National Library of Energy BETA

Sample records for argonne tandem linac

  1. Argonne Tandem Linac Accelerator System (ATLAS) | U.S. DOE Office of

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6 0GrantsThe Life ofASCRLightAllenJuneArgonne

  2. Argonne's Major Nuclear Energy Milestones | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Intelligence Analysis Nuclear Engineering Nuclear Milestones Argonne's Major Nuclear Energy Milestones Argonne's reactor tree Argonne's reactor tree December 2, 1942:...

  3. Argonne announces 2015 Distinguished Fellows | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EmailPrint The U.S. Department of Energy's Argonne National Laboratory has named Barry Smith, Charles Macal and Branko Ruscic as its 2015 Distinguished Fellows. The Argonne...

  4. Argonne Fellowships | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic SpinsSolicitationsLaboratory TheArgonne

  5. Argonne Researchers | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic ArgonneTheRegistered2014 ATLASArgonne

  6. Green Supercomputing at Argonne

    ScienceCinema (OSTI)

    Pete Beckman

    2010-01-08

    Pete Beckman, head of Argonne's Leadership Computing Facility (ALCF) talks about Argonne National Laboratory's green supercomputing?everything from designing algorithms to use fewer kilowatts per operation to using cold Chicago winter air to cool the machine more efficiently.

  7. Green Supercomputing at Argonne

    SciTech Connect (OSTI)

    Pete Beckman

    2009-11-18

    Pete Beckman, head of Argonne's Leadership Computing Facility (ALCF) talks about Argonne National Laboratory's green supercomputing—everything from designing algorithms to use fewer kilowatts per operation to using cold Chicago winter air to cool the machine more efficiently.

  8. Argonne's Earth Day 2011

    ScienceCinema (OSTI)

    None

    2013-04-19

    Argonne celebrated Earth Day on April 21, 2011 with an event that featured green activities and information booths.

  9. Green Supercomputing at Argonne

    ScienceCinema (OSTI)

    Beckman, Pete

    2013-04-19

    Pete Beckman, head of Argonne's Leadership Computing Facility (ALCF) talks about Argonne National Laboratory's green supercomputing?everything from designing algorithms to use fewer kilowatts per operation to using cold Chicago winter air to cool the machine more efficiently. Argonne was recognized for green computing in the 2009 HPCwire Readers Choice Awards. More at http://www.anl.gov/Media_Center/News/2009/news091117.html Read more about the Argonne Leadership Computing Facility at http://www.alcf.anl.gov/

  10. Argonne helps introduce girls to engineering careers | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Argonne Now, the laboratory science magazine. Argonne helps introduce girls to engineering careers By Alex Mitchell * June 1, 2014 Tweet EmailPrint This story was originally...

  11. DOE Issues Request for Proposals Seeking a Contractor to Manage...

    Energy Savers [EERE]

    scientists from all over the world, such as the Advanced Photon Source, Intense Pulse Neutron Source, Argonne Tandem-Linac Accelerator System, Center for Nanoscale Materials;...

  12. Independent Oversight Review, Argonne National Laboratory - November...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Argonne National Laboratory - November 2011 Independent Oversight Review, Argonne National Laboratory - November 2011 November 2011 Review of the Argonne National Laboratory...

  13. Argonne's 2012 Earth Day Event

    ScienceCinema (OSTI)

    None

    2013-04-19

    Argonne's 2012 Earth Day event drew crowds from across the laboratory. Argonne and U.S. Department of Energy employees toured booths and interactive displays set up by Argonne programs and clubs. Several of Argonne's partners participated, including U.S. Department of Energy, University of Chicago, Abri Credit Union, DuPage County Forest Preserve, DuPage Water Commission, PACE and Morton Arboretum. Argonne scientists and engineers also participated in a poster session, discussing their clean energy research.

  14. Tandem betatron

    DOE Patents [OSTI]

    Keinigs, Rhonald K. (Santa Fe, NM)

    1992-01-01

    Two betatrons are provided in tandem for alternately accelerating an electron beam to avoid the single flux swing limitation of conventional betatrons and to accelerate the electron beam to high energies. The electron beam is accelerated in a first betatron during a period of increasing magnetic flux. The eletron beam is extracted from the first betatron as a peak magnetic flux is reached and then injected into a second betatron at a time of minimum magnetic flux in the second betatron. The cycle may be repeated until the desired electron beam energy is obtained. In one embodiment, the second betatron is axially offset from the first betatron to provide for electron beam injection directly at the axial location of the beam orbit in the second betatron.

  15. Argonne tackles solar energy

    ScienceCinema (OSTI)

    George Crabtree

    2010-09-01

    At Argonne National Laboratory, scientists and engineers are working to improve the solar cell to allow us to capture more of the sun's energy. Read more: http://www.anl.gov/Media_Center/News/...

  16. Linac Coherent Light Source Overview

    Office of Energy Efficiency and Renewable Energy (EERE)

    Take an animated tour of the Linac Coherent Light Source (LCLS). Follow the laser pulse from the injector gun all the way through to the Far Experimental Hall.

  17. Linac Coherent Light Source Overview

    ScienceCinema (OSTI)

    None

    2013-05-29

    Take an animated tour of the Linac Coherent Light Source (LCLS). Follow the laser pulse from the injector gun all the way through to the Far Experimental Hall.

  18. Sam Bader | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University of California, Berkeley Argonne Distinguished Fellow Application of nanotechnology to create novel permanent magnets (spring magnets); exploration of laterally...

  19. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic Argonne NationalArgonne National

  20. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic Argonne NationalArgonne National

  1. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic Argonne NationalArgonne NationalDear Friend,

  2. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic Argonne NationalArgonne NationalDear

  3. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic Argonne NationalArgonne NationalDearExpected

  4. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic Argonne NationalArgonne

  5. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic Argonne NationalArgonne

  6. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic Argonne NationalArgonneRadioactive Beams

  7. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic Argonne NationalArgonneRadioactive

  8. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic Argonne NationalArgonneRadioactiveHELIOS

  9. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic Argonne NationalArgonneRadioactiveHELIOSThe

  10. Optimization of SRF Linacs

    SciTech Connect (OSTI)

    Powers, Tom [JLAB

    2013-09-01

    This work describes preliminary results of a new software tool that allows one to vary parameters and understand the effects on the optimized costs of construction plus 10 year operations of an SRF linac, the associated cryogenic facility, and controls, where operations includes the cost of the electrical utilities but not the labor or other costs. It derives from collaborative work done with staff from Accelerator Science and Technology Centre, Daresbury, UK several years ago while they were in the process of developing a conceptual design for the New Light Source project.[1] The initial goal was to convert a spread sheet format to a graphical interface to allow the ability to sweep different parameter sets. The tools also allow one to compare the cost of the different facets of the machine design and operations so as to better understand the tradeoffs. The work was first published in an ICFA Beam Dynamics News Letter.[2] More recent additions to the software include the ability to save and restore input parameters as well as to adjust the Qo versus E parameters in order to explore the potential costs savings associated with doing so. Additionally, program changes now allow one to model the costs associated with a linac that makes use of energy recovery mode of operation.

  11. Argonne Distinguished Fellows | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D SFederal8823 Revision 02August 1,AreArgonne Distinguished

  12. Argonne History - 1940's | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D SFederal8823 Revision 02August 1,AreArgonne

  13. Argonne History - 1950's | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D SFederal8823 Revision 02August 1,AreArgonne50's EBR-I

  14. Argonne History - 1960's | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D SFederal8823 Revision 02August 1,AreArgonne50's EBR-I60's

  15. Argonne Site Environmental Reports | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic ArgonneTheRegistered2014

  16. Linac Envelope Optics

    E-Print Network [OSTI]

    Baartman, Rick

    2015-01-01

    I develop the formalism that allows calculation of beam envelopes through a linear accelerator given its on-axis electric field. Space charge can naturally be added using Sacherer formalism. A complicating feature is that the reference particle's energy-time coordinates are not known a priori. Since first order matrix formalism applies to deviations from the reference particle, this means the reference particle's time and energy must be calculated simultaneously with the beam envelope and transfer matrix. The code TRANSOPTR is used to track envelopes for general elements whose infinitesimal transfer matrices are known, and in the presence of space charge. Incorporation of the linac algorithm into TRANSOPTR is described, and some examples given.

  17. Argonne National Laboratory's Solar Energy Development Programmatic...

    Open Energy Info (EERE)

    Argonne National Laboratory's Solar Energy Development Programmatic EIS Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Argonne National...

  18. Analysis Activities at Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    Presentation on Argonne’s analysis activities to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.

  19. Independent Oversight Focused Program Review, Argonne National...

    Energy Savers [EERE]

    Independent Oversight Focused Program Review, Argonne National Laboratory-West - May 2001 Independent Oversight Focused Program Review, Argonne National Laboratory-West - May 2001...

  20. Alex Ballmer | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alex Ballmer SRP Student - CAT Team Argonne National Laboratory 9700 S. Cass Avenue Building 240 - Wkstn. 3D20B Argonne, IL 60439 aballmer...

  1. Barry Greengus | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barry Greengus SRP Student - AIG Team Argonne National Laboratory 9700 S. Cass Avenue Building 240 - Wkstn. 3D26 Argonne, IL 60439 bgreengus@anl...

  2. Ben Walters | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Walters SRP Student - AIG Team Argonne National Laboratory 9700 S. Cass Avenue Building 240 - Wkstn. 3D25 Argonne, IL 60439 bwalters...

  3. Enterprise Assessments Targeted Review, Argonne National Laboratory...

    Energy Savers [EERE]

    Targeted Review, Argonne National Laboratory - November 2014 Enterprise Assessments Targeted Review, Argonne National Laboratory - November 2014 November 2014 Review of the...

  4. Joe Sortino | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Joe Sortino Research Aide - VIZ Team Argonne National Laboratory 9700 S. Cass Avenue Building 240 - Wkstn. 4E7 Argonne, IL 60439 jsortino@anl...

  5. Jie Jiang | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jie Jiang Research Aide - VIZ Team Argonne National Laboratory 9700 S. Cass Avenue Building 240 - Wkstn. 4E9A Argonne, IL 60439 jiejiang@anl...

  6. Adam Young | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Young Guest Researcher Argonne National Laboratory 9700 S. Cass Avenue Building 240 Wkstn. 4D15 Argonne, IL 60439 younga@anl...

  7. ARGONNE'S ATOMIC LAYER DEPOSITION Customized Nanoengineered Coatings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Activity and Stability 16-17 Thin Films Open Up New Opportunities for Advanced Photovoltaics 18 Working with Argonne Argonne's advanced materials capabilities and intellectual...

  8. Microsoft Word - Argonne Release Final

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    York; Bettis Atomic Power Laboratory in Pennsylvania; and Argonne National Laboratory in Illinois. ANL's final two legacy contact-handled waste shipments, containing a combined...

  9. Karolina Michalska | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    joined Argonne in 2010 as a postdoctoral appointee at Midwest Center for Structural Genomics and Structural Biology Center. Currently she is an assistant protein crystallographer...

  10. Christopher Henry | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a focus on the prediction of phenotype from genome through the use of comparative genomics, metabolic modeling, and dynamic cellular community models. His team at Argonne...

  11. Educational Programs | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Available Education is seeking a Learning Scientist, a STEM Teaching Specialist and Web Content Specialist for open Co-Op Positions. More Bon Voyage Argonne hosted over 300...

  12. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic Argonne

  13. Argonne Director Eric Isaacs talks about ARRA funding at Argonne

    ScienceCinema (OSTI)

    Isaacs, Eric

    2013-04-19

    Argonne is set to receive over $150 million in stimulus funds. Director Eric Isaacs describes how these funds will be put to good use?hiring employees and contractors, cleaning up the nuclear footprint, and investing in technologies for America's future. More info on Argonne and ARRA here: http://www.anl.gov/recovery/index.html

  14. Argonne National Laboratory 9700 S. Cass Avenue

    E-Print Network [OSTI]

    Kemner, Ken

    a clean uranium product from the separation of the used fuel allows for the potential for re fraction of the potential energy from the natural uranium and thorium resources Argonne Research · ArgonneArgonne National Laboratory 9700 S. Cass Avenue Argonne, IL 60439 630.252.2525 Nuclear Fuel Cycle

  15. Linac Energy Management for LCLS

    SciTech Connect (OSTI)

    Chu, Chungming; /SLAC; Iverson, Richard; /SLAC; Krejcik, Patrick; /SLAC; Rogind, Deborah; /SLAC; White, Greg; /SLAC; Woodley, Mark; /SLAC

    2012-07-05

    Linac Energy Management (LEM) is a control system program that scales magnet field set-point settings following a change in beam energy. LEM is necessary because changes in the number, phase, and amplitude of the active klystrons change the beam's rigidity, and therefore, to maintain constant optics, one has to change focusing gradients and bend fields accordingly. This paper describes the basic process, the control system application programs we developed for LEM, and some of the implementation lessons learned at the Linac Coherent Light Source (LCLS).

  16. ARGONNE NATIONAL LABORATORY

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and700, 1. .&. ' ,ALASKA DEPARTMENTT3 7/ ARGONNE

  17. ARGONNE NATIONAL LABORATORY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See EnergyCurrent : 0.0 Waiting for0 -IssueARGONNE NATIONAL

  18. Tours | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar FuelTechnologyTel:FebruaryEIA's Today8Topo II:LAr STours Argonne

  19. Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic Argonne National Laboratory | 9700 South

  20. Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic Argonne National Laboratory | 9700 South A

  1. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic ArgonneThe ATLAS Program Advisory Committee

  2. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic ArgonneThe ATLAS Program Advisory

  3. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic ArgonneThe ATLAS Program AdvisoryExperiment

  4. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic ArgonneThe ATLAS Program

  5. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic ArgonneThe ATLAS ProgramRadiation Safety at

  6. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic ArgonneThe ATLAS ProgramRadiation Safety

  7. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic ArgonneThe ATLAS ProgramRadiation Safety2

  8. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic ArgonneThe ATLAS ProgramRadiation Safety25

  9. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic ArgonneThe ATLAS ProgramRadiation

  10. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic ArgonneThe ATLAS ProgramRadiationFuture

  11. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic ArgonneThe ATLAS ProgramRadiationFutureATLAS

  12. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic ArgonneThe ATLAS

  13. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic ArgonneThe ATLASExperimental Equipment

  14. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic ArgonneThe ATLASExperimental

  15. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic ArgonneThe ATLASExperimentalThe ATLAS User

  16. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic ArgonneThe ATLASExperimentalThe ATLAS

  17. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic ArgonneThe ATLASExperimentalThe ATLASThe

  18. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic ArgonneThe ATLASExperimentalThe

  19. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic ArgonneThe ATLASExperimentalTheATLAS USERS

  20. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic ArgonneThe ATLASExperimentalTheATLAS

  1. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic ArgonneThe ATLASExperimentalTheATLASThe

  2. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic ArgonneThe ATLASExperimentalTheATLASTheThis

  3. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic ArgonneThe

  4. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic ArgonneTheRegistered Participants Last Name

  5. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic ArgonneTheRegistered Participants Last

  6. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic ArgonneTheRegistered Participants

  7. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic ArgonneTheRegistered ParticipantsStable

  8. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic ArgonneTheRegistered ParticipantsStable2014

  9. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic ArgonneTheRegistered

  10. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic ArgonneTheRegistered2014 ATLAS User’s

  11. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic ArgonneTheRegistered2014 ATLAS

  12. Discoveries | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HAB PacketDiesel pricesCenter atDirectory Searchable directory.Argonne

  13. S ARGONNE NATIONAL LABORATORY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis of Protein StructuresMaintenance / APRobert D . RTape S ARGONNE

  14. History | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D. Title:HighlightsPhysicsEnergyArgonne's

  15. Leadership | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp GraduateResidential Energy ConsumptionMapsLeadership Argonne

  16. News | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesofPublications64 2.251OptimizedOxygen:News Scientists at Argonne

  17. Argonne celebrates Margaret Butler at inaugural event | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to her creation of the Argonne Code Center, which later expanded into the National Energy Software Center (NESC)-a central repository for the testing and exchange of DOE-sponsored...

  18. The Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    White, William E.; Robert, Aymeric; Dunne, Mike

    2015-05-01

    The Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory was the first hard X-ray free-electron laser (FEL) to operate as a user facility. After five years of operation, LCLS is now a mature FEL user facility. Our personal views about opportunities and challenges inherent to these unique light sources are discussed.

  19. Tandem mobile robot system

    DOE Patents [OSTI]

    Buttz, James H. (Albuquerque, NM); Shirey, David L. (Albuquerque, NM); Hayward, David R. (Albuquerque, NM)

    2003-01-01

    A robotic vehicle system for terrain navigation mobility provides a way to climb stairs, cross crevices, and navigate across difficult terrain by coupling two or more mobile robots with a coupling device and controlling the robots cooperatively in tandem.

  20. Argonne National Laboratory's Omnivorous Engine

    SciTech Connect (OSTI)

    Thomas Wallner

    2009-10-16

    Why can't an engine run on any fuel? Argonne is designing an omnivorous engine that can run on any blend of gasoline, ethanol or butanol—and calibrate itself to burn that fuel most efficiently.

  1. Argonne nuclear pioneer: Leonard Koch

    SciTech Connect (OSTI)

    Koch, Leonard

    2012-01-01

    Leonard Koch joined Argonne National Laboratory in 1948. He helped design and build Experimental Breeder Reactor-1 (EBR-1), the first reactor to generate useable amounts of electricity from nuclear energy.

  2. Argonne National Laboratory's Omnivorous Engine

    ScienceCinema (OSTI)

    Thomas Wallner

    2010-01-08

    Why can't an engine run on any fuel? Argonne is designing an omnivorous engine that can run on any blend of gasoline, ethanol or butanol?and calibrate itself to burn that fuel most efficiently.

  3. Social Media | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Timeline Photos from Facebook More Twitter @argonne 4 hours ago Missed "What is the Brain Initiative?" Fear not, science-y goodness awaits you here @C2ST - http:bit.ly...

  4. Named Fellowships | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Named Fellow is hired as an Argonne Scholar with full benefits, a highly competitive salary and a stipend for research support. Named Fellows may renew their appointments on an...

  5. Director's Fellowships | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director's Fellow is hired as an Argonne Scholar with full benefits and a competitive salary. Director's Fellowships can be renewed annually for up to two years. The deadline for...

  6. Argonne's Vilas Pol on NOVA!

    ScienceCinema (OSTI)

    None

    2013-04-19

    Can innovations in materials science help clean up our world? Argonne's material scientist Vilas Pol guest starred on NOVA's "Making Stuff: Cleaner," where David Pogue explored the rapidly-developing science and business of clean energy.

  7. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    Angeles Organic Tandem Solar Cells: Design and Formation AOrganic Tandem Solar Cells: Design and Formation by Chun-multi-junction tandem solar-cell design. Given this design,

  8. OutLoud | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at no charge, visit our subscription page. View Videos Argonne OutLoud: Changing the bio-energy equation (April 12, 2012) Argonne OutLoud: The Solar Energy Challenge (June 14,...

  9. Preliminary Notice of Violation, Argonne National Laboratory...

    Energy Savers [EERE]

    Preliminary Notice of Violation, Argonne National Laboratory-West - EA-2001-01 Preliminary Notice of Violation, Argonne National Laboratory-West - EA-2001-01 February 28, 2001...

  10. LFSC - Linac Feedback Simulation Code

    SciTech Connect (OSTI)

    Ivanov, Valentin; /Fermilab

    2008-05-01

    The computer program LFSC (<Linac Feedback Simulation Code>) is a numerical tool for simulation beam based feedback in high performance linacs. The code LFSC is based on the earlier version developed by a collective of authors at SLAC (L.Hendrickson, R. McEwen, T. Himel, H. Shoaee, S. Shah, P. Emma, P. Schultz) during 1990-2005. That code was successively used in simulation of SLC, TESLA, CLIC and NLC projects. It can simulate as pulse-to-pulse feedback on timescale corresponding to 5-100 Hz, as slower feedbacks, operating in the 0.1-1 Hz range in the Main Linac and Beam Delivery System. The code LFSC is running under Matlab for MS Windows operating system. It contains about 30,000 lines of source code in more than 260 subroutines. The code uses the LIAR ('Linear Accelerator Research code') for particle tracking under ground motion and technical noise perturbations. It uses the Guinea Pig code to simulate the luminosity performance. A set of input files includes the lattice description (XSIF format), and plane text files with numerical parameters, wake fields, ground motion data etc. The Matlab environment provides a flexible system for graphical output.

  11. Marine One Landing Exercise at Argonne

    SciTech Connect (OSTI)

    2013-03-20

    Marine One and its support helicopters conduct a landing exercise at Argonne prior to the President's visit.

  12. Argonne programming camp sparks students' scientific curiosity | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic ArgonneTheRegistered2014HomeArgonne

  13. Argonne receives 2014 Illinois Governor's Sustainability Award | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic ArgonneTheRegistered2014HomeArgonneNational

  14. Mira: Argonne's 10-petaflops supercomputer

    ScienceCinema (OSTI)

    Papka, Michael; Coghlan, Susan; Isaacs, Eric; Peters, Mark; Messina, Paul

    2014-06-05

    Mira, Argonne's petascale IBM Blue Gene/Q system, ushers in a new era of scientific supercomputing at the Argonne Leadership Computing Facility. An engineering marvel, the 10-petaflops supercomputer is capable of carrying out 10 quadrillion calculations per second. As a machine for open science, any researcher with a question that requires large-scale computing resources can submit a proposal for time on Mira, typically in allocations of millions of core-hours, to run programs for their experiments. This adds up to billions of hours of computing time per year.

  15. ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue, Argonne Illinois 60439

    E-Print Network [OSTI]

    Harilal, S. S.

    . Hassanein Energy Technology Division July 2002 #12;Argonne National Laboratory, a U.S. Department of Energy.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific wave is due to 1.5 M flow around a sphere..................................9 Figure 6 - Steady

  16. Argonne's SpEC Module

    ScienceCinema (OSTI)

    Harper, Jason

    2014-06-05

    Jason Harper, an electrical engineer in Argonne National Laboratory's EV-Smart Grid Interoperability Center, discusses his SpEC Module invention that will enable fast charging of electric vehicles in under 15 minutes. The module has been licensed to BTCPower.

  17. Argonne's SpEC Module

    SciTech Connect (OSTI)

    Harper, Jason

    2014-05-05

    Jason Harper, an electrical engineer in Argonne National Laboratory's EV-Smart Grid Interoperability Center, discusses his SpEC Module invention that will enable fast charging of electric vehicles in under 15 minutes. The module has been licensed to BTCPower.

  18. Photo Gallery: Argonne OutLoud: "Invisible Influence: A Bacterial...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photo Gallery: Argonne OutLoud: "Invisible Influence: A Bacterial Guide to Your Health" Argonne OutLoud Invisible Influence: A Bacterial Guide to Your Health 1 of 10 Argonne...

  19. EA-1266: Proposed Decontamination and Disassembly of the Argonne Thermal Source Reactor (ATSR) At Argonne National Laboratory, Argonne, Illinois

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal for the decontamination and disassembly of the U.S. Department of Energy's Argonne Thermal Source Reactor.

  20. Argonne scientists pioneer strategy for creating new materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne scientists pioneer strategy for creating new materials By Else Tennessen * August 14, 2014 Tweet EmailPrint ARGONNE, Ill. - Making something new is never easy. Scientists...

  1. Enterprise Assessments Review of the Argonne National Laboratory...

    Energy Savers [EERE]

    Review of the Argonne National Laboratory Fire Protection Program - August 2015 Enterprise Assessments Review of the Argonne National Laboratory Fire Protection Program - August...

  2. Argonne ARPA-E Battery Research

    ScienceCinema (OSTI)

    Amine, Khalil; Sinkula, Michael

    2013-04-19

    Argonne National Laboratory and Envia Systems annouced a licensing agreement for Argonne's patented electrode material technology. Envia plans to commercialize these materials for use in energy storage devices for the next generation of electric, plug-in and hybrid electric vehicles. General Motors Company, LG Chem, BASF and Toda Kyoga have also licensed this suite of Argonne's technologies. For more information visit us at http://www.anl.gov

  3. SB EE Calculator | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calculator Energy Efficiency Decision Support Calculator Argonne's Energy Efficiency Decision Support Calculator is a simple tool that small business owners can use to quickly...

  4. Preliminary Notice of Violation, Argonne National Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    of Chicago related to the Failure to Control Radioactive Material and Personnel Contamination Events at Argonne National Laboratory-East, December 14, 1999 (EA-1999-10) On...

  5. Science History - 2013 | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for high-energy physics. Former Argonne director Albert Crewe stands beside this integral piece called a Cockcroft-Walton preaccelerator. (Click to view larger.) 50 years ago,...

  6. DEP Car Competition | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of physics preventing them."- Michio Kaku, Theoretical Physicist Each year 20 middle school teams compete for the regional title of fastest car in the Argonne Electric Car...

  7. ³Ni² Clusterbank Replacement Project | Argonne Leadership Computing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ni Clusterbank Replacement Project Event Sponsor: Argonne Leadership Computing Facility Seminar Start Date: Oct 20 2015 - 12:00pm BuildingRoom: Building 241Room D173...

  8. Ensemble Jobs for Better Throughput - Videoconference | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ensemble Jobs for Better Throughput - Videoconference Event Sponsor: Argonne National Laboratory Start Date: Sep 24 2015 - 1:00pm BuildingRoom: Online Videoconference Location:...

  9. Getting Started Videoconferences | Argonne Leadership Computing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Getting Started Videoconferences Start Date: Jun 25 2015 - 9:00am Location: Argonne National Laboratory Event Website: https:www.alcf.anl.govworkshopsgetting-started-videoconfe...

  10. Enterprise Assessments Operational Awareness Record, Argonne...

    Broader source: Energy.gov (indexed) [DOE]

    March 2015 Operational Awareness Record for Oversight of Argonne National Laboratory and New Brunswick Laboratory The Office of Nuclear Safety and Environmental Assessments, within...

  11. Caterpillar, Argonne undertake cooperative virtual engine design...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    project By Jared Sagoff * June 30, 2014 Tweet EmailPrint ARGONNE, Ill - Internal combustion engines are poised for dramatic breakthroughs in improving efficiency with lower...

  12. Fuel Spray Analysis | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Spray Analysis Researchers inspect X-ray focusing optics at the Vehicle Technologies beamline at Argonne's Advenced Photon Source. The beamline uses one of the world's...

  13. Electrifying the Automotive Market | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrifying the Automotive Market Argonne is developing battery technology that extends the range for electric vehicles while increasing safety and decreasing price. PDF icon...

  14. Environmental Review Form for Argonne National Laboratory

    Broader source: Energy.gov (indexed) [DOE]

    Review Form for Argonne National Laboratory Click on the blue question marks (?) for instructions, contacts, and additional information on specific line items. ?)ProiectlActivitv...

  15. Scott Jones | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcomingmagnetoresistance | ArgonnePrinceton Plasma Physics

  16. Monolithic tandem solar cell

    DOE Patents [OSTI]

    Wanlass, Mark W. (Golden, CO)

    1994-01-01

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched.

  17. Monolithic tandem solar cell

    DOE Patents [OSTI]

    Wanlass, Mark W. (Golden, CO)

    1991-01-01

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, and (c) a second photoactive subcell on the first subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. The solar cell can be provided as a two-terminal device or a three-terminal device.

  18. Monolithic tandem solar cell

    DOE Patents [OSTI]

    Wanlass, M.W.

    1994-06-21

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. 9 figs.

  19. Argonne National Laboratory's Recycling Pilot Plant

    SciTech Connect (OSTI)

    Spangenberger, Jeff; Jody, Sam;

    2009-01-01

    Argonne has a Recycling Pilot Plant designed to save the non-metal portions of junked cars. Here, program managers demonstrate how plastic shredder residue can be recycled. (Currently these automotive leftovers are sent to landfills.) For more information, visit Argonne's Transportation Technology R&D Center Web site at http://www.transportation.anl.gov.

  20. A VISITOR'S GUIDE TO ARGONNE NATIONAL

    E-Print Network [OSTI]

    million supports upwards of 200 research projects, which are broadly described below. Since 1990, Argonne System is ISO 9001:2000 certified. Research at Argonne centers around three principal areas: Energy projects and maintain a number of large scientific user facilities that enhance research, especially

  1. Argonne National Laboratory's Recycling Pilot Plant

    ScienceCinema (OSTI)

    Spangenberger, Jeff; Jody, Sam;

    2013-04-19

    Argonne has a Recycling Pilot Plant designed to save the non-metal portions of junked cars. Here, program managers demonstrate how plastic shredder residue can be recycled. (Currently these automotive leftovers are sent to landfills.) For more information, visit Argonne's Transportation Technology R&D Center Web site at http://www.transportation.anl.gov.

  2. Argonne mentors students for the next generation of scientists | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D SFederal8823 RevisionAprilSTEMfest | Argonne

  3. Argonne model analyzes water footprint of biofuels | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D SFederal8823 RevisionAprilSTEMfest | Argonne40' list

  4. Argonne X-rays validate quantum magnetism model | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic ArgonneTheRegistered2014Home

  5. Press Materials for Argonne CORAL announcement | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines ThisHENPDepartment's CleanNational Securityat Argonne

  6. Argonne National Laboratory 1985 publications

    SciTech Connect (OSTI)

    Kopta, J.A.; Hale, M.R.

    1987-08-01

    This report is a bibliography of scientific and technical 1985 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1985. This compilation, prepared by the Technical Information Services Technical Publications Section (TPB), lists all nonrestricted 1985 publications submitted to TPS by Laboratory's Divisions. The report is divided into seven parts: Journal Articles - Listed by first author, ANL Reports - Listed by report number, ANL and non-ANL Unnumbered Reports - Listed by report number, Non-ANL Numbered Reports - Listed by report number, Books and Book Chapters - Listed by first author, Conference Papers - Listed by first author, Complete Author Index.

  7. Andrzej Joachimiak | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TAPropaneandAn3 TableAnderson-CookEllsAndrewArgonne

  8. Learning Center | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeat PumpsTechnologies | BlandineTechnologiesLearn AboutArgonne

  9. Yijin Kang | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single|Yejun Feng ArgonneYield scalings

  10. Resilient Infrastructure | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultiday ProductionDesigning Resilient Infrastructure: The Argonne

  11. Environmental Survey preliminary report, Argonne National Laboratory, Argonne, Illinois

    SciTech Connect (OSTI)

    Not Available

    1988-11-01

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Argonne National Laboratory (ANL), conducted June 15 through 26, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with ANL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at ANL, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S A Plan will be executed by the Oak Ridge National Laboratory (ORNL). When completed, the S A results will be incorporated into the Argonne National Laboratory Environmental Survey findings for inclusion in the Environmental Survey Summary Report. 75 refs., 24 figs., 60 tabs.

  12. Proposed environmental remediation at Argonne National Laboratory, Argonne, Illinois

    SciTech Connect (OSTI)

    1997-05-01

    The Department of Energy (DOE) has prepared an Environmental Assessment evaluating proposed environmental remediation activity at Argonne National Laboratory-East (ANL-E), Argonne, Illinois. The environmental remediation work would (1) reduce, eliminate, or prevent the release of contaminants from a number of Resource Conservation and Recovery Act (RCRA) Solid Waste Management Units (SWMUs) and two radiologically contaminated sites located in areas contiguous with SWMUs, and (2) decrease the potential for exposure of the public, ANL-E employees, and wildlife to such contaminants. The actions proposed for SWMUs are required to comply with the RCRA corrective action process and corrective action requirements of the Illinois Environmental Protection Agency; the actions proposed are also required to reduce the potential for continued contaminant release. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required.

  13. Linda Gaines | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E C H2015Tray and| NationalLinacLinda

  14. S-Band Loads for SLAC Linac

    SciTech Connect (OSTI)

    Krasnykh, A.; Decker, F.-J.; /SLAC; LeClair, R.; /INTA Technologies, Santa Clara

    2012-08-28

    The S-Band loads on the current SLAC linac RF system were designed, in some cases, 40+ years ago to terminate 2-3 MW peak power into a thin layer of coated Kanthal material as the high power absorber [1]. The technology of the load design was based on a flame-sprayed Kanthal wire method onto a base material. During SLAC linac upgrades, the 24 MW peak klystrons were replaced by 5045 klystrons with 65+ MW peak output power. Additionally, SLED cavities were introduced and as a result, the peak power in the current RF setup has increased up to 240 MW peak. The problem of reliable RF peak power termination and RF load lifetime required a careful study and adequate solution. Results of our studies and three designs of S-Band RF load for the present SLAC RF linac system is discussed. These designs are based on the use of low conductivity materials.

  15. Superconducting spoke LINAC design as an alternative option for the CERN LINAC4 high energy part

    E-Print Network [OSTI]

    Sargsyan, E; CERN. Geneva. AB Department

    2006-01-01

    A standard normal-conducting Side Coupled Linac (SCL) has been chosen as a mainline solution for the CERN LINAC4/SPL to accelerate the beam from 90-160/180 MeV. This type of structure is well known and operates at twice the basic frequency (704.4 MHz). Two alternative superconducting solutions with elliptical and triple-spoke cavities have been studied for this energy range. The present note summarizes the beam dynamics calculations in the superconducting triple-spoke linac section analyzing advantages/disadvantages.

  16. Push technology at Argonne National Laboratory.

    SciTech Connect (OSTI)

    Noel, R. E.; Woell, Y. N.

    1999-04-06

    Selective dissemination of information (SDI) services, also referred to as current awareness searches, are usually provided by periodically running computer programs (personal profiles) against a cumulative database or databases. This concept of pushing relevant content to users has long been integral to librarianship. Librarians traditionally turned to information companies to implement these searches for their users in business, academia, and the science community. This paper describes how a push technology was implemented on a large scale for scientists and engineers at Argonne National Laboratory, explains some of the challenges to designers/maintainers, and identifies the positive effects that SDI seems to be having on users. Argonne purchases the Institute for Scientific Information (ISI) Current Contents data (all subject areas except Humanities), and scientists no longer need to turn to outside companies for reliable SDI service. Argonne's database and its customized services are known as ACCESS (Argonne-University of Chicago Current Contents Electronic Search Service).

