Sample records for argonne wakefield accelerator

  1. Increasing the transformer ratio at the Argonne wakefield accelerator.

    SciTech Connect (OSTI)

    Power, J.G.; Conde, M.; Liu, W.; Yusof, Z.; Gai, W.; Jing, C.; Kanareykin, A. (High Energy Physics); (Euclid Techlabs, LLC)

    2011-01-01T23:59:59.000Z

    The transformer ratio is defined as the ratio of the maximum energy gain of the witness bunch to the maximum energy loss experienced by the drive bunch (or a bunch within a multidrive bunch train). This plays an important role in the collinear wakefield acceleration scheme. A high transformer ratio is desirable since it leads to a higher overall efficiency under similar conditions (e.g. the same beam loading, the same structure, etc.). One technique to enhance the transformer ratio beyond the ordinary limit of 2 is to use a ramped bunch train. The first experimental demonstration observed a transformer ratio only marginally above 2 due to the mismatch between the drive microbunch length and the frequency of the accelerating structure [C. Jing, A. Kanareykin, J. Power, M. Conde, Z. Yusof, P. Schoessow, and W. Gai, Phys. Rev. Lett. 98, 144801 (2007)]. Recently, we revisited this experiment with an optimized microbunch length using a UV laser stacking technique at the Argonne Wakefield Accelerator facility and measured a transformer ratio of 3.4. Measurements and data analysis from these experiments are presented in detail.

  2. Start-to-end beam dynamics simulation of double triangular current profile generation in Argonne Wakefield Accelerator

    SciTech Connect (OSTI)

    Ha, G.; Power, J.; Kim, S. H.; Gai, W.; Kim, K.-J.; Cho, M. H.; Namkung, W. [POSTECH, Pohang, Gyeongbuk, 790-784 (Korea, Republic of); Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); POSTECH, Pohang, Gyeongbuk, 790-784 (Korea, Republic of) and Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); POSTECH, Pohang, Gyeongbuk, 790-784 (Korea, Republic of) and Pohang Accelerator Laboratory, Pohang, Gyeongbuk, 790-784 (Korea, Republic of); Pohang Accelerator Laboratory, Pohang, Gyeongbuk, 790-784 (Korea, Republic of)

    2012-12-21T23:59:59.000Z

    Double triangular current profile (DT) gives a high transformer ratio which is the determining factor of the performance of collinear wakefield accelerator. This current profile can be generated using the emittance exchange (EEX) beam line. Argonne Wakefield Accelerator (AWA) facility plans to generate DT using the EEX beam line. We conducted start-to-end simulation for the AWA beam line using PARMELA code. Also, we discuss requirements of beam parameters for the generation of DT.

  3. High Transformer ratios in collinear wakefield accelerators.

    SciTech Connect (OSTI)

    Power, J. G.; Conde, M.; Yusof, Z.; Gai, W.; Jing, C.; Kanreykin, A.; Schoessow, P.; High Energy Physics; Euclid Techlabs, LLC

    2008-01-01T23:59:59.000Z

    Based on our previous experiment that successfully demonstrated wakefield transformer ratio enhancement in a 13.625 GHz dielectric-loaded collinear wakefield accelerator using the ramped bunch train technique, we present here a redesigned experimental scheme for even higher enhancement of the efficiency of this accelerator. Design of a collinear wakefield device with a transformer ratio R2, is presented. Using a ramped bunch train (RBT) rather than a single drive bunch, the enhanced transformer ratio (ETR) technique is able to increase the transformer ratio R above the ordinary limit of 2. To match the wavelength of the fundamental mode of the wakefield with the bunch length (sigmaz=2 mm) of the new Argonne wakefield accelerator (AWA) drive gun (where the experiment will be performed), a 26.625 GHz dielectric based accelerating structure is required. This transformer ratio enhancement technique based on our dielectric-loaded waveguide design will result in a compact, high efficiency accelerating structures for future wakefield accelerators.

  4. Tomography of a laser wakefield accelerator Tomography of a laser wakefield accelerator

    E-Print Network [OSTI]

    history of laser-plasma accelerators is reviewed. The excitation of plasma waves by ultra-short laser Tomography of a laser wakefield accelerator Tomography of a laser wakefield accelerator 692220024 #12; Tomography of a laser wakefield accelerator i #12; Tomography of a laser

  5. Wakefield measurements of SLAC linac structures at the Argonne AATF

    SciTech Connect (OSTI)

    Wang, J.W.; Loew, G.A. (Stanford Linear Accelerator Center, Menlo Park, CA (USA)); Simpson, J.; Chojnacki, E.; Gai, W.; Konecny, R.; Schoessow, P. (Argonne National Lab., IL (USA))

    1991-05-01T23:59:59.000Z

    Damped and detuned linac structures designed to minimize the effects of wakefields excited by e{sup {plus minus}} bunch trains in future linear colliders are presently under investigation at SLAC. This paper describes the results of measurements of both longitudinal and transverse wakefields performed at the ANL Advanced Accelerator Test Facility with two SLAC-built X-Band disk-loaded waveguides: a conventional 30-cavity long constant-impedance structure and a non-conventional 50-cavity long structure along which the iris and spacer diameters have been varied so as to stagger-tune the HEM{sub 11} mode frequency by 37%. The results are shown to be in excellent agreement with computations made by KN7C, TRANSVRS, TBCI, and LINACBBU. 8 refs., 5 figs.

  6. Current Filamentation Instability in Laser Wakefield Accelerators

    SciTech Connect (OSTI)

    Huntington, C. M.; Drake, R. P. [Atmospheric, Oceanic and Space Science, University of Michigan, Ann Arbor, Michigan, 48103 (United States); Thomas, A. G. R.; McGuffey, C.; Matsuoka, T.; Chvykov, V.; Kalintchenko, G.; Yanovsky, V.; Maksimchuk, A.; Krushelnick, K. [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109 (United States); Kneip, S.; Najmudin, Z.; Palmer, C. [Blackett Laboratory, Imperial College London, London, SW7 2BZ (United Kingdom); Katsouleas, T. [Platt School of Engineering, Duke University, Durham, North Carolina, 27708 (United States)

    2011-03-11T23:59:59.000Z

    Experiments using an electron beam produced by laser-wakefield acceleration have shown that varying the overall beam-plasma interaction length results in current filamentation at lengths that exceed the laser depletion length in the plasma. Three-dimensional simulations show this to be a combination of hosing, beam erosion, and filamentation of the decelerated beam. This work suggests the ability to perform scaled experiments of astrophysical instabilities. Additionally, understanding the processes involved with electron beam propagation is essential to the development of wakefield accelerator applications.

  7. GeV electrons due to a transition from laser wakefield acceleration to plasma wakefield acceleration

    E-Print Network [OSTI]

    P. E. Masson-Laborde; M. Z. Mo; A. Ali; S. Fourmaux; P. Lassonde; J. C. Kieffer; W. Rozmus; D. Teychenne; R. Fedosejevs

    2014-08-06T23:59:59.000Z

    We show through experiments that a transition from laser wakefield acceleration (LWFA) regime to a plasma wakefield acceleration (PWFA) regime can drive electrons up to energies close to the GeV level. Initially, the acceleration mechanism is dominated by the bubble created by the laser in the nonlinear regime of LWFA, leading to an injection of a large number of electrons. After propagation beyond the depletion length, leading to a depletion of the laser pulse, whose transverse ponderomotive force is not able to sustain the bubble anymore, the high energy dense bunch of electrons propagating inside bubble will drive its own wakefield by a PWFA regime. This wakefield will be able to trap and accelerate a population of electrons up to the GeV level during this second stage. Three dimensional (3D) particle-in-cell (PIC) simulations support this analysis, and confirm the scenario.

  8. Laser wakefield simulations towards development of compact particle accelerators

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Laser wakefield simulations towards development of compact particle accelerators C.G.R. Geddes1, D understanding of accelerator physics to advance beam performance and stability, and particle simulations model, France; 9 Oxford University, UK E-mail: cgrgeddes@lbl.gov Abstract. Laser driven wakefield accelerators

  9. Laser Guiding at Relativistic Intensities and Wakefield Particle Acceleration

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Laser Guiding at Relativistic Intensities and Wakefield Particle Acceleration in Plasma Channels C for the first time in a high gradient laser wakefield accelerator by guiding the drive laser pulse. Channels formed by hydrodynamic shock were used to guide acceleration relevant laser intensities of at least 1E18

  10. Automatic beam path analysis of laser wakefield particle acceleration data

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Automatic beam path analysis of laser wakefield particle acceleration data Oliver Rübel1 particle accelerators play a key role in the understanding of the complex acceleration process in a pipeline fashion to automatically locate and analyze high-energy particle bunches undergoing acceleration

  11. Automatic Beam Path Analysis of Laser Wakefield Particle Acceleration Data

    E-Print Network [OSTI]

    Knowles, David William

    Automatic Beam Path Analysis of Laser Wakefield Particle Acceleration Data Oliver R¨ubel1 particle accelerators play a key role in the understanding of the complex acceleration process in a pipeline fashion to automatically locate and analyze high energy particle bunches undergoing acceleration

  12. Plasma Wakefield Acceleration for Ultrahigh Energy Cosmic Rays

    E-Print Network [OSTI]

    Pisin Chen; Toshiki Tajima; Yoshiyuki Takahashi

    2002-05-21T23:59:59.000Z

    A cosmic acceleration mechanism is introduced which is based on the wakefields excited by the Alfven shocks in a relativistically flowing plasma, where the energy gain per distance of a test particle is Lorentz invariant. We show that there exists a threshold condition for transparency below which the accelerating particle is collision-free and suffers little energy loss in the plasma medium. The stochastic encounters of the random accelerating-decelerating phases results in a power-law energy spectrum: f(e) 1/e^2. The environment suitable for such plasma wakefield acceleration can be cosmically abundant. As an example, we discuss the possible production of super-GZK ultra high energy cosmic rays (UHECR) through this mechanism in the atmosphere of gamma ray bursts. We show that the acceleration gradient can be as high as G ~ 10^16 eV/cm. The estimated event rate in our model agrees with that from UHECR observations.

  13. Experimental Plans to Explore Dielectric Wakefield Acceleration in the THZ Regime

    SciTech Connect (OSTI)

    Lemery, F.; Mihalcea, D.; /Northern Illinois U.; Piot, P.; /Fermilab; Behrens, C.; Elsen, E.; Flottmann, K.; Gerth, C.; Kube, G.; Schmidt, B.; /DESY; Osterhoff, J.; /Hamburg U., Inst. Theor. Phys. II; Stoltz, P.

    2011-09-07T23:59:59.000Z

    Dielectric wakefield accelerators have shown great promise toward high-gradient acceleration. We investigate the performances of a possible experiment under consideration at the FLASH facility in DESY to explore wakefield acceleration with an enhanced transformer ratio. The experiment capitalizes on a unique pulse shaping capability recently demonstrated at this facility. In addition, the facility incorporates a superconducting linear accelerator that could generate bunch trains with closely spaced bunches thereby opening the exploration of potential dynamical effects in dielectric wakefield accelerators.

  14. Observation of Enhanced Transformer Ratio in Collinear Wakefield Acceleration

    SciTech Connect (OSTI)

    Jing, C.; Kanareykin, A. [Euclid Techlabs, LLC, Solon, OH-44139 (United States); Power, J.; Conde, M.; Yusof, Z.; Gai, W. [High Energy Physics Division, Argonne National Laboratory, Argonne, IL-60439 (United States)

    2006-11-27T23:59:59.000Z

    The transformer ratio R is a parameter that characterizes the efficiency of the energy transferred from the drive beam to the trailing witness beam passing through a wakefield accelerating structure (all metal or dielectric based) or a plasma chamber. Using a ramped bunch train (RBT) rather than a single drive bunch, the enhanced transformer ratio (ETR) technique is able to increase the transformer ratio R above the ordinary limit of 2 for a single bunch in a collinear wakefield accelerator. The RBT is a train of electron bunches separated by half integer multiples wavelength of the wakefield. The charge of the leading bunch is lowest and subsequent bunch charges are increased in such a way as to maximize R. In this article, an experimental study of this scheme is presented in which an RBT of 2 bunches with charge ratio of 1:2.5 and bunch length {sigma}z = 2 mm were used to enhance the transformer ratio. Measurement results and data analysis show good agreement with theoretical predictions. The ETR technique demonstrated here can be used in any collinear wakefield accelerator configuration, either structure- or plasma-based.

  15. Observation of enhanced transformer ratio in collinear Wakefield acceleration.

    SciTech Connect (OSTI)

    Power, J.; Conde, M.; Yusof, Z.; Gai, W.; Jing, C.; Kanareykin, A.; High Energy Physics; Euclid Techlabs, LLC

    2006-01-01T23:59:59.000Z

    The transformer ratio R is a parameter that characterizes the efficiency of the energy transferred from the drive beam to the trailing witness beam passing through a wakefield accelerating structure (all metal or dielectric based) or a plasma chamber. Using a ramped bunch train (RBT) rather than a single drive bunch, the enhanced transformer ratio (ETR) technique is able to increase the transformer ratio R above the ordinary limit of 2 for a single bunch in a collinear wakefield accelerator. The RBT is a train of electron bunches separated by half integer multiples wavelength of the wakefield. The charge of the leading bunch is lowest and subsequent bunch charges are increased in such a way as to maximize R. In this article, an experimental study of this scheme is presented in which an RBT of 2 bunches with charge ratio of 1:2.5 and bunch length {sigma}{sub z} = 2 mm were used to enhance the transformer ratio. Measurement results and data analysis show good agreement with theoretical predictions. The ETR technique demonstrated here can be used in any collinear wakefield accelerator configuration, either structure- or plasma-based.

  16. Dielectric Wakefield Accelerator to drive the future FEL Light Source.

    SciTech Connect (OSTI)

    Jing, C.; Power, J.; Zholents, A. (Accelerator Systems Division (APS)); ( HEP); (LLC)

    2011-04-20T23:59:59.000Z

    X-ray free-electron lasers (FELs) are expensive instruments and a large part of the cost of the entire facility is driven by the accelerator. Using a high-energy gain dielectric wake-field accelerator (DWA) instead of the conventional accelerator may provide a significant cost saving and reduction of the facility size. In this article, we investigate using a collinear dielectric wakefield accelerator to provide a high repetition rate, high current, high energy beam to drive a future FEL x-ray light source. As an initial case study, a {approx}100 MV/m loaded gradient, 850 GHz quartz dielectric based 2-stage, wakefield accelerator is proposed to generate a main electron beam of 8 GeV, 50 pC/bunch, {approx}1.2 kA of peak current, 10 x 10 kHz (10 beamlines) in just 100 meters with the fill factor and beam loading considered. This scheme provides 10 parallel main beams with one 100 kHz drive beam. A drive-to-main beam efficiency {approx}38.5% can be achieved with an advanced transformer ratio enhancement technique. rf power dissipation in the structure is only 5 W/cm{sup 2} in the high repetition rate, high gradient operation mode, which is in the range of advanced water cooling capability. Details of study presented in the article include the overall layout, the transform ratio enhancement scheme used to increase the drive to main beam efficiency, main wakefield linac design, cooling of the structure, etc.

  17. Proof-of-principle experiments of laser Wakefield acceleration

    SciTech Connect (OSTI)

    Nakajima, K.; Kawakubo, T.; Nakanishi, H. [National Lab. for Higher Energy Physics, Ibaraki (Japan)] [and others

    1994-04-01T23:59:59.000Z

    Recently there has been a great interest in laser-plasma accelerators as possible next-generation particle accelerators because of their potential for ultra high accelerating gradients and compact size compared with conventional accelerators. It is known that the laser pulse is capable of exciting a plasma wave propagating at a phase velocity close to the velocity of light by means of beating two-frequency lasers or an ultra short laser pulse. These schemes came to be known as the Beat Wave Accelerator (BWA) for beating lasers or as the Laser Wakefield Accelerator (LWFA) for a short pulse laser. In this paper, the principle of laser wakefield particle acceleration has been tested by the Nd:glass laser system providing a short pulse with a power of 10 TW and a duration of 1 ps. Electrons accelerated up to 18 MeV/c have been observed by injecting 1 MeV/c electrons emitted from a solid target by an intense laser impact. The accelerating field gradient of 30 GeV/m is inferred.

  18. High transformer ratio drive beams for wakefield accelerator studies

    SciTech Connect (OSTI)

    England, R. J.; Ng, C.-K.; Frederico, J.; Hogan, M. J.; Litos, M.; Muggli, P.; Joshi, C.; An, W.; Andonian, G.; Mori, W.; Lu, W. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Max Planck Institute for Physics, 80805 Munich (Germany); University of California Los Angeles, Los Angeles, CA 90095 (United States); Tsinghua University, Beijing (China)

    2012-12-21T23:59:59.000Z

    For wakefield based acceleration schemes, use of an asymmetric (or linearly ramped) drive bunch current profile has been predicted to enhance the transformer ratio and generate large accelerating wakes. We discuss plans and initial results for producing such bunches using the 20 to 23 GeV electron beam at the FACET facility at SLAC National Accelerator Laboratory and sending them through plasmas and dielectric tubes to generate transformer ratios greater than 2 (the limit for symmetric bunches). The scheme proposed utilizes the final FACET chicane compressor and transverse collimation to shape the longitudinal phase space of the beam.

  19. Stern-Gerlach surfing in laser wakefield accelerators

    E-Print Network [OSTI]

    Flood, Stephen P

    2015-01-01T23:59:59.000Z

    We investigate the effects of a Stern-Gerlach-type addition to the Lorentz force on electrons in a laser wakefield accelerator. The Stern-Gerlach-type terms are found to generate a family of trajectories describing electrons that surf along the plasma density wave driven by a laser pulse. Such trajectories could lead to an increase in the size of an electron bunch, which may have implications for attempts to exploit such bunches in future free electron lasers.

  20. Plasma Wakefield Acceleration and FACET - Facilities for Accelerator Science and Experimental Test Beams at SLAC

    ScienceCinema (OSTI)

    Andrei Seryi

    2010-01-08T23:59:59.000Z

    Plasma wakefield acceleration is one of the most promising approaches to advancing accelerator technology. This approach offers a potential 1,000-fold or more increase in acceleration over a given distance, compared to existing accelerators.  FACET, enabled by the Recovery Act funds, will study plasma acceleration, using short, intense pulses of electrons and positrons. In this lecture, the physics of plasma acceleration and features of FACET will be presented.  

  1. Plasma Wakefield Acceleration: How it Works

    SciTech Connect (OSTI)

    None

    2014-11-05T23:59:59.000Z

    This animation explains how electrons can be efficiently accelerated to high energy using wakes created in a plasma.

  2. Unphysical kinetic effects in particle-in-cell modeling of laser wakefield accelerators Estelle Cormier-Michel,1,2

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Unphysical kinetic effects in particle-in-cell modeling of laser wakefield accelerators Estelle of laser wakefield accelerators using particle-in-cell codes are investigated. A dark current free laser wakefield accelerator stage, in which no trapping of background plasma electrons into the plasma wave should

  3. Application of High-performance Visual Analysis Methods to Laser Wakefield Particle Acceleration Data

    E-Print Network [OSTI]

    Application of High-performance Visual Analysis Methods to Laser Wakefield Particle Acceleration, time- varying laser wakefield particle accelerator simulation data. We ex- tend histogramBit, a state-of-the-art index/query technology, to acceler- ate data mining and multi-dimensional histogram

  4. Multimode Analysis of the Hollow Plasma Channel Wakefield Accelerator C. B. Schroeder,1

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    by resonant excitation [1]. In conventional accelerators, the size of these accel- erating fields is limited particle beam. For the laser wakefield accelerator one of the most se- vere limitations is the weakening- neous plasma. These properties make it well suited as a structure for both particle beam wakefield

  5. RECENT PROGRESS AT LBNL ON CHARACTERIZATION OF LASER WAKEFIELD ACCELERATED ELECTRON BUNCHES USING

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    RECENT PROGRESS AT LBNL ON CHARACTERIZATION OF LASER WAKEFIELD ACCELERATED ELECTRON BUNCHES USING. Schroeder, J. van Tilborg, Cs. T´oth Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720, USA Abstract At LBNL, laser wakefield accelerators (LWFA) can now produce ultra-short electron bunches

  6. Benchmarking the codes VORPAL, OSIRIS, and QuickPIC with Laser Wakefield Acceleration

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    with ultra-short Ti-Sapphire laser pulses propagating in hydrogen gas. Both first-order and secondBenchmarking the codes VORPAL, OSIRIS, and QuickPIC with Laser Wakefield Acceleration Simulations K Técnico, Lisboa, Portugal Abstract. Three-dimensional laser wakefield acceleration (LWFA) simulations have

  7. Beyond injection: Trojan horse underdense photocathode plasma wakefield acceleration

    SciTech Connect (OSTI)

    Hidding, B.; Rosenzweig, J. B.; Xi, Y.; O'Shea, B.; Andonian, G.; Schiller, D.; Barber, S.; Williams, O.; Pretzler, G.; Koenigstein, T.; Kleeschulte, F.; Hogan, M. J.; Litos, M.; Corde, S.; White, W. W.; Muggli, P.; Bruhwiler, D. L.; Lotov, K. [Institut fuer Laser- und Plasmaphysik, Heinrich-Heine-Universitaet Duesseldorf 40225 Duesseldorf (Germany) and Particle Beam Physics Laboratory, Department for Physics and Astronomy, UCLA (United States); Particle Beam Physics Laboratory, Department for Physics and Astronomy, UCLA (United States); Institut fuer Laser- und Plasmaphysik, Heinrich-Heine-Universitaet Duesseldorf 40225 Duesseldorf (Germany); Stanford Linear Accelerator Center (United States); Max-Planck-Institut fuer Physik, Muenchen (Germany); Tech-X Corporation, Boulder, Colorado (United States) and 1348 Redwood Ave., Boulder, Colorado 80304 (United States); Budker Institute of Nuclear Physics SB RAS, 630090, Novosibirsk (Russian Federation) and Novosibirsk State University, 630090, Novosibirsk (Russian Federation)

    2012-12-21T23:59:59.000Z

    An overview on the underlying principles of the hybrid plasma wakefield acceleration scheme dubbed 'Trojan Horse' acceleration is given. The concept is based on laser-controlled release of electrons directly into a particle-beam-driven plasma blowout, paving the way for controlled, shapeable electron bunches with ultralow emittance and ultrahigh brightness. Combining the virtues of a low-ionization-threshold underdense photocathode with the GV/m-scale electric fields of a practically dephasing-free beam-driven plasma blowout, this constitutes a 4th generation electron acceleration scheme. It is applicable as a beam brightness transformer for electron bunches from LWFA and PWFA systems alike. At FACET, the proof-of-concept experiment 'E-210: Trojan Horse Plasma Wakefield Acceleration' has recently been approved and is in preparation. At the same time, various LWFA facilities are currently considered to host experiments aiming at stabilizing and boosting the electron bunch output quality via a trojan horse afterburner stage. Since normalized emittance and brightness can be improved by many orders of magnitude, the scheme is an ideal candidate for light sources such as free-electron-lasers and those based on Thomson scattering and betatron radiation alike.

  8. Observation of Enhanced Transformer Ratio in Collinear Wakefield Acceleration

    SciTech Connect (OSTI)

    Jing, C.; Kanareykin, A.; Schoessow, P. [Euclid Techlabs LLC, Solon, Ohio 44139 (United States); Power, J. G.; Conde, M.; Yusof, Z.; Gai, W. [High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois-60439 (United States)

    2007-04-06T23:59:59.000Z

    One approach to future high energy particle accelerators is based on the wakefield principle: a leading high-charge drive bunch is used to excite fields in an accelerating structure or plasma that in turn accelerates a trailing low-charge witness bunch. The transformer ratio R is defined as the ratio of the maximum energy gain of the witness bunch to the maximum energy loss of the drive bunch. In general, R<2 for this configuration. A number of techniques have been proposed to overcome the transformer ratio limitation. We report here the first experimental study of the ramped bunch train (RBT) technique in a dielectric based accelerating structure. A single drive bunch was replaced by two bunches with charge ratio of 1 ratio 2.5 and a separation of 10.5 wavelengths of the fundamental mode. An average measured transformer ratio enhancement by a factor of 1.31 over the single drive bunch case was obtained.

  9. Beam Head Erosion in Self-Ionized Plasma Wakefield Accelerators

    SciTech Connect (OSTI)

    Berry, M.K.; Blumenfeld, I.; Decker, F.J.; Hogan, M.J.; Ischebeck, R.; Iverson, R.H.; Kirby, N.A.; Siemann, Robert H.; Walz, D.R.; /SLAC; Clayton, C.E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.B.; Zhou, M.; /UCLA; Katsouleas, T.C.; Muggli, P.; Oz, E.; /Southern California U.

    2008-01-28T23:59:59.000Z

    In the recent plasma wakefield accelerator experiments at SLAC, the energy of the particles in the tail of the 42 GeV electron beam were doubled in less than one meter [1]. Simulations suggest that the acceleration length was limited by a new phenomenon--beam head erosion in self-ionized plasmas. In vacuum, a particle beam expands transversely in a distance given by {beta}*. In the blowout regime of a plasma wakefield [2], the majority of the beam is focused by the ion channel, while the beam head slowly spreads since it takes a finite time for the ion channel to form. It is observed that in self-ionized plasmas, the head spreading is exacerbated compared to that in pre-ionized plasmas, causing the ionization front to move backward (erode). A simple theoretical model is used to estimate the upper limit of the erosion rate for a bi-gaussian beam by assuming free expansion of the beam head before the ionization front. Comparison with simulations suggests that half this maximum value can serve as an estimate for the erosion rate. Critical parameters to the erosion rate are discussed.

  10. EXPERIMENTAL RESULTS OF A PLASMA WAKEFIELD ACCELERATOR USING MULTIPLE ELECTRON BUNCHES

    E-Print Network [OSTI]

    Brookhaven National Laboratory

    ) of the Brookhaven National Laboratory (BNL). We have observed increasing energy loss along the length of the beam preliminary experimental results of a plasma wakefield accelerator technique which utilizes multiple electron oscillations that can support electric fields (wakefields) that can be orders of magnitude higher than those

  11. Superlative Supercomputers: Argonne's Mira to Accelerate Scientific...

    Energy Savers [EERE]

    stars, specifically, of the turbulent nuclear combustion that sets off type 1a supernovae. | Photo courtesy of Argonne National Laboratory This is a computer simulation of a...

  12. Wakefield Damping in a Pair of X-Band Accelerators for Linear Colliders

    SciTech Connect (OSTI)

    Jones, R.M.; Adolphsen, C.E.; Wang, J.W.; Li, Z.; /SLAC

    2006-12-18T23:59:59.000Z

    We consider means to damp the wake-field left behind ultra-relativistic charges. In particular, we focus on a pair of travelling wave accelerators operating at an X-band frequency of 11.424 GHz. In order to maximize the efficiency of acceleration, in the context of a linear collider, multiple bunches of charged particles are accelerated within a given pulse of the electromagnetic field. The wake-field left behind successive bunches, if left unchecked, can seriously disturb the progress of trailing bunches and can lead to an appreciable dilution in the emittance of the beam. We report on a method to minimize the influence of the wake-field on trailing bunches. This method entails detuning the characteristic mode frequencies which make-up the electromagnetic field, damping the wake-field, and interleaving the frequencies of adjacent accelerating structures. Theoretical predictions of the wake-field and modes, based on a circuit model, are compared with experimental measurements of the wake-field conducted within the ASSET facility at SLAC. Very good agreement is obtained between theory and experiment and this allows us to have some confidence in designing the damping of wake-fields in a future linear collider consisting of several thousand of these accelerating structures.

