Powered by Deep Web Technologies
Note: This page contains sample records for the topic "areas fuel demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Commercial Fleet Demand for Alternative-Fuel Vehicles in California  

E-Print Network [OSTI]

Precursors of demand for alternative-fuel vehicles: resultsFLEET DEMAND FOR ALTERNATIVE-FUEL VEHICLES IN CALIFORNIA*Abstract—Fleet demand for alternative-fuel vehicles (‘AFVs’

Golob, Thomas F; Torous, Jane; Bradley, Mark; Brownstone, David; Crane, Soheila Soltani; Bunch, David S

1996-01-01T23:59:59.000Z

2

Automobile Prices, Gasoline Prices, and Consumer Demand for Fuel Economy  

E-Print Network [OSTI]

Automobile Prices, Gasoline Prices, and Consumer Demand for Fuel Economy Ashley Langer University evidence that automobile manufacturers set vehicle prices as if consumers respond to gasoline prices. We consumer preferences for fuel efficiency. Keywords: automobile prices, gasoline prices, environmental

Sadoulet, Elisabeth

3

MTBE demand as a oxygenated fuel additive  

SciTech Connect (OSTI)

The MTBE markets are in the state of flux. In the U.S. the demand has reached a plateau while in other parts of the world, it is increasing. The various factors why MTBE is experiencing a global shift will be examined and future volumes projected.

NONE

1996-10-01T23:59:59.000Z

4

Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets  

E-Print Network [OSTI]

eet demand for alternative-fuel vehicles in California.Britain MYTHS REGARDING ALTERNATIVE FUEL VEHICLE DEMAND BYinitial market for alternative fuel vehicles (AFVs). We

Nesbitt, Kevin; Sperling, Daniel

1998-01-01T23:59:59.000Z

5

Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets  

E-Print Network [OSTI]

MythsRegarding Alternative Fuel Vehicte Demand Light-Dutyregulation Myths Regarding Alternative Fuel Vehicle DemandBy00006-6 MYTHS REGARDING ALTERNATIVE FUEL VEHICLE LIGHT-DUTY

Nesbitt, Kevin; Sperling, Daniel

1998-01-01T23:59:59.000Z

6

PIER Demand Response Research Center SCOPING STUDY ROUNDTABLE RESEARCH TARGET AREAS  

E-Print Network [OSTI]

PIER Demand Response Research Center SCOPING STUDY ROUNDTABLE ­ RESEARCH TARGET AREAS (Draft Areas #12;PIER Demand Response Research Center SCOPING STUDY ROUNDTABLE ­ RESEARCH TARGET AREAS (Draft the Value of Demand Response: Develop an Integrated Efficiency / Demand Response Framework Introduction

7

A Transaction Choice Model for Forecasting Demand for Alternative-Fuel Vehicles  

E-Print Network [OSTI]

Forecasting Demand Alternative-Fuel Vehicles for DavldNG DEMANDFOR ALTERNATIVE-FUEL VEHICLES DavidBrownstone,interested in promoting alternative-fuel vehicles. Tl’us is

Brownstone, David; Bunch, David S.; Golob, Thomas F.; Ren, Weiping

1996-01-01T23:59:59.000Z

8

THE FUTURE DEMAND FOR ALTERNATIVE FUEL PASSENGER VEHICLES: A DIFFUSION OF INNOVATION APPROACH  

E-Print Network [OSTI]

THE FUTURE DEMAND FOR ALTERNATIVE FUEL PASSENGER VEHICLES: A DIFFUSION OF INNOVATION APPROACH UC ....................................................................23 3 MARKET DEVELOPMENT OF ALTERNATIVE FUEL VEHICLES ............................ 26 3.1 SUPPLY OF ALTERNATIVE FUEL VEHICLES

Levinson, David M.

9

A Dynamic household Alternative-fuel Vehicle Demand Model Using Stated and Revealed Transaction Information  

E-Print Network [OSTI]

market share for alternative-fuel vehicles drop from thePreferences for Alternative-Fuel Vehicles”, Brownstone DavidA Dynamic Household Alternative-fuel Vehicle Demand Model

Sheng, Hongyan

1999-01-01T23:59:59.000Z

10

A Transactions Choice Model for Forecasting Demand for Alternative-Fuel Vehicles  

E-Print Network [OSTI]

Forecasting Demand Alternative-Fuel Vehicles for DavldNG DEMANDFOR ALTERNATIVE-FUEL VEHICLES DavidBrownstone,interested in promoting alternative-fuel vehicles. Tl’us is

Brownstone, David; Bunch, David S; Golob, Thomas F; Ren, Weiping

1996-01-01T23:59:59.000Z

11

Miniature fuel-cell system complete with on-demand fuel and oxidant supply  

E-Print Network [OSTI]

scale direct methanol fuel cell development,” Energy, vol.flow-based microfluidic fuel cell," J. Am. Chem. Soc. , vol.electrolyte membrane fuel cell design," J. Power Sources,

Hur, JI; Kim, C-J

2015-01-01T23:59:59.000Z

12

Miniature fuel-cell system complete with on-demand fuel and oxidant supply  

E-Print Network [OSTI]

a cropped view focusing on the fuel channel and O 2 pocket.The fuel is seen being pumped by the CO 2 bubbles, and O 2micro-scale direct methanol fuel cell development,” Energy,

Hur, JI; Kim, C-J

2015-01-01T23:59:59.000Z

13

Chicago Area Alternative Fuels Deployment Project (CAAFDP)  

Broader source: Energy.gov (indexed) [DOE]

Companies 3 * Increase the number of alt fuel vehicles & hybrids (599 vehicles) * 355 gasoline hybrids * 231 CNG vehicles * 11 HD Diesel Hybrids * 2 HD PHEV Diesels * Develop...

14

Chicago Area Alternative Fuels Deployment Project (CAAFDP)  

Broader source: Energy.gov (indexed) [DOE]

Objectives - Increase the number of alt fuel vehicles & hybrids (528 vehicles) * 286 Gasoline Hybrids * 233 CNG Vehicles (41 Heavy Duty) * 9 Heavy Duty Diesel Hybrids and...

15

Policy Choice:Forest or Fuel? The demand for biofuels, driven by the desire to reduce fossil fuel use and CO2 emissions, has resulted in  

E-Print Network [OSTI]

Policy Choice:Forest or Fuel? The demand for biofuels, driven by the desire to reduce fossil fuel, combined with the expanded demand for biofuels, will result in higher food prices, since less land by using biofuels (vegetable oils). But the use of biofuels may not reduce CO2 emissions, even when

16

Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel  

Gasoline and Diesel Fuel Update (EIA)

State (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Sales to End Users Sales for Resale Sales to End...

17

A critical review of single fuel and interfuel substitution residential energy demand models  

E-Print Network [OSTI]

The overall purpose of this paper is to formulate a model of residential energy demand that adequately analyzes all aspects of residential consumer energy demand behavior and properly treats the penetration of new technologies, ...

Hartman, Raymond Steve

1978-01-01T23:59:59.000Z

18

Remote area wind energy harvesting for low-power autonomous sensors Abstract--A growing demand for deployment of autonomous  

E-Print Network [OSTI]

Remote area wind energy harvesting for low-power autonomous sensors Abstract--A growing demand wind energy harvesting is presented, with a focus on an anemometer-based solution. By utilizing for localized, independent energy harvesting capabilities for each node. In this paper, a method of remote area

19

Modern Fuel Cladding in Demanding Operation - ZIRLO in Full Life High Lithium PWR Coolant  

SciTech Connect (OSTI)

There is an increasing demand to optimize the PWR water chemistry in order to minimize activity build-up in the plants and to avoid CIPS and other fuel related issues. Operation with a constant pH between 7.2 and 7.4 is generally considered an important part in achieving the optimized water chemistry. The extended long cycles currently used in most of the U.S. PWRs implies that the lithium concentration at BOC will be outside the general operating experience with such a coolant chemistry regime. With the purpose to extend the experience of high lithium coolant operation, such water chemistry has been used in a few PWRs, i.e. CPSES Unit 2 and Diablo Canyon Units 1 and 2, all with ZIRLO{sup TM} cladding. Operation with a lithium concentration up to 4.2 ppm does not show any impact of the elevated lithium, while operation with up to 6 ppm possibly produce some limited corrosion acceleration in the region of sub-nucleate boiling but has no detrimental impact under the conditions limited by current operating experience. (authors)

Kargol, Kenneth [Pacific Gas and Electric Company, Diablo Canyon Power Plant, Avila Beach, California (United States); Stevens, Jim [TXU Power, Comanche Peak Steam Electric Station, Glen Rose, Texas (United States); Bosma, John [Westinghouse Electric Company, Dallas, Texas (United States); Iyer, Jayashri; Wikmark, Gunnar [Westinghouse Electric Company, Columbia, South Carolina (United States)

2007-07-01T23:59:59.000Z

20

Nebraska Company Expands to Meet Demand for Hydrogen Fuel | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNational ScienceEnergy

Note: This page contains sample records for the topic "areas fuel demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 7, JULY 2013 1 Demand Response Management via Real-time  

E-Print Network [OSTI]

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 7, JULY 2013 1 Demand Response through demand response management in smart grid systems. The proposed scheme solves a two. Index Terms--Real-time pricing, Demand response manage- ment, Payoff maximization, Profit maximization

Huang, Jianwei

22

Outlook for Light-Duty-Vehicle Fuel Demand | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDiesel Enginesthe U.S.SolarMarket-Based Programs

23

Nebraska Company Expands to Meet Demand for Hydrogen Fuel | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNational ScienceEnergy -Energy2014Energy

24

A Microfluidic Microbial Fuel Cell as a Biochemical Oxygen Demand Sensor |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β-Research andAFishing forA MapThe Ames

25

Enhanced Oil Recovery to Fuel Future Oil Demands | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmartAffects the Future Energy Mix Click to email this

26

E-Print Network 3.0 - aviation fuel demand Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aviation... ... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion...

27

Fact #775: April 15, 2013 Top Ten Urban Areas for Fuel Wasted...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Information &127;Top Ten Urban Areas for Fuel Wasted due to Traffic Congestion, 2011 Rank Urban Area Fuel Wasted due to Congestion (Million Gallons) 1 New York-Newark NY-NJ-CT...

28

Chicago Area Alternative Fuels Deployment Project (CAAFDP) | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuels Chemical KineticCheron Wicker

29

Chicago Area Alternative Fuels Deployment Project (CAAFDP) | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuels Chemical KineticCheron WickerEnergy 1

30

Chicago Area Alternative Fuels Deployment Project (CAAFDP) | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuels Chemical KineticCheron WickerEnergy

31

Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S.WyomingExpansion 5Wellhead99.6 92.9 52.3 52.2 67.4

32

Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S.WyomingExpansion 5Wellhead99.6 92.9 52.3 52.2

33

Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S.WyomingExpansion 5Wellhead99.6 92.9 52.3 52.213.7

34

Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S.WyomingExpansion 5Wellhead99.6 92.9 52.3

35

Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S.WyomingExpansion 5Wellhead99.6 92.9 52.387.1 81.2

36

California Energy Demand Scenario Projections to 2050  

E-Print Network [OSTI]

Vehicle Conventional and Alternative Fuel Response Simulatormodified to include alternative fuel demand scenarios (whichvehicle adoption and alternative fuel demand) later in the

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

37

Composites for Aerospace and Transportation As the fuel costs and environment concerns continue to increase, so does the demand for composite  

E-Print Network [OSTI]

Composites for Aerospace and Transportation As the fuel costs and environment concerns continue to increase, so does the demand for composite materials for aerospace and transportation applications. Polymer composites are inherited lighter than their metallic counterparts resulting in significant weight reduction

Li, Mo

38

AREA  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South Valley ResponsibleSubmissionofDepartmentNo.7-052 ofFocusAREA FAQ #

39

"Interconnection","NERC Regional Assesment Area","Net Internal Demand[1] -- Winter"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropaneResidential"Total"2.4 Relative4B Winter net

40

As the world economy continues to expand the demand for petroleum based fuel increases and the price of these fuels rises  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication2Argonne National4ArtificialAs summer

Note: This page contains sample records for the topic "areas fuel demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Demand Reduction  

Broader source: Energy.gov [DOE]

Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

42

Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production Facilities  

E-Print Network [OSTI]

Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production: Commercial Facilities · Applicant's Legal Name: Yokayo Biofuels, Inc. · Name of project: A Catalyst for Success · Project Description: Yokayo Biofuels, an industry veteran with over 10 years experience

43

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

fuel electricity demands, and generation from these plantplants .. 47 Additional generation .. 48 Electricityelectricity demand increases generation from NGCC power plants.