  17. Ensemble Jobs for Better Throughput - Videoconference | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership Computing Facility Start Date: Jul 29 2015 - 9:00am BuildingRoom: online videoconference Location: Argonne National Laboratory Event Website: https:www.alcf.anl.gov...

  18. Argonne Lab's Breakthrough Cathode Technology Powers Electric...

    Office of Environmental Management (EM)

    by 2015. At the seminar, we caught up with Jeff Chamberlain, who leads Argonne's Energy Storage Initiative, to get a sense of what goes into the kind of research and development...

  19. DEP COOP Web | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Website Content Developer CO-OP Argonne National Laboratory's Education Department is looking for a part-time website content developer (CO-OP Student) starting Summer 2015. This...

  20. Electric Car Competition | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Car Competition March 19, 2016 8:00AM to 12:30PM Location Building Offsite Type Meeting Series Educational Outreach Program Event Argonne will host the 2016 Regional...

  1. Superlative Supercomputers: Argonne's Mira to Accelerate Scientific...

    Broader source: Energy.gov (indexed) [DOE]

    online at Argonne National Laboratory (ANL): Mira. When it debuts in 2012, Mira, an IBM Blue GeneQ supercomputer, will be one of the world's fastest and most energy-efficient...

  2. The Radioactive Beam Program at Argonne

    E-Print Network [OSTI]

    B. B. Back

    2006-06-06

    In this talk I will present selected topics of the ongoing radioactive beam program at Argonne and discuss the capabilities of the CARIBU radioactive ion production facility as well as plans for construction of a novel superconducting solenoid spectrometer.

  3. Preliminary Notice of Violation, Argonne National Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    to the Uncontrolled Release of Radioactive Material at Argonne National Laboratory-East, (EA-2001-05) On August 14, 2001, the U.S. Department of Energy (DOE) issued a...

  4. A Stability of LCLS Linac Modulators

    SciTech Connect (OSTI)

    Decker, F.-J.; Krasnykh, A.; Morris, B.; Nguyen, M.; /SLAC

    2012-06-13

    Information concerning to a stability of LCLS RF linac modulators is allocated in this paper. In general a 'pulse-to-pulse' modulator stability (and RF phase as well) is acceptable for the LCLS commission and FEL programs. Further modulator stability improvements are possible and approaches are discussed based on our experimental results.

  5. Argonne's first-ever Energy Slam

    Broader source: Energy.gov [DOE]

    Join us April 3 for Argonne's first-ever Energy Slam. Four Argonne researchers each will present for 10 minutes on a different energy source – solar, wind, nuclear and biofuels. At the end of the presentations, the audience will vote via applause on which of the four made the best case for his/her energy source and earned the title of Energy Slam Champion.

  6. RF Power Generation in LINAC4

    E-Print Network [OSTI]

    Brunner, O; Schwerg, J N

    2010-01-01

    Linac4 is a lin­ear ac­cel­er­a­tor for neg­a­tive Hy­dro­gen ions (H-) which will re­place the old Linac2 as lin­ear in­jec­tor for the CERN ac­cel­er­a­tors. Its high­er en­er­gy of 160 MeV will give in­creased beam in­ten­si­ty in the down­stream ma­chines. Linac4 is about 100 m long, nor­mal-con­duct­ing, and will be housed in a tun­nel about 12 m below ground. The Linac4 tun­nel will be con­nect­ed to the ex­ist­ing chain of ac­cel­er­a­tors and can be ex­tend­ed to the new in­jec­tion chain. The high RF power for the Linac4 ac­cel­er­at­ing struc­tures will be gen­er­at­ed by thir­teen 1.3 MW klystrons, pre­vi­ous­ly used for the CERN LEP ac­cel­er­a­tor, and six new 2.8 MW klystrons of all op­er­at­ing at a fre­quen­cy of 352.2 MHz. The in­te­gra­tion of the RF power sys­tem in the build­ing is pre­sent­ed. The tech­ni­cal spec­i­fi­ca­tions and the per­for­mance of the var­i­ous high-pow­er el­e­ments are dis­cussed, ...

  7. Argonne National Laboratory 1986 publications

    SciTech Connect (OSTI)

    Kopta, J.A.; Springer, C.J.

    1987-12-01

    This report is a bibliography of scientific and technical 1986 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1986. This compilation, prepared by the Technical Information Services Technical Publications Section (TPS), lists all nonrestricted 1986 publications submitted to TPS by the Laboratory's Divisions. Author indexes list ANL authors only. If a first author is not an ANL employee, an asterisk in the bibliographic citation indicates the first ANL author. The report is divided into seven parts: Journal Articles -- Listed by first author; ANL Reports -- Listed by report number; ANL and non-ANL Unnumbered Reports -- Listed by report number; Non-ANL Numbered Reports -- Listed by report number; Books and Book Chapters -- Listed by first author; Conference Papers -- Listed by first author; and Complete Author Index.

  8. Argonne Premium Coal Sample Bank The Argonne Premium Coal (APC) Sample Bank can supply

    E-Print Network [OSTI]

    Maranas, Costas

    Argonne Premium Coal Sample Bank Background Overview T The Argonne Premium Coal (APC) Sample Bank can supply researchers with highly uniform, well-protected coal samples unexposed to oxygen. Researchers investigating coal structure, properties, and behavior can benefit greatly from these samples

  9. ARGONNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or "fracking," a controversial process that some critics claim can hurt the environment, have made it economical for natural gas companies to extract a greater supply of...

  10. DOE Cites UChicago Argonne, LLC for Worker Safety and Health...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cites UChicago Argonne, LLC for Worker Safety and Health Violations DOE Cites UChicago Argonne, LLC for Worker Safety and Health Violations April 30, 2009 - 12:00am Addthis The...

  11. High Technology School-to-Work Program at Argonne

    ScienceCinema (OSTI)

    None

    2013-04-19

    Argonne's High Technology School-to-Work Program for Chicago Public School Students. Supported by the Illinois Department of Commerce and Economic Opportunity, Chicago Public Schools, Argonne National Laboratory and the City of Chicago.

  12. Argonne battery technology confirmed by U.S. Patent Office |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    battery technology confirmed by U.S. Patent Office January 29, 2014 Tweet EmailPrint ARGONNE, Ill. - The U.S. Department of Energy's (DOE) Argonne National Laboratory is pleased to...

  13. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    junction tandem solar cells, one wide-bandgap material withare being applied in one tandem solar-cell device, theTo utilize solar radiation more effectively, one possible

  14. 2013 Annual Planning Summary for the Argonne Site Office

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the Argonne Site Office

  15. Argonne OutLoud Public Lecture Series: Nuclear Energy

    SciTech Connect (OSTI)

    Roger Blomquist

    2012-12-10

    On November 15, 2012, Argonne National Laboratory opened its doors to the public for a presentation/discussion titled "Getting to Know Nuclear: Past, Present and Future." The speaker was Argonne researcher Roger Blomquist. The event was the latest in the Argonne OutLoud Public Lecture Series. For more information, visit the Argonne Nuclear Engineering Division website (http://www.ne.anl.gov/About/headlines...).

  16. Induction linacs for heavy ion fusion research

    SciTech Connect (OSTI)

    Fessenden, T.J.

    1984-05-01

    The new features of employing an induction linac as a driver for inertial fusion involve (1) transport of high-current low-emittance heavy ion beams, (2) multiple independently-focussed beams threading the same accelerator structure, and (3) synthesis of voltage waveforms to accomplish beam current amplification. A research program is underway at LBL to develop accelerators that test all these features with the final goal of producing an ion beam capable of heating matter to approx. 70 eV. This paper presents a discussion of some properties of induction linacs and how they may be used for HIF research. Physics designs of the High Temperature Experiment (HTE) and the Multiple Beam Experiment (MBE) accelerators are presented along with initial concepts of the MBE induction units.

  17. HIGH CURRENT ENERGY RECOVERY LINAC AT BNL.

    SciTech Connect (OSTI)

    LITVINENKO,V.N.; BEN-ZVI,I.; BARTON,D.S.; ET AL.

    2005-05-16

    We present the design and parameters of an energy recovery linac (ERL) facility, which is under construction in the Collider-Accelerator Department at BNL. This R&D facility has the goal of demonstrating CW operation of an ERL with an average beam current in the range of 0.1-1 ampere and with very high efficiency of energy recovery. The possibility of a future upgrade to a two-pass ERL is also being considered. The heart of the facility is a 5-cell 703.75 MHz super-conducting RF linac with strong Higher Order Mode (HOM) damping. The flexible lattice of the ERL provides a test-bed for exploring issues of transverse and longitudinal instabilities and diagnostics of intense CW electron beams. This ERL is also perfectly suited for a far-IR FEL. We present the status and plans for construction and commissioning of this facility.

  18. High Current Energy Recovery Linac at BNL

    SciTech Connect (OSTI)

    Vladimir N. Litvinenko; Donald Barton; D. Beavis; Ilan Ben-Zvi; Michael Blaskiewicz; J.M. Brennan; A. Burrill; R. Calaga; P. Cameron; X. Chang; Roger Connolly; D. Gassner; H. Hahn; A. Hershcovitch; H.C. Hseuh; P. Johnson; D. Kayran; J. Kewisch; R. Lambiase; G. McIntyre; W. Meng; T. C. Nehring; A. Nicoletti; D. Pate; J. Rank; T. Roser; T. Russo; J. Scaduto; K. Smith; T. Srinivasan-Rao; N. Williams; K.-C. Wu; Vitaly Yakimenko; K. Yip; A. Zaltsman; Y. Zhao; H. Bluem; A. Burger; Mike Cole; A. Favale; D. Holmes; John Rathke; Tom Schultheiss; A. Todd; J. Delayen; W. Funk; L. Phillips; Joe Preble

    2004-08-01

    We present the design, the parameters of a small test Energy Recovery Linac (ERL) facility, which is under construction at Collider-Accelerator Department, BNL. This R&D facility has goals to demonstrate CW operation of ERL with average beam current in the range of 0.1 - 1 ampere, combined with very high efficiency of energy recovery. A possibility for future up-grade to a two-pass ERL is considered. The heart of the facility is a 5-cell 700 MHz super-conducting RF linac with HOM damping. Flexible lattice of ERL provides a test-bed for testing issues of transverse and longitudinal instabilities and diagnostics of intense CW e-beam. ERL is also perfectly suited for a far-IR FEL. We present the status and our plans for construction and commissioning of this facility.

  19. LLRF System Upgrade for the SLAC Linac

    SciTech Connect (OSTI)

    Hong, Bo; /SLAC; Akre, Ron; /SLAC; Pacak, Vojtech; /SLAC

    2012-07-06

    The Linac Coherent Light Source (LCLS) at SLAC is in full user operation and has met the stability goals for stable lasing. The 250pC bunch can be compressed to below 100fS before passing through an undulator. In a new mode of operation a 20pC bunch is compressed to about 10fS. Experimenters are regularly using this shorter X-ray pulse and getting pristine data. The 10fS bunch has timing jitter on the order of 100fS. Physicists are requesting that the RF system achieve better stability to reduce timing jitter. Drifts in the RF system require longitudinal feedbacks to work over large ranges and errors result in reduced performance of the LCLS. A new RF system is being designed to help diagnose and reduce jitter and drift in the SLAC linac.

  20. Simulations for CLIC Drive Beam Linac

    E-Print Network [OSTI]

    Avni Aksoy

    2012-02-25

    The Drive Beam Linac of the Compact Linear Collider (CLIC) has to accelerate an electron beam with 4.2 A up to 2.4 GeV in almost fully-loaded structures. The pulse contains about 70000 bunches, one in every second rf bucket, and has a length of 140 $\\mu$s. The beam stability along the beamline is of concern for such a high current and pulse length. We present different options for the lattice of the linac based on FODO, triplet and doublet cells and compare the transverse instability for each lattice including the effects of beam jitter, alignment and beam-based correction. Additionally longitudinal stability is discussed for different bunch compressors using FODO type of lattice.

  1. Transportation Center Seminar........ "Overview of Power Grid Research at Argonne

    E-Print Network [OSTI]

    Bustamante, Fabián E.

    Transportation Center Seminar........ "Overview of Power Grid Research at Argonne National is the first U.S. DOE national laboratory. Argonne has been engaged in power grid related research for over thirty years. In this talk, I will give an overview of the research activities on power grid at Argonne

  2. Analysis on linac quadrupole misalignment in FACET commissioning 2012

    SciTech Connect (OSTI)

    Sun, Yipeng; /SLAC

    2012-07-05

    In this note, the analysis on linac quadrupole misalignment is presented for the FACET linac section LI05-09 plus LI11-19. The effectiveness of the beam-based alignment technique is preliminarily confirmed by the measurement. Beam-based alignment technique was adopted at SLAC linac since SLC time. Here the beam-based alignment algorithms are further developed and applied in the FACET commissioning during 2012 run.

  3. Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

    E-Print Network [OSTI]

    Kemner, Ken

    Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, Argonne is developing a Remote Area Modular Monitoring (RAMM) system that would remain functional after, LLC. dis_RammBroch_072014rc Environmental Management safety · performance · cleanup · closure DOE

  4. Suppression of microbunching instability using bending magnets in FEL linacs

    E-Print Network [OSTI]

    Qiang, Ji

    2014-01-01

    using bending magnets in FEL linacs Ji Qiang, Chad E.for free electron laser (FEL) radiation. In this letter, weaccelerators for next generation FEL light sources. Instead

  5. High Power Superconducting Continuous Wave Linacs for Protons...

    Office of Science (SC) Website

    Power Superconducting Continuous Wave Linacs for Protons and Heavy-Ions Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of...

  6. Chemical research at Argonne National Laboratory

    SciTech Connect (OSTI)

    NONE

    1997-04-01

    Argonne National Laboratory is a research and development laboratory located 25 miles southwest of Chicago, Illinois. It has more than 200 programs in basic and applied sciences and an Industrial Technology Development Center to help move its technologies to the industrial sector. At Argonne, basic energy research is supported by applied research in diverse areas such as biology and biomedicine, energy conservation, fossil and nuclear fuels, environmental science, and parallel computer architectures. These capabilities translate into technological expertise in energy production and use, advanced materials and manufacturing processes, and waste minimization and environmental remediation, which can be shared with the industrial sector. The Laboratory`s technologies can be applied to help companies design products, substitute materials, devise innovative industrial processes, develop advanced quality control systems and instrumentation, and address environmental concerns. The latest techniques and facilities, including those involving modeling, simulation, and high-performance computing, are available to industry and academia. At Argonne, there are opportunities for industry to carry out cooperative research, license inventions, exchange technical personnel, use unique research facilities, and attend conferences and workshops. Technology transfer is one of the Laboratory`s major missions. High priority is given to strengthening U.S. technological competitiveness through research and development partnerships with industry that capitalize on Argonne`s expertise and facilities. The Laboratory is one of three DOE superconductivity technology centers, focusing on manufacturing technology for high-temperature superconducting wires, motors, bearings, and connecting leads. Argonne National Laboratory is operated by the University of Chicago for the U.S. Department of Energy.

  7. Argonne scientist Cristina Negri talks about phytoremediation

    ScienceCinema (OSTI)

    Negri, Cristina

    2013-04-19

    Phytoremediation is the use of plants and trees to remove or neutralize contaminants in polluted soil or water. Argonne scientist M. Cristina Negri leads the phytotechnologies R&D activities at Argonne. Phytotechnologies encompass the treatment of environmental problems through the use of plants. She was the scientific lead in the deployment and monitoring of multi-acre field scale phytoremediation installations and for the development of a phyto- and bio-remediation researcha nd development project in Russia. Her interests also focus on input-efficient approaches to growing energy crops, water efficiency in growing biofuel crops, and on the advanced treatment and reuse of wastewater and other impaired water.

  8. Nanocrystal assembly for tandem catalysis

    DOE Patents [OSTI]

    Yang, Peidong; Somorjai, Gabor; Yamada, Yusuke; Tsung, Chia-Kuang; Huang, Wenyu

    2014-10-14

    The present invention provides a nanocrystal tandem catalyst comprising at least two metal-metal oxide interfaces for the catalysis of sequential reactions. One embodiment utilizes a nanocrystal bilayer structure formed by assembling sub-10 nm platinum and cerium oxide nanocube monolayers on a silica substrate. The two distinct metal-metal oxide interfaces, CeO.sub.2--Pt and Pt--SiO.sub.2, can be used to catalyze two distinct sequential reactions. The CeO.sub.2--Pt interface catalyzed methanol decomposition to produce CO and H.sub.2, which were then subsequently used for ethylene hydroformylation catalyzed by the nearby Pt--SiO.sub.2 interface. Consequently, propanal was selectively produced on this nanocrystal bilayer tandem catalyst.

  9. Linac Coherent Light SourCe

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA PublicLED ADOPTIONtoLighting SystemLinac Coherent Light SourCe

  10. SLAC Linac Coherent Light Source User Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumni > The2/01/12 Page 1 ofSuper Heavy NucleiFeb Linac

  11. Argonne National Laboratory's Technologist in Residence Webinar

    Broader source: Energy.gov [DOE]

    Argonne National Laboratory is hosting a webinar on May 27, 2015 at 2:00 P.M. EST that will provide an introduction to the TIR pilot solicitation and a high-level overview of some of the key...

  12. Argonne's Magellan Cloud Computing Research Project

    ScienceCinema (OSTI)

    Beckman, Pete

    2013-04-19

    Pete Beckman, head of Argonne's Leadership Computing Facility (ALCF), discusses the Department of Energy's new $32-million Magellan project, which designed to test how cloud computing can be used for scientific research. More information: http://www.anl.gov/Media_Center/News/2009/news091014a.html

  13. Photo of the Week: Argonne's 10 kW Wind Turbine | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photo of the Week: Argonne's 10 kW Wind Turbine Photo of the Week: Argonne's 10 kW Wind Turbine November 9, 2012 - 11:57am Addthis At Argonne National Laboratory, the power...

  14. SNS LINAC MODULATOR OPERATIONAL HISTORY AND PERFOMANCE

    SciTech Connect (OSTI)

    Peplov, Vladimir V [ORNL; Anderson, David E [ORNL; Cutler, Roy I [ORNL; Hicks, Jim [ORNL; Saethre, Robert B [ORNL; Wezensky, Mark W [ORNL

    2011-01-01

    Fourteen High Voltage Converter Modulators (HVCM) were initially installed at the Spallation Neutron Source Linear Accelerator (SNS Linac) at the Oak Ridge National Laboratory in 2005. A fifteenth HVCM was added in 2009. Each modulator provides a pulse of up to 140 kV at a maximum width of 1.35 msec. Peak power level is 11 MW with an 8% duty factor. The HVCM system must be available for neutron production (NP) 24/7 with the exception being two, 6-week maintenance periods per year. HVCM reliability is one of the most important factors to maximize Linac availability and achieve SNS performance goals. During the last few years several modifications have been implemented to improve the overall system reliability. This paper presents operational history of the HVCM systems and examines failure mode statistical data since the modulators began operating at 60 Hz. System enhancements and upgrades aimed at providing long term reliable operation with minimal down time are also discussed in the paper.

  15. Design of the Prototypical Cryomodule for the EUROTRANS Superconducting Linac for Nuclear Waste Transmutation

    E-Print Network [OSTI]

    Barbanotti, S; Blache, P; Commeaux, C; Duthil, P; Panzeri, N; Pierini, P; Rampnoux, E; Souli, M

    2008-01-01

    Design of the Prototypical Cryomodule for the EUROTRANS Superconducting Linac for Nuclear Waste Transmutation

  16. Final Notice of Violation to UChicago Argonne, LLC- WEA-2009-04

    Broader source: Energy.gov [DOE]

    DOE is issuing this Final Notice of Violation (FNOV) to UChicago Argonne, LLC (UChicago Argonne) for violations of DOE's worker safety and health requirements.

  17. Tandem mirror technology demonstration facility

    SciTech Connect (OSTI)

    Not Available

    1983-10-01

    This report describes a facility for generating engineering data on the nuclear technologies needed to build an engineering test reactor (ETR). The facility, based on a tandem mirror operating in the Kelley mode, could be used to produce a high neutron flux (1.4 MW/M/sup 2/) on an 8-m/sup 2/ test area for testing fusion blankets. Runs of more than 100 h, with an average availability of 30%, would produce a fluence of 5 mW/yr/m/sup 2/ and give the necessary experience for successful operation of an ETR.

  18. Combined Heat and Power (CHP) Plant fact sheet | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combined Heat and Power (CHP) Plant fact sheet Argonne National Laboratory's Combined Heat and Power (CHP) plant, expected to be operational in June 2016, will provide electricity...

  19. Autonomie R14 now available | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EmailPrint Autonomie is Argonne National Laboratory's Plug-and-Play System Model Architecture and Development Environment to support the rapid evaluation of new vehicle system...

  20. New Argonne centers connect business with energy storage, nanotechnolo...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne's Tijana Rajh explains recently synthesized metal oxide nanoparticle samples with controlled amounts of structural defects to NDW Director Andreas Roelofs and fellow...

  1. Department of Energy Issues Draft Request for Proposals for Argonne...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    management and operating (M&O) contractor for Argonne National Laboratory (ANL), a major DOE Office of Science research facility located near Chicago, Ill. This competition for a...

  2. Argonne Researchers Shine "Light" on Origins of Wind Turbine...

    Office of Environmental Management (EM)

    Researchers Shine "Light" on Origins of Wind Turbine Bearing Failures Argonne Researchers Shine "Light" on Origins of Wind Turbine Bearing Failures September 12, 2014 - 11:34am...

  3. Argonne announces new licensing agreement with AKHAN Semiconductor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    suite of breakthrough diamond-based semiconductor inventions developed by nanoscientist Ani Sumant of Argonne's Center for Nanoscale Materials, a DOE Office of Science User...

  4. Argonne Celebrates Earth Day 2013: It's Easy Being Green

    SciTech Connect (OSTI)

    Paul Kearns; Pam Sydelko; Ray Bair; Stephen Streiffer; Brian Stephenson

    2013-04-17

    Argonne's April 23, 2013 Earth Day celebration featured "green" R&D conducted at the lab and interactive displays and fun activities that engage the laboratory community.

  5. Energy solutions-Eric Isaacs | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy solutions-Eric Isaacs Share Description Argonne director Eric Isaacs talks about the laboratory's efforts for creating new, clean energy solutions. Topic Energy Energy...

  6. Argonne Celebrates Earth Day 2013: It's Easy Being Green

    ScienceCinema (OSTI)

    Paul Kearns; Pam Sydelko; Ray Bair; Stephen Streiffer; Brian Stephenson;

    2013-06-10

    Argonne's April 23, 2013 Earth Day celebration featured "green" R&D conducted at the lab and interactive displays and fun activities that engage the laboratory community.

  7. Extending a hand: Argonne Hispanic Latino Club mentors Chicago...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the lower gallery of the Advanced Photon Source where they learned about Argonne and the types of research the laboratory conducts. Smaller groups were then guided through several...

  8. Argonne, Convergent and Cummins cooperate to discover the secrets...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2014 Tweet EmailPrint Argonne, Ill. - In the swirling, churning fireball at the heart of every internal combustion engine, complexity reigns supreme. Valves and pistons...

  9. R&D Energy Recovery Linac at Brookhaven National Laboratory

    SciTech Connect (OSTI)

    Litvinenko, Vladimir; Beavis, D.; Ben-Zvi, Ilan; Blaskiewicz, Michael; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Drees, K.A.; Ganetis, G.; Gamble, Michael; Hahn, H.; Hammons, L.R.; Hershcovitch, A.; Hseuh, H.C.; Jain, A.K.; Kayran, A.; Kewisch, Jorg; Lambiase, R.F.; Lederle, D.L.; Mahler, G.J.; McIntyre, G.; Meng, W.; Nehring, T.C.; Oerter, B.; Pai, C.; Pate, D.; Phillips, Daniel; Pozdeyev, Eduard; Rao, Triveni; Reich, J.; Roser, Thomas; Russo, T.; Smith, K.; Tuozzolo, Joseph; Weiss, D.; Williams, N.W.W.; Yip, Kin; Zaltsman, A.; Bluem, Hans; Cole, Michael; Favale, Anthony; Holmes, D.; Rathke, John; Schultheiss, Tom; Delayen, Jean; Funk, L.; Phillips, H.; Preble, Joseph

    2008-07-01

    Collider Accelerator Department at BNL is in the final stages of developing the 20-MeV R&D energy recovery linac with super-conducting 2.5 MeV RF gun and single-mode super-conducting 5-cell RF linac. This unique facility aims to address many outstanding questions relevant for high current (up to 0.5 A of average current), high brightness energy-recovery linacs with novel Zigzag-type merger. We present the performance of the R&D ERL elements and detailed commissioning plan.

  10. A tandem-based compact dual-energy gamma generator

    E-Print Network [OSTI]

    Persaud, A.

    2010-01-01

    The prototype tandem generator has been built using a smallmonoenergetic photon generator. The experiments indicateion source[6]. The tandem generator was designed to be able

  11. Momentum-space Argonne V18 interaction

    SciTech Connect (OSTI)

    Veerasamy, S.; Polyzou, W. N.

    2011-09-15

    This paper gives a momentum-space representation of the Argonne V18 potential as an expansion in products of spin-isospin operators with scalar coefficient functions of the momentum transfer. Two representations of the scalar coefficient functions for the strong part of the interaction are given. One is as an expansion in an orthonormal basis of rational functions and the other as an expansion in Chebyshev polynomials on different intervals. Both provide practical and efficient representations for computing the momentum-space potential that do not require integration or interpolation. Programs based on both expansions are available as supplementary material. Analytic expressions are given for the scalar coefficient functions of the Fourier transform of the electromagnetic part of the Argonne V18. A simple method for computing the partial-wave projections of these interactions from the operator expressions is also given.

  12. Stirling engine research at Argonne National Laboratory

    SciTech Connect (OSTI)

    Holtz, R.E.; Daley, J.G.; Roach, P.D.

    1986-06-01

    Stirling engine research at Argonne National Laboratory has been focused at (1) development of mathematical models and analytical tools for predicting component and engine performance, and (2) experimental research into fundamental heat transfer and fluid flow phenomena occurring in Stirling cycle devices. A result of the analytical effort has been the formation of a computer library specifically for Stirling engine researchers and developers. The library contains properties of structural materials commonly used, thermophysical properties of several working fluids, correlations for heat transfer calculations and general specifications of mechanical arrangements (including various drive mechanisms) that can be utilized to model a particular engine. The library also contains alternative modules to perform analysis at different levels of sophistication, including design optimization. A reversing flow heat transfer facility is operating at Argonne to provide data at prototypic Stirling engine operating conditions under controlled laboratory conditions. This information is needed to validate analytical models.

  13. The APS and the 2012 Argonne Energy Showcase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    using hard x-ray fluorescence microscopy, a "virtual linac," a miniature beamline, robotics, rapid computer-aided design prototyping of APS beamline components, and acoustic...

  14. Tandem junction amorphous silicon solar cells

    DOE Patents [OSTI]

    Hanak, Joseph J. (Lawrenceville, NJ)

    1981-01-01

    An amorphous silicon solar cell has an active body with two or a series of layers of hydrogenated amorphous silicon arranged in a tandem stacked configuration with one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon arranged in tandem configuration can have the same bandgap or differing bandgaps.

  15. Argonne National Laboratory Research Highlights 1988

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    The research and development highlights are summarized. The world's brightest source of X-rays could revolutionize materials research. Test of a prototype insertion device, a key in achieving brilliant X-ray beams, have given the first glimpse of the machine's power. Superconductivity research focuses on the new materials' structure, economics and applications. Other physical science programs advance knowledge of material structures and properties, nuclear physics, molecular structure, and the chemistry and structure of coal. New programming approaches make advanced computers more useful. Innovative approaches to fighting cancer are being developed. More experiments confirm the passive safety of Argonne's Integral Fast Reactor concept. Device simplifies nuclear-waste processing. Advanced fuel cell could provide better mileage, more power than internal combustion engine. New instruments find leaks in underground pipe, measure sodium impurities in molten liquids, detect flaws in ceramics. New antibody findings may explain ability to fight many diseases. Cadmium in cigarettes linked to bone loss in women. Programs fight deforestation in Nepal. New technology could reduce acid rain, mitigate greenhouse effect, enhance oil recovery. Innovative approaches transfer Argonne-developed technology to private industry. Each year Argonne educational programs reach some 1200 students.

  16. Argonne Team Takes Home Best Paper at ITS 2015 | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic ArgonneTheRegistered2014Home Argonne

  17. Overview of High Intensity Linac Programs in Europe

    E-Print Network [OSTI]

    Garoby, R

    2004-01-01

    Recent years have seen a boost in the support by the European Union (EU) of accelerator research in Europe. Provided they coordinate their efforts and define common goals and strategies, laboratories and institutions from the member states can receive a financial support reaching 50% of the total project cost. In the field of High Intensity Linacs, the EU has already supported the EURISOL initiative for nuclear physics, which this year is applying for funding of a Design Study, and the development of linacs for Waste Transmutation. More recently, an initiative for high-energy physics has been approved, which includes a programme for the development of pulsed linac technologies. The coordination and synergy imposed by the EU rules increase the benefit of the allocated resources. Combined with the ongoing internal projects in the partner laboratories, these European initiatives represent a strong effort focussed towards the development of linac technologies. This paper summarises the requests from the various E...

  18. A drift-tube linac incorporating a ramped accelerating field

    SciTech Connect (OSTI)

    Liska, D.J.; Dauelsberg, L.B.

    1987-01-01

    A short, high-power linac structure has been designed and is being built; it incorporates a ramped accelerating field for matching a radio-frequency quadrupole (RFQ) to a high-gradient drift-tube linac (DTL). The tank is made of aluminum and can operate at high duty factor. The drift tubes are copper and use new neodymium-iron-boron quadrupoles. The linac is tuned using conical-sweep post couplers and is driven by multiple rf loops. Rapid acceleration of the beam occurs from low to high gradients in a short, compact, and lightweight structure. Because this linac will also be used to test open drift tubes, test results are included on vacuum measurements of high-grade epoxies and plastics that might be used in a drift-tube body.

  19. Frequency and amplitude control for an experimental linac rf drive 

    E-Print Network [OSTI]

    Atre, Mahesh Purushottam

    1992-01-01

    FREQUENCY AND AMPLITUDE CONTROL FOR AN EXPERIMENTAL LINAC RF DRIVE A Thesis by MAHESH PURUSHOTTAM ATRE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE May 1992 Major Subject: Electrical Engineering FREQUENCY AND AMPLITUDE CONTROL FOR AN EXPERIMENTAL LINAC RF DRIVE A Thesis by MAHESH PURUSHOTTAM ATRE Approved as to style and content by: S. P. Bhattachary (Chair of Committee) arng Huang...

  20. Direct Observation of Hyperfine Quenching of the (2)3p0 Level in Helium-Like Nickel 

    E-Print Network [OSTI]

    Dunford, R. W.; Liu, C. J.; Last, J.; Berrahmansour, N.; Vondrasek, R.; Church, David A.; Curtis, L. J.

    1991-01-01

    VOLUME 44, NUMBER 1 I JULY 1991 Direct observation of hyperfine quenching of the 2 I'o level in heliumlike nickel R. W. Dunford, C. J. Liu, J. Last, N. Berrah-Mansour, and R. Vondrasek Physics Division, Argonne National Laboratory, Argonne, Illinois... between Ni and 'Ni is readily observed in our experiment. The highly ionized nickel beams were obtained from the Argonne Tandem Linac (ATLAS). The ion source was charged with enriched isotopes of 'Ni (42 at. %%uo )an d Ni (58 at. %). First the Linac...

  1. Bureau of Indian Education Many Farms Training Program at Argonne

    ScienceCinema (OSTI)

    None

    2013-04-19

    Bureau of Indian Education Many Farms Training Program for Renewable Energy at Argonne National Laboratory. Principal Contacts; Harold Myron (ANL), Anthony Dvorak (ANL), Freddie Cardenas (BIA). Supported by; United States Department of the Interior, Bureau of Indian Education, and Argonne National Laboratory

  2. Argonne National Lab - Theory and Computing Sciences, Accelerating Scientific Discovery

    SciTech Connect (OSTI)

    Beckman, Pete

    2009-01-01

    Argonne's new TCS building houses all of Argonne's computing divisions, and is designed to foster collaboration of the Manhattan Project model "Getting the best people together and having them work on a problem with singular determination." More at http://www.anl.gov/Media_Center/News/2009/tcs0910.html

  3. A novel electron gun for inline MRI-linac configurations

    SciTech Connect (OSTI)

    Constantin, Drago? E. Fahrig, Rebecca; Holloway, Lois; Keall, Paul J.

    2014-02-15

    Purpose: This work introduces a new electron gun geometry capable of robust functioning in the presence of a high strength external magnetic field for axisymmetric magnetic resonance imaging (MRI)-linac configurations. This allows an inline MRI-linac to operate without the need to isolate the linear accelerator (linac) using a magnetic shield. This MRI-linac integration approach not only leaves the magnet homogeneity unchanged but also provides the linac flexibility to move along the magnet axis of symmetry if the source to target distance needs to be adjusted. Methods: Simple electron gun geometry modifications of a Varian 600C electron gun are considered and solved in the presence of an external magnetic field in order to determine a set of design principles for the new geometry. Based on these results, a new gun geometry is proposed and optimized in the fringe field of a 0.5 T open bore MRI magnet (GE Signa SP). A computer model for the 6 MeV Varian 600C linac is used to determine the capture efficiency of the new electron gun-linac system in the presence of the fringe field of the same MRI scanner. The behavior of the new electron gun plus the linac system is also studied in the fringe fields of two other magnets, a 1.0 T prototype open bore magnet and a 1.5 T GE Conquest scanner. Results: Simple geometrical modifications of the original electron gun geometry do not provide feasible solutions. However, these tests show that a smaller transverse cathode diameter with a flat surface and a slightly larger anode diameter could alleviate the current loss due to beam interactions with the anode in the presence of magnetic fields. Based on these findings, an initial geometry resembling a parallel plate capacitor with a hole in the anode is proposed. The optimization procedure finds a cathode-anode distance of 5 mm, a focusing electrode angle of 5°, and an anode drift tube length of 17.1 mm. Also, the linac can be displaced with ±15 cm along the axis of the 0.5 T magnet without capture efficiency reduction below the experimental value in zero field. In this range of linac displacements, the electron beam generated by the new gun geometry is more effectively injected into the linac in the presence of an external magnetic field, resulting in approximately 20% increase of the target current compared to the original gun geometry behavior at zero field. The new gun geometry can generate and accelerate electron beams in external magnetic fields without current loss for fields higher than 0.11 T. The new electron-gun geometry is robust enough to function in the fringe fields of the other two magnets with a target current loss of no more than 16% with respect to the current obtained with no external magnetic fields. Conclusions: In this work, a specially designed electron gun was presented which can operate in the presence of axisymmetric strong magnetic fringe fields of MRI magnets. Computer simulations show that the electron gun can produce high quality beams which can be injected into a straight through linac such as Varian 600C and accelerated with more efficiency in the presence of the external magnetic fields. Also, the new configuration allows linac displacements along the magnet axis in a range equal to the diameter of the imaging spherical volume of the magnet under consideration. The new electron gun-linac system can function in the fringe field of a MRI magnet if the field strength at the cathode position is higher than 0.11 T. The capture efficiency of the linac depends on the magnetic field strength and the field gradient. The higher the gradient the better the capture efficiency. The capture efficiency does not degrade more than 16%.