  13. Calculation of wakefields in a 17 GHz beam-driven photonic band-gap accelerator structure

    E-Print Network [OSTI]

    Hu, Min

    We present the theoretical analysis and computer simulation of the wakefields in a 17 GHz photonic band-gap (PBG) structure for accelerator applications. Using the commercial code CST Particle Studio, the fundamental ...

  14. Measurement of wakefields generated in accelerator test structures using the SLC

    SciTech Connect (OSTI)

    Adolphsen, C.; Bane, K.; Loew, G.; Ruth, R.; Thompson, K.; Wang, J.

    1992-10-01T23:59:59.000Z

    Research is underway at SLAC to develop accelerator structures for the next generation linear collider. An important feature of the design is a detuning of the dipole modes of the cells to suppress the long-range transverse wakefield by two orders of magnitude. This paper describes a facility, called ASSET, that will be incorporated into the SLAC Linear Collider (SLC) to test the long-range wakefield suppression and also to measure the other components of the wakefields generated in accelerator test structures.

  15. A proposal for a 1 GeV plasma-wakefield acceleration experiment at SLAC

    SciTech Connect (OSTI)

    Katsouleas, T.; Lee, S. [Univ. of Southern California, Los Angeles, CA (United States); Assmann, R. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)] [and others

    1997-07-01T23:59:59.000Z

    A plasma-based wakefield acceleration (PWFA) experiment is proposed that will accelerate parts of an SLC bunch by up to 1 GeV/m over a length of 1 m. A single SLC bunch is used to both induce wakefields in the one meter long plasma and to witness the resulting beam acceleration. The proposed experiment will explore and further develop the techniques that are needed to apply high-gradient plasma wakefield acceleration to large scale accelerators. The one meter length of the experiment is about two orders of magnitude larger than other high-gradient PWFA experiments and the 1 GeV/m accelerating gradient is roughly ten times larger than that achieved with conventional metallic structures. Using existing SLAC facilities, the proposed experiment will allow the study of high-gradient acceleration at the forefront of advanced accelerator research.

  16. Automatic Beam Path Analysis of Laser Wakefield Particle Acceleration Data

    SciTech Connect (OSTI)

    Rubel, Oliver; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Wu, Kesheng; Prabhat,; Weber, Gunther H.; Ushizima, Daniela M.; Messmer, Peter; Hagen, Hans; Hamann, Bernd; Bethel, E. Wes

    2009-10-19T23:59:59.000Z

    Numerical simulations of laser wakefield particle accelerators play a key role in the understanding of the complex acceleration process and in the design of expensive experimental facilities. As the size and complexity of simulation output grows, an increasingly acute challenge is the practical need for computational techniques that aid in scientific knowledge discovery. To that end, we present a set of data-understanding algorithms that work in concert in a pipeline fashion to automatically locate and analyze high energy particle bunches undergoing acceleration in very large simulation datasets. These techniques work cooperatively by first identifying features of interest in individual timesteps, then integrating features across timesteps, and based on the information derived perform analysis of temporally dynamic features. This combination of techniques supports accurate detection of particle beams enabling a deeper level of scientific understanding of physical phenomena than hasbeen possible before. By combining efficient data analysis algorithms and state-of-the-art data management we enable high-performance analysis of extremely large particle datasets in 3D. We demonstrate the usefulness of our methods for a variety of 2D and 3D datasets and discuss the performance of our analysis pipeline.

  17. A THz Coaxial Two-Channel Dielectric Wakefield Structure for High Gradient Acceleration

    SciTech Connect (OSTI)

    Marshall, T. C. [Columbia University, New York, NY (United States); Omega-P, Inc., New Haven, CT (United States); Sotnikov, G. V. [Omega-P, Inc., New Haven, CT (United States); NSC Kharkov Institute of Physics and Technology, Kharkov (Ukraine); Hirshfield, J. L. [Omega-P, Inc., New Haven, CT (United States); Yale University, New Haven, CT (United States)

    2010-11-04T23:59:59.000Z

    A coaxial two-channel dielectric wakefield structure is examined for use as a high gradient accelerator. A THz design, having radius {approx}1 mm, is shown to provide GeV/m--level acceleration gradient, high transformer ratio, and stable accelerated bunch motion when excited by a stable-moving 5-GeV 6-nC annular drive bunch.

  18. Argonne National Laboratory's Accelerator Experimental Infrastructure

    E-Print Network [OSTI]

    Kemner, Ken

    development projects over the past ten years and are available for ion source and low-energy beam transport and therefore present it along these lines. Internal to Argonne we do attempt to work across these boundaries at ANL The present SRF facility at ANL includes the joint ANL/FNAL superconducting cavity surface

  19. Properties of Trapped Electron Bunches in a Plasma Wakefield Accelerator

    SciTech Connect (OSTI)

    Kirby, Neil; /SLAC

    2009-10-30T23:59:59.000Z

    Plasma-based accelerators use the propagation of a drive bunch through plasma to create large electric fields. Recent plasma wakefield accelerator (PWFA) experiments, carried out at the Stanford Linear Accelerator Center (SLAC), successfully doubled the energy for some of the 42 GeV drive bunch electrons in less than a meter; this feat would have required 3 km in the SLAC linac. This dissertation covers one phenomenon associated with the PWFA, electron trapping. Recently it was shown that PWFAs, operated in the nonlinear bubble regime, can trap electrons that are released by ionization inside the plasma wake and accelerate them to high energies. These trapped electrons occupy and can degrade the accelerating portion of the plasma wake, so it is important to understand their origins and how to remove them. Here, the onset of electron trapping is connected to the drive bunch properties. Additionally, the trapped electron bunches are observed with normalized transverse emittance divided by peak current, {epsilon}{sub N,x}/I{sub t}, below the level of 0.2 {micro}m/kA. A theoretical model of the trapped electron emittance, developed here, indicates that the emittance scales inversely with the square root of the plasma density in the non-linear 'bubble' regime of the PWFA. This model and simulations indicate that the observed values of {epsilon}{sub N,x}/I{sub t} result from multi-GeV trapped electron bunches with emittances of a few {micro}m and multi-kA peak currents. These properties make the trapped electrons a possible particle source for next generation light sources. This dissertation is organized as follows. The first chapter is an overview of the PWFA, which includes a review of the accelerating and focusing fields and a survey of the remaining issues for a plasma-based particle collider. Then, the second chapter examines the physics of electron trapping in the PWFA. The third chapter uses theory and simulations to analyze the properties of the trapped electron bunches. Chapters four and five present the experimental diagnostics and measurements for the trapped electrons. Next, the sixth chapter introduces suggestions for future trapped electron experiments. Then, Chapter seven contains the conclusions. In addition, there is an appendix chapter that covers a topic which is extraneous to electron trapping, but relevant to the PWFA. This chapter explores the feasibility of one idea for the production of a hollow channel plasma, which if produced could solve some of the remaining issues for a plasma-based collider.

  20. EXPERIMENTAL DEMONSTRATION OF WAKEFIELD EFFECTS IN A 250 GHZ PLANAR DIAMOND ACCELERATING STRUCTURE*

    E-Print Network [OSTI]

    Brookhaven National Laboratory

    of a rectangular waveguide loaded with polycrystalline CVD diamond plates as an accelerating structure. It should polycrystalline diamond plates loaded in a 6 cm long waveguide (Fig. 2). The beam gap was 200 microns (Fig. TM11EXPERIMENTAL DEMONSTRATION OF WAKEFIELD EFFECTS IN A 250 GHZ PLANAR DIAMOND ACCELERATING STRUCTURE

  1. Measurement of wakefield suppression in a detuned x-band accelerator structure

    SciTech Connect (OSTI)

    Adolphsen, C.; Bane, K.; Higo, T.; Kubo, K.; Miller, R.; Ruth, R.; Thompson, K.; Wang, J.

    1994-08-01T23:59:59.000Z

    Research is underway at SLAC to develop accelerator structures for a next generation linear collider. A full-scale prototype X-band structure has been built in which the dipole mode frequencies were detuned to suppress the long-range transverse wakefield by about two orders of magnitude. To verify that the detuning works as expected, a facility to measure the long-range wakefield, called the Accelerator Structure SETup, or ASSET, was constructed in the SLAC Linear Collider (SLC). This paper presents the results from the measurement of the prototype X-band structure with this facility.

  2. A LASER STRAIN GAUGE FOR ACCELERATOR TARGETS A. Hassanein, J. Norem, ANL, Argonne, IL 60439

    E-Print Network [OSTI]

    Harilal, S. S.

    A LASER STRAIN GAUGE FOR ACCELERATOR TARGETS A. Hassanein, J. Norem, ANL, Argonne, IL 60439 tests using the Brookhaven AGS and the Argonne CHM linac. 1 INTRODUCTION The next generation of particle

  3. Role of stochastic heating in wakefield acceleration when optical injection is used

    SciTech Connect (OSTI)

    Rassou, S.; Bourdier, A.; Drouin, M. [CEA, DAM, DIF, 91297 Arpajon (France)

    2014-08-15T23:59:59.000Z

    The dynamics of an electron in two counterpropagating waves is investigated. Conditions for stochastic acceleration are derived. The possibility of stochastic heating is confirmed when two waves interact with low density plasma by performing PIC (Particle In Cell) code simulations. It is shown that stochastic heating can play an important role in laser wakefield acceleration. When considering low density plasma interacting with a high intensity wave perturbed by a low intensity counterpropagating wave, stochastic heating can provide electrons with the right momentum for trapping in the wakefield. The influence of stochastic acceleration on the trapping of electrons is compared to the one of the beatwave force which is responsible for cold injection. To do so, several polarizations for the colliding pulses are considered. For some value of the plasma density and pulse duration, a transition from an injection due to stochastic acceleration to a cold injection dominated regime—regarding the trapped charge—has been observed from 2D and 3D PIC code simulations. This transition is ruled by the ratio of the interaction length of the pulses to the longitudinal size of the bubble. When the interaction length of the laser pulses reaches the radius of the accelerating cavity stochastic heating becomes dominant, and might be necessary to get electrons trapped into the wakefield, when wakefield inhibition grows with plasma density.

  4. Visual Exploration of Turbulent Combustion and Laser-Wakefield Accelerator Simulations

    E-Print Network [OSTI]

    hydrogen flames under different levels of turbulence ­ Lean combustion reduces emissions Important hydrogen flames] #12;Visual Exploration of Turbulent Combustion and Laser-Wakefield Accelerator Simulations 12 Tracking Graph Extraction Pipeline 1. Concatenate to obtain 4D mesh 2. Extract isotherm in 4D 3

  5. Generation of electron beams from a laser wakefield acceleration in pure neon gas

    SciTech Connect (OSTI)

    Li, Song; Hafz, Nasr A. M., E-mail: nasr@sjtu.edu.cn; Mirzaie, Mohammad; Elsied, Ahmed M. M.; Ge, Xulei; Liu, Feng; Sokollik, Thomas; Chen, Min; Sheng, Zhengming; Zhang, Jie, E-mail: jzhang1@sjtu.edu.cn [Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Tao, Mengze; Chen, Liming [Bejing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-08-15T23:59:59.000Z

    We report on the generation of quasimonoenergetic electron beams by the laser wakefield acceleration of 17–50 TW, 30 fs laser pulses in pure neon gas jet. The generated beams have energies in the range 40–120?MeV and up to ?430 pC of charge. At a relatively high density, we observed multiple electron beamlets which has been interpreted by simulations to be the result of breakup of the laser pulse into multiple filaments in the plasma. Each filament drives its own wakefield and generates its own electron beamlet.

  6. Scaling of the Longitudinal Electric Field and Transformer Ratio in a Nonlinear Plasma Wakefield Accelerator

    SciTech Connect (OSTI)

    Blumenfeld, I.; /SLAC; Clayton, C.E.; /UCLA; Decker, F.J.; Hogan, M.J.; /SLAC; Huang, C.; /UCLA; Ischebeck, R.; Iverson, R.H.; /SLAC; Joshi, C.; /UCLA; Katsouleas, T.; /Southern California U.; Kirby, N.; /SLAC; Lu, W.; Marsh, K.A.; Mori, W.B.; /UCLA; Muggli, P.; Oz, E.; /Southern California U.; Siemann, R.H.; Walz, D.R.; /SLAC; Zhou, M.; /UCLA

    2012-06-12T23:59:59.000Z

    The scaling of the two important figures of merit, the transformer ratio T and the longitudinal electric field E{sub z}, with the peak drive-bunch current I{sub p}, in a nonlinear plasma wakefield accelerator is presented for the first time. The longitudinal field scales as I{sub P}{sup 0.623{+-}0.007}, in good agreement with nonlinear wakefield theory ({approx}I{sub P}{sup 0.5}), while the unloaded transformer ratio is shown to be greater than unity and scales weakly with the bunch current. The effect of bunch head erosion on both parameters is also discussed.

  7. Numerical Verification of the Power Transfer and Wakefield Coupling in the CLIC Two-Beam Accelerator

    E-Print Network [OSTI]

    Candel, Arno; NG, C; Rawat, V; Schussman, G; Ko, K; Syratchev, I; Grudiev, A; Wuensch, W

    2011-01-01T23:59:59.000Z

    The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its two-beam accelerator (TBA) concept envisions complex 3D structures, which must be modeled to high accuracy so that simulation results can be directly used to prepare CAD drawings for machining. The required simulations include not only the fundamental mode properties of the accelerating structures but also the Power Extraction and Transfer Structure (PETS), as well as the coupling between the two systems. Time-domain simulations will be performed to understand pulse formation, wakefield damping, fundamental power transfer and wakefield coupling in these structures. Applying SLAC’s parallel finite element code suite, these large-scale problems will be solved on some of the largest supercomputers available. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel two-beam accelerator scheme.

  8. Wakefield acceleration in atmospheric plasmas: a possible source of MeV electrons

    E-Print Network [OSTI]

    Arrayás, M; Seviour, R; Trueba, J L

    2015-01-01T23:59:59.000Z

    Intense electromagnetic pulses interacting with a plasma can create a wake of plasma oscillations. Electrons trapped in such oscillations can be accelerated under certain conditions to very high energies. We study the conditions for the wakefield acceleration to produce MeV electrons in atmospheric plasmas. This mechanism may explain the origin of MeV or runaway electrons needed in the current theories for the production of Terrestrial Gamma ray Flashes.

  9. Laser pulse propagation in inhomogeneous magnetoplasma channels and wakefield acceleration

    SciTech Connect (OSTI)

    Sharma, B. S., E-mail: bs-phy@yahoo.com; Jain, Archana [Government College Kota, Kota 324001 (India)] [Government College Kota, Kota 324001 (India); Jaiman, N. K. [Department of Pure and Applied Physics, University of Kota, Kota 324010 (India)] [Department of Pure and Applied Physics, University of Kota, Kota 324010 (India); Gupta, D. N. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)] [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Jang, D. G.; Suk, H. [Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)] [Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Kulagin, V. V. [Sternberg Astronomical Institute of Moscow State University, Moscow 119992 (Russian Federation)] [Sternberg Astronomical Institute of Moscow State University, Moscow 119992 (Russian Federation)

    2014-02-15T23:59:59.000Z

    Wakefield excitation in a preformed inhomogeneous parabolic plasma channel by an intense relativistic (?10{sup 19}?W/cm{sup 2}) circularly polarized Gaussian laser pulse is investigated analytically and numerically in the presence of an external longitudinal magnetic field. A three dimensional envelope equation for the evolution of the laser pulse is derived, which includes the effect of the nonparaxial and applied external magnetic field. A relation for the channel radius with the laser spot size is derived and examines numerically to see the external magnetic field effect. It is observed that the channel radius depends on the applied external magnetic field. An analytical expression for the wakefield is derived and validated with the help of a two dimensional particle in cell (2D PIC) simulation code. It is shown that the electromagnetic nature of the wakes in an inhomogeneous plasma channel makes their excitation nonlocal, which results in change of fields with time and external magnetic field due to phase mixing of the plasma oscillations with spatially varying frequencies. The magnetic field effect on perturbation of the plasma density and decreasing length is also analyzed numerically. In addition, it has been shown that the electron energy gain in the inhomogeneous parabolic magnetoplasma channel can be increased significantly compared with the homogeneous plasma channel.

  10. Injection and acceleration of electron bunch in a plasma wakefield produced by a chirped laser pulse

    SciTech Connect (OSTI)

    Afhami, Saeedeh; Eslami, Esmaeil, E-mail: eeslami@iust.ac.ir [Department of Physics, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114 (Iran, Islamic Republic of)

    2014-06-15T23:59:59.000Z

    An ultrashort laser pulse propagating in plasma can excite a nonlinear plasma wakefield which can trap and accelerate charged particles up to GeV. One-dimensional analysis of electron injection, trapping, and acceleration by different chirped pulses propagating in plasma is investigated numerically. In this paper, we inject electron bunches in front of the chirped pulses. It is indicated that periodical chirped laser pulse can trap electrons earlier than other pulses. It is shown that periodical chirped laser pulses lead to decrease the minimum momentum necessary to trap the electrons. This is due to the fact that periodical chirped laser pulses are globally much efficient than nonchirped pulses in the wakefield generation. It is found that chirped laser pulses could lead to much larger electron energy than that of nonchirped pulses. Relative energy spread has a lower value in the case of periodical chirped laser pulses.

  11. Emittance and Current of Electrons Trapped in a Plasma Wakefield Accelerator

    SciTech Connect (OSTI)

    Kirby, N; Blumenfeld, I; Clayton, C.E.; Decker, F.J.; Hogan, M.J.; Huang, C.; Ischebeck, R.; Iverson, R.H.; Joshi, C.; Katsouleas, T.; Lu, W.; Marsh, K.A.; Mori, W.B.; Muggli, P; Oz, E.; Siemann, R.H.; Walz, D.R.; Zhou, M.; /SLAC /UCLA /USC

    2008-09-24T23:59:59.000Z

    In recent experiments plasma electrons became trapped in a plasma wakefield accelerator (PWFA). The transverse size of these trapped electrons on a downstream diagnostic yields an upper limit measurement of transverse normalized emittance divided by peak current, {var_epsilon}{sub N,x}/I. The lowest upper limit for {var_epsilon}{sub N,x}/I measured in the experiment is 1.3 {center_dot} 10{sup -10} m/A.

  12. Proton-driven plasma wakefield acceleration: a path to the future of high-energy particle physics

    E-Print Network [OSTI]

    Assmann, R; Bohl, T; Bracco, C; Buttenschon, B; Butterworth, A; Caldwell, A; Chattopadhyay, S; Cipiccia, S; Feldbaumer, E; Fonseca, R A; Goddard, B; Gross, M; Grulke, O; Gschwendtner, E; Holloway, J; Huang, C; Jaroszynski, D; Jolly, S; Kempkes, P; Lopes, N; Lotov, K; Machacek, J; Mandry, S R; McKenzie, J W; Meddahi, M; Militsyn, B L; Moschuering, N; Muggli, P; Najmudin, Z; Noakes, T C Q; Norreys, P A; Oz, E; Pardons, A; Petrenko, A; Pukhov, A; Rieger, K; Reimann, O; Ruhl, H; Shaposhnikova, E; Silva, L O; Sosedkin, A; Tarkeshian, R; Trines, R M G N; Tuckmantel, T; Vieira, J; Vincke, H; Wing, M; Xia, G

    2014-01-01T23:59:59.000Z

    New acceleration technology is mandatory for the future elucidation of fundamental particles and their interactions. A promising approach is to exploit the properties of plasmas. Past research has focused on creating large-amplitude plasma waves by injecting an intense laser pulse or an electron bunch into the plasma. However, the maximum energy gain of electrons accelerated in a single plasma stage is limited by the energy of the driver. Proton bunches are the most promising drivers of wakefields to accelerate electrons to the TeV energy scale in a single stage. An experimental program at CERN -- the AWAKE experiment -- has been launched to study in detail the important physical processes and to demonstrate the power of proton-driven plasma wakefield acceleration. Here we review the physical principles and some experimental considerations for a future proton-driven plasma wakefield accelerator.

  13. Proton-driven plasma wakefield acceleration: a path to the future of high-energy particle physics

    E-Print Network [OSTI]

    Assmann, R; Bohl, T; Bracco, C; Buttenschon, B; Butterworth, A; Caldwell, A; Chattopadhyay, S; Cipiccia, S; Feldbaumer, E; Fonseca, R A; Goddard, B; Gross, M; Grulke, O; Gschwendtner, E; Holloway, J; Huang, C; Jaroszynski, D; Jolly, S; Kempkes, P; Lopes, N; Lotov, K; Machacek, J; Mandry, S R; McKenzie, J W; Meddahi, M; Militsyn, B L; Moschuering, N; Muggli, P; Najmudin, Z; Noakes, T C Q; Norreys, P A; Oz, E; Pardons, A; Petrenko, A; Pukhov, A; Rieger, K; Reimann, O; Ruhl, H; Shaposhnikova, E; Silva, L O; Sosedkin, A; Tarkeshian, R; Trines, R M G N; Tuckmantel, T; Vieira, J; Vincke, H; Wing, M; Xia G , G

    2014-01-01T23:59:59.000Z

    New acceleration technology is mandatory for the future elucidation of fundamental particles and their interactions. A promising approach is to exploit the properties of plasmas. Past research has focused on creating large-amplitude plasma waves by injecting an intense laser pulse or an electron bunch into the plasma. However, the maximum energy gain of electrons accelerated in a single plasma stage is limited by the energy of the driver. Proton bunches are the most promising drivers of wakefields to accelerate electrons to the TeV energy scale in a single stage. An experimental program at CERN { the AWAKE experiment { has been launched to study in detail the important physical processes and to demonstrate the power of proton-driven plasma wakefield acceleration. Here we review the physical principles and some experimental considerations for a future proton-driven plasma wakefield accelerator.

  14. Energy Doubling of 42 GeV Electrons in a Meter-scale Plasma Wakefield Accelerator

    SciTech Connect (OSTI)

    Blumenfeld, Ian; Clayton, Christopher E.; Decker, Franz-Josef; Hogan, Mark J.; Huang, Chengkun; Ischebeck, Rasmus; Iverson, Richard; Joshi, Chandrashekhar; Katsouleas,; Kirby, Neil; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; Muggli, Patric; Oz, Erdem; Siemann, Robert H.; Walz, Dieter; Zhou, Miaomiao; /SLAC /UCLA /Southern California U.

    2007-03-14T23:59:59.000Z

    The energy frontier of particle physics is several trillion electron volts, but colliders capable of reaching this regime (such as the Large Hadron Collider and the International Linear Collider) are costly and time-consuming to build; it is therefore important to explore new methods of accelerating particles to high energies. Plasma-based accelerators are particularly attractive because they are capable of producing accelerating fields that are orders of magnitude larger than those used in conventional colliders. In these accelerators, a drive beam (either laser or particle) produces a plasma wave (wakefield) that accelerates charged particles. The ultimate utility of plasma accelerators will depend on sustaining ultrahigh accelerating fields over a substantial length to achieve a significant energy gain. Here we show that an energy gain of more than 42 GeV is achieved in a plasma wakefield accelerator of 85 cm length, driven by a 42 GeV electron beam at the Stanford Linear Accelerator Center (SLAC). The results are in excellent agreement with the predictions of three-dimensional particle-in-cell simulations. Most of the beam electrons lose energy to the plasma wave, but some electrons in the back of the same beam pulse are accelerated with a field of {approx} 52GV m{sup -1}. This effectively doubles their energy, producing the energy gain of the 3-km-long SLAC accelerator in less than a meter for a small fraction of the electrons in the injected bunch. This is an important step towards demonstrating the viability of plasma accelerators for high-energy physics applications.

  15. Numerical modeling of multi-GeV laser wakefield electron acceleration inside a dielectric capillary tube

    SciTech Connect (OSTI)

    Paradkar, B. S.; Cros, B.; Maynard, G. [Laboratoire de Physique des Gaz et des Plasmas, University Paris Sud 11-CNRS, Orsay (France)] [Laboratoire de Physique des Gaz et des Plasmas, University Paris Sud 11-CNRS, Orsay (France); Mora, P. [Centre de Physique Theorique, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France)] [Centre de Physique Theorique, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France)

    2013-08-15T23:59:59.000Z

    Numerical modeling of laser wakefield electron acceleration inside a gas filled dielectric capillary tube is presented. Guiding of a short pulse laser inside a dielectric capillary tube over a long distance (?1 m) and acceleration of an externally injected electron bunch to ultra-relativistic energies (?5-10 GeV) are demonstrated in the quasi-linear regime of laser wakefield acceleration. Two dimensional axisymmetric simulations were performed with the code WAKE-EP (Extended Performances), which allows computationally efficient simulations of such long scale plasma. The code is an upgrade of the quasi-static particle code, WAKE [P. Mora and T. M. Antonsen, Jr., Phys. Plasmas 4, 217 (1997)], to simulate the acceleration of an externally injected electron bunch (including beam loading effect) and propagation of the laser beam inside a dielectric capillary. The influence of the transverse electric field of the plasma wake on the radial loss of the accelerated electrons to the dielectric wall is investigated. The stable acceleration of electrons to multi-GeV energy with a non-resonant laser pulse with a large spot-size is demonstrated.

  16. Sub-femtosecond electron bunches created by direct laser acceleration in a laser wakefield accelerator with ionization injection

    E-Print Network [OSTI]

    Lemos, N; Marsh, K A; Joshi, C

    2015-01-01T23:59:59.000Z

    In this work, we will show through three-dimensional particle-in-cell simulations that direct laser acceleration in laser a wakefield accelerator can generate sub-femtosecond electron bunches. Two simulations were done with two laser pulse durations, such that the shortest laser pulse occupies only a fraction of the first bubble, whereas the longer pulse fills the entire first bubble. In the latter case, as the trapped electrons moved forward and interacted with the high intensity region of the laser pulse, micro-bunching occurred naturally, producing 0.5 fs electron bunches. This is not observed in the short pulse simulation.

  17. Detailed dynamics of electron beams self-trapped and accelerated in a self-modulated laser wakefield

    E-Print Network [OSTI]

    Umstadter, Donald

    . These features are explained by analysis and test particle simulations of electron dynamics during acceleration wave,1 such as the plasma wakefield accel- erator, the plasma beat-wave accelerator, the Laser Wake the linear dephasing limit, and explained it, using Particle-In-Cell PIC simulations, as a result

  18. Laser-PlasmaWakefield Acceleration with Higher Order Laser Modes

    E-Print Network [OSTI]

    Geddes, C.G.R.

