr ago dam-failure and unsteady flow modeling to estimate a peak discharge and flow hydrograph. FailurePeak discharge of a Pleistocene lava-dam outburst flood in Grand Canyon, Arizona, USA Cassandra R

  12. GeoDaze 2008 The University of Arizona Department of Geosciences

    E-Print Network [OSTI]

    Holliday, Vance T.

    contributions. Organizations Applied Geoscience LLC Arizona Geological Society BP Chevron ConocoPhillips Errol C. Melton Megan Anderson Miles Shaw Nancy Naeser Patrick Gisler Paul Martin Peter Kresan Richard Pfirman Terrence Gerlach Vance Haynes William, Jr. Jenny i #12;GeoDaze 2008 Committee Co-Chairs Treasurer Field

  13. Central ArizonaPhoenix Long-Term Ecological Research: Phase 2

    E-Print Network [OSTI]

    Hall, Sharon J.

    -Cover Change Climate-Ecosystem Interactions Water Policy, Use, and Supply Material Fluxes and Socioecosystem-Use and Land-Cover Change Climate-Ecosystem Interactions Water Policy, Use, and Supply Material FluxesCentral Arizona­Phoenix Long-Term Ecological Research: Phase 2 Nancy B. Grimm, Principal

  14. THE UNIVERSITY OF ARIZONA TECHNICAL REPORT 1 The Resilience of WDM Networks to

    E-Print Network [OSTI]

    Efrat, Alon

    , are vulnerable to large-scale failures of their physical infrastructure, resulting from physical attacks (such as optical fibers, amplifiers, routers, and switches), making them vulnerable to physical attacksTHE UNIVERSITY OF ARIZONA TECHNICAL REPORT 1 The Resilience of WDM Networks to Probabilistic

  15. Strategies for Developing Water-Conscious Communities: An Analysis of Water Conservation in Tucson, Arizona

    E-Print Network [OSTI]

    Fay, Noah

    conservation. Water conservation practices, such as rainwater harvesting, recycling gray-water and installation1 Strategies for Developing Water-Conscious Communities: An Analysis of Water Conservation was made possible by the University of Arizona, Technology and Research Initiative Fund 2009/2010, Water

  16. FIA-12-0020- In the Matter of California-Arizona-Nevada District Organization Contract Compliance

    Broader source: Energy.gov [DOE]

    The Office of Hearings and Appeals granted a Motion for Reconsideration of part of a Decision we issued on March 23, 2012, relating to appeals filed by California-Arizona-Nevada District Organization Contract Compliance (CANDO) under the Freedom of Information Act (FOIA).

  17. Pressures on Arizona Water and Energy Policy: Case Study of the

    E-Print Network [OSTI]

    Fay, Noah

    in Arizona. NGS provides 95% of the power for CAP. #12;Coal and Water #12;Climate and Water #12;Why should I Components #12;Water Related NGS Documents · EPA Regulation: "BART" alternative · TWG Agreement: CA and NV or transform plant into solar plant · Commitments from DOI to affected tribes #12;EPA on Water and NGS · EPA

  18. EA-1987: Parker-Headgate Rock and Parker-Bouse Rebuild Project, Arizona and California

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing an EA that will assess the potential environmental impacts of a proposal to rebuild the existing Parker Dam-Headgate Rock and Parker Dam-Bouse 161-kilovolt transmission lines along the Colorado River in western Arizona and eastern California.

  19. Ground Covers for northern ArizonA Above 6,000 foot elevAtions

    E-Print Network [OSTI]

    Sanderson, Mike

    or the use of fabric or plastic mulch may be required. Most Northern Arizona soils are limited in the amount to turf, bare ground, and rock mulches. Ground covers fill a number of important design needs. They can or even highway embankments. They can soften and add a touch of greenery to the large rock-mulched areas

  20. Arizona Radio Observatory (ARO) The SMT is the most accurate submillimeter astronomical

    E-Print Network [OSTI]

    Ziurys, Lucy M.

    Arizona Radio Observatory (ARO) The SMT is the most accurate submillimeter astronomical telescope-183 GHz range (2 and 3 mm windows), and the SMT supports 200-490 GHz receivers. Future instrumentation.I.T. Haystack. SMT Structure Geometry Main reflector: paraboloid D=10 m F/D=0.35. Subreflector: hyperboloid d=0

  1. Microbial Quality Analysis of Water Runoff For Biosolid-Applied Fields in Southern Arizona

    E-Print Network [OSTI]

    Fay, Noah

    Microbial Quality Analysis of Water Runoff For Biosolid-Applied Fields in Southern Arizona Nicholas Undergraduate Fellowship Program #12;Abstract Biosolids, solid waste byproducts resulting from wastewater of biosolid application on a farm's water quality. Using indicator organisms such as E. coli and total

  2. The Use of Biosensors in Detecting Pathogens in Arizona's Water Distribution System

    E-Print Network [OSTI]

    Fay, Noah

    University of Arizona, Technology and Research Initiative Fund 2007/2008, Water Sustainability Undergraduate the masses can save people valuable time and money. Additionally, many of the components of the lab-on-a-chip--such as the optical fibers, the spectrometer, and the syringe pump--are reusable, while the lab-on-a-chip itself can

  3. Analysis of Seismic Activity near Theodore Roosevelt Dam, Arizona, during the Occupation

    E-Print Network [OSTI]

    Fouch, Matthew J.

    E Analysis of Seismic Activity near Theodore Roosevelt Dam, Arizona, during the Occupation, and Lepolt Linkimer Online Material: Plot of viable focal mechanisms and table of regional seismic velocity model. INTRODUCTION Rate and distribution of seismic activity are important indica- tors of the overall

  4. FIA-12-0004- In the Matter of California-Arizona-Nevada District Organization Contract Compliance

    Broader source: Energy.gov [DOE]

    The Office of Hearings and Appeals issued one Decision relating to two appeals filed by California-Arizona-Nevada District Organization Contract Compliance (CANDO) from two determination letters issued by the Loan Guarantee Program Office (LGPO) of the Department of Energy (DOE) under the Freedom of Information Act (FOIA).

  5. FIA-12-0005- In the Matter of California-Arizona-Nevada District Organization Contract Compliance

    Broader source: Energy.gov [DOE]

    The Office of Hearings and Appeals issued one Decision relating to two appeals filed by California-Arizona-Nevada District Organization Contract Compliance (CANDO) from two determination letters issued by the Loan Guarantee Program Office (LGPO) of the Department of Energy (DOE) under the Freedom of Information Act (FOIA).

  6. Logo Sheet for Arizona State University All logo configurations are available in the

    E-Print Network [OSTI]

    Hall, Sharon J.

    Logo Sheet for Arizona State University All logo configurations are available in the following (includes entire logo suite) Zip Archive (includes entire logo suite) The caption below each logo refers to the digital file name. Logo download page: http://www.asu.edu/gsm/downloads_logo.html Email gsm

  7. Unintended Consequences of Regulatory Takings Reform on the SDCP and Arizona Water Management

    E-Print Network [OSTI]

    Fay, Noah

    a property owners to just compensation if the value of a person's property is reduced by the enactmentUnintended Consequences of Regulatory Takings Reform on the SDCP and Arizona Water Management Fellowship Program #12;Introduction: Regulatory laws are often passed with the best intentions

  8. arizona-mexico border communities1: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    arizona-mexico border communities1 First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Border Bases border...

  9. $18.8 Million Award for Power Systems Engineering Research Center Continues Collaboration of 13 Universities and 35 Utilities for Electric Power Research, Building the Nation's Energy Workforce

    Broader source: Energy.gov [DOE]

    The Department of Energy awarded a cooperative agreement on January 16, 2009, to the Arizona State University (ASU) Board of Regents to operate the Power Systems Engineering Research Center (PSERC). PSERC is a collaboration of 13 universities with 35 electricity industry member organizations including utilities, transmission companies, vendors and research organizations.

  10. Calculation of releases of radioactive materials in gaseous and liquid effluents from pressurized water reactors (PWR-GALE Code). Revision 1

    SciTech Connect (OSTI)

    Chandrasekaran, T.; Lee, J.Y.; Willis, C.A.

    1985-04-01T23:59:59.000Z

    This report revises the original issuance of NUREG-0017, ''Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents from Pressurized Water Reactors (PWR-GALE-Code)'' (April 1976), to incorporate more recent operating data now available as well as the results of a number of in-plant measurement programs at operating pressurized water reactors. The PWR-GALE Code is a computerized mathematical model for calculating the releases of radioactive material in gaseous and liquid effluents (i.e., the gaseous and liquid source terms). The US Nuclear Regulatory Commission uses the PWR-GALE Code to determine conformance with the requirements of Appendix I to 10 CFR Part 50.

  11. Electrical Engineer

    Broader source: Energy.gov [DOE]

    The incumbent in this position will serve as an Electrical Engineer in the Strategy and Program Management organization of Transmission Services. The Strategy and Program Management organization is...

  12. Electric Vehicles

    ScienceCinema (OSTI)

    Ozpineci, Burak

    2014-07-23T23:59:59.000Z

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  13. Electrical hazards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and certification by ANL prior to use. The Control of Hazardous Energy Sources - LockoutTagout (LOTO) Types of Energy Sources 1. Electricity 2. Gas, steam & pressurized...

  14. Electric Vehicles

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-05-02T23:59:59.000Z

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  15. Electrical stator

    DOE Patents [OSTI]

    Fanning, Alan W. (San Jose, CA); Olich, Eugene E. (Aptos, CA)

    1994-01-01T23:59:59.000Z

    An electrical stator of an electromagnetic pump includes first and second spaced apart coils each having input and output terminals for carrying electrical current. An elongate electrical connector extends between the first and second coils and has first and second opposite ends. The connector ends include respective slots receiving therein respective ones of the coil terminals to define respective first and second joints. Each of the joints includes a braze filler fixedly joining the connector ends to the respective coil terminals for carrying electrical current therethrough.

  16. Apache County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources JumpAnaconda,Anza Electric Coop Inc Jump to:Apache

  17. Apache Junction, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources JumpAnaconda,Anza Electric Coop Inc Jump

  18. Arizona's 1st congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources JumpAnaconda,AnzaArcade,theElectric

  19. Arizona's 3rd congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources JumpAnaconda,AnzaArcade,theElectricInformation

  20. Arizona's 4th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources JumpAnaconda,AnzaArcade,theElectricInformation

  1. Tuba City, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, Indiana (UtilityTri-State ElectricSolarTruReadTsinghuaTuTuba City,

  2. Seismic qualification of equipment by means of probabilistic risk assessment. [PWR

    SciTech Connect (OSTI)

    Azarm, M.A.; Farahzad, P.; Boccio, J.L.

    1982-01-01T23:59:59.000Z

    Upon the sponsorship of the Equipment Qualification Branch (EQB) of NRC, Brookhaven National Laboratory (BNL) has utilized a risk-based approach for identifying, in a generic fashion, seismically risk-sensitive equipment. It is anticipated that the conclusions drawn therefrom and the methodology employed will, in part, reconcile some of the concerns dealing with the seismic qualification of equipment in operating plants. The approach taken augments an existing sensitivity analysis, based upon the WASH-1400 Reactor Safety Study (RSS), by accounting for seismicity and component fragility with the Kennedy model and by essentially including the requisite seismic data presented in the Zion Probabilistic Safety Study (ZPSS). Parametrically adjusting the seismic-related variables and ascertaining their effects on overall plant risk, core-melt probability, accident sequence probability, etc., allows one to identify those seismically risk-sensitive systems and equipment. This paper describes the approach taken and highlights the results obtained thus far for a hypothetical pressurized water reactor (PWR).

  3. Risk analysis of highly combustible gas storage, supply, and distribution systems in PWR plants

    SciTech Connect (OSTI)

    Simion, G.P. [Science Applications International Corp., Albuquerque, NM (United States); VanHorn, R.L.; Smith, C.L.; Bickel, J.H.; Sattison, M.B. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Bulmahn, K.D. [SCIENTECH, Inc., Idaho Falls, ID (United States)

    1993-06-01T23:59:59.000Z

    This report presents the evaluation of the potential safety concerns for pressurized water reactors (PWRs) identified in Generic Safety Issue 106, Piping and the Use of Highly Combustible Gases in Vital Areas. A Westinghouse four-loop PWR plant was analyzed for the risk due to the use of combustible gases (predominantly hydrogen) within the plant. The analysis evaluated an actual hydrogen distribution configuration and conducted several sensitivity studies to determine the potential variability among PWRs. The sensitivity studies were based on hydrogen and safety-related equipment configurations observed at other PWRs within the United States. Several options for improving the hydrogen distribution system design were identified and evaluated for their effect on risk and core damage frequency. A cost/benefit analysis was performed to determine whether alternatives considered were justifiable based on the safety improvement and economics of each possible improvement.

  4. The key to superior water chemistry at a PWR nuclear station

    SciTech Connect (OSTI)

    Dolan, R.; Miller, L.K.; Olejar, L.L.; Salem, E.

    1983-01-01T23:59:59.000Z

    This paper demonstrates how a condensate polishing unit can be successfully used to treat the feedwater for circulating-type pressurized water reactors (PWRs). Water chemistry at the Salem Generating Station, a two-unit, four-loop Westinghouse PWR located in New Jersey, is discussed. Topics considered include a plant description and the history of early operation, the role of constant surveillance, makeup water quality, the effect of freezing on gel-type anion exchange resin, a total organic carbon (TOC) survey, steam generator chemistry, steam generator inspection, condensate polisher operation, and management philosophy. The SEPREX condensate polishing process, in which the complete separation of the anion exchange resin from the cation exchange resin is achieved by flotation separation, is examined. It is concluded that the utilization of a condensate polishing process such as SEPREX provides the operating personnel at the plant with the necessary means to maintain the minimum desired level of contaminants within the steam generator.

  5. Hydrazine usage for corrosion control in PWR plants with powdered-resin-condensate polishers. Final report

    SciTech Connect (OSTI)

    Barkich, J.L.; Battaglia, P.J.

    1983-03-01T23:59:59.000Z

    The objective of this project was to obtain the data necessary to determine the optimum injection point and amount of hydrazine to be used for oxygen control in PWR units with condensate polishing demineralizers. An additional objective was to demonstrate that the condensate polisher can be used as a means to reduce the oxygen concentration in the condensate when a sufficient excess concentration of hydrazine (over the oxygen) concentration is carried over with the main steam into the condensers. Testing was performed at North Anna Unit 2 which employs powdered resin-type condensate polishing equipment. Testing was also scheduled to be performed at Ginna and Sequoyah Unit 1 plants; however, because of an unscheduled shutdown at Ginna and inability to control hydrazine dosage at Sequoyah, these tests were not performed.