  4. Independent Oversight Inspection, Argonne National Laboratory- East, Summary Report- May 2002

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health and Emergency Management at the Argonne National Laboratory - East

  5. Environmental monitoring at Argonne National Laboratory. Annual report for 1983

    SciTech Connect (OSTI)

    Golchert, N.W.; Duffy, T.L.; Sedlet, J.

    1984-03-01

    The results of the environmental monitoring program at Argonne National Laboratory for 1983 are presented and discussed. To evaluate the effect of Argonne operations on the environment, measurements were made for a variety of radionuclides in air, surface water, soil, grass, bottom sediment, and milk; for a variety of chemical constituents in air, surface water, ground water, and Argonne effluent water; and of the environmental penetrating radiation dose. Sample collections and measurements were made at the site boundary and off the Argonne site for comparison purposes. Some on-site measurements were made to aid in the interpretation of the boundary and off-site data. The potential radiation dose to off-site population groups is also estimated. The results of the program are interpreted in terms of the sources and origin of the radioactive and chemical substances (natural, fallout, Argonne, and other) and are compared with applicable environmental quality standards. 19 references, 8 figures, 49 tables.

  6. Environmental monitoring at Argonne National Laboratory. Annual report for 1984

    SciTech Connect (OSTI)

    Golchert, N.W.; Duffy, T.L.; Sedlet, J.

    1985-03-01

    The results of the environmental monitoring program at Argonne National Laboratory for 1984 are presented and discussed. To evaluate the effect of Argonne operations on the environment, measurements were made for a variety of radionuclides in air, surface water, ground water, soil, grass, bottom sediment, and milk; for a variety of chemical constituents in surface water, ground water, and Argonne effluent water; and of the environmental penetrating radiation dose. Sample collections and measurements were made on the site, at the site boundary, and off the Argonne site for comparison purposes. The potential radiation dose to off-site population groups is also estimated. The results of the program are interpreted in terms of the sources and origin of the radioactive and chemical substances (natural, fallout, Argonne, and other) and are compared with applicable environmental quality standards. 20 refs., 8 figs., 46 tabs.

  7. Environmental monitoring at Argonne National Laboratory. Annual report for 1982

    SciTech Connect (OSTI)

    Golchert, N.W.; Duffy, T.L.; Sedlet, J.

    1983-03-01

    The results of the environmental monitoring program at Argonne Ntaional Laboratory for 1982 are presented and discussed. To evaluate the effect of Argonne operations on the environment, measurements were made for a variety of radionuclides in air, surface water, soil, grass, bottom sediment, and milk; for a variety of chemical constituents in air, surface water, ground water, and Argonne effluent water; and of the environmental penetrating radiation dose. Sample collections and masurements were made at the site boundary and off the Argonne site for comparison purposes. Some on-site measurements were made to aid in the interpretation of the boundary and off-site data. The results of the program are interpreted in terms of the sources and origin of the radioactive and chemical substances (natural, fallout, Argonne, and other) and are compared with applicable environmental quality standards. The potential radiation dose to off-site population groups is also estimated.

  8. Environmental monitoring at Argonne National Laboratory. Annual report, 1981

    SciTech Connect (OSTI)

    Golchert, N.W.; Duffy, T.L.; Sedlet, J.

    1982-03-01

    The results of the environmental monitoring program at Argonne National Laboratory for 1981 are presented and discussed. To evaluate the effect of Argonne operations on the environment, measurements were made for a variety of radionuclides in air, surface water, soil, grass, bottom sediment, and milk; for a variety of chemical constituents in air, surface water, and Argonne effluent water; and of the environmental penetrating radiation dose. Sample collections and measurements were made at the site boundary and off the Argonne site for comparison purposes. Some on-site measurements were made to aid in the interpretation of the boundary and off-site data. The results of the program are interpreted in terms of the sources and origin of the radioactive and chemical substances (natural, fallout, Argonne, and other) and are compared with applicable environmental quality standards. The potential radiation dose to off-site population groups is also estimated.

  9. Tandem Mirror Reactor Systems Code (Version I)

    SciTech Connect (OSTI)

    Reid, R.L.; Finn, P.A.; Gohar, M.Y.; Barrett, R.J.; Gorker, G.E.; Spampinaton, P.T.; Bulmer, R.H.; Dorn, D.W.; Perkins, L.J.; Ghose, S.

    1985-09-01

    A computer code was developed to model a Tandem Mirror Reactor. Ths is the first Tandem Mirror Reactor model to couple, in detail, the highly linked physics, magnetics, and neutronic analysis into a single code. This report describes the code architecture, provides a summary description of the modules comprising the code, and includes an example execution of the Tandem Mirror Reactor Systems Code. Results from this code for two sensitivity studies are also included. These studies are: (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power; and (2) to determine the impact of reactor power level on cost.

  10. Argonne National Laboratory institutional plan FY 2001--FY 2006.

    SciTech Connect (OSTI)

    Beggs, S.D.

    2000-12-07

    This Institutional Plan describes what Argonne management regards as the optimal future development of Laboratory activities. The document outlines the development of both research programs and support operations in the context of the nation's R and D priorities, the missions of the Department of Energy (DOE) and Argonne, and expected resource constraints. The Draft Institutional Plan is the product of many discussions between DOE and Argonne program managers, and it also reflects programmatic priorities developed during Argonne's summer strategic planning process. That process serves additionally to identify new areas of strategic value to DOE and Argonne, to which Laboratory Directed Research and Development funds may be applied. The Draft Plan is provided to the Department before Argonne's On-Site Review. Issuance of the final Institutional Plan in the fall, after further comment and discussion, marks the culmination of the Laboratory's annual planning cycle. Chapter II of this Institutional Plan describes Argonne's missions and roles within the DOE laboratory system, its underlying core competencies in science and technology, and six broad planning objectives whose achievement is considered critical to the future of the Laboratory. Chapter III presents the Laboratory's ''Science and Technology Strategic Plan,'' which summarizes key features of the external environment, presents Argonne's vision, and describes how Argonne's strategic goals and objectives support DOE's four business lines. The balance of Chapter III comprises strategic plans for 23 areas of science and technology at Argonne, grouped according to the four DOE business lines. The Laboratory's 14 major initiatives, presented in Chapter IV, propose important advances in key areas of fundamental science and technology development. The ''Operations and Infrastructure Strategic Plan'' in Chapter V includes strategic plans for human resources; environmental protection, safety, and health; site and facilities; security, export control, and counterintelligence; information management; communications, outreach, and community affairs; performance-based management; and productivity improvement and overhead cost reduction. Finally, Chapter VI provides resource projections that are a reasonable baseline for planning the Laboratory's future.

  11. Argonne's Laboratory computing center - 2007 annual report.

    SciTech Connect (OSTI)

    Bair, R.; Pieper, G. W.

    2008-05-28

    Argonne National Laboratory founded the Laboratory Computing Resource Center (LCRC) in the spring of 2002 to help meet pressing program needs for computational modeling, simulation, and analysis. The guiding mission is to provide critical computing resources that accelerate the development of high-performance computing expertise, applications, and computations to meet the Laboratory's challenging science and engineering missions. In September 2002 the LCRC deployed a 350-node computing cluster from Linux NetworX to address Laboratory needs for mid-range supercomputing. This cluster, named 'Jazz', achieved over a teraflop of computing power (1012 floating-point calculations per second) on standard tests, making it the Laboratory's first terascale computing system and one of the 50 fastest computers in the world at the time. Jazz was made available to early users in November 2002 while the system was undergoing development and configuration. In April 2003, Jazz was officially made available for production operation. Since then, the Jazz user community has grown steadily. By the end of fiscal year 2007, there were over 60 active projects representing a wide cross-section of Laboratory expertise, including work in biosciences, chemistry, climate, computer science, engineering applications, environmental science, geoscience, information science, materials science, mathematics, nanoscience, nuclear engineering, and physics. Most important, many projects have achieved results that would have been unobtainable without such a computing resource. The LCRC continues to foster growth in the computational science and engineering capability and quality at the Laboratory. Specific goals include expansion of the use of Jazz to new disciplines and Laboratory initiatives, teaming with Laboratory infrastructure providers to offer more scientific data management capabilities, expanding Argonne staff use of national computing facilities, and improving the scientific reach and performance of Argonne's computational applications. Furthermore, recognizing that Jazz is fully subscribed, with considerable unmet demand, the LCRC has framed a 'path forward' for additional computing resources.

  12. Directions to Argonne | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent BondingMeetingDifferencesPlatinum FuelEnergyArgonne From O'Hare

  13. Cobalt Job Control | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D BGene NetworkNuclearDNP 20082 P r o jJ.Coal to Liquids3ArgonneWind

  14. Argonne National Laboratory Technology Marketing Summaries - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic Argonne National Laboratory | 9700 South

  15. Argonne Site Access | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic ArgonneTheRegistered2014 ATLASArgonneGetting

  16. OutLoud | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxideUser Careers/ HumanOur MissionProgramsArgonne

  17. Named Fellowship Sponsor Guidelines | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatialDevelopment of09Sponsor Guidelines Guidelines for Argonne

  18. Argonne National Laboratory | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE.EnergyWoodenDateSA JumpSolarAeolis Geracao deArgonne

  19. Message from the Director | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on dark matter ByMentor-ProtegeFrom the Director Here at Argonne,

  20. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    and G. Li, ?Polymer solar cells with enhanced open-circuittandem and triple-junction solar cells,? Materials, 2012, 5(for tandem organic solar cells,? Journal of Applied Physics,

  1. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    organic tandem and triple-junction solar cells,? Materials,Current-matched triple-junction solar cell reaching 41.1%demonstrations of triple-junction solar cells outperforming

  2. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    contacts for tandem organic solar cells,? Journal of AppliedITO-free flexible organic solar cells with printed currentC. de Mello, “ Efficient organic solar cells with solution-

  3. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    Y. Wu, and G. Li, ?Polymer solar cells with enhanced open-tandem and triple-junction solar cells,? Materials, 2012, 5(molecules for high performance solar cells,” Advanced Energy

  4. Argonne is a partner in the Argonne-Northwestern Solar Energy Research Center led by Northwestern University. Argonne is a partner in the Center for Emergent Superconductivity led by Brookhaven National Laboratory.

    E-Print Network [OSTI]

    Kemner, Ken

    Argonne is a partner in the Argonne-Northwestern Solar Energy Research Center led by Northwestern Conductivity (CES) W. Kwok (MSD) Argonne-Northwestern Solar Energy Research (ANSER) M. Pellin (MSD) #12; Administrative Support J. Hogan and G. Cutinello Chemical Sciences & Engineering (CSE) E.E. Bunel High Energy

  5. A hot-spare injector for the APS linac.

    SciTech Connect (OSTI)

    Lewellen, J. W.

    1999-04-13

    Last year a second-generation SSRL-type thermionic cathode rf gun was installed in the Advanced Photon Source (APS) linac. This gun (referred to as ''gun2'') has been successfully commissioned and now serves as the main injector for the APS linac, essentially replacing the Koontz-type DC gun. To help ensure injector availability, particularly with the advent of top-up mode operation at the APS, a second thermionic-cathode rf gun will be installed in the APS linac to act as a hot-spare beam source. The hot-spare installation includes several unique design features, including a deep-orbit Panofsky-style alpha magnet. Details of the hot-spare beamline design and projected performance are presented, along with some plans for future performance upgrades.

  6. R and D energy recovery LINAC at Brookhaven National Laboratory

    SciTech Connect (OSTI)

    Litvinenko,V.N.; Beavis, D.; Ben-Zvi, I.; Blaskiewicz, M.; Burrill, A.; Calaga, R.; Cameron, P.; Chang, X.; Drees, A.; Ganetis, G.; Gassner, D.; Hahn, H.; Hammons, L.; Hershcovitch, A.; Hseuh, H-C.; Jain, A.; Kayran, D.; Kewisch, J.; Lambiase, R.; Lederle, D.; Mahler, G.; McIntyre, G.; Meng, W.; Nehring, T.; Oerter, B.; Pai, C.; Pate, D.; Phillips, D.; Pozdeyev, E.; Rao, T.; Reich, J.; Roser, T.; Russo, T.; Smith, K.; Tuozzolo, J.; Weiss, D.; Williams, N.; Yip, K.; Zaltsman, A.; Favale, A.; Bluem, H.; Cole, M.; Holmes, D.; Rathke, J.; Schultheiss, T.; Todd, A.; Delayen, J.; Funk, L.; Phillips, L.; Preble, J.

    2008-06-23

    Collider Accelerator Department at BNL is in the final stages of developing the 20-MeV R and D energy recovery linac with super-conducting 2.5 MeV RF gun and single-mode super-conducting 5-cell RF linac. This unique facility aims to address many outstanding questions relevant for high current (up to 0.5 A of average current), high brightness energy-recovery linacs with novel ZigZag-type merger. Recent development in the R and D ERL plans include gun and 5-cell cavity (G5) test and possibility of using R and D ERL for proof-of-principle test of Coherent Electron Cooling at RHIC.

  7. Environmental assessment related to the operation of Argonne National Laboratory, Argonne, Illinois

    SciTech Connect (OSTI)

    Not Available

    1982-08-01

    In order to evaluate the environmental impacts of Argonne National Laboratory (ANL) operations, this assessment includes a descriptive section which is intended to provide sufficient detail to allow the various impacts to be viewed in proper perspective. In particular, details are provided on site characteristics, current programs, characterization of the existing site environment, and in-place environmental monitoring programs. In addition, specific facilities and operations that could conceivably impact the environment are described at length. 77 refs., 16 figs., 47 tabs.

  8. Argonne OutLoud: Unraveling the Higgs Boson (Sept. 27, 2012) | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic Argonne National

  9. SRF cavities for CW option of Project X Linac

    SciTech Connect (OSTI)

    Solyak, N.; Gonin, I.; Khabiboulline, T.; Lunin, A.; Perunov, N.; Yakovlev, V.; /Fermilab

    2009-09-01

    Alternative option of Project X is based on the CW SC 2GeV Linac with the average current 1mA. Possible option of the CW Linac considered in the paper includes low energy part consisted of a few families SC Spoke cavities (from 2.5 MeV to 466 MeV) and high energy part consisted of 2 types of elliptical cavities (v/c=0.81 and v/c=1). Requirements and designed parameters of cavities are considered.

  10. Longitudinal emittance oscillation in a superconducting drift tube linac

    SciTech Connect (OSTI)

    Kim, J.W.; Shepard, K.W.

    1995-07-01

    In drift tube linacs a beam energy spread results form the finite beam size. Radial variation of the axial accelerating field induces a beam energy spread, which, in general, will accumulate as the beam passes through successive drift tubes. This paper shows that under some conditions of periodic transverse focusing and longitudinal phase focusing, the correlation between the longitudinal and transverse motion can be used to correct the energy spread. The process of achieving such a correction is first described in a simplified situation, and then demonstrated for a particular tuning using a ray-tracing program which models a low velocity and low charge state linac designed for radioactive ion beams.

  11. Science Behind the Fiction: Contagion [2011] | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    experts like Argonne's Dan Walsh and Ed Tanzman, cities like Chicago can run emergency drills to prepare for the worst-case scenarios. "What I took away from that movie, apart from...

  12. Mira Performance Boot Camp 2015 | Argonne Leadership Computing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mira Performance Boot Camp 2015 Event Sponsor: Argonne Leadership Computing Facility Start Date: May 19 2015 - 8:30am to May 21 2015 - 5:00pm BuildingRoom: TCS Building 240 | Room...

  13. "Ask Argonne" - Dave Grabaskas, Nuclear Engineer, Part 2

    ScienceCinema (OSTI)

    Grabaskas, Dave

    2014-11-24

    Part 1 (http://www.youtube.com/watch?v=Vs_0wXoSL8M) of Dr. Dave Grabaskas' "Ask Argonne" video set drew many questions from the public. In Part 2, Grabaskas answers three of those questions.

  14. ALCF hosts high school girls for STEM event | Argonne Leadership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    led the hour-long visit, which included an introduction to Mira, Argonne's IBM Blue GeneQ supercomputer, and an overview of the critical role that modeling and simulation...

  15. Letchworth-Weaver awarded 2015 Argonne National Lab Fellowship...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Named Fellow is hired as an Argonne Scholar with full benefits, a highly competitive salary and a stipend for research support. Named Fellows may renew their appointments on an...

  16. Leading by Example: Argonne Senior Management Makes "Green" Vehicle Choices

    ScienceCinema (OSTI)

    Peters, Mark; Kearns, Paul;

    2013-04-19

    Argonne's senior management shows leadership in the sustainability arena with their own personal choices in "green" vehicles. They don't just talk the talk ? they walk the walk.

  17. SKOPE - a SKeleton framewOrk for Performance Exploration | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SKOPE - a SKeleton framewOrk for Performance Exploration Event Sponsor: Argonne Leadership Computing Facility Seminar Start Date: Sep 8 2015 - 12:00pm BuildingRoom: Building 241...

  18. Crowdsource: How do we tackle climate change? | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 issue of Argonne Now, the laboratory science magazine. Crowdsource: How do we tackle climate change? By Louise Lerner * June 1, 2014 Tweet EmailPrint This story was originally...

  19. Thoughts About Really Big Computers | Argonne Leadership Computing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thoughts About Really Big Computers Event Sponsor: Leadership Facility Seminar Start Date: Jun 30 2015 - 10:30am BuildingRoom: Building 240Room 1407 Location: Argonne National...

  20. Leading by Example: Argonne Senior Management Makes "Green" Vehicle Choices

    SciTech Connect (OSTI)

    Peters, Mark; Kearns, Paul

    2011-01-01

    Argonne's senior management shows leadership in the sustainability arena with their own personal choices in "green" vehicles. They don't just talk the talk — they walk the walk.

  1. Argonne scientists announce first room-temperature magnetic skyrmion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the most pressing challenges of our time. For more information, please visit science.energy.gov. From left to right: Argonne researchers Wanjun Jiang, Suzanne G.E. te...

  2. Making fuel from light: Argonne research sheds light on photosynthesis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Making fuel from light: Argonne research sheds light on photosynthesis and creation of solar fuel By Jo Napolitano * September 1, 2015 Tweet EmailPrint Refined by nature over a...

  3. Argonne OutLoud presents: The Solar Energy Challenge

    ScienceCinema (OSTI)

    Seth Darling

    2013-06-05

    To better understand the current and future role of solar energy, Argonne's Seth Darling framed the global energy supply and demand outlook over the next 40 years while examining potential energy sources from a feasibility and sustainability perspective. He also discussed the promise and challenges of solar energy while providing a broad overview of related research taking place at Argonne as well as his group's work on organic solar cells.

  4. Argonne National Laboratory Site Environmental report for calendar year 2009.

    SciTech Connect (OSTI)

    Golchert, N. W.; Davis, T. M.; Moos, L. P.

    2010-08-04

    This report discusses the status and the accomplishments of the environmental protection program at Argonne National Laboratory for calendar year 2009. The status of Argonne environmental protection activities with respect to compliance with the various laws and regulations is discussed, along with the progress of environmental corrective actions and restoration projects. To evaluate the effects of Argonne operations on the environment, samples of environmental media collected on the site, at the site boundary, and off the Argonne site were analyzed and compared with applicable guidelines and standards. A variety of radionuclides were measured in air, surface water, on-site groundwater, and bottom sediment samples. In addition, chemical constituents in surface water, groundwater, and Argonne effluent water were analyzed. External penetrating radiation doses were measured, and the potential for radiation exposure to off-site population groups was estimated. Results are interpreted in terms of the origin of the radioactive and chemical substances (i.e., natural, Argonne, and other) and are compared with applicable environmental quality standards. A U.S. Department of Energy (DOE) dose calculation methodology, based on International Commission on Radiological Protection recommendations and the U.S. Environmental Protection Agency's (EPA) CAP-88 Version 3 (Clean Air Act Assessment Package-1988) computer code, was used in preparing this report.

  5. Argonne National Laboratory site environmental report for calendar year 2006.

    SciTech Connect (OSTI)

    Golchert, N. W.; ESH /QA Oversight

    2007-09-13

    This report discusses the status and the accomplishments of the environmental protection program at Argonne National Laboratory for calendar year 2006. The status of Argonne environmental protection activities with respect to compliance with the various laws and regulations is discussed, along with the progress of environmental corrective actions and restoration projects. To evaluate the effects of Argonne operations on the environment, samples of environmental media collected on the site, at the site boundary, and off the Argonne site were analyzed and compared with applicable guidelines and standards. A variety of radionuclides were measured in air, surface water, on-site groundwater, and bottom sediment samples. In addition, chemical constituents in surface water, groundwater, and Argonne effluent water were analyzed. External penetrating radiation doses were measured, and the potential for radiation exposure to off-site population groups was estimated. Results are interpreted in terms of the origin of the radioactive and chemical substances (i.e., natural, fallout, Argonne, and other) and are compared with applicable environmental quality standards. A U.S. Department of Energy dose calculation methodology, based on International Commission on Radiological Protection recommendations and the U.S. Environmental Protection Agency's CAP-88 Version 3 (Clean Air Act Assessment Package-1988) computer code, was used in preparing this report.

  6. Argonne National Laboratory site enviromental report for calendar year 2008.

    SciTech Connect (OSTI)

    Golchert, N. W.; Davis, T. M.; Moos, L. P.

    2009-09-02

    This report discusses the status and the accomplishments of the environmental protection program at Argonne National Laboratory for calendar year 2008. The status of Argonne environmental protection activities with respect to compliance with the various laws and regulations is discussed, along with the progress of environmental corrective actions and restoration projects. To evaluate the effects of Argonne operations on the environment, samples of environmental media collected on the site, at the site boundary, and off the Argonne site were analyzed and compared with applicable guidelines and standards. A variety of radionuclides were measured in air, surface water, on-site groundwater, and bottom sediment samples. In addition, chemical constituents in surface water, groundwater, and Argonne effluent water were analyzed. External penetrating radiation doses were measured, and the potential for radiation exposure to off-site population groups was estimated. Results are interpreted in terms of the origin of the radioactive and chemical substances (i.e., natural, fallout, Argonne, and other) and are compared with applicable environmental quality standards. A U.S. Department of Energy dose calculation methodology, based on International Commission on Radiological Protection recommendations and the U.S. Environmental Protection Agency's CAP-88 Version 3 (Clean Air Act Assessment Package-1988) computer code, was used in preparing this report.

  7. Argonne National Laboratory site environmental report for calendar year 2007.

    SciTech Connect (OSTI)

    Golchert, N. W.; Davis, T. M.; Moos, L. P.; ESH /QA Oversight

    2008-09-09

    This report discusses the status and the accomplishments of the environmental protection program at Argonne National Laboratory for calendar year 2007. The status of Argonne environmental protection activities with respect to compliance with the various laws and regulations is discussed, along with the progress of environmental corrective actions and restoration projects. To evaluate the effects of Argonne operations on the environment, samples of environmental media collected on the site, at the site boundary, and off the Argonne site were analyzed and compared with applicable guidelines and standards. A variety of radionuclides were measured in air, surface water, on-site groundwater, and bottom sediment samples. In addition, chemical constituents in surface water, groundwater, and Argonne effluent water were analyzed. External penetrating radiation doses were measured, and the potential for radiation exposure to off-site population groups was estimated. Results are interpreted in terms of the origin of the radioactive and chemical substances (i.e., natural, fallout, Argonne, and other) and are compared with applicable environmental quality standards. A U.S. Department of Energy dose calculation methodology, based on International Commission on Radiological Protection recommendations and the U.S. Environmental Protection Agency's CAP-88 Version 3 (Clean Air Act Assessment Package-1988) computer code, was used in preparing this report.

  8. Argonne National Laboratory Site Environmental Report for Calendar Year 2013

    SciTech Connect (OSTI)

    Davis, T. M.; Gomez, J. L.; Moos, L. P.

    2014-09-02

    This report discusses the status and the accomplishments of the environmental protection program at Argonne National Laboratory for calendar year 2013. The status of Argonne environmental protection activities with respect to compliance with the various laws and regulations is discussed, along with environmental management, sustainability efforts, environmental corrective actions, and habitat restoration. To evaluate the effects of Argonne operations on the environment, samples of environmental media collected on the site, at the site boundary, and off the Argonne site were analyzed and compared with applicable guidelines and standards. A variety of radionuclides were measured in air, surface water, on-site groundwater, and bottom sediment samples. In addition, chemical constituents in surface water, groundwater, and Argonne effluent water were analyzed. External penetrating radiation doses were measured, and the potential for radiation exposure to off-site population groups was estimated. Results are interpreted in terms of the origin of the radioactive and chemical substances (i.e., natural, Argonne, and other) and are compared with applicable standards intended to protect human health and the environment. A U.S. Department of Energy (DOE) dose calculation methodology, based on International Commission on Radiological Protection (ICRP) recommendations and the U.S. Environmental Protection Agency’s (EPA) CAP-88 Version 3 computer code, was used in preparing this report.

  9. Argonne explains nuclear recycling in 4 minutes

    ScienceCinema (OSTI)

    None

    2013-04-19

    Currently, when using nuclear energy only about five percent of the uranium used in a fuel rod gets fissioned for energy; after that, the rods are taken out of the reactor and put into permanent storage. There is a way, however, to use almost all of the uranium in a fuel rod. Recycling used nuclear fuel could produce hundreds of years of energy from just the uranium we've already mined, all of it carbon-free. Problems with older technology put a halt to recycling used nuclear fuel in the United States, but new techniques developed by scientists at Argonne National Laboratory address many of those issues. For more information, visit http://www.anl.gov/energy/nuclear-energy.

  10. Intensity Effects of the FACET Beam in the SLAC Linac

    SciTech Connect (OSTI)

    Decker, F.-J.; Lipkowitz, N.; Sheppard, J.; White, G.R.; Wienands, U.; Woodley, M.; Yocky, G.; /SLAC

    2012-07-03

    The beam for FACET (Facility for Advanced aCcelerator Experimental Tests) at SLAC requires an energy-time correlation ('chirp') along the linac, so it can be compressed in two chicanes, one at the midpoint in sector 10 and one W-shaped chicane just before the FACET experimental area. The induced correlation has the opposite sign to the typical used for BNS damping, and therefore any orbit variations away from the center kick the tail of the beam more than the head, causing a shear in the beam and emittance growth. Any dispersion created along the linac has similar effects due to the high (>1.2% rms) energy spread necessary for compression. The initial huge emittances could be reduced by a factor of 10, but were still bigger than expected by a factor of 2-3. Normalized emittance of 3 {micro}m-rad in Sector 2 blew up to 150 {micro}m-rad in Sector 11 but could be reduced to about 6-12 {micro}m-rad, for the vertical plane although the results were not very stable. Investigating possible root causes for this, we found locations where up to 10 mm dispersion was created along the linac, which were finally verified with strong steering and up to 7 mm settling of the linac accelerator at these locations.

  11. Design and operation of the LBL heavy ion RFQ linac

    SciTech Connect (OSTI)

    Gouch, R.A.

    1984-05-01

    LBL has designed and tested a heavy ion RFQ linac for ions in the mass range of 1 to 40. Designed as part of a preinjector package for synchrotron applications, it is a low duty factor device, operating at 200 MHz with maximum surface fields as high as 28 MV/meter. It is a loop-driven, four vane structure employing several innovative design concepts. These include an exit matcher section, to ensure efficient capture by a following Alvarez linac; advanced mechanical design features, to ensure accurate positioning of the vane pole-tips; and vane coupling rings, to ensure field stabilization and balance. This RFQ has been used on a test bench to accelerate a variety of ions as heavy as silicon, with charge to mass ratios as low as 1/7. Results of the initial operation show that the structure meets all of the design performance criteria, and that it holds promise for a long lifetime of simple and reliable service. This RFQ linac will soon be incorporated into the Bevatron operations program as part of th 200 MHz injector upgrade. A further application of this same RFQ design is in the dedicated Heavy Ion Medical Accelerator presently under study at LBL. Details of the design, construction and testing of the RFQ linac are given.

  12. PROJECT PROFILE: Silicon-Based Tandem Solar Cells

    Broader source: Energy.gov [DOE]

    The project will demonstrate bonded gallium indium phosphide (GaInP) on silicon tandem cells, evaluate the advantages and disadvantages of this method of forming higher-efficiency tandem cells, and compare two- and three-terminal device configurations.

  13. High voltage series connected tandem junction solar battery

    DOE Patents [OSTI]

    Hanak, Joseph J. (Lawrenceville, NJ)

    1982-01-01

    A high voltage series connected tandem junction solar battery which comprises a plurality of strips of tandem junction solar cells of hydrogenated amorphous silicon having one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon, arranged in a tandem configuration, can have the same bandgap or differing bandgaps. The tandem junction strip solar cells are series connected to produce a solar battery of any desired voltage.

  14. Secretary Chu visits Argonne?Groundbreaking ceremony for new Energy Sciences building

    ScienceCinema (OSTI)

    Isaacs, Eric

    2013-04-19

    U.S. Department of Energy Secretary Steven Chu, joined Senator Richard Durbin, University of Chicago President Robert Zimmer and Argonne Director Eric Isaacs to break ground for Argonne's new Energy and Sciences building.

  15. Argonne National Laboratory-West Former Workers, Construction Worker Screening Projects

    Broader source: Energy.gov [DOE]

    Argonne National Laboratory-West Former Construction Workers (now known as Idaho National Laboratory), Construction Worker Screening Projects

  16. Argonne named a 'Best Place' to work for postdocs in 2010 | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D SFederal8823 RevisionAprilSTEMfest | Argonne40'

  17. Argonne OutLoud: Catch a Rising Science Star (Sept. 10, 2015) | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic Argonne National Laboratory | 9700National

  18. Argonne OutLoud: Energy Slam (April 3, 2014) | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic Argonne National Laboratory |10, 2015)Energy

  19. Argonne OutLoud: Getting to Know Nuclear Energy (Nov. 15, 2012) | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic Argonne National Laboratory |10,

  20. Argonne OutLoud: Science and Cinema (July 17, 2014) | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic Argonne National Laboratory

  1. Argonne OutLoud: The Future of Transportation (June 20, 2013) | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic Argonne National LaboratoryNational

  2. Argonne OutLoud: The Solar Energy Challenge (June 14, 2012) | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic Argonne National LaboratoryNationalNational

  3. Tiger team assessment of the Argonne Illinois site

    SciTech Connect (OSTI)

    Not Available

    1990-10-19

    This report documents the results of the Department of Energy's (DOE) Tiger Team Assessment of the Argonne Illinois Site (AIS) (including the DOE Chicago Operations Office, DOE Argonne Area Office, Argonne National Laboratory-East, and New Brunswick Laboratory) and Site A and Plot M, Argonne, Illinois, conducted from September 17 through October 19, 1990. The Tiger Team Assessment was conducted by a team comprised of professionals from DOE, contractors, consultants. The purpose of the assessment was to provide the Secretary of Energy with the status of Environment, Safety, and Health (ES H) Programs at AIS. Argonne National Laboratory-East (ANL-E) is the principal tenant at AIS. ANL-E is a multiprogram laboratory operated by the University of Chicago for DOE. The mission of ANL-E is to perform basic and applied research that supports the development of energy-related technologies. There are a significant number of ES H findings and concerns identified in the report that require prompt management attention. A significant change in culture is required before ANL-E can attain consistent and verifiable compliance with statutes, regulations and DOE Orders. ES H activities are informal, fragmented, and inconsistently implemented. Communication is seriously lacking, both vertically and horizontally. Management expectations are not known or commondated adequately, support is not consistent, and oversight is not effective.

  4. Battery testing at Argonne National Laboratory

    SciTech Connect (OSTI)

    DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

    1993-03-25

    Argonne National Laboratory`s Analysis & Diagnostic Laboratory (ADL) tests advanced batteries under simulated electric and hybrid vehicle operating conditions. The ADL facilities also include a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The battery evaluations and post-test examinations help identify factors that limit system performance and life, and the most-promising R&D approaches for overcoming these limitations. Since 1991, performance characterizations and/or life evaluations have been conducted on eight battery technologies (Na/S, Li/S, Zn/Br, Ni/MH, Ni/Zn, Ni/Cd, Ni/Fe, and lead-acid). These evaluations were performed for the Department of Energy`s. Office of Transportation Technologies, Electric and Hybrid Propulsion Division (DOE/OTT/EHP), and Electric Power Research Institute (EPRI) Transportation Program. The results obtained are discussed.

  5. Battery testing at Argonne National Laboratory

    SciTech Connect (OSTI)

    DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

    1993-03-25

    Argonne National Laboratory's Analysis Diagnostic Laboratory (ADL) tests advanced batteries under simulated electric and hybrid vehicle operating conditions. The ADL facilities also include a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The battery evaluations and post-test examinations help identify factors that limit system performance and life, and the most-promising R D approaches for overcoming these limitations. Since 1991, performance characterizations and/or life evaluations have been conducted on eight battery technologies (Na/S, Li/S, Zn/Br, Ni/MH, Ni/Zn, Ni/Cd, Ni/Fe, and lead-acid). These evaluations were performed for the Department of Energy's. Office of Transportation Technologies, Electric and Hybrid Propulsion Division (DOE/OTT/EHP), and Electric Power Research Institute (EPRI) Transportation Program. The results obtained are discussed.