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

44

On-Demand Node Reclamation and Replacement for Guaranteed Area Coverage in Long-lived Sensor Networks  

E-Print Network [OSTI]

is an important and challenging problem in sensor network design. Recently, Tong et al. have proposed a node replacement and reclamation (NRR) strategy, and designed an adaptive rendezvous-based two-tier scheduling of energy that a solar cell can harvest is proportional to its surface area, but it is infeasible to equip

Zhang, Wensheng

45

Response to several FOIA requests - Renewable Energy. Demand...  

Office of Environmental Management (EM)

Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA...

46

Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration: Second Results Report  

SciTech Connect (OSTI)

This report presents results of a demonstration of 12 new fuel cell electric buses (FCEB) operating in Oakland, California. The 12 FCEBs operate as a part of the Zero Emission Bay Area (ZEBA) Demonstration, which also includes two new hydrogen fueling stations. This effort is the largest FCEB demonstration in the United States and involves five participating transit agencies. The ZEBA partners are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service. The first results report was published in August 2011, describing operation of these new FCEBs from September 2010 through May 2011. New results in this report provide an update through April 2012.

Eudy, L.; Chandler, K.

2012-07-01T23:59:59.000Z

47

Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Results: Third Report  

SciTech Connect (OSTI)

This report presents results of a demonstration of 12 fuel cell electric buses (FCEB) operating in Oakland, California. The 12 FCEBs operate as a part of the Zero Emission Bay Area (ZEBA) Demonstration, which also includes two new hydrogen fueling stations. This effort is the largest FCEB demonstration in the United States and involves five participating transit agencies. The ZEBA partners are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service. NREL has published two previous reports, in August 2011 and July 2012, describing operation of these buses. New results in this report provide an update covering eight months through October 2013.

Eudy, L.; Post, M.

2014-05-01T23:59:59.000Z

48

Comparison of the NRC and the IAEA regulatory documents in the area of nuclear fuel systems  

SciTech Connect (OSTI)

A main objective of this work was to identify the safety requirements in the area of fuel system design and performance from both the International Atomic Energy Agency (IAEA) and U.S. Nuclear Regulatory Commission (NRC) points of view. The study covered requirements during normal plant operation as well as during accident conditions. This study revealed that, although none of the factors to be considered for fuel safety were neglected in the IAEA regulatory documents, these documents are not complete in themselves, particularly because they lack quantitative guidelines and specific industrial standards. Although generality makes the IAEA requirements adaptable to many countries, on the other hand, it makes their applicability constrained by the availability of highly qualified and experienced personnel who can translate the qualitative requirements given in these documents into actual engineering solutions. 20 refs.

El-Adham, K.; Shinaishin, M.A.

1991-04-01T23:59:59.000Z

49

Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration: First Results Report  

SciTech Connect (OSTI)

This report documents the early implementation experience for the Zero Emission Bay Area (ZEBA) Demonstration, the largest fleet of fuel cell buses in the United States. The ZEBA Demonstration group includes five participating transit agencies: AC Transit (lead transit agency), Santa Clara Valley Transportation Authority (VTA), Golden Gate Transit (GGT), San Mateo County Transit District (SamTrans), and San Francisco Municipal Railway (Muni). The ZEBA partners are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service.

Chandler, K.; Eudy, L.

2011-08-01T23:59:59.000Z

50

Demand Dispatch-Intelligent  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData Files Data FilesFeFe-HydrogenaseDemand

51

Supplemental information for a notice of construction for the Fueled Clad Fabrication System, the Radioisotope Power Systems Facility, and the Fuel Assembly Area  

SciTech Connect (OSTI)

This ''Notice of Construction'' has been submitted by the US Department of Energy-Richland Operations Office (P.O. Box 550, Richland, Washington 99352), pursuant to WAC 402-80-070, for three new sources of radionuclide emissions at the Hanford Site in Washington State (Figure 1). The three new sources, the Fueled Clad Fabrication System (FCFS) the Radioisotope Power Systems Facility (RPSF) and the Fuel Assembly Area (FAA) will be located in one facility, the Fuels and materials Examination Facility (FMEF) of the 400 Area. The FMEF was originally designed to provide for post- irradiation examination and fabrication of breeder reactor fuels. These FMEF missions were cancelled before the introduction of any fuel materials or any irradiated material. The current plans are to use the facility to fabricate power supplies to be used in space applications and to produce Fast Flux Test Facility (FFTF) fuel and target assemblies. The FCFS and the RPSF will produce materials and assemblies for application in space. The FAA project will produce FFTF fuel and target assemblies. The FCFS and the RPSF will share the same building, stack, and, in certain cases, the same floor space. Given this relationship, to the extent possible, these systems will be dealt with separately. The FAA is a comparatively independent operation though it will share the FMEF complex.

Not Available

1989-08-01T23:59:59.000Z

52

Application for approval for construction of the Fueled Clad Fabrication System, the Radioisotope Power Systems Facility, and the Fuel Assembly Area  

SciTech Connect (OSTI)

The following ''Application for Approval of Construction'' is being submitted by the US Department of Energy-Richland Operations Office, pursuant to 40 CFR 61.07, for three new sources of airborne radionuclide emissions at the Hanford Site in Washington State. The three new sources, the Fueled Clad Fabrication System (FCFS), the Radioisotope Power Systems Facility (RPSF), and the Fuel Assembly Area (FAA), will be located in one facility, the Fuels and Materials Examination Facility (FMEF) of the 400 Area. The FMEF was originally designed to provide for post-irradiation examination and fabrication of breeder reactor fuels. These FMEF missions were canceled before the introduction of any fuel materials or any irradiated material. The current plans are to use the facility to fabricate power supplies to be used in space applications and to produce Fast Flux Test Facility (FFTF) fuel and target assemblies. The FCFS and the RPSF will produce materials and assemblies for application in space. The FAA project will produce FFTF fuel and target assemblies. The FCFS and the RPSF will share the same building and stack and, in certain cases, the same floor space. Given this relationship, these systems will be dealt with separately to the extent possible. The FAA is a comparatively independent operation though it will share the FMEF complex. 2 refs., 16 figs., 12 tabs.

Not Available

1989-08-01T23:59:59.000Z

53

Prevention of significant deterioration permit application for the Fueled Clad Fabrication System, the Radioisotope Power Systems Facility, and the Fuel Assembly Area  

SciTech Connect (OSTI)

This New Source Review'' has been submitted by the US Department of Energy-Richland Operations Office (PO Box 550, Richland, Washington 99352), pursuant to WAC 173-403-050 and in compliance with the Department of Ecology Guide to Processing A Prevention Of Significant Deterioration (PSD) Permit'' for three new sources of radionuclide emissions at the Hanford Site in Washington State. The three new sources, the Fueled Clad Fabrication System (FCFS), the Radioisotope Power Systems Facility (RPSF), and the Fuel Assembly Area (FAA), will be located in one facility, the Fuels and Materials Examination Facility (FMEF) of the 400 Area. The FMEF was originally designed to provide for post-irradiation examination and fabrication of breeder reactor fuels. These FMEF missions were cancelled before the introduction of any fuel materials or any irradiated material. The current plans are to use the facility to fabricate power supplies for use in space applications and to produce Fast Flux Test Facility (FFTF) fuel and target assemblies. The FCFS and the RPSF will produce materials and assemblies for application in space. The FAA project will produce FFTF fuel and target assemblies. The FCFS and the RPSF will share the same building, stack, and, in certain cases, the same floor space. Given this relationship, these systems will be dealt with separately to the extent possible. The FAA is a comparatively independent operation though it will share the FMEF complex.

Not Available

1989-08-01T23:59:59.000Z

54

Demand Responsive Lighting: A Scoping Study  

E-Print Network [OSTI]

demand-side management (DSM) framework presented in Table x provides three major areas for changing electric loads in buildings:

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

55

CONFIRMATORY SURVEY OF THE FUEL OIL TANK AREA HUMBOLDT BAY POWER PLANT EUREKA, CALIFORNIA  

SciTech Connect (OSTI)

During the period of February 14 to 15, 2012, ORISE performed radiological confirmatory survey activities for the former Fuel Oil Tank Area (FOTA) and additional radiological surveys of portions of the Humboldt Bay Power Plant site in Eureka, California. The radiological survey results demonstrate that residual surface soil contamination was not present significantly above background levels within the FOTA. Therefore, it is ORISE’s opinion that the radiological conditions for the FOTA surveyed by ORISE are commensurate with the site release criteria for final status surveys as specified in PG&E’s Characterization Survey Planning Worksheet. In addition, the confirmatory results indicated that the ORISE FOTA survey unit Cs-137 mean concentrations results compared favorably with the PG&E FOTA Cs-137 mean concentration results, as determined by ORISE from the PG&E characterization data. The interlaboratory comparison analyses of the three soil samples analyzed by PG&E’s onsite laboratory and the ORISE laboratory indicated good agreement for the sample results and provided confidence in the PG&E analytical procedures and final status survey soil sample data reporting.

WADE C. ADAMS

2012-04-09T23:59:59.000Z

56

Fact #775: April 15, 2013 Top Ten Urban Areas for Fuel Wasted due to  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 20112:of EnergyLast Five YearsTraffic

57

Demand Response  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix U.S. Department of Energy | December 2012 Table of Contents

58

Demand for gasoline is more price-inelastic than commonly thought  

E-Print Network [OSTI]

demand and distillate fuel oil demand. ” Energy Economics 7(demand and consumer price expectations: An empirical investigation of the consequences from the recent oil

Havranek, Tomas; Irsova, Zuzana; Janda, Karel

2011-01-01T23:59:59.000Z

59

Demand Response | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005Department ofDOE AccidentWasteZone Modeling |Demand Response Demand

60

E-Print Network 3.0 - area spent fuel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy's (DOE's) efforts have greatly advanced the state of the art of hydrogen and fuel cell... commercialization, including reducing the cost and improving the durability of...

Note: This page contains sample records for the topic "areas fuel demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Washington Metropolitan Area Transit Authority: Biodiesel Fuel Comparison Final Data Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30,WP-07

62

Transportation Demand  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Annual VMT per vehicle by fleet type stays constant over the forecast period based on the Oak Ridge National Laboratory fleet data. Fleet fuel economy for both conventional and...

63

Geographically Based Hydrogen Demand and Infrastructure Analysis...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Analysis Geographically Based Hydrogen Demand and Infrastructure Analysis Presentation by NREL's Margo Melendez at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles...