  6. Quantitative uncertainty and sensitivity analysis of a PWR control rod ejection accident

    SciTech Connect (OSTI)

    Pasichnyk, I.; Perin, Y.; Velkov, K. [Gesellschaft flier Anlagen- und Reaktorsicherheit - GRS mbH, Boltzmannstasse 14, 85748 Garching bei Muenchen (Germany)

    2013-07-01T23:59:59.000Z

    The paper describes the results of the quantitative Uncertainty and Sensitivity (U/S) Analysis of a Rod Ejection Accident (REA) which is simulated by the coupled system code ATHLET-QUABOX/CUBBOX applying the GRS tool for U/S analysis SUSA/XSUSA. For the present study, a UOX/MOX mixed core loading based on a generic PWR is modeled. A control rod ejection is calculated for two reactor states: Hot Zero Power (HZP) and 30% of nominal power. The worst cases for the rod ejection are determined by steady-state neutronic simulations taking into account the maximum reactivity insertion in the system and the power peaking factor. For the U/S analysis 378 uncertain parameters are identified and quantified (thermal-hydraulic initial and boundary conditions, input parameters and variations of the two-group cross sections). Results for uncertainty and sensitivity analysis are presented for safety important global and local parameters. (authors)

  7. IMPACT OF FISSION PRODUCTS IMPURITY ON THE PLUTONIUM CONTENT IN PWR MOX FUELS

    SciTech Connect (OSTI)

    Gilles Youinou; Andrea Alfonsi

    2012-03-01T23:59:59.000Z

    This report presents the results of a neutronics analysis done in response to the charter IFCA-SAT-2 entitled 'Fuel impurity physics calculations'. This charter specifies that the separation of the fission products (FP) during the reprocessing of UOX spent nuclear fuel assemblies (UOX SNF) is not perfect and that, consequently, a certain amount of FP goes into the Pu stream used to fabricate PWR MOX fuel assemblies. Only non-gaseous FP have been considered (see the list of 176 isotopes considered in the calculations in Appendix 1). This mixture of Pu and FP is called PuFP. Note that, in this preliminary analysis, the FP losses are considered element-independent, i.e., for example, 1% of FP losses mean that 1% of all non-gaseous FP leak into the Pu stream.

  8. Electric machine

    DOE Patents [OSTI]

    El-Refaie, Ayman Mohamed Fawzi (Niskayuna, NY); Reddy, Patel Bhageerath (Madison, WI)

    2012-07-17T23:59:59.000Z

    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  9. Effect of aging on the PWR Chemical and Volume Control System

    SciTech Connect (OSTI)

    Grove, E.J.; Travis, R.J.; Aggarwal, S.K. [Brookhaven National Lab., Upton, NY (United States)

    1995-06-01T23:59:59.000Z

    The PWR Chemical and Volume Control System (CVCS) is designed to provide both safety and non-safety related functions. During normal plant operation it is used to control reactor coolant chemistry, and letdown and charging flow. In many plants, the charging pumps also provide high pressure injection, emergency boration, and RCP seal injection in emergency situations. This study examines the design, materials, maintenance, operation and actual degradation experiences of the system and main sub-components to assess the potential for age degradation. A detailed review of the Nuclear Plant Reliability Data System (NPRDS) and Licensee Event Report (LER) databases for the 1988--1991 time period, together with a review of industry and NRC experience and research, indicate that age-related degradations and failures have occurred. These failures had significant effects on plant operation, including reactivity excursions, and pressurizer level transients. The majority of these component failures resulted in leakage of reactor coolant outside the containment. A representative plant of each PWR design (W, CE, and B and W) was visited to obtain specific information on system inspection, surveillance, monitoring, and inspection practices. The results of these visits indicate that adequate system maintenance and inspection is being performed. In some instances, the frequencies of inspection were increase in response to repeated failure events. A parametric study was performed to assess the effect of system aging on Core Damage Frequency (CDF). This study showed that as motor-operated valve (MOV) operating failures increased, the contribution of the High Pressure Injection to CDF also increased.

  10. Initiation stress threshold irradiation assisted stress corrosion cracking criterion assessment for core internals in PWR environment

    SciTech Connect (OSTI)

    Tanguy, Benoit; Stern, Anthony; Bossis, Philippe [CEA, DEN-DMN, Gif-sur-Yvette, (France); Pokor, Cedric [EDF les Renardieres, Moret-sur-Loing, (France)

    2012-07-01T23:59:59.000Z

    Irradiation assisted stress corrosion cracking (IASCC) is a problem of growing importance in pressurized water reactors (PWR). An understanding of the mechanism(s) of IASCC is required in order to provide guidance for the development of mitigation strategies. One of the principal reasons why the IASCC mechanism(s) has been so difficult to understand is the inseparability of the different IASCC potential contributors evolutions due to neutron irradiation. The potential contributors to IASCC in PWR primary water are: (i) radiation induced segregation (RIS) at grain boundaries, (ii) radiation induced microstructure (formation and growth of dislocations loops, voids, bubbles, phases), (iii) localized deformation under loading, (iv) irradiation creep and transmutations. While the development of some of the contributors (RIS, microstructure) with increasing doses are at least qualitatively well understood, the role of these changes on IASCC remains unclear. Parallel to fundamental understanding developments relative to IASCC, well controlled laboratory tests on neutron irradiated stainless steels are needed to assess the main mechanisms and also to establish an engineering criterion relative to the initiation of fracture due to IASCC. First part of this study describes the methodology carried out at CEA in order to provide more experimental data from constant load tests dedicated to the study of initiation of SCC on neutron irradiated stainless steel. A description of the autoclave recirculation loop dedicated to SCC tests on neutron irradiated materials is then given. This autoclave recirculation loop has been started on July 2010 with the first SCC test on an irradiated stainless steel (grade 316) performed at CEA. The main steps of the interrupted SCC tests are then described. Second part of this paper reports the partial results of the first test performed on a highly neutron irradiated material. (authors)

  11. The Mount Perkins block, northwestern Arizona: An exposed cross section of an evolving, preextensional to synextensional magmatic system

    E-Print Network [OSTI]

    Faulds, James E.; Feuerbach, Daniel L.; Reagan, Mark K.; Metcalf, Rodney V.; Gans, Phil; Walker, J. Douglas

    1995-08-10T23:59:59.000Z

    The steeply tilted Mount Perkins block, northwestern Arizona, exposes a cross section of a magmatic system that evolved through the onset of regional extension. New 40Ar/39Ar ages of variably tilted (0–90°) volcanic strata ...

  12. United States Regional Administrator Region 9, Arizona, California Environmental Protection 75 Haw thorne Street Haw aii, Nevada, Guam

    E-Print Network [OSTI]

    Hall, Sharon J.

    United States Regional Administrator Region 9, Arizona, California Environmental Protection 75 Haw Cities Network ASU Receives Environmental Award for Collaborative Sustainability Efforts SAN FRANCISCO - The U.S. Environmental Protection Agency's Regional Administrator Jared Blumenfeld today recognized

  13. El Paso Electric Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois:Edinburgh UniversityMirage, Arizona:Electric Country

  14. Electrical and Computer Engineering

    E-Print Network [OSTI]

    Weber, Rodney

    COE 1000 Electrical and Computer Engineering Jennifer Michaels Professor and Interim Associate Chair for Undergraduate Affairs School of Electrical and Computer Engineering Fall 2011 #12;Defining Electrical and Computer Engineering Electrical Engineering: Electrical engineers explore electrical phenomena

  15. Electrical connector

    DOE Patents [OSTI]

    Dilliner, Jennifer L.; Baker, Thomas M.; Akasam, Sivaprasad; Hoff, Brian D.

    2006-11-21T23:59:59.000Z

    An electrical connector includes a female component having one or more receptacles, a first test receptacle, and a second test receptacle. The electrical connector also includes a male component having one or more terminals configured to engage the one or more receptacles, a first test pin configured to engage the first test receptacle, and a second test pin configured to engage the second test receptacle. The first test receptacle is electrically connected to the second test receptacle, and at least one of the first test pin and the second test pin is shorter in length than the one or more terminals.

  16. EIS-0301: NRG Energy Services, Inc., Arizona-Baja California 500 kV Transmission Line

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to approve NRG Energy, Inc. (NRG) for a Presidential permit to construct a 500,000-volt transmission line originating at the switchyard of the Palo Verde Nuclear Generating Station near Phoenix, Arizona, and extending approximately 177 miles to the southwest, where it would cross the United States (U.S.) border with Mexico in the vicinity of Calexico, California.

  17. Dimensions of service quality of the University of Arizona Sponsored Projects Services Office internal customers

    E-Print Network [OSTI]

    Baca, David Ray

    2007-04-25T23:59:59.000Z

    DIMENSIONS OF SERVICE QUALITY OF THE UNIVERSITY OF ARIZONA SPONSORED PROJECTS SERVICES OFFICE INTERNAL CUSTOMERS A Dissertation by DAVID RAY BACA Submitted to the Office of Graduate Studies of Texas A&M University in partial... CUSTOMERS A Dissertation by DAVID RAY BACA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of the Committee...

  18. The use of binding arbitration for Arizona's public works disputes as viewed from the contractor's perspective

    E-Print Network [OSTI]

    Bluff, Michael Robert

    1989-01-01T23:59:59.000Z

    works projects are derived from several sources. The purpose of this section is to review these sources and explain how they are used to deal with contract claims. The basic source of statutory procedures for filing claims against a public body... wastewater treatment plant for a county in Southern Arizona. During the course of the project, certain disputes arose between the contractor and county over amounts owed under the contract. The prime contract contained a binding arbitration clause...

  19. Soft-sediment and hard-rock deformation in the Chinle Formation, Northeastern Arizona

    E-Print Network [OSTI]

    Scheevel, Jay Roger

    1983-01-01T23:59:59.000Z

    as to deformation-type are: (1) chevron-folds (1 to 300 m wavelengths), (2) decollement or truncated surfaces, (3) plunging folds, (4) slickensided shear- surfaces in claystones. Microscopic observation of the deformed sandstones reveals that the order.... Microscopic Study. Model Study. 1 1 2 3 10 10 11 11 13 13 14 16 17 17 17 18 FIELD OBSERVATIONS 19 Introduction Soft-sediment Deformation St. Johns, Arizona General description Folds and Decollement Soft-sediment Small-faults Subsidiary...

  20. Engineering Electrical &

    E-Print Network [OSTI]

    Hickman, Mark

    Computer Engineering Electrical & Electronic Engineering Mechatronics Engineering Mechanical Engineering Civil Engineering Natural Resources Engineering Forest Engineering Chemical & Process Engineering ELECTIVE 2 Required Engineering Intermediate Year 2011 Eight Required Courses Chart: 120 points College

  1. Engineering Electrical &

    E-Print Network [OSTI]

    Hickman, Mark

    Computer Engineering Electrical & Electronic Engineering Mechatronics Engineering Mechanical Engineering Civil Engineering Natural Resources Engineering Forest Engineering Chemical & Process Engineering ELECTIVE 2 Required Engineering Intermediate Year 2012 Eight Required Courses Chart: 120 points College

  2. Adoption, implementation and enforcement of commercial building energy codes in New Mexico and Arizona

    SciTech Connect (OSTI)

    Callaway, J W; Thurman, A G; Shankle, D L

    1991-07-01T23:59:59.000Z

    The US Department of Energy (DOE) is considering ways to encourage states to adopt energy efficiency standards for residential and commercial buildings in the private sector. Such standards are now mandatory for federal buildings, and for private buildings in 34 states; in the remaining 16 states, the standards serve as guidelines for voluntary compliance. In this study for DOE, Pacific Northwest Laboratory (PNL) assessed the process by which energy codes for commercial buildings were adopted and implemented in Arizona and New Mexico. Information was gathered primarily through a series of interviews with state officials, city building officials, architects and engineers, builders, and staff from utilities in the two states. Until other state processes are studied, the extent of the similarities and dissimilarities to the situation in New Mexico and Arizona are unknown. A more extensive study may show that at least some elements of the two state's experience have been paralleled in other parts of the country. General strategies to encourage the adoption of energy codes, assist implementation, and support enforcement were developed based on the research from Arizona and New Mexico and are presented in this report. 6 refs., 4 figs.

  3. Sensitivity of risk parameters to component unavailability in reactor safety study (PSAP/PSAB computer codes). [PWR; BWR

    SciTech Connect (OSTI)

    Azarm, M.; Farahzad, P.; Tingle, A.

    1982-06-01T23:59:59.000Z

    The Probabilistic Sensitivity Analysis for Pressurized and Boiling Water Reactors (PSAP/PSAB) codes have been developed to update the WASH-1400 conclusions. The initial effort, reported in NUREG/CR-1879 Sensitivity of Risk Parameters to Human Errors in Reactor Safety Study for a PWR, concentrated on developing a code for system sensitivity to human errors based on an expanded version of the PWR fault trees from the Reactor Safety Study (RSS). The success of that effort and the insights gained from the code's use initiated the development of the PSAP/PSAB codes. The two codes allow the user to evaluate the impact of new data and system models on the conclusions drawn in WASH-1400. They are designed to be fast running and modular so that detailed sensitivity studies can be run efficiently.

  4. SAS2H Generated Isotopic Concentrations For B&W 15X15 PWR Assembly (SCPB:N/A)

    SciTech Connect (OSTI)

    J.W. Davis

    1996-08-29T23:59:59.000Z

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide pressurized water reactor (PWR) isotopic composition data as a function of time for use in criticality analyses. The objectives of this evaluation are to generate burnup and decay dependant isotopic inventories and to provide these inventories in a form which can easily be utilized in subsequent criticality calculations.

  5. A compilation of the electricity generated and low-level radioactive wastes shipped for disposal by US nuclear power plants, 1959-1985

    SciTech Connect (OSTI)

    Kibbey, A.H.; DePaoli, S.M.

    1987-12-01T23:59:59.000Z

    The LWRDATA data base contains both volume and radioactivity data on nearly all the low-level radioactive waste (LLW) shipments from commercial boiling-water reactor (BWR) and pressurized-water reactor (PWR) nuclear power plants from 1959 through 1985. The corresponding net electrical output is also included in the data base. This report compares the various physical forms of LLW (i.e., wet; dry, compressible; irradiated, non-fuel core component; and miscellaneous) generated by BWR and PWR plants on the basis of their annual net electricity generation. Further comparisons are made of three specific categories of BWRs based on their size and condensate polishing systems: (1) small deep-bed plants, (2) large deep-bed plants, and (3) filter-demineralizer plants. The various types and volumes of PWR wastes generated per net megawatt (electrical)-year are also compared by nuclear steam supply system manufacturer. Limitations of the available data are discussed. 25 refs., 30 figs., 5 tabs.

  6. Electric and gas utility marketing of residential energy conservation case studies

    SciTech Connect (OSTI)

    None

    1980-05-01T23:59:59.000Z

    The objective of this research was to obtain information about utility conservation marketing techniques from companies actively engaged in performing residential conservation services. Many utilities currently are offering comprehensive services (audits, listing of contractors and lenders, post-installation inspection, advertising, and performing consumer research). Activities are reported for the following utilities: Niagara Mohawk Power Corporation; Tampa Electric Company; Memphis Light, Gas, and Water Division; Northern States Power-Wisconsin; Public Service Company of Colorado; Arizona Public Service Company; Pacific Gas and Electric Company; Sacramento Municipal Utility District; and Pacific Power and Light Company.

  7. Electrically powered hand tool

    DOE Patents [OSTI]

    Myers, Kurt S.; Reed, Teddy R.