  6. Assessment of Alternative RF Linac Structures for APT

    SciTech Connect (OSTI)

    1997-03-26

    The APT program has been examining both normal and superconducting variants of the APT linac for the past two years. A decision on which of the two will be the selected technology will depend upon several considerations including the results of ongoing feasibility experiments, the performance and overall attractiveness of each of the design concepts, and an assessment of the system-level features of both alternatives. The primary objective of the Assessment of Alternative RF Linac Structures for APT study reported herein was to assess and compare, at the system-level, the performance, capital and life cycle costs, reliability/availability/maintainability (RAM) and manufacturing schedules of APT RF linear accelerators based upon both superconducting and normal conducting technologies. A secondary objective was to perform trade studies to explore opportunities for system optimization, technology substitution and alternative growth pathways and to identify sensitivities to design uncertainties.

  7. The Development of the Linac Coherent Light Source RF Gun

    E-Print Network [OSTI]

    Dowell, David H; Lewandowski, James; Limborg-Deprey, Cecile; Li, Zenghai; Schmerge, John; Vlieks, Arnold; Wang, Juwen; Xiao, Liling

    2015-01-01

    The Linac Coherent Light Source (LCLS) is the first x-ray laser user facility based upon a free electron laser (FEL). In addition to many other stringent requirements, the LCLS XFEL requires extraordinary beam quality to saturate at 1.5 angstroms within a 100 meter undulator.[1] This new light source is using the last kilometer of the three kilometer linac at SLAC to accelerate the beam to an energy as high as 13.6 GeV and required a new electron gun and injector to produce a very bright beam for acceleration. At the outset of the project it was recognized that existing RF guns had the potential to produce the desired beam but none had demonstrated it. This paper describes the analysis and design improvements of the BNL/SLAC/UCLA s-band gun leading to achievement of the LCLS performance goals.

  8. Linac4 low energy beam measurements with negative hydrogen ions

    SciTech Connect (OSTI)

    Scrivens, R., E-mail: richard.scrivens@cern.ch; Bellodi, G.; Crettiez, O.; Dimov, V.; Gerard, D.; Granemann Souza, E.; Guida, R.; Hansen, J.; Lallement, J.-B.; Lettry, J.; Lombardi, A.; Midttun, Ø.; Pasquino, C.; Raich, U.; Riffaud, B.; Roncarolo, F.; Valerio-Lizarraga, C. A.; Wallner, J.; Yarmohammadi Satri, M.; Zickler, T. [CERN, 1211 Geneva 23 (Switzerland)] [CERN, 1211 Geneva 23 (Switzerland)

    2014-02-15

    Linac4, a 160 MeV normal-conducting H{sup ?} linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ (Radiofrequency Quadrupole) has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H{sup ?} beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ. In this paper a description of the LEBT and its beam diagnostics is given, and the results of beam emittance measurements and beam transmission measurements through the RFQ are compared with the expectation from simulations.

  9. BEAM POSITION AND PHASE MONITORS FOR THE LANSCE LINAC

    SciTech Connect (OSTI)

    McCrady, Rodney C.; Gilpatrick, John D.; Power, John F.

    2011-01-01

    New beam-position and phase monitors are under development for the linac at the Los Alamos Neutron Science Center (LANSCE). Transducers have been designed and are being fabricated. We are considering many options for the electronic instrumentation to process the signals and provide position and phase data with the necessary precision and flexibility to serve the various required functions. We'll present the various options under consideration for instrumentation along with the advantages and shortcomings of these options.

  10. Recent improvements to software used for optimization of SRF linacs

    SciTech Connect (OSTI)

    Powers, Tom J.

    2014-12-01

    This work describes a software tool that allows one to vary parameters and understand the effects on the optimized costs of construction plus 10 year operations of an SRF linac, where operation costs includes the cost of the electrical utilities but not the labor or other costs. The program includes estimates for the associated cryogenic facility, and controls hardware. The software interface provides the ability to vary the cost of the different aspects of the machine as well as to change the cryomodule and cavity types. Additionally, this work will describe the recent improvements to the software that allow one to estimate the costs of energy-recovery based linacs and to enter arbitrary values of the low field Q0 and Q0 slope. The initial goal when developing the software was to convert a spreadsheet format to a graphical interface and to allow the ability to sweep different parameter sets. The tools also allow one to compare the cost of the different facets of the machine design and operations so as to better understand tradeoffs. An example of how it was used to independently investigate cost optimization tradeoffs for the LCLS-II linac will also be presented.

  11. Numerical simulations of stripping effects in high-intensity hydrogen ion linacs

    SciTech Connect (OSTI)

    Carneiro, J.-P.; Mustapha, B.; Ostroumov, P.N.; /Argonne

    2008-12-01

    Numerical simulations of H{sup -} stripping losses from blackbody radiation, electromagnetic fields, and residual gas have been implemented into the beam dynamics code TRACK. Estimates of the stripping losses along two high-intensity H{sup -} linacs are presented: the Spallation Neutron Source linac currently being operated at Oak Ridge National Laboratory and an 8 GeV superconducting linac currently being designed at Fermi National Accelerator Laboratory.

  12. "Ask Argonne" - Edwin Campos, Research Meteorologist, Part 2

    ScienceCinema (OSTI)

    Edwin Campos

    2013-06-10

    Argonne's Edwin Campos has for the last two decades studied weather, and in particular, clouds. His research can help make solar power a more viable option for the U.S. and the world. In this video, Dr. Campos answers questions that were submitted by the public in response to his introductory video: http://www.youtube.com/watch?v=pfdoHz.... We will be posting a new "Ask Argonne" video every other month, on various topics. Keep an eye out for your next opportunity to submit a question and see if it gets answered - and if you get a shout-out on camera.

  13. "Ask Argonne" - Edwin Campos, Research Meteorologist, Part 2

    SciTech Connect (OSTI)

    Edwin Campos

    2013-05-23

    Argonne's Edwin Campos has for the last two decades studied weather, and in particular, clouds. His research can help make solar power a more viable option for the U.S. and the world. In this video, Dr. Campos answers questions that were submitted by the public in response to his introductory video: http://www.youtube.com/watch?v=pfdoHz.... We will be posting a new "Ask Argonne" video every other month, on various topics. Keep an eye out for your next opportunity to submit a question and see if it gets answered - and if you get a shout-out on camera.

  14. Argonne named in several DOE Energy Frontier Research Center awards |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D SFederal8823 RevisionAprilSTEMfest | Argonne40'Argonne

  15. Argonne confirms new commercial method for producing medical isotope |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic ArgonneTheRegistered2014HomeArgonne National

  16. Tandem microwave waste remediation and decontamination system

    DOE Patents [OSTI]

    Wicks, George G. (North Aiken, SC); Clark, David E. (Gainesville, FL); Schulz, Rebecca L. (Gainesville, FL)

    1999-01-01

    The invention discloses a tandem microwave system consisting of a primary chamber in which microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

  17. High Current Energy Recovery Linac at BNL | U.S. DOE Office of...

    Office of Science (SC) Website

    High Current Energy Recovery Linac at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of...

  18. Energy Recovery Linac cavity at BNL | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Energy Recovery Linac cavity at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear...

  19. Big Data Analaysis and Visualization: What Do LINACS and Tropical Storms Have In Common?

    E-Print Network [OSTI]

    Bethel, E. Wes

    2013-01-01

    Big Data Analaysis and Visualization: What Do LINACS andof California. BIG DATA ANALYSIS AND VISUALIZATION: WHAT DOproblems. INTRODUCTION Big data and its attendant

  20. Instrumentation and Diagnostics for High Repetition Rate LINAC-Driven FEL

    E-Print Network [OSTI]

    De Santis, S

    2014-01-01

    Evtushenko, “Electron Beam Diagnostics For High Current FELDrivers”, FEL 2011, Shanghai (2011). [5] F. Sannibale, etREPETITION RATE LINAC-DRIVEN FEL S. De Santis # , J. Byrd,

  1. Current and lattice matched tandem solar cell

    DOE Patents [OSTI]

    Olson, Jerry M. (Lakewood, CO)

    1987-01-01

    A multijunction (cascade) tandem photovoltaic solar cell device is fabricated of a Ga.sub.x In.sub.1-x P (0.505.ltoreq.X.ltoreq.0.515) top cell semiconductor lattice matched to a GaAs bottom cell semiconductor at a low-resistance heterojunction, preferably a p+/n+ heterojunction between the cells. The top and bottom cells are both lattice matched and current matched for high efficiency solar radiation conversion to electrical energy.

  2. Verification Survey of the Building 315 Zero Power Reactor-6 Facility, Argonne National Laboratory-East, Argonne, Illinois

    SciTech Connect (OSTI)

    W. C. Adams

    2007-05-25

    Oak Ridge Institute for Science and Education (ORISE) conducted independent verification radiological survey activities at Argonne National Laboratory’s Building 315, Zero Power Reactor-6 facility in Argonne, Illinois. Independent verification survey activities included document and data reviews, alpha plus beta and gamma surface scans, alpha and beta surface activity measurements, and instrumentation comparisons. An interim letter report and a draft report, documenting the verification survey findings, were submitted to the DOE on November 8, 2006 and February 22, 2007, respectively (ORISE 2006b and 2007).

  3. Argonne National Laboratory Smart Grid Technology Interactive Model

    SciTech Connect (OSTI)

    Ted Bohn

    2009-10-13

    As our attention turns to new cars that run partially or completely on electricity, how can we redesign our electric grid to not only handle the new load, but make electricity cheap and efficient for everyone? Argonne engineer Ted Bohn explains a model of a "smart grid" that gives consumers the power to choose their own prices and sources of electricity.

  4. Argonne Director Eric Isaacs addresses the National Press Club

    ScienceCinema (OSTI)

    Eric Isaccs

    2010-01-08

    Argonne Director Eric Isaacs addresses the National Press Club on 9/15/2009. To build a national economy based on sustainable energy, the nation must first "reignite its innovation ecology," he said. Issacs makes the case for investing in science to secure America's future.

  5. Argonne Electrochemical Technology Program Sulfur removal from reformate

    E-Print Network [OSTI]

    temperatures - low cost · Challenges - Cu oxides reduce to metallic Cu under fuel processing conditions in the oxide form - non-Cu transition metal oxide is resistant to reduction to metallic form under fuel Krause, and Romesh Kumar Chemical Engineering Division Argonne National Laboratory Hydrogen, Fuel Cells

  6. "Ask Argonne" - Charlie Catlett, Computer Scientist, Part 2

    ScienceCinema (OSTI)

    Catlett, Charlie

    2014-07-15

    A few weeks back, computer scientist Charlie Catlett talked a bit about the work he does and invited questions from the public during Part 1 of his "Ask Argonne" video set (http://bit.ly/1joBtzk). In Part 2, he answers some of the questions that were submitted. Enjoy!

  7. Argonne National Laboratory Smart Grid Technology Interactive Model

    ScienceCinema (OSTI)

    Ted Bohn

    2010-01-08

    As our attention turns to new cars that run partially or completely on electricity, how can we redesign our electric grid to not only handle the new load, but make electricity cheap and efficient for everyone? Argonne engineer Ted Bohn explains a model of a "smart grid" that gives consumers the power to choose their own prices and sources of electricity.

  8. Argonne National Laboratory Scientists Invent Breakthrough Technique in Nanotechnology

    Broader source: Energy.gov [DOE]

    For many years, scientists have searched for ways to assemble nanoparticles (millions of times smaller than the tip of a pencil) into larger structures of any shape and design. Argonne's team created an assembled, continuous filament of carbon and gold nanoparticles that followed the path of the laser as if it was a magic wand.

  9. "Ask Argonne" - Robert Jacob, Climate Scientist, Part 2

    ScienceCinema (OSTI)

    Jacob, Robert

    2014-11-24

    Previously, climate scientist Robert Jacob talked a bit about the work he does and invited questions from the public during Part 1 of his "Ask Argonne" video set (http://bit.ly/1aK6WDv). In Part 2, he answers some of the questions that were submitted.

  10. "Ask Argonne" - Robert Jacob, Climate Scientist, Part 2

    SciTech Connect (OSTI)

    Jacob, Robert

    2014-01-08

    Previously, climate scientist Robert Jacob talked a bit about the work he does and invited questions from the public during Part 1 of his "Ask Argonne" video set (http://bit.ly/1aK6WDv). In Part 2, he answers some of the questions that were submitted.

  11. "Ask Argonne" - Charlie Catlett, Computer Scientist, Part 2

    SciTech Connect (OSTI)

    Catlett, Charlie

    2014-06-17

    A few weeks back, computer scientist Charlie Catlett talked a bit about the work he does and invited questions from the public during Part 1 of his "Ask Argonne" video set (http://bit.ly/1joBtzk). In Part 2, he answers some of the questions that were submitted. Enjoy!

  12. Algorithms for tandem mass spectrometry-based proteomics

    E-Print Network [OSTI]

    Frank, Ari Michael

    2008-01-01

    ed sequest algorithm. Analytical Chemistry 74, 5593– [138]of peptide ions. Analytical Chemistry 77, 4870–4882. [143]Tandem Mass Spectra. Analytical Chemistry, 77:4626-4639,

  13. Novel LINAC II electrode geometry to create an axial field in a multipole ion guide.

    E-Print Network [OSTI]

    Ens, Werner

    and determines the upper m/z transmission limit. A conventional LINAC has a quadrupolar DC field distortion while like the LINAC(SCIEX) suffer from a reduced mass transmission window. A wide transmission window. The axial field is created by applying the same DC potential UL to all four T-shaped electrodes

  14. HIGH INTENSITY LINAC DRIVER FOR THE SPIRAL-2 PROJECT : DESIGN OF SUPERCONDUCTING 88 MHZ QUARTER WAVE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . For the high-energy section of the linac, a superconducting 88 MHz Quarter Wave Resonator (beta 0.12) has been WAVE RESONATORS (BETA 0.12), POWER COUPLERS AND CRYOMODULES T. Junquera, G. Olry, H. Saugnac, J Abstract A superconducting linac driver, delivering deuterons with an energy up to 40 MeV (5 mA) and heavy

  15. WE-D-BRD-01: Innovation in Radiation Therapy Delivery: Advanced Digital Linac Features

    SciTech Connect (OSTI)

    Xing, L; Wong, J; Li, R

    2014-06-15

    Last few years has witnessed significant advances in linac technology and therapeutic dose delivery method. Digital linacs equipped with high dose rate FFF beams have been clinically implemented in a number of hospitals. Gated VMAT is becoming increasingly popular in treating tumors affected by respiratory motion. This session is devoted to update the audience with these technical advances and to present our experience in clinically implementing the new linacs and dose delivery methods. Topics to be covered include, technical features of new generation of linacs from different vendors, dosimetric characteristics and clinical need for FFF-beam based IMRT and VMAT, respiration-gated VMAT, the concept and implementation of station parameter optimized radiation therapy (SPORT), beam level imaging and onboard image guidance tools. Emphasis will be on providing fundamental understanding of the new treatment delivery and image guidance strategies, control systems, and the associated dosimetric characteristics. Commissioning and acceptance experience on these new treatment delivery technologies will be reported. Clinical experience and challenges encountered during the process of implementation of the new treatment techniques and future applications of the systems will also be highlighted. Learning Objectives: Present background knowledge of emerging digital linacs and summarize their key geometric and dosimetric features. SPORT as an emerging radiation therapy modality specifically designed to take advantage of digital linacs. Discuss issues related to the acceptance and commissioning of the digital linacs and FFF beams. Describe clinical utility of the new generation of digital linacs and their future applications.

  16. TESLA-FEL Report 2004-08 LINAC BASED FREE-ELECTRON LASER

    E-Print Network [OSTI]

    TESLA-FEL Report 2004-08 1 LINAC BASED FREE-ELECTRON LASER J. Rossbach Universität Hamburg, Hamburg, Germany Abstract A basic treatment of the principle of the linac-driven free-electron laser (FEL) is given. The first part of the paper describes the FEL in low-gain approximation, and in the second part the high

  17. Large dynamic range diagnostics for high current electron LINACs

    SciTech Connect (OSTI)

    Evtushenko, Pavel [JLAB

    2013-11-01

    The Jefferson Lab FEL driver accelerator - Energy Recovery Linac has provided a beam with average current of up to 9 mA and beam energy of 135 MeV. The high power beam operations have allowed developing and testing methods and approaches required to set up and tune such a facility simultaneously for the high beam power and high beam quality required for high performance FEL operations. In this contribution we briefly review this experience and outline problems that are specific to high current - high power non-equilibrium linac beams. While the original strategy for beam diagnostics and tuning have proven to be quite successful, some shortcomings and unresolved issues were also observed. The most important issues are the non-equilibrium (non-Gaussian) nature of the linac beam and the presence of small intensity - large amplitude fraction of the beam a.k.a. beam halo. Thus we also present a list of the possible beam halo sources and discuss possible mitigations means. We argue that for proper understanding and management of the beam halo large dynamic range (>10{sup 6}) transverse and longitudinal beam diagnostics can be used. We also present results of transverse beam profile measurements with the dynamic range approaching 10{sup 5} and demonstrate the effect the increased dynamic range has on the beam characterization, i.e., emittance and Twiss parameters measurements. We also discuss near future work planned in this field and where the JLab FEL facility will be used for beam tests of the developed of new diagnostics.

  18. Large dynamic range diagnostics for high current electron LINACs

    SciTech Connect (OSTI)

    Evtushenko, P., E-mail: Pavel.Evtushenko@jlab.org [Thomas Jefferson National Accelerator Facility 12000 Jefferson Avenue, Newport News, VA 23606 (United States)

    2013-11-07

    The Jefferson Lab FEL driver accelerator - Energy Recovery Linac has provided a beam with average current of up to 9 mA and beam energy of 135 MeV. The high power beam operations have allowed developing and testing methods and approaches required to set up and tune such a facility simultaneously for the high beam power and high beam quality required for high performance FEL operations. In this contribution we briefly review this experience and outline problems that are specific to high current - high power non-equilibrium linac beams. While the original strategy for beam diagnostics and tuning have proven to be quite successful, some shortcomings and unresolved issues were also observed. The most important issues are the non-equilibrium (non-Gaussian) nature of the linac beam and the presence of small intensity - large amplitude fraction of the beam a.k.a. beam halo. Thus we also present a list of the possible beam halo sources and discuss possible mitigations means. We argue that for proper understanding and management of the beam halo large dynamic range (>10{sup 6}) transverse and longitudinal beam diagnostics can be used. We also present results of transverse beam profile measurements with the dynamic range approaching 10{sup 5} and demonstrate the effect the increased dynamic range has on the beam characterization, i.e., emittance and Twiss parameters measurements. We also discuss near future work planned in this field and where the JLab FEL facility will be used for beam tests of the developed of new diagnostics.

  19. DIPOLE MODE DETUNING IN THE INJECTOR LINACS OF THE NLC.

    SciTech Connect (OSTI)

    Bane, K

    2004-09-29

    The injector linacs of the JLC/NLC project include the prelinac, the e{sup +} drive linac, the e{sup -} booster, and the e{sup +} booster. The first three will be S-band machines, the last one, an L-band machine. We have demonstrated that by using detuning alone in the accelerator structure design of these linacs we will have acceptable tolerances for emittance growth due to both injection jitter and structure misalignments, for both the nominal (2.8 ns) and alternate (1.4 ns) bunch spacings. For the L-band structure (a structure with 2{pi}/3 phase advance) we take a uniform distribution in synchronous dipole mode frequencies, with central frequency {bar f} = 2.05 GHz and width {Delta}{sub {delta}f} = 3%. For the S-band case our optimized structure (a 3{pi}/4 structure) has a trapezoidal dipole frequency distribution with f = 3.92 GHz, {Delta}{sub {delta}f} = 5.8%, and tilt parameter {alpha} = -.2. The central frequency and phase advance were chosen to put bunches early in the train on the zero crossing of the wake and, at the same time, keep the gradient optimized. We have shown that for random manufacturing errors with rms 5 {micro}m, (equivalent to 10{sup -4} error in synchronous frequency), the injection jitter tolerances are still acceptable. We have also shown that the structure alignment tolerances are loose, and that the cell-to-cell misalignment tolerance is {approx}> 40 {micro}m. Note that in this report we have considered only the effects of modes in the first dipole passband.

  20. The Development of the Linac Coherent Light Source RF Gun

    SciTech Connect (OSTI)

    Dowell, David H.; Jongewaard, Erik; Lewandowski, James; Limborg-Deprey, Cecile; Li, Zenghai; Schmerge, John; Vlieks, Arnold; Wang, Juwen; Xiao, Liling; /SLAC

    2008-09-24

    The Linac Coherent Light Source (LCLS) is the first x-ray laser user facility based upon a free electron laser (FEL) requiring extraordinary beam quality to saturate at 1.5 angstroms within a 100 meter undulator.[1] This new type of light source is using the last kilometer of the three kilometer linac at SLAC to accelerate the beam to an energy as high as 13.6 GeV and required a new electron gun and injector to produce a very bright beam for acceleration. At the outset of the project it was recognized that existing RF guns had the potential to produce the desired beam but none had demonstrated it. Therefore a new RF gun or at least the modification of an existing gun was necessary. The parameters listed in Table 1 illustrate the unique characteristics of LCLS which drive the requirements for the electron gun as given in Table 2. The gun beam quality needs to accommodate emittance growth as the beam is travels through approximately one kilometer of linac and two bunch compressors before reaching the undulator. These beam requirements were demonstrated during the recent commissioning runs of the LCLS injector and linac [2] due to the successful design, fabrication, testing and operation of the LCLS gun. The goal of this paper is to relate the technical background of how the gun was able to achieve and in some cases exceed these requirements by understanding and correcting the deficiencies of the prototype s-band RF photocathode gun, the BNL/SLAC/UCLA Gun III. This paper begins with a brief history and technical description of Gun III and the Gun Test Facility (GTF) at SLAC, and studies of the gun's RF and emittance compensation solenoid. The work at the GTF identified the gun and solenoid deficiencies, and helped to define the specifications for the LCLS gun. Section 1.1.5 describes the modeling used to compute and correct the gun RF fields and Section 1.1.6 describes the use of these fields in the electron beam simulations. The magnetic design and measurements of the emittance compensation solenoid are discussed in Section 1.1.7. The novel feature of the LCLS solenoid is the embedded quadrupole correctors. The thermo-mechanical engineering of the LCLS gun is discussed in Section 1.1.8, and the cold and hot RF tests are described in Section 1.1.9. The results of this work are summarized and concluding remarks are given in Section 1.1.10.

  1. Optical laser systems at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Minitti, Michael P.; Robinson, Joseph S.; Coffee, Ryan N.; Edstrom, Steve; Gilevich, Sasha; Glownia, James M.; Granados, Eduardo; Hering, Philippe; Hoffmann, Matthias C.; Miahnahri, Alan; et al

    2015-04-22

    Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump–probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump–probe experiments to be performed at LCLS.

  2. Tandem robot control system and method for controlling mobile robots in tandem

    DOE Patents [OSTI]

    Hayward, David R. (Albuquerque, NM); Buttz, James H. (Albuquerque, NM); Shirey, David L. (Albuquerque, NM)

    2002-01-01

    A control system for controlling mobile robots provides a way to control mobile robots, connected in tandem with coupling devices, to navigate across difficult terrain or in closed spaces. The mobile robots can be controlled cooperatively as a coupled system in linked mode or controlled individually as separate robots.

  3. Overview and Status Update of the Fermilab HINS Linac R&D Program

    SciTech Connect (OSTI)

    Webber, R.C.; Apollinari, G.; /Fermilab

    2009-05-01

    The Fermilab High Intensity Neutrino Source (HINS) Linac R&D program is continuing efforts to construct a first-of-a-kind superconducting H{sup -} linac. The goal of the HINS linac is to demonstrate, for the first time, acceleration of high intensity beam with superconducting spoke cavities, control of beam halo growth by use of solenoidal focusing optics throughout, and operation of many cavities from a single high-power RF source for acceleration of non-relativistic particles. The HINS effort is relevant to any future high brightness, high intensity linac and, in particular, to the linac proposed as part of Fermilab Project X to serve the next generation of neutrino physics and future muon storage ring/collider experiments. This paper updates the technical status of the various components being developed, built, and commissioned as a part of HINS and presents the outlook for the HINS program.

  4. Method of fabricating bifacial tandem solar cells

    DOE Patents [OSTI]

    Wojtczuk, Steven J; Chiu, Philip T; Zhang, Xuebing; Gagnon, Edward; Timmons, Michael

    2014-10-07

    A method of fabricating on a semiconductor substrate bifacial tandem solar cells with semiconductor subcells having a lower bandgap than the substrate bandgap on one side of the substrate and with subcells having a higher bandgap than the substrate on the other including, first, growing a lower bandgap subcell on one substrate side that uses only the same periodic table group V material in the dislocation-reducing grading layers and bottom subcells as is present in the substrate and after the initial growth is complete and then flipping the substrate and growing the higher bandgap subcells on the opposite substrate side which can be of different group V material.

  5. The Shaft Torque of a Tandem Axial-Piston Pump

    E-Print Network [OSTI]

    Manring, Noah D.

    The Shaft Torque of a Tandem Axial- Piston Pump Noah D. Manring Viral S. Mehta Mechanical of this study is to identify the best indexed position of two rotating groups within a tandem axial-piston pump characteristics of the pump, other vibration aspects of the machine are also expected to be reduced. In particular

  6. Linac Alignment Algorithm: Analysis on 1-to-1 Steering

    SciTech Connect (OSTI)

    Sun, Yipeng; Adolphsen, Chris; /SLAC

    2011-08-19

    In a linear accelerator, it is important to achieve a good alignment between all of its components (such as quadrupoles, RF cavities, beam position monitors et al.), in order to better preserve the beam quality during acceleration. After the survey of the main linac components, there are several beam-based alignment (BBA) techniques to be applied, to further optimize the beam trajectory and calculate the corresponding steering magnets strength. Among these techniques the most simple and straightforward one is the one-to-one (1-to-1) steering technique, which steers the beam from quad center to center, and removes the betatron oscillation from quad focusing. For a future linear collider such as the International Linear Collider (ILC), the initial beam emittance is very small in the vertical plane (flat beam with {gamma}{epsilon}{sub y} = 20-40nm), which means the alignment requirement is very tight. In this note, we evaluate the emittance growth with one-to-one correction algorithm employed, both analytically and numerically. Then the ILC main linac accelerator is taken as an example to compare the vertical emittance growth after 1-to-1 steering, both from analytical formulae and multi-particle tracking simulation. It is demonstrated that the estimated emittance growth from the derived formulae agrees well with the results from numerical simulation, with and without acceleration, respectively.

  7. Argonne/iBIO Center partnership sets sights on new teaching methods...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of pressure and combustion using fire syringes to simulate pistons in combustion engines. Photo credit: Mark Lopez, Argonne National Laboratory. Click to enlarge. Science...

  8. Argonne National Laboratory and U.S. Department of Energy Release...

    Broader source: Energy.gov (indexed) [DOE]

    fuel and other advanced vehicles? To answer such questions, Argonne National Laboratory recently created the Alternative Fuel Life-Cycle Environmental and Economic...

  9. Argonne Leadership Compu2ng Facility www.alcf.anl.gov Katherine Riley

    E-Print Network [OSTI]

    Kemner, Ken

    Argonne Leadership Compu2ng Facility ­ www.alcf.anl.gov Katherine Riley Manager requested 6 Funding sources 7 Other high-performance compu2ng support

  10. Argonne National Laboratory Scientists Study Benefits of Bioenergy Crop Integration

    Broader source: Energy.gov [DOE]

    Scientists at Argonne National Laboratory (ANL), funded by the U.S. Department of Energy’s Bioenergy Technologies Office (BETO), are studying multifunctional landscapes and how they can benefit farmers, the environment, and the bioenergy industry nationwide. Their study, “Multifunctional landscapes: Site characterization and field-scale design to incorporate biomass production into an agricultural system,” is set to be published in September 2015 in the journal, Biomass and Bioenergy.

  11. Site characteristics of Argonne National Laboratory in Illinois

    SciTech Connect (OSTI)

    Chang, Y.W.

    1995-01-01

    This report reviews the geology and topography of the Argonne National Laboratory, near Lemont, Illinois. It describes the thickness and stratigraphy of soils, glacial till, and bedrock in and adjacent to the laboratory and support facilities. Seismic surveys were also conducted through the area to help determine the values of seismic wave velocities in the glacial till which is important in determining the seismic hazard of the area. Borehole log descriptions are summarized along with information on area topography.

  12. PULSED-FOCUSING RECIRCULATING LINACS FOR MUON ACCELERATION

    SciTech Connect (OSTI)

    Johnson, Rolland PAUL

    2014-12-31

    Since the muon has a short lifetime, fast acceleration is essential for high-energy applications such as muon colliders, Higgs factories, or neutrino factories. The best one can do is to make a linear accelerator with the highest possible accelerating gradient to make the accelerating time as short as possible. However, the cost of such a single linear accelerator is prohibitively large due to expensive power sources, cavities, tunnels, and related infrastructure. As was demonstrated in the Thomas Jefferson Accelerator Facility (Jefferson Lab) Continuous Electron Beam Accelerator Facility (CEBAF), an elegant solution to reduce cost is to use magnetic return arcs to recirculate the beam through the accelerating RF cavities many times, where they gain energy on each pass. In such a Recirculating Linear Accelerator (RLA), the magnetic focusing strength diminishes as the beam energy increases in a conventional linac that has constant strength quadrupoles. After some number of passes the focusing strength is insufficient to keep the beam from going unstable and being lost. In this project, the use of fast pulsed quadrupoles in the linac sections was considered for stronger focusing as a function of time to allow more successive passes of a muon beam in a recirculating linear accelerator. In one simulation, it was shown that the number of passes could be increased from 8 to 12 using pulsed magnet designs that have been developed and tested. This could reduce the cost of linac sections of a muon RLA by 8/12, where more improvement is still possible. The expense of a greater number of passes and corresponding number of return arcs was also addressed in this project by exploring the use of ramped or FFAG-style magnets in the return arcs. A better solution, invented in this project, is to use combined-function dipole-quadrupole magnets to simultaneously transport two beams of different energies through one magnet string to reduce costs of return arcs by almost a factor of two. A patent application was filed for this invention and a detailed report published in Physical Review Special Topics. A scaled model using an electron beam was developed and proposed to test the concept of a dog bone RLA with combined-function return arcs. The efforts supported by this grant were reported in a series of contributions to particle accelerator conferences that are reproduced in the appendices and summarized in the body of this report.

  13. STATUS OF R AND D ENERGY RECOVERY LINAC AT BROOKHAVEN NATIONAL LABORATORY.

    SciTech Connect (OSTI)

    LITVINENKO,V.; BEN-ZVI, I.; ALDUINO, J.M.; BARTON, D.S.; BEAVIS, D.; BLASKIEWICZ, M.; ET AL.

    2007-06-25

    In this paper we present status and plans for the 20-MeV R&D energy recovery linac (ERL), which is under construction at Collider Accelerator Department at BNL. The facility is based on high current (up to 0.5 A of average current) super-conducting 2.5 MeV RF gun, single-mode super-conducting 5-cell RF linac and about 20-m long return loop with very flexible lattice. The R&D ERL, which is planned for commissioning in early 2009, aims to address many outstanding questions relevant for high current, high brightness energy recovery linacs.

  14. TAC Proposal for Fundamental and Applied Research: Linac-Ring Type Phi-Factory

    E-Print Network [OSTI]

    O. Yavas; A. K. Ciftci; S. Sultansoy

    2000-05-24

    Main parameters of linac-ring type $phi$-factory proposed as the part of the Turkic Accelerator Complex (TAC) in the framework of ATAM Science Sity Project are discussed. Two sets of parameters, corresponding to E=130(260) MeV for electron linac and E=2000(1000) MeV positron ring, are considered. It is swoun that, in principle, L=10^(34)cm^(-2)s^(-1) can be achieved, which is more than an order exceeds the design luminosity of the DA$Phi$NE. Parameters of the FEL based on electron linac and synchrotron radiation sources based on the positron ring are estimated.

  15. Argonne National Laboratory-West, Former Production Workers Screening Projects (now known as the Idaho National Laboratory)

    Broader source: Energy.gov [DOE]

    Argonne National Laboratory-West, Former Production Workers Screening Projects (now known as the Idaho National Laboratory)

  16. X-ray detectors at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella; Carron, Sebastian; Dragone, Angelo; Freytag, Dietrich; Haller, Gunther; Hart, Philip; Hasi, Jasmine; Herbst, Ryan; et al

    2015-04-21

    Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a newmore »generation of cameras under development at SLAC, is introduced.« less

  17. THE SNS VACUUM CONTROL SYSTEM UPGRADE FOR THE SUPERCONDUCTING LINAC

    SciTech Connect (OSTI)

    Williams, Derrick C [ORNL] [ORNL

    2009-01-01

    The superconducting linac of the Spallation Neutron Source (SNS) has 23 cryomodules whose vacuum system is monitored and controlled by custom built hardware. The original control hardware was provided by Thomas Jefferson National Accelerator Facility (JLab) and contained a variety of custom boards utilizing integrated circuits to perform logic. The need for control logic changes, a desire to increase maintainability, and a desire to increase flexibility to adapt for the future has led to a Programmable Logic Controller (PLC) based upgrade. This paper provides an overview of the commercial off-the-shelf (COTS) hardware being used in the superconducting vacuum control system. Details of the design and challenges to convert a control system during small windows of maintenance periods without disrupting beam operation will be covered in this paper.

  18. The linac coherent light source single particle imaging road map

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aquila, A.; Barty, A.; Bostedt, C.; Boutet, S.; Carini, G.; dePonte, D.; Drell, P.; Doniach, S.; Downing, K. H.; Earnest, T.; et al

    2015-07-01

    Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electronmore »laser sources.« less

  19. Argonne National Laboratory is managed by The University of Chicago for the U.S.Department of Energy

    E-Print Network [OSTI]

    Harilal, S. S.