    2011-01-01T23:59:59.000Z

    Design considerations for a laser-plasma linear collider,"E.Esarey, and W.P.Leemans, "Free-electron laser driven bythe LBNL laser-plasma accelerator," in Proc. Adv. Acc. Con.

  19. Correlation of Beam Parameters to Decelerating Gradient in the E-167 Plasma Wakefield Acceleration Experiment

    SciTech Connect (OSTI)

    Blumenfeld, I.; Berry, M.; Decker, F.-J.; Hogan, M.J.; Ischebeck, R.; Iverson, R.; Kirby, N.; Siemann, R.; Walz, D.; /SLAC; Clayton, C.E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.B.; Zhou, M.; /UCLA; Katsouleas, T.C.; Muggli, P.; Oz, E.; /Southern California U.

    2007-06-27T23:59:59.000Z

    Recent experiments at SLAC have shown that high gradient acceleration of electrons is achievable in meter scale plasmas [1,2]. Results from these experiments show that the wakefield is sensitive to parameters in the electron beam which drives it. In the experiment the bunch length and beam waist location were varied systematically at constant charge. Here we investigate the correlation of peak beam current to the decelerating gradient. Limits on the transformer ratio will also be discussed. The results are compared to simulation.

  20. Multi-bunch Plasma Wakefield Acceleration at ATF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 P D 9.7972e+18 3-D 0.002032 E Ewb 0.02052 Kp 590 r 15 Wake build-up at resonance: 3% detuning accelerates later bunches 0 0.5 1 1.5 -0.03 -0.02 -0.01...

  1. Application of High-performance Visual Analysis Methods to Laser Wakefield Particle Acceleration Data

    SciTech Connect (OSTI)

    Rubel, Oliver; Prabhat, Mr.; Wu, Kesheng; Childs, Hank; Meredith, Jeremy; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Ahern, Sean; Weber, Gunther H.; Messmer, Peter; Hagen, Hans; Hamann, Bernd; Bethel, E. Wes

    2008-08-28T23:59:59.000Z

    Our work combines and extends techniques from high-performance scientific data management and visualization to enable scientific researchers to gain insight from extremely large, complex, time-varying laser wakefield particle accelerator simulation data. We extend histogram-based parallel coordinates for use in visual information display as well as an interface for guiding and performing data mining operations, which are based upon multi-dimensional and temporal thresholding and data subsetting operations. To achieve very high performance on parallel computing platforms, we leverage FastBit, a state-of-the-art index/query technology, to accelerate data mining and multi-dimensional histogram computation. We show how these techniques are used in practice by scientific researchers to identify, visualize and analyze a particle beam in a large, time-varying dataset.

  2. ACE3P Computations of Wakefield Coupling in the CLIC Two-Beam Accelerator

    SciTech Connect (OSTI)

    Candel, Arno; Li, Z.; Ng, C.; Rawat, V.; Schussman, G.; Ko, K.; /SLAC; Syratchev, I.; Grudiev, A.; Wuensch, W.; /CERN

    2010-10-27T23:59:59.000Z

    The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its novel two-beam accelerator concept envisions rf power transfer to the accelerating structures from a separate high-current decelerator beam line consisting of power extraction and transfer structures (PETS). It is critical to numerically verify the fundamental and higher-order mode properties in and between the two beam lines with high accuracy and confidence. To solve these large-scale problems, SLAC's parallel finite element electromagnetic code suite ACE3P is employed. Using curvilinear conformal meshes and higher-order finite element vector basis functions, unprecedented accuracy and computational efficiency are achieved, enabling high-fidelity modeling of complex detuned structures such as the CLIC TD24 accelerating structure. In this paper, time-domain simulations of wakefield coupling effects in the combined system of PETS and the TD24 structures are presented. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel CLIC two-beam accelerator scheme.

  3. An ultrashort pulse ultra-violet radiation undulator source driven by a laser plasma wakefield accelerator

    SciTech Connect (OSTI)

    Anania, M. P. [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); INFN, Laboratori Nazionali di Frascati, I-00044 Frascati (Italy); Brunetti, E.; Wiggins, S. M.; Grant, D. W.; Welsh, G. H.; Issac, R. C.; Cipiccia, S.; Shanks, R. P.; Manahan, G. G.; Aniculaesei, C.; Jaroszynski, D. A., E-mail: d.a.jaroszynski@strath.ac.uk [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Geer, S. B. van der; Loos, M. J. de [Pulsar Physics, Burghstraat 47, 5614 BC Eindhoven (Netherlands); Poole, M. W.; Shepherd, B. J. A.; Clarke, J. A. [ASTeC, STFC, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Gillespie, W. A. [SUPA, School of Engineering, Physics and Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom); MacLeod, A. M. [School of Computing and Creative Technologies, University of Abertay Dundee, Dundee DD1 1HG (United Kingdom)

    2014-06-30T23:59:59.000Z

    Narrow band undulator radiation tuneable over the wavelength range of 150–260?nm has been produced by short electron bunches from a 2?mm long laser plasma wakefield accelerator based on a 20?TW femtosecond laser system. The number of photons measured is up to 9?×?10{sup 6} per shot for a 100 period undulator, with a mean peak brilliance of 1?×?10{sup 18} photons/s/mrad{sup 2}/mm{sup 2}/0.1% bandwidth. Simulations estimate that the driving electron bunch r.m.s. duration is as short as 3 fs when the electron beam has energy of 120–130?MeV with the radiation pulse duration in the range of 50–100 fs.

  4. Measurements of the critical power for self-injection of electrons in a laser wakefield accelerator

    SciTech Connect (OSTI)

    Froula, D H; Clayton, C E; Doppner, T; Fonseca, R A; Marsh, K A; Barty, C J; Divol, L; Glenzer, S H; Joshi, C; Lu, W; Martins, S F; Michel, P; Mori, W; Palastro, J P; Pollock, B B; Pak, A; Ralph, J E; Ross, J S; Siders, C; Silva, L O; Wang, T

    2009-06-02T23:59:59.000Z

    A laser wakefield acceleration study has been performed in the matched, self-guided, blow-out regime where a 10 J, 60 fs laser produced 720 {+-} 50 MeV quasi-monoenergetic electrons with a divergence of {Delta}{theta} = 2.85 {+-} 0.15 mRad. While maintaining a nearly constant plasma density (3 x 10{sup 18} cm{sup -3}), a linear electron energy gain was measured from 100 MeV to 700 MeV when the plasma length was scaled from 3 mm to 8 mm. Absolute charge measurements indicate that self-injection occurs when P/P{sub cr} > 4 and saturates around 100 pC for P/P{sub cr} > 12. The results are compared with both analytical scalings and full 3D particle-in-cell simulations.

  5. Quasimonoenergetic collimated electron beams from a laser wakefield acceleration in low density pure nitrogen

    SciTech Connect (OSTI)

    Tao, Mengze [Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Bejing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Hafz, Nasr A. M., E-mail: nasr@sjtu.edu.cn; Li, Song; Mirzaie, Mohammad; Elsied, Ahmed M. M.; Ge, Xulei; Liu, Feng; Sokollik, Thomas; Sheng, Zhengming; Zhang, Jie, E-mail: jzhang1@sjtu.edu.cn [Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Chen, Liming [Bejing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-07-15T23:59:59.000Z

    A laser wakefield acceleration (LWFA) experiment is performed using 30 TW, 30 fs, and 800?nm laser pulses, focused onto pure nitrogen plasma having relatively low densities in the range of 0.8×10{sup 18}?cm{sup ?3} to 2.7×10{sup 18}?cm{sup ?3}. Electron beams having a low divergence of ?3??mrad (full-width at half-maximum) and quasi-monoenergetic peak energies of ?105??MeV are achieved over 4-mm interaction length. The total electron beam charge reached to 2 nC, however, only 1%–2% of this (tens of pC) had energies >35?MeV. We tried different conditions to optimize the electron beam acceleration; our experiment verifies that lower nitrogen plasma densities are generating electron beams with high quality in terms of divergence, charge, pointing stability, and maximum energy. In addition, if LWFA is to be widely used as a basis for compact particle accelerators in the future, therefore, from the economic and safety points of view we propose the use of nitrogen gas rather than helium or hydrogen.

  6. Two Channel Dielectric-Lined Rectangular High Transformer Ratio Accelerator Structure Experiment

    SciTech Connect (OSTI)

    Shchelkunov, S. V.; LaPointe, M. A. [Beam Physics Laboratory, Yale University, 272 Whitney Avenue, New Haven, CT 06511 (United States); Hirshfield, J. L. [Beam Physics Laboratory, Yale University, 272 Whitney Avenue, New Haven, CT 06511 (United States); Omega-P, Inc., 258 Bradley St., New Haven, CT 06510 (United States); Marshall, T. C. [Columbia University, New York, NY 10027 (United States); Omega-P, Inc., 258 Bradley St., New Haven, CT 06510 (United States); Sotnikov, G. [NSC Kharkov Institute of Physics and Technology, Kharkov (Ukraine); Omega-P, Inc., 258 Bradley St., New Haven, CT 06510 (United States); Gai, Wei; Conde, M.; Power, J.; Mihalcea, D. [Argonne National Laboratory, Argonne, IL 60439 (United States)

    2010-11-04T23:59:59.000Z

    Current status of a two-channel cm-scale rectangular dielectric lined wakefield accelerator structure is described. This structure is installed at the Argonne Wakefield Accelerator facility (AWA), and is presently being evaluated. The device has a transformer ratio of {approx}12.5:1. When driven by a {approx}50 nC single drive bunch it is expected to obtain {approx}6 MV/m acceleration gradient. Related issues are discussed.

  7. Wakefield and RF Kicks Due to Coupler Asymmetry in TESLA-Type Accelerating Cavities

    SciTech Connect (OSTI)

    Bane, K.L.F.; Adolphsen, C.; Li, Z.; /SLAC; Dohlus, M.; Zagorodnov, I.; /DESY; Gonin, I.; Lunin, A.; Solyak, N.; Yakovlev, V.; /Fermilab; Gjonaj, E.; Weiland, T.; /Darmstadt, Tech. Hochsch.

    2008-07-07T23:59:59.000Z

    In a future linear collider, such as the International Linear Collider (ILC), trains of high current, low emittance bunches will be accelerated in a linac before colliding at the interaction point. Asymmetries in the accelerating cavities of the linac will generate fields that will kick the beam transversely and degrade the beam emittance and thus the collider performance. In the main linac of the ILC, which is filled with TESLA-type superconducting cavities, it is the fundamental (FM) and higher mode (HM) couplers that are asymmetric and thus the source of such kicks. The kicks are of two types: one, due to (the asymmetry in) the fundamental RF fields and the other, due to transverse wakefields that are generated by the beam even when it is on axis. In this report we calculate the strength of these kicks and estimate their effect on the ILC beam. The TESLA cavity comprises nine cells, one HM coupler in the upstream end, and one (identical, though rotated) HM coupler and one FM coupler in the downstream end (for their shapes and location see Figs. 1, 2) [1]. The cavity is 1.1 m long, the iris radius 35 mm, and the coupler beam pipe radius 39 mm. Note that the couplers reach closer to the axis than the irises, down to a distance of 30 mm.

  8. Modeling Self-Ionized Plasma Wakefield Acceleration for Afterburner Parameters Using QuickPIC

    SciTech Connect (OSTI)

    Zhou, M.; Clayton, C.E.; Decyk, V.K.; Huang, C.; Johnson, D.K.; Joshi, C.; Lu, W.; Mori, W.B.; Tsung, F.S.; /UCLA; Deng, S.; Katsouleas, T.; Muggli, P.; Oz, E.; /Southern; Decker, F.-J.; Iverson, R.; O'Connel, C.; Walz, D.; /SLAC

    2006-01-25T23:59:59.000Z

    For the parameters envisaged in possible afterburner stages[1] of a plasma wakefield accelerator (PWFA), the self-fields of the particle beam can be intense enough to tunnel ionize some neutral gases. Tunnel ionization has been investigated as a way for the beam itself to create the plasma, and the wakes generated may differ from those generated in pre-ionized plasmas[2],[3]. However, it is not practical to model the whole stage of PWFA with afterburner parameters using the models described in [2] and [3]. Here we describe the addition of a tunnel ionization package using the ADK model into QuickPIC, a highly efficient quasi-static particle in cell (PIC) code which can model a PWFA with afterburner parameters. Comparison between results from OSIRIS (a full PIC code with ionization) and from QuickPIC with the ionization package shows good agreement. Preliminary results using parameters relevant to the E164X experiment and the upcoming E167 experiment at SLAC are shown.

  9. Recent Experiment on Wakefield Transformer Ratio Enhancement at AWA

    SciTech Connect (OSTI)

    Jing, C.; Kanareykin, A. [Euclid Techlabs, LLC, 5900 Harper Rd, Solon, OH 44139 (United States); High Energy Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Power, J. G.; Conde, M.; Liu, W.; Yusof, Z.; Gai, W. [High Energy Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2010-11-04T23:59:59.000Z

    One technique to enhance the transformer ratio beyond the ordinary limit of 2 in a collinear wakefield acceleration scheme is to use a ramped bunched train (RBT). The first experimental demonstration has been reported in [1]. However, due to the mismatch between the beam bunch length and frequency of the accelerating structure, the observed transformer ratio was only marginally above 2 in the earlier experiment. We recently revisited this experiment with an optimized bunch length using the laser stacking technique at Argonne Wakefield Accelerator (AWA) facility. A transformer ratio of 3.4 has been measured using two drive bunches. Attempting to use four drive bunches met with major challenges. In this article, measurement results and data analysis from these experiments are presented in detail.

  10. VOLUME 82, NUMBER 6 P H Y S I C A L R E V I E W L E T T E R S 8 FEBRUARY 1999 Multimode Analysis of the Hollow Plasma Channel Wakefield Accelerator

    E-Print Network [OSTI]

    Wurtele, Jonathan

    ]. In conventional accelerators, the size of these accel- erating fields is limited by breakdown. For two decades wakefield accelerator, the plasma wave is excited by the self-fields of an intense relativistic particle- neous plasma. These properties make it well suited as a structure for both particle beam wakefield

  11. Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate

    SciTech Connect (OSTI)

    He, Z.-H.; Thomas, A. G. R.; Nees, J. A.; Hou, B.; Krushelnick, K. [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48106-2099 (United States)] [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48106-2099 (United States); Beaurepaire, B.; Malka, V.; Faure, J. [Laboratoire d'Optique Appliquee, ENSTA-CNRS-Ecole Polytechnique, UMR 7639, 91761 Palaiseau (France)] [Laboratoire d'Optique Appliquee, ENSTA-CNRS-Ecole Polytechnique, UMR 7639, 91761 Palaiseau (France)

    2013-02-11T23:59:59.000Z

    We show that electron bunches in the 50-100 keV range can be produced from a laser wakefield accelerator using 10 mJ, 35 fs laser pulses operating at 0.5 kHz. It is shown that using a solenoid magnetic lens, the electron bunch distribution can be shaped. The resulting transverse and longitudinal coherence is suitable for producing diffraction images from a polycrystalline 10 nm aluminum foil. The high repetition rate, the stability of the electron source, and the fact that its uncorrelated bunch duration is below 100 fs make this approach promising for the development of sub-100 fs ultrafast electron diffraction experiments.

  12. Laser Wakefield Acceleration: Structural and Dynamic Studies. Final Technical Report ER40954

    SciTech Connect (OSTI)

    Downer, Michael C.

    2014-12-19T23:59:59.000Z

    Particle accelerators enable scientists to study the fundamental structure of the universe, but have become the largest and most expensive of scientific instruments. In this project, we advanced the science and technology of laser-plasma accelerators, which are thousands of times smaller and less expensive than their conventional counterparts. In a laser-plasma accelerator, a powerful laser pulse exerts light pressure on an ionized gas, or plasma, thereby driving an electron density wave, which resembles the wake behind a boat. Electrostatic fields within this plasma wake reach tens of billions of volts per meter, fields far stronger than ordinary non-plasma matter (such as the matter that a conventional accelerator is made of) can withstand. Under the right conditions, stray electrons from the surrounding plasma become trapped within these “wake-fields”, surf them, and acquire energy much faster than is possible in a conventional accelerator. Laser-plasma accelerators thus might herald a new generation of compact, low-cost accelerators for future particle physics, x-ray and medical research. In this project, we made two major advances in the science of laser-plasma accelerators. The first of these was to accelerate electrons beyond 1 gigaelectronvolt (1 GeV) for the first time. In experimental results reported in Nature Communications in 2013, about 1 billion electrons were captured from a tenuous plasma (about 1/100 of atmosphere density) and accelerated to 2 GeV within about one inch, while maintaining less than 5% energy spread, and spreading out less than ˝ milliradian (i.e. ˝ millimeter per meter of travel). Low energy spread and high beam collimation are important for applications of accelerators as coherent x-ray sources or particle colliders. This advance was made possible by exploiting unique properties of the Texas Petawatt Laser, a powerful laser at the University of Texas at Austin that produces pulses of 150 femtoseconds (1 femtosecond is 10-15 seconds) in duration and 150 Joules in energy (equivalent to the muzzle energy of a small pistol bullet). This duration was well matched to the natural electron density oscillation period of plasma of 1/100 atmospheric density, enabling efficient excitation of a plasma wake, while this energy was sufficient to drive a high-amplitude wake of the right shape to produce an energetic, collimated electron beam. Continuing research is aimed at increasing electron energy even further, increasing the number of electrons captured and accelerated, and developing applications of the compact, multi-GeV accelerator as a coherent, hard x-ray source for materials science, biomedical imaging and homeland security applications. The second major advance under this project was to develop new methods of visualizing the laser-driven plasma wake structures that underlie laser-plasma accelerators. Visualizing these structures is essential to understanding, optimizing and scaling laser-plasma accelerators. Yet prior to work under this project, computer simulations based on estimated initial conditions were the sole source of detailed knowledge of the complex, evolving internal structure of laser-driven plasma wakes. In this project we developed and demonstrated a suite of optical visualization methods based on well-known methods such as holography, streak cameras, and coherence tomography, but adapted to the ultrafast, light-speed, microscopic world of laser-driven plasma wakes. Our methods output images of laser-driven plasma structures in a single laser shot. We first reported snapshots of low-amplitude laser wakes in Nature Physics in 2006. We subsequently reported images of high-amplitude laser-driven plasma “bubbles”, which are important for producing electron beams with low energy spread, in Physical Review Letters in 2010. More recently, we have figured out how to image laser-driven structures that change shape while propagating in a single laser shot. The latter techniques, which use the methods of computerized tomography, were demonstrated on test objects – e.g. laser-d

  13. Facilities and Centers | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Argonne Tandem Linac Accelerator System Argonne-Northwestern Solar Energy Research Center Center for Nanoscale Materials Facilities & Centers Argonne's...

  14. Improvements to laser wakefield accelerated electron beam stability, divergence, and energy spread using three-dimensional printed two-stage gas cell targets

    SciTech Connect (OSTI)

    Vargas, M.; Schumaker, W.; He, Z.-H.; Zhao, Z.; Behm, K.; Chvykov, V.; Hou, B.; Krushelnick, K.; Maksimchuk, A.; Yanovsky, V.; Thomas, A. G. R., E-mail: agrt@umich.edu [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2014-04-28T23:59:59.000Z

    High intensity, short pulse lasers can be used to accelerate electrons to ultra-relativistic energies via laser wakefield acceleration (LWFA) [T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979)]. Recently, it was shown that separating the injection and acceleration processes into two distinct stages could prove beneficial in obtaining stable, high energy electron beams [Gonsalves et al., Nat. Phys. 7, 862 (2011); Liu et al., Phys. Rev. Lett. 107, 035001 (2011); Pollock et al., Phys. Rev. Lett. 107, 045001 (2011)]. Here, we use a stereolithography based 3D printer to produce two-stage gas targets for LWFA experiments on the HERCULES laser system at the University of Michigan. We demonstrate substantial improvements to the divergence, pointing stability, and energy spread of a laser wakefield accelerated electron beam compared with a single-stage gas cell or gas jet target.

  15. User Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Facilities Advanced Photon Source Argonne Leadership Computing Facility Argonne Tandem Linear Accelerator System Center for Nanoscale Materials Transportation Research and...

  16. COAXIAL TWO-CHANNEL DIELECTRIC WAKE FIELD ACCELERATOR

    SciTech Connect (OSTI)

    Hirshfield, Jay L. [Omega-P, Inc.

    2013-04-30T23:59:59.000Z

    Theory, computations, and experimental apparatus are presented that describe and are intended to confirm novel properties of a coaxial two-channel dielectric wake field accelerator. In this configuration, an annular drive beam in the outer coaxial channel excites multimode wakefields which, in the inner channel, can accelerate a test beam to an energy much higher than the energy of the drive beam. This high transformer ratio is the result of judicious choice of the dielectric structure parameters, and of the phase separation between drive bunches and test bunches. A structure with cm-scale wakefields has been build for tests at the Argonne Wakefield Accelerator Laboratory, and a structure with mm-scale wakefields has been built for tests at the SLAC FACET facility. Both tests await scheduling by the respective facilities.

  17. Plasma wakefields driven by an incoherent combination of laser pulses: a path towards high-average power laser-plasma accelerators

    SciTech Connect (OSTI)

    Benedetti, C.; Schroeder, C.B.; Esarey, E.; Leemans, W.P.

    2014-05-01T23:59:59.000Z

    he wakefield generated in a plasma by incoherently combining a large number of low energy laser pulses (i.e.,without constraining the pulse phases) is studied analytically and by means of fully-self-consistent particle-in-cell simulations. The structure of the wakefield has been characterized and its amplitude compared with the amplitude of the wake generated by a single (coherent) laser pulse. We show that, in spite of the incoherent nature of the wakefield within the volume occupied by the laser pulses, behind this region the structure of the wakefield can be regular with an amplitude comparable or equal to that obtained from a single pulse with the same energy. Wake generation requires that the incoherent structure in the laser energy density produced by the combined pulses exists on a time scale short compared to the plasma period. Incoherent combination of multiple laser pulses may enable a technologically simpler path to high-repetition rate, high-average power laser-plasma accelerators and associated applications.

  18. Single Bunch Wakefields in the CERN-PSI-ELETTRA X-band Linear Accelerator

    E-Print Network [OSTI]

    El-Ashmawy, Mostafa; Dehler, Micha; Raguin, Jean-Yves; Riddone, Germana; Zennaro, Riccardo

    2010-01-01T23:59:59.000Z

    FERMI@ELETTRA and PSI-XFEL are 4th Generation Light Sources that require high quality electron beam at the entrance of the undulator chains. In this context, a specially developed X-band structure with integrated alignment monitors will be used to mitigate the nonlinearities in the longitudinal phase space due to the second order RF time curvature and the second order momentum compaction term of chicane compressor. The knowledge of the transverse and longitudinal short range wakefields in the X-band structure is essential to evaluate the beam quality in terms of longitudinal energy spread and transverse kick spread. We have used the ABCI code to numerically evaluate the transverse and longitudinal wake potentials for short bunches in this structure

  19. Recent Progress at LBNL on Characterization of Laser Wakefield Accelerated Electron Bunches using Coherent Transition Radiation

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    RECENT PROGRESS AT LBNL ON CHARACTERIZATION OF LASERBerkeley National Laboratory (LBNL), Berkeley, CA 94720,USA Abstract At LBNL, laser wake?eld accelerators (LWFA) can

  20. Drive Beam Shaping and Witness Bunch Generation for the Plasma Wakefield Accelerator

    SciTech Connect (OSTI)

    England, R. J.; Frederico, J.; Hogan, M. J. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Muggli, P. [University of Southern California, Los Angeles, CA 90089 (United States); Joshi, C. [University of California Los Angeles, Los Angeles, CA 90024 (United States)

    2010-11-04T23:59:59.000Z

    High transformer ratio operation of the plasma wake field accelerator requires a tailored drive beam current profile followed by a short witness bunch. We discuss techniques for generating the requisite dual bunches and for obtaining the desired drive beam profile, with emphasis on the FACET experiment at SLAC National Accelerator Laboratory.

  1. ARGONNE NATIONAL LABORATORY May

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARGONNE NATIONAL LABORATORY May 9, 1994 Light Source Note: LS234 Comparison of the APS and UGIMAG Helmholtz Coil Systems David W. Carnegie Accelerator Systems Division Advanced...

  2. Development of high gradient laser wakefield accelerators towards nuclear detection applications at LBNL

    E-Print Network [OSTI]

    Geddes, Cameron GR

    2010-01-01T23:59:59.000Z

    detection applications at LBNL Cameron G.R. Geddes 1 , DavidLeemans 1,4 LOASIS Program, LBNL, 1 Cyclotron Rd MS 71-259,accelerator experiments at LBNL demonstrated narrow energy

  3. Undulator-Based Laser Wakefield Accelerator Electron Beam Energy Spread and Emittance Diagnostic

    SciTech Connect (OSTI)

    Bakeman, M.S.; Van Tilborg, J.; Nakamura, K.; Gonsalves, A.; Osterhoff, J.; Sokollik, T.; Lin, C.; Robinson, K.E.; Schroeder, C.B.; Toth, Cs.; Weingartner, R.; Gruner, F.; Esarey, E.; Leemans, W.P.

    2010-06-01T23:59:59.000Z

    The design and current status of experiments to couple the Tapered Hybrid Undulator (THUNDER) to the Lawrence Berkeley National Laboratory (LBNL) laser plasma accelerator (LPA) to measure electron beam energy spread and emittance are presented.

  4. Science History - 2013 | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    50 years ago, Argonne finished building the Zero Gradient Synchrotron, a proton accelerator for high-energy physics. Former Argonne director Albert Crewe stands beside this...

  5. Transverse self-modulation of ultra-relativistic lepton beams in the plasma wakefield accelerator

    E-Print Network [OSTI]

    Vieira, J; Mori, W B; Silva, L O; Muggli, P

    2015-01-01T23:59:59.000Z

    The transverse self-modulation of ultra-relativistic, long lepton bunches in high-density plasmas is explored through full-scale particle-in-cell simulations. We demonstrate that long SLAC-type electron and positron bunches can become strongly self-modulated over centimeter distances, leading to wake excitation in the blowout regime with accelerating fields in excess of 20 GV/m. We show that particles energy variations exceeding 10 GeV can occur in meter-long plasmas. We find that the self-modulation of positively and negatively charged bunches differ when the blowout is reached. Seeding the self-modulation instability suppresses the competing hosing instability. This work reveals that a proof-of-principle experiment to test the physics of bunch self-modulation can be performed with available lepton bunches and with existing experimental apparatus and diagnostics.

  6. Visualizing Particle-in-Cell Simulation of Laser Wakefield Particle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of times greater than those obtained in conventional particle accelerators. LWFAs use the electric field of a plasma wave - the wakefield - driven by the radiation pressure of an...