    2007-01-16T23:59:59.000Z

    An electrically powered hand tool is described and which includes a three phase electrical motor having a plurality of poles; an electrical motor drive electrically coupled with the three phase electrical motor; and a source of electrical power which is converted to greater than about 208 volts three-phase and which is electrically coupled with the electrical motor drive.

  8. Development of a coupling code for PWR reactor cavity radiation streaming calculation

    SciTech Connect (OSTI)

    Zheng, Z.; Wu, H.; Cao, L.; Zheng, Y.; Zhang, H.; Wang, M. [NECP Laboratory, School of Nuclear Science and Technology, Xi'an Jiaotong Univ., Xi'an Shaanxi 710049 (China)

    2012-07-01T23:59:59.000Z

    PWR reactor cavity radiation streaming is important for the safe of the personnel and equipment, thus calculation has to be performed to evaluate the neutron flux distribution around the reactor. For this calculation, the deterministic codes have difficulties in fine geometrical modeling and need huge computer resource; and the Monte Carlo codes require very long sampling time to obtain results with acceptable precision. Therefore, a coupling method has been developed to eliminate the two problems mentioned above in each code. In this study, we develop a coupling code named DORT2MCNP to link the Sn code DORT and Monte Carlo code MCNP. DORT2MCNP is used to produce a combined surface source containing top, bottom and side surface simultaneously. Because SDEF card is unsuitable for the combined surface source, we modify the SOURCE subroutine of MCNP and compile MCNP for this application. Numerical results demonstrate the correctness of the coupling code DORT2MCNP and show reasonable agreement between the coupling method and the other two codes (DORT and MCNP). (authors)

  9. Aging mechanisms in the Westinghouse PWR (Pressurized Water Reactor) Control Rod Drive system

    SciTech Connect (OSTI)

    Gunther, W.; Sullivan, K.

    1991-01-01T23:59:59.000Z

    An aging assessment of the Westinghouse Pressurized Water Reactor (PWR) Control Rod System (CRD) has been completed as part of the US NRC's Nuclear Plant Aging Research, (NPAR) Program. This study examined the design, construction, maintenance, and operation of the system to determine its potential for degradation as the plant ages. Selected results from this study are presented in this paper. The operating experience data were evaluated to identify the predominant failure modes, causes, and effects. From our evaluation of the data, coupled with an assessment of the materials of construction and the operating environment, we conclude that the Westinghouse CRD system is subject to degradation which, if unchecked, could affect its safety function as a plant ages. Ways to detect and mitigate the effects of aging are included in this paper. The current maintenance for the control rod drive system at fifteen Westinghouse PWRs was obtained through a survey conducted in cooperation with EPRI and NUMARC. The results of the survey indicate that some plants have modified the system, replaced components, or expanded preventive maintenance. Several of these activities have effectively addressed the aging issue. 2 refs., 2 figs., 2 tabs.

  10. Modern Fuel Cladding in Demanding Operation - ZIRLO in Full Life High Lithium PWR Coolant

    SciTech Connect (OSTI)

    Kargol, Kenneth [Pacific Gas and Electric Company, Diablo Canyon Power Plant, Avila Beach, California (United States); Stevens, Jim [TXU Power, Comanche Peak Steam Electric Station, Glen Rose, Texas (United States); Bosma, John [Westinghouse Electric Company, Dallas, Texas (United States); Iyer, Jayashri; Wikmark, Gunnar [Westinghouse Electric Company, Columbia, South Carolina (United States)

    2007-07-01T23:59:59.000Z

    There is an increasing demand to optimize the PWR water chemistry in order to minimize activity build-up in the plants and to avoid CIPS and other fuel related issues. Operation with a constant pH between 7.2 and 7.4 is generally considered an important part in achieving the optimized water chemistry. The extended long cycles currently used in most of the U.S. PWRs implies that the lithium concentration at BOC will be outside the general operating experience with such a coolant chemistry regime. With the purpose to extend the experience of high lithium coolant operation, such water chemistry has been used in a few PWRs, i.e. CPSES Unit 2 and Diablo Canyon Units 1 and 2, all with ZIRLO{sup TM} cladding. Operation with a lithium concentration up to 4.2 ppm does not show any impact of the elevated lithium, while operation with up to 6 ppm possibly produce some limited corrosion acceleration in the region of sub-nucleate boiling but has no detrimental impact under the conditions limited by current operating experience. (authors)

  11. Assessment of molten debris freezing in a severe RIA in-pile test. [PWR; BWR

    SciTech Connect (OSTI)

    El-Genk, M.S.; Moore, R.L.

    1980-01-01T23:59:59.000Z

    An understanding of the freezing of molten debris on cold core structures following a hypothetical core meltdown accident in a light water reactor (LWR) is of importance to reactor safety analysis. The purpose of the present investigation was to analyze the transient freezing of the molten debris produced in a severe reactivity initiated accident (RIA) scoping test, designated RIA-ST-4, which was performed in the Power Burst Facility and simulated a BWR control rod drop accident. In the RIA-ST-4 experiment, a single, unirradiated, 20 wt % enriched, UO/sub 2/ fuel rod contained within a Zircaloy flow shroud was subjected to a single power burst which deposited a total energy of about 700 cal/g UO/sub 2/. This energy deposition is well above what is possible in a commercial LWR during a hypothetical control rod drop (BWR) or ejection (PWR) accident. However, the performance of such an in-pile test has provided important information regarding molten debris movement, relocation, and freezing on cold walls.

  12. Head Loss Evaluation in a PWR Reactor Vessel Using CFD Analysis

    SciTech Connect (OSTI)

    Ji Hwan Jeong; Jong Pil Park [School of Mechanical Engineering, Pusan National University, Enesys Jangjeon-dong, Geumjeong-gu, Busan (Korea, Republic of); Byoung-Sub Han [Jangdae-dong, Yusong-gu, Daejeon (Korea, Republic of)

    2006-07-01T23:59:59.000Z

    Nuclear vendors and utilities perform lots of simulations and analyses in order to ensure the safe operation of nuclear power plants (NPPs). In general, the simulations are carried out using vendor-specific design codes and best-estimate system analysis codes and most of them were developed based on 1-dimensional lumped parameter models. During the past decade, however, computers, parallel computation methods, and 3-dimensional computational fluid dynamics (CFD) codes have been dramatically enhanced. It is believed to be beneficial to take advantage of advanced commercial CFD codes in safety analysis and design of NPPs. The present work aims to analyze the flow distribution in downcomer and lower plenum of Korean standard nuclear power plants (KSNPs) using STAR-CD. The lower plenum geometry of a PWR is very complicated since there are so many reactor internals, which hinders in CFD analysis for real reactor geometry up to now. The present work takes advantage of 3D CAD model so that real geometry of lower plenum is used. The results give a clear figure about flow fields in the reactor vessel, which is one of major safety concerns. The calculated pressure drop across downcomer and lower plenum appears to be in good agreement with the data in engineering calculation note. A algorithm which can evaluate head loss coefficient which is necessary for thermal-hydraulic system code running was suggested based on this CFD analysis results. (authors)

  13. ASTM standards associated with PWR and BWR power plant licensing, operation and surveillance

    SciTech Connect (OSTI)

    McElroy, W.N. [Consultants and Technology Services, Richland, WA (United States); McElroy, R.J. [AEA Reactor Services, Harwell (United Kingdom); Gold, R. [Metrology Control Corp., Richland, WA (United States); Lippincott, E.P. [Westinghouse Electric Corp., Pittsburgh, PA (United States); Lowe, A.L. Jr. [BW Nuclear Technologies, Lynchburg, VA (United States)

    1994-12-31T23:59:59.000Z

    This paper considers ASTM Standards that are available, under revision, and are being considered in support of Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) Nuclear Power Plant (NPP) licensing, regulation, operation, surveillance and life attainment. The current activities of ASTM Committee E10 and its Subcommittees E10.02 and current activities of ASTM Committee E10 and its Subcommittees E10.02 and E10.05 and their Task Groups (TG) are described. A very important aspect of these efforts is the preparation, revision, and balloting of standards identified in the ASTM E706 Standard on Master Matrix for Light Water Reactor (LWR) Pressure Vessel (PV) Surveillance Standards. The current version (E706-87) of the Master Matrix identifies 21 ASTM LWR physics-dosimetry-metallurgy standards for Reactor Pressure Vessel (RPV) and Support Structure (SS) surveillance programs, whereas, for the next revision 34 standards are identified. The need for national and international coordination of Standards Technology Development, Transfer and Training (STDTT) is considered in this and other Symposium papers that address specific standards related physics-dosimetry-metallurgy issues. 69 refs.

  14. LBB evaluation for a typical Japanese PWR primary loop by using the US NRC approved methods

    SciTech Connect (OSTI)

    Swamy, S.A.; Bhowmick, D.C.; Prager, D.E. [Westinghouse Nuclear Technology Division, Pittsburgh, PA (United States)

    1997-04-01T23:59:59.000Z

    The regulatory requirements for postulated pipe ruptures have changed significantly since the first nuclear plants were designed. The Leak-Before-Break (LBB) methodology is now accepted as a technically justifiable approach for eliminating postulation of double-ended guillotine breaks (DEGB) in high energy piping systems. The previous pipe rupture design requirements for nuclear power plant applications are responsible for all the numerous and massive pipe whip restraints and jet shields installed for each plant. This results in significant plant congestion, increased labor costs and radiation dosage for normal maintenance and inspection. Also the restraints increase the probability of interference between the piping and supporting structures during plant heatup, thereby potentially impacting overall plant reliability. The LBB approach to eliminate postulating ruptures in high energy piping systems is a significant improvement to former regulatory methodologies, and therefore, the LBB approach to design is gaining worldwide acceptance. However, the methods and criteria for LBB evaluation depend upon the policy of individual country and significant effort continues towards accomplishing uniformity on a global basis. In this paper the historical development of the U.S. LBB criteria will be traced and the results of an LBB evaluation for a typical Japanese PWR primary loop applying U.S. NRC approved methods will be presented. In addition, another approach using the Japanese LBB criteria will be shown and compared with the U.S. criteria. The comparison will be highlighted in this paper with detailed discussion.

  15. ELECTRICAL & INFORMATION

    E-Print Network [OSTI]

    Wagner, Stephan

    focuses on. · Smart Grids: Electricity networks are designed to transport energy from where of energy and smarter management of the system. These are called Smart Grids. A number of research projects in medical informatics, smart cities, mining, energy, financial systems, etc. · Bioinformatics

  16. Electrical and Computer Engineering Electrical Engineering

    E-Print Network [OSTI]

    Heller, Barbara

    Electrical and Computer Engineering Electrical Engineering Department Website: www.iit.edu/engineering/ece Electrical engineering is concerned with the generation, transmission, and utilization of electrical energy and with the transmitting and processing of information. Electrical engineers are involved in the analysis, design, and pro

  17. Product recovery of ponderosa pine in Arizona and New Mexico. Forest Service research paper

    SciTech Connect (OSTI)

    Fahey, T.D.; Ayer Sachet, J.K.

    1993-11-01T23:59:59.000Z

    A mill recovery of ponderosa pine in Arizona and New Mexico showed wide variation in quality within the resource. Lumber grade ranged widely by log grade and diameter, with a major difference within grade 5 logs between old growth and young growth. Old growth produced mostly Shop and Selects grades of lumber while young growth produced mostly Dimension grades of lumber; small-diameter young growth developed severe problems of warpage. Log grades separated logs into distinct value classes, and separating young-growth timber (as an additional grade) allowed better segregation of logs by product type and expected value.

  18. Weatherization assistance program. Final monitoring report for Arizona, California, the Navajo Nation, and Nevada

    SciTech Connect (OSTI)

    Not Available

    1986-08-01T23:59:59.000Z

    Stroud, Inc., was awarded a contract by the Department of Energy San Francisco Operations Office (DOE-SAN) to evaluate the weatherization programs for selected grantees and subgrantees in Arizona, California, the Navajo Nation, and Nevada. This final report summarizes both the findings and the recommendations that emerged from the forty (40) visits to grantees and subgrantees. The remarks are not intended to be detailed and exhaustive. Specific problems, achievements, and recommendations are to be found in the narrative reports. But some findings and traits are sufficiently general that they warrant being included in this final report. The recommendations reflect those general characteristics.

  19. PP-107-1 Arizona Public Service Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse(Expired) | Department ofINCREASES |POlicy Flash Arizona-1

  20. Phoenix, Arizona , Summary of Reported Data From July 1, 2010 - September 30, 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1 TermoelectricaPavingPerry LuksinPhoenix, Arizona, Summary o f

  1. Price of Arizona Natural Gas Exports (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYearper Thousandper(Dollars per(DollarsArizona

  2. ,"Arizona Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net Withdrawals (MMcf)"Annual",2013Price

  3. Capacity Markets for Electricity

    E-Print Network [OSTI]

    Creti, Anna; Fabra, Natalia

    2004-01-01T23:59:59.000Z

    Designing Markets for Electricity. Wiley IEEE Press. [25]in the England and Wales Electricity Market”, Power WorkingFelder (1996), “Should Electricity Markets Have a Capacity

  4. Retail Electricity Competition

    E-Print Network [OSTI]

    Joskow, Paul; Tirole, Jean

    2004-01-01T23:59:59.000Z

    Reliability and Competitive Electricity Markets” mimeo, MITCSEM WP 130 Retail Electricity Competition * Paul Joskow andwww.ucei.org Retail Electricity Competition ? Paul Joskow †

  5. Designing Electricity Auctions

    E-Print Network [OSTI]

    Fabra, Natalia; von der Fehr, Nils-Henrik; Harbord, David

    2004-01-01T23:59:59.000Z

    market performance in electricity auctions, it appears thatMcSorely (2001) “Regulating Electricity Markets: Experiencethe United Kingdom,” The Electricity Journal, December, 81-

  6. High Temperatures & Electricity Demand

    E-Print Network [OSTI]

    High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

  7. Final audit report of remedial action construction at the UMTRA Project Mexican Hat, Utah -- Monument Valley, Arizona, sites

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    The final audit report for remedial action at the Mexican Hat, Utah, Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites consists of a summary of the radiological surveillances/audits, quality assurance (QA) in-process surveillances, and QA remedial action close-out inspections performed by the US Department of Energy (DOE) and the Technical Assistance Contractor (TAC); on-site construction reviews (OSCR) performed by the US Nuclear Regulatory Commission (NRC); and a surveillance performed by the Navajo Nation. This report refers to remedial action activities performed at the Mexican Hat, Utah--Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites.