    Argonne National Laboratory is managed by The University of Chicago for the U.S.Department of Energy Calculation ofTin Atomic Data and Plasma Properties ANL-ET-04/24 prepared by Energy Argonne National Laboratory Argonne is managed by The University of Chicago for the U.S. Department

  20. Argonne Out Loud: Computation, Big Data, and the Future of Cities

    ScienceCinema (OSTI)

    Catlett, Charlie

    2014-11-18

    Charlie Catlett, a Senior Computer Scientist at Argonne and Director of the Urban Center for Computation and Data at the Computation Institute of the University of Chicago and Argonne, talks about how he and his colleagues are using high-performance computing, data analytics, and embedded systems to better understand and design cities.

  1. Argonne Out Loud: Computation, Big Data, and the Future of Cities

    SciTech Connect (OSTI)

    Catlett, Charlie

    2014-09-23

    Charlie Catlett, a Senior Computer Scientist at Argonne and Director of the Urban Center for Computation and Data at the Computation Institute of the University of Chicago and Argonne, talks about how he and his colleagues are using high-performance computing, data analytics, and embedded systems to better understand and design cities.

  2. Frontiers: Research highlights 1946-1996 [50th Anniversary Edition. Argonne National Laboratory

    SciTech Connect (OSTI)

    1996-12-31

    This special edition of 'Frontiers' commemorates Argonne National Laboratory's 50th anniversary of service to science and society. America's first national laboratory, Argonne has been in the forefront of U.S. scientific and technological research from its beginning. Past accomplishments, current research, and future plans are highlighted.

  3. Beam energy spread in FERMI@elettra gun and linac induced by intrabeam scattering

    E-Print Network [OSTI]

    Zholents, Alexander A

    2008-01-01

    spread in FERMI@elettra gun and linac induced by intrabeamcathode area in the electron guns know in the literature asmost visible within the electron gun where the electron beam

  4. Beam Dynamics Studies for the First Muon Linac of the Neutrino Factory

    SciTech Connect (OSTI)

    C. Bontoiu,M. Aslaninejad,J. Pozimski,Alex Bogacz

    2010-05-01

    Within the Neutrino Factory Project the muon acceleration process involves a complex chain of accelerators including a (single-pass) linac, two recirculating linacs and an FFAG. The linac consists of RF cavities and iron shielded solenoids for transverse focusing and has been previously designed relying on idealized field models. However, to predict accurately the transport and acceleration of a high emittance 30 cm wide beam with 10 % energy spread requires detailed knowledge of fringe field distributions. This article presents results of the front-to-end tracking of the muon beam through numerically simulated realistic field distributions for the shielded solenoids and the RF fields. Real and phase space evolution of the beam has been studied along the linac and the results are presented and discussed.

  5. The Potential of the Linac-Ring Type Colliders for Particle and Nuclear Physics

    E-Print Network [OSTI]

    A. K. Ciftci; E. Recepoglu; S. Sultansoy; O. Yavas; M. Yilmaz

    2003-10-02

    Linac-ring type colliders will open new windows for both energy frontier and particle factories. Concerning the first direction, these machines seem to be a sole way to TeV scale in lepton-hadron collisison at constituent level. An essential advantage of the linac-ring type lepton-hadron colliders is the possibility of the construction of gamma-p, gamma-A and FELgamma-A colliders based on them. Today, eRHIC, THERA (TESLA on HERA)and Linac*LHC can be considered as realistic candidates for future lepton-hadron and photon hadron colliders. When it comes to factories, one can reach essentially higher luminosities comparing to standard ring-ring type machines. For example, L=10^34 cm^-2 s^-1 can be achieved for phi and charm-tau factories. In this presentation we briefly discuss the parameters and physics search potential of the linac-ring type machines.

  6. DESIGN/COST STUDY OF AN INDUCTION LINAC FOR HEAVY IONS FOR PELLET-FUSION

    E-Print Network [OSTI]

    Faltens, A.

    2010-01-01

    LINAC FOR HEAVY IONS FOR PELLET-FUSION* Andris Faltens. EgonContract The physics of the pellet implosion sets strin-deposition in the pellet > 20 MJ/g. Thus, considerable

  7. Formation of electron bunches with tailored current profiles using multi-frequency linacs

    SciTech Connect (OSTI)

    Piot, P.; Behrens, C.; Gerth, C.; Lemery, F.; Mihalcea, D.; Stoltz, P.

    2012-12-21

    Tailoring an electron bunch with specific current profile can provide substantial enhancement of the transformer ratio in beam-driven acceleration methods. We present a method relying on the use of a linac with accelerating sections operating at different frequencies followed by a magnetic bunch compressor. The experimental verfification of the technique in a two-frequency linac is presented. The compatibility of the proposed technique with the formation and acceleration of a drive and witness bunches is numerically demonstrated.

  8. Polymer Solar Cells: New Materials, 3D Morphology, and Tandem...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Polymer Solar Cells: New Materials, 3D Morphology, and Tandem Devices March 2, 2010 at 3pm36-428 Ren Janssen Molecular Materials and Nanosystems, Eindhoven University of...

  9. Conceptual Design for Replacement of the DTL and CCL with Superconducting RF Cavities in the Spallation Neutron Source Linac

    SciTech Connect (OSTI)

    Champion, Mark S; Doleans, Marc; Kim, Sang-Ho

    2013-01-01

    The Spallation Neutron Source Linac utilizes normal conducting RF cavities in the low energy section from 2.5 MeV to 186 MeV. Six Drift Tube Linac (DTL) structures accelerate the beam to 87 MeV, and four Coupled Cavity Linac (CCL) structures provide further acceleration to 186 MeV. The remainder of the Linac is comprised of 81 superconducting cavities packaged in 23 cryomodules to provide final beam energy of approximately 1 GeV. The superconducting Linac has proven to be substantially more reliable than the normal conducting Linac despite the greater number of stations and the complexity associated with the cryogenic plant and distribution. A conceptual design has been initiated on a replacement of the DTL and CCL with superconducting RF cavities. The motivation, constraints, and conceptual design are presented.

  10. Argonne's Laboratory computing resource center : 2006 annual report.

    SciTech Connect (OSTI)

    Bair, R. B.; Kaushik, D. K.; Riley, K. R.; Valdes, J. V.; Drugan, C. D.; Pieper, G. P.

    2007-05-31

    Argonne National Laboratory founded the Laboratory Computing Resource Center (LCRC) in the spring of 2002 to help meet pressing program needs for computational modeling, simulation, and analysis. The guiding mission is to provide critical computing resources that accelerate the development of high-performance computing expertise, applications, and computations to meet the Laboratory's challenging science and engineering missions. In September 2002 the LCRC deployed a 350-node computing cluster from Linux NetworX to address Laboratory needs for mid-range supercomputing. This cluster, named 'Jazz', achieved over a teraflop of computing power (10{sup 12} floating-point calculations per second) on standard tests, making it the Laboratory's first terascale computing system and one of the 50 fastest computers in the world at the time. Jazz was made available to early users in November 2002 while the system was undergoing development and configuration. In April 2003, Jazz was officially made available for production operation. Since then, the Jazz user community has grown steadily. By the end of fiscal year 2006, there were 76 active projects on Jazz involving over 380 scientists and engineers. These projects represent a wide cross-section of Laboratory expertise, including work in biosciences, chemistry, climate, computer science, engineering applications, environmental science, geoscience, information science, materials science, mathematics, nanoscience, nuclear engineering, and physics. Most important, many projects have achieved results that would have been unobtainable without such a computing resource. The LCRC continues to foster growth in the computational science and engineering capability and quality at the Laboratory. Specific goals include expansion of the use of Jazz to new disciplines and Laboratory initiatives, teaming with Laboratory infrastructure providers to offer more scientific data management capabilities, expanding Argonne staff use of national computing facilities, and improving the scientific reach and performance of Argonne's computational applications. Furthermore, recognizing that Jazz is fully subscribed, with considerable unmet demand, the LCRC has framed a 'path forward' for additional computing resources.

  11. 1985 annual site environmental report for Argonne National Laboratory

    SciTech Connect (OSTI)

    Golchert, N.W.; Duffy, T.L.; Sedlet, J.

    1986-03-01

    This is one in a series of annual reports prepared to provide DOE, environmental agencies, and the public with information on the level of radioactive and chemical pollutants in the environment and on the amounts of such substances, if any, added to the environment as a result of Argonne operations. Included in this report are the results of measurements obtained in 1985 for a number of radionuclides in air, surface water, ground water, soil, grass, bottom sediment, and milk; for a variety of chemical constituents in surface and subsurface water; and for the external penetrating radiation dose.

  12. A Look Inside Argonne's Center for Nanoscale Materials

    SciTech Connect (OSTI)

    Divan, Ralu; Rosenthal, Dan; Rose, Volker; Wai Hla, Saw; Liu, Yuzi

    2014-01-29

    At a very small, or "nano" scale, materials behave differently. The study of nanomaterials is much more than miniaturization - scientists are discovering how changes in size change a material's properties. From sunscreen to computer memory, the applications of nanoscale materials research are all around us. Researchers at Argonne's Center for Nanoscale Materials are creating new materials, methods and technologies to address some of the world's greatest challenges in energy security, lightweight but durable materials, high-efficiency lighting, information storage, environmental stewardship and advanced medical devices.

  13. A Look Inside Argonne's Center for Nanoscale Materials

    ScienceCinema (OSTI)

    Divan, Ralu; Rosenthal, Dan; Rose, Volker; Wai Hla, Saw; Liu, Yuzi

    2014-09-15

    At a very small, or "nano" scale, materials behave differently. The study of nanomaterials is much more than miniaturization - scientists are discovering how changes in size change a material's properties. From sunscreen to computer memory, the applications of nanoscale materials research are all around us. Researchers at Argonne's Center for Nanoscale Materials are creating new materials, methods and technologies to address some of the world's greatest challenges in energy security, lightweight but durable materials, high-efficiency lighting, information storage, environmental stewardship and advanced medical devices.

  14. Argonne analysis shows increased carbon intensity from Canadian oil sands |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D SFederal8823 RevisionApril 22-23,Science (SC)Argonne

  15. Argonne joins in the fun at Northern Illinois University's popular

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D SFederal8823 RevisionAprilSTEMfest | Argonne National

  16. Argonne microbial ecologist named to Crain's Chicago Business's '40 Under

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D SFederal8823 RevisionAprilSTEMfest | Argonne40' list |

  17. An optimization framework for workplace charging strategies | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TAPropaneandAn Overview ofArgonne NationalNational

  18. CP-1: The Past, Present, and Future | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B LReports from the CloudGEGR-N Goods PO 1COOP NO.Argonne National:

  19. ARGUS-PRIMA: Wind Power Prediction | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See EnergyCurrent : 0.0 Waiting for0 -IssueARGONNE

  20. Argonne National Laboratory and Mississippi State University Partner to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic Argonne National Laboratory | 9700

  1. Scientists develop affordable way to generate medical isotopes | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurityPediatricNOAA(SC)ScienceArgonneNational

  2. High Performance Plastic DSSC | ANSER Center | Argonne-Northwestern

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D. Title: Professor -| Argonne Leadership. H

  3. Jack O'Connell | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenryInhibitingInteractivePGASelectron tomography |J.Argonne1JackJack

  4. New Argonne centers connect business with energy storage, nanotechnology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesofPublications TheScience4.21ReviewsEarlyALSresearch | Argonne

  5. Engineering problems of tandem-mirror reactors

    SciTech Connect (OSTI)

    Moir, R.W.; Barr, W.L.; Boghosian, B.M.

    1981-10-22

    We have completed a comparative evaluation of several end plug configurations for tandem mirror fusion reactors with thermal barriers. The axi-cell configuration has been selected for further study and will be the basis for a detailed conceptual design study to be carried out over the next two years. The axi-cell end plug has a simple mirror cell produced by two circular coils followed by a transition coil and a yin-yang pair, which provides for MHD stability. This paper discusses some of the many engineering problems facing the designer. We estimated the direct cost to be 2$/W/sub e/. Assuming total (direct and indirect) costs to be twice this number, we need to reduce total costs by factors between 1.7 and 2.3 to compete with future LWRs levelized cost of electricity. These reductions may be possible by designing magnets producing over 20T made possible by use of combinations of superconducting and normal conducting coils as well as improvements in performance and cost of neutral beam and microwave power systems. Scientific and technological understanding and innovation are needed in the area of thermal barrier pumping - a process by which unwanted particles are removed (pumped) from certain regions of velocity and real space in the end plug. Removal of exhaust fuel ions, fusion ash and impurities by action of a halo plasma and plasma dump in the mirror end region is another challenging engineering problem discussed in this paper.

  6. First MR images obtained during megavoltage photon irradiation from a prototype integrated linac-MR system

    SciTech Connect (OSTI)

    Fallone, B. G.; Murray, B.; Rathee, S.; Stanescu, T.; Steciw, S.; Vidakovic, S.; Blosser, E.; Tymofichuk, D. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada)

    2009-06-15

    The authors report the first magnetic resonance (MR) images produced by their prototype MR system integrated with a radiation therapy source. The prototype consists of a 6 MV linac mounted onto the open end of a biplanar 0.2 T permanent MR system which has 27.9 cm pole-to-pole opening with flat gradients (40 mT/m) running under a TMX NRC console. The distance from the magnet isocenter to the linac target is 80 cm. The authors' design has resolved the mutual interferences between the two devices such that the MR magnetic field does not interfere with the trajectory of the electron in the linac waveguide, and the radiofrequency (RF) signals from each system do not interfere with the operation of the other system. Magnetic and RF shielding calculations were performed and confirmed with appropriate measurements. The prototype is currently on a fixed gantry; however, in the very near future, the linac and MR magnet will rotate in unison such that the linac is always aimed through the opening in the biplanar magnet. MR imaging was found to be fully operational during linac irradiation and proven by imaging a phantom with conventional gradient echo sequences. Except for small changes in SNR, MR images produced during irradiation were visually and quantitatively very similar to those taken with the linac turned off. This prototype system provides proof of concept that the design has decreased the mutual interferences sufficiently to allow the development of real-time MR-guided radiotherapy. Low field-strength systems (0.2-0.5 T) have been used clinically as diagnostic tools. The task of the linac-MR system is, however, to provide MR guidance to the radiotherapy beam. Therefore, the 0.2 T field strength would provide adequate image quality for this purpose and, with the addition of fast imaging techniques, has the potential to provide 4D soft-tissue visualization not presently available in image-guided radiotherapy systems. The authors' initial design incorporates a permanent magnet; however, other types of magnets and field strengths could also be incorporated. Usable MR images were obtained during linac irradiation from the linac-MR prototype. The authors' prototype design can be used as the functional starting point in developing real-time MR guidance offering soft-tissue contrast that can be coupled with tumor tracking for real-time adaptive radiotherapy.

  7. Design of the beryllium window for Brookhaven Linac Isotope Producer

    SciTech Connect (OSTI)

    Nayak, S.; Mapes, M.; Raparia, D.

    2015-11-01

    In the Brookhaven Linac Isotope Producer (BLIP) beam line, there were two Beryllium (Be) windows with an air gap to separate the high vacuum upstream side from low vacuum downstream side. There had been frequent window failures in the past which affected the machine productivity and increased the radiation dose received by worker due to unplanned maintenance. To improve the window life, design of Be window is reexamined. Detailed structural and thermal simulations are carried out on Be window for different design parameters and loading conditions to come up with better design to improve the window life. The new design removed the air gap and connect the both beam lines with a Be window in-between. The new design has multiple advantages such as 1) reduces the beam energy loss (because of one window with no air gap), 2) reduces air activation due to nuclear radiation and 3) increased the machine reliability as there is no direct pressure load during operation. For quick replacement of this window, an aluminum bellow coupled with load binder was designed. There hasn’t been a single window failure since the new design was implemented in 2012.

  8. Identifying Longitudinal Jitter Sources in the LCLS Linac

    SciTech Connect (OSTI)

    Decker, Franz-Josef; /SLAC; Akre, Ron; /SLAC; Brachmann, Axel; /SLAC; Craft, Jim; /SLAC; Ding, Yuantao; /SLAC; Dowell, David; /SLAC; Emma, Paul; /SLAC; Frisch, Josef; /SLAC; Huang, Zhirong; /SLAC; Iverson, Richard; /SLAC; Krasnykh, Anatoly; /SLAC; Loos, Henrik; /SLAC; Nuhn, Heinz-Dieter; /SLAC; Ratner, Daniel; /SLAC; Smith, Tonee; /SLAC; Turner, James; /SLAC; Welch, James; /SLAC; White, William; /SLAC; Wu, Juhao; /SLAC

    2012-07-06

    The Linac Coherent Light Source (LCLS) at SLAC is an x-ray Free Electron Laser (FEL) with wavelengths of 0.15 nm to 1.5 nm. The electron beam stability is important for good lasing. While the transverse jitter of the beam is about 10-20% of the rms beam sizes, the jitter in the longitudinal phase space is a multiple of the energy spread and bunch length. At the lower energy of 4.3 GeV (corresponding to the longest wavelength of 1.5 nm) the relative energy jitter can be 0.125%, while the rms energy spread is with 0.025% five times smaller. An even bigger ratio exists for the arrival time jitter of 50 fs and the bunch duration of about 5 fs (rms) in the low charge (20 pC) operating mode. Although the impact to the experiments is reduced by providing pulse-by-pulse data of the measured energy and arrival time, it would be nice to understand and mitigate the root causes of this jitter. The thyratron of the high power supply of the RF klystrons is one of the main contributors. Another suspect is the multi-pacting in the RF loads. Phase measurements down to 0.01 degree (equals 10 fs) along the RF pulse were achieved, giving hints to the impact of the different sources.

  9. Argonne National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thIWalter H.4Office ofViable2AlaskaAprilArgonneArgonneArgonne

  10. 7 things you might not know about diesel | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Argonne Now, the laboratory science magazine. 7 things you might not know about diesel By Louise Lerner * June 1, 2014 Tweet EmailPrint 7 interesting facts about diesel...

  11. Best X-Ray Tools for Battery Development and Testing | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Best X-Ray Tools for Battery Development and Testing Argonne's Advanced Photon Source has a suite of best-in-class X-ray techniques and lab space to tackle the most difficult...

  12. The design and development of an environmental surveillance network at Argonne National Laboratory-West 

    E-Print Network [OSTI]

    Tharakan, Binesh Korah

    1997-01-01

    ). An environmental surveillance program represents half of the facility's EMP. The other half is an effluent monitoring program. Argonne National Laboratory-West (ANL-W) is a DOE facility which does not currently have an environmental surveillance program...

  13. Argonne OutLoud: "Climate Change: Fact, Fiction and What You Can Do"

    ScienceCinema (OSTI)

    Sisterson, Douglas

    2015-02-19

    Research meteorologist Doug Sisterson discusses climate change and the cutting-edge research taking place at Argonne as well as collaborative research with other institutions, including the University of Chicago.

  14. EA-0389: Proposed 7-GeV Advanced Photon Source, Argonne, Illinois

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal for construction and operation of a 6- to 7-GeV synchrotron radiation source known as the 7-GeV Advanced Photon Source at DOE's Argonne...

  15. Argonne's Laboratory Computing Resource Center : 2005 annual report.

    SciTech Connect (OSTI)

    Bair, R. B.; Coghlan, S. C; Kaushik, D. K.; Riley, K. R.; Valdes, J. V.; Pieper, G. P.

    2007-06-30

    Argonne National Laboratory founded the Laboratory Computing Resource Center in the spring of 2002 to help meet pressing program needs for computational modeling, simulation, and analysis. The guiding mission is to provide critical computing resources that accelerate the development of high-performance computing expertise, applications, and computations to meet the Laboratory's challenging science and engineering missions. The first goal of the LCRC was to deploy a mid-range supercomputing facility to support the unmet computational needs of the Laboratory. To this end, in September 2002, the Laboratory purchased a 350-node computing cluster from Linux NetworX. This cluster, named 'Jazz', achieved over a teraflop of computing power (10{sup 12} floating-point calculations per second) on standard tests, making it the Laboratory's first terascale computing system and one of the fifty fastest computers in the world at the time. Jazz was made available to early users in November 2002 while the system was undergoing development and configuration. In April 2003, Jazz was officially made available for production operation. Since then, the Jazz user community has grown steadily. By the end of fiscal year 2005, there were 62 active projects on Jazz involving over 320 scientists and engineers. These projects represent a wide cross-section of Laboratory expertise, including work in biosciences, chemistry, climate, computer science, engineering applications, environmental science, geoscience, information science, materials science, mathematics, nanoscience, nuclear engineering, and physics. Most important, many projects have achieved results that would have been unobtainable without such a computing resource. The LCRC continues to improve the computational science and engineering capability and quality at the Laboratory. Specific goals include expansion of the use of Jazz to new disciplines and Laboratory initiatives, teaming with Laboratory infrastructure providers to develop comprehensive scientific data management capabilities, expanding Argonne staff use of national computing facilities, and improving the scientific reach and performance of Argonne's computational applications. Furthermore, recognizing that Jazz is fully subscribed, with considerable unmet demand, the LCRC has begun developing a 'path forward' plan for additional computing resources.

  16. Present and Future Optics Challenges at CHESS and for Proposed Energy Recovery Linac Source of Synchrotron Radiation

    E-Print Network [OSTI]

    Shen, Qun

    Present and Future Optics Challenges at CHESS and for Proposed Energy Recovery Linac Source-ray optics, energy-recovery linac, high brilliance 1. INTRODUCTION As one of the pioneer synchrotron in the area of high heat load and high x-ray flux optics [1-5] since the high critical-energy wigglers

  17. Counter-Rotating Tandem Motor Drilling System

    SciTech Connect (OSTI)

    Kent Perry

    2009-04-30

    Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively compared to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially larger than that of slim holes. As a result, the research team decided to complete the project, document the tested designs and seek further support for the concept outside of the DOE.

  18. Beam Dynamics Study of X-Band Linac Driven X-Ray FELS

    SciTech Connect (OSTI)

    Adolphsen, C.; Limborg-Deprey, C.; Raubenheimer, T.O.; Wu, J.; /SLAC; Sun, Y.; /SLAC

    2011-12-13

    Several linac driven X-ray Free Electron Lasers (XFELs) are being developed to provide high brightness photon beams with very short, tunable wavelengths. In this paper, three XFEL configurations are proposed that achieve LCLS-like performance using X-band linac drivers. These linacs are more versatile, efficient and compact than ones using S-band or C-band rf technology. For each of the designs, the overall accelerator layout and the shaping of the bunch longitudinal phase space are described briefly. During the last 40 years, the photon wavelengths from linac driven FELs have been pushed shorter by increasing the electron beam energy and adopting shorter period undulators. Recently, the wavelengths have reached the X-ray range, with FLASH (Free-Electron Laser in Hamburg) and LCLS (Linac Coherent Light Source) successfully providing users with soft and hard X-rays, respectively. FLASH uses a 1.2 GeV L-band (1.3 GHz) superconducting linac driver and can deliver 10-70 fs FWHM long photon pulses in a wavelength range of 44 nm to 4.1 nm. LCLS uses the last third of the SLAC 3 km S-band (2.856 GHz) normal-conducting linac to produce 3.5 GeV to 15 GeV bunches to generate soft and hard X-rays with good spatial coherence at wavelengths from 2.2 nm to 0.12 nm. Newer XFELs (at Spring8 and PSI) use C-band (5.7 GHz) normal-conducting linac drivers, which can sustain higher acceleration gradients, and hence shorten the linac length, and are more efficient at converting rf energy to bunch energy. The X-band (11.4 GHz) rf technology developed for NLC/GLC offers even higher gradients and efficiencies, and the shorter rf wavelength allows more versatility in longitudinal bunch phase space compression and manipulation. In the following sections, three different configurations of X-band linac driven XFELs are described that operate from 6 to 14 GeV. The first (LOW CHARGE DESIGN) has an electron bunch charge of only 10 pC; the second (OPTICS LINEARIZATION DESIGN) is based on optics linearization of the longitudinal phase space in the first stage bunch compressor and can operate with either a high (250 pC) or low (20 pC) bunch charge; and the third (LCLS INJECTOR DESIGN) is similar to LCLS but uses an X-band linac after the first stage bunch compressor at 250 MeV to achieve a final beam energy up to 14 GeV. Compared with LCLS, these X-band linacs are at least a factor of three shorter.

  19. Linear Vlasov solver for microbunching gain estimation with inclusion of CSR, LSC and linac geometric impedances

    E-Print Network [OSTI]

    Tsai, Cheng-Ying; Li, Rui; Tennant, Chris

    2015-01-01

    As is known, microbunching instability (MBI) has been one of the most challenging issues in designs of magnetic chicanes for short-wavelength free-electron lasers or linear colliders, as well as those of transport lines for recirculating or energy recovery linac machines. To more accurately quantify MBI in a single-pass system and for more complete analyses, we further extend and continue to increase the capabilities of our previously developed linear Vlasov solver [1] to incorporate more relevant impedance models into the code, including transient and steady-state free-space and/or shielding coherent synchrotron radiation (CSR) impedances, the longitudinal space charge (LSC) impedances, and the linac geometric impedances with extension of the existing formulation to include beam acceleration [2]. Then, we directly solve the linearized Vlasov equation numerically for microbunching gain amplification factor. In this study we apply this code to a beamline lattice of transport arc [3] following an upstream linac...

  20. Transverse Beam Emittance Measurements of a 16 MeV Linac at the Idaho Accelerator Center

    SciTech Connect (OSTI)

    S. Setiniyaz, T.A. Forest, K. Chouffani, Y. Kim, A. Freyberger

    2012-07-01

    A beam emittance measurement of the 16 MeV S-band High Repetition Rate Linac (HRRL) was performed at Idaho State University's Idaho Accelerator Center (IAC). The HRRL linac structure was upgraded beyond the capabilities of a typical medical linac so it can achieve a repetition rate of 1 kHz. Measurements of the HRRL transverse beam emittance are underway that will be used to optimize the production of positrons using HRRL's intense electron beam on a tungsten converter. In this paper, we describe a beam imaging system using on an OTR screen and a digital CCD camera, a MATLAB tool to extract beamsize and emittance, detailed measurement procedures, and the measured transverse emittances for an arbitrary beam energy of 15 MeV.

  1. Conceptual study of high power proton linac for accelerator driven subcritical nuclear power system

    E-Print Network [OSTI]

    Yu Qi; Ouyang Hua Fu; Xu Tao Guang

    2001-01-01

    As a prior option of the next generation of energy source, the accelerator driven subcritical nuclear power system (ADS) can use efficiently the uranium and thorium resource, transmute the high-level long-lived radioactive wastes and raise nuclear safety. The ADS accelerator should provide the proton beam with tens megawatts. The superconducting linac is a good selection of ADS accelerator because of its high efficiency and low beam loss rate. The ADS accelerator presented by the consists of a 5 MeV radio-frequency quadrupole, a 100 MeV independently phased superconducting cavity linac and a 1 GeV elliptical superconducting cavity linac. The accelerating structures and main parameters are determined and the research and development plan is considered

  2. Beam loading compensation of traveling wave linacs through the time dependence of the rf drive

    SciTech Connect (OSTI)

    Towne N.; Rose J.

    2011-09-30

    Beam loading in traveling-wave linear accelerating structures leads to unacceptable spread of particle energies across an extended train of bunched particles due to beam-induced field and dispersion. Methods for modulating the rf power driving linacs are effective at reducing energy spread, but for general linacs do not have a clear analytic foundation. We report here methods for calculating how to modulate the rf drive in arbitrarily nonuniform traveling-wave linacs within the convective-transport (power-diffusion) model that results in no additional energy spread due to beam loading (but not dispersion). Varying group velocity, loss factor, and cell quality factor within a structure, and nonzero particle velocity, are handled.

  3. High Resolution Simulation of Beam Dynamics in Electron Linacs for Free Electron Lasers

    SciTech Connect (OSTI)

    Ryne, R.D.; Venturini, M.; Zholents, A.A.; Qiang, J.

    2009-01-05

    In this paper we report on large scale multi-physics simulation of beam dynamics in electron linacs for next generation free electron lasers (FELs). We describe key features of a parallel macroparticle simulation code including three-dimensional (3D) space-charge effects, short-range structure wake fields, longitudinal coherent synchrotron radiation (CSR) wake fields, and treatment of radiofrequency (RF) accelerating cavities using maps obtained from axial field profiles. A macroparticle up-sampling scheme is described that reduces the shot noise from an initial distribution with a smaller number of macroparticles while maintaining the global properties of the original distribution. We present a study of the microbunching instability which is a critical issue for future FELs due to its impact on beam quality at the end of the linac. Using parameters of a planned FEL linac at Lawrence Berkeley National Laboratory (LBNL), we show that a large number of macroparticles (beyond 100 million) is needed to control numerical shot noise that drives the microbunching instability. We also explore the effect of the longitudinal grid on simulation results. We show that acceptable results are obtained with around 2048 longitudinal grid points, and we discuss this in view of the spectral growth rate predicted from linear theory. As an application, we present results from simulations using one billion macroparticles of the FEL linac under design at LBNL. We show that the final uncorrelated energy spread of the beam depends not only on the initial uncorrelated energy spread but also depends strongly on the shape of the initial current profile. By using a parabolic initial current profile, 5 keV initial uncorrelated energy spread at 40 MeV injection energy, and improved linac design, those simulations demonstrate that a reasonable beam quality can be achieved at the end of the linac, with the final distribution having about 100 keV energy spread, 2.4 GeV energy, and 1.2 kA peak current.

  4. Users Handbook for the Argonne Premium Coal Sample Program

    SciTech Connect (OSTI)

    Vorres, K.S.

    1993-10-01

    This Users Handbook for the Argonne Premium Coal Samples provides the recipients of those samples with information that will enhance the value of the samples, to permit greater opportunities to compare their work with that of others, and aid in correlations that can improve the value to all users. It is hoped that this document will foster a spirit of cooperation and collaboration such that the field of basic coal chemistry may be a more efficient and rewarding endeavor for all who participate. The different sections are intended to stand alone. For this reason some of the information may be found in several places. The handbook is also intended to be a dynamic document, constantly subject to change through additions and improvements. Please feel free to write to the editor with your comments and suggestions.

  5. Metagenomes from Argonne's MG-RAST Metagenomics Analysis Server

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    MG-RAST has a large number of datasets that researchers have deposited for public use. As of July, 2014, the number of metagenomes represented by MG-RAST numbered more than 18,500, and the number of available sequences was more than 75 million! The public can browse the collection several different ways, and researchers can login to deposit new data. Researchers have the choice of keeping a dataset private so that it is viewable only by them when logged in, or they can choose to make a dataset public at any time with a simple click of a link. MG-RAST was launched in 2007 by the Mathematics and Computer Science Division at Argonne National Laboratory (ANL). It is part of the toolkit available to the Terragenomics project, which seeks to do a comprehensive metagenomics study of U.S. soil. The Terragenomics project page is located at http://www.mcs.anl.gov/research/projects/terragenomics/.

  6. Waveguide detuning caused by transverse magnetic fields on a simulated in-line 6 MV linac

    SciTech Connect (OSTI)

    St Aubin, J.; Steciw, S.; Fallone, B. G. [Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada)

    2010-09-15

    Purpose: Due to the close proximity of the linear accelerator (linac) to the magnetic resonance (MR) imager in linac-MR systems, it will be subjected to magnet fringe fields larger than the Earth's magnetic field of 5x10{sup -5} T. Even with passive or active shielding designed to reduce these fields, some magnitude of the magnetic field is still expected to intersect the linac, causing electron deflection and beam loss. This beam loss, resulting from magnetic fields that cannot be eliminated with shielding, can cause a detuning of the waveguide due to excessive heating. The detuning, if significant, could lead to an even further decrease in output above what would be expected strictly from electron deflections caused by an external magnetic field. Thus an investigation of detuning was performed through various simulations. Methods: According to the Lorentz force, the electrons will be deflected away from their straight course to the target, depositing energy as they impact the linac copper waveguide. The deposited energy would lead to a heating and deformation of the copper structure resulting in resonant frequency changes. PARMELA was used to determine the mean energy and fraction of total beam lost in each linac cavity. The energy deposited into the copper waveguide from the beam losses caused by transverse magnetic fields was calculated using the Monte Carlo program DOSRZnrc. From the total energy deposited, the rise in temperature and ultimately the deformation of the structure was estimated. The deformed structure was modeled using the finite element method program COMSOL MULTIPHYSICS to determine the change in cavity resonant frequency. Results: The largest changes in resonant frequency were found in the first two accelerating cavities for each field strength investigated. This was caused by a high electron fluence impacting the waveguide inner structures coupled with their low kinetic energies. At each field strength investigated, the total change in accelerator frequency was less than a manufacturing tolerance of 10 kHz and is thus not expected to have a noticeable effect on accelerator performance. Conclusions: The amount of beam loss caused by magnetic fringe fields for a linac in a linac-MR system depends on the effectiveness of its magnetic shielding. Despite the best efforts to shield the linac from the magnetic fringe fields, some persistent magnetic field is expected which would result in electron beam loss. This investigation showed that the detuning of the waveguide caused by additional electron beam loss in persistent magnetic fields is not a concern.

  7. A Linac Simulation Code for Macro-Particles Tracking and Steering Algorithm Implementation

    SciTech Connect (OSTI)

    sun, yipeng

    2012-05-03

    In this paper, a linac simulation code written in Fortran90 is presented and several simulation examples are given. This code is optimized to implement linac alignment and steering algorithms, and evaluate the accelerator errors such as RF phase and acceleration gradient, quadrupole and BPM misalignment. It can track a single particle or a bunch of particles through normal linear accelerator elements such as quadrupole, RF cavity, dipole corrector and drift space. One-to-one steering algorithm and a global alignment (steering) algorithm are implemented in this code.

  8. Opening Remarks from the Joint Genome Institute and Argonne Lab High Performance Computing Workshop (2010 JGI/ANL HPC Workshop)

    ScienceCinema (OSTI)

    Rubin, Eddy

    2011-06-03

    DOE JGI Director Eddy Rubin gives opening remarks at the JGI/Argonne High Performance Computing (HPC) Workshop on January 25, 2010.