  7. Terahertz radiation as a bunch diagnostic for laser-wakefield-accelerated electron bunches

    SciTech Connect (OSTI)

    van Tilborg, Jeroen; Schroeder, Carl; Filip, Catalin; Toth, Csaba; Geddes, Cameron; Fubiani, Gwenael; Esarey, Eric; Leemans, Wim

    2011-06-17T23:59:59.000Z

    Experimental results are reported from two measurement techniques (semiconductor switching and electro-optic sampling) that allow temporal characterization of electron bunches produced by a laser-driven plasma-based accelerator. As femtosecond electron bunches exit the plasma-vacuum interface, coherent transition radiation (at THz frequencies) is emitted. Measuring the properties of this radiation allows characterization of the electron bunches. Theoretical work on the emission mechanism is presented, including a model that calculates the THz wave form from a given bunch profile. It is found that the spectrum of the THz pulse is coherent up to the 200 {micro}m thick crystal (ZnTe) detection limit of 4 THz, which corresponds to the production of sub-50 fs (rms) electron bunch structure. The measurements demonstrate both the shot-to-shot stability of bunch parameters that are critical to THz emission (such as total charge and bunch length), as well as femtosecond synchronization among bunch, THz pulse, and laser beam.

  8. X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator

    SciTech Connect (OSTI)

    Kneip, S. [Blackett Laboratory, Imperial College London, London SW7 2AZ (United Kingdom); Center for Ultrafast Optical Science, University of Michigan, Ann Arbor 48109 (United States); McGuffey, C.; Dollar, F.; Chvykov, V.; Kalintchenko, G.; Krushelnick, K.; Maksimchuk, A.; Mangles, S. P. D.; Matsuoka, T.; Schumaker, W.; Thomas, A. G. R.; Yanovsky, V. [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor 48109 (United States); Bloom, M. S.; Najmudin, Z.; Palmer, C. A. J.; Schreiber, J. [Blackett Laboratory, Imperial College London, London SW7 2AZ (United Kingdom)

    2011-08-29T23:59:59.000Z

    We show that x-rays from a recently demonstrated table top source of bright, ultrafast, coherent synchrotron radiation [Kneip et al., Nat. Phys. 6, 980 (2010)] can be applied to phase contrast imaging of biological specimens. Our scheme is based on focusing a high power short pulse laser in a tenuous gas jet, setting up a plasma wakefield accelerator that accelerates and wiggles electrons analogously to a conventional synchrotron, but on the centimeter rather than tens of meter scale. We use the scheme to record absorption and phase contrast images of a tetra fish, damselfly and yellow jacket, in particular highlighting the contrast enhancement achievable with the simple propagation technique of phase contrast imaging. Coherence and ultrafast pulse duration will allow for the study of various aspects of biomechanics.

  9. Argonne Tandem Linac Accelerator System (ATLAS) | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperational Management » HistoryAugustAreArgonne SiteScience

  10. Why Argonne | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovative Science Work-Life Balance Diversity and Inclusion Sustainability Your Career Life at Argonne Benefits Apply for a Job Connect with Argonne LinkedIn Facebook Twitter...

  11. Argonne Alumni | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Alumni Update your contact information Please keep your contact information current. We may need periodic contact with former Argonne employees (e.g., distributing royalty...

  12. Argonne Researchers | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers Name Topic - Any - General Argonne Information -Awards -Honors Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Biofuels...

  13. Green supercomputing at Argonne | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Green supercomputing at Argonne Share Description Pete Beckman, head of Argonne's Leadership Computing Facility (ALCF) talks about Argonne National Laboratory's green...

  14. Characterization and Application of Hard X-Ray Betatron Radiation Generated by Relativistic Electrons from a Laser-Wakefield Accelerator

    E-Print Network [OSTI]

    Schnell, Michael; Uschmann, Ingo; Jansen, Oliver; Kaluza, Malte Christoph; Spielmann, Christian

    2015-01-01T23:59:59.000Z

    The necessity for compact table-top x-ray sources with higher brightness, shorter wavelength and shorter pulse duration has led to the development of complementary sources based on laser-plasma accelerators, in contrast to conventional accelerators. Relativistic interaction of short-pulse lasers with underdense plasmas results in acceleration of electrons and in consequence in the emission of spatially coherent radiation, which is known in the literature as betatron radiation. In this article we report on our recent results in the rapidly developing field of secondary x-ray radiation generated by high-energy electron pulses. The betatron radiation is characterized with a novel setup allowing to measure the energy, the spatial energy distribution in the far-field of the beam and the source size in a single laser shot. Furthermore, the polarization state is measured for each laser shot. In this way the emitted betatron x-rays can be used as a non-invasive diagnostic tool to retrieve very subtle information of t...

  15. TWIST tours | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of ATLAS 9 of 18 TWIST tour of ATLAS On Sept. 10, 2014, TWIST event-goers explored the Argonne Tandem Linac Accelerator System (ATLAS) facility. TWIST tour of ATLAS 10 of 18 TWIST...

  16. Use of the ''MURA'' transformation to generate the fields and calculate the motion of protons in the designed Argonne Mini-ASPUN FFAG Spiral Sector Accelerator

    SciTech Connect (OSTI)

    Crosbie, E.A.

    1985-05-13T23:59:59.000Z

    As a long range goal for the production of high intensity neutrons, Argonne National Laboratory has proposed the construction of a 1.5 GeV FFAG Spiral Sector Accelerator called ASPUN. The 500-MeV injector for this proposed accelerator is a smaller FFAG Spiral Sector Accelerator named Mini-ASPUN. Until such a time as the larger machine could be built, it was planned that Mini-ASPUN would replace the present RCS now being used for the IPNS program at Argonne. In order to obtain an accurate estimation of the orbits and betatron oscillations in such a machine, it is necessary that realistic field values be used in the equations of motion. Obtaining these fields from 3-dimensional relaxation calculations is both time consuming and costly. However, because of the required scaling of the machine, the field-generating potential of three variables can be separated into a known function of the radius and a function of two variables. The second order differential equation satisfied by this function can be solved by ordinary relaxation methods. The fields generated from a mesh of values for this function will be accurate except for the extreme inside and outside orbits, which will be affected by the necessary termination of the inside and outside ends of the magnet. 2 refs., 4 figs., 1 tab.

  17. Parameter sensitivity of plasma wakefields driven by self-modulating proton beams

    SciTech Connect (OSTI)

    Lotov, K. V.; Minakov, V. A.; Sosedkin, A. P. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk, Russia and Novosibirsk State University, 630090 Novosibirsk (Russian Federation)

    2014-08-15T23:59:59.000Z

    The dependence of wakefield amplitude and phase on beam and plasma parameters is studied in the parameter area of interest for self-modulating proton beam-driven plasma wakefield acceleration. The wakefield phase is shown to be extremely sensitive to small variations of the plasma density, while sensitivity to small variations of other parameters is reasonably low. The study of large parameter variations clarifies the effects that limit the achievable accelerating field in different parts of the parameter space: nonlinear elongation of the wakefield period, insufficient charge of the drive beam, emittance-driven beam divergence, and motion of plasma ions.

  18. About Argonne | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MISSION Argonne integrates world-class science, engineering, and user facilities to deliver innovative research and technologies. We create new knowledge that addresses the...

  19. Plasma Wakefield Experiments at FACET

    SciTech Connect (OSTI)

    Hogan, M.J.; England, R.J.; Frederico, J.; Hast, C.; Li, S.Z.; Litos, M.; Walz, D.; /SLAC; An, W.; Clayton, C.E.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.; Tochitsky, S.; /UCLA; Muggli, P.; Pinkerton, S.; Shi, Y.; /Southern California U.

    2011-08-19T23:59:59.000Z

    FACET, the Facility for Advanced Accelerator and Experimental Tests, is a new facility being constructed in sector 20 of the SLAC linac primarily to study beam driven plasma wakefield acceleration beginning in summer 2011. The nominal FACET parameters are 23GeV, 3nC electron bunches compressed to {approx}20{micro}m long and focused to {approx}10{micro}m wide. The intense fields of the FACET bunches will be used to field ionize neutral lithium or cesium vapor produced in a heat pipe oven. Previous experiments at the SLAC FFTB facility demonstrated 50GeV/m gradients in an 85cm field ionized lithium plasma where the interaction distance was limited by head erosion. Simulations indicate the lower ionization potential of cesium will decrease the rate of head erosion and increase single stage performance. The initial experimental program will compare the performance of lithium and cesium plasma sources with single and double bunches. Later experiments will investigate improved performance with a pre-ionized cesium plasma. The status of the experiments and expected performance are reviewed. The FACET Facility is being constructed in sector 20 of the SLAC linac primarily to study beam driven plasma wakefield acceleration. The facility will begin commissioning in summer 2011 and conduct an experimental program over the coming five years to study electron and positron beam driven plasma acceleration with strong wake loading in the non-linear regime. The FACET experiments aim to demonstrate high-gradient acceleration of electron and positron beams with high efficiency and negligible emittance growth.

  20. Results from Plasma Wakefield Experiments at FACET

    SciTech Connect (OSTI)

    Li, S.Z.; Clarke, C.I.; England, R.J.; Frederico, J.; Gessner, S.J.; Hogan, M.J.; Jobe, R.K.; Litos, M.D.; Walz, D.R.; /SLAC; Muggli, P.; /Munich, Max Planck Inst.; An, W.; Clayton, C.E.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.; Tochitsky, S.; /UCLA; Adli, E.; /U. Oslo

    2011-12-13T23:59:59.000Z

    We report initial results of the Plasma Wakefield Acceleration (PWFA) Experiments performed at FACET - Facility for Advanced aCcelertor Experimental Tests at SLAC National Accelerator Laboratory. At FACET a 23 GeV electron beam with 1.8 x 10{sup 10} electrons is compressed to 20 {mu}m longitudinally and focused down to 10 {mu}m x 10 {mu}m transverse spot size for user driven experiments. Construction of the FACET facility completed in May 2011 with a first run of user assisted commissioning throughout the summer. The first PWFA experiments will use single electron bunches combined with a high density lithium plasma to produce accelerating gradients > 10 GeV/m benchmarking the FACET beam and the newly installed experimental hardware. Future plans for further study of plasma wakefield acceleration will be reviewed. The experimental hardware and operation of the plasma heat-pipe oven have been successfully commissioned. Plasma wakefield acceleration was not observed because the electron bunch density was insufficient to ionize the lithium vapor. The remaining commissioning time in summer 2011 will be dedicated to delivering the FACET design parameters for the experimental programs which will begin in early 2012. PWFA experiments require the shorter bunches and smaller transverse sizes to create the plasma and drive large amplitude wakefields. Low emittance and high energy will minimize head erosion which was found to be a limiting factor in acceleration distance and energy gain. We will run the PWFA experiments with the design single bunch conditions in early 2012. Future PWFA experiments at FACET are discussed in [5][6] and include drive and witness bunch production for high energy beam manipulation, ramped bunch to optimize tranformer ratio, field-ionized cesium plasma, preionized plasmas, positron acceleration, etc.. We will install a notch collimator for two-bunch operation as well as new beam diagnostics such as the X-band TCAV [7] to resolve the two bunches. With these new instruments and desired beam parameters in place next year, we will be able to complete the studies of plasma wakefield acceleration in the next few years.

  1. Argonne Distinguished Fellows | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Distinguished Fellows Argonne's world-class scientists have achieved national and international recognition, including: Three Nobel Prizes, 119 R&D 100 Awards, More than...

  2. Argonne National Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Slip sliding away Graphene and diamonds prove a slippery combination Read More ACT-SO winners Argonne mentors students for the next generation of...

  3. Wakefield generation by a relativistic ring beam in a coaxial two channel dielectric loaded structure.

    SciTech Connect (OSTI)

    Liu, W.; Gai, W. (High Energy Physics)

    2009-05-12T23:59:59.000Z

    In this paper, we give a complete analytical solution for wakefields generated by an azimuthally symmetric ring beam propagating in a coaxial two-channel dielectric structure. This wakefield can be used to accelerate a witness beam in the central channel. The ratio of the peak accelerating field in the center channel to the decelerating field in the ring channel (defined as transformer ratio R) is also derived. We find that, by appropriate choice of parameters, R can be much greater than 2, the limiting value for collinear wakefield accelerators.

  4. Accelerating Particles with Plasma

    SciTech Connect (OSTI)

    Litos, Michael; Hogan, Mark

    2014-11-05T23:59:59.000Z

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  5. Argonne National Laboratory's Nondestructive

    E-Print Network [OSTI]

    Kemner, Ken

    Argonne National Laboratory's Nondestructive Evaluation Technologies NDE #12;Over45yearsexperienceinNondestructiveEvaluation... Argonne National Laboratory's world-renowned researchers have a proven the safe operationof advanced nuclear reactors. Argonne's World-Class Nondestructive Evaluation

  6. Outreach | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pitch competition Chicago Tribune Featured Multimedia Argonne OutLoud Public Lecture Series: Nuclear Energy Argonne OutLoud Public Lecture Series 3: Unraveling the Higgs Boson...

  7. Careers | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applicants Internal Applicants Postdoctoral Applicants Students Faculty Programs Why Argonne Your Career Life at Argonne Benefits Apply for a Job FAQs Answers to frequently asked...

  8. Licensing | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (TDC) Division negotiates and manages license agreements on behalf of UChicago Argonne, LLC, which operates Argonne National Laboratory for the U.S. Department of Energy....

  9. Procurement | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Procurement More than 150 attend second joint Argonne-Fermilab small business fairSeptember 2, 2014 On Thursday, Aug. 28, Illinois' two national laboratories - Argonne and Fermi...

  10. Procurement | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Video "Doing business with Argonne and Fermi national labs" - Aug. 21, 2013 Procurement Argonne spends approximately 300,000,000 annually through procurements to a diverse group...

  11. Contacts | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts Postdoc Portal The Postdoctoral Office of Argonne provides all Postdocs at Argonne access to our sharepoint postdoc site. This site has information about special...

  12. Beam dynamics and wakefield suppression in interleaved damped and detuned structures for CLIC

    E-Print Network [OSTI]

    D'Elia, A; Khan, V F; Jones, R M; Latina, A; Nesmiyan, I; Riddone, G

    2013-01-01T23:59:59.000Z

    Acceleration of multiple bunches of charged particles in the main linacs of the Compact Linear Collider (CLIC) with high accelerating fields provides two major challenges: firstly, to ensure the surface electromagnetic fields do not cause electrical breakdown and subsequent surface damage, and secondly, to ensure the beam-excited wakefields are sufficiently suppressed to avoid appreciable emittance dilution. In the baseline design for CLIC, heavy wakefield suppression is used (Q ~ 10) [1] and this ensures the beam quality is well-preserved [2]. Here we discuss an alternative means to suppress the wakefield which relies on strong detuning of the cell dipole frequencies, together with moderate damping, effected by manifolds which are slot-coupled to each accelerating cell. This damped and detuned wakefield suppression scheme is based on the methodology developed for the Japanese Linear Collider/Next Linear Collider (JLC/NLC) [3]. Here we track the multi-bunch beam down the complete collider, u...

  13. Technology Development and Commercialization at Argonne | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercialization at Argonne Share Topic Operations Technology transfer Browse By - Any - Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering...

  14. Argonne Leadership Computing Facility

    E-Print Network [OSTI]

    Kemner, Ken

    Argonne Leadership Computing Facility Argonne Leadership Computing Facility 2010 ANNUAL REPORT S C I E N C E P O W E R E D B Y S U P E R C O M P U T I N G ANL-11/15 The Argonne Leadership Computing States Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees

  15. 2014 Doing Business with Argonne & FermiLab | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Doing Business with Argonne & FermiLab 2014 Doing Business with Argonne and Fermi National Laboratories 1 of 17 2014 Doing Business with Argonne and Fermi National Laboratories...

  16. NASA @ APS | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TWIST tours 2014 Undergraduate Symposium 2014 Undergraduate Symposium Argonne OutLoud: Science and Cinema Argonne OutLoud: Science and Cinema 2014 Argonne Earth Day event 2014...

  17. 2014 Argonne Combined Appeal Reception | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Combined Appeal Reception 2014 Argonne Combined Appeal 1 of 3 2014 Argonne Combined Appeal Argonne Director Peter B. Littlewood speaks with veterans of the U.S. Armed...

  18. Argonne's computing Zen | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is dedicated to large-scale computation and builds on Argonne's strengths in high-performance computing software, advanced hardware architectures and applications expertise....

  19. Work with Argonne | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    applications and introduce advancements into commercial use through licenses and start-ups. Procurement Argonne spends approximately 300,000,000 annually through procurements...

  20. Sustainable Bioenergy | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainable Bioenergy Sustainable Bioenergy Argonne's research in bioenergy includes topics associated with feedstock production and biomass conversion. Argonne scientists also...

  1. Philippe Noirot | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applicants Internal Applicants Postdoctoral Applicants Students Faculty Programs Why Argonne Your Career Life at Argonne Employee Spotlights Amenities Social Activities...

  2. Marvin Cummings | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applicants Internal Applicants Postdoctoral Applicants Students Faculty Programs Why Argonne Your Career Life at Argonne Employee Spotlights Amenities Social Activities...

  3. Green Supercomputing at Argonne

    ScienceCinema (OSTI)

    Pete Beckman

    2010-01-08T23:59:59.000Z

    Pete Beckman, head of Argonne's Leadership Computing Facility (ALCF) talks about Argonne National Laboratory's green supercomputing?everything from designing algorithms to use fewer kilowatts per operation to using cold Chicago winter air to cool the machine more efficiently.

  4. Green Supercomputing at Argonne

    SciTech Connect (OSTI)

    Pete Beckman

    2009-11-18T23:59:59.000Z

    Pete Beckman, head of Argonne's Leadership Computing Facility (ALCF) talks about Argonne National Laboratory's green supercomputing—everything from designing algorithms to use fewer kilowatts per operation to using cold Chicago winter air to cool the machine more efficiently.

  5. Biosafety | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Biosafety Biosafety Links Biosafety Contacts Biosafety Office Argonne National Laboratory 9700 S. Cass Ave. Bldg. 202, Room B333 Argonne, IL 60439 USA 630-252-5191 Committee...

  6. Mentoring | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mentoring Blog Postdoctoral Programs Lab-Corps Program Life at Argonne Benefits Apply for a Job Connect with Argonne LinkedIn Facebook Twitter YouTube Google+ More Social Media ...

  7. Contract | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prime Contract is the contract between the U.S. Department of Energy and UChicago Argonne, LLC that sets out the terms and conditions for the operation of Argonne National...

  8. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guest Facilities User Agreement All ATLAS Facility Users must have an appointment at Argonne to work at the facility. In order for a non-Argonne person to perform research at ATLAS...

  9. Green Supercomputing at Argonne

    ScienceCinema (OSTI)

    Beckman, Pete

    2013-04-19T23:59:59.000Z

    Pete Beckman, head of Argonne's Leadership Computing Facility (ALCF) talks about Argonne National Laboratory's green supercomputing?everything from designing algorithms to use fewer kilowatts per operation to using cold Chicago winter air to cool the machine more efficiently. Argonne was recognized for green computing in the 2009 HPCwire Readers Choice Awards. More at http://www.anl.gov/Media_Center/News/2009/news091117.html Read more about the Argonne Leadership Computing Facility at http://www.alcf.anl.gov/

  10. Videos | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Videos Browse By - Any - General Argonne Information -Awards -Honors Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Biofuels ---Diesel...

  11. Photos | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Internship Photos Browse By - Any - General Argonne Information -Awards -Honors Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Biofuels...

  12. Downloads | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Downloads Topic - Any - General Argonne Information -Awards -Honors Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Biofuels ---Diesel...

  13. Photos | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photos Browse By - Any - General Argonne Information -Awards -Honors Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Biofuels ---Diesel...

  14. Videos | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Internship Videos Browse By - Any - General Argonne Information -Awards -Honors Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Biofuels...

  15. Green Supercomputing at Argonne

    SciTech Connect (OSTI)

    Beckman, Pete

    2009-01-01T23:59:59.000Z

    Pete Beckman, head of Argonne's Leadership Computing Facility (ALCF) talks about Argonne National Laboratory's green supercomputing—everything from designing algorithms to use fewer kilowatts per operation to using cold Chicago winter air to cool the machine more efficiently. Argonne was recognized for green computing in the 2009 HPCwire Readers Choice Awards. More at http://www.anl.gov/Media_Center/News/2009/news091117.html Read more about the Argonne Leadership Computing Facility at http://www.alcf.anl.gov/

  16. Argonne's Earth Day 2011

    ScienceCinema (OSTI)

    None

    2013-04-19T23:59:59.000Z

    Argonne celebrated Earth Day on April 21, 2011 with an event that featured green activities and information booths.

  17. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University of Liverpool Michael Carpenter Argonne National Laboratory Alexandra Gade Michigan State University Walter Loveland (Chair) Oregon State University Ingo...

  18. ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue

    E-Print Network [OSTI]

    Munson, Todd S.

    ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois 60439 Optimizing the Quality S. Munson Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439

  19. ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue, Argonne Illinois 60439

    E-Print Network [OSTI]

    Harilal, S. S.

    ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue, Argonne Illinois 60439 ANL-ET/02-04 DEVELOPMENT of Argonne National Laboratory ("Argonne") under Contract No. W-31-109-ENG-38 with the U.S. Department to the public, and perform publicly and display publicly, by or on behalf of the Government. #12;Argonne

  20. Life at Argonne | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    your work day the most productive it can be. Learn More Social Activities Argonne's social activities help you achieve a positive work-life balance-and network with...

  1. Argonne History - 1950's | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    water as the heat exchange medium for transferring nuclear heat to the boiler of the steam turbine propulsion plant. As design work advanced, Argonne built and tested some of...

  2. ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue, Argonne Illinois 60439

    E-Print Network [OSTI]

    Harilal, S. S.

    ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue, Argonne Illinois 60439 ANL-ET/02-23 DEVELOPMENT. Hassanein Energy Technology Division July 2002 #12;Argonne National Laboratory, a U.S. Department of Energy

  3. ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue, Argonne Illinois 60439

    E-Print Network [OSTI]

    Harilal, S. S.

    ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue, Argonne Illinois 60439 ANL-ET/02. Hassanein Energy Technology Division July 2002 #12;Argonne National Laboratory, a U.S. Department of Energy

  4. Wakefield effects of the bypass line in LCLS-II

    E-Print Network [OSTI]

    Bane, K

    2014-01-01T23:59:59.000Z

    In LCLS-II, after acceleration and compression and just before entering the undulator, the beam passes through 2.5 km of 24.5 mm (radius) stainless steel pipe. The bunch that passes through the pipe is extremely short---with an rms of 8 um for the nominal 100 pC case. Thus, even though the pipe has a large aperture, the wake that applies is the {\\it short-range} resistive wall wakefield. The bunch distribution is approximately uniform, and therefore the wake induced voltage is characterized by a rather linear voltage chirp. It turns out that the wake supplies needed dechirping to the LCLS-II beam before it enters the undulator. In this note we calculate the wake, discuss the confidence in the calculation, and investigate how to improve the induced chirp linearity and/or strength. Finally, we also study the strength and effects of the transverse (dipole) resistive wall wakefield.

  5. FY 2015 Argonne Site Sustainability Plan | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FY 2015 Argonne Site Sustainability Plan Argonne National Laboratory is committed to reducing its environmental footprint. Our site sustainability goals are in line with U.S....

  6. Argonne helps introduce girls to engineering careers | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Argonne Now, the laboratory science magazine. Argonne helps introduce girls to engineering careers By Alex Mitchell * June 1, 2014 Tweet EmailPrint This story was originally...

  7. Argonne researchers develop two new diamond inventions | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    develop two new diamond inventions By Jared Sagoff * October 10, 2014 Tweet EmailPrint ARGONNE, IL - Researchers at the US Department of Energy's Argonne National Laboratory have...

  8. Press Materials for Argonne CORAL announcement | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Press Materials for Argonne CORAL announcement Under the joint Collaboration of Oak Ridge, Argonne, and Lawrence Livermore (CORAL) initiative, the U.S. Department of Energy...

  9. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (or 630-252-1911 on cell phones) Safety Aspects of radiation safety at ATLAS: Health Physics Coverage at ATLAS is provided by Argonne National Laboratory. Health Physics...

  10. Leadership | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Board of Governors Message from the Director Argonne Distinguished Fellows Emeritus Scientists & Engineers Organization Chart History Discoveries Prime Contract Contact Us...

  11. News | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers from Argonne National Laboratory modeled several scenarios to add more solar power to the electric grid, using real-world data from the southwestern power...

  12. Sustainability | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainability "Much of Argonne's cutting-edge research is dedicated to discovery and development of clean energy solutions. We are tasked with an extraordinary opportunity-to...

  13. Transportation | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Patented technologies created by Argonne - which includes solutions for the smart grid, electric vehicles, emissions control and more - will help our nation conserve energy and...

  14. Transportation | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation From modeling and simulation programs to advanced electric powertrains, engines, biofuels, lubricants, and batteries, Argonne's transportation research is vital to...

  15. Discoveries | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nation's pressing scientific and technological challenges. Robert Fischetti and Janet Smith developed the first micro X-ray beam for structural biology at Argonne's Advanced...

  16. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Some of the nation's most powerful and sophisticated facilities for energy research Argonne National Laboratory is home to some of the nation's most powerful and sophisticated...

  17. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ATLAS User Program - Visitor Information Site Access: Researchers who plan to come to Argonne for an ATLAS experiment are required to complete certain forms. All ATLAS Users need...

  18. News | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Argonne researcher Yuelin Li holds a sample holder containing a single gold nanorod in water. Li and colleagues discovered that nanorods melt in three distinct phases when...

  19. Tours | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tours Argonne integrates world-class science, engineering, and user facilities to deliver innovative research and technologies. We create new knowledge that addresses the...

  20. Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    our dependence on imported energy and to enhance our national security. In addition, Argonne provides many ways for researchers from academia, industry and other government...

  1. Security | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and other technological advancements used to protect and defend our country. At Argonne, our highly collaborative community of scientists and engineers discover and develop...

  2. Software | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    applications, such as simulation and modeling, computation, internet usage, and more. Argonne has both commercially available software and open-source (free) software. Browse both...

  3. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Participants Updated May 13, 2014 Last Name First Name Organization Email Ahn Tan Michigan State University ahn@nscl.msu.edu Albers Michael Argonne National Laboratory...

  4. Subscribe | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlights In the News Experts Guide Media Contacts Social Media Photos Videos Fact Sheets, Brochures and Reports Summer Science Writing Internship Subscribe ARGONNE...

  5. Partnerships | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    confidential Argonne information. Collaborative Research and Development Agreements (CRADA): Cost-shared research and development (R&D), where funds are provided by both the...

  6. Directions and Visitor Information | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visiting Argonne Site Access Policy Map Argonne-University of Chicago Shuttle Map of Argonne Download a map of the Argonne site. Commitment to Safety Argonne is dedicated to...

  7. Optimization of Drive-Bunch Current Profile for Enhanced Transformer Ratio in Beam-Driven Acceleration Techniques

    SciTech Connect (OSTI)

    Lemery, F.; Mihalcea, D.; Prokop, C.R.; /Northern Illinois U.; Piot, P.; /Northern Illinois U. /Fermilab

    2012-07-08T23:59:59.000Z

    In recent years, wakefield acceleration has gained attention due to its high acceleration gradients and cost effectiveness. In beam-driven wakefield acceleration, a critical parameter to optimize is the transformer ratio. It has been shown that current shaping of electron beams allows for enhanced (> 2) transformer ratios. In this paper we present the optimization of the pulse shape of the drive bunch for dielectric-wakefield acceleration.