  8. Analysis of a rod withdrawal in a PWR core with the neutronic- thermalhydraulic coupled code RELAP/PARCS and RELAP/VALKIN

    SciTech Connect (OSTI)

    Miro, R.; Maggini, F.; Barrachina, T.; Verdu, G. [Departamento de Ingenieria Quimica y Nuclear, Universidad Politecnica de Valencia, Camino de Vera, 14, 46022, Valencia (Spain); Gomez, A.; Ortego, A. [IBERINCO, Avenida de Burgos, Madrid (Spain); Murillo, J. C. [CNAT, Av. Manoteras, Madrid (Spain)

    2006-07-01T23:59:59.000Z

    The Reactor Ejection Accident (REA) belongs to the Reactor Initiated Accidents (RIA) category of accidents and it is part of the licensing basis accident analyses required for pressure water reactors (PWR). The REA at hot zero power (HZP) is characterized by a single rod ejection from a core position with a very low power level. The evolution consists basically of a continuous reactivity insertion. The main feature limiting the consequences of the accident in a PWR is the Doppler Effect. To check the performance of the coupled code RELAP5/PARCS2.5 and RELAP5/VALKIN a REA in Trillo NPP is simulated. These analyses will allow knowing more accurately the PWR real plant phenomenology in the RIA most limiting conditions. (authors)

  9. Illinois Municipal Electric Agency- Electric Efficiency Program

    Broader source: Energy.gov [DOE]

    The Illinois Municipal Electric Agency (IMEA) offers rebates to member municipal utilities* (those who purchase wholesale electric service from IMEA) and retail customers for energy efficiency...

  10. A safety and regulatory assessment of generic BWR and PWR permanently shutdown nuclear power plants

    SciTech Connect (OSTI)

    Travis, R.J.; Davis, R.E.; Grove, E.J.; Azarm, M.A. [Brookhaven National Lab., Upton, NY (United States)

    1997-08-01T23:59:59.000Z

    The long-term availability of less expensive power and the increasing plant modification and maintenance costs have caused some utilities to re-examine the economics of nuclear power. As a result, several utilities have opted to permanently shutdown their plants. Each licensee of these permanently shutdown (PSD) plants has submitted plant-specific exemption requests for those regulations that they believe are no longer applicable to their facility. This report presents a regulatory assessment for generic BWR and PWR plants that have permanently ceased operation in support of NRC rulemaking activities in this area. After the reactor vessel is defueled, the traditional accident sequences that dominate the operating plant risk are no longer applicable. The remaining source of public risk is associated with the accidents that involve the spent fuel. Previous studies have indicated that complete spent fuel pool drainage is an accident of potential concern. Certain combinations of spent fuel storage configurations and decay times, could cause freshly discharged fuel assemblies to self heat to a temperature where the self sustained oxidation of the zircaloy fuel cladding may cause cladding failure. This study has defined four spent fuel configurations which encompass all of the anticipated spent fuel characteristics and storage modes following permanent shutdown. A representative accident sequence was chosen for each configuration. Consequence analyses were performed using these sequences to estimate onsite and boundary doses, population doses and economic costs. A list of candidate regulations was identified from a screening of 10 CFR Parts 0 to 199. The continued applicability of each regulation was assessed within the context of each spent fuel storage configuration and the results of the consequence analyses.

  11. ELECTRICAL ENGINEERING EECS Department

    E-Print Network [OSTI]

    ELECTRICAL ENGINEERING EECS Department The Electrical Engineering and Computer Science (EECS) Department at WSU offers undergraduate degrees in electrical engineering, computer engineering and computer science. The EECS Department offers master of science degrees in computer science, electrical engineering

  12. Electric car Gasoline car

    E-Print Network [OSTI]

    ENAC/ Electric car (Renault) Gasoline car (competitors) Gasoline car (Renault) Market shares of an electric vehicle? Electric car (Renault) Gasoline car (competitors) Gasoline car (Renault) Market shares preferences. · Identification of population segments with a strong interest for electric cars. · Forecasting

  13. RADIOCARBON, Vol 42, Nr 3, 2000, p 323333 2000 by the Arizona Board of Regents on behalf of the University of Arizona AMS RADIOCARBON MEASUREMENTS FROM THE SWEDISH VARVED CLAYS

    E-Print Network [OSTI]

    Wohlfarth, Barbara

    of the University of Arizona 323 AMS RADIOCARBON MEASUREMENTS FROM THE SWEDISH VARVED CLAYS Barbara Wohlfarth correlation of more than 1000 varve-thickness diagrams. The Late Glacial-Early Holocene varved clays were. Formation of varved clays con- tinued throughout the Holocene and is still going on in the estuary of River

  14. Electrical receptacle

    DOE Patents [OSTI]

    Leong, R.

    1993-06-22T23:59:59.000Z

    The invention is a receptacle for a three prong electrical plug which has either a tubular or U-shaped grounding prong. The inventive receptacle has a grounding prong socket which is sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having two ridges to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket. The two ridges are made to prevent the socket from expanding when either the U-shaped grounding prong or the tubular grounding prong is inserted.

  15. Advanced design concepts for PWR and BWR high-performance annular fuel assemblies

    E-Print Network [OSTI]

    Ellis, Tyler Shawn

    2006-01-01T23:59:59.000Z

    Sobering electricity supply and demand projections, coupled with the current volatility of energy prices, have underscored the seriousness of the challenges which lay ahead for the utility industry. This research addresses ...

  16. LANDFORMS GENERATED BY WIND EROSION OF NAVAJO SANDSTONE OUTCROPS AT THE WAVE (COLORADO PLATEAU, UTAH / ARIZONA BORDER)

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    LANDFORMS GENERATED BY WIND EROSION OF NAVAJO SANDSTONE OUTCROPS AT THE WAVE (COLORADO PLATEAU that are undercut by wind abrasion. In the photos above and to the left, note the microbially darkened rock surface Bedforms: Direct Evidence for Eolian Abrasion Arizona Utah wind wind wind wind wind wind The Wave "The Wave

  17. Biosampling Case Children with Leukemia (Acute Lymphocytic and Myelocytic Leukemia) and a Reference Population in Sierra Vista, Arizona

    E-Print Network [OSTI]

    Biosampling Case Children with Leukemia (Acute Lymphocytic and Myelocytic Leukemia) and a Reference. Statistical methods E. Investigation Protocol, Biosampling of case Children with Leukemia (Acute Lymphocytic and Acute Myelocytic Leukemia) and a Reference Population in Sierra Vista, Arizona 2 #12;Tables 1. Selected

  18. TOPICAL REPORT ON ACTINIDE-ONLY BURNUP CREDIT FOR PWR SPENT NUCLEAR FUEL PACKAGES

    SciTech Connect (OSTI)

    DOE

    1997-04-01T23:59:59.000Z

    A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay. A set of chemical assay benchmarks is presented for this purpose as well as a method for assessing the calculational bias and uncertainty, and conservative correction factors for each isotope. (2) Validate a computer code system to predict the subcritical multiplication factor, k{sub eff}, of a spent nuclear fuel package. Fifty-seven UO{sub 2}, UO{sub 2}/Gd{sub 2}O{sub 3}, and UO{sub 2}/PuO{sub 2} critical experiments have been selected to cover anticipated conditions of SNF. The method uses an upper safety limit on k{sub eff} (which can be a function of the trending parameters) such that the biased k{sub eff}, when increased for the uncertainty is less than 0.95. (3) Establish bounding conditions for the isotopic concentration and criticality calculations. Three bounding axial profiles have been established to assure the ''end effect'' is accounted for conservatively. (4) Use the validated codes and bounding conditions to generate package loading criteria (burnup credit loading curves). Burnup credit loading curves show the minimum burnup required for a given initial enrichment. The utility burnup record is compared to this requirement after the utility accounts for the uncertainty in its record. Separate curves may be generated for each assembly design, various minimum cooling times and burnable absorber histories. (5) Verify that SNF assemblies meet the package loading criteria and confirm proper assembly selection prior to loading. A measurement of the average assembly burnup is required and that measurement must be within 10% of the utility burnup record for the assembly to be accepted. The measurement device must be accurate to within 10%. Each step is described in detail for use with any computer code system and is then demonstrated with the SCALE 4.2 computer code package using 27BURNUPLIB cross sections.

  19. Thomas, J.R. and Clem, A.W, 1991, PWR moderator temperature coefficient via noise analysis: time series methods, Proceedings of SMORNVI, Gatlinburg, 34.01

    E-Print Network [OSTI]

    Pázsit, Imre

    and Testing Symposium, Knoxville, Tennes­ see 52.01 Uhrig, R.E., 1990, Use of artificial intelligence/Computer Interactions: Nuclear and Beyond, Nash­ ville, Tennessee, 210 Uhrig R.E., 1991, Potential application of neural­ 36 ­ Thomas, J.R. and Clem, A.W, 1991, PWR moderator temperature coefficient via noise analysis

  20. Weatherization assistance program: Final monitoring report for Arizona; California; the Navajo Nation; Nevada

    SciTech Connect (OSTI)

    Not Available

    1987-07-01T23:59:59.000Z

    Stroud, Inc., was awarded a contract by the Department of Energy San Francisco Operations Office (DOE-SAN) to evaluate the weatherization program for selected grantees and subgrantees in Arizona, California, the Navajo Nation, and Nevada. The provisions of the contract specified an initial year and renewable optional periods of two (2) additional years. This report covers the monitoring of grantees and subgrantees for the first option year, or what is the second year of the contract. The first two (2) weeks of the second year's activities were devoted to scheduling the agencies to be monitored. The actual field monitoring began on October 14, 1986, and was completed on May 22, 1987. During this seven-month period, thirty-five (35) agencies were visited and evaluated under this contract.

  1. Southeastern Electric- Electric Equipment Loan Program

    Broader source: Energy.gov [DOE]

    Southeastern Electric Cooperative is a member-owned electric cooperative that serves customers in the southeastern part of South Dakota. Southeastern offers a loan program for customers who want...

  2. Electrical/Electronic Engineering

    E-Print Network [OSTI]

    Berdichevsky, Victor

    Electrical/Electronic Engineering Technology The Division of Engineering of Science in Electrical/Electronic Engineering Technology Get ready for a dynamic career in Electrical/Electronic Engineering Technology. Possible applications

  3. EA-1878: U.S. Department of Energy Loan Guarantee to Southwestern Solar Power, LLC for the Southwestern Solar Power Project in Palmdale, California, and near Tucson, Arizona

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to provide a DOE loan guarantee to Solar Power, LLC, for the Southwestern Solar Power Project in Palmdale, California, and near Tucson, Arizona. NOTE: EA has been cancelled.

  4. 2013 Homecoming Parade Staging Instructions This is your official notice of instruction for float staging for the 2013 Arizona State University

    E-Print Network [OSTI]

    Hall, Sharon J.

    :30-5:40 Down Syndrome Network BLAST and BLAST'D Business Community-W.P. Carey and University Housing Pi Beta after themselves. 3. The Arizona State University Student Code of Conduct will be in effect for all

  5. Electricity Restructuring: Deregulation or Reregulation?

    E-Print Network [OSTI]

    Borenstein, Severin; Bushnell, James

    2000-01-01T23:59:59.000Z

    Power in the British Electricity Spot Market. ” American805. Catherine Wolfram. “Electricity Markets: Should thePower in Wholesale Electricity Markets. ” The Electricity

  6. PWR core design, neutronics evaluation and fuel cycle analysis for thorium-uranium breeding recycle

    SciTech Connect (OSTI)

    Bi, G.; Liu, C.; Si, S. [Shanghai Nuclear Engineering Research and Design Inst., No. 29, Hongcao Road, Shanghai, 200233 (China)

    2012-07-01T23:59:59.000Z

    This paper was focused on core design, neutronics evaluation and fuel cycle analysis for Thorium-Uranium Breeding Recycle in current PWRs, without any major change to the fuel lattice and the core internals, but substituting the UOX pellet with Thorium-based pellet. The fuel cycle analysis indicates that Thorium-Uranium Breeding Recycle is technically feasible in current PWRs. A 4-loop, 193-assembly PWR core utilizing 17 x 17 fuel assemblies (FAs) was taken as the model core. Two mixed cores were investigated respectively loaded with mixed reactor grade Plutonium-Thorium (PuThOX) FAs and mixed reactor grade {sup 233}U-Thorium (U{sub 3}ThOX) FAs on the basis of reference full Uranium oxide (UOX) equilibrium-cycle core. The UOX/PuThOX mixed core consists of 121 UOX FAs and 72 PuThOX FAs. The reactor grade {sup 233}U extracted from burnt PuThOX fuel was used to fabrication of U{sub 3}ThOX for starting Thorium-. Uranium breeding recycle. In UOX/U{sub 3}ThOX mixed core, the well designed U{sub 3}ThOX FAs with 1.94 w/o fissile uranium (mainly {sup 233}U) were located on the periphery of core as a blanket region. U{sub 3}ThOX FAs remained in-core for 6 cycles with the discharged burnup achieving 28 GWD/tHM. Compared with initially loading, the fissile material inventory in U{sub 3}ThOX fuel has increased by 7% via 1-year cooling after discharge. 157 UOX fuel assemblies were located in the inner of UOX/U{sub 3}ThOX mixed core refueling with 64 FAs at each cycle. The designed UOX/PuThOX and UOX/U{sub 3}ThOX mixed core satisfied related nuclear design criteria. The full core performance analyses have shown that mixed core with PuThOX loading has similar impacts as MOX on several neutronic characteristic parameters, such as reduced differential boron worth, higher critical boron concentration, more negative moderator temperature coefficient, reduced control rod worth, reduced shutdown margin, etc.; while mixed core with U{sub 3}ThOX loading on the periphery of core has no visible impacts on neutronic characteristics compared with reference full UOX core. The fuel cycle analysis has shown that {sup 233}U mono-recycling with U{sub 3}ThOX fuel could save 13% of natural uranium resource compared with UOX once through fuel cycle, slightly more than that of Plutonium single-recycling with MOX fuel. If {sup 233}U multi-recycling with U{sub 3}ThOX fuel is implemented, more natural uranium resource would be saved. (authors)

  7. ELECTRICAL ENERGY SYSTEMS ELECTRICAL ENERGY SYSTEMS

    E-Print Network [OSTI]

    Strathclyde, University of

    countries to install solar energy technologies into local schools and hospitals. In its Energy PolicyMEng ELECTRICAL ENERGY SYSTEMS #12;MEng ELECTRICAL ENERGY SYSTEMS Electrical energy is vital aspects of modern life. One of the biggest challenges facing society is the need for reliable energy

  8. DOE handbook electrical safety

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    Electrical Safety Handbook presents the Department of Energy (DOE) safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety guidance and information for DOE installations to effect a reduction or elimination of risks associated with the use of electrical energy. The objectives of this handbook are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  9. Electrical safety guidelines

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The Electrical Safety Guidelines prescribes the DOE safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety standards and guidance for DOE installations in order to affect a reduction or elimination of risks associated with the use of electrical energy. The objectives of these guidelines are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  10. Edison Electric Institute Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—discusses the Edison Electric Institute (EEI) and the current electricity landscape.

  11. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    End Use: December 2014 Retail ratesprices and consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are...

  12. California's electricity crisis

    E-Print Network [OSTI]

    Joskow, Paul L.

    2001-01-01T23:59:59.000Z

    The collapse of California's electricity restructuring and competition program has attracted attention around the world. Prices in California's competitive wholesale electricity market increased by 500% between the second ...

  13. Safety and licensing issues that are being addressed by the Power Burst Facility test programs. [PWR; BWR

    SciTech Connect (OSTI)

    McCardell, R.K.; MacDonald, P.E.