64

Demand Response and Open Automated Demand Response  

E-Print Network [OSTI]

LBNL-3047E Demand Response and Open Automated Demand Response Opportunities for Data Centers G described in this report was coordinated by the Demand Response Research Center and funded by the California. Demand Response and Open Automated Demand Response Opportunities for Data Centers. California Energy

65

,"Table 3A.1. January Monthly Peak Hour Demand, by North American Electric Reliability Corporation Assesment Area,"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"Brunei (Dollars per ThousandPrice Sold to9"3 and Projected 20044A.1.

66

,"Table 3B.1. FRCC Monthly Peak Hour Demand, by North American Electric Reliability Corporation Assesment Area,"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"Brunei (Dollars per ThousandPrice Sold to9"3 and Projected

67

Transportation Energy: Supply, Demand and the Future  

E-Print Network [OSTI]

Transportation Energy: Supply, Demand and the Future http://www.uwm.edu/Dept/CUTS//2050/energy05 as a source of energy. Global supply and demand trends will have a profound impact on the ability to use our) Transportation energy demand in the U.S. has increased because of the greater use of less fuel efficient vehicles

Saldin, Dilano

68

Fire loading calculations for 300 Area N Reactor Fuel Fabrication and Storage Facility  

SciTech Connect (OSTI)

Fire loading analyses were provided for the N Reactor Fuel Supply Buildings 3712, 3716, 303A, 303B, 303E, 303G, and 303K. Fire loading calculations, maximum temperatures, and fire durations were provided to support the safety analyses documentation. The ``combustibles`` for this document include: wood, cardboard, cloth, and plastic, and does not include the uranium and fuel assembly loading. The information in this document will also be used to support the fire hazard analysis for the same buildings, therefore, it is assumed that sprinkler systems do not work, or the maximum possible fire loss is assumed.

Myott, C.F.

1994-01-24T23:59:59.000Z

69

High Temperatures & Electricity Demand  

E-Print Network [OSTI]

High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

70

Secure Demand Shaping for Smart Grid On constructing probabilistic demand response schemes  

E-Print Network [OSTI]

Secure Demand Shaping for Smart Grid On constructing probabilistic demand response schemes. Developing novel schemes for demand response in smart electric gird is an increasingly active research area/SCADA for demand response in smart infrastructures face the following dilemma: On one hand, in order to increase

Sastry, S. Shankar

71

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

49 Table 13. Vehicle and fuel efficiency and electricity14. Timing profiles and vehicle and fuel pathways includedand generation, Table 18. Vehicle demand and system load

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

72

Opportunities, Barriers and Actions for Industrial Demand Response in California  

E-Print Network [OSTI]

Demand Side Management Framework for Industrial Facilities provides three major areas for changing electric loads in industrial buildings:

McKane, Aimee T.

2009-01-01T23:59:59.000Z

73

Feasibility Study For Use Of Commercial Cask Vendor Dry Transfer Systems To Unload Used Fuel Assemblies In L-Area  

SciTech Connect (OSTI)

The purpose of this study is to determine whether a commercial dry transfer system (DTS) could be used for loading or unloading used nuclear fuel (UNF) in L-Basin and to determine if a DTS pool adapter could be made for L-Basin Transfer Pit #2 that could accommodate a variety of DTS casks and fuel baskets or canisters up to 24” diameter.[1, 2] This study outlines the technical feasibility of accommodating different vendor dry transfer systems in the L-Basin Transfer Bay with a general work scope. It identifies equipment needing development, facility modifications, and describes the needed analyses and calculations. After reviewing the L-Basin Transfer Bay area layout and information on the only DTS system currently in use for the Nuclear Assurance Corporation Legal Weight Truck cask (NAC LWT), the authors conclude that use of a dry transfer cask is feasible. AREVA was contacted and acknowledged that they currently do not have a design for a dry transfer cask for their new Transnuclear Long Cask (TN-LC) cask. Nonetheless, this study accounted for a potential future DTS from AREVA to handle fuel baskets up to 18” in diameter. Due to the layout of the Transfer Bay, it was determined that a DTS cask pool adapter designed specifically for spanning Pit #2 and placed just north of the 70 Ton Cask lid lifting superstructure would be needed. The proposed pool adapter could be used to transition a fuel basket up to 24” in diameter and ~11 feet long from a dry transfer cask to the basin. The 18” and 24” applications of the pool adapter are pending vendor development of dry transfer casks that accommodate these diameters. Once a fuel basket has been lowered into Pit #2 through a pool adapter, a basket cart could be used to move the basket out from under the pool adapter for access by the 5 Ton Crane. The cost to install a dry transfer cask handling system in L-Area capable of handling multiple vendor provided transport and dry transfer casks and baskets with different diameters and lengths would likely be on the same order of magnitude as the Basin Modifications project. The cost of a DTS capability is affected by the number of design variations of different vendor transport and dry transfer casks to be considered for design input. Some costs would be incurred for each vendor DTS to be handled. For example, separate analyses would be needed for each dry transfer cask type such as criticality, shielding, dropping a dry transfer cask and basket, handling and auxiliary equipment, procedures, operator training, readiness assessments, and operational readiness reviews. A DTS handling capability in L-Area could serve as a backup to the Shielded Transfer System (STS) for unloading long casks and could support potential future missions such as the Idaho National Laboratory (INL) Exchange or transferring UNF from wet to dry storage.

Krementz, Dan; Rose, David; Dunsmuir, Mike

2014-02-06T23:59:59.000Z

74

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network [OSTI]

of integrating demand response and energy efficiencyand D. Kathan (2009), Demand Response in U.S. ElectricityFRAMEWORKS THAT PROMOTE DEMAND RESPONSE 3.1. Demand Response

Shen, Bo

2013-01-01T23:59:59.000Z

75

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network [OSTI]

Addressing Energy Demand through Demand Response:both the avoided energy costs (and demand charges) as wellCoordination of Energy Efficiency and Demand Response,

Shen, Bo

2013-01-01T23:59:59.000Z

76

Advanced Demand Responsive Lighting  

E-Print Network [OSTI]

Advanced Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center demand responsive lighting systems ­ Importance of dimming ­ New wireless controls technologies · Advanced Demand Responsive Lighting (commenced March 2007) #12;Objectives · Provide up-to-date information

77

Optimization of Demand Response Through Peak Shaving , D. Craigie  

E-Print Network [OSTI]

Optimization of Demand Response Through Peak Shaving G. Zakeri , D. Craigie , A. Philpott , M. Todd for the demand response of such a consumer. We will establish a monotonicity result that indicates fuel supply

Todd, Michael J.

78

Demand Response Valuation Frameworks Paper  

E-Print Network [OSTI]

benefits of Demand Side Management (DSM) are insufficient toefficiency, demand side management (DSM) cost effectivenessResearch Center Demand Side Management Demand Side Resources

Heffner, Grayson

2010-01-01T23:59:59.000Z

79

E-Print Network 3.0 - automated demand response Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

75 Optimization and Control for Demand Management in Smart Grid Summary: Batteries, fuel cells, hydrogen, thermal storage, etc. UTILITIES Demand response, dynamic pricing,...

80

Demand Response and Smart Metering Policy Actions Since the Energy...  

Broader source: Energy.gov (indexed) [DOE]

This report represents a review of policy developments on demand response and other related areas such as smart meters and smart grid. It has been prepared by the Demand Response...

Note: This page contains sample records for the topic "areas fuel demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network [OSTI]

Data for Automated Demand Response in Commercial Buildings,Demand Response Infrastructure for Commercial Buildings",demand response and energy efficiency functions into the design of buildings,

Shen, Bo

2013-01-01T23:59:59.000Z

82

Demand Response Spinning Reserve Demonstration  

E-Print Network [OSTI]

F) Enhanced ACP Date RAA ACP Demand Response – SpinningReserve Demonstration Demand Response – Spinning Reservesupply spinning reserve. Demand Response – Spinning Reserve

2007-01-01T23:59:59.000Z

83

Automated Demand Response and Commissioning  

E-Print Network [OSTI]

Fully-Automated Demand Response Test in Large Facilities14in DR systems. Demand Response using HVAC in Commercialof Fully Automated Demand Response in Large Facilities”

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-01-01T23:59:59.000Z

84

Automated Demand Response and Commissioning  

E-Print Network [OSTI]

and Demand Response in Commercial Buildings”, Lawrencesystems. Demand Response using HVAC in Commercial BuildingsDemand Response Test in Large Facilities13 National Conference on Building

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-01-01T23:59:59.000Z

85

CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST Demand Forecast report is the product of the efforts of many current and former California Energy-2 Demand Forecast Disaggregation......................................................1-4 Statewide

86

Closure Report for Corrective Action Unit 329: Area 22 Desert Rock Airstrip Fuel Spill with Errata Sheet, Revision 0  

SciTech Connect (OSTI)

In Appendix 0, Use Restriction (UR) Form, the drawing of the use restricted area shows the incorrect coordinates for the use restricted area, the coordinates on the drawing do not match the approved UR Form. The coordinates have been verified and this Errata Sheet replaces the drawing of the use restricted area with an aerial photo showing the use restricted area and the correct coordinates that match the approved UR Form.

Navarro Nevada Environmental Services

2010-08-10T23:59:59.000Z

87

Uranium 2009 resources, production and demand  

E-Print Network [OSTI]

With several countries currently building nuclear power plants and planning the construction of more to meet long-term increases in electricity demand, uranium resources, production and demand remain topics of notable interest. In response to the projected growth in demand for uranium and declining inventories, the uranium industry – the first critical link in the fuel supply chain for nuclear reactors – is boosting production and developing plans for further increases in the near future. Strong market conditions will, however, be necessary to trigger the investments required to meet projected demand. The "Red Book", jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on information compiled in 40 countries, including those that are major producers and consumers of uranium. This 23rd edition provides a comprehensive review of world uranium supply and demand as of 1 January 2009, as well as data on global ur...

Organisation for Economic Cooperation and Development. Paris

2010-01-01T23:59:59.000Z

88

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Boiler, Steam, and Cogeneration (BSC) Component. The BSC Component satisfies the steam demand from the PA and BLD Components. In some industries, the PA Component produces...

89

Demand Response In California  

Broader source: Energy.gov [DOE]

Presentation covers the demand response in California and is given at the FUPWG 2006 Fall meeting, held on November 1-2, 2006 in San Francisco, California.

90

DemandDirect | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1 No38e4011f618bDeer Park,Dell Prairie,DeltaDemand

91

CONSULTANT REPORT DEMAND FORECAST EXPERT  

E-Print Network [OSTI]

CONSULTANT REPORT DEMAND FORECAST EXPERT PANEL INITIAL forecast, end-use demand modeling, econometric modeling, hybrid demand modeling, energyMahon, Carl Linvill 2012. Demand Forecast Expert Panel Initial Assessment. California Energy

92

Climate policy implications for agricultural water demand  

SciTech Connect (OSTI)

Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of two alternative land-use emissions mitigation policy options—one which taxes terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which only taxes fossil fuel and industrial emissions but places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to almost triple demand for water for agricultural systems across the century even in the absence of climate policy. In general policies to mitigate climate change increase agricultural demands for water still further, though the largest changes occur in the second half of the century, under both policy regimes. The two policies examined profoundly affected both the sources and magnitudes of the increase in irrigation water demands. The largest increases in agricultural irrigation water demand occurred in scenarios where only fossil fuel emissions were priced (but not land-use change emission) and were primarily driven by rapid expansion in bioenergy production. In these scenarios water demands were large relative to present-day total available water, calling into question whether it would be physically possible to produce the associated biomass energy. We explored the potential of improved water delivery and irrigation system efficiencies. These could potentially reduce demands substantially. However, overall demands remained high under our fossil-fuel-only tax policy. In contrast, when all carbon was priced, increases in agricultural water demands were smaller than under the fossil-fuel-only policy and were driven primarily by increased demands for water by non-biomass crops such as rice. Finally we estimate the geospatial pattern of water demands and find that regions such as China, India and other countries in south and east Asia might be expected to experience greatest increases in water demands.?

Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.; Calvin, Katherine V.

2013-03-28T23:59:59.000Z

93

Providing Reliability Services through Demand Response: A Prelimnary Evaluation of the Demand Response Capabilities of Alcoa Inc.  

SciTech Connect (OSTI)

Demand response is the largest underutilized reliability resource in North America. Historic demand response programs have focused on reducing overall electricity consumption (increasing efficiency) and shaving peaks but have not typically been used for immediate reliability response. Many of these programs have been successful but demand response remains a limited resource. The Federal Energy Regulatory Commission (FERC) report, 'Assessment of Demand Response and Advanced Metering' (FERC 2006) found that only five percent of customers are on some form of demand response program. Collectively they represent an estimated 37,000 MW of response potential. These programs reduce overall energy consumption, lower green house gas emissions by allowing fossil fuel generators to operate at increased efficiency and reduce stress on the power system during periods of peak loading. As the country continues to restructure energy markets with sophisticated marginal cost models that attempt to minimize total energy costs, the ability of demand response to create meaningful shifts in the supply and demand equations is critical to creating a sustainable and balanced economic response to energy issues. Restructured energy market prices are set by the cost of the next incremental unit of energy, so that as additional generation is brought into the market, the cost for the entire market increases. The benefit of demand response is that it reduces overall demand and shifts the entire market to a lower pricing level. This can be very effective in mitigating price volatility or scarcity pricing as the power system responds to changing demand schedules, loss of large generators, or loss of transmission. As a global producer of alumina, primary aluminum, and fabricated aluminum products, Alcoa Inc., has the capability to provide demand response services through its manufacturing facilities and uniquely through its aluminum smelting facilities. For a typical aluminum smelter, electric power accounts for 30% to 40% of the factory cost of producing primary aluminum. In the continental United States, Alcoa Inc. currently owns and/or operates ten aluminum smelters and many associated fabricating facilities with a combined average load of over 2,600 MW. This presents Alcoa Inc. with a significant opportunity to respond in areas where economic opportunities exist to help mitigate rising energy costs by supplying demand response services into the energy system. This report is organized into seven chapters. The first chapter is the introduction and discusses the intention of this report. The second chapter contains the background. In this chapter, topics include: the motivation for Alcoa to provide demand response; ancillary service definitions; the basics behind aluminum smelting; and a discussion of suggested ancillary services that would be particularly useful for Alcoa to supply. Chapter 3 is concerned with the independent system operator, the Midwest ISO. Here the discussion examines the evolving Midwest ISO market structure including specific definitions, requirements, and necessary components to provide ancillary services. This section is followed by information concerning the Midwest ISO's classifications of demand response parties. Chapter 4 investigates the available opportunities at Alcoa's Warrick facility. Chapter 5 involves an in-depth discussion of the regulation service that Alcoa's Warrick facility can provide and the current interactions with Midwest ISO. Chapter 6 reviews future plans and expectations for Alcoa providing ancillary services into the market. Last, chapter 7, details the conclusion and recommendations of this paper.

Starke, Michael R [ORNL; Kirby, Brendan J [ORNL; Kueck, John D [ORNL; Todd, Duane [Alcoa; Caulfield, Michael [Alcoa; Helms, Brian [Alcoa

2009-02-01T23:59:59.000Z

94

Demand Response (transactional control) - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData Files Data FilesFeFe-HydrogenaseDemandEnergy Analysis

95

Autonomous Demand Response for Primary Frequency Regulation  

SciTech Connect (OSTI)

The research documented within this report examines the use of autonomous demand response to provide primary frequency response in an interconnected power grid. The work builds on previous studies in several key areas: it uses a large realistic model (i.e., the interconnection of the western United States and Canada); it establishes a set of metrics that can be used to assess the effectiveness of autonomous demand response; and it independently adjusts various parameters associated with using autonomous demand response to assess effectiveness and to examine possible threats or vulnerabilities associated with the technology.

Donnelly, Matt; Trudnowski, Daniel J.; Mattix, S.; Dagle, Jeffery E.

2012-02-28T23:59:59.000Z

96

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

shift in the short-run price elasticity of gasoline demand.A meta-analysis of the price elasticity of gasoline demand.2007. Consumer demand un- der price uncertainty: Empirical

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

97

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

H. , and James M. Gri¢ n. 1983. Gasoline demand in the OECDof dynamic demand for gasoline. Journal of Econometrics 77(An empirical analysis of gasoline demand in Denmark using

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

98

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.World crude oil and natural gas: a demand and supply model.

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

99

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.World crude oil and natural gas: a demand and supply model.

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

100

Energy Demand (released in AEO2010)  

Reports and Publications (EIA)

Growth in U.S. energy use is linked to population growth through increases in demand for housing, commercial floorspace, transportation, manufacturing, and services. This affects not only the level of energy use, but also the mix of fuels and consumption by sector.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "areas fuel demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

Sterner. 1991. Analysing gasoline demand elasticities: A2011. Measuring global gasoline and diesel price and incomeMutairi. 1995. Demand for gasoline in Kuwait: An empirical

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

102

Strategies for Demand Response in Commercial Buildings  

SciTech Connect (OSTI)

This paper describes strategies that can be used in commercial buildings to temporarily reduce electric load in response to electric grid emergencies in which supplies are limited or in response to high prices that would be incurred if these strategies were not employed. The demand response strategies discussed herein are based on the results of three years of automated demand response field tests in which 28 commercial facilities with an occupied area totaling over 11 million ft{sup 2} were tested. Although the demand response events in the field tests were initiated remotely and performed automatically, the strategies used could also be initiated by on-site building operators and performed manually, if desired. While energy efficiency measures can be used during normal building operations, demand response measures are transient; they are employed to produce a temporary reduction in demand. Demand response strategies achieve reductions in electric demand by temporarily reducing the level of service in facilities. Heating ventilating and air conditioning (HVAC) and lighting are the systems most commonly adjusted for demand response in commercial buildings. The goal of demand response strategies is to meet the electric shed savings targets while minimizing any negative impacts on the occupants of the buildings or the processes that they perform. Occupant complaints were minimal in the field tests. In some cases, ''reductions'' in service level actually improved occupant comfort or productivity. In other cases, permanent improvements in efficiency were discovered through the planning and implementation of ''temporary'' demand response strategies. The DR strategies that are available to a given facility are based on factors such as the type of HVAC, lighting and energy management and control systems (EMCS) installed at the site.

Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

2006-06-20T23:59:59.000Z

103

Demand Response Valuation Frameworks Paper  

E-Print Network [OSTI]

No. ER06-615-000 CAISO Demand Response Resource User Guide -8 2.1. Demand Response Provides a Range of Benefits to8 2.2. Demand Response Benefits can be Quantified in Several

Heffner, Grayson

2010-01-01T23:59:59.000Z

104

On Demand Guarantees in Iran.  

E-Print Network [OSTI]

??On Demand Guarantees in Iran This thesis examines on demand guarantees in Iran concentrating on bid bonds and performance guarantees. The main guarantee types and… (more)

Ahvenainen, Laura

2009-01-01T23:59:59.000Z

105

Tankless or Demand-Type Water Heaters | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless or Demand-Type Water Heaters Tankless or Demand-Type Water

106

Residential Demand Response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared atEffectquestionnaires

107

Tankless Demand Water Heater Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and1 SpecialMaximizingResidential Buildings »Coil andDemand

108

Managing Increased Charging Demand  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergy Maine09 BalanceStorage and Managing

109

Energy Demand Staff Scientist  

E-Print Network [OSTI]

Energy Demand in China Lynn Price Staff Scientist February 2, 2010 #12;Founded in 1988 Focused on End-Use Energy Efficiency ~ 40 Current Projects in China Collaborations with ~50 Institutions in China Researcher #12;Talk OutlineTalk Outline · Overview · China's energy use and CO2 emission trends · Energy

Eisen, Michael

110

ENERGY DEMAND FORECAST METHODS REPORT  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION ENERGY DEMAND FORECAST METHODS REPORT Companion Report to the California Energy Demand 2006-2016 Staff Energy Demand Forecast Report STAFFREPORT June 2005 CEC-400 .......................................................................................................................................1-1 ENERGY DEMAND FORECASTING AT THE CALIFORNIA ENERGY COMMISSION: AN OVERVIEW

111

Demand Forecast INTRODUCTION AND SUMMARY  

E-Print Network [OSTI]

Demand Forecast INTRODUCTION AND SUMMARY A 20-year forecast of electricity demand is a required of any forecast of electricity demand and developing ways to reduce the risk of planning errors that could arise from this and other uncertainties in the planning process. Electricity demand is forecast

112

Driving change : evaluating strategies to control automotive energy demand growth in China  

E-Print Network [OSTI]

As the number of vehicles in China has relentlessly grown in the past decade, the energy demand, fuel demand and greenhouse gas emissions associated with these vehicles have kept pace. This thesis presents a model to project ...

Bonde Åkerlind, Ingrid Gudrun

2013-01-01T23:59:59.000Z

113

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

Designing Markets for Electricity, Wiley-IEEE Press. CEC (in Major Drivers in U.S. Electricity Markets, NREL/CP-620-and fuel efficiency and electricity demand assumptions used

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

114

Transportation Demand This  

Gasoline and Diesel Fuel Update (EIA)

(VMT) per vehicle by fleet type stays constant over the forecast period based on the Oak Ridge National Laboratory fleet data. Fleet fuel economy for both conventional and...

115

Utility Sector Impacts of Reduced Electricity Demand  

SciTech Connect (OSTI)

This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

Coughlin, Katie

2014-12-01T23:59:59.000Z

116

Demand Side Bidding. Final Report  

SciTech Connect (OSTI)

This document sets forth the final report for a financial assistance award for the National Association of Regulatory Utility Commissioners (NARUC) to enhance coordination between the building operators and power system operators in terms of demand-side responses to Location Based Marginal Pricing (LBMP). Potential benefits of this project include improved power system reliability, enhanced environmental quality, mitigation of high locational prices within congested areas, and the reduction of market barriers for demand-side market participants. NARUC, led by its Committee on Energy Resources and the Environment (ERE), actively works to promote the development and use of energy efficiency and clean distributive energy policies within the framework of a dynamic regulatory environment. Electric industry restructuring, energy shortages in California, and energy market transformation intensifies the need for reliable information and strategies regarding electric reliability policy and practice. NARUC promotes clean distributive generation and increased energy efficiency in the context of the energy sector restructuring process. NARUC, through ERE's Subcommittee on Energy Efficiency, strives to improve energy efficiency by creating working markets. Market transformation seeks opportunities where small amounts of investment can create sustainable markets for more efficient products, services, and design practices.

Spahn, Andrew

2003-12-31T23:59:59.000Z

117

Fueling America Through Renewable Resources Purdue extension  

E-Print Network [OSTI]

Fueling America Through Renewable Resources BioEnergy Purdue extension Meeting the ethanol demand to the anticipated market demand signals by planting more corn after corn. Livestock farmers have often had corn #12; Fueling America Through Renewable Crops BioEnergy Meeting the Ethanol Demand: Consequences

Holland, Jeffrey

118

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network [OSTI]

BEST PRACTICES AND RESULTS OF DR IMPLEMENTATION . 31 Encouraging End-User Participation: The Role of Incentives 16 Demand Response

Shen, Bo

2013-01-01T23:59:59.000Z

119

Customer focused collaborative demand planning  

E-Print Network [OSTI]

Many firms worldwide have adopted the process of Sales & Operations Planning (S&OP) process where internal departments within a firm collaborate with each other to generate a demand forecast. In a collaborative demand ...