  8. Technology transfer | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology transfer Technology Development and Commercialization at Argonne Read more about Technology Development and Commercialization at Argonne New Director to lead Technology...

  9. Hussein Khalil | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director of Argonne's Nuclear Energy and Security program. He leads the Lab's research on nuclear reactor technology and nuclear non-proliferation. Dr. Khalil joined Argonne in...

  10. Leadership Development | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Connect with Argonne LinkedIn Facebook Twitter YouTube Google+ More Social Media Leadership Development Argonne's excellence and innovation is driven by exemplary leadership....

  11. Media Contacts | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Media Contacts Christopher J. Kramer Argonne National Laboratory Christopher J. Kramer is the manager of media relations and external affairs for Argonne. Contact him at...

  12. Internal Applicants | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Argonne Login Service Please log in to continue Username * Enter your ANL domain account username. Password * Enter the password that accompanies your...

  13. Computational studies and optimization of wakefield accelerators

    E-Print Network [OSTI]

    Geddes, C.G.R.

    2010-01-01T23:59:59.000Z

    France [1] ILC- www.linearcollider.org/cms ; LCLS- www-ssrl.slac.stanford.edu/lcls/ [2] T. Tajima and J. M. Dawson,while machines such as the LCLS will use km-scale linacs to

  14. Laser Wakefield Particle Accelerators Project at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratoryRowlandRevolutionizingLaser

  15. Extremely short relativistic-electron-bunch generation in the laser wakefield via novel bunch injection scheme

    E-Print Network [OSTI]

    Strathclyde, University of

    Extremely short relativistic-electron-bunch generation in the laser wakefield via novel bunch accelerator (LWFA) a short in- tense laser pulse, with a duration on the order of a plasma wave period July 2004; published 6 December 2004) Recently a new electron-bunch injection scheme for the laser

  16. Argonne's 2012 Earth Day Event

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    Argonne's 2012 Earth Day event drew crowds from across the laboratory. Argonne and U.S. Department of Energy employees toured booths and interactive displays set up by Argonne programs and clubs. Several of Argonne's partners participated, including U.S. Department of Energy, University of Chicago, Abri Credit Union, DuPage County Forest Preserve, DuPage Water Commission, PACE and Morton Arboretum. Argonne scientists and engineers also participated in a poster session, discussing their clean energy research.

  17. Argonne's 2012 Earth Day Event

    ScienceCinema (OSTI)

    None

    2013-04-19T23:59:59.000Z

    Argonne's 2012 Earth Day event drew crowds from across the laboratory. Argonne and U.S. Department of Energy employees toured booths and interactive displays set up by Argonne programs and clubs. Several of Argonne's partners participated, including U.S. Department of Energy, University of Chicago, Abri Credit Union, DuPage County Forest Preserve, DuPage Water Commission, PACE and Morton Arboretum. Argonne scientists and engineers also participated in a poster session, discussing their clean energy research.

  18. Independent Oversight Review, Argonne National Laboratory - November...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Argonne National Laboratory - November 2011 Independent Oversight Review, Argonne National Laboratory - November 2011 November 2011 Review of the Argonne National Laboratory...

  19. 2014 Postdoctoral Symposium | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TWIST tours 2014 Undergraduate Symposium 2014 Undergraduate Symposium Argonne OutLoud: Science and Cinema Argonne OutLoud: Science and Cinema 2014 Argonne Earth Day event 2014...

  20. Argonne tackles solar energy

    ScienceCinema (OSTI)

    George Crabtree

    2010-09-01T23:59:59.000Z

    At Argonne National Laboratory, scientists and engineers are working to improve the solar cell to allow us to capture more of the sun's energy. Read more: http://www.anl.gov/Media_Center/News/...

  1. Energy | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne is poised to help our nation build an economy fueled by safe, clean, renewable energy and free from dependence on foreign oil. When achieved, this will have a tremendous...

  2. Organizations | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in five research divisions as well as many researchers who play a key role in Argonne's battery hub, the Joint Center for Energy Storage Research. The Chemical Sciences and...

  3. Graduates | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ralph Waldo Emerson, Poet One of the world's great scientific destinations, Argonne is the place to be if you are a graduate student. With access to world-class...

  4. Technologies | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and diverse range of technologies that have worldwide impact in a variety of fields. Argonne grants licenses for lab-developed intellectual property to existing and start-up...

  5. Community | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Social media is a great way to stay in touch with what's going on at Argonne and to interact with us. Ask questions, give us your opinion and become a part of our ever-expanding...

  6. Undergraduates | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are just beginning their journey into the world of science and engineering. Here at Argonne, we work to make the world a better place through science and innovation. We pursue...

  7. Mentoring | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    As one of the largest laboratories in the nation for science and engineering research, Argonne National Laboratory is home to some of the most prolific and well-renowned scientists...

  8. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by July 10, 2009. REGISTRATION Fees (If paying by check, please make check payable to: Argonne National Laboratory) Registration fee of 25 will be mailed? Pay at time of...

  9. Mentoring | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Latest News Argonne mentors students for the next generation of scientists May 28, 2015 JoAnn "Joni" Garcia April 1, 2015 Jennifer Hong Zheng February 3, 2015 Mentoring "All staff...

  10. Safety | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Argonne National Laboratory and the U.S. Department of Energy (DOE) are very concerned about the well-being of all employees. Students at the undergraduate and graduate...

  11. Operations | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Argonne mentors students for the next generation of scientistsMay 28, 2015 On May 6, the accomplishments of seventeen Chicago-area high school students that had been...

  12. Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to a number of world-class user facilities that host hundreds of scientists annually. Argonne also leads the Joint Center for Energy Storage Research and plays a key role in...

  13. Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    HISTORYThe Argonne National Laboratory (ANL) site is approximately 27 miles southwest of downtown Chicago in DuPage County, Illinois.  The 1,500 acre ANL site is completely surrounded by the 2,240...

  14. ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue

    E-Print Network [OSTI]

    McCune, William

    ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, IL 60439 ANL/MCS­TM­243 (v4) Single Division Argonne National Laboratory Argonne, Illinois, 60439, U.S.A. http://www.mcs.anl.gov/�mccune June

  15. Lee Teng Undergraduate Internship in Accelerator Science and...

    Office of Environmental Management (EM)

    Accelerator Institute, the Lee Teng Undergraduate Internship in Accelerator Science and Engineering offers ten-week summer internships at Fermilab and Argonne for undergraduate...

  16. Argonne OutLoud: Science and Cinema | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OutLoud: Science and Cinema Argonne OutLoud: Science and Cinema 1 of 9 Argonne OutLoud: Science and Cinema Dr. Marius Stan (aka Bogdan Wolynetz from the television series Breaking...

  17. Argonne-University of Chicago Shuttle | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne-University of Chicago Shuttle The schedule below is effective March 17, 2014. A free shuttle bus makes round trips every weekday between Argonne National Laboratory and The...

  18. Argonne scientists use bacteria to power simple machines | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    use bacteria to power simple machines December 16, 2009 Tweet EmailPrint ARGONNE, Ill. - Scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory and...

  19. Argonne National Laboratory Scientists Invent Breakthrough Technique...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Argonne National Laboratory Scientists Invent Breakthrough Technique in Nanotechnology Argonne National Laboratory Scientists Invent Breakthrough Technique in Nanotechnology March...

  20. Enterprise Assessments Operational Awareness Record, Argonne...

    Office of Environmental Management (EM)

    Operational Awareness Record, Argonne National Laboratory and New Brunswick Laboratory - March 2015 Enterprise Assessments Operational Awareness Record, Argonne National Laboratory...

  1. Jennifer Hong Zheng | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applicants Internal Applicants Postdoctoral Applicants Students Faculty Programs Why Argonne Your Career Life at Argonne Employee Spotlights Amenities Social Activities...

  2. Ozgenur Kahvecioglu Feridun | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applicants Internal Applicants Postdoctoral Applicants Students Faculty Programs Why Argonne Your Career Life at Argonne Employee Spotlights Amenities Social Activities...

  3. LaVaun Bowling | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applicants Internal Applicants Postdoctoral Applicants Students Faculty Programs Why Argonne Your Career Life at Argonne Employee Spotlights Amenities Social Activities...

  4. ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue

    E-Print Network [OSTI]

    Buntinas, Darius

    ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, IL 60439 ANL/MCS-TM-284 Understanding.S. Department of Energy, under Contract W-31-109-Eng-38. #12;About Argonne National Laboratory Argonne, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs

  5. Contact Us | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Address and phone Argonne National Laboratory 9700 S. Cass Avenue Lemont, IL 60439. Phone: 630252-2000 For members of the news media News releases online Argonne media...

  6. Terry Maynard | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by Argonne's atomic layer deposition group. He manages the Ceramicrete phosphate cement materials technology and ultrananocrystalline (UNCD) diamond portfolios. He...

  7. Feature Stories | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feature Stories Topic - Any - General Argonne Information -Awards -Honors Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Biofuels ---Diesel...

  8. Press Releases | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Press Releases Topic - Any - General Argonne Information -Awards -Honors Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Biofuels ---Diesel...

  9. Success Stories | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Success Stories Topic - Any - General Argonne Information -Awards -Honors Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Biofuels ---Diesel...

  10. Science Highlights | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlights Topic - Any - General Argonne Information -Awards -Honors Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Biofuels...

  11. Press Releases | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Videos Press Releases Topic - Any - General Argonne Information -Awards -Honors Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Biofuels...

  12. Diversity & Inclusion | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Business Diversity Outreach & Education Featured Video Diversity & Inclusion at Argonne Resources Diversity & Inclusion Initiative: At a Glance Diversity & Inclusion...

  13. Accelerator Operations and Physics - Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Accelerator Operations & Physics Advance Photon Source A U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences national...

  14. Delivered by Ingenta to: Argonne National Laboratory

    E-Print Network [OSTI]

    Haskel, Daniel

    Delivered by Ingenta to: Argonne National Laboratory IP : 164.54.84.139 Wed, 02 Sep 2009 22, 35 56126 Pisa, Italy 4 Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA 5 Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA 6 Center

  15. A VISITOR'S GUIDE TO ARGONNE NATIONAL

    E-Print Network [OSTI]

    Pennycook, Steve

    A VISITOR'S GUIDE TO ARGONNE NATIONAL LABORATORY National School on Neutron and X-ray Scattering June 12-18, 2010 - Argonne National Laboratory June 19-26, 2010 - Oak Ridge National Laboratory Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC #12;Argonne

  16. ARGONNE NATIONAL LABORATOR 9700 South Cass Avenue

    E-Print Network [OSTI]

    Dongarra, Jack

    . Y ARGONNE NATIONAL LABORATOR 9700 South Cass Avenue P Argonne, Illinois 60439 rospectus Street 2 New York, New York 1001 + M Jack J. Dongarra athematics and Computer Science Division A Argonne Sorensen athematics and Computer Science Division Argonne National Laboratory Argonne, Illinois 604394844

  17. A VISITOR'S GUIDE TO ARGONNE NATIONAL

    E-Print Network [OSTI]

    A VISITOR'S GUIDE TO ARGONNE NATIONAL LABORATORY National School on Neutron and X-ray Scattering August 12-17, 2012 - Argonne National Laboratory June 18-25, 2012 - Oak Ridge National Laboratory Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC #12;Argonne

  18. Paul Messina Named Argonne Distinguished Fellow | Argonne Leadership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fellow Author: Laura Wolf . September 9, 2014 Printer-friendly version High-performance computing pioneer Paul Messina has been named an Argonne National Laboratory...

  19. Argonne, KAERI to develop prototype nuclear reactor | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that incorporates an innovative metal fuel developed at Argonne. The fuel's inherent safety potential was demonstrated in landmark tests conducted on the Experimental Breeder...

  20. Argonne Energy Sciences Building achieves LEED Gold | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The interior lobby is designed to admit natural light. (Click to view larger.) Argonne Energy Sciences Building achieves LEED Gold By Diana Anderson * May 21, 2015 Tweet...

  1. Argonne OutLoud Public Lecture Series: Nuclear Energy | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy Share Description On November 15, 2012, Argonne National Laboratory opened its doors to the public for a presentationdiscussion titled "Getting to Know Nuclear:...

  2. Argonne model analyzes water footprint of biofuels | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tool predicts the amount of water required to generate various types of cellulosic biofuels. Image courtesy May Wu; click to view larger. An Argonne-developed online analysis...

  3. 2014 Earth Day | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth Day 2014 Argonne Earth Day event 1 of 43 2014 Argonne Earth Day event As part of the lab's April 22, 2014 Earth Day celebration, children from Argonne's Child Development...

  4. Argonne Site Access | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Site Access Argonne National Laboratory is a controlled-access facility. You will need a visitor's pass or a user badge to enter the Argonne campus. You must notify us of...

  5. ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue

    E-Print Network [OSTI]

    Friedlander, Michael P.

    ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois 60439 A Filter Active and Computer Science Division, Argonne National Laboratory, {leyffer,tmunson}@mcs.anl.gov 1 #12;2 Michael

  6. Argonne National Decision and Information Sciences Division

    E-Print Network [OSTI]

    Argonne National Laboratory Decision and Information Sciences Division Introducing EMTools conforms to expecta- tions. Argonne National Laboratory, developer of the successful Synchronization Matrix and exercise tool: EMTools. EMTools integrates the func- tionality of Argonne's previous-generation emergency

  7. Mark Peters | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Core Capabilities Leadership Board of Governors Message from the Director Argonne Distinguished Fellows Emeritus Scientists & Engineers Organization Chart History Discoveries...

  8. Charlie Catlett | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Charlie Catlett Senior Computer Scientist - Mathematics and Computer Science Charlie Catlett is a Senior Computer Scientist at the U.S. Department of Energy's Argonne National...

  9. Smart Grid | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers from Argonne National Laboratory modeled several scenarios to add more solar power to the electric grid, using real-world data from the southwestern power...

  10. Mentoring Resources | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Training & Development Mentoring Safety Program Brochure Postdoctoral Blog Mentoring Resources Divisional Mentoring Program Contacts Mentoring Agreement Argonne Lab-wide...

  11. Energy Storage | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage The challenge of creating new advanced batteries and energy storage technologies is one of Argonne's key initiatives. By creating a multidisciplinary...

  12. Speakers Bureau | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in an educational program Book a speaker Follow us on Facebook, YouTube, and Twitter Multimedia Cristina Negri talks about phytoremediation Green supercomputing at Argonne...

  13. Environmental Protection | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Protection Argonne's environmental stewardship leverages our R&D programs to help reduce our own electricity use, water consumption and environmental emissions....

  14. Science Highlights | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Council's Leadership in Energy and Environmental Design (LEED) Gold certification. Construction of the APCF was funded by the State of Illinois. February 13, 2015 Argonne...

  15. Damla Eroglu | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EmailPrint Chemical engineer Damla Eroglu is a postdoctoral appointee who researches batteryenergy storage as part of the Argonne-led Joint Center for Energy Storage Research...

  16. Thomas Wallner | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Omnivorous Engine Argonne National Laboratory's Omnivorous Engine Browse by Topic Energy Energy efficiency Vehicles Alternative fuels Automotive engineering Biofuels Diesel Fuel...

  17. Sensors & Materials | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensors and Materials Argonne uses its materials and engineering expertise to develop, test, and deploy sensors and materials to detect nuclear and radiological materials, chemical...

  18. Beth Drewniak | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    21, 2014 Tweet EmailPrint Beth Drewniak is a Climate Scientist witihn Argonne's Environmental Science Division. In her Employee Spotlight video, Drewniak talks about, among other...

  19. Aymeric Rousseau | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    School in La Rochelle, France in 1997. After working for PSA Peugeot Citroen in the Hybrid Electric Vehicle research department, he joined Argonne National Laboratory in 1999...

  20. Nonproliferation & Forensics | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    radiological, chemical, and biological weapons. Argonne is one of the world leaders in nuclear reactor design, fuel processing, radiation detection and radiological forensics....

  1. Leadership Development | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Professional Development Resource WIST Talk: The Art of Networking video Leadership Development Argonne has a long-term vision for its workforce, recognizing that future challenges...

  2. Christopher Henry | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a focus on the prediction of phenotype from genome through the use of comparative genomics, metabolic modeling, and dynamic cellular community models. His team at Argonne...

  3. User Information | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    System Proposal Submission System CNM Tool Scheduler Scientific Contacts List CNM Users Organization Find CNM on the Argonne Map 2015 Maintenance Periods Key Research Areas...

  4. May Wu | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May Wu Team Leader - Water Assessment News Argonne model analyzes water footprint of biofuels E-mail mwu@anl.gov Projects Biofuels Biorefinery Grey Water Analysis Electricity...

  5. Faculty Programs | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Connect with Argonne LinkedIn Facebook Twitter YouTube Google+ More Social Media Faculty Programs Faculty Research Participation - Short-Term Appointments About the Program...

  6. Benoit Dionne | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dionne (right) worked on the conversion of the university's research reactor with Argonne engineers. One of the individuals on the project was a section manager in the Nuclear...

  7. Named Fellowships | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Named Fellowships Argonne offers these special postdoctoral fellowships to be awarded internationally on an annual basis to outstanding doctoral scientists and engineers who are at...

  8. Feature Stories | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Energy Efficiency and Renewable Energy. (Click image to view larger.) Two Argonne teams win pitch competition, advance to national Lab-Corps training program On April...

  9. News Room | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Room Argonne Associate Laboratory Director for Energy and Global Security Mark Peters, left, signs a memorandum of understanding with Nadya Bliss, director of the Global...

  10. Emergency Information | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    information in the event of an operational emergency or other change in operations at Argonne. Non-emergency information and directions for employees will be posted here by...

  11. Core Capabilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    size of a baseball stadium. Click to enlarge. The Center for Nanoscale Materials at Argonne is a premier user facility, providing expertise, instruments, and infrastructure for...

  12. Transformational Manufacturing | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    about 12 million people and generates another 7 million jobs in related businesses. Argonne is working with industry to develop innovative and transformational technology to...

  13. Balu Balachandran | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metallurgical Engineering, Indian Institute of Science, India, 1977 B.E. (Honors), Metallurgy, University of Madras, India, 1975 Work History 1987-Present, Argonne National...

  14. Sponsored Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Development Agreement A Cooperative Research and Development Agreement (CRADA) defines and governs an Argonne-industry collaborative research relationship with the...

  15. Social Activities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    part of a diverse community of fellow scientists, engineers and support staff who enjoy working and playing - together. Argonne clubs range from special interest groups to sports...

  16. Biodetection Systems | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biodetection Systems Biodetection Systems Argonne's efforts in biodetection technology focus on environmental molecular microbiology and technology development, with an emphasis on...

  17. Argonne Director Eric Isaacs talks about ARRA funding at Argonne

    ScienceCinema (OSTI)

    Isaacs, Eric

    2013-04-19T23:59:59.000Z

    Argonne is set to receive over $150 million in stimulus funds. Director Eric Isaacs describes how these funds will be put to good use?hiring employees and contractors, cleaning up the nuclear footprint, and investing in technologies for America's future. More info on Argonne and ARRA here: http://www.anl.gov/recovery/index.html

  18. ARGONNE'S ATOMIC LAYER DEPOSITION Customized Nanoengineered Coatings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Activity and Stability 16-17 Thin Films Open Up New Opportunities for Advanced Photovoltaics 18 Working with Argonne Argonne's advanced materials capabilities and intellectual...

  19. Watershed Modeling for Biofuels | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Watershed Modeling for Biofuels Argonne's watershed modeling research addresses water quality in tributary basins of the Mississippi River Basin Argonne's watershed modeling...

  20. Tony Tolbert | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tony Tolbert Consultant - Business Intelligence Argonne Leadership Computing Facility 9700 S. Cass Avenue Bldg. 240 Wkstn. 3D29 Argonne, IL 60439 630-252-6027 wtolbert...

  1. Argonne User Facility Agreements | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne User Facility Agreements About User Agreements If you are not an Argonne National Laboratory employee, a user agreement signed by your home institution is a prerequisite...

  2. Independent Oversight Focused Program Review, Argonne National...

    Energy Savers [EERE]

    Independent Oversight Focused Program Review, Argonne National Laboratory-West - May 2001 Independent Oversight Focused Program Review, Argonne National Laboratory-West - May 2001...

  3. Diversity & Inclusion FAQs | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FAQs Q. How does diversity and inclusion fit with Argonne's values? A. Argonne values excellence in science and engineering, and it values the contributions that individuals make....

  4. Argonne Acoustic Levitation Video Goes Viral

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Inside the Advanced Photon Source" Inside the latest Argonne Now APS Director Stephenson Named Argonne Distinguished Fellow Advanced Photon Source, Canadian Light Source...

  5. Elizabeth Brewer-Jordan | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    She also supports business development with partners to establish Work For Others and CRADA agreements. Before joining Argonne, Brewer-Jordan worked at Argonne's Advanced Photon...

  6. Analysis Activities at Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    Presentation on Argonne’s analysis activities to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.

  7. Access Business Systems | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Business Systems Dash provides access to select Argonne business systems without VPN. Dash is a secure platform, based on Citrix, for accessing Argonne business systems. Dash is...

  8. Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumni AlumniFederal FacilityAprilAre Earths Rare?OakLea Argonne

  9. Superlative Supercomputers: Argonne's Mira to Accelerate Scientific

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski -BlueprintThis document details theIndustry | DepartmentPlants

  10. Argonne National Laboratory 9700 S. Cass Avenue

    E-Print Network [OSTI]

    Kemner, Ken

    Argonne National Laboratory 9700 S. Cass Avenue Argonne, IL 60439 630.252.2525 International Programs: A Partnership BetweenInternational Programs: A Partnership Between Training Courses Argonne has/U.S. training courses have been organized and presented at Argonne. Approximately 4000 persons from over 130

  11. Argonne National Laboratory 9700 South Cass Avenue

    E-Print Network [OSTI]

    McCune, William

    Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439 ANL/MCS-TM-265 Short;Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is owned by the United thereof, Argonne National Laboratory, or The University of Chicago. ii #12;Contents Abstract 1 1

  12. Argonne National Laboratory 9700 S. Cass Avenue

    E-Print Network [OSTI]

    Kemner, Ken

    Argonne National Laboratory 9700 S. Cass Avenue Argonne, IL 60439 630.252.2525 Leading the Way proliferation remains a major challenge throughout the world. Starting in 1978, Argonne was the driving force. Argonne continues to be a key player in the National Nuclear Security Administration (NNSA) Global Threat

  13. Key facts about Argonne National Laboratory

    E-Print Network [OSTI]

    Kemner, Ken

    Key facts about Argonne National Laboratory Argonne National Laboratory occupies 1,500 wooded acres in southeast DuPage County near Chicago. Mission Argonne's mission is to apply a unique blend of world needs of our nation. Argonne conducts R&D in many areas of basic and applied science and engineering

  14. Argonne National Laboratory 9700 South Cass Avenue

    E-Print Network [OSTI]

    Liblit, Ben

    Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439 ANL/MCS-TM-252 OOQP User Guide. Dayton Street, Madison, WI 53706; swright@cs.wisc.edu #12;Argonne National Laboratory, with facilities state or reflect those of the United States Government or any agency thereof, Argonne National

  15. ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue

    E-Print Network [OSTI]

    Ferris, Michael C.

    ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois 60439 NEOS AND CONDOR: SOLVING, 61801. mesnier@cs.uiuc.edu x Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439. more@mcs.anl.gov 1 #12; Many different applications

  16. Argonne National Laboratory 9700 S. Cass Avenue

    E-Print Network [OSTI]

    Kemner, Ken

    Argonne National Laboratory 9700 S. Cass Avenue Argonne, IL 60439 630.252.2525 Fast Reactor Development at Argonne What is a Fast Reactor? Fast reactors avoid the slowing down of neutrons that takes to operator actions or engineered systems Creates additional fuel for sustainability Argonne is developing

  17. ANL-13/02 Argonne National Laboratory

    E-Print Network [OSTI]

    Kemner, Ken

    #12;#12;ANL-13/02 Argonne National Laboratory Site Environmental Report for Calendar Year 2012 Assurance Division Argonne National Laboratory September 2013 #12;#12;A NOTE FROM THE AUTHORS Argonne Site (SER) was prepared by the Environment, Safety, and Quality Assurance (ESQ) Division at Argonne National

  18. Automated analysis for detecting beams in laser wakefield simulations

    SciTech Connect (OSTI)

    Ushizima, Daniela M.; Rubel, Oliver; Prabhat, Mr.; Weber, Gunther H.; Bethel, E. Wes; Aragon, Cecilia R.; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Hamann, Bernd; Messmer, Peter; Hagen, Hans

    2008-07-03T23:59:59.000Z

    Laser wakefield particle accelerators have shown the potential to generate electric fields thousands of times higher than those of conventional accelerators. The resulting extremely short particle acceleration distance could yield a potential new compact source of energetic electrons and radiation, with wide applications from medicine to physics. Physicists investigate laser-plasma internal dynamics by running particle-in-cell simulations; however, this generates a large dataset that requires time-consuming, manual inspection by experts in order to detect key features such as beam formation. This paper describes a framework to automate the data analysis and classification of simulation data. First, we propose a new method to identify locations with high density of particles in the space-time domain, based on maximum extremum point detection on the particle distribution. We analyze high density electron regions using a lifetime diagram by organizing and pruning the maximum extrema as nodes in a minimum spanning tree. Second, we partition the multivariate data using fuzzy clustering to detect time steps in a experiment that may contain a high quality electron beam. Finally, we combine results from fuzzy clustering and bunch lifetime analysis to estimate spatially confined beams. We demonstrate our algorithms successfully on four different simulation datasets.

  19. Argonne receives 2014 DOE Sustainability Award | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    receives 2014 DOE Sustainability Award By Diana Anderson * January 5, 2015 Tweet EmailPrint Argonne National Laboratory has been recognized with the 2014 U.S. Department of Energy...

  20. Argonne scientists design self-assembled "micro-robots" | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    self-assembled "micro-robots" By Louise Lerner * August 8, 2011 Tweet EmailPrint ARGONNE, Ill. -Alexey Snezhko and Igor Aronson, physicists at the U.S. Department of Energy's...

  1. Argonne Now Magazine - Summer 2012 | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 The first edition of the revamped Argonne Now magazine features the cover story "The Search for a Superbattery," as well as stories on preparing for pandemic flu, a scheme to use...

  2. Argonne Now Magazine - Summer 2014 | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 In the summer 2014 issue of the Argonne magazine, learn about "The Science that Stumped Einstein," find out how we are addressing crime, social unrest, and buses by finding...

  3. Beam manipulation by self-wakefield at ATF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Committee and the ATF Users' Meetings, April 26 - 27, 2012 Outline 1. Enhanced Transformer Ratio demonstration (wakefield mapping with the shaped beam) 2. Tunable beam energy...