    1980-01-01T23:59:59.000Z

    This paper presents an overview of the results of the experimental program being conducted in the Power Burst Facility and the relationship of these results to certain safety and licensing issues. The safety issues that were addressed by the Power-Cooling-Mismatch, Reactivity Initiated Accident, and Loss of Coolant Accident tests, which comprised the original test program in the Power Burst Facility, are discussed. The resolution of these safety issues based on the results of the thirty-six tests performed to date, is presented. The future resolution of safety issues identified in the new Power Burst Facility test program which consists of tests which simulate BWR and PWR operational transients, anticipated transients without scram, and severe fuel damage accidents, is described.

  14. Development code for sensitivity and uncertainty analysis of input on the MCNPX for neutronic calculation in PWR core

    SciTech Connect (OSTI)

    Hartini, Entin, E-mail: entin@batan.go.id; Andiwijayakusuma, Dinan, E-mail: entin@batan.go.id [Center for Development of Nuclear Informatics - National Nuclear Energy Agency, PUSPIPTEK, Serpong, Tangerang, Banten (Indonesia)

    2014-09-30T23:59:59.000Z

    This research was carried out on the development of code for uncertainty analysis is based on a statistical approach for assessing the uncertainty input parameters. In the butn-up calculation of fuel, uncertainty analysis performed for input parameters fuel density, coolant density and fuel temperature. This calculation is performed during irradiation using Monte Carlo N-Particle Transport. The Uncertainty method based on the probabilities density function. Development code is made in python script to do coupling with MCNPX for criticality and burn-up calculations. Simulation is done by modeling the geometry of PWR terrace, with MCNPX on the power 54 MW with fuel type UO2 pellets. The calculation is done by using the data library continuous energy cross-sections ENDF / B-VI. MCNPX requires nuclear data in ACE format. Development of interfaces for obtaining nuclear data in the form of ACE format of ENDF through special process NJOY calculation to temperature changes in a certain range.

  15. The toughness of irradiated pressure water reactor (PWR) vessel shell rings and the effect of segregation zones

    SciTech Connect (OSTI)

    Bethmont, M.; Frund, J.M. [Electricite de France, Moret-sur-Loing (France); Housin, B. [Framatome, Paris La Defense (France). Materials and Technology Dept.; Soulat, P. [Commissariat a l`Energie Atomique, Gif-sur-Yvette (France)

    1996-12-31T23:59:59.000Z

    To establish the integrity of pressure water reactor (PWR) vessels it is necessary to determine the toughness of A508Cl.3 steel at the end of its life, that is after thermal aging and irradiation embrittlement. In safety analyses the toughness can be deduced from a reference curve set forth in the code (ASME or RCC-M). The validity of the reference curve has been verified for several years for unirradiated French reactor vessels. Tests were performed on specimens taken from materials having heterogeneities in chemical composition. For most of the test results the reference curve is a lower bound. To solve te problem of determining the toughness of SA 508 Cl.3 steel after irradiation and in the presence of possible heterogeneities, the toughness results were gathered. The synthesis shows that the RCC-M code curve is conservative.

  16. Ten year RPV inspections experiences in a PWR in Spain: Improvements in the inner-radius inspection techniques

    SciTech Connect (OSTI)

    Gonzalez, E.; Willke, A. [Tecnatom, S.A., Madrid (Spain)

    1994-12-31T23:59:59.000Z

    The in-service inspection of an RPV, performed in accordance with the scope and requirements of Section 11 of the ASME Code at the end of the ten year interval, is one of the most complicated ISI activities carried out. Special resources and tools are required for successful performance of this type of inspection: (1) preparation and planning; (2) mechanical scanner; (3) data acquisition and analysis system; and (4) ultrasonic techniques. This paper describes the most relevant issues relating to RPV inspection, along with the experience obtained during the inspection of the RPV of a 930 MW Spanish PWR plant in 1992. Special attention is paid to the improvements achieved with respect to inspection of the inner-radius areas of the primary nozzles.

  17. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06)PipelineWednesday, AugustArizona

  18. Introduction Computational Efficiency Electricity Portfolio Planning Electricity Portfolios

    E-Print Network [OSTI]

    Introduction Computational Efficiency Electricity Portfolio Planning Electricity Portfolios 2009/11/30­12/01 István Maros Electricity Portfolio #12;Introduction Computational Efficiency Electricity Portfolio Outline 1 Introduction 2 Computational Efficiency 3 Electricity Portfolio Approximate

  19. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study End-use Electricity Demand Volume 3 of 4 Volume 2 PDF Volume 3;Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U Sandor, D. National Renewable Energy Laboratory Suggested Citations Renewable Electricity Futures Study

  20. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study Bulk Electric Power Systems: Operations and Transmission by the Alliance for Sustainable Energy, LLC. #12;Renewable Electricity Futures Study Edited By Hand, M.M. National Suggested Citations Renewable Electricity Futures Study (Entire Report) National Renewable Energy Laboratory

  1. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study Exploration of High-Penetration Renewable Electricity Futures PDF Volume 4 PDF #12;Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Citations Renewable Electricity Futures Study (Entire Report) National Renewable Energy Laboratory. (2012

  2. Massachusetts Electric Vehicle Efforts

    E-Print Network [OSTI]

    California at Davis, University of

    Massachusetts Electric Vehicle Efforts Christine Kirby, MassDEP ZE-MAP Meeting October 24, 2014 #12 · Provide Clean Air · Grow the Clean Energy Economy · Electric vehicles are a key part of the solution #12 is promoting EVs 4 #12;TCI and Electric Vehicles · Established the Northeast Electric Vehicle Network through

  3. ELECTRICAL & COMPUTER ENGINEERING

    E-Print Network [OSTI]

    ELECTRICAL & COMPUTER ENGINEERING SEMINAR "Agile Sensing Systems: Analysis, Design and Implementation" by Prof. Jun (Jason) Zhang Electrical and Computer Engineering University of Denver Tuesday of Electrical and Computer Engineering at the University of Denver. He was with the School of Electrical

  4. ELECTRICAL ENGINEERING Curriculum Notes

    E-Print Network [OSTI]

    Mather, Patrick T.

    ELECTRICAL ENGINEERING Curriculum Notes 2013-2014 1. Electrical Engineering (EE) students must/programs/electrical_engineering) and minors are used to regulate technical electives. A student must complete four technical elective courses in Electrical Engineering or Computer Engineering. At a minimum

  5. Electronics, Electrical Engineering

    E-Print Network [OSTI]

    SCHOOL OF Electronics, Electrical Engineering and Computer Science IS IN YOUR HANDS THE FUTURE #12;SCHOOL OF Electronics, Electrical Engineering and Computer Science2 CAREERS IN ELECTRONICS, ELECTRICAL Belfast. Ranked among the top 100 in the world for Electrical and Electronic Engineering (QS World

  6. Syracuse University Electrical Engineering

    E-Print Network [OSTI]

    Mather, Patrick T.

    Syracuse University Electrical Engineering and Computer Science Tenure Track Faculty Position in Electrical Engineering The Department of Electrical Engineering and Computer Science is seeking applicants for a tenure track position in Electrical Engineering starting in August 2014 or January 2015. The department

  7. Electrical Engineering UNDERGRADUATE

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    447 Electrical Engineering UNDERGRADUATE PROGRAMS The bachelor of science program in electrical advising office. Requirements for BS Degree in Electrical Engineering To receive the BS degree in electrical engineer- ing, students must complete a minimum of 65 credit hours in the upper-division program

  8. ELECTRICAL AND COMPUTER ENGINEERING

    E-Print Network [OSTI]

    Haykin, Simon

    Edison (prolific inventor), Nikola Tesla (inventor of the electric motor, transformer), Dilbert (comic

  9. TEP Power Partners Project [Tucson Electric Power

    SciTech Connect (OSTI)

    None

    2013-11-19T23:59:59.000Z

    The Arizona Governor’s Office of Energy Policy, in partnership with Tucson Electric Power (TEP), Tendril, and Next Phase Energy (NPE), formed the TEP Power Partners pilot project to demonstrate how residential customers could access their energy usage data and third party applications using data obtained from an Automatic Meter Reading (AMR) network. The project applied for and was awarded a Smart Grid Data Access grant through the U.S. Department of Energy. The project participants’ goal for Phase I is to actively engage 1,700 residential customers to demonstrate sustained participation, reduction in energy usage (kWh) and cost ($), and measure related aspects of customer satisfaction. This Demonstration report presents a summary of the findings, effectiveness, and customer satisfaction with the 15-month TEP Power Partners pilot project. The objective of the program is to provide residential customers with energy consumption data from AMR metering and empower these participants to better manage their electricity use. The pilot recruitment goals included migrating 700 existing customers from the completed Power Partners Demand Response Load Control Project (DRLC), and enrolling 1,000 new participants. Upon conclusion of the project on November 19, 2013: ? 1,390 Home Area Networks (HANs) were registered. ? 797 new participants installed a HAN. ? Survey respondents’ are satisfied with the program and found value with a variety of specific program components. ? Survey respondents report feeling greater control over their energy usage and report taking energy savings actions in their homes after participating in the program. ? On average, 43 % of the participants returned to the web portal monthly and 15% returned weekly. ? An impact evaluation was completed by Opinion Dynamics and found average participant savings for the treatment period1 to be 2.3% of their household use during this period.2 In total, the program saved 163 MWh in the treatment period of 2013.

  10. ECE 438 Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric

    E-Print Network [OSTI]

    ECE 438 ­ Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric vehicle configurations. Vehicle mechanics. Energy sources and storage. Range prediction. Motor for HEVs. Electric drive components. Vehicle transmission system. Credits

  11. Engineering assessment of inactive uranium mill tailings: Monument Valley Site, Monument Valley, Arizona

    SciTech Connect (OSTI)

    Not Available

    1981-10-01T23:59:59.000Z

    Ford, Bacon and Davis Utah Inc. has reevalated the Monument Valley site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Monument Valley, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposure of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.1 million tons of tailings at the Monument Valley site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through IV). Cost estimates for the four options range from about $6,600,000 for stabilization in-place, to about $15,900,000 for disposal at a distance of about 15 mi. Three principal alternatives for reprocessing the Monument Valley tailings were examined: heap leaching; Treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovery is economically unattractive.

  12. Community Energy Systems and the Law of Public Utilities. Volume Five. Arizona

    SciTech Connect (OSTI)

    Feurer, D A; Weaver, C L

    1981-01-01T23:59:59.000Z

    A detailed description is given of the laws and programs of the State of Arizona governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  13. Site observational work plan for the UMTRA Project site at Monument Valley, Arizona

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    The site observational work plan (SOWP) for the Monument Valley, Arizona, US Department of Energy (DOE) Uranium Mill Tailings Remedial Action(UMTRA) Project site is one of the first site-specific documents developed to achieve ground water compliance at the site. This SOWP applies information about the Monument Valley site to a regulatory compliance framework that identifies strategies that could be used to meet ground water compliance. The compliance framework was developed in the UMTRA Ground Water programmatic environmental impact statement (DOE, 1996). The DOE`s goal is to implement a cost-effective site strategy that complies with the US Environmental Protection Agency (EPA) ground water standards and protects human health and the environment. The compliance strategy that emerges in the final version of the SOWP will be evaluated in the site-specific environmental assessment to determine potential environmental impacts and provide stakeholders a forum for review and comment. When the compliance strategy is acceptable, it will be detailed in a remedial action plan that will be subject to review by the state and/or tribe and concurrence by the US Nuclear Regulatory Commission (NRC). Information for the preparation of this SOWP indicates active remediation is the most likely compliance strategy for the Monument Valley site. Additional data are needed to determine the most effective remediation technology.

  14. Site observational work plan for the UMTRA Project site at Monument Valley, Arizona

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The site observational work plan (SOWP) for the Monument Valley, Arizona, US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site is one of the first site-specific documents developed to achieve ground water compliance at the site. This SOWP applies information about the Monument Valley site to a regulatory compliance framework that identifies strategies that could be used to meet ground water compliance. The compliance framework was developed in the UMTRA Ground Water programmatic environmental impact statement (DOE, 1995). The DOE`s goal is to implement a cost-effective site strategy that complies with the US Environmental Protection Agency (EPA) ground water standards and protects human health and the environment. The compliance strategy that emerges in the final version of the SOWP will assess potential environmental impacts and provide stakeholder a forum for review and comment. When the compliance strategy is acceptable, it will be detailed in a remedial action plan that will be subject to review by the state and/or tribe and concurrence by the US Nuclear Regulatory Commission (NRC). Information available for the preparation of this SOWP indicates active remediation is the most likely compliance strategy for the Monument Valley site. Additional data are needed to determine the most effective remediation technology.

  15. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Tuba City, Arizona: Phase 2, Construction, Subcontract documents: Appendix E, final report. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1989-08-01T23:59:59.000Z

    This appendix discusses Phase II construction and subcontract documents uranium mill site near Tuba City, Arizona. It contains the bid schedule, special conditions, specifications, and subcontract drawings.

  16. Richmond Electric Vehicle Initiative Electric Vehicle Readiness...

    Broader source: Energy.gov (indexed) [DOE]

    The REVi plan addresses the electric vehicle market in Richmond and then addresses a regional plan, policies, and analysis of the the communities readiness. richmondevinitiative....

  17. Richmond Electric Vehicle Initiative Electric Vehicle Readiness...

    Broader source: Energy.gov (indexed) [DOE]

    reflect those of the United States Government or any agency thereof. Richmond Electric Vehicle Initiative Readiness Plan | 1 Table of Contents Executive Summary...

  18. Chemical System Decontamination at PWR Power Stations Biblis A and B by Advanced System Decontamination by Oxidizing Chemistry (ASDOC-D) Process Technology - 13081

    SciTech Connect (OSTI)

    Loeb, Andreas; Runge, Hartmut; Stanke, Dieter [NIS Ingenieurgesellschaft mbH, Industriestrasse 13, 63755 Alzenau (Germany)] [NIS Ingenieurgesellschaft mbH, Industriestrasse 13, 63755 Alzenau (Germany); Bertholdt, Horst-Otto [NCT Consulting, Leonhardstrasse 16-18, 90443 Nuernberg (Germany)] [NCT Consulting, Leonhardstrasse 16-18, 90443 Nuernberg (Germany); Adams, Andreas; Impertro, Michael; Roesch, Josef [RWE Power, 68643 Biblis (Germany)] [RWE Power, 68643 Biblis (Germany)

    2013-07-01T23:59:59.000Z

    For chemical decontamination of PWR primary systems the so called ASDOC-D process has been developed and qualified at the German PWR power station Biblis. In comparison to other chemical decontamination processes ASDOC-D offers a number of advantages: - ASDOC-D does not require separate process equipment but is completely operated and controlled by the nuclear site installations. Feeding of chemical concentrates into the primary system is done by means of the site's dosing systems. Process control is performed by standard site instrumentation and analytics. - ASDOC-D safely prevents any formation and precipitation of insoluble constituents - Since ASDOC-D is operated without external equipment there is no need for installation of such equipment in high radioactive radiation surrounding. The radioactive exposure rate during process implementation and process performance may therefore be neglected in comparison to other chemical decontamination processes. - ASDOC-D does not require auxiliary hose connections which usually bear high leakage risk. The above mentioned technical advantages of ASDOC-D together with its cost-effectiveness gave rise to Biblis Power station to agree on testing ASDOC-D at the volume control system of PWR Biblis unit A. By involving the licensing authorities as well as expert examiners into this test ASDOC-D received the official qualification for primary system decontamination in German PWR. As a main outcome of the achieved results NIS received contracts for full primary system decontamination of both units Biblis A and B (each 1.200 MW) by end of 2012. (authors)

  19. Scoping design analyses for optimized shipping casks containing 1-, 2-, 3-, 5-, 7-, or 10-year-old PWR spent fuel

    SciTech Connect (OSTI)

    Bucholz, J.A.