  9. Center for Electrical Energy Storage Tailored Interfaces Argonne National Laboratory, University of Illinois at Urbana-Champaign, Northwestern University

    E-Print Network [OSTI]

    Kemner, Ken

    Center for Electrical Energy Storage ­ Tailored Interfaces Argonne National Laboratory, University lithium batteries. Follow us at http://www.anl.gov/energy-storage-science Autogenic reactions at high

  10. Opening Remarks from the Joint Genome Institute and Argonne Lab High Performance Computing Workshop (2010 JGI/ANL HPC Workshop)

    SciTech Connect (OSTI)

    Rubin, Eddy

    2010-01-25

    DOE JGI Director Eddy Rubin gives opening remarks at the JGI/Argonne High Performance Computing (HPC) Workshop on January 25, 2010.

  11. Special Issue: Human Genetics The overdue promise of short tandem

    E-Print Network [OSTI]

    Queitsch, Christine

    variation to existing genetic models would considerably increase the proportion of her- itability explainedSpecial Issue: Human Genetics The overdue promise of short tandem repeat variation for heritability repeat (STR) variation has been proposed as a major explanatory factor in the heritability of com- plex

  12. Vacuum insulation tandem accelerator for B. Bayanov1

    E-Print Network [OSTI]

    Taskaev, Sergey Yur'evich

    of Nuclear Physics, Novosibirsk, Russia 2 Institute of Physics and Power Engineering, Obninsk, Russia 3 Institute of Technical Physics, Snezhinsk, Russia Summary Novel 2.5 MeV, 40 mA tandem accelerator ­ high voltage electrode, 4 ­ pump, 5 ­ charge-exchange target, 6 ­ letting-to-gas system, 7 ­ interim

  13. Alternative splicing regulation at tandem 30 splice sites

    E-Print Network [OSTI]

    Mandel-Gutfreund, Yael

    Alternative splicing regulation at tandem 30 splice sites Martin Akerman and Yael Mandel; Revised and Accepted December 6, 2005 ABSTRACT Alternative splicing (AS) constitutes a major mechanism% are related to alternative choices of 30 and 50 splice sites. Surprisingly, half of all these events involve

  14. 1Mechanical, Aerospace and Nuclear Engineering nacThe Gaerttner Laboratory RPI LINAC Facility

    E-Print Network [OSTI]

    Danon, Yaron

    1Mechanical, Aerospace and Nuclear Engineering nacThe Gaerttner Laboratory RPI LINAC Facility Nuclear Criticality Safety Program Conference April 27, 2011 #12;2Mechanical, Aerospace and Nuclear · Refurbishment/Upgrade Projects (Recent Future) · Resources at the Facility #12;3Mechanical, Aerospace

  15. EA-1904: Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, California

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposed construction of the Linac Coherent Light Source at SLAC National Accelerator Laboratory, Menlo Park, California. None available at this time. For more information, contact: Mr. Dave Osugi DOE SLAC Site Office 2575 Sand Hill Road, MS8A Menlo Park, CA 94025 E-mail: dave.osugi@sso.science.doe.gov

  16. R & D on Very-High-Current Superconducting Proton Linac, Final Report

    SciTech Connect (OSTI)

    Ben-Zvi, Ilan

    2013-03-31

    The aim of this R&D project was to develop a superconducting cavity for a very-­? high-­?current proton accelerator. The particular application motivating the proposal was a LHC upgrade called the Superconducting Proton Linac, or SPL. Under the grant awarded to Stony Brook University the cavity was designed, a prototype copper cavity, followed by the niobium cavity, were built. A new set of HOM dampers was developed. The cavity has outstanding RF performance parameters – low surface fields, low power loss and all HOMs are fully damped. In fact, it is a “universal cavity” in the sense that it is suited for the acceleration of high-­?current protons and well as high current electrons. Its damping of HOM modes is so good that it can see service in a multi-­?pass linac or an Energy Recovery Linac in addition to the easier service in a single-­?pass linac. Extensive measurements were made on the cavities and couplers, with the exception of the cold test of the niobium cavity. At the time of this report the cavity has been chemically processed and is ready for vertical testing which will be carried out shortly.

  17. A NEW HIGH ENERGY RESOLUTION NEUTRON TRANSMISSION DETECTOR SYSTEM AT THE GAERTTNER LINAC LABORATORY

    E-Print Network [OSTI]

    Danon, Yaron

    Laboratory P.O. Box 1072, Schenectady, New York 12301-1072 A new high energy resolution modular neutronA NEW HIGH ENERGY RESOLUTION NEUTRON TRANSMISSION DETECTOR SYSTEM AT THE GAERTTNER LINAC LABORATORY capabilities at the Laboratory in and above the resolved resonance energy region from 1 keV to 600 ke

  18. DESIGN OF THE PROTOTYPICAL CRYOMODULE FOR THE EUROTRANS SUPERCONDUCTING LINAC FOR NUCLEAR WASTE

    E-Print Network [OSTI]

    Boyer, Edmond

    is dedicated to the engineering and realization of a prototype cryomodule of the high energy section cryomodule of the high energy section of the superconducting proton linac. A cryomodule is the basic building. The test cryomodule will be a prototypical module of the beta 0.5 section containing one single elliptical

  19. Argonne National Laboratory summary site environmental report for calendar year 2006.

    SciTech Connect (OSTI)

    Golchert, N. W.; ESH /QA Oversight

    2008-03-27

    This booklet is designed to inform the public about what Argonne National Laboratory is doing to monitor its environment and to protect its employees and neighbors from any adverse environmental impacts from Argonne research. The Downers Grove South Biology II class was selected to write this booklet, which summarizes Argonne's environmental monitoring programs for 2006. Writing this booklet also satisfies the Illinois State Education Standard, which requires that students need to know and apply scientific concepts to graduate from high school. This project not only provides information to the public, it will help students become better learners. The Biology II class was assigned to condense Argonne's 300-page, highly technical Site Environmental Report into a 16-page plain-English booklet. The site assessment relates to the class because the primary focus of the Biology II class is ecology and the environment. Students developed better learning skills by working together cooperatively, writing and researching more effectively. Students used the Argonne Site Environmental Report, the Internet, text books and information from Argonne scientists to help with their research on their topics. The topics covered in this booklet are the history of Argonne, groundwater, habitat management, air quality, Argonne research, Argonne's environmental non-radiological program, radiation, and compliance. The students first had to read and discuss the Site Environmental Report and then assign topics to focus on. Dr. Norbert Golchert and Mr. David Baurac, both from Argonne, came into the class to help teach the topics more in depth. The class then prepared drafts and wrote a final copy. Ashley Vizek, a student in the Biology class stated, 'I reviewed my material and read it over and over. I then took time to plan my paper out and think about what I wanted to write about, put it into foundation questions and started to write my paper. I rewrote and revised so I think the amount of time that I put into the project will be worth it in the end because it is a cool thing to be a published writer'. While most students agree that putting the final paper together was the toughest part, the final result was worth the hard work. Christine Beuhler states, 'The time and effort was worth it because I learned a lot about the Argonne facility. This project also improved my analyzing, reading, and writing skills'. Emily Schimick and Kaitlin Hernandez agreed that the feeling of accomplishment when they finished the paper was their favorite part, while the reading of the Argonne Site Environmental Report was their least favorite because it was difficult to understand. The Downers Grove South Biology II class would like to thank our teacher Mr. Scott Howard, as well as Dr. Golchert and Mr. Baurac for their investment in time and energy in helping with the project. Dr. Golchert and Mr. Baurac gave us valuable assistance in the preparation of this project, and we owe them our deepest gratitude. Their real-life experience at Argonne was inspirational. Mr. Howard set the goals and made the commitment to our class to complete this project. Without their kind support, this project would not have been possible.

  20. Argonne National Laboratory: Laboratory Directed Research and Development FY 1993 program activities. Annual report

    SciTech Connect (OSTI)

    none,

    1993-12-23

    The purposes of Argonne`s Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory`s R&D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R&D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering ``proof-of-principle`` assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne`s Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory LDRD Plan for FY 1993.

  1. "Ask Argonne" - Edwin Campos, Research Meteorologist, Part 1

    SciTech Connect (OSTI)

    Edwin Campos

    2013-05-08

    Dr. Edwin Campos is a Research Meteorologist at Argonne National Laboratory. For the last two decades, he has studied weather, and in particular, clouds. Clouds are one of the most uncertain variables in climate predictions and are often related to transportation hazards. Clouds can also impact world-class sporting events like the Olympics. You may have questions about the role of clouds, or weather, on our daily lives. How is severe weather monitored for airports? What is the impact of clouds and wind on the generation of electricity? One of the projects Edwin is working on is short-term forecasting as it relates to solar electricity. For this, Edwin's team is partnering with industry and academia to study new ways of forecasting clouds, delivering technologies that will allow the incorporation of more solar power into the electric grid. Post a question for Edwin as a comment below, and it might get answered in the follow-up video we'll post in the next few weeks.

  2. Preliminary characterization of the 100 area at Argonne National Laboratory

    SciTech Connect (OSTI)

    Biang, C.; Biang, R.; Patel, P.

    1994-06-01

    This characterization report is based on the results of sampling and an initial environmental assessment of the 100 Area of Argonne National Laboratory. It addresses the current status, projected data requirements, and recommended actions for five study areas within the 100 Area: the Lime Sludge Pond, the Building 108 Liquid Retention Pond, the Coal Yard, the East Area Burn Pit, and the Eastern Perimeter Area. Two of these areas are solid waste management units under the Resource Conservation and Recovery Act (the Lime Sludge Pond and the Building 108 Liquid Retention Pond); however, the Illinois Environmental Protection Agency has determined that no further action is necessary for the Lime Sludge Pond. Operational records for some of the activities were not available, and one study area (the East Area Burn Pit) could not be precisely located. Recommendations for further investigation include sample collection to obtain the following information: (1) mineralogy of major minerals and clays within the soils and underlying aquifer, (2) pH of the soils, (3) total clay fraction of the soils, (4) cation exchange capacity of the soils and aquifer materials, and (5) exchangeable cations of the soils and aquifer material. Various other actions are recommended for the 100 Area, including an electromagnetic survey, sampling of several study areas to determine the extent of contamination and potential migration pathways, and sampling to determine the presence of any radionuclides. For some of the study areas, additional actions are contingent on the results of the initial recommendations.

  3. Argonne National Laboratory site environmental report for calendar year 2004.

    SciTech Connect (OSTI)

    Golchert, N. W.; Kolzow, R. G.

    2005-09-02

    This report discusses the accomplishments of the environmental protection program at Argonne National Laboratory (ANL) for calendar year 2004. The status of ANL environmental protection activities with respect to compliance with the various laws and regulations is discussed, along with the progress of environmental corrective actions and restoration projects. To evaluate the effects of ANL operations on the environment, samples of environmental media collected on the site, at the site boundary, and off the ANL site were analyzed and compared with applicable guidelines and standards. A variety of radionuclides were measured in air, surface water, on-site groundwater, and bottom sediment samples. In addition, chemical constituents in surface water, groundwater, and ANL effluent water were analyzed. External penetrating radiation doses were measured, and the potential for radiation exposure to off-site population groups was estimated. Results are interpreted in terms of the origin of the radioactive and chemical substances (i.e., natural, fallout, ANL, and other) and are compared with applicable environmental quality standards. A U.S. Department of Energy dose calculation methodology, based on International Commission on Radiological Protection recommendations and the U.S. Environmental Protection Agency's CAP-88 (Clean Air Act Assessment Package-1988) computer code, was used in preparing this report.

  4. Increasing the transformer ratio at the Argonne wakefield accelerator.

    SciTech Connect (OSTI)

    Power, J.G.; Conde, M.; Liu, W.; Yusof, Z.; Gai, W.; Jing, C.; Kanareykin, A. (High Energy Physics); (Euclid Techlabs, LLC)

    2011-01-01

    The transformer ratio is defined as the ratio of the maximum energy gain of the witness bunch to the maximum energy loss experienced by the drive bunch (or a bunch within a multidrive bunch train). This plays an important role in the collinear wakefield acceleration scheme. A high transformer ratio is desirable since it leads to a higher overall efficiency under similar conditions (e.g. the same beam loading, the same structure, etc.). One technique to enhance the transformer ratio beyond the ordinary limit of 2 is to use a ramped bunch train. The first experimental demonstration observed a transformer ratio only marginally above 2 due to the mismatch between the drive microbunch length and the frequency of the accelerating structure [C. Jing, A. Kanareykin, J. Power, M. Conde, Z. Yusof, P. Schoessow, and W. Gai, Phys. Rev. Lett. 98, 144801 (2007)]. Recently, we revisited this experiment with an optimized microbunch length using a UV laser stacking technique at the Argonne Wakefield Accelerator facility and measured a transformer ratio of 3.4. Measurements and data analysis from these experiments are presented in detail.

  5. "Ask Argonne" - Edwin Campos, Research Meteorologist, Part 1

    ScienceCinema (OSTI)

    Edwin Campos

    2013-06-10

    Dr. Edwin Campos is a Research Meteorologist at Argonne National Laboratory. For the last two decades, he has studied weather, and in particular, clouds. Clouds are one of the most uncertain variables in climate predictions and are often related to transportation hazards. Clouds can also impact world-class sporting events like the Olympics. You may have questions about the role of clouds, or weather, on our daily lives. How is severe weather monitored for airports? What is the impact of clouds and wind on the generation of electricity? One of the projects Edwin is working on is short-term forecasting as it relates to solar electricity. For this, Edwin's team is partnering with industry and academia to study new ways of forecasting clouds, delivering technologies that will allow the incorporation of more solar power into the electric grid. Post a question for Edwin as a comment below, and it might get answered in the follow-up video we'll post in the next few weeks.

  6. Effect of longitudinal magnetic fields on a simulated in-line 6 MV linac

    SciTech Connect (OSTI)

    St Aubin, J.; Santos, D. M.; Steciw, S.; Fallone, B. G. [Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada)

    2010-09-15

    Purpose: Linac-magnetic resonance (MR) systems have been proposed in order to achieve real-time image guided radiotherapy. The design of a new linac-MR system with the in-line 6 MV linac generating x-rays along the symmetry axis of an open MR imager is outlined. This new design allows for a greater MR field strength to achieve better quality images while reducing hot and cold spots in treatment planning. An investigation of linac's performance in the longitudinal fringe magnetic fields of the MR imager is given. Methods: The open MR imager fringe magnetic field was modeled using the analytic solution of the magnetic field generated from current carrying loops. The derived solution was matched to the magnetic fringe field isolines provided for a 0.5 T open MR imager through Monte Carlo optimization. The optimized field solution was then added to the previously validated 6 MV linac simulation to quantify linac's performance in the fringe magnetic field of a 0.5 T MR imager. To further the investigation, linac's performance in large fringe fields expected from other imagers was investigated through the addition of homogeneous longitudinal fields. Results: The Monte Carlo optimization of the analytic current loop solution provided good agreement with the magnetic fringe field isolines supplied by the manufacturer. The range of magnetic fields the linac is expected to experience when coupled to the 0.5 T MR imager was determined to be from 0.0022 to 0.011 T (as calculated at the electron gun cathode). The effect of the longitudinal magnetic field on the electron beam was observed to be only in the electron gun. The longitudinal field changed the electron gun optics, affecting beam characteristics, such as a slight increase in the injection current and beam diameter, and an increasingly nonlaminar transverse phase space. Although the target phase space showed little change in its energy spectrum from the altered injection phase space, a reduction in the target current and spatial distribution peak intensity was observed. Despite these changes, the target phase space had little effect on the depth dose curves or dose profiles calculated for a 40x40 cm{sup 2} field at 1.5 cm depth. At longitudinal fields larger than 0.012 T, a drastic reduction in the injection current from the electron gun was observed due to a large fraction of electrons striking the anode. This further reduced the target current, which reached a minimum of 28{+-}2 mA at 0.06 T. A slow increase in the injection and target currents was observed at fields larger than 0.06 T due to greater beam collimation in the anode beam tube. Conclusions: In an effort to achieve higher quality images and a reduction in hot and cold spots in the treatment plan, a parallel configuration linac-MR system is presented. The longitudinal magnetic fields of the MR imager caused large beam losses within the electron gun. These losses may be eliminated through a redesign of the electron gun optics incorporating a longitudinal magnetic field, or through magnetic shielding, which has already been proven successful for the transverse configuration.

  7. Summary of results from the Tandem Mirror Experiment (TMX)

    SciTech Connect (OSTI)

    Simonen, T.C.

    1981-02-26

    This report summarizes results from the successful experimental operation of the Tandem Mirror Experiment (TMX) over the period October 1978 through September 1980. The experimental program, summarized by the DOE milestones given in Table 1-1, had three basic phases: (1) an 8-month checkout period, October 1978 through May 1979; (2) a 6-month initial period of operation, June through November 1979, during which the basic principles of the tandem configuration were demonstrated (i.e., plasma confinement was improved over that of a single-cell mirror); and (3) a 10-month period, December 1979 through September 1980, during which the initial TMX results were corroborated by additional diagnostic measurements and many detailed physics investigations were carried out. This report summarizes the early results, presents results of recent data analysis, and outlines areas of ongoing research and data analysis which will be reported in future journal publications.

  8. Single P-N junction tandem photovoltaic device

    DOE Patents [OSTI]

    Walukiewicz, Wladyslaw (Kensington, CA); Ager, III, Joel W. (Berkeley, CA); Yu, Kin Man (Lafayette, CA)

    2011-10-18

    A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.

  9. Single P-N junction tandem photovoltaic device

    DOE Patents [OSTI]

    Walukiewicz, Wladyslaw (Kensington, CA); Ager, III, Joel W. (Berkeley, CA); Yu, Kin Man (Lafayette, CA)

    2012-03-06

    A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.

  10. Argonne National Laboratory summary site environmental report for calendar year 2007.

    SciTech Connect (OSTI)

    Golchert, N. W.

    2009-05-22

    This summary of Argonne National Laboratory's Site Environmental Report for calendar year 2007 was written by 20 students at Downers Grove South High School in Downers Grove, Ill. The student authors are classmates in Mr. Howard's Bio II course. Biology II is a research-based class that teaches students the process of research by showing them how the sciences apply to daily life. For the past seven years, Argonne has worked with Biology II students to create a short document summarizing the Site Environmental Report to provide the public with an easy-to-read summary of the annual 300-page technical report on the results of Argonne's on-site environmental monitoring program. The summary is made available online and given to visitors to Argonne, researchers interested in collaborating with Argonne, future employees, and many others. In addition to providing Argonne and the public with an easily understandable short summary of a large technical document, the participating students learn about professional environmental monitoring procedures, achieve a better understanding of the time and effort put forth into summarizing and publishing research, and gain confidence in their own abilities to express themselves in writing. The Argonne Summary Site Environmental Report fits into the educational needs for 12th grade students. Illinois State Educational Goal 12 states that a student should understand the fundamental concepts, principles, and interconnections of the life, physical, and earth/space sciences. To create this summary booklet, the students had to read and understand the larger technical report, which discusses in-depth many activities and programs that have been established by Argonne to maintain a safe local environment. Creating this Summary Site Environmental Report also helps students fulfill Illinois State Learning Standard 12B5a, which requires that students be able to analyze and explain biodiversity issues, and the causes and effects of extinction. The same standard requires that Illinois students examine the impact of diminishing biodiversity due to human activity. An example of this would be the Argonne Restoration Prairie, which is discussed within the report. Because humans had to destroy part of a natural prairie in order to build, they must also plant an equivalent amount of prairie to make up for what was destroyed. The summary project perfectly meets Illinois State Learning Standard 13B section 5b, which requires students to be able to design and conduct an environmental impact study, analyze findings, and justify recommendations. Students volunteered for the project for two main reasons: We would become published authors, and could include that fact on important documents, like college applications, and we felt we were doing a good deed for the public, considering that without our summary the public may have no real idea how Argonne complies with various environmental protection acts and programs within the state. The summarization process was not easy, considering that we had never seen much of this kind of information before, especially in such detail. The project required a high level of commitment from all involved. This commitment ensured that the summary would be done on time and would be available to the public in the shortest time possible. Argonne representatives Norbert Golchert and Dave Baurac met with students and gave background information on Argonne and explained the importance of the research being done. In addition, they explained in-depth how the public benefits from the summarization. At the end of the presentation, students asked some questions, which were answered in specifics. The Report was divided into 10 sections, with groups of two students covering each section. The groups were eager to begin work on their assigned sections. After reading the complete report each group focused on a particular section. After much careful reading and analysis, we produced an outline. From the outline, partners divided work equally and began to carefully summarize. Groups summaries were edited,

  11. SU-E-T-119: Dosimetric and Mechanical Characteristics of Elekta Infinity LINAC with Agility MLC

    SciTech Connect (OSTI)

    Park, J; Xu, Q; Xue, J; Zhai, Y; An, L; Chen, Y [MD Anderson Cancer Center at Cooper, Camden, NJ (United States)

    2014-06-01

    Purpose: Elekta Infinity is the one of the latest generation LINAC with unique features. Two Infinity LINACs are recently commissioned at our institution. The dosimetric and mechanical characteristics of the machines are presented. Methods: Both Infinity LINACs with Agility MLC (160 leaves with 0.5 cm leaf width) are configured with five electron energies (6, 9, 12, 15, and 18 MeV) and two photon energies (6 and 15 MV). One machine has additional photon energy (10 MV). The commissioning was performed by following the manufacturer's specifications and AAPM TG recommendations. Beam data of both electron and photon beams are measured with scanning ion chambers and linear diode array. Machines are adjusted to have the dosimetrically equivalent characteristics. Results: The commissioning of mechanical and imaging system meets the tolerances by TG recommendations. The PDD{sub 10} of various field sizes for 6 and 15 MV shows < 0.5% difference between two machines. For each electron beams, R{sub 80} matches with < 0.4 mm difference. The symmetry and flatness agree within 0.8% and 0.9% differences for photon beams, respectively. For electron beams, the differences of the symmetry and flatness are within 1.2% and 0.8%, respectively. The mean inline penumbras for 6, 10, and 15 MV are respectively 5.1±0.24, 5.6±0.07, and 5.9±0.10 mm for 10x10 cm at 10 cm depth. The crossline penumbras are larger than inline penumbras by 2.2, 1.4, and 1.0 mm, respectively. The MLC transmission factor with interleaf leakage is 0.5 % for all photon energies. Conclusion: The dosimetric and mechanical characteristics of two Infinity LINACs show good agreements between them. Although the Elekta Infinity has been used in many institutions, the detailed characteristics of the machine have not been reported. This study provides invaluable information to understand the Infinity LINAC and to compare the quality of commissioning data for other LINACs.

  12. Argonne OutLoud: Rise of the Super Smart Supercomputer (March 14, 2013) |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic Argonne National Laboratory |10,(Dec.Argonne

  13. Argonne Outloud Promo: The End of Water as We Know It (Jan. 28, 2016) |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic Argonne NationalArgonne National

  14. Argonne National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thIWalter H.4Office ofViable2AlaskaAprilArgonneArgonne

  15. A photocathode rf gun design for a mm-wave linac-based FEL

    SciTech Connect (OSTI)

    Nassiri, A.; Berenc, T,; Foster, J.; Waldschmidt, G.; Zhou, J.

    1995-07-01

    In recent years, advances in the rf gun technology have made it possible to produce small beam emittances suitable for short period microundulators which take advantage of the low emittance beam to reduce the wavelength of FELs. At the Advanced Photon Source, we are studying the design of a compact 50-MeV superconducting mm-wave linac-based FEL for the production of short wavelengths ({approximately}300 nm) to carry out FEL demonstration experiments. The electron source considered for the linac is a 30- GHz, 3 1/2-cell {pi}-mode photocathode rf gun. For cold model rf measurements a 15-GHz prototype structure was fabricated. Here we report on the design, numerical modelling and the initial cold-model rf measurement results on the 15-GHz prototype structure.

  16. Demonstration of a laserwire emittance scanner for the CERN LINAC4 H- Beam

    E-Print Network [OSTI]

    Hofmann, T; Bosco, A; Gibson, S M; Roncarolo, F; Boorman, G; Raich, U; Bravin, E; Pozimski, J K; Letchford, A; Gabor, C

    2015-01-01

    A non-invasive, compact laserwire system has been developed to measure the transverse emittance of an H- beam and has been demonstrated at the new LINAC4 injector for the LHC at CERN. Light from a low power, pulsed laser source is conveyed via fibre to collide with the H- beam, a fraction of which is neutralized and then intercepted by a downstream diamond detector. Scanning the focused laser across the H- beam and measuring the distribution of the photo-neutralized particles enables the transverse emittance to be reconstructed. The vertical phase-space distribution of a 3 MeV beam during LINAC4 commissioning has been measured by the laserwire and verified with a conventional slit and grid method.

  17. The Argonne Leadership Computing Facility 2010 annual report.

    SciTech Connect (OSTI)

    Drugan, C.

    2011-05-09

    Researchers found more ways than ever to conduct transformative science at the Argonne Leadership Computing Facility (ALCF) in 2010. Both familiar initiatives and innovative new programs at the ALCF are now serving a growing, global user community with a wide range of computing needs. The Department of Energy's (DOE) INCITE Program remained vital in providing scientists with major allocations of leadership-class computing resources at the ALCF. For calendar year 2011, 35 projects were awarded 732 million supercomputer processor-hours for computationally intensive, large-scale research projects with the potential to significantly advance key areas in science and engineering. Argonne also continued to provide Director's Discretionary allocations - 'start up' awards - for potential future INCITE projects. And DOE's new ASCR Leadership Computing (ALCC) Program allocated resources to 10 ALCF projects, with an emphasis on high-risk, high-payoff simulations directly related to the Department's energy mission, national emergencies, or for broadening the research community capable of using leadership computing resources. While delivering more science today, we've also been laying a solid foundation for high performance computing in the future. After a successful DOE Lehman review, a contract was signed to deliver Mira, the next-generation Blue Gene/Q system, to the ALCF in 2012. The ALCF is working with the 16 projects that were selected for the Early Science Program (ESP) to enable them to be productive as soon as Mira is operational. Preproduction access to Mira will enable ESP projects to adapt their codes to its architecture and collaborate with ALCF staff in shaking down the new system. We expect the 10-petaflops system to stoke economic growth and improve U.S. competitiveness in key areas such as advancing clean energy and addressing global climate change. Ultimately, we envision Mira as a stepping-stone to exascale-class computers that will be faster than petascale-class computers by a factor of a thousand. Pete Beckman, who served as the ALCF's Director for the past few years, has been named director of the newly created Exascale Technology and Computing Institute (ETCi). The institute will focus on developing exascale computing to extend scientific discovery and solve critical science and engineering problems. Just as Pete's leadership propelled the ALCF to great success, we know that that ETCi will benefit immensely from his expertise and experience. Without question, the future of supercomputing is certainly in good hands. I would like to thank Pete for all his effort over the past two years, during which he oversaw the establishing of ALCF2, the deployment of the Magellan project, increases in utilization, availability, and number of projects using ALCF1. He managed the rapid growth of ALCF staff and made the facility what it is today. All the staff and users are better for Pete's efforts.

  18. Analysis of the Argonne distance tabletop exercise method.

    SciTech Connect (OSTI)

    Tanzman, E. A.; Nieves, L. A.; Decision and Information Sciences

    2008-02-14

    The purpose of this report is to summarize and evaluate the Argonne Distance Tabletop Exercise (DISTEX) method. DISTEX is intended to facilitate multi-organization, multi-objective tabletop emergency response exercises that permit players to participate from their own facility's incident command center. This report is based on experience during its first use during the FluNami 2007 exercise, which took place from September 19-October 17, 2007. FluNami 2007 exercised the response of local public health officials and hospitals to a hypothetical pandemic flu outbreak. The underlying purpose of the DISTEX method is to make tabletop exercising more effective and more convenient for playing organizations. It combines elements of traditional tabletop exercising, such as scenario discussions and scenario injects, with distance learning technologies. This distance-learning approach also allows playing organizations to include a broader range of staff in the exercise. An average of 81.25 persons participated in each weekly webcast session from all playing organizations combined. The DISTEX method required development of several components. The exercise objectives were based on the U.S. Department of Homeland Security's Target Capabilities List. The ten playing organizations included four public health departments and six hospitals in the Chicago area. An extent-of-play agreement identified the objectives applicable to each organization. A scenario was developed to drive the exercise over its five-week life. Weekly problem-solving task sets were designed to address objectives that could not be addressed fully during webcast sessions, as well as to involve additional playing organization staff. Injects were developed to drive play between webcast sessions, and, in some cases, featured mock media stories based in part on player actions as identified from the problem-solving tasks. The weekly 90-minute webcast sessions were discussions among the playing organizations that were moderated by a highly-qualified public health physician, who reviewed key scenario developments and player actions, as well as solicited input from each playing organization. The exercise control structure included trusted agents who oversaw exercise planning, playing organization points of contact to ensure exercise coordination, and exercise controller/evaluators to initiate and oversee exercise play. A password-protected exercise website was designed for FluNami 2007 to serve as a compartmentalized central information source, and for transmitting exercise documents. During the course of FluNami 2007, feedback on its quality was collected from players and controller/evaluators. Player feedback was requested at the conclusion of each webcast, upon completion of each problem-solving task, and on October 17, 2007, after the final webcast session had ended. The overall average score given to FluNami 2008 by the responding players was 3.9 on a five-point scale. In addition, suggestions for improving the process were provided by Argonne controller/evaluators after the exercise concluded. A series of recommendations was developed based on feedback from the players and controller/evaluators. These included improvements to the exercise scope and objectives, the problem-solving tasks, the scenarios, exercise control, the webcast sessions, the exercise website, and the player feedback process.

  19. Hydrological conditions at the 800 Area at Argonne National Laboratory

    SciTech Connect (OSTI)

    Patton, T.L.; Pearl, R.H.; Tsai, S.Y.

    1990-08-01

    This study examined the hydrological conditions of the glacial till underlying the 800 Area sanitary landfill at Argonne National Laboratory (ANL) near Lemont, Illinois. The study's purpose was to review and summarize hydrological data collected by ANL's Environment, Safety, and Health Department and to characterize, on the basis of these data, the groundwater movement and migration of potential contaminants in the area. Recommendations for further study have been made based on the findings of this review. The 800 Area landfill is located on the western edge of ANL, just south of Westgate Road. It has been in operation since 1966 and has been used for the disposal of sanitary, general refuse. From 1969 through 1978, however, substantial quantities of liquid organic and inorganic wastes were disposed of in a French drain'' at the northeast corner of the landfill. The 800 Area landfill is underlain by a silty clay glacial till. Dolomite bedrock underlies the till at an average depth of about 45.6 m. Trace levels of organic contaminants and radionuclides have been detected in groundwater samples from wells completed in the till. Fractures in the clay as well as sand and gravel lenses present in the till could permit these contaminants to migrate downward to the dolomite aquifer. When this report was prepared, no chemical quality analysis have been made on groundwater samples from the dolomite. The study found that existing information about subsurface characteristics at the site is inadequate to identify potential pathways for contaminant migration. Recommended actions include installation of five new well clusters and one background well, thorough record-keeping, sample collection and analysis during borehole drilling, slug testing to measure hydraulic conductivity, topographic mapping, continued monitoring of groundwater levels and quality, and monitoring of the unsaturated zone. 17 refs., 13 figs., 4 tabs.

  20. Low-Z linac targets for low-MV gold nanoparticle radiation therapy

    SciTech Connect (OSTI)

    Tsiamas, P.; Mishra, P.; Berbeco, R. I.; Marcus, K.; Zygmanski, P. E-mail: Erno-Sajo@uml.edu; Cifter, F.; Sajo, E. E-mail: Erno-Sajo@uml.edu

    2014-02-15

    Purpose: To investigate the potential of low-Z/low-MV (low-Z) linac targets for gold nanoparticle radiotherapy (GNPT) and to determine the microscopic dose enhancement ratio (DER) due to GNP for the alternative beamlines. In addition, to evaluate the degradation of dose enhancement arising from the increased attenuation of x rays and larger skin dose in water for the low-MV beams compared to the standard linac. Methods: Monte Carlo simulations were used to compute dose and DER for various flattening-filter-free beams (2.5, 4, 6.5 MV). Target materials were beryllium, diamond, and tungsten-copper high-Z target. Target thicknesses were selected based on 20%, 60%, 70%, and 80% of the continuous slowing down approximation electron ranges for a given target material and energy. Evaluation of the microscopic DER was carried out for 100 nm GNP including the degradation factors due to beam attenuation. Results: The greatest increase in DER compared to the standard 6.5 MV linac was for a 2.5 MV Be-target (factor of ?2). Skin dose ranged from ?10% (Be, 6.5 MV-80%) to ?85% (Be, 2.5 MV-20%) depending on the target case. Attenuation of 2.5 MV beams at 22 cm was higher by ?75% compared with the standard beam. Taking into account the attenuation at 22 cm depth, the effective dose enhancement was up to ?60% above the DER of the high-Z target. For these cases the effective DER ranged between ?1.6 and 6 compared with the standard linac. Conclusions: Low-Z (2.5 MV) GNPT is possible even after accounting for greater beam attenuation for deep-seated tumors (22 cm) and the increased skin dose. Further, it can lead to significant sparing of normal tissue while simultaneously escalating the dose in the tumor cells.

  1. Mu2e Experiment at Fermilab: Calibration with Linac and Collimation System Grace Bluhma,c

    E-Print Network [OSTI]

    Gollin, George

    MeV electrons. Figure 2. Linac and collimation overview. II. Method MATLAB3 is used to simulate with a circular hole 1 m in 3 D. Hanselman, et al., Mastering MATLAB 7, 2005. See also R. Pratap, Getting Started with MATLAB 7, 2006 4 A0 photoinjector parameters, http://www-ap.fnal.gov/A0PI/INJII_info.html #12;3 mittance

  2. Linac Coherent Light Source (LCLS) Bunch-Length Monitor using Coherent Radiation

    SciTech Connect (OSTI)

    Wu, Juhao; Emma, P.; /SLAC

    2007-03-21

    The Linac Coherent Light Source (LCLS) is a SASE x-ray Free-Electron Laser (FEL) based on the final kilometer of the Stanford Linear Accelerator. One of the most critical diagnostic devices is the bunch length monitor (BLM), which is to be installed right after each compressor utilizing coherent radiation from the last bending magnet. We describe the components and the optical layout of such a BLM. Based on the setup geometry, we discuss some issues about the coherent radiation signal.