  4. Wakefield Municipal Gas and Light Department- Residential Conservation Services Program

    Broader source: Energy.gov [DOE]

    The Wakefield Municipal Gas and Light Department (WMGLD), in cooperation with the Massachusetts Municipal Wholesale Electric Company (MMWEC), offers the "Incentive Rebate Program" to encourage...

  5. Office of Enforcement Final Notice of Violation to UChicago Argonne...

    Office of Environmental Management (EM)

    CERTIFIED MAIL RETURN RECEIPT REQUESTED Eric D. Isaacs, Ph.D. President, UChicago Argonne, LLC Director, Argonne National Laboratory 9700 South Cass Avenue Argonne, lllinois 60439...

  6. Photo Gallery: Argonne OutLoud: "Invisible Influence: A Bacterial...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TWIST tours 2014 Undergraduate Symposium 2014 Undergraduate Symposium Argonne OutLoud: Science and Cinema Argonne OutLoud: Science and Cinema 2014 Argonne Earth Day event 2014...

  7. Social Media | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    View this on Twitter @argonne 6 days ago In case U missed it: @JCESRHub pushes 3D printing to the nanoscale - http:bit.ly1yRymcZ http:t.coAuwgHMdhtF 10 retweets View...

  8. Working Remotely | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Host a meeting with Blue Jeans Access your files on Box Argonne SharePoint Server (login required) Cyber Security Secure your home computers Passwords MyPassword Change...

  9. Argonne's Vilas Pol on NOVA!

    ScienceCinema (OSTI)

    None

    2013-04-19T23:59:59.000Z

    Can innovations in materials science help clean up our world? Argonne's material scientist Vilas Pol guest starred on NOVA's "Making Stuff: Cleaner," where David Pogue explored the rapidly-developing science and business of clean energy.

  10. Our Impact | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Our Impact Argonne is the largest federally funded R&D center in Illinois and the entire Midwest. For 65 years, our scientific and engineering research has helped drive the...

  11. Business Diversity | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In the News Two Argonne teams each win 75,000 in new Lab-Corps pitch competition Chicago Tribune Q&A: Peter B. Littlewood Pew Charitable Trusts Innovating A New Innovation Model...

  12. Workforce Pipeline | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on mixing hard science and pop culture Nerdette Podcast Girls in STEM Fields Southern Poverty Law Center Two Argonne teams each win 75,000 in new Lab-Corps pitch competition...

  13. Argonne National Laboratory's Omnivorous Engine

    ScienceCinema (OSTI)

    Thomas Wallner

    2010-01-08T23:59:59.000Z

    Why can't an engine run on any fuel? Argonne is designing an omnivorous engine that can run on any blend of gasoline, ethanol or butanol?and calibrate itself to burn that fuel most efficiently.

  14. Argonne's Laboratory computing center - 2007 annual report.

    SciTech Connect (OSTI)

    Bair, R.; Pieper, G. W.

    2008-05-28T23:59:59.000Z

    Argonne National Laboratory founded the Laboratory Computing Resource Center (LCRC) in the spring of 2002 to help meet pressing program needs for computational modeling, simulation, and analysis. The guiding mission is to provide critical computing resources that accelerate the development of high-performance computing expertise, applications, and computations to meet the Laboratory's challenging science and engineering missions. In September 2002 the LCRC deployed a 350-node computing cluster from Linux NetworX to address Laboratory needs for mid-range supercomputing. This cluster, named 'Jazz', achieved over a teraflop of computing power (1012 floating-point calculations per second) on standard tests, making it the Laboratory's first terascale computing system and one of the 50 fastest computers in the world at the time. Jazz was made available to early users in November 2002 while the system was undergoing development and configuration. In April 2003, Jazz was officially made available for production operation. Since then, the Jazz user community has grown steadily. By the end of fiscal year 2007, there were over 60 active projects representing a wide cross-section of Laboratory expertise, including work in biosciences, chemistry, climate, computer science, engineering applications, environmental science, geoscience, information science, materials science, mathematics, nanoscience, nuclear engineering, and physics. Most important, many projects have achieved results that would have been unobtainable without such a computing resource. The LCRC continues to foster growth in the computational science and engineering capability and quality at the Laboratory. Specific goals include expansion of the use of Jazz to new disciplines and Laboratory initiatives, teaming with Laboratory infrastructure providers to offer more scientific data management capabilities, expanding Argonne staff use of national computing facilities, and improving the scientific reach and performance of Argonne's computational applications. Furthermore, recognizing that Jazz is fully subscribed, with considerable unmet demand, the LCRC has framed a 'path forward' for additional computing resources.

  15. Risk management at Argonne National Laboratory

    SciTech Connect (OSTI)

    Hill, D.J.; Hislop, R.D.

    1994-02-01T23:59:59.000Z

    The only facility at Argonne National Laboratory which is classified as high hazard is EBR-II. A Level I Probabilistic Risk Assessment (PRA), including external events, has been completed for EBR-II. There were several objectives for this project; to provide a quantitative estimate of the risk associated with the operation of EBR-II, to provide a framework for managerial decision-making for the management of risk at the facility, and to provide insights into the nature of the risk of EBR-II that can be applied in the design of future LMRS. Other ANL facilities do not have complete probabilistic assessments. Despite this fact, Risk Management is an essential part of ANL`s approach to safety and operations. Risk management at Argonne National Laboratory is not limited to accelerator or nuclear facilities. It is also an integral part of construction activities. The Advanced Photon Source, a major construction project at the Laboratory, utilizes a variety of risk assessment techniques to identify potential construction loss exposures and to develop measures to eliminate them. Over the past 15 years, in excess of 15,000 pages of regulatory requirements pertaining to environment safety and health have been printed in the Federal Register. Not all of these are applicable to Argonne National Laboratory all of the time, but as a highly-visible, nationally-funded facility, compliance with those that are applicable must be above reproach. Therefore, risk management is also a very important part of construction activities at ANL. This paper will give examples of these activities, such as, the EBR-II PRA, risk-based analyses of Fuel Cycle Facility Safety Systems, reliability studies of the Access Control Interlock System for the Advanced Photon Source and management approaches for controlling risk during the construction activities at APS.

  16. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CARIBU Beam Yields for Representative Species Updated July, 2009 Typical CARIBU intensities for low-energy (stopped) and accelerated beams for the three 252Cf sources that will be...

  17. JoAnn "Joni" Garcia | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applicants Internal Applicants Postdoctoral Applicants Students Faculty Programs Why Argonne Your Career Life at Argonne Employee Spotlights Amenities Social Activities...

  18. Upgrade of the Drive LINAC for the AWA Facility Dielectric Two-Beam Accelerator

    SciTech Connect (OSTI)

    Power, John; /Argonne; Conde, Manoel; /Argonne; Gai, Wei; /Argonne; Li, Zenghai; /SLAC; Mihalcea, Daniel; /Northern Illinois U.

    2012-07-02T23:59:59.000Z

    We report on the design of a seven-cell, standing-wave, 1.3-GHz rf cavity and the associated beam dynamics studies for the upgrade of the drive beamline LINAC at the Argonne Wakefield Accelerator (AWA) facility. The LINAC design is a compromise between single-bunch operation (100 nC {at} 75 MeV) and minimization of the energy droop along the bunch train during bunch-train operation. The 1.3-GHz drive bunch-train target parameters are 75 MeV, 10-20-ns macropulse duration, and 16 x 60 nC microbunches; this is equivalent to a macropulse current and beam power of 80 A and 6 GW, respectively. Each LINAC structure accelerates approximately 1000 nC in 10 ns by a voltage of 11 MV at an rf power of 10 MW. Due to the short bunch-train duration desired ({approx}10 ns) and the existing frequency (1.3 GHz), compensation of the energy droop along the bunch train is difficult to accomplish by means of the two standard techniques: time-domain or frequency-domain beam loading compensation. Therefore, to minimize the energy droop, our design is based on a large stored energy rf cavity. In this paper, we present our rf cavity optimization method, detailed rf cavity design, and beam dynamics studies of the drive beamline.

  19. Site Access Policy | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Access Policy All visitors to Argonne require appropriate authorization before they are allowed on the Argonne site. For information regarding site access for a U.S. citizen...

  20. Career Opportunities - Frequently Asked Questions | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    do I apply for a job at Argonne? Using Argonne's online application system, create a profile. Note that if you have your resume handy (in Microsoft Word or PDF format), you can...

  1. Preliminary Notice of Violation, Argonne National Laboratory...

    Office of Environmental Management (EM)

    Argonne National Laboratory-West - EA-2001-01 Preliminary Notice of Violation, Argonne National Laboratory-West - EA-2001-01 February 28, 2001 Issued to the University of Chicago...

  2. Predicting the microbial "weather" | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne and the University of Chicago; other authors on the paper are Argonne's Peter Larsen and Dawn Field at the U.K.'s Natural Environment Research Council. The research was...

  3. Environmental Security and Restoration | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    contaminated sites. Argonne's work in environmental restoration addresses soil, surface water, sediment, and groundwater at contaminated sites, starting with environmental...

  4. In The News | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Videos In The News Topic - Any - General Argonne Information -Awards -Honors Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Biofuels...

  5. In The News | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In The News Topic - Any - General Argonne Information -Awards -Honors Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Biofuels ---Diesel...

  6. Current Postdoctoral Researchers | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Postdoctoral Researchers Name Topic - Any - General Argonne Information -Awards -Honors Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering...

  7. Materials Engineering Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Engineering Research Facility Argonne's new Materials Engineering Research Facility (MERF) supports the laboratory's Advanced Battery Materials Synthesis and...

  8. Friction, Wear, and Lubrication Technologies | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    emissions characteristics. Argonne research focuses on developing advanced lubricant additives and basefluids, lubricant-boosting materials and coatings; conducting mechanistic...

  9. ANL-14/02 Argonne National Laboratory

    E-Print Network [OSTI]

    Kemner, Ken

    #12;#12;ANL-14/02 Argonne National Laboratory Site Environmental Report for Calendar Year 2013, and Quality Assurance Division Argonne National Laboratory September 2014 #12;#12;A NOTE FROM THE AUTHORS Argonne Site Environmental Report _____________________________________________________ iii This Site

  10. Plasma wakefields in the quasi-nonlinear regime: Experiments at ATF

    SciTech Connect (OSTI)

    Rosenzweig, J. B.; Andonian, G.; Barber, S.; Ferrario, M.; Muggli, P.; O'Shea, B.; Sakai, Y.; Valloni, A.; Williams, O.; Xi, Y.; Yakimenko, V. [UCLA Dept. of Physics and Astronomy, 405 Hilgard Ave. Los Angeles, CA, 90095 (United States); Accelerator Division, Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati , Via E. Fermi 40, Frascati (RM) 00044 (Italy); Max Planck Institute for Physics, Munich (Germany); UCLA Dept. of Physics and Astronomy, 405 Hilgard Ave. Los Angeles, CA, 90095 (United States); Brookhaven National Laboratory, Upton, NY, 11973 (United States)

    2012-12-21T23:59:59.000Z

    In this work we present details of planned experiments to investigate certain aspects of the quasi non linear regime (QNL) of plasma wakefield acceleration (PWFA). In the QNL regime it is, in principal, possible to combine the benefits of both nonlinear and linear PWFA. That is, beams of high quality can be maintained through acceleration due to the complete ejection of plasma electrons from beam occupied region, while large energy gains can be achieved through use of transformer ratio increasing schemes, such as ramped bunch trains. With the addition of an short focal length PMQ triplet capable of focusing beams to the few micron scale and the ability to generate tunable bunch trains, the Accelerator Test Facility (ATF) at Brookhaven National Lab offers the unique capabilities to probe these characteristics of the QNL regime.

  11. Mira: Argonne's 10-petaflops supercomputer

    SciTech Connect (OSTI)

    Papka, Michael; Coghlan, Susan; Isaacs, Eric; Peters, Mark; Messina, Paul

    2013-07-03T23:59:59.000Z

    Mira, Argonne's petascale IBM Blue Gene/Q system, ushers in a new era of scientific supercomputing at the Argonne Leadership Computing Facility. An engineering marvel, the 10-petaflops supercomputer is capable of carrying out 10 quadrillion calculations per second. As a machine for open science, any researcher with a question that requires large-scale computing resources can submit a proposal for time on Mira, typically in allocations of millions of core-hours, to run programs for their experiments. This adds up to billions of hours of computing time per year.

  12. Mira: Argonne's 10-petaflops supercomputer

    ScienceCinema (OSTI)

    Papka, Michael; Coghlan, Susan; Isaacs, Eric; Peters, Mark; Messina, Paul

    2014-06-05T23:59:59.000Z

    Mira, Argonne's petascale IBM Blue Gene/Q system, ushers in a new era of scientific supercomputing at the Argonne Leadership Computing Facility. An engineering marvel, the 10-petaflops supercomputer is capable of carrying out 10 quadrillion calculations per second. As a machine for open science, any researcher with a question that requires large-scale computing resources can submit a proposal for time on Mira, typically in allocations of millions of core-hours, to run programs for their experiments. This adds up to billions of hours of computing time per year.

  13. Recent Advances in Plasma Acceleration

    SciTech Connect (OSTI)

    Hogan, Mark

    2007-03-19T23:59:59.000Z

    The costs and the time scales of colliders intended to reach the energy frontier are such that it is important to explore new methods of accelerating particles to high energies. Plasma-based accelerators are particularly attractive because they are capable of producing accelerating fields that are orders of magnitude larger than those used in conventional colliders. In these accelerators a drive beam, either laser or particle, produces a plasma wave (wakefield) that accelerates charged particles. The ultimate utility of plasma accelerators will depend on sustaining ultra-high accelerating fields over a substantial length to achieve a significant energy gain. More than 42 GeV energy gain was achieved in an 85 cm long plasma wakefield accelerator driven by a 42 GeV electron drive beam in the Final Focus Test Beam (FFTB) Facility at SLAC. Most of the beam electrons lose energy to the plasma wave, but some electrons in the back of the same beam pulse are accelerated with a field of {approx}52 GV/m. This effectively doubles their energy, producing the energy gain of the 3 km long SLAC accelerator in less than a meter for a small fraction of the electrons in the injected bunch. Prospects for a drive-witness bunch configuration and high-gradient positron acceleration experiments planned for the SABER facility will be discussed.

  14. Argonne's SpEC Module

    ScienceCinema (OSTI)

    Harper, Jason

    2014-06-05T23:59:59.000Z

    Jason Harper, an electrical engineer in Argonne National Laboratory's EV-Smart Grid Interoperability Center, discusses his SpEC Module invention that will enable fast charging of electric vehicles in under 15 minutes. The module has been licensed to BTCPower.

  15. Argonne's SpEC Module

    SciTech Connect (OSTI)

    Harper, Jason

    2014-05-05T23:59:59.000Z

    Jason Harper, an electrical engineer in Argonne National Laboratory's EV-Smart Grid Interoperability Center, discusses his SpEC Module invention that will enable fast charging of electric vehicles in under 15 minutes. The module has been licensed to BTCPower.

  16. Automatic Beam Path Analysis of Laser Wakefield Particle Acceleration Data

    E-Print Network [OSTI]

    Rubel, Oliver

    2010-01-01T23:59:59.000Z

    Without compression, the size of a bitmap index increasesnumber of bitmaps per index. Compression is used to reduceindex software called FastBit [9]. It implements the fastest known bitmap compression

  17. ATF Plasma Sources for Wakefield Electron Acceleration ATF User...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Sources at ATF Ablative discharge capillary Gas-filled capillary Gas jet Plasma Sources: Ablative discharge capillary +20 kV DC 1k 1M HV generator (20kV,...

  18. Modeling laser wakefield accelerators in a Lorentz boosted frame

    E-Print Network [OSTI]

    Vay, J.-L.

    2010-01-01T23:59:59.000Z

    1:2:4) Mean beam position (m) VAX Sen c >SA- i— s( i) c 3- a2) - - - S(1:2:3)! S(1:2:4); VAX c c 3 0J u xi E2i SO) S(l:4) Mean beam position (m) VAX Figure 20: (left) Average beam

  19. Modeling Laser Wakefield Accelerators in a Lorentz Boosted Frame

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of experiments on new lasers such as BELLA. Principal Investigator: Cameron Geddes, LBNL More Information: See J.-L. Vay, C. G. R. Geddes, E. Cormier-Michel, and D. P. Grote,...

  20. Analysis of Laser Wakefield Particle Acceleration Data at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data LWFAIllustrationSmall.png In collaboration with researchers of the LOASIS program (LBNL) and the SciDAC SDM center (LBNL) we have been working on various efforts aimed at...

  1. UNDULATOR-BASED LASER WAKEFIELD ACCELERATOR ELECTRON BEAM DIAGNOSTIC

    E-Print Network [OSTI]

    Bakeman, M.S.

    2010-01-01T23:59:59.000Z

    ultra-short, high-peak- current, electron beams are ideal for driving a compact XUV free electron laser (

  2. Modeling Laser Wakefield Accelerators in a Lorentz Boosted Frame

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.Model Verification andModeling Laser

  3. Summary Report of Working Group 1: Laser-Plasma Acceleration

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    structure providing a linear mechanism with potential to harness low-energy laser systems [11 orders beyond conventional machines, with quasi-monoenergetic beams at MeV-GeV energies, making them and diagnostics. This includes laser wakefield acceleration [1], where acceleration by a plasma wave excited

  4. Powerful, pulsed, THz radiation from laser accelerated relativistic electron bunches

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    by strongly focused ( 6 µm), high peak power (up to 10 TW), ultra-short ( 50 fs) laser pulses of a 10 Hz at the exit of the plasma accelerator. Keywords: ultrahigh-fields, ultra-short, laser-plasma, wakefieldPowerful, pulsed, THz radiation from laser accelerated relativistic electron bunches Cs. T´otha, J

  5. Experimental demonstration of wakefield effects in a THz planar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Change in D-W spacing energy gainloss of a witness Wakefield structure c b (c) * Polycrystalline diamond, 75um thick * 250 GHz slab-symmetrical structure Why Diamond...

  6. Membrane and MEA Accelerated Stress Test Protocols

    Broader source: Energy.gov (indexed) [DOE]

    and MEA Accelerated Stress Test Protocols Presented at High Temperature Membrane Working Group Meeting Washington, DC May 14, 2007 T.G. Benjamin Argonne National Laboratory 2 0 10...

  7. Physics of laser-driven plasma-based electron accelerators E. Esarey, C. B. Schroeder, and W. P. Leemans

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Physics of laser-driven plasma-based electron accelerators E. Esarey, C. B. Schroeder, and W. P Laser-driven plasma-based accelerators, which are capable of supporting fields in excess of 100 GV/m, are reviewed. This includes the laser wakefield accelerator, the plasma beat wave accelerator, the self

  8. CONDENSED MATTER THEORIST, MATERIALS SCIENCE DIVISION ARGONNE NATIONAL LABORATORY

    E-Print Network [OSTI]

    6/29/11 CONDENSED MATTER THEORIST, MATERIALS SCIENCE DIVISION ARGONNE NATIONAL LABORATORY Argonne Division, preferably by e-mail (norman@anl.gov), otherwise by regular mail (MSD-223, Argonne National Lab, Argonne, IL 60439). Please use the subject line "CMT Search" in any e-mail correspondence. Argonne

  9. Argonne's rich scientific heritage Argonne's Experimental Breeder Reactor-I in Idaho lit this string of four

    E-Print Network [OSTI]

    Kemner, Ken

    Argonne's rich scientific heritage Argonne's Experimental Breeder Reactor-I in Idaho lit was December 20, 1951. Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC October 2010Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439

  10. EA-1266: Proposed Decontamination and Disassembly of the Argonne Thermal Source Reactor (ATSR) At Argonne National Laboratory, Argonne, Illinois

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal for the decontamination and disassembly of the U.S. Department of Energy's Argonne Thermal Source Reactor.

  11. AUGMENTING COMPUTER MUSIC WITH JUST-IN-TIME COMPILATION Wesley Smith, Graham Wakefield

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    AUGMENTING COMPUTER MUSIC WITH JUST-IN-TIME COMPILATION Wesley Smith, Graham Wakefield University of California Santa Barbara Media Arts and Technology whsmith|wakefield@mat.ucsb.edu ABSTRACT We discuss

  12. MuSiC: a Multibunch and multiparticle Simulation Code with an alternative approach to wakefield effects

    E-Print Network [OSTI]

    Migliorati, M

    2015-01-01T23:59:59.000Z

    The simulation of beam dynamics in presence of collective effects requires a strong computational effort to take into account, in a self consistent way, the wakefield acting on a given charge and produced by all the others. Generally this is done by means of a convolution integral or sum. Moreover, if the electromagnetic fields consist of resonant modes with high quality factors, responsible, for example, of coupled bunch instabilities, a charge is also affected by itself in previous turns, and a very long record of wakefield must be properly taken into account. In this paper we present a new simulation code for the longitudinal beam dynamics in a circular accelerator, which exploits an alternative approach to the currently used convolution sum, reducing the computing time and avoiding the issues related to the length of wakefield for coupled bunch instabilities. With this approach it is possible to simulate, without the need of a large computing power, simultaneously, the single and multi-bunch beam dynamics...

  13. Argonne ARPA-E Battery Research

    ScienceCinema (OSTI)

    Amine, Khalil; Sinkula, Michael

    2013-04-19T23:59:59.000Z

    Argonne National Laboratory and Envia Systems annouced a licensing agreement for Argonne's patented electrode material technology. Envia plans to commercialize these materials for use in energy storage devices for the next generation of electric, plug-in and hybrid electric vehicles. General Motors Company, LG Chem, BASF and Toda Kyoga have also licensed this suite of Argonne's technologies. For more information visit us at http://www.anl.gov

  14. argonne zgs: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    proposed gas Kemner, Ken 14 Argonne is a partner in the Argonne-Northwestern Solar Energy Research Center led by Northwestern University. Argonne is a partner in the Center for...

  15. argonne researchers win: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Page Last Page Topic Index 1 Argonne is a partner in the Argonne-Northwestern Solar Energy Research Center led by Northwestern University. Argonne is a partner in the Center for...

  16. Argonne National Laboratory Director's Fellowship Program Instructions for Applicants

    E-Print Network [OSTI]

    Kemner, Ken

    Argonne National Laboratory Director's Fellowship Program Instructions for Applicants Candidates of their research proposal. They will collaborate with Argonne scientists and engineers on existing programs and on new initiatives. All applicants must identify an Argonne employee (sponsor) who will write

  17. Atomic 'mismatch' creates nano 'dumbbells' | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomic 'mismatch' creates nano 'dumbbells' By Jared Sagoff * December 4, 2014 Tweet EmailPrint ARGONNE, Ill. - Like snowflakes, nanoparticles come in a wide variety of shapes and...

  18. Lisa L. Reed | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and engineers opportunities to work side-by-side Argonne experts in research focused learning experiences. She manages the multiple internship programs across the...

  19. Construction Contractor Checklist | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Construction Contractor Checklist For small businesses seeking contracting opportunities with Argonne in the constructiondemolition field, please be sure you have taken the...

  20. SB EE Calculator | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calculator Energy Efficiency Decision Support Calculator Argonne's Energy Efficiency Decision Support Calculator is a simple tool that small business owners can use to quickly...

  1. Physical Sciences and Engineering | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    100 awards More Argonne named in several DOE Energy Frontier Research Center awards More Solar panel manufacturing is greener in Europe than China, study says More Microscopy...

  2. Alfred P. Sattelberger | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Core Capabilities Leadership Board of Governors Message from the Director Argonne Distinguished Fellows Emeritus Scientists & Engineers Organization Chart History Discoveries...

  3. Message from the Director | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From the Director Here at Argonne, teams of renowned scientists and engineers conduct world-class, mission-driven research, seeking answers to fundamental questions that range from...

  4. Caterpillar, Argonne undertake cooperative virtual engine design...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    project By Jared Sagoff * June 30, 2014 Tweet EmailPrint ARGONNE, Ill - Internal combustion engines are poised for dramatic breakthroughs in improving efficiency with lower...

  5. Host a Meeting | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Host a meeting Blue Jeans is a cloud-based video, web, and audio collaboration solution available to Argonne employees for hosting meetings. Blue Jeans works for both...

  6. Batteries and Energy Storage | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SPOTLIGHT Batteries and Energy Storage Argonne's all- encompassing battery research program spans the continuum from basic materials research and diagnostics to scale-up processes...

  7. Employee Spotlight: Lydia Finney | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lydia Finney Share Topic Community Education Postdoctoral Program Operations Human Resources Diversity Programs Synchrotron radiation Argonne physicist Lydia Finney talks about her...

  8. Computing Resources | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is dedicated to large-scale computation and builds on Argonne's strengths in high-performance computing software, advanced hardware architectures and applications expertise. It...

  9. Building 362 Renovation | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building 362 Renovation Conceptual space planning for the Building 362 Renovation project is complete. Here is a "before and after" rendition of how Argonne will be optimizing the...

  10. Energy Sciences Building | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Video Argonne's Energy Sciences Building Energy Sciences Building The Energy Sciences Building is a world-class scientific facility and a shining example of sustainable design....

  11. Getting Started Videoconference | Argonne Leadership Computing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Getting Started Videoconference Event Sponsor: Argonne Leadership Computing Facility Start Date: Jan 21 2015 - 8:30am BuildingRoom: Videoconference Event Website: http:...

  12. Scenes from Argonne's Materials Engineering Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scenes from Argonne's Materials Engineering Research Facility Share Description B-roll for the Materials Engineering Research Facility Topic Energy Energy usage Energy storage...

  13. Argonne receives 2014 Illinois Governor's Sustainability Award...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    receives 2014 Illinois Governor's Sustainability Award By Else Tennessen * November 10, 2014 Tweet EmailPrint On Oct. 23, Argonne National Laboratory was presented with the...

  14. OutLoud | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OutLoud Our Impact Education Environmental Protection Sustainability Please stay tuned for details about the next installment of the Argonne OutLoud free public lecture series,...

  15. Campus Utility Upgrades | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    will provide essential support for the Argonne Leadership Computing Facility high performance computing upgrades, expected to occur in FY 2018. Campus utility upgrades also support...

  16. Ecological Resources and Systems | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute's Urban Center for Computation and Data at the University of Chicago. Photo by Mark LopezArgonne National Laboratory. (Click to enlarge.) New sensor array...

  17. Graduate Research Aide Appointments | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aide Appointments Solving big problems with big science. As an Argonne Research Aide, college and university students work alongside scientific and engineering staff, providing...

  18. Sensors and Detectors | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Telescope. Argonne technology and expertise played key roles in the discovery of the Higgs Boson and in illuminating the structure of the early universe. Future breakthroughs will...

  19. DEP Car Competition | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Middle School Electric Car Competition High School Rube Goldberg Teacher Programs Classroom Resources Contact education@anl.gov Ready Set Race Argonne Electric Car Competition...

  20. DEP Community Outreach | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Middle School) Argonne National Laboratory (Lemont, IL) March 21, 2015 Middle School Electric Car Competition Case New Holland (Burr Ridge, IL) April 16, 2015 Science Careers...

  1. Physical Sciences and Engineering | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    awards More Argonne named in several DOE Energy Frontier Research Center awards More Solar panel manufacturing is greener in Europe than China, study says More Microscopy...