Jha, Ratan (Ratan Mohan)

2008-01-01T23:59:59.000Z

120

Automated Demand Response Opportunities in Wastewater Treatment Facilities  

SciTech Connect (OSTI)

Wastewater treatment is an energy intensive process which, together with water treatment, comprises about three percent of U.S. annual energy use. Yet, since wastewater treatment facilities are often peripheral to major electricity-using industries, they are frequently an overlooked area for automated demand response opportunities. Demand response is a set of actions taken to reduce electric loads when contingencies, such as emergencies or congestion, occur that threaten supply-demand balance, and/or market conditions occur that raise electric supply costs. Demand response programs are designed to improve the reliability of the electric grid and to lower the use of electricity during peak times to reduce the total system costs. Open automated demand response is a set of continuous, open communication signals and systems provided over the Internet to allow facilities to automate their demand response activities without the need for manual actions. Automated demand response strategies can be implemented as an enhanced use of upgraded equipment and facility control strategies installed as energy efficiency measures. Conversely, installation of controls to support automated demand response may result in improved energy efficiency through real-time access to operational data. This paper argues that the implementation of energy efficiency opportunities in wastewater treatment facilities creates a base for achieving successful demand reductions. This paper characterizes energy use and the state of demand response readiness in wastewater treatment facilities and outlines automated demand response opportunities.

Thompson, Lisa; Song, Katherine; Lekov, Alex; McKane, Aimee

2008-11-19T23:59:59.000Z

Note: This page contains sample records for the topic "areas fuel demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Demand Response: Load Management Programs  

E-Print Network [OSTI]

CenterPoint Load Management Programs CATEE Conference October, 2012 Agenda Outline I. General Demand Response Definition II. General Demand Response Program Rules III. CenterPoint Commercial Program IV. CenterPoint Residential Programs... V. Residential Discussion Points Demand Response Definition of load management per energy efficiency rule 25.181: ? Load control activities that result in a reduction in peak demand, or a shifting of energy usage from a peak to an off...

Simon, J.

2012-01-01T23:59:59.000Z

122

Uranium 2014 resources, production and demand  

E-Print Network [OSTI]

Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. It presents the results of a thorough review of world uranium supplies and demand and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Long-term projections of nuclear generating capacity and reactor-related uranium requirements are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major changes in the industry.

Organisation for Economic Cooperation and Development. Paris

2014-01-01T23:59:59.000Z

123

Uranium 2005 resources, production and demand  

E-Print Network [OSTI]

Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. This 21st edition presents the results of a thorough review of world uranium supplies and demand as of 1st January 2005 and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Projections of nuclear generating capacity and reactor-related uranium requirements through 2025 are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major c...

Organisation for Economic Cooperation and Development. Paris

2006-01-01T23:59:59.000Z

124

TRAVEL DEMAND AND RELIABLE FORECASTS  

E-Print Network [OSTI]

TRAVEL DEMAND AND RELIABLE FORECASTS FOR TRANSIT MARK FILIPI, AICP PTP 23rd Annual Transportation transportation projects § Develop and maintain Regional Travel Demand Model § Develop forecast socio in cooperative review during all phases of travel demand forecasting 4 #12;Cooperative Review Should Include

Minnesota, University of

125

ELECTRICITY DEMAND FORECAST COMPARISON REPORT  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION ELECTRICITY DEMAND FORECAST COMPARISON REPORT STAFFREPORT June 2005 Gorin Principal Authors Lynn Marshall Project Manager Kae C. Lewis Acting Manager Demand Analysis Office Valerie T. Hall Deputy Director Energy Efficiency and Demand Analysis Division Scott W. Matthews Acting

126

Demand Forecasting of New Products  

E-Print Network [OSTI]

Demand Forecasting of New Products Using Attribute Analysis Marina Kang A thesis submitted Abstract This thesis is a study into the demand forecasting of new products (also referred to as Stock upon currently employed new-SKU demand forecasting methods which involve the processing of large

Sun, Yu

127

Assessment of Demand Response Resource  

E-Print Network [OSTI]

Assessment of Demand Response Resource Potentials for PGE and Pacific Power Prepared for: Portland January 15, 2004 K:\\Projects\\2003-53 (PGE,PC) Assess Demand Response\\Report\\Revised Report_011504.doc #12;#12;quantec Assessment of Demand Response Resource Potentials for I-1 PGE and Pacific Power I. Introduction

128

Research Areas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome toResearch Areas Our Vision National User Facilities

129

Research Areas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome toResearch Areas Our Vision National User

130

China's Coal: Demand, Constraints, and Externalities  

SciTech Connect (OSTI)

This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

Aden, Nathaniel; Fridley, David; Zheng, Nina

2009-07-01T23:59:59.000Z

131

Fuel processor for fuel cell power system  

DOE Patents [OSTI]

A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

Vanderborgh, Nicholas E. (Los Alamos, NM); Springer, Thomas E. (Los Alamos, NM); Huff, James R. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

132

Demand Response Programs, 6. edition  

SciTech Connect (OSTI)

The report provides a look at the past, present, and future state of the market for demand/load response based upon market price signals. It is intended to provide significant value to individuals and companies who are considering participating in demand response programs, energy providers and ISOs interested in offering demand response programs, and consultants and analysts looking for detailed information on demand response technology, applications, and participants. The report offers a look at the current Demand Response environment in the energy industry by: defining what demand response programs are; detailing the evolution of program types over the last 30 years; discussing the key drivers of current initiatives; identifying barriers and keys to success for the programs; discussing the argument against subsidization of demand response; describing the different types of programs that exist including:direct load control, interruptible load, curtailable load, time-of-use, real time pricing, and demand bidding/buyback; providing examples of the different types of programs; examining the enablers of demand response programs; and, providing a look at major demand response programs.

NONE

2007-10-15T23:59:59.000Z

133

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

and D. Kathan (2009). Demand Response in U.S. ElectricityEnergy Financial Group. Demand Response Research Center [2008). Assessment of Demand Response and Advanced Metering.

Goldman, Charles

2010-01-01T23:59:59.000Z

134

Hawaiian Electric Company Demand Response Roadmap Project  

E-Print Network [OSTI]

Like HECO actual utility demand response implementations canindustry-wide utility demand response applications tend toobjective. Figure 4. Demand Response Objectives 17  

Levy, Roger

2014-01-01T23:59:59.000Z

135

Retail Demand Response in Southwest Power Pool  

E-Print Network [OSTI]

23 ii Retail Demand Response in SPP List of Figures and10 Figure 3. Demand Response Resources by11 Figure 4. Existing Demand Response Resources by Type of

Bharvirkar, Ranjit

2009-01-01T23:59:59.000Z

136

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network [OSTI]

for each day type for the demand response study - moderate8.4 Demand Response Integration . . . . . . . . . . .for each day type for the demand response study - moderate

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

137

Installation and Commissioning Automated Demand Response Systems  

E-Print Network [OSTI]

their partnership in demand response automation research andand Techniques for Demand Response. LBNL Report 59975. Mayof Fully Automated Demand Response in Large Facilities.

Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

2008-01-01T23:59:59.000Z

138

Strategies for Demand Response in Commercial Buildings  

E-Print Network [OSTI]

Fully Automated Demand Response Tests in Large Facilities”of Fully Automated Demand Response in Large Facilities”,was coordinated by the Demand Response Research Center and

Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

2006-01-01T23:59:59.000Z

139

Demand Responsive Lighting: A Scoping Study  

E-Print Network [OSTI]

2 2.0 Demand ResponseFully Automated Demand Response Tests in Large Facilities,was coordinated by the Demand Response Research Center and

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

140

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

of Energy demand-side management energy information systemdemand response. Demand-side management (DSM) program goalsa goal for demand-side management (DSM) coordination and

Goldman, Charles

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "areas fuel demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Demand Responsive Lighting: A Scoping Study  

E-Print Network [OSTI]

3 2.1 Demand-Side Managementbuildings. The demand side management framework is discussedIssues 2.1 Demand-Side Management Framework Forecasting

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

142

Hawaiian Electric Company Demand Response Roadmap Project  

E-Print Network [OSTI]

and best practices to guide HECO demand response developmentbest practices for DR renewable integration – Technically demand responseof best practices. This is partially because demand response

Levy, Roger

2014-01-01T23:59:59.000Z

143

Hawaiian Electric Company Demand Response Roadmap Project  

E-Print Network [OSTI]

of control. Water heater demand response options are notcurrent water heater and air conditioning demand responsecustomer response Demand response water heater participation

Levy, Roger

2014-01-01T23:59:59.000Z

144

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

District Small Business Summer Solutions: Energy and DemandSummer Solutions: Energy and Demand Impacts Monthly Energy> B-2 Coordination of Energy Efficiency and Demand Response

Goldman, Charles

2010-01-01T23:59:59.000Z

145

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network [OSTI]

World: Renewable Energy and Demand Response Proliferation intogether the renewable energy and demand response communityimpacts of renewable energy and demand response integration

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

146

Strategies for Demand Response in Commercial Buildings  

E-Print Network [OSTI]

Strategies for Demand Response in Commercial Buildings DavidStrategies for Demand Response in Commercial Buildings Davidadjusted for demand response in commercial buildings. The

Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

2006-01-01T23:59:59.000Z

147

Installation and Commissioning Automated Demand Response Systems  

E-Print Network [OSTI]

Demand Response Systems National Conference on BuildingDemand Response Systems National Conference on BuildingDemand Response Systems National Conference on Building

Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

2008-01-01T23:59:59.000Z

148

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

In terms of demand response capability, building operatorsautomated demand response and improve building energy andand demand response features directly into building design

Goldman, Charles

2010-01-01T23:59:59.000Z

149

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

raising transportation oil demand. Growing internationalcoal by wire could reduce oil demand by stemming coal roadEastern oil production. The rapid growth of coal demand

Aden, Nathaniel

2010-01-01T23:59:59.000Z

150

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network [OSTI]

DEMAND RESPONSE .7 Wholesale Marketuse at times of high wholesale market prices or when systemenergy expenditure. In wholesale markets, spot energy prices

Shen, Bo

2013-01-01T23:59:59.000Z

151

A hybrid inventory management system respondingto regular demand and surge demand  

SciTech Connect (OSTI)

This paper proposes a hybrid policy for a stochastic inventory system facing regular demand and surge demand. The combination of two different demand patterns can be observed in many areas, such as healthcare inventory and humanitarian supply chain management. The surge demand has a lower arrival rate but higher demand volume per arrival. The solution approach proposed in this paper incorporates the level crossing method and mixed integer programming technique to optimize the hybrid inventory policy with both regular orders and emergency orders. The level crossing method is applied to obtain the equilibrium distributions of inventory levels under a given policy. The model is further transformed into a mixed integer program to identify an optimal hybrid policy. A sensitivity analysis is conducted to investigate the impact of parameters on the optimal inventory policy and minimum cost. Numerical results clearly show the benefit of using the proposed hybrid inventory model. The model and solution approach could help healthcare providers or humanitarian logistics providers in managing their emergency supplies in responding to surge demands.