    1983-01-01T23:59:59.000Z

    This report details many of the interrelated considerations involved in optimizing large Pb, Fe, or U-metal spent fuel shipping casks containing 1, 2, 3, 5, 7, or 10-year-old PWR fuel assemblies. Scoping analyses based on criticality, shielding, and heat transfer considerations indicate that some casks may be able to hold as many as 18 to 21 ten-year-old PWR fuel assemblies. In the criticality section, a new type of inherently subcritical fuel assembly separator is described which uses hollow, borated stainless-steel tubes in the wall-forming structure between the assemblies. In another section, details of many n/..gamma.. shielding optimization studies are presented, including the optimal n/..gamma.. design points and the actual shielding requirements for each type of cask as a function of the age of the spent fuel and the number of assemblies in the cask. Multigroup source terms based on ORIGEN2 calculations at these and other decay times are also included. Lastly, the numerical methods and experimental correlations used in the steady-state and transient heat transfer analyses are fully documented, as are pertinent aspects of the SCOPE code for Shipping Cask Optimization and Parametric Evaluation. (While only casks for square, intact PWR fuel assemblies were considered in this study, the SCOPE code may also be used to design and analyze casks containing canistered spent fuel or other waste material. An abbreviated input data guide is included as an appendix).

  20. Electricity Today30 American Electric Power, working

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Electricity Today30 American Electric Power, working at the request of, and in partnership with by building transmis- sion infrastructure that will enable wind power to become a larger part of the nation that could provide a basis for discussion to expand industry infrastructure needs in the future. AEP believes

  1. Estimating the Value of Electricity Storage Resources in Electricity...

    Broader source: Energy.gov (indexed) [DOE]

    for understanding the role electricity storage resources (storage) can play in wholesale and retail electricity markets, 2) assessing the value of electricity storage in a...

  2. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    management in the US electricity sector, Energy Policy, 23(deep reductions in electricity sector GHG emissions requireson the electricity sector. 19 Table 3.

  3. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    in Figure 63. Average electricity costs are noticeably lowerprofile has lower average electricity costs, because fossiland generation, average electricity costs, and GHG emissions

  4. Aging considerations for PWR (pressurized water reactor) control rod drive mechanisms and reactor internals

    SciTech Connect (OSTI)

    Ware, A.G.

    1988-01-01T23:59:59.000Z

    This paper describes age-related degradation mechanisms affecting life extension of pressurized water reactor control rod drive mechanisms and reactor internals. The major sources of age-related degradation for control rod drive mechanisms are thermal transients such as plant heatups and cooldowns, latchings and unlatchings, long-term aging effects on electrical insulation, and the high temperature corrosive environment. Flow induced loads, the high-temperature corrosive environment, radiation exposure, and high tensile stresses in bolts all contribute to aging related degradation of reactor internals. Another problem has been wear and fretting of instrument guide tubes. The paper also discusses age-related failures that have occurred to date in pressurized water reactors.

  5. Designing electricity transmission auctions

    E-Print Network [OSTI]

    Greve, Thomas; Pollitt, Michael G.

    2012-10-26T23:59:59.000Z

    The UK has ambitious plans for exploiting offshore wind for electricity production in order to meet its challenging target under the EU Renewable Energy Directive. This could involve investing up to 20bn in transmission assets to bring electricity...

  6. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M. M.

    2012-09-01T23:59:59.000Z

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  7. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-10-01T23:59:59.000Z

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  8. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-11-01T23:59:59.000Z

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  9. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2013-04-01T23:59:59.000Z

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  10. Electric Efficiency Standard

    Broader source: Energy.gov [DOE]

    In December 2009, the Indiana Utility Regulatory Commission's (IURC) ordered utilities to establish demand-side management (DSM) electric savings goals leading to 2.0% reduction of electricity...

  11. VEGETATION COVER ANALYSIS OF HAZARDOUS WASTE SITES IN UTAH AND ARIZONA USING HYPERSPECTRAL REMOTE SENSING

    SciTech Connect (OSTI)

    Serrato, M.; Jungho, I.; Jensen, J.; Jensen, R.; Gladden, J.; Waugh, J.

    2012-01-17T23:59:59.000Z

    Remote sensing technology can provide a cost-effective tool for monitoring hazardous waste sites. This study investigated the usability of HyMap airborne hyperspectral remote sensing data (126 bands at 2.3 x 2.3 m spatial resolution) to characterize the vegetation at U.S. Department of Energy uranium processing sites near Monticello, Utah and Monument Valley, Arizona. Grass and shrub species were mixed on an engineered disposal cell cover at the Monticello site while shrub species were dominant in the phytoremediation plantings at the Monument Valley site. The specific objectives of this study were to: (1) estimate leaf-area-index (LAI) of the vegetation using three different methods (i.e., vegetation indices, red-edge positioning (REP), and machine learning regression trees), and (2) map the vegetation cover using machine learning decision trees based on either the scaled reflectance data or mixture tuned matched filtering (MTMF)-derived metrics and vegetation indices. Regression trees resulted in the best calibration performance of LAI estimation (R{sup 2} > 0.80). The use of REPs failed to accurately predict LAI (R{sup 2} < 0.2). The use of the MTMF-derived metrics (matched filter scores and infeasibility) and a range of vegetation indices in decision trees improved the vegetation mapping when compared to the decision tree classification using just the scaled reflectance. Results suggest that hyperspectral imagery are useful for characterizing biophysical characteristics (LAI) and vegetation cover on capped hazardous waste sites. However, it is believed that the vegetation mapping would benefit from the use of 1 higher spatial resolution hyperspectral data due to the small size of many of the vegetation patches (< 1m) found on the sites.

  12. Generator, mechanical, smoke: For dual-purpose unit, XM56, Yuma Proving Ground, Yuma, Arizona

    SciTech Connect (OSTI)

    Driver, C.J.; Ligotke, M.W.; Moore, E.B. Jr. (Pacific Northwest Lab., Richland, WA (United States)); Bowers, J.F. (Dugway Proving Ground, UT (United States))

    1991-10-01T23:59:59.000Z

    The US Army Chemical Research, Development and Engineering Center (CRDEC) is planning to perform a field test of the XM56 smoke generator at the US Army Yuma Proving Ground (YPG), Arizona. The XM56, enabling the use of fog oil in combination with other materials, such as graphite flakes, is part of an effort to improve the efficiency of smoke generation and to extend the effectiveness of the resulting obscurant cloud to include the infrared spectrum. The plan field operation includes a road test and concurrent smoke- generation trials. Three M1037 vehicles with operation XM56 generators will be road-tested for 100 h. Smoke will be generated for 30 min from a single stationary XM56 four times during the road test, resulting in a total of 120 min of smoke generation. The total aerial release of obscurant materials during this test is expected to be 556 kg (1,220 lb) of fog oil and 547 kg (1,200 lb) of graphite flakes. This environmental assessment has evaluated the consequences of the proposed action. Air concentrations and surface deposition levels were estimated using an atmospheric dispersion model. Degradation of fog oil and incorporation of graphite in the soil column will limit the residual impacts of the planned action. No significant impacts to air, water, and soil quality are anticipated. risks to the environment posed by the proposed action were determined to be minimal or below levels previously found to pose measurable impacts. Cultural resources are present on YPG and have been identified in adjacent areas; therefore, off-road activities should be preceded by a cultural resource survey. A Finding of No Significant Impact is recommended. 61 refs., 1 fig.

  13. Site observational work plan for the UMTRA Project site at Tuba City, Arizona

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The requirements for ground water compliance for Uranium Mill Tailings Remedial Action (UMTRA) Project sites, including the Tuba City, Arizona, site, are found in the Uranium Mill Tailings Radiation Control Act; Subparts B and C of the U.S. Environmental Protection Agency`s Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings (40 CFR 192 (1994)), and the associated proposed 1987 standards (52 FR 36000). During the surface remedial action, an estimated 1,400,000 cubic yards (yd{sup 3}) (1,100,000 cubic meters [m{sup 3}]) of uranium mill tailings and other contaminated materials were consolidated and stabilized in place in an unlined disposal cell covering 50 acres (20 hectares). The surface remedial action was completed in April 1990. Ground water beneath the Tuba City site was contaminated by subsurface migration of water from uranium ore processing activities. The main source of contaminants was water from the tailings piles that began in 1956 when the mill opened and ended in 1966 when the mill closed. 800,000 tons (725,000 tonnes) of uranium ore were processed onsite over a 10-year period. The wet tailings remaining after processing were placed as a slurry in three piles at the site. Water from these tailings then seeped into the ground and migrated downward to the ground water. The Tuba City site is currently in a post-stabilization, prelicensing status. The site is expected to remain in this status until licensed by the U.S. Nuclear Regulatory Commission (NRC) for long-term surveillance and maintenance. The preliminary ground water compliance strategy at the Tuba City site is active remediation-specific technology to be evaluated is in situ bioremediation. This selection was made because of the potential ability of bioremediation to reduce concentrations to lower levels than a conventional extraction system and to minimize disturbance of the water resource.

  14. Site observational work plan for the UMTRA Project Site at Tuba City, Arizona

    SciTech Connect (OSTI)

    None

    1994-09-01T23:59:59.000Z

    The requirements for ground water compliance for Uranium Mill Tailings Remedial Action (UMTRA) Project sites, including the Tuba City, Arizona, site, are found in the Uranium Mill Tailings Radiation Control Act; Subparts B and C of the U.S. Environmental Protection Agency`s Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings (40 CFR 192 (1994)), and the associated proposed 1987 standards (52 FR 36000). During the surface remedial action, an estimated 1,400,000 cubic yards (yd{sup 3}) (1,100,000 cubic meters [m{sup 3}]) of uranium mill tailings and other contaminated materials were consolidated and stabilized in place in an unlined disposal cell covering 50 acres (20 hectares). The surface remedial action was completed in April 1990. Ground water beneath the Tuba City site was contaminated by subsurface migration of water from uranium ore processing activities. The main source of contaminants was water from the tailings piles that began in 1956 when the mill opened and ended in 1966 when the mill closed. A total of 800,000 tons (725,000 tonnes) of uranium ore were processed onsite over a 10-year period. Two processes were used to refine the ore: an acid leach process and a sodium carbonate alkaline process. Water from these tailings then seeped into the ground and migrated downward to the ground water. The Tuba City site is currently in a post-stabilization, prelicensing status. The preliminary ground water compliance strategy at the Tuba City site is active remediation. The specific technology to be evaluated is in situ bioremediation. This selection was made because of the potential ability of bioremediation to reduce concentrations to lower levels than a conventional extraction system and to minimize disturbance of the water resource.

  15. Electrical utilities relay settings

    SciTech Connect (OSTI)

    HACHE, J.M.

    1999-02-24T23:59:59.000Z

    This document contains the Hanford transmission and distribution system relay settings that are under the control of Electrical Utilities.

  16. The Case for Electric Vehicles

    E-Print Network [OSTI]

    Sperling, Daniel

    2001-01-01T23:59:59.000Z

    land Press, 1995 TESTING ELECTRIC VEHICLE DEMAND IN " HYBRIDThe Case for Electric Vehicles DanieI Sperlmg Reprint UCTCor The Case for Electric Vehicles Darnel Sperling Institute

  17. Electric Vehicle Smart Charging Infrastructure

    E-Print Network [OSTI]

    Chung, Ching-Yen

    2014-01-01T23:59:59.000Z

    for Multiplexed Electric Vehicle Charging”, US20130154561A1,Chynoweth, ”Intelligent Electric Vehicle Charging System”,of RFID Mesh Network for Electric Vehicle Smart Charging

  18. Sandia Energy - Resilient Electric Infrastructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resilient Electric Infrastructures Home Stationary Power Grid Modernization Resilient Electric Infrastructures Resilient Electric Infrastructuresashoter2015-04-29T22:16:42+00:00...

  19. Electric Turbo Compounding Technology Update

    Broader source: Energy.gov (indexed) [DOE]

    Turbo Compounding Technology Update Electric Turbo Compounding Technology Update 15 August, 2007 Carl Vuk 15 August, 2007 Carl Vuk Electric Turbo Compounding Highlights Electric...

  20. Electrically charged pulsars

    E-Print Network [OSTI]

    M. D. Alloy; D. P. Menezes

    2007-04-24T23:59:59.000Z

    n the present work we investigate one possible variation on the usual electrically neutral pulsars: the inclusion of electric charge. We study the effect of electric charge in pulsars assuming that the charge distribution is proportional to the energy density. All calculations were performed for zero temperature and fixed entropy equations of state.

  1. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study Executive Summary NREL is a national laboratory of the U for Sustainable Energy, LLC. Volume 2 PDF Volume 3 PDF Volume 1 PDF Volume 4 PDF #12;Renewable Electricity Futures. National Renewable Energy Laboratory Suggested Citations Renewable Electricity Futures Study (Entire Report

  2. Washington State Electric Vehicle

    E-Print Network [OSTI]

    California at Davis, University of

    Washington State Electric Vehicle Implementation Bryan Bazard Maintenance and Alternate Fuel Technology Manager #12;Executive Order 14-04 Requires the procurement of electric vehicles where and equipment with electricity or biofuel to the "extent practicable" by June 2015 1. The vehicle is due

  3. UNDERGRADUATE DEPARTMENT OF ELECTRICAL

    E-Print Network [OSTI]

    Tam, Vincent W. L.