  3. EA-1975: LINAC Coherent Light Source-Il, SLAC National Accelerator Laboratory, Menlo Park, California

    Broader source: Energy.gov [DOE]

    DOE prepared an EA on the potential environmental impacts of a proposal to upgrade the existing LINAC Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. The proposed LCLS-II would extend the photon energy range, increase control over photon pulses, and enable two-color pump-probe experiments. The X-ray laser beams generated by LCLS-II would enable a new class of experiments: the simultaneous investigation of a material’s electronic and structural properties.

  4. Space charge compensation on the low energy beam transport of Linac4

    E-Print Network [OSTI]

    AUTHOR|(SzGeCERN)733270; Scrivens, Richard; Jesus Castillo, Santos

    Part of the upgrade program in the injector chains of the CERN accelerator complex is the replacement of the the proton accelerator Linac2 for the brand new Linac4 which will accelerate H$^-$ and its main goal is to increase the beam intensity in the next sections of the LHC accelerator chain. The Linac4 is now under commissioning and will use several ion sources to produce high intensity unbunched H$^-$ beams with different properties, and the low energy beam transport (LEBT) is the system in charge of match all these different beams to the Radio frequency quadrupole (RFQ). The space charge forces that spread the beam ions apart of each other and cause emittance growth limits the maximum intensity that can be transported in the LEBT, but the space charge of intense unbunched ion beams can be compensated by the generated ions by the impact ionization of the residual gas, which creates a source of secondary particles inside the beam pipe. For negative ion beams, the effect of the beam electric field is to ex...

  5. Analysis of Lifetime Data for the Linac 201 MHz Power Amplifiers

    SciTech Connect (OSTI)

    Elliot McCrory and Robert C. Webber

    2002-07-09

    This document analyzes data on the lifetime of the 201-MHz triode power amplifier (PA) vacuum tube, model number 7835, used in the low-energy half of the Linac. We observe that a 7835 power amplifier vacuum tube has historically provided about one and one-third years service in the Linac. The lifetime of recently re-manufactured tubes is somewhat less, but it is not clear if this is because the manufacturer is ''loosing their touch,'' or because tubes cannot be effectively rebuilt after a certain number of times. Taking into account the expected tube lifetimes, the statistical fluctuations on this number, and the amount of time it takes for the manufacturer to make good tubes, we require about 14 tubes either operating, ready as good spares or being manufactured, in order to have sufficient spares to run the Linac. As a hedge against supplier drop out, we need to increase our inventory of good spare tubes by about three tubes per year for the next few years.

  6. Solid state power amplifier as 805 MHz master source for the LANSCE coupled-cavity linac

    SciTech Connect (OSTI)

    Lyles, J.; Davis, J.

    1998-12-31

    From 100 to 800 MeV, the Los Alamos Neutron Science Center (LANSCE) proton linac receives RF power from forty-four 1.25 MW klystrons at 805 Megahertz (MHz). A single master RF source provides a continuous high level phase reference signal which drives the klystrons along the 731 meter-long linac through a coaxial transmission line. A single point failure of this system can deenergize the entire coupled-cavity linac (CCL) RF plant. The authors replaced a physically large air-cooled tetrode amplifier with a compact water-cooled unit based on modular amplifier pallets developed at LANSCE. Each 600 Watt pallet utilizes eight push-pull bipolar power transistor pairs operated in class AB. Four of these can easily provide the 2000 watt reference carrier from the stable master RF source. A radial splitter and combiner parallels the modules. This amplifier has proven to be completely reliable after two years of operation without failure. A second unit was constructed and installed for redundancy, and the old tetrode system was removed in 1998. The compact packaging for cooling, DC power, impedance matching, RF interconnection, and power combining met the electrical and mechanical requirements. CRT display of individual collector currents and RF levels is made possible with built-in samplers and a VXI data acquisition unit.

  7. Authorized limits for disposal of PCB capacitors from Buildings 361 and 391 at Argonne National Laboratory, Argonne, Illinois.

    SciTech Connect (OSTI)

    Cheng, J.-J.; Chen, S.-Y.; Environmental Science Division

    2009-12-22

    This report contains data and analyses to support the approval of authorized release limits for the clearance from radiological control of polychlorinated biphenyl (PCB) capacitors in Buildings 361 and 391 at Argonne National Laboratory, Argonne, Illinois. These capacitors contain PCB oil that must be treated and disposed of as hazardous waste under the Toxic Substances Control Act (TSCA). However, they had been located in radiological control areas where the potential for neutron activation existed; therefore, direct release of these capacitors to a commercial facility for PCB treatment and landfill disposal is not allowable unless authorized release has been approved. Radiological characterization found no loose contamination on the exterior surface of the PCB capacitors; gamma spectroscopy analysis also showed the radioactivity levels of the capacitors were either at or slightly above ambient background levels. As such, conservative assumptions were used to expedite the analyses conducted to evaluate the potential radiation exposures of workers and the general public resulting from authorized release of the capacitors; for example, the maximum averaged radioactivity levels measured for capacitors nearest to the beam lines were assumed for the entire batch of capacitors. This approach overestimated the total activity of individual radionuclide identified in radiological characterization by a factor ranging from 1.4 to 640. On the basis of this conservative assumption, the capacitors were assumed to be shipped from Argonne to the Clean Harbors facility, located in Deer Park, Texas, for incineration and disposal. The Clean Harbors facility is a state-permitted TSCA facility for treatment and disposal of hazardous materials. At this facility, the capacitors are to be shredded and incinerated with the resulting incineration residue buried in a nearby landfill owned by the company. A variety of receptors that have the potential of receiving radiation exposures were analyzed. Based on the dose assessment results, it is indicated that, if the disposition activities are completed within a year, the maximum individual dose would be about 0.021 mrem/yr, which is about 0.02% of the primary dose limit of 100 mrem/yr set by U.S. Department of Energy (DOE) for members of the public. The maximum individual dose was associated with a conservative and unlikely scenario involving a hypothetical farmer who intruded the landfill area to set up a subsistence living above the disposal area 30 years after burial of the incineration residue. Potential collective dose for worker and the general public combined was estimated to be less than 4 x 10{sup -4} person-rem/yr, about 0.004% of the DOE authorized release objective of 10 person-rem/yr for collective exposure. In reality, the actual radiation doses incurred by workers and the general public are expected to be at least two orders of magnitude lower than the estimated values. To follow the ALARA (as low as reasonably achievable) principle of reducing potential radiation exposures associated with authorized release of the PCB capacitors, a dose constraint of 1 mrem/yr, corresponding to a small fraction of the 25 mrem/yr limit set by DOE, was initially used as a reference to derive the authorized release limits. On the basis of the dose assessment results, the following authorized release limits are proposed - 0.6 pCi/g for Mn-54, 0.6 pCi/g for Na-22, 0.1 pCi/g for Co-57, and 2.3 pCi/g for Co-60, with a corresponding maximum individual dose of 0.21 mrem/yr. This maximum dose, about 0.2% of the DOE primary dose limit of 100 mrem/yr for members of the public from all sources and exposure pathways, was then selected as the final dose constraint for releasing the PCB capacitors through the authorized process. The proposed authorized release limits would satisfy the DOE requirements for the release of non-real properties to a commercial treatment and disposal facility. In addition, due to the relatively short half-lives (< 5.27 years) of radionuclides of concern, there will be no long-term buil

  8. Google+ Virtual Field Trip on Vehicle Electrification at Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    Don't miss this exclusive peek into the U.S. Department of Energy's Argonne National Laboratory. Attendees will meet three researchers who will explain a different phase of vehicle electrification research. This field trip is very similar to the tou

  9. Argonne National Laboratory-East site environmental report for calendar year 1995

    SciTech Connect (OSTI)

    Golchert, N.W.; Kolzow, R.G.

    1996-09-01

    This report presents the environmental report for the Argonne National Laboratory-East for the year of 1995. Topics discussed include: general description of the site including climatology, geology, seismicity, hydrology, vegetation, endangered species, population, water and land use, and archaeology; compliance summary; environmental program information; environmental nonradiological program information; ground water protection; and radiological monitoring program.

  10. Contributions to the FEL2002 Conference, September 9-13, 2002 in Argonne, USA

    E-Print Network [OSTI]

    Contributions to the FEL2002 Conference, September 9-13, 2002 in Argonne, USA October 2002, TESLA-FEL of the statistical properties of the radiation from a VUV SASE FEL operating in the femtosecond regime of Statistical Properties of the Third Harmonic of the SASE FEL Radiation

  11. Update on intrusive characterization of mixed contact-handled transuranic waste at Argonne-West

    SciTech Connect (OSTI)

    Dwight, C.C.; Jensen, B.A.; Bryngelson, C.D.; Duncan, D.S.

    1997-02-03

    Argonne National Laboratory and Lockheed Martin Idaho Technologies Company have jointly participated in the Department of Energy`s (DOE) Waste Isolation Pilot Plant (WIPP) Transuranic Waste Characterization Program since 1990. Intrusive examinations have been conducted in the Waste Characterization Area, located at Argonne-West in Idaho Falls, Idaho, on over 200 drums of mixed contact-handled transuranic waste. This is double the number of drums characterized since the last update at the 1995 Waste Management Conference. These examinations have provided waste characterization information that supports performance assessment of WIPP and that supports Lockheed`s compliance with the Resource Conservation and Recovery Act. Operating philosophies and corresponding regulatory permits have been broadened to provide greater flexibility and capability for waste characterization, such as the provision for minor treatments like absorption, neutralization, stabilization, and amalgamation. This paper provides an update on Argonne`s intrusive characterization permits, procedures, results, and lessons learned. Other DOE sites that must deal with mixed contact-handled transuranic waste have initiated detailed planning for characterization of their own waste. The information presented herein could aid these other storage and generator sites in further development of their characterization efforts.

  12. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009.

    SciTech Connect (OSTI)

    Office of the Director

    2010-04-09

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energy Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In addition to meeting all reporting requirements during fiscal year 2009, our LDRD Office continues to enhance its electronic systems to streamline the LDRD management process. You will see from the following individual project reports that Argonne's researchers have once again done a superb job pursuing projects at the forefront of their respective fields and have contributed significantly to the advancement of Argonne's strategic thrusts. This work has not only attracted follow-on sponsorship in many cases, but is also proving to be a valuable basis upon which to continue realignment of our strategic portfolio to better match the Laboratory's Strategic Plan.

  13. Current- and lattice-matched tandem solar cell

    DOE Patents [OSTI]

    Olson, J.M.

    1985-10-21

    A multijunction (cascade) tandem photovoltaic solar cell device is fabricated of a Ga/sub x/In/sub 1-x/P (0.505 equal to or less than x equal to or less than 0.515) top cell semiconductor lattice-matched to a GaAs bottom cell semiconductor at a low resistance heterojunction, preferably a p/sup +//n/sup +/ heterojunction between the cells. The top and bottom cells are both lattice-matched and current-matched for high efficiency solar radiation conversion to electrical energy.

  14. An Overview of the SGP Tandem Differential Mobility Analyzer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TAPropaneandAn Overview of the SGP Tandem

  15. Argonne Leadership Computing Facility 2011 annual report : Shaping future supercomputing.

    SciTech Connect (OSTI)

    Papka, M.; Messina, P.; Coffey, R.; Drugan, C.

    2012-08-16

    The ALCF's Early Science Program aims to prepare key applications for the architecture and scale of Mira and to solidify libraries and infrastructure that will pave the way for other future production applications. Two billion core-hours have been allocated to 16 Early Science projects on Mira. The projects, in addition to promising delivery of exciting new science, are all based on state-of-the-art, petascale, parallel applications. The project teams, in collaboration with ALCF staff and IBM, have undertaken intensive efforts to adapt their software to take advantage of Mira's Blue Gene/Q architecture, which, in a number of ways, is a precursor to future high-performance-computing architecture. The Argonne Leadership Computing Facility (ALCF) enables transformative science that solves some of the most difficult challenges in biology, chemistry, energy, climate, materials, physics, and other scientific realms. Users partnering with ALCF staff have reached research milestones previously unattainable, due to the ALCF's world-class supercomputing resources and expertise in computation science. In 2011, the ALCF's commitment to providing outstanding science and leadership-class resources was honored with several prestigious awards. Research on multiscale brain blood flow simulations was named a Gordon Bell Prize finalist. Intrepid, the ALCF's BG/P system, ranked No. 1 on the Graph 500 list for the second consecutive year. The next-generation BG/Q prototype again topped the Green500 list. Skilled experts at the ALCF enable researchers to conduct breakthrough science on the Blue Gene system in key ways. The Catalyst Team matches project PIs with experienced computational scientists to maximize and accelerate research in their specific scientific domains. The Performance Engineering Team facilitates the effective use of applications on the Blue Gene system by assessing and improving the algorithms used by applications and the techniques used to implement those algorithms. The Data Analytics and Visualization Team lends expertise in tools and methods for high-performance, post-processing of large datasets, interactive data exploration, batch visualization, and production visualization. The Operations Team ensures that system hardware and software work reliably and optimally; system tools are matched to the unique system architectures and scale of ALCF resources; the entire system software stack works smoothly together; and I/O performance issues, bug fixes, and requests for system software are addressed. The User Services and Outreach Team offers frontline services and support to existing and potential ALCF users. The team also provides marketing and outreach to users, DOE, and the broader community.

  16. OPTIMIZATION OF a-SiGe BASED TRIPLE, TANDEM AND SINGLE-JUNCTION SOLAR Xunming Deng

    E-Print Network [OSTI]

    Deng, Xunming

    OPTIMIZATION OF a-SiGe BASED TRIPLE, TANDEM AND SINGLE-JUNCTION SOLAR CELLS Xunming Deng Department, tandem and triple-junction a-SiGe based solar cells and materials [6-19]. Much of the research is also light and bias voltage for the measurement of multiple-junction cells. Materials characterization using

  17. Single and Tandem Axial p-i-n Nanowire Photovoltaic Devices

    E-Print Network [OSTI]

    Xie, Xiaoliang Sunney

    Single and Tandem Axial p-i-n Nanowire Photovoltaic Devices Thomas J. Kempa,, Bozhi Tian,, Dong Rip-i-n+-p+-i-n silicon nanowire (SiNW) photovoltaic elements. Scanning electron microscopy images of selectively etched. Finally, a novel single SiNW tandem solar cell consisting of synthetic integration of two photovoltaic

  18. Optimization of the absorption efficiency of an amorphous-silicon thin-film tandem solar cell

    E-Print Network [OSTI]

    to bring down the cost of photovoltaic (PV) solar cells has gained huge momentum, and many strategiesOptimization of the absorption efficiency of an amorphous-silicon thin-film tandem solar cell-wave approach was used to compute the plane-wave absorptance of a thin-film tandem solar cell with a metallic

  19. Semi-transparent perovskite solar cells for tandems with silicon and CIGS

    E-Print Network [OSTI]

    McGehee, Michael

    -bandgap solar technology without adding much cost is to deposit a high bandgap polycrystalline semiconductorSemi-transparent perovskite solar cells for tandems with silicon and CIGS Colin D. Bailie,a M on top to make a tandem solar cell. We use a transparent silver nanowire electrode on perovskite solar

  20. Tandem colloidal quantum dot solar cells employing a graded recombination layer

    E-Print Network [OSTI]

    Sargent, Edward H. "Ted"

    -based photodetectors1­5 and photovoltaic6­12 devices to be tailored. Multi-junction solar cells made from a combi- bandgap single-junction solar cells. In principle it also allows tandem and multi-junction cellsTandem colloidal quantum dot solar cells employing a graded recombination layer Xihua Wang1 , Ghada

  1. Vehicle Dispatching Problem at the Container Terminal with Tandem Lift Quay Cranes 

    E-Print Network [OSTI]

    Xing, Yao

    2013-07-09

    , the tandem lift operations bring new challenges to the vehicle dispatching at terminals and this has become a big issue in the application of tandem lift QCs. The vehicle dispatching at terminals is to enhance the QCs’ productivities by coordinating the QCs...

  2. GREENGATE AND FABREEKA BELT PERFORMANCE IN A 3.5 MV TANDEM

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1413 GREENGATE AND FABREEKA BELT PERFORMANCE IN A 3.5 MV TANDEM F. CRISTOFORI Istituto di Fisica of belts used in the 3.5 MV Tandem of C.I.S.E. REVUE DE PHYSIQUE APPLIQUÃ?E TOME 12, OCTOBRE 1977, PAGE belts. Unfortunately there is little information regarding the performance of these belts

  3. Neutron Spectrometry for D­T Plasmas in JET, using a Tandem Annular-radiator Proton-recoil Spectrometer

    E-Print Network [OSTI]

    Neutron Spectrometry for D­T Plasmas in JET, using a Tandem Annular-radiator Proton-recoil Spectrometer

  4. ASSESSMENT OF MARKER PROTEINS IDENTIFIED IN WHOLE CELL EXTRACTS FOR BACTERIAL SPECIATION USING LIQUID CHROMATOGRAPHY ELECTROSPRAY IONIZATION TANDEM MASS SPECTROMETRY

    SciTech Connect (OSTI)

    Kooken, Jennifer M.; Fox, Karen F.; Fox, Alvin; Wunschel, David S.

    2014-02-02

    ASSESSMENT OF MARKER PROTEINS IDENTIFIED IN WHOLE CELL EXTRACTS FOR BACTERIAL SPECIATION USING LIQUID CHROMATOGRAPHY ELECTROSPRAY IONIZATION TANDEM MASS SPECTROMETRY

  5. Vehicle Technologies Office Merit Review 2014: Post-Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about post-test...

  6. EA-1148: Electrometallurgical Treatment Research and Demonstration Project in the Fuel Conditioning Facility at Argonne National Laboratory- West

    Broader source: Energy.gov [DOE]

    DOE prepared an EA that evaluated the potential environmental impacts associated with the research and demonstration of electrometallurgical technology for treating Experimental Breeder Reactor-II Spent Nuclear Fuel in the Fuel Conditioning Facility at Argonne National Laboratory-West.

  7. Vehicle Technologies Office Merit Review 2015: Post-Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about post-test...

  8. Bifacial Si Heterojunction-Perovskite Organic-Inorganic Tandem to Produce Highly Efficient Solar Cell

    E-Print Network [OSTI]

    Asadpour, Reza; Khan, M Ryyan; Alam, Muhammad A

    2015-01-01

    As single junction thin-film technologies, both Si heterojunction (HIT) and Perovskite based solar cells promise high efficiencies at low cost. One expects that a tandem cell design with these cells connected in series will improve the efficiency further. Using a self-consistent numerical modeling of optical and transport characteristics, however, we find that a traditional series connected tandem design suffers from low Jsc due to band-gap mismatch and current matching constraints. It requires careful thickness optimization of Perovskite to achieve any noticeable efficiency gain. Specifically, a traditional tandem cell with state-of-the-art HIT (24%) and Perovskite (20%) sub-cells provides only a modest tandem efficiency of ~25%. Instead, we demonstrate that a bifacial HIT/Perovskite tandem design decouples the optoelectronic constraints and provides an innovative path for extraordinary efficiencies. In the bifacial configuration, the same state-of the-art sub-cells achieve a normalized output of 33%, exceed...

  9. Wind stress measurements from the QuikSCAT-SeaWinds scatterometer tandem mission and the impact on an ocean model

    E-Print Network [OSTI]

    Talley, Lynne D.

    Wind stress measurements from the QuikSCAT-SeaWinds scatterometer tandem mission and the impact by the QuikSCAT-SeaWinds scatterometer tandem mission (April­October 2003) and their impact on ocean model simulation. The diurnal variability captured by twice-daily scatterometer wind from the tandem mission

  10. Nuclear Data Measurements at the RPI LINAC Y. Danon, R.C. Block, R. Bahran, M. Rapp, F. Saglime, C. Romano, J. Thompson

    E-Print Network [OSTI]

    Danon, Yaron

    neutron transmission and scattering measurements in the energy range from 0.4 to 20 MeV. Filtered neutron, a multiplicity capture gamma detector, a neutron scattering array of liquid scintillator detectors and a large The Gaerttner LINAC Laboratory at RPI uses a 60 MeV electron LINAC as a pulsed neutron source. The neutrons

  11. PHASE I ENERGY RECOVERY LINAC AT CORNELL UNIVERSITY* I. Bazarov, S. Belomestnykh, D. Bilderback, S. Gray, S. Gruner, Y. Li, M. Liepe, H. Padamsee, V.

    E-Print Network [OSTI]

    Gruner, Sol M.

    components, heat losses in the cryogenic system, and energy recovery efficiency. Study of halo formationPHASE I ENERGY RECOVERY LINAC AT CORNELL UNIVERSITY* I. Bazarov, S. Belomestnykh, D. Bilderback, S on the energy recovery linac (ERL) concept [1, 2]. Such a source will exceed the brightness of third generation

  12. Dipole Mode Deturning in the NLC Injector Linacs(LCC-0043)

    SciTech Connect (OSTI)

    Bane, K

    2004-04-13

    The injector linacs of the JLC/NLC project include the prelinac, the e{sup +} drive linac, the e{sup -} booster, and the e{sup +} booster. The first three will be S-band machines, the last one, an L-band machine. We have demonstrated that by using detuning alone in the accelerator structure design of these linacs we will have acceptable tolerances for emittance growth due to both injection jitter and structure misalignments, for both the nominal (2.8 ns) and alternate (1.4 ns) bunch spacings. For the L-band structure (a structure with 2{pi}/3 phase advance) we take a uniform distribution in synchronous dipole mode frequencies, with central frequency {bar {line_integral}} = 2.05 GHz and width {Delta}{sub {delta}{line_integral}} = 3%. For the S-band case our optimized structure ( a 3{pi}/4 structure) has a trapezoidal dipole frequency distribution with {bar {line_integral}} = 3.92 GHz, {Delta}{sub {delta}{line_integral}} = 5.8%, and tilt parameter {alpha} = -.2. The central frequency and phase advance were chosen to put bunches early in the train on the zero crossing of the wake and, at the same time, keep the gradient optimized. We have shown that for random manufacturing errors with rms 5 {micro}m, (equivalent to 10{sup -4} error in synchronous frequency), the injection jitter tolerances are still acceptable. We have also shown that the structure alignment tolerances are loose, and that the cell-to-cell misalignment tolerance is {approx}> 40 {micro}m. Note that in this report we have considered only the effects of modes in the first dipole passband.

  13. A 4 to 0.1 nm FEL Based on the SLAC Linac

    SciTech Connect (OSTI)

    Pellegrini, C.; /UCLA

    2012-06-05

    The author show that using existing electron gun technology and a high energy linac like the one at SLAC, it is possible to build a Free Electron Laser operating around the 4 nm water window. A modest improvement in the gun performance would further allow to extend the FEL to the 0.1 nm region. Such a system would produce radiation with a brightness many order of magnitude above that of any synchrotron radiation source, existing or under construction, with laser power in the multigawatt region and subpicosecond pulse length.

  14. Developments and Tests of a 700 MHz Cryomodule for the Superconducting Linac of MYRRHA

    E-Print Network [OSTI]

    Bouly, F; Bosotti, A; Pierini, P; El Yakoubi, M; Berthelot, S; Biarrotte, J-L; Joly, C; Lesrel, J; Rampnoux, E

    2013-01-01

    The MYRRHA projects aims at the construction of an Accelerator Driven System demonstrator. The criticality will be sustained by an external spallation neutron flux; produced thanks to a 600 MeV high intensity proton beam. This beam will be delivered by a superconducting linac which must fulfil very stringent reliability requirements. To carry out “real scale” reliability-oriented experiments a 700 MHz Cryomodule was developed. Several tests were performed to commission the experimental set-up. We review here the obtained results and the lessons learnt by operating this module, as well as the on-going developments.

  15. Design of the MYRRHA 17-600 MeV Superconducting Linac

    E-Print Network [OSTI]

    Biarrotte, J-L; Bouly, F; Carneiro, J-P; Vandeplassche, D

    2013-01-01

    The goal of the MYRRHA project is to demonstrate the technical feasibility of transmutation in a 100MWth Accelerator Driven System (ADS) by building a new flexible irradiation complex in Mol (Belgium). The MYRRHA facility requires a 600 MeV accelerator delivering a maximum proton flux of 4 mA in continuous operation, with an additional requirement for exceptional reliability. This paper will briefly describe the beam dynamics design of the main superconducting linac section which covers the 17 to 600 MeV energy range and requires enhanced fault-tolerance capabilities.

  16. Study on design of superconducting proton linac for accelerator driven subcritical nuclear power system

    E-Print Network [OSTI]

    Yu Qi; Xu Tao Guang

    2002-01-01

    As a prior option of the next generation of energy source, the accelerator driven subcritical nuclear power system (ADS) can use efficiently the uranium and thorium resource, transmute the high-level long-lived radioactive wastes and raise nuclear safety. The ADS accelerator should provide the proton beam with tens megawatts. The superconducting linac (SCL) is a good selection of ADS accelerator because of its high efficiency and low beam loss rate. It is constitute by a series of the superconducting accelerating cavities. The cavity geometry is determined by means of the electromagnetic field computation. The SCL main parameters are determined by the particle dynamics computation

  17. Lung dosimetry in a linac-MRI radiotherapy unit with a longitudinal magnetic field

    SciTech Connect (OSTI)

    Kirkby, C.; Murray, B.; Rathee, S.; Fallone, B. G. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Medical Physics, Cross Cancer Institute, Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Medical Physics, Cross Cancer Institute, Department of Oncology and Department of Physics, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada)

    2010-09-15

    Purpose: There is interest in developing linac-MR systems for MRI-guided radiation therapy. To date, the designs for such linac-MR devices have been restricted to a transverse geometry where the static magnetic field is oriented perpendicular to the direction of the incident photon beam. This work extends possibilities in this field by proposing and examining by Monte Carlo simulations, a probable longitudinal configuration where the magnetic field is oriented in the same direction as the photon beam. Methods: The EGSnrc Monte Carlo (MC) radiation transport codes with algorithms implemented to account for the magnetic field deflection of charged particles were used to compare dose distributions for linac-MR systems in transverse and longitudinal geometries. Specifically, the responses to a 6 MV pencil photon beam incident on water and lung slabs were investigated for 1.5 and 3.0 T magnetic fields. Further a five field lung plan was simulated in the longitudinal and transverse geometries across a range of magnetic field strengths from 0.2 through 3.0 T. Results: In a longitudinal geometry, the magnetic field is shown to restrict the radial spread of secondary electrons to a small degree in water, but significantly in low density tissues such as lung in contrast to the lateral shift in dose distribution seen in the transverse geometry. These effects extend to the patient case, where the longitudinal configuration demonstrated dose distributions more tightly confined to the primary photon fields, which increased dose to the planning target volume (PTV), bettered dose homogeneity within a heterogeneous (in density) PTV, and reduced the tissue interface effects associated with the transverse geometry. Conclusions: Dosimetry issues observed in a transverse linac-MR geometry such as changes to the depth dose distribution and tissue interface effects were significantly reduced or eliminated in a longitudinal geometry on a representative lung plan. Further, an increase in dose to the PTV, resulting from the magnetic field confining electrons to the forward direction, shows potential for a reduction in dose to the surrounding tissues.

  18. The Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ferguson, Ken R.; Bucher, Maximilian; Bozek, John D.; Carron, Sebastian; Castagna, Jean-Charles; Coffee, Ryan; Curiel, G. Ivan; Holmes, Michael; Krzywinski, Jacek; Messerschmidt, Marc; et al

    2015-05-01

    The Atomic, Molecular and Optical Science (AMO) instrument at the Linac Coherent Light Source (LCLS) provides a tight soft X-ray focus into one of three experimental endstations. The flexible instrument design is optimized for studying a wide variety of phenomena requiring peak intensity. There is a suite of spectrometers and two photon area detectors available. An optional mirror-based split-and-delay unit can be used for X-ray pump–probe experiments. Recent scientific highlights illustrate the imaging, time-resolved spectroscopy and high-power density capabilities of the AMO instrument.

  19. The X-ray correlation spectroscopy instrument at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Alonso-Mori, Roberto; Caronna, Chiara; Chollet, Matthieu; Curtis, Robin; Damiani, Daniel S.; Defever, Jim; Feng, Yiping; Flath, Daniel L.; Glownia, James M.; Lee, Sooheyong; et al

    2015-03-03

    The X-ray Correlation Spectroscopy instrument is dedicated to the study of dynamics in condensed matter systems using the unique coherence properties of free-electron lasers. It covers a photon energy range of 4–25 keV. The intrinsic temporal characteristics of the Linac Coherent Light Source, in particular the 120 Hz repetition rate, allow for the investigation of slow dynamics (milliseconds) by means of X-ray photon correlation spectroscopy. Double-pulse schemes could probe dynamics on the picosecond timescale. In addition, a description of the instrument capabilities and recent achievements is presented.

  20. Designs for a Linac-Ring LHeC (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing BacteriaConnectlaser-solid interactionCrystalDesigning aDesigns for a Linac-Ring

  1. Linac Coherent Light Source (LCLS) | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E C H2015Tray and| NationalLinac Coherent

  2. OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report appeNDIX F

    E-Print Network [OSTI]

    OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report ­ appeNDIX F presentation;OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report ­ appeNDIX F 2 #12;OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report ­ appeNDIX F 3 #12;OctOber 2011 | ArgOnne n

  3. Status of High Performance PV: Polycrystalline Thin-Film Tandems

    SciTech Connect (OSTI)

    Symko-Davies, M.

    2005-02-01

    The High-Performance Photovoltaic (HiPerf PV) Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and our environment. The HiPerf PV Project aims at exploring the ultimate performance limits of existing PV technologies, approximately doubling their sunlight-to-electricity conversion efficiencies during its course. This work includes bringing thin-film cells and modules toward 25% and 20% efficiencies, respectively, and developing multijunction concentrator cells and modules able to convert more than one-third of the sun's energy to electricity (i.e., 33% efficiency). This paper will address recent accomplishments of the NREL in-house research effort involving polycrystalline thin-film tandems, as well as the research efforts under way in the subcontracted area.

  4. Argonne's Michael Wang talks about the GREET Model for reducing vehicle emi

    SciTech Connect (OSTI)

    Michael Wang

    2012-07-25

    To fully evaluate energy and emission impacts of advanced vehicle technologies and new transportation fuels, the fuel cycle from wells to wheels and the vehicle cycle through material recovery and vehicle disposal need to be considered. Sponsored by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE), Argonne has developed a full life-cycle model called GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation). It allows researchers and analysts to evaluate various vehicle and fuel combinations on a full fuel-cycle/vehicle-cycle basis. The first version of GREET was released in 1996. Since then, Argonne has continued to update and expand the model. The most recent GREET versions are the GREET 1 2012 version for fuel-cycle analysis and GREET 2.7 version for vehicle-cycle analysis.

  5. Special Report on "Allegations of Conflict of Interest Regarding Licensing of PROTECT by Argonne National Laboratory"

    SciTech Connect (OSTI)

    None

    2009-08-01

    In February 2009, the Office of Inspector General received a letter from Congressman Mark Steven Kirk of Illinois, which included constituent allegations that an exclusive technology licensing agreement by Argonne National Laboratory was tainted by inadequate competition, conflicts of interest, and other improprieties. The technology in question was for the Program for Response Options and Technology Enhancements for Chemical/Biological Terrorism, commonly referred to as PROTECT. Because of the importance of the Department of Energy's technology transfer program, especially as implementation of the American Recovery and Reinvestment Act matures, we reviewed selected aspects of the licensing process for PROTECT to determine whether the allegations had merit. In summary, under the facts developed during our review, it was understandable that interested parties concluded that there was a conflict of interest in this matter and that Argonne may have provided the successful licensee with an unfair advantage. In part, this was consistent with aspects of the complaint from Congressman Kirk's constituent.

  6. Argonne's Michael Wang talks about the GREET Model for reducing vehicle emi

    ScienceCinema (OSTI)

    Michael Wang

    2013-06-05

    To fully evaluate energy and emission impacts of advanced vehicle technologies and new transportation fuels, the fuel cycle from wells to wheels and the vehicle cycle through material recovery and vehicle disposal need to be considered. Sponsored by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE), Argonne has developed a full life-cycle model called GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation). It allows researchers and analysts to evaluate various vehicle and fuel combinations on a full fuel-cycle/vehicle-cycle basis. The first version of GREET was released in 1996. Since then, Argonne has continued to update and expand the model. The most recent GREET versions are the GREET 1 2012 version for fuel-cycle analysis and GREET 2.7 version for vehicle-cycle analysis.

  7. Argonne National Laboratory Physics Division annual report, January--December 1996

    SciTech Connect (OSTI)

    Thayer, K.J. [ed.

    1997-08-01

    The past year has seen several of the Physics Division`s new research projects reach major milestones with first successful experiments and results: the atomic physics station in the Basic Energy Sciences Research Center at the Argonne Advanced Photon Source was used in first high-energy, high-brilliance x-ray studies in atomic and molecular physics; the Short Orbit Spectrometer in Hall C at the Thomas Jefferson National Accelerator (TJNAF) Facility that the Argonne medium energy nuclear physics group was responsible for, was used extensively in the first round of experiments at TJNAF; at ATLAS, several new beams of radioactive isotopes were developed and used in studies of nuclear physics and nuclear astrophysics; the new ECR ion source at ATLAS was completed and first commissioning tests indicate excellent performance characteristics; Quantum Monte Carlo calculations of mass-8 nuclei were performed for the first time with realistic nucleon-nucleon interactions using state-of-the-art computers, including Argonne`s massively parallel IBM SP. At the same time other future projects are well under way: preparations for the move of Gammasphere to ATLAS in September 1997 have progressed as planned. These new efforts are imbedded in, or flowing from, the vibrant ongoing research program described in some detail in this report: nuclear structure and reactions with heavy ions; measurements of reactions of astrophysical interest; studies of nucleon and sub-nucleon structures using leptonic probes at intermediate and high energies; atomic and molecular structure with high-energy x-rays. The experimental efforts are being complemented with efforts in theory, from QCD to nucleon-meson systems to structure and reactions of nuclei. Finally, the operation of ATLAS as a national users facility has achieved a new milestone, with 5,800 hours beam on target for experiments during the past fiscal year.