  2. Smart Grid Photos | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    charging station This solar-powered electric vehicle charging station is located near Building 201. Vehicles in Argonne's "green" fleet are charged at this unit....

  3. Energy Systems Analysis | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Systems Analysis All stages of energy production have inputs and outputs. Argonne researchers analyze the total production picture and develop tools for members of the...

  4. Advanced Reactor Thermal Hydraulic Modeling | Argonne Leadership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Reactor Thermal Hydraulic Modeling PI Name: Paul Fischer PI Email: fischer@mcs.anl.gov Institution: Argonne National Laboratory Allocation Program: INCITE Allocation Hours...

  5. Advanced Reactor Thermal Hydraulic Modeling | Argonne Leadership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fischer (ANL), Aleks Obabko (ANL), and Hank Childs (LBNL) Advanced Reactor Thermal Hydraulic Modeling PI Name: Paul Fischer PI Email: fischer@mcs.anl.gov Institution: Argonne...

  6. Enterprise Assessments Targeted Review, Argonne National Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    November 2014 Review of the Radiological Controls Activity-Level Implementation at the Argonne National Laboratory Nuclear Facilities. The Office of Nuclear Safety and...

  7. Argonne National Laboratory's Solar Energy Development Programmatic...

    Open Energy Info (EERE)

    Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Argonne National Laboratory's Solar Energy Development Programmatic EIS Website Abstract This...

  8. 2014 Undergraduate Symposium | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Symposium Over 300 undergraduates presented oral or poster presentations to peers, Argonne scientists and university personnel on November 7, 2014. Students also toured and...

  9. Community & Education Photo Gallery | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    measurements of a fast and inexpensive boriding conversion coating developed at Argonne National Laboratory using a "microhardness" test machine. This new coating process...

  10. Technology available for licensing: CURLS | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology available for licensing: CURLS November 21, 2013 Tweet EmailPrint CURLS - the Containment Unidirectional Resource Loading System developed at Argonne - expands the...

  11. Advanced Materials and Manufacturing | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and characterization of ceramic materials for energy-related applications Process Development and Scale-up Program Argonne's Materials Synthesis and Manufacturing Research and...

  12. DEP Teacher Programs | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Event Schedule Date Event Location Type of Workshop 31015 Argonne Outloud: Climate Change - Fact, Fiction and What You Can Do University of Chicago (Chicago, IL) Science...

  13. The Endurance Bioenergy Reactor | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Endurance Bioenergy Reactor Share Description Argonne biophysicist Dr. Philip Laible and Air Force Major Matt Michaud talks about he endurance bioenergy reactor-a device that...

  14. Energy Systems Organization Charts | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Systems Organization Charts Charts showing the organizational structure of the Energy Systems Division and the Center for Transportation Research at Argonne....

  15. Vehicle Technologies Office Merit Review 2014: Accelerating the Evaluation and Market Introduction of Advanced Technologies Through Model Based System Engineering

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about accelerating the...

  16. Vehicle Technologies Office Merit Review 2015: Accelerate the Development and Introduction of Advanced Technologies Through Model Based System Engineering

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about accelerate the...

  17. A plug fit for every car | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the laboratory science magazine. Argonne engineer Kevin Stutenberg sets up an electric car for testing. Argonne engineer Kevin Stutenberg sets up an electric car for testing. A...

  18. Innovative cement helps DOE safeguard nuclear facilities | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovative cement helps DOE safeguard nuclear facilities By Jared Sagoff * April 25, 2008 Tweet EmailPrint ARGONNE, Ill. - When Argonne materials scientists Arun Wagh and Dileep...

  19. New Argonne initiative to examine the details of the combustion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne initiative to examine the details of the combustion process By Jared Sagoff * July 15, 2014 Tweet EmailPrint ARGONNE, Ill. - Every science experiment and every mathematical...

  20. Transportation Beamline at the Advanced Photon Source | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Beamline at the Advanced Photon Source Argonne's dedicated transportation research beamline at Argonne's Advanced Photon Source (APS) allows researchers to use the...

  1. Argonne Facilitation of PHEV Standard Testing Procedure (SAE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Argonne Facilitation of PHEV Standard Testing Procedure (SAE J1711) Argonne Facilitation of PHEV Standard Testing Procedure (SAE J1711) 2009 DOE Hydrogen Program and Vehicle...

  2. Extending a hand: Argonne Hispanic Latino Club mentors Chicago...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From left: Michael Kaminski, Argonne materials engineer and Hispanic Latino Club President, and Argonne Lab Director Peter Littlewood guide Humphrey Middle School students in the...

  3. Argonne announces new licensing agreement with AKHAN Semiconductor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne announces new licensing agreement with AKHAN Semiconductor By Jared Sagoff * November 19, 2014 Tweet EmailPrint ARGONNE, Ill. - The U.S. Department of Energy's (DOE)...

  4. President Obama Visits the Argonne National Research Lab to Talk...

    Energy Savers [EERE]

    President Obama Visits the Argonne National Research Lab to Talk About American Energy Security President Obama Visits the Argonne National Research Lab to Talk About American...

  5. Argonne Researchers Shine "Light" on Origins of Wind Turbine...

    Broader source: Energy.gov (indexed) [DOE]

    Argonne Researchers Shine "Light" on Origins of Wind Turbine Bearing Failures Argonne Researchers Shine "Light" on Origins of Wind Turbine Bearing Failures September 12, 2014 -...

  6. Environmental Survey preliminary report, Argonne National Laboratory, Argonne, Illinois

    SciTech Connect (OSTI)

    Not Available

    1988-11-01T23:59:59.000Z

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Argonne National Laboratory (ANL), conducted June 15 through 26, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with ANL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at ANL, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S A Plan will be executed by the Oak Ridge National Laboratory (ORNL). When completed, the S A results will be incorporated into the Argonne National Laboratory Environmental Survey findings for inclusion in the Environmental Survey Summary Report. 75 refs., 24 figs., 60 tabs.

  7. Proposed environmental remediation at Argonne National Laboratory, Argonne, Illinois

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    The Department of Energy (DOE) has prepared an Environmental Assessment evaluating proposed environmental remediation activity at Argonne National Laboratory-East (ANL-E), Argonne, Illinois. The environmental remediation work would (1) reduce, eliminate, or prevent the release of contaminants from a number of Resource Conservation and Recovery Act (RCRA) Solid Waste Management Units (SWMUs) and two radiologically contaminated sites located in areas contiguous with SWMUs, and (2) decrease the potential for exposure of the public, ANL-E employees, and wildlife to such contaminants. The actions proposed for SWMUs are required to comply with the RCRA corrective action process and corrective action requirements of the Illinois Environmental Protection Agency; the actions proposed are also required to reduce the potential for continued contaminant release. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required.

  8. Argonne National Laboratory's Recycling Pilot Plant

    SciTech Connect (OSTI)

    Spangenberger, Jeff; Jody, Sam

    2009-01-01T23:59:59.000Z

    Argonne has a Recycling Pilot Plant designed to save the non-metal portions of junked cars. Here, program managers demonstrate how plastic shredder residue can be recycled. (Currently these automotive leftovers are sent to landfills.) For more information, visit Argonne's Transportation Technology R&D Center Web site at http://www.transportation.anl.gov.

  9. Argonne National Laboratory's Recycling Pilot Plant

    ScienceCinema (OSTI)

    Spangenberger, Jeff; Jody, Sam;

    2013-04-19T23:59:59.000Z

    Argonne has a Recycling Pilot Plant designed to save the non-metal portions of junked cars. Here, program managers demonstrate how plastic shredder residue can be recycled. (Currently these automotive leftovers are sent to landfills.) For more information, visit Argonne's Transportation Technology R&D Center Web site at http://www.transportation.anl.gov.

  10. Argonne National Laboratory 1985 publications

    SciTech Connect (OSTI)

    Kopta, J.A. (ED.); Hale, M.R. (comp.)

    1987-08-01T23:59:59.000Z

    This report is a bibliography of scientific and technical 1985 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1985. This compilation, prepared by the Technical Information Services Technical Publications Section (TPB), lists all nonrestricted 1985 publications submitted to TPS by Laboratory's Divisions. The report is divided into seven parts: Journal Articles - Listed by first author, ANL Reports - Listed by report number, ANL and non-ANL Unnumbered Reports - Listed by report number, Non-ANL Numbered Reports - Listed by report number, Books and Book Chapters - Listed by first author, Conference Papers - Listed by first author, Complete Author Index.

  11. ANL-671A (10-06) 1 UCHICAGO ARGONNE, LLC,

    E-Print Network [OSTI]

    Kemner, Ken

    ANL-671A (10-06) 1 UCHICAGO ARGONNE, LLC, OPERATOR OF ARGONNE NATIONAL LABORATORY GUEST RESEARCH of Argonne is to serve as a center where investigators can pursue research and development work related to the broad field of energy. To this end, Argonne is particularly interested in cooperating with qualified

  12. Computational chemistry in Argonne`s Reactor Analysis Division

    SciTech Connect (OSTI)

    Gelbard, E.; Agrawal, R.; Fanning, T.

    1997-08-01T23:59:59.000Z

    Roughly 3 years ago work on Argonne`s Integral Fast Reactor ({open_quotes}IFR{close_quotes}) was terminated and at that time, ANL funding was redirected to a number of alternative programs. One such alternative was waste management and, since disposal of spent fuel from ANL`s EBR-II reactor presents some special problems, this seemed an appropriate area for ANL work. Methods for the treatment and disposal of spent fuel (particularly from EBR-II but also from other sources) are now under very active investigation at ANL. The very large waste form development program is mainly experimental at this point, but within the Reactor Analysis ({open_quotes}RA{close_quotes}) Division a small computational chemistry program is underway, designed to supplement the experimental program. One of the most popular proposals for the treatment of much of our high-level wastes is vitrification. As noted below, this approach has serious drawbacks for EBR-II spent fuel. ANL has proposed, instead, that spent fuel first be pretreated by a special metallurgical process which produces, as waste, chloride salts of the various fission products; these salts would then be adsorbed in zeolite A, which is subsequently bonded with glass to produce a waste form suitable for disposal. So far it has been the main mission of RA`s computational chemistry program to study the process by which leaching occurs when the glass-bonded zeolite waste form is exposed to water. It is the purpose of this paper to describe RA`s computational chemistry program, to discuss the computational techniques involved in such a program, and in general to familiarize the M. and C. Division with a computational area which is probably unfamiliar to most of its member. 11 refs., 2 figs.

  13. Argonne is an equal opportunity employer and we value diversity in our workforce. Argonne National Laboratory Named Postdoctoral Fellowship Program

    E-Print Network [OSTI]

    Kemner, Ken

    Argonne is an equal opportunity employer and we value diversity in our workforce. Argonne National identify an Argonne employee (sponsor) who will write the nomination memo and present your case in front of up to $20,000 per year for research support and travel. It is expected that Argonne sponsor and

  14. Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

    E-Print Network [OSTI]

    Kemner, Ken

    Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne Generation Nuclear Plant Argonne's Nuclear Engineering Division is actively participating in the development, thermal-hydraulics, structural mechanics, safety, and fuel cycle technologies. Argonne also contributes

  15. Argonne is an equal opportunity employer and we value diversity in our workforce. Argonne National Laboratory Named Postdoctoral Fellowship Program

    E-Print Network [OSTI]

    Kemner, Ken

    Argonne is an equal opportunity employer and we value diversity in our workforce. Argonne National an Argonne employee (sponsor) who will write the nomination memo and present your case in front an Argonne sponsor, visit the detailed websites of the various Research Programs and Research Divisions

  16. Controlled interface profile in SmCo/Fe exchange-spring magnets Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439

    E-Print Network [OSTI]

    Liu, J. Ping

    Division, Argonne National Laboratory, Argonne, Illinois 60439 and Department of Physics, University Division, Argonne National Laboratory, Argonne, Illinois 60439 J. J. Kavichb and J. W. Freeland Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 J. P. Liu Department of Physics

  17. Argonne National Laboratory 1986 publications

    SciTech Connect (OSTI)

    Kopta, J.A.; Springer, C.J.

    1987-12-01T23:59:59.000Z

    This report is a bibliography of scientific and technical 1986 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1986. This compilation, prepared by the Technical Information Services Technical Publications Section (TPS), lists all nonrestricted 1986 publications submitted to TPS by the Laboratory's Divisions. Author indexes list ANL authors only. If a first author is not an ANL employee, an asterisk in the bibliographic citation indicates the first ANL author. The report is divided into seven parts: Journal Articles -- Listed by first author; ANL Reports -- Listed by report number; ANL and non-ANL Unnumbered Reports -- Listed by report number; Non-ANL Numbered Reports -- Listed by report number; Books and Book Chapters -- Listed by first author; Conference Papers -- Listed by first author; and Complete Author Index.

  18. Renewable Energy | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Accelerating the transition to alternative energy sources requires significant improvement in materials, chemicals, processes, and devices. To produce more...

  19. USING LUA FOR AUDIOVISUAL COMPOSTION Graham Wakefield Wesley Smith

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    USING LUA FOR AUDIOVISUAL COMPOSTION Graham Wakefield Wesley Smith University of California Santa Barbara Media Arts and Technology Program Santa Barbara, California, USA ABSTRACT In this paper, we/MSP/Jitter [27], PureData [19], etc.) are popular choices for composing interactive digital media works because

  20. Argonne Lab's Breakthrough Cathode Technology Powers Electric...

    Energy Savers [EERE]

    the road by 2015. At the seminar, we caught up with Jeff Chamberlain, who leads Argonne's Energy Storage Initiative, to get a sense of what goes into the kind of research and...

  1. Robust System Design | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robust System Design Event Sponsor: Mathematics and Computing Science Seminar Start Date: May 5 2015 - 2:00pm BuildingRoom: Building 240Room 1406-1407 Location: Argonne National...

  2. Energy Storage & Battery | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage & Battery Leading the charge in battery R&D Argonne National Laboratory is a global leader in the development of advanced battery technologies and has a portfolio of...

  3. Community College Student Internships | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FAQ CCI Fact Sheet Contact education@anl.gov Community College Internship "Argonne provides a great opportunity to learn and also a great opportunity to better yourself, and your...

  4. Enabling Scalable Cloud Computing | Argonne Leadership Computing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enabling Scalable Cloud Computing Event Sponsor: Mathematics and Computer Science Division Start Date: Apr 9 2015 - 11:00am BuildingRoom: Building 240Room 4301 Location: Argonne...

  5. Virtual Private Network (VPN) | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    VPN, you will always see a notice that you are accessing a federal government computer. PII Survey An annual survey is required of all employees who have VPN access to Argonne....

  6. Feature Job-DIS | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Division at Argonne National Laboratory is looking for a part-time Computer Science (Co-op Student). The prospective co-op student is required to have: Enrollment in...

  7. A VISITOR'S GUIDE TO ARGONNE NATIONAL

    E-Print Network [OSTI]

    has worked with more than 600 companies and numerous federal agencies and other organizations. Argonne to promote energy independence through improved chemical fuels, advanced biofuels, and solar energy systems

  8. Researchers study grapevine microbiota | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To survey the microbes living in the roots and in the soil near grapevines, Argonne researchers took soil samples in several vineyards over the course of all four seasons. (Photo...

  9. The Radioactive Beam Program at Argonne

    E-Print Network [OSTI]

    B. B. Back

    2006-06-06T23:59:59.000Z

    In this talk I will present selected topics of the ongoing radioactive beam program at Argonne and discuss the capabilities of the CARIBU radioactive ion production facility as well as plans for construction of a novel superconducting solenoid spectrometer.

  10. Preliminary Notice of Violation, Argonne National Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    University of Chicago related to the Uncontrolled Release of Radioactive Material at Argonne National Laboratory-East, (EA-2001-05) On August 14, 2001, the U.S. Department of...

  11. Preliminary Notice of Violation, Argonne National Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    to the Failure to Control Radioactive Material and Personnel Contamination Events at Argonne National Laboratory-East, December 14, 1999 (EA-1999-10) On December 14, 1999, the...

  12. Aurora Supercomputer Press Conference | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On April 9, 2015, the Department of Energy held a press conference along with Argonne, Intel & Cray to announce a 200 million investment to deliver a next-generation...

  13. Diversity & Inclusion: Outreach & Education Diversity | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on mixing hard science and pop culture Nerdette Podcast Girls in STEM Fields Southern Poverty Law Center Two Argonne teams each win 75,000 in new Lab-Corps pitch competition...

  14. Winter Weather FAQs | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Winter Weather FAQs As Argonne prepares for the winter season, employees should be aware of the laboratory's procedures and policies in severe weather events. Below are some of the...

  15. Exemplary Student Research Program | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are presented along with the rest of the user community at the annual Argonne APSCNMEMC User Meeting in the Spring. This program is designed to enhance Honors or Advance...

  16. Employee Spotlight: Lydia Finney | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lydia Finney March 16, 2015 Tweet EmailPrint Lydia Finney is an Argonne physicist working at the Advanced Photon Source, a large X-ray synchrotron that provides scientists and...

  17. Apply for a Job | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FAQs Answers to frequently asked questions about applying for a job at Argonne A Note About Privacy We do not ask you for personally identifiable information such as birthdate,...

  18. Amanda Petford-Long | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Oxford (1985) and a Bachelor's degree in Physics from University College, London (1981). She moved to Argonne in 2005 from the University of Oxford where she was a...

  19. Wakefield Calculations for the LCLS in Multbunch Operation

    SciTech Connect (OSTI)

    Bane, K; /SLAC

    2011-10-17T23:59:59.000Z

    Normally the Linac Coherent Light Source (LCLS) operates in single-bunch mode, sending a bunch of up to 250 pC charge at 120 Hz through the linac and the undulator, and the resulting FEL radiation into one of the experimental hutches. With two bunches per rf pulse, each pulse could feed either two experiments or one experiment in a pump-probe type configuration. Two-bunch FEL operation has already been briefly tested at the LCLS, and works reasonably well, although not yet routinely. In this report we study the longitudinal and transverse long-range (bunch-to-bunch) wakefields of the linacs and their effects on LCLS performance in two-bunch mode, which is initially the most likely scenario. The longitudinal wake changes the average energy at the second bunch, and the transverse wake misaligns the second bunch (in transverse phase space) in the presence of e.g. transverse injection jitter or quad misalignments. Finally, we extend the study to consider the LCLS with trains of up to 20 bunches per rf pulse. In the LCLS the bunch is created in an rf gun, and then passes in sequence through Linac 0, Linac 1, Linac X, Bunch Compressor 1 (BC 1), Linac 2, BC 2, Linac 3, and finally the undulator. In the process the bunch energy reaches 13.5 GeV and peak current 3 kA. In Table 1 we present some machine and beam parameters in three of the linacs that we will use in the calculations: initial beam energy E{sub 0}, total accelerator length L, average beta function {beta}{sub y}, bunch peak current I, and rf phase (with respect to crest) {phi}; the final energy of a linac equals E{sub 0} of the following linac, and in Linac 3 is E{sub f} = 13.5 GeV. (The X-band linac, with L = 60 cm, has wake effects that are small compared to the other linacs, and will not be discussed.) In this report we limit our study to trains of equally populated, equally spaced bunches with a total length of less than 100 ns. The charge of each bunch is eN{sub b} = 250 pC.

  20. Argonne's first-ever Energy Slam

    Broader source: Energy.gov [DOE]

    Join us April 3 for Argonne's first-ever Energy Slam. Four Argonne researchers each will present for 10 minutes on a different energy source – solar, wind, nuclear and biofuels. At the end of the presentations, the audience will vote via applause on which of the four made the best case for his/her energy source and earned the title of Energy Slam Champion.

  1. Muon acceleration in cosmic-ray sources

    SciTech Connect (OSTI)

    Klein, Spencer R.; Mikkelsen, Rune E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Becker Tjus, Julia [Fakultät für Physik and Astronomie, Theoretische Physik I, Ruhr-Universität Bochum, D-44780 Bochum (Germany)

    2013-12-20T23:59:59.000Z

    Many models of ultra-high energy cosmic-ray production involve acceleration in linear accelerators located in gamma-ray bursts, magnetars, or other sources. These transient sources have short lifetimes, which necessitate very high accelerating gradients, up to 10{sup 13} keV cm{sup –1}. At gradients above 1.6 keV cm{sup –1}, muons produced by hadronic interactions undergo significant acceleration before they decay. This muon acceleration hardens the neutrino energy spectrum and greatly increases the high-energy neutrino flux. Using the IceCube high-energy diffuse neutrino flux limits, we set two-dimensional limits on the source opacity and matter density, as a function of accelerating gradient. These limits put strong constraints on different models of particle acceleration, particularly those based on plasma wake-field acceleration, and limit models for sources like gamma-ray bursts and magnetars.

  2. Facility for Advanced Accelerator Experimental Tests (FACET) at SLAC and its Radiological Considerations

    SciTech Connect (OSTI)

    Mao, X.S.; Leitner, M.Santana; Vollaire, J.

    2011-08-22T23:59:59.000Z

    Facility for Advanced Accelerator Experimental Tests (FACET) in SLAC will be used to study plasma wakefield acceleration. FLUKA Monte Carlo code was used to design a maze wall to separate FACET project and LCLS project to allow persons working in FACET side during LCLS operation. Also FLUKA Monte Carlo code was used to design the shielding for FACET dump to get optimum design for shielding both prompt and residual doses, as well as reducing environmental impact. FACET will be an experimental facility that provides short, intense pulses of electrons and positrons to excite plasma wakefields and study a variety of critical issues associated with plasma wakefield acceleration [1]. This paper describes the FACET beam parameters, the lay-out and its radiological issues.

  3. Argonne's Laboratory computing resource center : 2006 annual report.

    SciTech Connect (OSTI)

    Bair, R. B.; Kaushik, D. K.; Riley, K. R.; Valdes, J. V.; Drugan, C. D.; Pieper, G. P.

    2007-05-31T23:59:59.000Z

    Argonne National Laboratory founded the Laboratory Computing Resource Center (LCRC) in the spring of 2002 to help meet pressing program needs for computational modeling, simulation, and analysis. The guiding mission is to provide critical computing resources that accelerate the development of high-performance computing expertise, applications, and computations to meet the Laboratory's challenging science and engineering missions. In September 2002 the LCRC deployed a 350-node computing cluster from Linux NetworX to address Laboratory needs for mid-range supercomputing. This cluster, named 'Jazz', achieved over a teraflop of computing power (10{sup 12} floating-point calculations per second) on standard tests, making it the Laboratory's first terascale computing system and one of the 50 fastest computers in the world at the time. Jazz was made available to early users in November 2002 while the system was undergoing development and configuration. In April 2003, Jazz was officially made available for production operation. Since then, the Jazz user community has grown steadily. By the end of fiscal year 2006, there were 76 active projects on Jazz involving over 380 scientists and engineers. These projects represent a wide cross-section of Laboratory expertise, including work in biosciences, chemistry, climate, computer science, engineering applications, environmental science, geoscience, information science, materials science, mathematics, nanoscience, nuclear engineering, and physics. Most important, many projects have achieved results that would have been unobtainable without such a computing resource. The LCRC continues to foster growth in the computational science and engineering capability and quality at the Laboratory. Specific goals include expansion of the use of Jazz to new disciplines and Laboratory initiatives, teaming with Laboratory infrastructure providers to offer more scientific data management capabilities, expanding Argonne staff use of national computing facilities, and improving the scientific reach and performance of Argonne's computational applications. Furthermore, recognizing that Jazz is fully subscribed, with considerable unmet demand, the LCRC has framed a 'path forward' for additional computing resources.

  4. TWO-CHANNEL DIELECTRIC WAKE FIELD ACCELERATOR

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2012-05-30T23:59:59.000Z

    Experimental results are reported for test beam acceleration and deflection in a two-channel, cm-scale, rectangular dielectric-lined wakefield accelerator structure energized by a 14-MeV drive beam. The dominant waveguide mode of the structure is at {approx}30 GHz, and the structure is configured to exhibit a high transformer ratio ({approx}12:1). Accelerated bunches in the narrow secondary channel of the structure are continuously energized via Cherenkov radiation that is emitted by a drive bunch moving in the wider primary channel. Observed energy gains and losses, transverse deflections, and changes in the test bunch charge distribution compare favorably with predictions of theory.

  5. Argonne Premium Coal Sample Bank The Argonne Premium Coal (APC) Sample Bank can supply

    E-Print Network [OSTI]

    Maranas, Costas

    Argonne Premium Coal Sample Bank Background Overview T The Argonne Premium Coal (APC) Sample Bank can supply researchers with highly uniform, well-protected coal samples unexposed to oxygen. Researchers investigating coal structure, properties, and behavior can benefit greatly from these samples

  6. Robert Jacob | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    breakthroughs Telephone (630) 252-2983 E-mail jacob@mcs.anl.gov Publications View Publications Website www.mcs.anl.govjacob Projects Accelerated Climate Modeling for Energy...

  7. INDEPENDENT VERIFICATION REVIEW AND SURVEY of the Argonne National Laboratory Building 301 Footprint

    SciTech Connect (OSTI)

    E.N. Bailey

    2010-05-26T23:59:59.000Z

    INDEPENDENT VERIFICATION REVIEW AND SURVEY of the Argonne National Laboratory Building 301 Footprint, Argonne Illinois 5061-SR-01-0

  8. Muon Acceleration in Cosmic-ray Sources

    E-Print Network [OSTI]

    Spencer R. Klein; Rune Mikkelsen; Julia K. Becker Tjus

    2012-08-09T23:59:59.000Z

    Many models of ultra-high energy cosmic-ray production involve acceleration in linear accelerators located in Gamma-Ray Bursts magnetars, or other sources. These source models require very high accelerating gradients, $10^{13}$ keV/cm, with the minimum gradient set by the length of the source. At gradients above 1.6 keV/cm, muons produced by hadronic interactions undergo significant acceleration before they decay. This acceleration hardens the neutrino energy spectrum and greatly increases the high-energy neutrino flux. We rule out many models of linear acceleration, setting strong constraints on plasma wakefield accelerators and on models for sources like Gamma Ray Bursts and magnetars.

  9. Optimization of the LCLS X-ray FEL output performance in the presence of strong undulator wakefields

    E-Print Network [OSTI]

    Reiche, S; Emma, P; Fawley, W M; Huang, Z; Nuhn, H D; Stupakov, G V

    2005-01-01T23:59:59.000Z

    Optimization of the LCLS X-ray FEL output performance in the presence of strong undulator wakefields

  10. Argonne and Dept. of Energy receive EPA's Federal Green Challenge...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne and Dept. of Energy receive EPA's Federal Green Challenge Award May 15, 2014 Tweet EmailPrint Argonne National Laboratory and the U.S. Department of Energy (DOE) have been...

  11. Argonne Hispanic Latino Club awards $6K in STEM scholarships...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Hispanic Latino Club awards 6K in STEM scholarships By Diana Anderson * June 13, 2014 Tweet EmailPrint In June, Argonne National Laboratory's Hispanic Latino Club (HLC)...