Mohammad S. Roni; Mingzhou Jin; Sandra D. Eksioglu

2014-06-01T23:59:59.000Z

152

Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles  

E-Print Network [OSTI]

for forecasting demand for alternative-fuel vehicles. In:preferences for alternative-fuel vehicles David Brownstonespondents' preferences for alternative-fuel vehicles. The e€

Brownston, David; Bunch, David S.; Train, Kenneth

1999-01-01T23:59:59.000Z

153

Demand Response and Energy Efficiency  

E-Print Network [OSTI]

Demand Response & Energy Efficiency International Conference for Enhanced Building Operations ESL-IC-09-11-05 Proceedings of the Ninth International Conference for Enhanced Building Operations, Austin, Texas, November 17 - 19, 2009 2 ?Less than 5... for Enhanced Building Operations, Austin, Texas, November 17 - 19, 2009 5 What is Demand Response? ?The temporary reduction of electricity demanded from the grid by an end-user in response to capacity shortages, system reliability events, or high wholesale...

154

Driving Demand | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

strategies, results achieved to date, and advice for other programs. Driving Demand for Home Energy Improvements. This guide, developed by the Lawrence Berkeley National...

155

Demand Response Technology Roadmap A  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

workshop agendas, presentation materials, and transcripts. For the background to the Demand Response Technology Roadmap and to make use of individual roadmaps, the reader is...

156

Demand Response Technology Roadmap M  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

between May 2014 and February 2015. The Bonneville Power Administration (BPA) Demand Response Executive Sponsor Team decided upon the scope of the project in May. Two subsequent...

157

Demand Response Energy Consulting LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1 No38e4011f618bDeer Park,Dell Prairie,DeltaDemand Response

158

Hydrogen Demand and Resource Analysis (HyDRA) Model  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health and ProductivityEnergyEnergyHybridAnalysisContaminationDemand and

159

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 2: Electricity Demand.Oglesby Executive Director #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product estimates. Margaret Sheridan provided the residential forecast. Mitch Tian prepared the peak demand

160

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST Volume 2: Electricity Demand Robert P. Oglesby Executive Director #12;i ACKNOWLEDGEMENTS The demand forecast is the combined provided estimates for demand response program impacts and contributed to the residential forecast. Mitch

Note: This page contains sample records for the topic "areas fuel demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Retail Demand Response in Southwest Power Pool  

E-Print Network [OSTI]

Data Collection for Demand-side Management for QualifyingPrepared by Demand-side Management Task Force of the

Bharvirkar, Ranjit

2009-01-01T23:59:59.000Z

162

Honeywell Demonstrates Automated Demand Response Benefits for...  

Office of Environmental Management (EM)

Honeywell Demonstrates Automated Demand Response Benefits for Utility, Commercial, and Industrial Customers Honeywell Demonstrates Automated Demand Response Benefits for Utility,...

163

China, India demand cushions prices  

SciTech Connect (OSTI)

Despite the hopes of coal consumers, coal prices did not plummet in 2006 as demand stayed firm. China and India's growing economies, coupled with solid supply-demand fundamentals in North America and Europe, and highly volatile prices for alternatives are likely to keep physical coal prices from wide swings in the coming year.

Boyle, M.

2006-11-15T23:59:59.000Z

164

Harnessing the power of demand  

SciTech Connect (OSTI)

Demand response can provide a series of economic services to the market and also provide ''insurance value'' under low-likelihood, but high-impact circumstances in which grid reliablity is enhanced. Here is how ISOs and RTOs are fostering demand response within wholesale electricity markets. (author)

Sheffrin, Anjali; Yoshimura, Henry; LaPlante, David; Neenan, Bernard

2008-03-15T23:59:59.000Z

165

Demand Response for Ancillary Services  

SciTech Connect (OSTI)

Many demand response resources are technically capable of providing ancillary services. In some cases, they can provide superior response to generators, as the curtailment of load is typically much faster than ramping thermal and hydropower plants. Analysis and quantification of demand response resources providing ancillary services is necessary to understand the resources economic value and impact on the power system. Methodologies used to study grid integration of variable generation can be adapted to the study of demand response. In the present work, we describe and illustrate a methodology to construct detailed temporal and spatial representations of the demand response resource and to examine how to incorporate those resources into power system models. In addition, the paper outlines ways to evaluate barriers to implementation. We demonstrate how the combination of these three analyses can be used to translate the technical potential for demand response providing ancillary services into a realizable potential.

Alkadi, Nasr E [ORNL; Starke, Michael R [ORNL

2013-01-01T23:59:59.000Z

166

Automated Demand Response and Commissioning  

SciTech Connect (OSTI)

This paper describes the results from the second season of research to develop and evaluate the performance of new Automated Demand Response (Auto-DR) hardware and software technology in large facilities. Demand Response (DR) is a set of activities to reduce or shift electricity use to improve the electric grid reliability and manage electricity costs. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. We refer to this as Auto-DR. The evaluation of the control and communications must be properly configured and pass through a set of test stages: Readiness, Approval, Price Client/Price Server Communication, Internet Gateway/Internet Relay Communication, Control of Equipment, and DR Shed Effectiveness. New commissioning tests are needed for such systems to improve connecting demand responsive building systems to the electric grid demand response systems.

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-04-01T23:59:59.000Z

167

Demand growth to continue for oil, resume for gas this year in the U.S.  

SciTech Connect (OSTI)

Demand for petroleum products and natural gas in the US will move up again this year, stimulated by economic growth and falling prices. Economic growth, although slower than it was last year, will nevertheless remain strong. Worldwide petroleum supply will rise, suppressing oil prices. Natural gas prices are also expected to fall in response to the decline in oil prices and competitive pressure from other fuels. The paper discusses the economy, total energy consumption, energy sources, oil supply (including imports, stocks, refining, refining margins and prices), oil demand (motor gasoline, jet fuel, distillate fuel, residual fuel oil, and other petroleum products), natural gas demand, and natural gas supply.

Beck, R.J.

1998-01-26T23:59:59.000Z

168

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

global gasoline and diesel price and income elasticities.shift in the short-run price elasticity of gasoline demand.Habits and Uncertain Relative Prices: Simulating Petrol Con-

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

169

Shielding analysis for the 300 area light water reactor spent nuclear fuel within a modified multi-canister overpack canister in a modified multi-canister overpack cask  

SciTech Connect (OSTI)

Spent light water reactor fuel is to be moved out of the 324 Building. It is anticipated that intact fuel assemblies will be loaded in a modified Multi-Canister Overpack Canister, which in turn will be placed in an Overpack Transportation Cask. An estimate of gamma ray dose rates from a transportation cask is desired.

Gedeon, S.R.

1997-04-11T23:59:59.000Z

170

Assumption to the Annual Energy Outlook 2014 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOil and Natural8U.S.NA NAOil and GasDemand

171

Demand Response Enabling Technologies and Approaches for Industrial Facilities  

E-Print Network [OSTI]

on the higher of either $500/MWH, or the wholesale electricity price in the customer?s area, during the time of the event. Exact payment arrangements differ by program provider. Day-Ahead Demand Response Program Day-Ahead Demand Response Program (DADRP...), offers retail electricity customers a chance to bid load reduction capability in New York State?s wholesale electricity market. To participate, companies bid their load reduction capability, on a day-ahead basis, into the wholesale electricity market...

Epstein, G.; D'Antonio, M.; Schmidt, C.; Seryak, J.; Smith, C.

2005-01-01T23:59:59.000Z

172

Open Automated Demand Response for Small Commerical Buildings  

SciTech Connect (OSTI)

This report characterizes small commercial buildings by market segments, systems and end-uses; develops a framework for identifying demand response (DR) enabling technologies and communication means; and reports on the design and development of a low-cost OpenADR enabling technology that delivers demand reductions as a percentage of the total predicted building peak electric demand. The results show that small offices, restaurants and retail buildings are the major contributors making up over one third of the small commercial peak demand. The majority of the small commercial buildings in California are located in southern inland areas and the central valley. Single-zone packaged units with manual and programmable thermostat controls make up the majority of heating ventilation and air conditioning (HVAC) systems for small commercial buildings with less than 200 kW peak electric demand. Fluorescent tubes with magnetic ballast and manual controls dominate this customer group's lighting systems. There are various ways, each with its pros and cons for a particular application, to communicate with these systems and three methods to enable automated DR in small commercial buildings using the Open Automated Demand Response (or OpenADR) communications infrastructure. Development of DR strategies must consider building characteristics, such as weather sensitivity and load variability, as well as system design (i.e. under-sizing, under-lighting, over-sizing, etc). Finally, field tests show that requesting demand reductions as a percentage of the total building predicted peak electric demand is feasible using the OpenADR infrastructure.

Dudley, June Han; Piette, Mary Ann; Koch, Ed; Hennage, Dan

2009-05-01T23:59:59.000Z

173

Full Rank Rational Demand Systems  

E-Print Network [OSTI]

as a nominal income full rank QES. R EFERENCES (A.84)S. G. Donald. “Inferring the Rank of a Matrix. ” Journal of97-102. . “A Demand System Rank Theorem. ” Econometrica 57 (

LaFrance, Jeffrey T; Pope, Rulon D.

2006-01-01T23:59:59.000Z

174

Marketing Demand-Side Management  

E-Print Network [OSTI]

Demand-Side Management is an organizational tool that has proven successful in various realms of the ever changing business world in the past few years. It combines the multi-faceted desires of the customers with the increasingly important...

O'Neill, M. L.

1988-01-01T23:59:59.000Z

175

Community Water Demand in Texas  

E-Print Network [OSTI]

Solutions to Texas water policy and planning problems will be easier to identify once the impact of price upon community water demand is better understood. Several important questions cannot be addressed in the absence of such information...

Griffin, Ronald C.; Chang, Chan

176

Demand Response Spinning Reserve Demonstration  

SciTech Connect (OSTI)

The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.

Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.

2007-05-01T23:59:59.000Z

177

Geographic Area Month  

U.S. Energy Information Administration (EIA) Indexed Site

Fuels by PAD District and State (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month No. 1 Distillate No. 2 Distillate a No. 4 Fuel b Sales to End Users Sales for...

178

Demand Response and Open Automated Demand Response Opportunities for Data Centers  

E-Print Network [OSTI]

Standardized Automated Demand Response Signals. Presented atand Automated Demand Response in Industrial RefrigeratedActions for Industrial Demand Response in California. LBNL-

Mares, K.C.

2010-01-01T23:59:59.000Z

179

Open Automated Demand Response Communications in Demand Response for Wholesale Ancillary Services  

E-Print Network [OSTI]

A. Barat, D. Watson. 2006 Demand Response Spinning ReserveKueck, and B. Kirby 2008. Demand Response Spinning ReserveReport 2009. Open Automated Demand Response Communications

Kiliccote, Sila

2010-01-01T23:59:59.000Z

180

MODELING THE DEMAND FOR E85 IN THE UNITED STATES  

SciTech Connect (OSTI)

How demand for E85 might evolve in the future in response to changing economics and policies is an important subject to include in the National Energy Modeling System (NEMS). This report summarizes a study to develop an E85 choice model for NEMS. Using the most recent data from the states of Minnesota, North Dakota, and Iowa, this study estimates a logit model that represents E85 choice as a function of prices of E10 and E85, as well as fuel availability of E85 relative to gasoline. Using more recent data than previous studies allows a better estimation of non-fleet demand and indicates that the price elasticity of E85 choice appears to be higher than previously estimated. Based on the results of the econometric analysis, a model for projecting E85 demand at the regional level is specified. In testing, the model produced plausible predictions of US E85 demand to 2040.