  8. Scientists tune X-rays with tiny mirrors | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcomingmagnetoresistance | Argonne NationalScientists

  9. Electron Beam Energy Chirp Control with a Rectangular Corrugated Structure at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Zhen; Bane, Karl; Ding, Yantao; Huang, Zhirong; Iverson, Richard; Maxwell, Timothy; Stupakov, Gennady; Wang, Lanfa

    2015-01-30

    Electron beam energy chirp is an important parameter that affects the bandwidth and performance of a linac-based, free-electron laser. In this paper we study the wakefields generated by a beam passing between at metallic plates with small corrugations, and then apply such a device as a passive dechirper for the Linac Coherent Light Source (LCLS) energy chirp control with a multi-GeV and femtosecond electron beam. Similar devices have been tested in several places at relatively low energies (#24;100 MeV) and with relatively long bunches (> 1ps). In the parameter regime of the LCLS dechirper, with the corrugation size similar to the gap between the plates, the analytical solutions of the wakefields are no longer applicable, and we resort to a #12;field matching program to obtain the wakes. Based on the numerical calculations, we #12;fit the short-range, longitudinal wakes to simple formulas, valid over a large, useful parameter range. Finally, since the transverse wakefields - both dipole and quadrupole-are strong, we compute and include them in beam dynamics simulations to investigate the error tolerances when this device is introduced in the LCLS.

  10. Electron Beam Energy Chirp Control with a Rectangular Corrugated Structure at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Zhen; Bane, Karl; Ding, Yantao; Huang, Zhirong; Iverson, Richard; Maxwell, Timothy; Stupakov, Gennady; Wang, Lanfa

    2015-01-30

    Electron beam energy chirp is an important parameter that affects the bandwidth and performance of a linac-based, free-electron laser. In this paper we study the wakefields generated by a beam passing between at metallic plates with small corrugations, and then apply such a device as a passive dechirper for the Linac Coherent Light Source (LCLS) energy chirp control with a multi-GeV and femtosecond electron beam. Similar devices have been tested in several places at relatively low energies (#24;100 MeV) and with relatively long bunches (> 1ps). In the parameter regime of the LCLS dechirper, with the corrugation size similar tomore »the gap between the plates, the analytical solutions of the wakefields are no longer applicable, and we resort to a #12;field matching program to obtain the wakes. Based on the numerical calculations, we #12;fit the short-range, longitudinal wakes to simple formulas, valid over a large, useful parameter range. Finally, since the transverse wakefields - both dipole and quadrupole-are strong, we compute and include them in beam dynamics simulations to investigate the error tolerances when this device is introduced in the LCLS.« less

  11. Environment, Safety and Health Progress Assessment of the Argonne Illinois Site

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    This report documents the results of the US Department of Energy (DOE) Environment, Safety and Health (ES&H) Progress Assessment of the Argonne Illinois Site (AIS), near Chicago, Illinois, conducted from October 25 through November 9, 1993. During the Progress Assessment, activities included a selective review of the ES&H management systems and programs with principal focus on the DOE Office of Energy Research (ER); CH, which includes the Argonne Area Office; the University of Chicago; and the contractor`s organization responsible for operation of Argonne National Laboratory (ANL). The ES&H Progress Assessments are part of DOE`s continuing effort to institutionalize line management accountability and the self-assessment process throughout DOE and its contractor organizations. The purpose of the AIS ES&H Progress Assessment was to provide the Secretary of Energy, senior DOE managers, and contractor management with concise independent information on the following: change in culture and attitude related to ES&H activities; progress and effectiveness of the ES&H corrective actions resulting from the previous Tiger Team Assessment; adequacy and effectiveness of the ES&H self-assessment process of the DOE line organizations, the site management, and the operating contractor; and effectiveness of DOE and contractor management structures, resources, and systems to effectively address ES&H problems and new ES&H initiatives.

  12. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development Program Activities for FY 1994

    SciTech Connect (OSTI)

    1995-02-25

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R and D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R and D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle; assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five-Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory's LDRD Plan for FY 1994. Project summaries of research in the following areas are included: (1) Advanced Accelerator and Detector Technology; (2) X-ray Techniques for Research in Biological and Physical Science; (3) Nuclear Technology; (4) Materials Science and Technology; (5) Computational Science and Technology; (6) Biological Sciences; (7) Environmental Sciences: (8) Environmental Control and Waste Management Technology; and (9) Novel Concepts in Other Areas.

  13. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.

    SciTech Connect (OSTI)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  14. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2010.

    SciTech Connect (OSTI)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  15. Electron contamination modeling and reduction in a 1 T open bore inline MRI-linac system

    SciTech Connect (OSTI)

    Oborn, B. M.; Kolling, S.; Metcalfe, P. E.; Crozier, S.; Litzenberg, D. W.; Keall, P. J.

    2014-05-15

    Purpose: A potential side effect of inline MRI-linac systems is electron contamination focusing causing a high skin dose. In this work, the authors reexamine this prediction for an open bore 1 T MRI system being constructed for the Australian MRI-Linac Program. The efficiency of an electron contamination deflector (ECD) in purging electron contamination from the linac head is modeled, as well as the impact of a helium gas region between the deflector and phantom surface for lowering the amount of air-generated contamination. Methods: Magnetic modeling of the 1 T MRI was used to generate 3D magnetic field maps both with and without the presence of an ECD located immediately below the MLC’s. Forty-seven different ECD designs were modeled and for each the magnetic field map was imported into Geant4 Monte Carlo simulations including the linac head, ECD, and a 30 × 30 × 30 cm{sup 3} water phantom located at isocenter. For the first generation system, the x-ray source to isocenter distance (SID) will be 160 cm, resulting in an 81.2 cm long air gap from the base of the ECD to the phantom surface. The first 71.2 cm was modeled as air or helium gas, with the latter encased between two windows of 50 ?m thick high density polyethlyene. 2D skin doses (at 70 ?m depth) were calculated across the phantom surface at 1 × 1 mm{sup 2} resolution for 6 MV beams of field size of 5 × 5, 10 × 10, and 20 × 20 cm{sup 2}. Results: The skin dose was predicted to be of similar magnitude as the generic systems modeled in previous work, 230% to 1400% ofD {sub max} for 5 × 5 to 20 × 20 cm{sup 2}, respectively. Inclusion of the ECD introduced a nonuniformity to the MRI imaging field that ranged from ?20 to ?140 ppm while the net force acting on the ECD ranged from ?151 N to ?1773 N. Various ECD designs were 100% efficient at purging the electron contamination into the ECD magnet banks; however, a small percentage were scattered back into the beam and continued to the phantom surface. Replacing a large portion of the extended air-column between the ECD and phantom surface with helium gas is a key element as it significantly minimized the air-generated contamination. When using an optimal ECD and helium gas region, the 70 ?m skin dose is predicted to increase moderately inside a small hot spot over that of the case with no magnetic field present for the jaw defined square beams examined here. These increases include from 12% to 40% of D {sub max} for 5 × 5 cm{sup 2}, 18% to 55% of D {sub max} for 10 × 10 cm{sup 2}, and from 23% to 65% of D {sub max} for 20 × 20 cm{sup 2}. Conclusions: Coupling an efficient ECD and helium gas region below the MLCs in the 160 cm isocenter MRI-linac system is predicted to ameliorate the impact electron contamination focusing has on skin dose increases. An ECD is practical as its impact on the MRI imaging distortion is correctable, and the mechanical forces acting on it manageable from an engineering point of view.

  16. A Single-Shot Method for Measuring Femtosecond Bunch Length in Linac-Based Free-Electron Lasers

    SciTech Connect (OSTI)

    Huang, Z.; Bane, K.; Ding, Y.; Emma, P.; /SLAC

    2010-08-26

    There is growing interest in the generation and characterization of femtosecond and subfemtosecond pulses from linac-based free-electron lasers (FELs). In this report, following the method of Ricci and Smith [Phys. Rev. ST Accel. Beams 3, 032801 (2000)], we investigate the measurement of the longitudinal bunch profile of an ultrashort electron bunch produced by these FELs. We show that this method can be applied in a straightforward manner at x-ray FEL facilities such as the Linac Coherent Light Source by slightly adjusting the second bunch compressor followed by running the bunch on an rf zero-crossing phase of the final linac. We find that the linac wakefield strongly perturbs the measurement, and through analysis show that it can be compensated in a simple way. We demonstrate the effectiveness of this method and wakefield compensation through numerical simulations, including effects of coherent synchrotron radiation and longitudinal space charge. When used in conjunction with a high-resolution electron spectrometer, this method potentially reveals the temporal profile of the electron beam down to the femtosecond and subfemotsecond scale.

  17. Genealogy Reconstruction From Short Tandem Repeat Genotypes in an Amazonian Population

    E-Print Network [OSTI]

    Kidd, Kenneth

    Genealogy Reconstruction From Short Tandem Repeat Genotypes in an Amazonian Population FRANCESC-8005 KEY WORDS microsatellites; Surui; parentage ABSTRACT We have reconstructed partial genealogies or half sibs. The genealogies inferred show that instances of polygyny and polyandry (or, alternatively

  18. Tandem benzannulation-ring closing metathesis strategy for the synthesis of benzo-fused nitrogen heterocycles ;

    E-Print Network [OSTI]

    Mak, Xiao Yin

    2008-01-01

    A tandem benzannulation-ring closing metathesis strategy for the efficient synthesis of benzo-fused nitrogen heterocycles such as dihydroquinolines, benzazepines, and benzazocines has been developed. This strategy is based ...

  19. Supporting Information Tandem Catalytic Conversion of Glucose to 5-Hydroxymethylfurfural with

    E-Print Network [OSTI]

    Zhao, Huimin

    conducted in Kinesis microwave vials (Malta, NY). One unit (U) represents the conversion of 1.0 µmole1 Supporting Information Tandem Catalytic Conversion of Glucose to 5-Hydroxymethylfurfural

  20. Achieving High Performance Polymer Tandem Solar Cells via Novel Materials Design

    E-Print Network [OSTI]

    Dou, Letian

    2014-01-01

    polymers for organic solar cell applications. Chem. Rev.Hummelen, J. C. , Plastic solar cells. Adv. Funct. Mater.et al. , Ef?cient organic tandem solar cells based on small

  1. Analogy between MSE estimation theory and information theory in the study of tandem communication links 

    E-Print Network [OSTI]

    Piard, Veronique D.

    1994-01-01

    This research deals with developing an analogy between concepts in information theory and estimation theory in tandem communication problems. The analogy proposed by Messerschmitt [1] provides the intuitive basis for establishing a correspondence...

  2. Achieving High Performance Polymer Tandem Solar Cells via Novel Materials Design

    E-Print Network [OSTI]

    Dou, Letian

    2014-01-01

    1980s for inorganic multijunction cells and more recentlyGaInP/GaInAs/Ge multijunction solar cells. Appl. Phys. Lett.of tandem/multijunction organic solar cells is nontrivial.

  3. Synfuels from fusion: producing hydrogen with the Tandem Mirror Reactor and thermochemical cycles

    SciTech Connect (OSTI)

    Werner, R.W.; Ribe, F.L.

    1981-01-21

    This volume contains the following sections: (1) the Tandem Mirror fusion driver, (2) the Cauldron blanket module, (3) the flowing microsphere, (4) coupling the reactor to the process, (5) the thermochemical cycles, and (6) chemical reactors and process units. (MOW)

  4. WE-G-17A-09: Novel Magnetic Shielding Design for Inline and Perpendicular Integrated 6 MV Linac and 1.0 T MRI Systems

    SciTech Connect (OSTI)

    Li, X; Ma, B; Kuang, Y; Diao, X

    2014-06-15

    Purpose: The influence of fringe magnetic fields delivered by magnetic resonance imaging (MRI) on the beam generation and transportation in Linac is still a major challenge for the integration of linear accelerator and MRI (Linac-MRI). In this study, we investigated an optimal magnetic shielding design for Linac-MRI and further characterized the beam trajectory in electron gun. Methods: Both inline and perpendicular configurations were analyzed in this study. The configurations, comprising a Linac-MRI with a 100cm SAD and an open 1.0 T superconductive magnet, were simulated by the 3D finite element method (FEM). The steel shielding around the Linac was included in the 3D model, the thickness of which was varied from 1mm to 20mm, and magnetic field maps were acquired with and without additional shielding. The treatment beam trajectory in electron gun was evaluated using OPERA 3d SCALA with and without shielding cases. Results: When Linac was not shielded, the uniformity of diameter sphere volume (DSV) (30cm) was about 5 parts per million (ppm) and the fringe magnetic fields in electron gun were more than 0.3 T. With shielding, the magnetic fields in electron gun were reduced to less than 0.01 T. For the inline configuration, the radial magnetic fields in the Linac were about 0.02T. A cylinder steel shield used (5mm thick) altered the uniformity of DSV to 1000 ppm. For the perpendicular configuration, the Linac transverse magnetic fields were more than 0.3T, which altered the beam trajectory significantly. A 8mm-thick cylinder steel shield surrounding the Linac was used to compensate the output losses of Linac, which shifted the magnetic fields' uniformity of DSV to 400 ppm. Conclusion: For both configurations, the Linac shielding was used to ensure normal operation of the Linac. The effect of magnetic fields on the uniformity of DSV could be modulated by the shimming technique of the MRI magnet. NIH/NIGMS grant U54 GM104944, Lincy Endowed Assistant Professorship.

  5. Single and Tandem Stents in Sheep Iliac Arteries: Is There a Difference in Patency?

    SciTech Connect (OSTI)

    Schuermann, Karl; Vorwerk, Dierk; Buecker, Arno; Grosskortenhaus, Stefanie; Guenther, Rolf W. [Department of Diagnostic Radiology, University of Technology, Pauwelsstrasse 30, D-52057 Aachen (Germany)

    1998-09-15

    Purpose: To compare patency and neointima formation of single and tandem arterial stents. Methods: In each of six sheep, two Memotherm nitinol stents (tandem stents) were inserted into the external iliac artery on one side and a single stent into the artery on the opposite side. The size of the iliac lumen was assessed in the proximal, middle, and distal segments of the stents by intravascular ultrasound (IVUS) before, immediately after, and 1 month after implantation when the sheep were killed. Neointimal thickness was determined in the proximal, middle, and distal segments of each stent by light microscopy. Results: All stents remained patent. There was no significant difference in lumen and neointimal thickness between single and tandem stents. Cranial tandem stents showed a significantly wider lumen and smaller neointimal thickness than caudal tandem stents. In the proximal and distal segments, the lumen of the stents was significantly smaller and the neointimal thickness greater than in the middle segment; differences in neointimal thickness were significant only between the proximal and the middle segment. Conclusion: In an experimental setting, tandem stents did not interfere with one another with regard to patency and neointima formation when compared with a single contralateral stent. Neointimal thickening after stent insertion seems to be inversely related to the original arterial diameter.

  6. Commissioning of the first drift tube linac module in the Ground Test Accelerator

    SciTech Connect (OSTI)

    Johnson, K.F.; Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Bowling, S.; Cole, R.; Connolly, R.; Denney, P.; Erickson, J.; Gilpatrick, J.D.; Ingalls, W.B.; Kersteins, D.; Kraus, R.; Lysenko, W.P.; McMurry, D.; Mottershead, C.T.; Power, J.; Rose, C.; Rusthoi, D.P.; Sandoval, D.P.; Schneider, J.D.; Smith, M.; Vaughn, G.; Wadlinger, E.A.; Weiss, R.; Yuan, V.

    1993-06-01

    The Ground Test Accelerator (GTA) has the objective of verifying much of the technology required for producing high-brightness, high-current H{sup {minus}} beams. GTA commissioning is staged to verify the beam-dynamics design of each major accelerator component as it is brought on-line. The major components are the 35-keV H{sup {minus}} injector, the 2.5-MeV radio-frequency quadrupole (RFQ), the intertank matching section (IMS), the 3.2 MeV first 2{beta}{lambda} drift tube linac (DTL-1) module, and the 24-MeV GTA with 10 DTL modules. Results from the DTL-1 beam experiments will be presented.

  7. Note: Electronic damping of microphonics in superconducting resonators of a continuous wave linac

    SciTech Connect (OSTI)

    Joshi, Gopal; Sahu, Bhuban Kumar; Agarwal, Vivek; Kumar, Girish

    2014-02-15

    The paper presents an implementation technique to damp the microphonics in superconducting resonators utilizing the coupling between the electromagnetic and the mechanical modes of a resonator. In the technique used the resonant frequency variations are fed back to modulate the field amplitude through a suitable transfer function. Of the two transfer functions used in the experiments, one emulates a derivative action and is placed in a negative feedback configuration. The other transfer function is essentially a parallel combination of second order low pass filters and is used in a positive feedback configuration. Experiments with the Quarter Wave resonators of IUAC, New Delhi linac demonstrate that the damping of some of the modes increases significantly with the introduction of this feedback leading to a reduction in power required for field stabilization and quieter operation of the RF control system.

  8. Impact of the MLC on the MRI field distortion of a prototype MRI-linac

    SciTech Connect (OSTI)

    Kolling, Stefan; Keall, Paul; Oborn, Brad

    2013-12-15

    Purpose: To cope with intrafraction tumor motion, integrated MRI-linac systems for real-time image guidance are currently under development. The multileaf collimator (MLC) is a key component in every state-of-the-art radiotherapy treatment system, allowing for accurate field shaping and tumor tracking. This work quantifies the magnetic impact of a widely used MLC on the MRI field homogeneity for such a modality.Methods: The finite element method was employed to model a MRI-linac assembly comprised of a 1.0?T split-bore MRI magnet and the key ferromagnetic components of a Varian Millennium 120 MLC, namely, the leaves and motors. Full 3D magnetic field maps of the system were generated. From these field maps, the peak-to-peak distortion within the MRI imaging volume was evaluated over a 30?cm diameter sphere volume (DSV) around the isocenter and compared to a maximum preshim inhomogeneity of 300??T. Five parametric studies were performed: (1) The source-to-isocenter distance (SID) was varied from 100 to 200?cm, to span the range of a compact system to that with lower magnetic coupling. (2) The MLC model was changed from leaves only to leaves with motors, to determine the contribution to the total distortion caused by MLC leaves and motors separately. (3) The system was configured in the inline or perpendicular orientation, i.e., the linac treatment beam was oriented parallel or perpendicular to the magnetic field direction. (4) The treatment field size was varied from 0 × 0 to 20×20?cm{sup 2}, to span the range of clinical treatment fields. (5) The coil currents were scaled linearly to produce magnetic field strengths B{sub 0} of 0.5, 1.0, and 1.5?T, to estimate how the MLC impact changes with B{sub 0}.Results: (1) The MLC-induced MRI field distortion fell continuously with increasing SID. (2) MLC leaves and motors were found to contribute to the distortion in approximately equal measure. (3) Due to faster falloff of the fringe field, the field distortion was generally smaller in the perpendicular beam orientation. The peak-to-peak DSV distortion was below 300??T at SID?130?cm (perpendicular) and SID?140?cm (inline) for the 1.0?T design. (4) The simulation of different treatment fields was identified to cause dynamic changes in the field distribution. However, the estimated residual distortion was below 1.2?mm geometric distortion at SID?120?cm (perpendicular) and SID?130?cm (inline) for a 10?mT/m frequency-encoding gradient. (5) Due to magnetic saturation of the MLC materials, the field distortion remained constant at B{sub 0}>1.0?T.Conclusions: This work shows that the MRI field distortions caused by the MLC cannot be ignored and must be thoroughly investigated for any MRI-linac system. The numeric distortion values obtained for our 1.0?T magnet may vary for other magnet designs with substantially different fringe fields, however the concept of modest increases in the SID to reduce the distortion to a shimmable level is generally applicable.

  9. Performance of a beam-multiplexing diamond crystal monochromator at the Linac Coherent Light Source

    SciTech Connect (OSTI)

    Zhu, Diling, E-mail: dlzhu@slac.stanford.edu; Feng, Yiping; Lemke, Henrik T.; Fritz, David M.; Chollet, Matthieu; Glownia, J. M.; Alonso-Mori, Roberto; Sikorski, Marcin; Song, Sanghoon; Williams, Garth J.; Messerschmidt, Marc; Boutet, Sébastien; Robert, Aymeric [Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Stoupin, Stanislav; Shvyd'ko, Yuri V. [Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439 (United States); Terentyev, Sergey A.; Blank, Vladimir D. [Technological Institute of Superhard and Novel Carbon Materials, Tsentralnaya str. 7a, Troitsk, Moscow 142190 (Russian Federation); Driel, Tim B. van [Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Center for Molecular Movies, Department of Physics, Technical University of Denmark, DK-2800 Lyngby (Denmark)

    2014-06-15

    A double-crystal diamond monochromator was recently implemented at the Linac Coherent Light Source. It enables splitting pulses generated by the free electron laser in the hard x-ray regime and thus allows the simultaneous operations of two instruments. Both monochromator crystals are High-Pressure High-Temperature grown type-IIa diamond crystal plates with the (111) orientation. The first crystal has a thickness of ?100 ?m to allow high reflectivity within the Bragg bandwidth and good transmission for the other wavelengths for downstream use. The second crystal is about 300 ?m thick and makes the exit beam of the monochromator parallel to the incoming beam with an offset of 600 mm. Here we present details on the monochromator design and its performance.

  10. Medium Power 352 MHZ solid state pulsed RF amplifiers for the CERN LINAC4 Project

    E-Print Network [OSTI]

    Broere, J; Gómez Martínez, Y; Rossi, M

    2011-01-01

    Economic, modular and highly linear pulsed RF amplifiers have recently been developed to be used for the three buncher cavities in the CERN Linac4. The amplifiers are water-cooled and can provide up to 33 kW pulsed RF Power, 1.5 ms pulse length and 50 Hz repetition rate. Furthermore a 60 kW unit is under construction to provide the required RF Power for the debuncher cavity. The concept is based on 1.2 kW RF power modules using the latest 6th generation LDMOS technology. For integration into the CERN control environment the amplifiers have an internal industrial controller, which will provide easy control and extended diagnostic functions. This paper describes the construction, performance, including linearity, phase stability and EMC compliance tests

  11. Beam Based HOM Analysis of Accelerating Structures at the TESLA Test Facility Linac

    SciTech Connect (OSTI)

    Wendt, M.; Schreiber, S.; Castro, P.; Gossel, A.; /DESY; Huning, M.; /Fermilab; Devanz, G.; Jablonka, M.; Magne, C.; Napoly, O.; /Saclay; Baboi, N.; /SLAC

    2005-08-09

    The beam emittance in future linear accelerators for high energy physics and SASE-FEL applications depends highly on the field performance in the accelerating structures, i.e. the damping of higher order modes (HOM). Besides theoretical and laboratory analysis, a beam based analysis technique was established [1] at the TESLA Test Facility (TTF) linac. It uses a charge modulated beam of variable modulation frequency to excite dipole modes. This causes a modulation of the transverse beam displacement, which is observed at a downstream BPM and associated with a direct analysis of the modes at the HOM-couplers. A brief introduction of eigenmodes of a resonator and the concept of the wake potential is given. Emphasis is put on beam instrumentation and signal analysis aspects, required for this beam based HOM measurement technique.

  12. Longitudinal Dynamics of Twin Electron Bunches in a High-energy Linac

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Zhen [SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Tsinghua University, Beijing (China); Ding, Yuantao [SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Marinelli, Agostino [SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Huang, Zhirong [SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)

    2015-03-01

    The recent development of two-color x-ray free-electron lasers, as well as the successful demonstration of high-gradient witness bunch acceleration in a plasma, have generated strong interest in electron bunch trains, where two or more electron bunches are generated, accelerated and compressed in the same accelerating bucket. In this paper we give a detailed analysis of a twin-bunch technique in a high-energy linac. This method allows the generation of two electron bunches with high peak current and independent control of time delay and energy separation. We #12;find that the wake#12;fields in the accelerator structures play an important role in the twin-bunch compression, and through analysis show that they can be used to extend the available time delay range. Based on the theoretical model and simulations we propose several methods to achieve larger time delay.

  13. Demonstration of simultaneous experiments using thin crystal multiplexing at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Feng, Y.; Alonso-Mori, R.; Barends, T. R. M.; Blank, V. D.; Botha, S.; Chollet, M.; Damiani, D. S.; Doak, R. B.; Glownia, J. M.; Koglin, J. M.; et al

    2015-04-10

    Multiplexing of the Linac Coherent Light Source beam was demonstrated for hard X-rays by spectral division using a near-perfect diamond thin-crystal monochromator operating in the Bragg geometry. The wavefront and coherence properties of both the reflected and transmitted beams were well preserved, thus allowing simultaneous measurements at two separate instruments. In this report, the structure determination of a prototypical protein was performed using serial femtosecond crystallography simultaneously with a femtosecond time-resolved XANES studies of photoexcited spin transition dynamics in an iron spin-crossover system. The results of both experiments using the multiplexed beams are similar to those obtained separately, using amore »dedicated beam, with no significant differences in quality.« less

  14. Second user workshop on high-power lasers at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Heimann, Phil; Glenzer, Siegfried

    2015-05-28

    The second international workshop on the physics enabled by the unique combination of high-power lasers with the world-class Linac Coherent Light Source (LCLS) free-electron X-ray laser beam was held in Stanford, CA, on October 7–8, 2014. The workshop was co-organized by UC Berkeley, Lawrence Berkeley, Lawrence Livermore, and SLAC National Accelerator Laboratories. More than 120 scientists, including 40 students and postdoctoral scientists who are working in high-intensity laser-matter interactions, fusion research, and dynamic high-pressure science came together from North America, Europe, and Asia. The focus of the second workshop was on scientific highlights and the lessons learned from 16 newmore »experiments that were performed on the Matter in Extreme Conditions (MEC) instrument since the first workshop was held one year ago.« less

  15. Longitudinal Dynamics of Twin Electron Bunches in a High-energy Linac

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Zhen; Tsinghua University, Beijing; Ding, Yuantao; Marinelli, Agostino; Huang, Zhirong

    2015-03-01

    The recent development of two-color x-ray free-electron lasers, as well as the successful demonstration of high-gradient witness bunch acceleration in a plasma, have generated strong interest in electron bunch trains, where two or more electron bunches are generated, accelerated and compressed in the same accelerating bucket. In this paper we give a detailed analysis of a twin-bunch technique in a high-energy linac. This method allows the generation of two electron bunches with high peak current and independent control of time delay and energy separation. We #12;find that the wake#12;fields in the accelerator structures play an important role in the twin-bunchmore »compression, and through analysis show that they can be used to extend the available time delay range. Based on the theoretical model and simulations we propose several methods to achieve larger time delay.« less

  16. PROCEEDING OF WORKSHOP ON PHOTO-INJECTOR FOR ENERGY RECOVERY LINAC.

    SciTech Connect (OSTI)

    WANG,X.J.

    2001-01-22

    Workshop on Photo-injectors for Energy Recovery Linac was held at National Synchrotron Light Source (NSLS) of Brookhaven National Laboratory (BNL) on January 22 and 23, 2001. Fifty people attended the workshop; they came from three countries, representing universities, industries and national laboratories. This is the first workshop ever held on photo-injectors for CW operation, and for the first time, both DC and RF photo-injectors were discussed at the workshop. Workshop covered almost all major issues of photo-injectors, photocathode, laser system, vacuum, DC, 433 MHz/B-factory cavities based RF gun, 1.3 GHz RF gun and beam instrumentation. High quantum efficiency and long live time photocathode is the issue discussed during the workshop. Four working group leaders have done great jobs summarizing the workshop discussion, and identifying the major issues for future R and D.

  17. A wire scanner system for characterizing the BNL energy recovery LINAC beam position monitor system

    SciTech Connect (OSTI)

    Michnoff R.; Biscardi, C.; Cerniglia, P.; Degen, C.; Gassner, D.; Hoff, L.; Hulsart, R.

    2012-04-15

    A stepper motor controlled wire scanner system has recently been modified to support testing of the Brookhaven National Laboratory (BNL) Collider-Accelerator department's Energy Recovery Linac (ERL) beam position monitor (BPM) system. The ERL BPM consists of four 9.33 mm diameter buttons mounted at 90 degree spacing in a cube with 1.875 inch inside diameter. The buttons were designed by BNL and fabricated by Times Microwave Systems. Libera brilliance single pass BPM electronic modules with 700 MHz bandpass filter, manufactured by Instrumentation Technologies, will be used to measure the transverse beam positions at 14 locations around the ERL. The wire scanner assembly provides the ability to measure the BPM button response to a pulsed wire, and evaluate and calibrate the Libera position measurement electronics. A description of the wire scanner system and test result data will be presented.

  18. Breast dosimetry in transverse and longitudinal field MRI-Linac radiotherapy systems

    SciTech Connect (OSTI)

    Mahdavi, S. R.; Esmaeeli, A. D.; Pouladian, M.; Sardari, D.; Bagheri, S.; Monfared, A. S.

    2015-02-15

    Purpose: In the framework of developing the integration of a MRI-Linac system, configurations of MRI-Linac units were simulated in order to improve the dose distribution in tangential breast radiotherapy using transverse and longitudinal magnetic field geometries of Lorentz force for both medial and lateral tangential fields. Methods: In this work, the GEANT4 Monte Carlo (MC) code was utilized to compare dose distributions in breast radiotherapy for Linac-MR systems in the transverse and longitudinal geometries within humanoid phantoms across a range of magnetic field strengths of 0.5 and 1.5 T. The dose increment due to scattering from the coils was investigated for both geometries as well. Computed tomography images of two patients were used for MC simulations. One patient had intact breast while the other was mastectomized. In the simulations, planning and methods of chest wall irradiation were similar to the actual clinical planning. Results: In a longitudinal geometry, the magnetic field is shown to restrict the lateral spread of secondary electrons to the lung, heart, and contralateral organs, which reduced the mean dose of the ipsilateral lung and heart by means of 17.2% and 6% at 1.5 T, respectively. The transverse configuration exhibits a significant increase in tissue interface effects, which increased dose buildup in the entrance regions of the lateral and medial tangent beams to the planning target volume (PTV) and improved dose homogeneity within the PTV. The improved relative average homogeneity index for two patients to the PTV at magnetic field strength of 1.5 T with respect to no magnetic field case evaluated was 11.79% and 34.45% in the LRBP and TRBP geometries, respectively. In both geometries, the simulations show significant mean dose reductions in the contralateral breast and chest wall skin, respectively, by a mean of 16.6% and 24.9% at 0.5 T and 17.2% and 28.1% at 1.5 T in the transverse geometry, and 10.56% and 14.6% at 0.5 T and 11.3% and 16.3% at 1.5 T in the longitudinal geometry. Considering the scattered photons which reflected from the coils, the average relative dose of each voxel is slightly increased by 0.53% and 0.32% in the LRBP and TRBP geometries, respectively. Conclusions: Orienting the B0 magnetic field parallel to the photon beam axis, LRBP geometry, tends to restrict the radial spread of secondary electrons which resulted in dose reduction to the lung. Dosimetry issues observed in both Linac-MR geometries, such as changes to the lateral dose distribution, significantly exhibited dose reduction in the contralateral organs on a representative breast plan. Further, the results show sharper edge dose volume histogram curves at 1.5 T for both geometries, especially in the LRBP configuration.

  19. Progress in cavity and cryomodule design for the Project X linac

    SciTech Connect (OSTI)

    Champion, M.; Barbanotti, S.; Foley, M.; Ginsburg, S.; Gonin, I; Grimm, C.; Kerby, J.; Nagaitsev, S.; Nicol, T.; Peterson, T.; Ristori, L.; /Fermilab

    2011-03-01

    The continuous wave 3 GeV Project X Linac requires the development of two families of cavities and cryomodules at 325 and 650 MHz. The baseline design calls for three types of superconducting single-spoke resonators at 325 MHz having betas of 0.11, 0.22, and 0.42 and two types of superconducting five-cell elliptical cavities having betas of 0.61 and 0.9. These cavities shall accelerate a 1 mA H- beam initially and must support eventual operation at 4 mA. The electromagnetic and mechanical designs of the cavities are in progress and acquisition of prototypes is planned. The heat load to the cryogenic system is up to 25 W per cavity in the 650 MHz section, thus segmentation of the cryogenic system is a major issue in the cryomodule design. Designs for the two families of cryomodules are underway.

  20. Precision X-Band Linac Technologies for Nuclear Photonics Gamma-Ray Sources

    SciTech Connect (OSTI)

    Hartemann, F V; Albert, F; Anderson, S G; Bayramian, A J; Cross, R R; Ebbers, C A; Gibson, D J; Houck, T L; Marsh, R A; Messerly, M J; Siders, C W; McNabb, D P; Barty, C J; Adolphsen, C E; Chu, T S; Jongewaard, E N; Tantawi, S G; Vlieks, A E; Wang, F; Wang, J W; Raubenheimer, T O; Ighigeanu, D; Toma, M; Cutoiu, D

    2011-08-31

    Nuclear photonics is an emerging field of research requiring new tools, including high spectral brightness, tunable gamma-ray sources; high photon energy, ultrahigh-resolution crystal spectrometers; and novel detectors. This presentation focuses on the precision linac technology required for Compton scattering gamma-ray light sources, and on the optimization of the laser and electron beam pulse format to achieve unprecedented spectral brightness. Within this context, high-gradient X-band technology will be shown to offer optimal performance in a compact package, when used in conjunction with the appropriate pulse format, and photocathode illumination and interaction laser technologies. The nascent field of nuclear photonics is enabled by the recent maturation of new technologies, including high-gradient X-band electron acceleration, robust fiber laser systems, and hyper-dispersion CPA. Recent work has been performed at LLNL to demonstrate isotope-specific detection of shielded materials via NRF using a tunable, quasi-monochromatic Compton scattering gamma-ray source operating between 0.2 MeV and 0.9 MeV photon energy. This technique is called Fluorescence Imaging in the Nuclear Domain with Energetic Radiation (or FINDER). This work has, among other things, demonstrated the detection of {sup 7}Li shielded by Pb, utilizing gamma rays generated by a linac-driven, laser-based Compton scattering gamma-ray source developed at LLNL. Within this context, a new facility is currently under construction at LLNL, with the goal of generating tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range, at a repetition rate of 120 Hz, and with a peak brightness in the 10{sup 20} photons/(s x mm{sup 2} x mrad{sup 2} x 0.1% bw).