  12. Hydrogen Storage Workshop Walter Podolski, Argonne National Laboratory

    E-Print Network [OSTI]

    Hydrogen Storage Workshop Summary Walter Podolski, Argonne National Laboratory JoAnn Milliken, DOE August 14-15, 2002 #12;· Argonne National Laboratory ­ August 14-15, 2002 ­ Attendees · 49 DOE

  13. High Technology School-to-Work Program at Argonne

    ScienceCinema (OSTI)

    None

    2013-04-19T23:59:59.000Z

    Argonne's High Technology School-to-Work Program for Chicago Public School Students. Supported by the Illinois Department of Commerce and Economic Opportunity, Chicago Public Schools, Argonne National Laboratory and the City of Chicago.

  14. Argonne Training Program on Extreme-Scale Computing Scheduled...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Training Program on Extreme-Scale Computing Scheduled for August 2-14, 2015 Author: Brian Grabowski . January 29, 2015 Printer-friendly version ARGONNE, Ill., January 28,...

  15. Observation of Wakefields and Resonances in Coherent Synchrotron Radiation

    E-Print Network [OSTI]

    Billinghurst, B E; Baribeau, C; Batten, T; Dallin, L; May, T E; Vogt, J M; Wurtz, W A; Warnock, R; Bizzizero, D A; Kramer, S

    2015-01-01T23:59:59.000Z

    We report on high resolution measurements of resonances in the spectrum of coherent synchrotron radiation (CSR) at the Canadian Light Source (CLS). The resonances permeate the spectrum at wavenumber intervals of $0.074 ~\\textrm{cm}^{-1}$, and are highly stable under changes in the machine setup (energy, bucket filling pattern, CSR in bursting or continuous mode). Analogous resonances were predicted long ago in an idealized theory as eigenmodes of a smooth toroidal vacuum chamber driven by a bunched beam moving on a circular orbit. A corollary of peaks in the spectrum is the presence of pulses in the wakefield of the bunch at well defined spatial intervals. Through experiments and further calculations we elucidate the resonance and wakefield mechanisms in the CLS vacuum chamber, which has a fluted form much different from a smooth torus. The wakefield is observed directly in the 30-110 GHz range by RF diodes, and indirectly by an interferometer in the THz range. The wake pulse sequence found by diodes is less ...

  16. 2012 Annual Planning Summary for Argonne Site Office

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within Argonne Site Office.

  17. 2013 Annual Planning Summary for the Argonne Site Office

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the Argonne Site Office

  18. EA-1866: Modernization Planning at Argonne National Laboratory, Illinois

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of proposed modernization planning at Argonne National Laboratory in DuPage County, Illinois.

  19. Chemical research at Argonne National Laboratory

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    Argonne National Laboratory is a research and development laboratory located 25 miles southwest of Chicago, Illinois. It has more than 200 programs in basic and applied sciences and an Industrial Technology Development Center to help move its technologies to the industrial sector. At Argonne, basic energy research is supported by applied research in diverse areas such as biology and biomedicine, energy conservation, fossil and nuclear fuels, environmental science, and parallel computer architectures. These capabilities translate into technological expertise in energy production and use, advanced materials and manufacturing processes, and waste minimization and environmental remediation, which can be shared with the industrial sector. The Laboratory`s technologies can be applied to help companies design products, substitute materials, devise innovative industrial processes, develop advanced quality control systems and instrumentation, and address environmental concerns. The latest techniques and facilities, including those involving modeling, simulation, and high-performance computing, are available to industry and academia. At Argonne, there are opportunities for industry to carry out cooperative research, license inventions, exchange technical personnel, use unique research facilities, and attend conferences and workshops. Technology transfer is one of the Laboratory`s major missions. High priority is given to strengthening U.S. technological competitiveness through research and development partnerships with industry that capitalize on Argonne`s expertise and facilities. The Laboratory is one of three DOE superconductivity technology centers, focusing on manufacturing technology for high-temperature superconducting wires, motors, bearings, and connecting leads. Argonne National Laboratory is operated by the University of Chicago for the U.S. Department of Energy.

  20. Argonne National Laboratory has been actively involved in the development

    E-Print Network [OSTI]

    Kemner, Ken

    Argonne National Laboratory has been actively involved in the development of advanced batteries at Argonne and named it the National Battery Test Laboratory (NBTL), for the purpose of conducting in these early days of the battery program, Argonne was internationally respected for its advanced battery work

  1. Tests using the Globus "gsiftp" tool between Caltech and Argonne

    E-Print Network [OSTI]

    DRAFT Tests using the Globus "gsiftp" tool between Caltech and Argonne Julian Bunn, 16th December 1999 Introduction Measurements of throughput on the WAN from Caltech/CACR to Argonne/MCS were made/null on the Argonne machine. The CACR machine used was the 256-CPU Exemplar X- class "neptune

  2. Hydrogen Storage Systems Analysis Working Group Meeting Argonne DC Offices

    E-Print Network [OSTI]

    Hydrogen Storage Systems Analysis Working Group Meeting Argonne DC Offices L'Enfant Plaza, Washington, DC December 4, 2007 SUMMARY REPORT Compiled by Romesh Kumar Argonne National Laboratory Working Group Meeting December 4, 2007 Argonne DC Offices, L'Enfant Plaza, Washington, DC Meeting

  3. users meeting Argonne National Laboratory May 12-15, 2014

    E-Print Network [OSTI]

    Kemner, Ken

    2014 users meeting Argonne National Laboratory May 12-15, 2014 Advanced Photon Source · Center for Nanoscale Materials · Electron Microscopy Center http://usersmeeting2014.conference.anl.gov/ Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC User Science

  4. Transportation Center Seminar........ "Overview of Power Grid Research at Argonne

    E-Print Network [OSTI]

    Bustamante, Fabián E.

    Transportation Center Seminar........ "Overview of Power Grid Research at Argonne National Laboratory" Jianhui Wang Energy Systems Engineer Argonne National Laboratory Thursday Dec. 5, 2013 4:00 - 5 Northwestern University 2133 Sheridan Road, Evanston Argonne National Laboratory (www.anl.gov) outside Chicago

  5. ARGONNE JOINT STAFF EMPLOYMENT FORM Effective 07/2010

    E-Print Network [OSTI]

    He, Chuan

    . ARGONNE JOINT STAFF EMPLOYMENT FORM Effective 07/2010 Page 1 of 1 Questions about this form Hawaiian/Pacific Islander Check Delivery Code ___________ Argonne Joint Staff Appointment -- Non ________________________________________________ Vice President for Research Date and for Argonne National Laboratory HR: INSTRUCTIONS: This form should

  6. Argonne Electrochemical Technology Program Sulfur removal from reformate

    E-Print Network [OSTI]

    Argonne Electrochemical Technology Program Sulfur removal from reformate Xiaoping Wang, Theodore Krause, and Romesh Kumar Chemical Engineering Division Argonne National Laboratory Hydrogen, Fuel Cells, and Infrastructure Technologies 2003 Merit Review Berkeley, CA May 19-22, 2003 #12;Argonne Electrochemical Technology

  7. Argonne National Laboratory Named Fellowship Program Instructions for Applicants

    E-Print Network [OSTI]

    Kemner, Ken

    Argonne National Laboratory Named Fellowship Program Instructions for Applicants Candidates an Argonne employee (sponsor) who will write the nomination memo and present your case in front an Argonne sponsor, visit the detailed websites of the various Research Programs and Research Divisions

  8. NW-Argonne Higgs Workshop Chicage May 16, 2012

    E-Print Network [OSTI]

    Field, Richard

    NW-Argonne Higgs Workshop Chicage May 16, 2012 Rick Field ­ Florida/CDF/CMS Page 1 The Next StretchV, 900 GeV, 1.96 TeV). #12;NW-Argonne Higgs Workshop Chicage May 16, 2012 Rick Field ­ Florida collider measurements! #12;NW-Argonne Higgs Workshop Chicage May 16, 2012 Rick Field ­ Florida/CDF/CMS Page

  9. Argonne scientist Cristina Negri talks about phytoremediation

    ScienceCinema (OSTI)

    Negri, Cristina

    2013-04-19T23:59:59.000Z

    Phytoremediation is the use of plants and trees to remove or neutralize contaminants in polluted soil or water. Argonne scientist M. Cristina Negri leads the phytotechnologies R&D activities at Argonne. Phytotechnologies encompass the treatment of environmental problems through the use of plants. She was the scientific lead in the deployment and monitoring of multi-acre field scale phytoremediation installations and for the development of a phyto- and bio-remediation researcha nd development project in Russia. Her interests also focus on input-efficient approaches to growing energy crops, water efficiency in growing biofuel crops, and on the advanced treatment and reuse of wastewater and other impaired water.

  10. Wakefield Induced Correlated Energy Spread and Emittance Growth at TTF FEL

    E-Print Network [OSTI]

    1 Wakefield Induced Correlated Energy Spread and Emittance Growth at TTF FEL Feng ZHOU DESY) at DESY. During FEL operations, the longitudinal and transverse wakefields which are generated by vacuum and emittance growth at the TTF FEL of phase I and II. 1 Introduction The Free Electron Laser at the TESLA Test

  11. Accelerated Climate Modeling for Energy | Argonne Leadership Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related LinksATHENA couldAbout BudgetAboutNews & Resources

  12. Accelerator Modeling for Discovery | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related LinksATHENA couldAbout BudgetAboutNewsOSTI, US Dept

  13. Advancing accelerator science using Mira | Argonne Leadership Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14Scripting for Advanced Workflowsa min

  14. Stable laser–plasma accelerators at low densities

    SciTech Connect (OSTI)

    Li, Song; Hafz, Nasr A. M., E-mail: nasr@sjtu.edu.cn; Mirzaie, Mohammad; Ge, Xulei; Sokollik, Thomas; Chen, Min; Sheng, Zhengming; Zhang, Jie, E-mail: jzhang1@sjtu.edu.cn [Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2014-07-28T23:59:59.000Z

    We report stable laser wakefield acceleration using 17–50 TW laser pulses interacting with 4?mm-long helium gas jet. The initial laser spot size was relatively large (28??m) and the plasma densities were 0.48–2.0?×?10{sup 19?}cm{sup ?3}. High-quality 100–MeV electron beams were generated at the plasma density of 7.5?×?10{sup 18?}cm{sup ?3}, at which the beam parameters (pointing angle, energy spectrum, charge, and divergence angle) were measured and stabilized. At higher densities, filamentation instability of the laser-plasma interaction was observed and it has led to multiple wakefield accelerated electron beams. The experimental results are supported by 2D particle-in-cell simulations. The achievement presented here is an important step toward the use of laser-driven accelerators in real applications.

  15. Argonne named a 'Best Place' to work for postdocs in 2010 | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    postdocs in 2010 February 25, 2010 Tweet EmailPrint The Department of Energy's (DOE) Argonne National Laboratory is one of the best places in the country for postdocs to work,...

  16. Argonne's Magellan Cloud Computing Research Project

    ScienceCinema (OSTI)

    Beckman, Pete

    2013-04-19T23:59:59.000Z

    Pete Beckman, head of Argonne's Leadership Computing Facility (ALCF), discusses the Department of Energy's new $32-million Magellan project, which designed to test how cloud computing can be used for scientific research. More information: http://www.anl.gov/Media_Center/News/2009/news091014a.html

  17. Argonne National Laboratory's Technologist in Residence Webinar

    Broader source: Energy.gov [DOE]

    Argonne National Laboratory is hosting a webinar on May 27, 2015 at 2:00 P.M. EST that will provide an introduction to the TIR pilot solicitation and a high-level overview of some of the key...

  18. Argonne's Advanced Battery Materials Synthesis and

    E-Print Network [OSTI]

    Kemner, Ken

    don't want to take on the financial risk of process scale-up and development for materials that haven in battery, fuel cell, and other budding technologies supporting the nation's energy and portable development, Argonne researchers use proven industrial software programs to create simulations and unit

  19. Argonne's Laboratory Computing Resource Center : 2005 annual report.

    SciTech Connect (OSTI)

    Bair, R. B.; Coghlan, S. C; Kaushik, D. K.; Riley, K. R.; Valdes, J. V.; Pieper, G. P.

    2007-06-30T23:59:59.000Z

    Argonne National Laboratory founded the Laboratory Computing Resource Center in the spring of 2002 to help meet pressing program needs for computational modeling, simulation, and analysis. The guiding mission is to provide critical computing resources that accelerate the development of high-performance computing expertise, applications, and computations to meet the Laboratory's challenging science and engineering missions. The first goal of the LCRC was to deploy a mid-range supercomputing facility to support the unmet computational needs of the Laboratory. To this end, in September 2002, the Laboratory purchased a 350-node computing cluster from Linux NetworX. This cluster, named 'Jazz', achieved over a teraflop of computing power (10{sup 12} floating-point calculations per second) on standard tests, making it the Laboratory's first terascale computing system and one of the fifty fastest computers in the world at the time. Jazz was made available to early users in November 2002 while the system was undergoing development and configuration. In April 2003, Jazz was officially made available for production operation. Since then, the Jazz user community has grown steadily. By the end of fiscal year 2005, there were 62 active projects on Jazz involving over 320 scientists and engineers. These projects represent a wide cross-section of Laboratory expertise, including work in biosciences, chemistry, climate, computer science, engineering applications, environmental science, geoscience, information science, materials science, mathematics, nanoscience, nuclear engineering, and physics. Most important, many projects have achieved results that would have been unobtainable without such a computing resource. The LCRC continues to improve the computational science and engineering capability and quality at the Laboratory. Specific goals include expansion of the use of Jazz to new disciplines and Laboratory initiatives, teaming with Laboratory infrastructure providers to develop comprehensive scientific data management capabilities, expanding Argonne staff use of national computing facilities, and improving the scientific reach and performance of Argonne's computational applications. Furthermore, recognizing that Jazz is fully subscribed, with considerable unmet demand, the LCRC has begun developing a 'path forward' plan for additional computing resources.

  20. Environmental Argonne National Laboratory is a U.S. Department of

    E-Print Network [OSTI]

    Kemner, Ken

    Environmental Science Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC Argonne National Laboratory | 9700 South Cass Avenue | Argonne, IL 60439 of scientists in high-energy physics, radiology and electrical engineering based at Argonne, Berkeley and Fermi

  1. Argonne National Laboratory Research Highlights 1988

    SciTech Connect (OSTI)

    Not Available

    1988-01-01T23:59:59.000Z

    The research and development highlights are summarized. The world's brightest source of X-rays could revolutionize materials research. Test of a prototype insertion device, a key in achieving brilliant X-ray beams, have given the first glimpse of the machine's power. Superconductivity research focuses on the new materials' structure, economics and applications. Other physical science programs advance knowledge of material structures and properties, nuclear physics, molecular structure, and the chemistry and structure of coal. New programming approaches make advanced computers more useful. Innovative approaches to fighting cancer are being developed. More experiments confirm the passive safety of Argonne's Integral Fast Reactor concept. Device simplifies nuclear-waste processing. Advanced fuel cell could provide better mileage, more power than internal combustion engine. New instruments find leaks in underground pipe, measure sodium impurities in molten liquids, detect flaws in ceramics. New antibody findings may explain ability to fight many diseases. Cadmium in cigarettes linked to bone loss in women. Programs fight deforestation in Nepal. New technology could reduce acid rain, mitigate greenhouse effect, enhance oil recovery. Innovative approaches transfer Argonne-developed technology to private industry. Each year Argonne educational programs reach some 1200 students.

  2. Radiation and Chemical Risk Management | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation & Chemical Risk Mgmt. Argonne assists technical problems as diverse as chemically and radiologically contaminated soil, military munitions disposal areas, and groundwater...

  3. Smart Grid EV Communication Module | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne's technology integrates the communication controller into existing DC chargers or electric vehicles in order to accomplish SAE DC charging communication. The hardware...

  4. Smart Grid EV Communication (SpEC) Module | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid EV Communication (SpEC) Module Technology available for licensing: Argonne's direct current charging digital communication controller, the Smart Grid EV Communication (SpEC)...

  5. Argonne, Western Lithium to develop lithium carbonate for multiple...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbonate products for battery applications. Argonne is a global leader in advanced battery and energy storage research and development and has developed 150 advanced battery...

  6. Argonne named in several DOE Energy Frontier Research Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are often named among the top technologies that could revolutionize energy efficiency, electric grids, engines, windmill turbines and more. Wai Kwok leads Argonne's efforts for...

  7. Argonne Celebrates Earth Day 2013: It's Easy Being Green

    ScienceCinema (OSTI)

    Paul Kearns; Pam Sydelko; Ray Bair; Stephen Streiffer; Brian Stephenson;

    2013-06-10T23:59:59.000Z

    Argonne's April 23, 2013 Earth Day celebration featured "green" R&D conducted at the lab and interactive displays and fun activities that engage the laboratory community.

  8. "Doing Business with Argonne and Fermi National Laboratories...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hosted their second annual business fair aimed at small businesses and start-ups. Pictured is Argonne Lab Director Peter Littlewood (left) talking with a small business...

  9. Earth's most abundant mineral finally has a name | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    clarified the definition of Bridgmanite, a high-density form of magnesium iron silicate and the Earth's most abundant mineral - using Argonne National Laboratory's Advanced...

  10. The solar energy challenge-Seth Darling | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The solar energy challenge-Seth Darling Share Description Argonne researcher Seth Darling talks about the solar energy challenge. Topic Energy Energy sources Renewable energy Solar...

  11. Transportation technology R&D-Steve Ciatti | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation technology R&D-Steve Ciatti Share Description Argonne researcher Steve Ciatti talks about emerging technologies in transportation, as well as the current technology...

  12. Argonne scientists discover new magnetic phase in iron-based...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    neutron diffraction image giving evidence for the new magnetic phase in iron-based superconductors discovered by Argonne scientists. It shows the scattering results from a sample...

  13. Argonne, Convergent and Cummins cooperate to discover the secrets...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2014 Tweet EmailPrint Argonne, Ill. - In the swirling, churning fireball at the heart of every internal combustion engine, complexity reigns supreme. Valves and pistons...

  14. Solventless Process for Making Tackifiers and Adhesives | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solventless Process for Making Tackifiers and Adhesives Argonne has developed an energy-efficient, environmentally friendly, and economical solvent-free process for making...

  15. argonne scientists reach: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    John Linford, Computer Scientist, Para Kemner, Ken 5 Argonne National Laboratory's Nondestructive Environmental Management and Restoration Websites Summary: for nuclear and fossil...

  16. Argonne battery technology confirmed by U.S. Patent Office |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Argonne's suite of cathode technologies licensed to several prominent companies in the automotive and chemical industries, including GM, BASF, LG Chem and Toda Kogyo," said Carl...

  17. Two Argonne teams win pitch competition, advance to national...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne postdoctoral appointee and computational scientist Diego Fazi presents before Lab-Corps judges as part of a team competing for funds to help commercialize their idea called...

  18. Argonne researchers make new study of special type of chemical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    presence of agostic interactions involving lithium, carbon, and hydrogen atoms, but Argonne visiting Fulbright fellow Jacqueline Cole wanted to determine what happened when an...

  19. Argonne scientists pioneer strategy for creating new materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for creating new materials By Else Tennessen * August 14, 2014 Tweet EmailPrint ARGONNE, Ill. - Making something new is never easy. Scientists constantly theorize about new...

  20. Argonne workshop to explore innovative ways to encourage water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    behavioral sciences will be gathering later this month at the Department of Energy's Argonne National Laboratory to address how behavior-changing technologies can play a role in...

  1. Argonne joins in the fun at Northern Illinois University's popular...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    victory in the "Energy Slam." (Click image to enlarge) At its STEMfest booths, Argonne offered demonstrations, hands-on activities, poster displays, educational...

  2. Argonne Celebrates Earth Day 2013: It's Easy Being Green

    SciTech Connect (OSTI)

    Paul Kearns; Pam Sydelko; Ray Bair; Stephen Streiffer; Brian Stephenson

    2013-04-17T23:59:59.000Z

    Argonne's April 23, 2013 Earth Day celebration featured "green" R&D conducted at the lab and interactive displays and fun activities that engage the laboratory community.

  3. Biofuels for the future-Seth Snyder | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels for the future-Seth Snyder Share Description Argonne researcher Seth Snyder talks about the innovations in biofuel technology. Topic Energy Energy sources Renewable energy...

  4. Argonne Leadership Computing Facility (ALCF) | U.S. DOE Office...

    Office of Science (SC) Website

    Email link to: send Additional Information Argonne LCF Fact Sheet .pdf file (643KB) ALCF Web Site External link Science Highlights ALCF Science Highlights Related Links OLCF Logo...

  5. Autonomie R14 now available | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EmailPrint Autonomie is Argonne National Laboratory's Plug-and-Play System Model Architecture and Development Environment to support the rapid evaluation of new vehicle system...

  6. argonne laboratory computing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    storage u nanoscale Kemner, Ken 34 National School on Neutron and X-ray Scattering Oak Ridge National Laboratory and Argonne National Laboratory Plasma Physics and Fusion Websites...

  7. Two metals are better than one | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University of Wisconsin at Madison to improve the efficiency of conversion of biomass feedstocks into combustible fuels. Argonne National Laboratory seeks solutions to pressing...

  8. Justin H.S. Breaux | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Justin H.S. Breaux Justin Breaux is a science writer and digital communications specialist in Argonne's Communications, Education and Public Affairs Division. Contact him at (630)...

  9. Shedd Aquarium teams up with Argonne, others for first study...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conditions for the optimal health of animals in zoological settings and in the wild. The study partners include Argonne National Laboratory, the University of Illinois,...

  10. Ferromagnetic Mn moments at SrRuO3/SrMnO3 interfaces Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439

    E-Print Network [OSTI]

    Haskel, Daniel

    Ferromagnetic Mn moments at SrRuO3/SrMnO3 interfaces Y. Choia Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 Y. Z. Yoo, O. Chmaissem, A. Ullah, S. Kolesnik, and C. W University, DeKalb, Illinois 60115 D. Haskel Advanced Photon Source, Argonne National Laboratory, Argonne

  11. Collimator Wakefield Calculations for ILC-TRC Report(LCC-0101)

    SciTech Connect (OSTI)

    Tenenbaum, P

    2003-10-07T23:59:59.000Z

    We summarize the formalism of collimator wakefields and their effect on beams that are near the center of the collimator gap, and apply the formalism to the TESLA, NLC, and CLIC collimation systems.

  12. Comparative Wakefield Analysis of a First Prototype of a DDS Structure for CLIC Main Linac

    E-Print Network [OSTI]

    D'Elia, A; Khan, V F; Grudiev, A; Wuensch, W

    2011-01-01T23:59:59.000Z

    A Damped Detuned Structure (DDS) for CLIC main linac has been proposed as an alternative to the present baseline design which is based on heavy damping. A first prototype, CLIC_DDS_A, for high power tests has been already designed and is under construction. It is also foreseen to design a further prototype, CLIC_DDS_B, to test both the wakefield suppression and high power performances. Wakefield calculations for DDS are, in the early design stage, based on single infinitely periodic cells. Though cell-to-cell interaction is taken into account to calculate the wakefields, it is important to study full structure properties using computational tools. In particular this is fundamental for defining the input parameters for the HOM coupler that is crucial for the performances of DDS. In the following a full analysis of wakefields and impedances based on simulations conducted with finite difference based electromagnetic computer code GdfidL will be presented.

  13. P. Muggli, ATF Users Meeting 07/05/07 Multi-bunch Plasma Wakefield

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optronics, Inc., Bellevue, WA Presented by Patric Muggli, USC Work supported by US DoE 2 P. Muggli, ATF Users Meeting 070507 OUTLINE Introduction to the plasma wakefield...

  14. Particle-In-Cell Modeling of Plasma-Based Accelerators in Two and Three Dimensions

    E-Print Network [OSTI]

    Hemker, Roy G

    2015-01-01T23:59:59.000Z

    In this dissertation, a fully object-oriented, fully relativistic, multi-dimensional Particle-In-Cell code was developed and applied to answer key questions in plasma-based accelerator research. The simulations increase the understanding of the processes in laser plasma and beam-plasma interaction, allow for comparison with experiments, and motivate the development of theoretical models. The simulations support the idea that the injection of electrons in a plasma wave by using a transversely propagating laser pulse is possible. The beam parameters of the injected electrons found in the simulations compare reasonably with beams produced by conventional methods and therefore laser injection is an interesting concept for future plasma-based accelerators. Simulations of the optical guiding of a laser wakefield driver in a parabolic plasma channel support the idea that electrons can be accelerated over distances much longer than the Rayleigh length in a channel. Simulations of plasma wakefield acceleration in the ...

  15. Tailored electron bunches with smooth current profiles for enhanced transformer ratios in beam-driven acceleration

    E-Print Network [OSTI]

    Lemery, Francois

    2015-01-01T23:59:59.000Z

    Collinear high-gradient ${\\cal O} (GV/m)$ beam-driven wakefield methods for charged-particle acceleration could be critical to the realization of compact, cost-efficient, accelerators, e.g., in support of TeV-scale lepton colliders or multiple-user free-electron laser facilities. To make these options viable, the high accelerating fields need to be complemented with large transformer ratios $>2$, a parameter characterizing the efficiency of the energy transfer between a wakefield-exciting "drive" bunch to an accelerated "witness" bunch. While several potential current distributions have been discussed, their practical realization appears challenging due to their often discontinuous nature. In this paper we propose several alternative current profiles which are smooth which also lead to enhanced transformer ratios. We especially explore a laser-shaping method capable of generating one the suggested distributions directly out of a photoinjector and discuss a linac concept that could possible drive a dielectric ...

  16. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development Program Activities for FY 1994

    SciTech Connect (OSTI)

    None

    1995-02-25T23:59:59.000Z

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R and D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R and D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle; assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five-Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory's LDRD Plan for FY 1994. Project summaries of research in the following areas are included: (1) Advanced Accelerator and Detector Technology; (2) X-ray Techniques for Research in Biological and Physical Science; (3) Nuclear Technology; (4) Materials Science and Technology; (5) Computational Science and Technology; (6) Biological Sciences; (7) Environmental Sciences: (8) Environmental Control and Waste Management Technology; and (9) Novel Concepts in Other Areas.

  17. ARPA-E awards IIT-Argonne team $3.4 million for breakthrough...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at IIT. Katsoudas and Timofeeva began their work on the IIT-Argonne nanoelectrofuel flow battery at Argonne, leveraging Timofeeva's expertise in nanofluids engineering and...

  18. Final Notice of Violation to UChicago Argonne, LLC- WEA-2009-04

    Broader source: Energy.gov [DOE]

    DOE is issuing this Final Notice of Violation (FNOV) to UChicago Argonne, LLC (UChicago Argonne) for violations of DOE's worker safety and health requirements.

  19. Argonne National Laboratory puts alternative-fuel vehicles to the test

    SciTech Connect (OSTI)

    NONE

    1997-07-01T23:59:59.000Z

    This paper describes the participation in the alternative-fueled vehicles (AFV) program at Argonne National Laboratory. Argonne maintains a fleet of 300 vehicles, including AFV`s.

  20. argonne heavy water modified reactor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Argonne National Laboratory Chemical Engineering Division Water-gas shift catalysis Energy Storage, Conversion and Utilization Websites Summary: Argonne National Laboratory...