    UNDERGRADUATE HANDBOOK 2008-2009 DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING #12;Undergraduate Handbook 2008-2009 DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING THE UNIVERSITY OF HONG KONG © Department of Electrical & Electronic Engineering, The University of Hong Kong #12;Head of Department Prof. Y

  4. ELECTRICAL & COMPUTER ENGINEERING

    E-Print Network [OSTI]

    ELECTRICAL & COMPUTER ENGINEERING SEMINAR "Restoration of Soft X-Ray Laser Images of Nanostructures of Electronic Systems and Information Processing, University of Zagreb, Faculty of Electrical Engineering and Computing. In 1999, he received his Ph.D. in Electrical Engineering from the University of Zagreb. His

  5. ELECTRICAL & COMPUTER ENGINEERING

    E-Print Network [OSTI]

    ELECTRICAL & COMPUTER ENGINEERING SEMINAR "A Random Walk on Image Patches" by Prof. Francois Meyer Electrical, Computer, and Energy Engineering University of Colorado--Boulder Monday, April 2, 2012, 11:00 a a Ph.D. degree in electrical engineering from INRIA, France, in 1993. Meyer worked on the thermonuclear

  6. ELECTRICAL & COMPUTER ENGINEERING

    E-Print Network [OSTI]

    ELECTRICAL & COMPUTER ENGINEERING SEMINAR "Geometry as a Prior in Signal Processing" by Yuejie Chi Electrical Engineering Princeton University Monday, March 19, 2012, 11:00 a.m. Location LSC 210 Abstract processing. Biography: Yuejie Chi is a Ph.D. candidate in Electrical Engineering at Princeton University

  7. Electrical and computer engineering

    E-Print Network [OSTI]

    Berdichevsky, Victor

    Electrical and computer engineering COLLEGE of ENGINEERING DepartmentofElectricalandComputerEngineering engineers for 80 years t Home to nation's first electric-drive vehicle engineering program and alternative-credit EDGE Engineering Entrepreneur Certificate Program is a great addition to an electrical

  8. SEATTLE UNIVERSITY ELECTRICAL ENGINEERING

    E-Print Network [OSTI]

    Carter, John

    SEATTLE UNIVERSITY ELECTRICAL ENGINEERING STUDENT HANDBOOK Eighteenth Edition July 2011 Department of Electrical and Computer Engineering Seattle University 901 12th Avenue P.O. Box 222000 Seattle, WA 98122.seattleu.edu The electrical engineering program is accredited by the Engineering Accreditation Commission of ABET, http

  9. Reduces electric energy consumption

    E-Print Network [OSTI]

    BENEFITS · Reduces electric energy consumption · Reduces peak electric demand · Reduces natural gas consumption · Reduces nonhazardous solid waste and wastewater generation · Potential annual savings products for the automotive industry, electrical equipment, and miscellaneous other uses nationwide. ALCOA

  10. Undergraduate Electrical and

    E-Print Network [OSTI]

    Bristol, University of

    an excellent place to study electrical and electronic engineering. Renewable energies and smart grids are twoUndergraduate Electrical and Electronic Engineering Faculty of Engineering #12;bristol already understood the impact electrical and electronic engineering has on our lives. In fields as diverse

  11. Improvement of the thermal margins in the Swedish Ringhals-3 PWR by introducing new fuel assemblies with thorium

    SciTech Connect (OSTI)

    Lau, C. W.; Demaziere, C. [Dept. of Applied Physics, Div. of Nuclear Engineering, Chalmers Univ. of Technology, 412 96 Gothenburg (Sweden); Nylen, H.; Sandberg, U. [Ringhals AB, 432 85 Vaeroebacka (Sweden)

    2012-07-01T23:59:59.000Z

    Thorium is a fertile material and most of the past research has focused on breeding thorium to fissile material. In this paper, the focus is on using thorium to improve the thermal margins by homogeneously distributing thorium in the fuel pellets. A proposed uranium-thorium-based fuel assembly is simulated for the Swedish Ringhals-3 PWR core in a realistic demonstration. All the key safety parameters, such as isothermal temperature coefficient of reactivity, Doppler temperature of reactivity, boron worth, shutdown margins and fraction of delayed neutrons are studied in this paper, and are within safety limits for the new core design using the uranium-thorium-based fuel assemblies. The calculations were performed by the two-dimensional transport code CASMO-4E and the two group steady-state three dimensional nodal code SIMULATE-3 from Studsvik Scandpower. The results showed that the uranium-thorium-based fuel assembly improves the thermal margins, both in the pin peak power and the local power (Fq). The improved thermal margins would allow more flexible core designs with less neutron leakage or could be used in power uprates to offer efficient safety margins. (authors)

  12. Preliminary results of the PWR low power and shutdown accident frequencies program: Coarse screening analysis for Surry

    SciTech Connect (OSTI)

    Chu, T.L.; Musicki, Z.; Luckas, W.; Wong, S.M.; Neymotin, L.; Diamond, D.J.; Hsu, C.J.; Bozoki, G.; Kohut, P.; Fitzpatrick, R. [Brookhaven National Lab., Upton, NY (United States); Siu, N. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

    1991-12-31T23:59:59.000Z

    This document presents the preliminary internal events Level 1 results (including fire and flood) obtained as a result of a coarse screening analysis on the low power and shutdown accident frequencies of the Surry Nuclear Power Plant. The work was performed by Brookhaven National Laboratory (BNL) for the Nuclear Regulatory Commission Office of Nuclear Regulatory Research (RES). This coarse screening analysis was performed in support of the NRC staff`s follow-up actions subsequent to the March 20, 1990 Vogtle incident with the objective of providing high-level qualitative insights within a relatively short time frame. It is the first phase of a major study that will ultimately produce estimates on the core damage frequency of a pressurized water reactor (PWR) during low power and shutdown conditions. Phase 2 of the study will be guided by the Phase 1 results in order to concentrate the effort on the various plant operational states, the dominant accident sequences, and pertinent data items according to their importance to core damage frequency and risk.

  13. Preliminary results of the PWR low power and shutdown accident frequencies program: Coarse screening analysis for Surry

    SciTech Connect (OSTI)

    Chu, T.L.; Musicki, Z.; Luckas, W.; Wong, S.M.; Neymotin, L.; Diamond, D.J.; Hsu, C.J.; Bozoki, G.; Kohut, P.; Fitzpatrick, R. (Brookhaven National Lab., Upton, NY (United States)); Siu, N. (Massachusetts Inst. of Tech., Cambridge, MA (United States))

    1991-01-01T23:59:59.000Z

    This document presents the preliminary internal events Level 1 results (including fire and flood) obtained as a result of a coarse screening analysis on the low power and shutdown accident frequencies of the Surry Nuclear Power Plant. The work was performed by Brookhaven National Laboratory (BNL) for the Nuclear Regulatory Commission Office of Nuclear Regulatory Research (RES). This coarse screening analysis was performed in support of the NRC staff's follow-up actions subsequent to the March 20, 1990 Vogtle incident with the objective of providing high-level qualitative insights within a relatively short time frame. It is the first phase of a major study that will ultimately produce estimates on the core damage frequency of a pressurized water reactor (PWR) during low power and shutdown conditions. Phase 2 of the study will be guided by the Phase 1 results in order to concentrate the effort on the various plant operational states, the dominant accident sequences, and pertinent data items according to their importance to core damage frequency and risk.

  14. Level 1 probabilistic risk assessment of low power and shutdown operations at a PWR: Phase 2 results

    SciTech Connect (OSTI)

    Chu, T.L.; Bozoki, G.; Kohut, P.; Musicki, Z.; Wong, S.M.; Yang, J.; Hsu, C.J.; Diamond, D.J.; Su, R.F. (Brookhaven National Lab., Upton, NY (United States)); Holmes, B. (AEA Technology, London (United Kingdom)); Siu, N. (Massachusetts Inst. of Tech., Cambridge, MA (United States)); Bley, D.; Lin, J. (Pickard, Lowe and Garrick, Inc., Newport Beach, CA (United States))

    1992-01-01T23:59:59.000Z

    As a result of the Chernobyl accident and other precursor events (e.g., Diablo Canyon), the US Nuclear Regulatory Commission's (NRC's) Office of Nuclear Regulatory Research (RES) initiated an extensive project during 1989 to carefully examine the potential risks during Low Power and Shutdown (LP S) operations. Shortly after the program began, an event occurred at the Vogtle plant during shutdown, which further intensified the effort of the LP S program. In the LP S program, one pressurized water reactor (PWR), Surry, and one boiling water reactor (BWR), Grand Gulf, were selected, mainly because they were previously analyzed in the NUREG-1150 Study. The Level-1 Program is being performed in two phases. Phase 1 was dedicated to performing a coarse screening level-1 analysis including internal fire and flood. A draft report was completed in November, 1991. In the phase 2 study, mid-loop operations at the Surry plant were analyzed in detail. The objective of this paper is to present the approach of the phase 2 study and the preliminary results and insights.

  15. Level 1 probabilistic risk assessment of low power and shutdown operations at a PWR: Phase 2 results

    SciTech Connect (OSTI)

    Chu, T.L.; Bozoki, G.; Kohut, P.; Musicki, Z.; Wong, S.M.; Yang, J.; Hsu, C.J.; Diamond, D.J.; Su, R.F. [Brookhaven National Lab., Upton, NY (United States); Holmes, B. [AEA Technology, London (United Kingdom); Siu, N. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Bley, D.; Lin, J. [Pickard, Lowe and Garrick, Inc., Newport Beach, CA (United States)

    1992-12-31T23:59:59.000Z

    As a result of the Chernobyl accident and other precursor events (e.g., Diablo Canyon), the US Nuclear Regulatory Commission`s (NRC`s) Office of Nuclear Regulatory Research (RES) initiated an extensive project during 1989 to carefully examine the potential risks during Low Power and Shutdown (LP&S) operations. Shortly after the program began, an event occurred at the Vogtle plant during shutdown, which further intensified the effort of the LP&S program. In the LP&S program, one pressurized water reactor (PWR), Surry, and one boiling water reactor (BWR), Grand Gulf, were selected, mainly because they were previously analyzed in the NUREG-1150 Study. The Level-1 Program is being performed in two phases. Phase 1 was dedicated to performing a coarse screening level-1 analysis including internal fire and flood. A draft report was completed in November, 1991. In the phase 2 study, mid-loop operations at the Surry plant were analyzed in detail. The objective of this paper is to present the approach of the phase 2 study and the preliminary results and insights.

  16. Aging Management Guideline for commercial nuclear power plants: Electrical switchgear. Final report

    SciTech Connect (OSTI)

    Toman, G.; Gazdzinski, R.; Schuler, K. [Ogden Environmental and Energy Services Co., Inc., Blue Bell, PA (United States)

    1993-07-01T23:59:59.000Z

    This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant electrical switchgear important to license renewal. The latent of this AMG to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner which allows personnel responsible for performance analysis and maintenance, to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  17. Determination of Electric-Field, Magnetic-Field, and Electric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric-Field, Magnetic-Field, and Electric-Current Distributions of Infrared Optical Antennas: A Near-Field Determination of Electric-Field, Magnetic-Field, and Electric-Current...

  18. Electrical Generation for More-Electric Aircraft using Solid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DE-AC05-76RL01830 Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells GA Whyatt LA Chick April 2012 PNNL-XXXXX Electrical Generation for More- Electric...

  19. Random Walks and Electrical Networks Electrical Network

    E-Print Network [OSTI]

    Jonathon Peterson

    2008-01-30T23:59:59.000Z

    Feb 4, 2008 ... Random Walks and Electrical Networks. Hitting Probabilities and Voltage. Voltage. Connect a 1V battery to nodes a and b. ix,y is the current ...

  20. Electricity Restructuring: Deregulation or Reregulation?

    E-Print Network [OSTI]

    Borenstein, Severin; Bushnell, James

    2000-01-01T23:59:59.000Z

    14 Electricity Restructuring: Deregulation or Reregulation?be, synonymous with deregulation. Forthcoming in Regulation,Electricity Restructuring: Deregulation or Reregulation?

  1. The U.S. Department of Energy Office of Indian Energy Policy and Programs Phoenix, Arizona, Roundtable Summary

    SciTech Connect (OSTI)

    none,

    2011-04-05T23:59:59.000Z

    The Phoenix, Arizona, Roundtable on Tribal Energy Policy convened at 8:30 a.m., Tuesday, April 5th, at the downtown Phoenix Hyatt. The meeting was hosted by the Department of Energy (DOE) Office of Indian Energy Policy and Programs (DOE Office of Indian Energy) and facilitated by the Udall Foundation’s U.S. Institute for Environmental Conflict Resolution (U.S. Institute). Approximately thirty?eight people attended the meeting, including representatives of ten different tribes, as well as representatives of the Colorado Indian Tribes, the All Indian Pueblo Council and the Inter?Tribal Council of Arizona. Interested state, federal, university, NGO and industry representatives also were present. A full list of attendees is at the end of this summary. DOE representatives were Tracey LeBeau, Directory of the DOE Office of Indian Energy, Pilar Thomas, Deputy Director?Policy of the DOE Office of Indian Energy, and David Conrad, Director of Tribal and Intergovernmental Affairs, DOE Office of Congressional and Intergovernmental Affairs.

  2. Martin J. (Mike) Pasqualetti School of Geographical Sciences and Urban Planning -Arizona State University

    E-Print Network [OSTI]

    Scott, Christopher

    : Export 5,930 AF CA: Export 24,501 AF Revised 11/28/2008 #12;Source: NREL. Concentrating Solar Power Commercial Application Study: Reducing Water Consumption of Concentrating Solar Power Electricity Generation://cleantechlawandbusiness.com/cleanbeta/wp-content/uploads/2009/08/ AWEAAnnualGrowthofWindPowerSector.jpg #12;#12;#12;#12;" Parabolic trough concentrators " Dish

  3. EIS-0100: Liberty-Coolidge 230-kV Transmission Line, Arizona

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Western Area Power Administration prepared this statement to assess the potential environmental and socioeconomic implications of various alternatives associated with an upgrade of electrical transmission capability between the Liberty and Coolidge Substations.

  4. RELAP-7 Level 2 Milestone Report: Demonstration of a Steady State Single Phase PWR Simulation with RELAP-7

    SciTech Connect (OSTI)

    David Andrs; Ray Berry; Derek Gaston; Richard Martineau; John Peterson; Hongbin Zhang; Haihua Zhao; Ling Zou

    2012-05-01T23:59:59.000Z

    The document contains the simulation results of a steady state model PWR problem with the RELAP-7 code. The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at Idaho National Laboratory (INL). The code is based on INL's modern scientific software development framework - MOOSE (Multi-Physics Object-Oriented Simulation Environment). This report summarizes the initial results of simulating a model steady-state single phase PWR problem using the current version of the RELAP-7 code. The major purpose of this demonstration simulation is to show that RELAP-7 code can be rapidly developed to simulate single-phase reactor problems. RELAP-7 is a new project started on October 1st, 2011. It will become the main reactor systems simulation toolkit for RISMC (Risk Informed Safety Margin Characterization) and the next generation tool in the RELAP reactor safety/systems analysis application series (the replacement for RELAP5). The key to the success of RELAP-7 is the simultaneous advancement of physical models, numerical methods, and software design while maintaining a solid user perspective. Physical models include both PDEs (Partial Differential Equations) and ODEs (Ordinary Differential Equations) and experimental based closure models. RELAP-7 will eventually utilize well posed governing equations for multiphase flow, which can be strictly verified. Closure models used in RELAP5 and newly developed models will be reviewed and selected to reflect the progress made during the past three decades. RELAP-7 uses modern numerical methods, which allow implicit time integration, higher order schemes in both time and space, and strongly coupled multi-physics simulations. RELAP-7 is written with object oriented programming language C++. Its development follows modern software design paradigms. The code is easy to read, develop, maintain, and couple with other codes. Most importantly, the modern software design allows the RELAP-7 code to evolve with time. RELAP-7 is a MOOSE-based application. MOOSE (Multiphysics Object-Oriented Simulation Environment) is a framework for solving computational engineering problems in a well-planned, managed, and coordinated way. By leveraging millions of lines of open source software packages, such as PETSC (a nonlinear solver developed at Argonne National Laboratory) and LibMesh (a Finite Element Analysis package developed at University of Texas), MOOSE significantly reduces the expense and time required to develop new applications. Numerical integration methods and mesh management for parallel computation are provided by MOOSE. Therefore RELAP-7 code developers only need to focus on physics and user experiences. By using the MOOSE development environment, RELAP-7 code is developed by following the same modern software design paradigms used for other MOOSE development efforts. There are currently over 20 different MOOSE based applications ranging from 3-D transient neutron transport, detailed 3-D transient fuel performance analysis, to long-term material aging. Multi-physics and multiple dimensional analyses capabilities can be obtained by coupling RELAP-7 and other MOOSE based applications and by leveraging with capabilities developed by other DOE programs. This allows restricting the focus of RELAP-7 to systems analysis-type simulations and gives priority to retain and significantly extend RELAP5's capabilities.