Liu, Changzheng [ORNL; Greene, David L [ORNL

2013-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "areas fuel demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

A dynamic model of industrial energy demand in Kenya  

SciTech Connect (OSTI)

This paper analyses the effects of input price movements, technology changes, capacity utilization and dynamic mechanisms on energy demand structures in the Kenyan industry. This is done with the help of a variant of the second generation dynamic factor demand (econometric) model. This interrelated disequilibrium dynamic input demand econometric model is based on a long-term cost function representing production function possibilities and takes into account the asymmetry between variable inputs (electricity, other-fuels and Tabour) and quasi-fixed input (capital) by imposing restrictions on the adjustment process. Variations in capacity utilization and slow substitution process invoked by the relative input price movement justifies the nature of input demand disequilibrium. The model is estimated on two ISIS digit Kenyan industry time series data (1961 - 1988) using the Iterative Zellner generalized least square method. 31 refs., 8 tabs.

Haji, S.H.H. [Gothenburg Univ. (Sweden)

1994-12-31T23:59:59.000Z

182

CORROSION OF ALUMINUM CLAD SPENT NUCLEAR FUEL IN THE 70 TON CASK DURING TRANSFER FROM L AREA TO H-CANYON  

SciTech Connect (OSTI)

Aluminum-clad spent nuclear fuel will be transported for processing in the 70-ton nuclear fuel element cask from L Basin to H-canyon. During transport these fuels would be expected to experience high temperature aqueous corrosion from the residual L Basin water that will be present in the cask. Cladding corrosion losses during transport were calculated for material test reactor (MTR) and high flux isotope reactors (HFIR) fuels using literature and site information on aqueous corrosion at a range of time/temperature conditions. Calculations of the cladding corrosion loss were based on Arrhenius relationships developed for aluminum alloys typical of cladding material with the primary assumption that an adherent passive film does not form to retard the initial corrosion rate. For MTR fuels a cladding thickness loss of 33 % was found after 1 year in the cask with a maximum temperature of 260 {degrees}C. HFIR fuels showed a thickness loss of only 6% after 1 year at a maximum temperature of 180 {degrees}C. These losses are not expected to impact the overall confinement function of the aluminum cladding.

Mickalonis, J.

2014-06-01T23:59:59.000Z

183

Dynamic Controls for Energy Efficiency and Demand Response: Framework Concepts and a New Construction Study Case in New York  

E-Print Network [OSTI]

Demand-Side Management Framework for Commercial BuildingsTimes (NYT) Building and Its Demand-Side Management Lawrencedemand-side management (DSM) framework presented in Table 1 provides three major areas for changing electric loads in buildings:

Kiliccote, Sila; Piette, Mary Ann; Watson, David S.; Hughes, Glenn

2006-01-01T23:59:59.000Z

184

renewable sources of power. Demand for fossil fuels surely will...  

Energy Savers [EERE]

to deem an oil and gas lease not to be a property interest, the impact of essential fish habitat designations, the fairness of an ocean policy act, sufficient appropriations...

185

Demand Response as a System Reliability Resource  

E-Print Network [OSTI]

Barat, and D. Watson. 2007. Demand Response Spinning ReserveKueck, and B. Kirby. 2009. Demand Response Spinning ReserveFormat of 2009-2011 Demand Response Activity Applications.

Joseph, Eto

2014-01-01T23:59:59.000Z

186

CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY FORECAST Volume 1 in this report. #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product of the hard. Margaret Sheridan contributed to the residential forecast. Mitch Tian prepared the peak demand

187

CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY FORECAST Volume 2 Director #12; i ACKNOWLEDGEMENTS The demand forecast is the combined product prepared the peak demand forecast. Ravinderpal Vaid provided the projections of commercial

188

California Energy Demand Scenario Projections to 2050  

E-Print Network [OSTI]

California Energy Demand Scenario Projections to 2050 RyanCEC (2003a) California energy demand 2003-2013 forecast.CEC (2005a) California energy demand 2006-2016: Staff energy

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

189

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

and Demand Response A pilot program from NSTAR in Massachusetts,Massachusetts, aiming to test whether an intensive program of energy efficiency and demand response

Goldman, Charles

2010-01-01T23:59:59.000Z

190

Supply chain planning decisions under demand uncertainty  

E-Print Network [OSTI]

Sales and operational planning that incorporates unconstrained demand forecasts has been expected to improve long term corporate profitability. Companies are considering such unconstrained demand forecasts in their decisions ...

Huang, Yanfeng Anna

2008-01-01T23:59:59.000Z

191

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

California Long-term Energy Efficiency Strategic Plan. B-2 Coordination of Energy Efficiency and Demand Response> B-4 Coordination of Energy Efficiency and Demand Response

Goldman, Charles

2010-01-01T23:59:59.000Z

192

California Energy Demand Scenario Projections to 2050  

E-Print Network [OSTI]

annual per-capita electricity consumption by demand15 California electricity consumption projections by demandannual per-capita electricity consumption by demand

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

193

Demand Response as a System Reliability Resource  

E-Print Network [OSTI]

for Demand Response Technology Development The objective ofin planning demand response technology RD&D by conductingNew and Emerging Technologies into the California Smart Grid

Joseph, Eto

2014-01-01T23:59:59.000Z

194

Demand Responsive Lighting: A Scoping Study  

E-Print Network [OSTI]

sector, the demand response potential of California buildinga demand response event prohibit a building’s participationdemand response strategies in California buildings are

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

195

Property:OpenEI/UtilityRate/FlatDemandMonth8 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscotInformation Max Jump to:FlatDemandMonth3 Jump to:FlatDemandMonth8 Jump to:

196

Property:OpenEI/UtilityRate/FlatDemandMonth9 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscotInformation Max Jump to:FlatDemandMonth3 Jump to:FlatDemandMonth8 Jump

197

International Oil Supplies and Demands  

SciTech Connect (OSTI)

The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

Not Available

1991-09-01T23:59:59.000Z

198

Turkey's energy demand and supply  

SciTech Connect (OSTI)

The aim of the present article is to investigate Turkey's energy demand and the contribution of domestic energy sources to energy consumption. Turkey, the 17th largest economy in the world, is an emerging country with a buoyant economy challenged by a growing demand for energy. Turkey's energy consumption has grown and will continue to grow along with its economy. Turkey's energy consumption is high, but its domestic primary energy sources are oil and natural gas reserves and their production is low. Total primary energy production met about 27% of the total primary energy demand in 2005. Oil has the biggest share in total primary energy consumption. Lignite has the biggest share in Turkey's primary energy production at 45%. Domestic production should be to be nearly doubled by 2010, mainly in coal (lignite), which, at present, accounts for almost half of the total energy production. The hydropower should also increase two-fold over the same period.

Balat, M. [Sila Science, Trabzon (Turkey)

2009-07-01T23:59:59.000Z

199

International Oil Supplies and Demands  

SciTech Connect (OSTI)

The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

Not Available

1992-04-01T23:59:59.000Z

200

Model for Analysis of Energy Demand (MAED-2) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbHMilo, Maine:Energy Information23.Energy Demand (MAED-2)

Note: This page contains sample records for the topic "areas fuel demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Property:OpenEI/UtilityRate/FixedDemandChargeMonth8 | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscotInformation Max Jump to: navigation,Information FixedDemandChargeMonth8

202

Property:OpenEI/UtilityRate/FlatDemandMonth4 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscotInformation Max Jump to:FlatDemandMonth3 Jump to: navigation, search This

203

Property:OpenEI/UtilityRate/FlatDemandMonth5 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscotInformation Max Jump to:FlatDemandMonth3 Jump to: navigation, search

204

Property:OpenEI/UtilityRate/FlatDemandMonth6 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscotInformation Max Jump to:FlatDemandMonth3 Jump to: navigation,

205

Property:OpenEI/UtilityRate/FlatDemandMonth7 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscotInformation Max Jump to:FlatDemandMonth3 Jump to:

206

Energy Demand: Limits on the Response to Higher Energy Prices in the End-Use Sectors (released in AEO2007)  

Reports and Publications (EIA)

Energy consumption in the end-use demand sectorsresidential, commercial, industrial, and transportationgenerally shows only limited change when energy prices increase. Several factors that limit the sensitivity of end-use energy demand to price signals are common across the end-use sectors. For example, because energy generally is consumed in long-lived capital equipment, short-run consumer responses to changes in energy prices are limited to reductions in the use of energy services or, in a few cases, fuel switching; and because energy services affect such critical lifestyle areas as personal comfort, medical services, and travel, end-use consumers often are willing to absorb price increases rather than cut back on energy use, especially when they are uncertain whether price increases will be long-lasting. Manufacturers, on the other hand, often are able to pass along higher energy costs, especially in cases where energy inputs are a relatively minor component of production costs. In economic terms, short-run energy demand typically is inelastic, and long-run energy demand is less inelastic or moderately elastic at best.

2007-01-01T23:59:59.000Z

207

Demand Charges | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1 No38e4011f618bDeer Park,Dell Prairie,Delta

208

Energy Demand | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revisionWind,Soilsfilesystem socket.pngFigure 55 From

209

Hydrogen PEM Fuel Cells: A Market Need Provides Research Opportunities  

SciTech Connect (OSTI)

It has been said that necessity is the mother of invention. Another way this can be stated is that market demands create research opportunities. Because of the increasing demand for oil (especially for fueling vehicles utilizing internal combustion engines) and the fact that oil is a depleting (not renewable) energy source, a market need for a renewable source of energy has created significant opportunities for research. This paper addresses the research opportunities associated with producing a market competitive (i.e., high performance, low cost and durable) hydrogen proton exchange membrane (PEM) fuel cell. Of the many research opportunities, the primary ones to be addressed directly are: Alternative membrane materials, Alternative catalysts, Impurity effects, and Water transport. A status of Department of Energy-sponsored research in these areas will be summarized and the impact of each on the ability to develop a market-competitive hydrogen PEM fuel cell powered vehicle will be discussed. Also, activities of the International Partnership for the Hydrogen Economy in areas such as advanced membranes for fuel cells and materials for storage will be summarized.

Payne, Terry L [ORNL; Brown, Gilbert M [ORNL; Bogomolny, David [Sentech, Inc.

2010-01-01T23:59:59.000Z

210

Demand Response Programs for Oregon  

E-Print Network [OSTI]

wholesale prices and looming shortages in Western power markets in 2000-01, Portland General Electric programs for large customers remain, though they are not active at current wholesale prices. Other programs demand response for the wholesale market -- by passing through real-time prices for usage above a set

211

Projecting Electricity Demand in 2050  

SciTech Connect (OSTI)

This paper describes the development of end-use electricity projections and load curves that were developed for the Renewable Electricity (RE) Futures Study (hereafter RE Futures), which explored the prospect of higher percentages (30% ? 90%) of total electricity generation that could be supplied by renewable sources in the United States. As input to RE Futures, two projections of electricity demand were produced representing reasonable upper and lower bounds of electricity demand out to 2050. The electric sector models used in RE Futures required underlying load profiles, so RE Futures also produced load profile data in two formats: 8760 hourly data for the year 2050 for the GridView model, and in 2-year increments for 17 time slices as input to the Regional Energy Deployment System (ReEDS) model. The process for developing demand projections and load profiles involved three steps: discussion regarding the scenario approach and general assumptions, literature reviews to determine readily available data, and development of the demand curves and load profiles.

Hostick, Donna J.; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael CW

2014-07-01T23:59:59.000Z

212

Water demand management in Kuwait  

E-Print Network [OSTI]

Kuwait is an arid country located in the Middle East, with limited access to water resources. Yet water demand per capita is much higher than in other countries in the world, estimated to be around 450 L/capita/day. There ...