  5. Reactivity loss validation of high burn-up PWR fuels with pile-oscillation experiments in MINERVE

    SciTech Connect (OSTI)

    Leconte, P.; Vaglio-Gaudard, C.; Eschbach, R.; Di-Salvo, J.; Antony, M.; Pepino, A. [CEA, DEN, DER, Cadarache, F-13108 Saint-Paul-Lez-Durance (France)

    2012-07-01T23:59:59.000Z

    The ALIX experimental program relies on the experimental validation of the spent fuel inventory, by chemical analysis of samples irradiated in a PWR between 5 and 7 cycles, and also on the experimental validation of the spent fuel reactivity loss with bum-up, obtained by pile-oscillation measurements in the MINERVE reactor. These latter experiments provide an overall validation of both the fuel inventory and of the nuclear data responsible for the reactivity loss. This program offers also unique experimental data for fuels with a burn-up reaching 85 GWd/t, as spent fuels in French PWRs never exceeds 70 GWd/t up to now. The analysis of these experiments is done in two steps with the APOLLO2/SHEM-MOC/CEA2005v4 package. In the first one, the fuel inventory of each sample is obtained by assembly calculations. The calculation route consists in the self-shielding of cross sections on the 281 energy group SHEM mesh, followed by the flux calculation by the Method Of Characteristics in a 2D-exact heterogeneous geometry of the assembly, and finally a depletion calculation by an iterative resolution of the Bateman equations. In the second step, the fuel inventory is used in the analysis of pile-oscillation experiments in which the reactivity of the ALIX spent fuel samples is compared to the reactivity of fresh fuel samples. The comparison between Experiment and Calculation shows satisfactory results with the JEFF3.1.1 library which predicts the reactivity loss within 2% for burn-up of {approx}75 GWd/t and within 4% for burn-up of {approx}85 GWd/t. (authors)

  6. Electric power monthly

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    The Energy Information Administration (EIA) prepares the Electric Power Monthly (EPM) for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. This publication provides monthly statistics for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source, consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead.

  7. Integrated electrical connector

    DOE Patents [OSTI]

    Benett, William J.; Ackler, Harold D.

    2005-05-24T23:59:59.000Z

    An electrical connector is formed from a sheet of electrically conductive material that lies in between the two layers of nonconducting material that comprise the casing of an electrical chip. The connector is electrically connected to an electrical element embedded within the chip. An opening in the sheet is concentrically aligned with a pair of larger holes respectively bored through the nonconducting layers. The opening is also smaller than the diameter of an electrically conductive contact pin. However, the sheet is composed flexible material so that the opening adapts to the diameter of the pin when the pin is inserted therethrough. The periphery of the opening applies force to the sides of the pin when the pin is inserted, and thus holds the pin within the opening and in contact with the sheet, by friction. The pin can be withdrawn from the connector by applying sufficient axial force.

  8. Thermoacoustic magnetohydrodynamic electrical generator

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-11-16T23:59:59.000Z

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  9. Thermoacoustic magnetohydrodynamic electrical generator

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1986-01-01T23:59:59.000Z

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  10. Electrical system architecture

    DOE Patents [OSTI]

    Algrain, Marcelo C. (Peoria, IL); Johnson, Kris W. (Washington, IL); Akasam, Sivaprasad (Peoria, IL); Hoff, Brian D. (East Peoria, IL)

    2008-07-15T23:59:59.000Z

    An electrical system for a vehicle includes a first power source generating a first voltage level, the first power source being in electrical communication with a first bus. A second power source generates a second voltage level greater than the first voltage level, the second power source being in electrical communication with a second bus. A starter generator may be configured to provide power to at least one of the first bus and the second bus, and at least one additional power source may be configured to provide power to at least one of the first bus and the second bus. The electrical system also includes at least one power consumer in electrical communication with the first bus and at least one power consumer in electrical communication with the second bus.

  11. Evaluation of the thermal-hydraulic response and fuel rod thermal and mechanical deformation behavior during the power burst facility test LOC-3. [PWR

    SciTech Connect (OSTI)

    Yackle, T.R.; MacDonald, P.E.; Broughton, J.M.

    1980-01-01T23:59:59.000Z

    An evaluation of the results from the LOC-3 nuclear blowdown test conducted in the Power Burst Facility is presented. The test objective was to examine fuel and cladding behavior during a postulated cold leg break accident in a pressurized water reactor (PWR). Separate effects of rod internal pressure and the degree of irradiation were investigated in the four-rod test. Extensive cladding deformation (ballooning) and failure occurred during blowdown. The deformation of the low and high pressure rods was similar; however, the previously irradiated test rod deformed to a greater extent than a similar fresh rod exposed to identical system conditions.

  12. Energy 101: Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs.

  13. Electrically Deformable Liquid Marbles

    E-Print Network [OSTI]

    Edward Bormashenko; Roman Pogreb; Tamir Stein; Gene Whyman; Marcelo Schiffer; Doron Aurbach

    2011-02-17T23:59:59.000Z

    Liquid marbles, which are droplets coated with a hydrophobic powder, were exposed to a uniform electric field. It was established that a threshold value of the electric field, 15 cgse, should be surmounted for deformation of liquid marbles. The shape of the marbles was described as a prolate spheroid. The semi-quantitative theory describing deformation of liquid marbles in a uniform electric field is presented. The scaling law relating the radius of the contact area of the marble to the applied electric field shows a satisfactory agreement with the experimental data.

  14. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers significant electric industry trends and industry priorities with federal customers.

  15. Electric power annual 1992

    SciTech Connect (OSTI)

    Not Available

    1994-01-06T23:59:59.000Z

    The Electric Power Annual presents a summary of electric utility statistics at national, regional and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts and the general public with historical data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. ``The US Electric Power Industry at a Glance`` section presents a profile of the electric power industry ownership and performance, and a review of key statistics for the year. Subsequent sections present data on generating capability, including proposed capability additions; net generation; fossil-fuel statistics; retail sales; revenue; financial statistics; environmental statistics; electric power transactions; demand-side management; and nonutility power producers. In addition, the appendices provide supplemental data on major disturbances and unusual occurrences in US electricity power systems. Each section contains related text and tables and refers the reader to the appropriate publication that contains more detailed data on the subject matter. Monetary values in this publication are expressed in nominal terms.

  16. 2012 National Electricity Forum

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in your area, what are its consequences in terms of reliability, resource options, wholesale competition and market power, cost of electricity to consumers, environmental...

  17. Electricity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the current electric grid into the next-generation grid. PE enable utilities to deliver power to their customers effectively while providing increased reliability, security, and...

  18. Joint Electrical Utilities (Iowa)

    Broader source: Energy.gov [DOE]

    Cities may establish utilities to acquire existing electric generating facilities or distribution systems. Acquisition, in this statute, is defined as city involvement, and includes purchase, lease...

  19. Integrating Electricity Subsector

    Broader source: Energy.gov (indexed) [DOE]

    2013 Electric Power Research Institute, Inc. All rights reserved. This publication is a corporate document that should be cited in the literature in the following manner:...

  20. Electric Transmission Lines (Nebraska)

    Broader source: Energy.gov [DOE]

    The Public Service Commission has jurisdiction over all electricity transmission lines crossing over or under railroad tracks at public highway crossings. This section contains general regulations...

  1. Electrically conductive cellulose composite

    DOE Patents [OSTI]

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04T23:59:59.000Z

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  2. Electrical Circuit Tester

    DOE Patents [OSTI]

    Love, Frank (Amarillo, TX)

    2006-04-18T23:59:59.000Z

    An electrical circuit testing device is provided, comprising a case, a digital voltage level testing circuit with a display means, a switch to initiate measurement using the device, a non-shorting switching means for selecting pre-determined electrical wiring configurations to be tested in an outlet, a terminal block, a five-pole electrical plug mounted on the case surface and a set of adapters that can be used for various multiple-pronged electrical outlet configurations for voltages from 100 600 VAC from 50 100 Hz.

  3. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity Monthly Update Explained Highlights The Highlights page features in the center a short article about a major event or an informative topic. The left column contains...

  4. User Electrical Equipment Inspections

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    user electronics that are not tested by a Nationally Recognized Testing Laboratory (NRTL). This includes any type of non-commercial, home-built electronic and electrical...

  5. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Percentage Btu Region map map showing electricity regions The chart above compares coal consumption in March 2014 and March 2015 by region and shows that coal consumption for...

  6. Electricity Monthly Update

    Gasoline and Diesel Fuel Update (EIA)

    a whole. Regional Wholesale Markets The fourth section presents data on the market making systems in the electric power sector: wholesale markets. It is not possible to show...

  7. Electricity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    between two of history's most important energy-related engineers: Thomas Edison and Nikola Tesla. Edison and Tesla's developments in electric power generation and...

  8. Perforation patterned electrical interconnects

    DOE Patents [OSTI]

    Frey, Jonathan

    2014-01-28T23:59:59.000Z

    This disclosure describes systems and methods for increasing the usable surface area of electrical contacts within a device, such as a thin film solid state device, through the implementation of electrically conductive interconnects. Embodiments described herein include the use of a plurality of electrically conductive interconnects that penetrate through a top contact layer, through one or more multiple layers, and into a bottom contact layer. The plurality of conductive interconnects may form horizontal and vertical cross-sectional patterns. The use of lasers to form the plurality of electrically conductive interconnects from reflowed layer material further aids in the manufacturing process of a device.

  9. ITP Industrial Distributed Energy: Cooling, Heating, and Power...

    Broader source: Energy.gov (indexed) [DOE]

    60. Southwestern Electric Pwr 61. Texas Utilities Electric Co 62. Toledo Edison Co 63. Tucson Electric Power Co 64. Union Electric Co 65. Virginia Electric & Pwr Co 66. West Penn...

  10. EA-1863: Vegetation Management on the Glen Canyon-Pinnacle Peak Transmission Lines Spanning the Coconino National Forest, Coconino County, Arizona

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing this EA to evaluate the environmental impacts of updating the vegetation management and right-of-way maintenance program for Western’s Glen Canyon to Pinnacle Peak 345-kV transmission lines, which cross the Coconino National Forest, Coconino County, Arizona.

  11. In Proceedings of the International Conference on Modeling and Analysis of Semiconductor Manufacturing, Arizona State University, Tempe, AZ, USA, May, 2000.

    E-Print Network [OSTI]

    Manufacturing, Arizona State University, Tempe, AZ, USA, May, 2000. HIGH-FIDELITY RAPID PROTOTYPING OF THE REAL manufacturing in- dustry has been driven by continuous technological advancement of the underlying production results in Dis- crete Event Systems theory. Furthermore, in addition to the development of the formal

  12. John Topham and Susan Redd Butler Off-Campus Faculty Research Awards James Ayres, University of Arizona, "The Manufacturing and Marketing of Railroad Ties in the Uinta

    E-Print Network [OSTI]

    Hart, Gus

    Idaho Phosphate Mining and Fertilizer Industry" Clyde Milner, Arkansas State University, "The West-War Intermountain West" Stephanie Capaldo, University of Arizona, "Smoke and Mirrors: Smelter Pollution and the Cultural Construction of Environmental Justice in the U.S.-Mexico Borderlands" Thomas Evans, Montana State

  13. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Tuba City, Arizona. Apendix D, Site characteriztion

    SciTech Connect (OSTI)

    Not Available

    1987-05-01T23:59:59.000Z

    This appendix assesses the present conditions and data for the inactive uranium mill site near Tuba City, Arizona. It consolidates available engineering, radiological, geotechnical, hydrological, meterological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill and tailings site so that the Remedial Action Contractor (RAC) may complete final designs of the remedial actions.

  14. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Tuba City, Arizona. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1987-05-01T23:59:59.000Z

    This appendix assesses the present conditions and data for the inactive uranium mill site near Tuba City, Arizona. It consolidates available engineering, radiological, geotechnical, hydrological, meterological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill and tailings site so that the Remedial Action Contractor (RAC) may complete final designs of the remedial actions.

  15. 5:00 6:00 p.m.: Displays by Arizona Energy Consortium 6:00 7:30 p.m.: Panel Discussion

    E-Print Network [OSTI]

    Hall, Sharon J.

    , a prominent atmospheric and energy scientist, and an environmental filmmaker. Sustainability reporter Eve-in-Residence for Sustainability, ASU's School of Sustainability Founder, Citizens for Affordable Energy Former President, Shell5:00 ­ 6:00 p.m.: Displays by Arizona Energy Consortium 6:00 ­ 7:30 p.m.: Panel Discussion 7:30 ­ 8

  16. The Rob and Melani Walton Sustainability Solutions Initiatives, a program of the Global Institute of Sustainability (GIOS) at Arizona State University, invites nominations for several doctoral dissertation

    E-Print Network [OSTI]

    Hall, Sharon J.

    and environment; sustainable development; urban sustainability; energy, materials, and technology; food and foodThe Rob and Melani Walton Sustainability Solutions Initiatives, a program of the Global Institute of Sustainability (GIOS) at Arizona State University, invites nominations for several doctoral dissertation graduate

  17. electricAl engineering College of Engineering and Mines

    E-Print Network [OSTI]

    Hartman, Chris

    electricAl engineering College of Engineering and Mines Department of Electrical and Computer The mission of the UAF Electrical and Computer Engineering Department is to offer the highest quality to the technical needs of the state of Alaska, the nation and the world. Electrical and computing engineering

  18. Introduction The electric power grid and electric power

    E-Print Network [OSTI]

    of systems" that integrates an end-to-end, advanced com- munications infrastructure into the electric powerIntroduction The electric power grid and electric power industry are undergoing a dramatic transforma- tion. By linking information technologies with the electric power grid--to provide "electricity

  19. Electricity Case: Statistical Analysis of Electric Power Outages

    E-Print Network [OSTI]

    Wang, Hai

    Electricity Case: Statistical Analysis of Electric Power Outages CREATE Report Jeffrey S. Simonoff: Statistical Analysis of Electric Power Outages CREATE Report July 26, 2005 Jeffrey S. Simonoff (NYU of the United States Department of Homeland Security. #12;0 Electricity Case, Report 3 Electricity Case

  20. EIS-0122: Tucson Aqueduct Phase B: A Feature of Central Arizona Project

    Broader source: Energy.gov [DOE]

    The U.S. Department of Interior developed this statement to assess the environmental impact of proposed construction of the Tuscan Aqueduct Phase B portion which would transport water 45 miles and include construction of six pumping facilities and transmission facilities to deliver electricity to the pumping facilities. The Western Area Power Administration cooperated in preparing this statement in areas related to the transmission facilities and adopted the statement on 12/13/1985.