Milutinovic, Milan, M. Eng. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

213

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network [OSTI]

Report 2009. Open Automated Demand Response Communicationsand Techniques for Demand Response. California Energyand S. Kiliccote. Estimating Demand Response Load Impacts:

Kiliccote, Sila

2010-01-01T23:59:59.000Z

214

Opportunities, Barriers and Actions for Industrial Demand Response in California  

E-Print Network [OSTI]

and Techniques for Demand Response, report for theand Reliability Demand Response Programs: Final Report.Demand Response

McKane, Aimee T.

2009-01-01T23:59:59.000Z

215

Automated Demand Response Opportunities in Wastewater Treatment Facilities  

E-Print Network [OSTI]

Interoperable Automated Demand Response Infrastructure,study of automated demand response in wastewater treatmentopportunities for demand response control strategies in

Thompson, Lisa

2008-01-01T23:59:59.000Z

216

Fossil fuels -- future fuels  

SciTech Connect (OSTI)

Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

NONE

1998-03-01T23:59:59.000Z

217

INTEGRATION OF PV IN DEMAND RESPONSE  

E-Print Network [OSTI]

INTEGRATION OF PV IN DEMAND RESPONSE PROGRAMS Prepared by Richard Perez et al. NREL subcontract response programs. This is because PV generation acts as a catalyst to demand response, markedly enhancing by solid evidence from three utility case studies. BACKGROUND Demand Response: demand response (DR

Perez, Richard R.

218

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 2014­2024 FINAL FORECAST Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product of the hard work to the residential forecast. Mitch Tian prepared the peak demand forecast. Ravinderpal Vaid provided the projections

219

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022  

E-Print Network [OSTI]

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 2: Electricity Demand by Utility ACKNOWLEDGEMENTS The staff demand forecast is the combined product of the hard work and expertise of numerous the residential forecast. Mitch Tian prepared the peak demand forecast. Ravinderpal Vaid provided the projections

220

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022  

E-Print Network [OSTI]

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The staff demand forecast is the combined product of the hard work Sheridan provided the residential forecast. Mitch Tian prepared the peak demand forecast. Ravinderpal Vaid

Note: This page contains sample records for the topic "areas fuel demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST Volume 2: Electricity Demand The demand forecast is the combined product of the hard work and expertise of numerous California Energy for demand response program impacts and contributed to the residential forecast. Mitch Tian prepared

222

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 2014­2024 REVISED FORECAST Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product of the hard work provided estimates for demand response program impacts and contributed to the residential forecast. Mitch

223

Assessment of Demand Response and Advanced Metering  

E-Print Network [OSTI]

#12;#12;2008 Assessment of Demand Response and Advanced Metering Staff Report Federal Energy metering penetration and potential peak load reduction from demand response have increased since 2006. Significant activity to promote demand response or to remove barriers to demand response occurred at the state

Tesfatsion, Leigh

224

E-Print Network 3.0 - aggregate electricity demand Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: for electricity based on aggregate data may in fact reflect the exit of coal-intensive firms (e.g. manufacturers... of fuel demand based on aggregate data, and...

225

The alchemy of demand response: turning demand into supply  

SciTech Connect (OSTI)

Paying customers to refrain from purchasing products they want seems to run counter to the normal operation of markets. Demand response should be interpreted not as a supply-side resource but as a secondary market that attempts to correct the misallocation of electricity among electric users caused by regulated average rate tariffs. In a world with costless metering, the DR solution results in inefficiency as measured by deadweight losses. (author)

Rochlin, Cliff

2009-11-15T23:59:59.000Z

226

Drivers of Future Energy Demand  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocationDiurnalCommittee Draft Advice9DrillingDrive

227

STEO December 2012 - coal demand  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStoriesSANDIA REPORTSORNRecovery ActRSTEM Subscribe tocoal

228

Oxygenate Supply/Demand Balances  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,InformationU.S. Crude

229

Cross-sector Demand Response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases on &gamma;-Al2O3.Winter (Part 2) |IOCriticalCross-Sector Sign

230

Commercial & Industrial Demand Response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean CommunitiesEFRC seekschief-science-officer/ Joint

231

Global energy demand to 2060  

SciTech Connect (OSTI)

The projection of global energy demand to the year 2060 is of particular interest because of its relevance to the current greenhouse concerns. The long-term growth of global energy demand in the time scale of climatic change has received relatively little attention in the public discussion of national policy alternatives. The sociological, political, and economic issues have rarely been mentioned in this context. This study emphasizes that the two major driving forces are global population growth and economic growth (gross national product per capita), as would be expected. The modest annual increases assumed in this study result in a year 2060 annual energy use of >4 times the total global current use (year 1986) if present trends continue, and >2 times with extreme efficiency improvements in energy use. Even assuming a zero per capita growth for energy and economics, the population increase by the year 2060 results in a 1.5 times increase in total annual energy use.

Starr, C. (Electric Power Research Institute, Palo Alto, CA (USA))

1989-01-01T23:59:59.000Z

232

U.S. electric utility demand-side management 1995  

SciTech Connect (OSTI)

The US Electric Utility Demand-Side Management report is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternative Fuels; Energy Information Administration (EIA); US Department of Energy. The report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management``, presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

NONE

1997-01-01T23:59:59.000Z

233

Hydrogen demand, production, and cost by region to 2050.  

SciTech Connect (OSTI)

This report presents an analysis of potential hydrogen (H{sub 2}) demand, production, and cost by region to 2050. The analysis was conducted to (1) address the Energy Information Administration's (EIA's) request for regional H{sub 2} cost estimates that will be input to its energy modeling system and (2) identify key regional issues associated with the use of H{sub 2} that need further study. Hydrogen costs may vary substantially by region. Many feedstocks may be used to produce H{sub 2}, and the use of these feedstocks is likely to vary by region. For the same feedstock, regional variation exists in capital and energy costs. Furthermore, delivery costs are likely to vary by region: some regions are more rural than others, and so delivery costs will be higher. However, to date, efforts to comprehensively and consistently estimate future H{sub 2} costs have not yet assessed regional variation in these costs. To develop the regional cost estimates and identify regional issues requiring further study, we developed a H{sub 2} demand scenario (called 'Go Your Own Way' [GYOW]) that reflects fuel cell vehicle (FCV) market success to 2050 and allocated H{sub 2} demand by region and within regions by metropolitan versus non-metropolitan areas. Because we lacked regional resource supply curves to develop our H{sub 2} production estimates, we instead developed regional H{sub 2} production estimates by feedstock by (1) evaluating region-specific resource availability for centralized production of H{sub 2} and (2) estimating the amount of FCV travel in the nonmetropolitan areas of each region that might need to be served by distributed production of H{sub 2}. Using a comprehensive H{sub 2} cost analysis developed by SFA Pacific, Inc., as a starting point, we then developed cost estimates for each H{sub 2} production and delivery method by region and over time (SFA Pacific, Inc. 2002). We assumed technological improvements over time to 2050 and regional variation in energy and capital costs. Although we estimate substantial reductions in H{sub 2} costs over time, our cost estimates are generally higher than the cost goals of the U.S. Department of Energy's (DOE's) hydrogen program. The result of our analysis, in particular, demonstrates that there may be substantial variation in H{sub 2} costs between regions: as much as $2.04/gallon gasoline equivalent (GGE) by the time FCVs make up one-half of all light-vehicle sales in the GYOW scenario (2035-2040) and $1.85/GGE by 2050 (excluding Alaska). Given the assumptions we have made, our analysis also shows that there could be as much as a $4.82/GGE difference in H{sub 2} cost between metropolitan and non-metropolitan areas by 2050 (national average). Our national average cost estimate by 2050 is $3.68/GGE, but the average H{sub 2} cost in metropolitan areas in that year is $2.55/GGE and that in non-metropolitan areas is $7.37/GGE. For these estimates, we assume that the use of natural gas to produce H{sub 2} is phased out. This phase-out reflects the desire of DOE's Office of Hydrogen, Fuel Cells and Infrastructure Technologies (OHFCIT) to eliminate reliance on natural gas for H{sub 2} production. We conducted a sensitivity run in which we allowed natural gas to continue to be used through 2050 for distributed production of H{sub 2} to see what effect changing that assumption had on costs. In effect, natural gas is used for 66% of all distributed production of H{sub 2} in this run. The national average cost is reduced to $3.10/GGE, and the cost in non-metropolitan areas is reduced from $7.37/GGE to $4.90, thereby reducing the difference between metropolitan and non-metropolitan areas to $2.35/GGE. Although the cost difference is reduced, it is still substantial. Regional differences are similarly reduced, but they also remain substantial. We also conducted a sensitivity run in which we cut in half our estimate of the cost of distributed production of H{sub 2} from electrolysis (our highest-cost production method). In this run, our national average cost estimate is reduced even further, to

Singh, M.; Moore, J.; Shadis, W.; Energy Systems; TA Engineering, Inc.

2005-10-31T23:59:59.000Z

234

Near Optimal Demand-Side Energy Management Under Real-time Demand-Response Pricing  

E-Print Network [OSTI]

Near Optimal Demand-Side Energy Management Under Real-time Demand-Response Pricing Jin Xiao, Jae--In this paper, we present demand-side energy manage- ment under real-time demand-response pricing as a task, demand-response, energy management I. INTRODUCTION The growing awareness of global climate change has

Boutaba, Raouf

235

Climate Mitigation Policy Implications for Global Irrigation Water Demand  

SciTech Connect (OSTI)

Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of alternative land-use emissions mitigation policy options—one which values terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to lead to increased demand for water for agricultural systems (+200%), even in the absence of climate change. In general policies to mitigate climate change will increase agricultural demands for water, regardless of whether or not terrestrial carbon is valued or not. Burgeoning demands for water are driven by the demand for bioenergy in response to emissions mitigation policies. We also find that the policy matters. Increases in the demand for water when terrestrial carbon emissions go un-prices are vastly larger than when terrestrial system carbon emissions are prices at the same rate as fossil fuel and industrial emissions. Our estimates for increased water demands when terrestrial carbon systems go un-priced are larger than earlier studies. We find that the deployment of improved irrigation delivery systems could mitigate some of the increase in water demands, but cannot reverse the increases in water demands when terrestrial carbon emissions go un-priced. Finally we estimates that the geospatial pattern of water demands could stress some parts of the world, e.g. China, India and other countries in south and east Asia, earlier and more intensely than in other parts of the world, e.g. North America.

Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.

2013-08-22T23:59:59.000Z

236

MN Center for Renewable Energy: Cellulosic Ethanol, Optimization of Bio-fuels in Internal Combustion Engines, & Course Development for Technicians in These Areas  

SciTech Connect (OSTI)

This final report for Grant #DE-FG02-06ER64241, MN Center for Renewable Energy, will address the shared institutional work done by Minnesota State University, Mankato and Minnesota West Community and Technical College during the time period of July 1, 2006 to December 30, 2008. There was a no-cost extension request approved for the purpose of finalizing some of the work. The grant objectives broadly stated were to 1) develop educational curriculum to train technicians in wind and ethanol renewable energy, 2) determine the value of cattails as a biomass crop for production of cellulosic ethanol, and 3) research in Optimization of Bio-Fuels in Internal Combustion Engines. The funding for the MN Center for Renewable Energy was spent on specific projects related to the work of the Center.

John Frey

2009-02-22T23:59:59.000Z

237

Outline Introduction Literature Review Electric Power Supply Chains Empirical Examples Conclusions An Integrated Electric Power Supply Chain and Fuel  

E-Print Network [OSTI]

.S., electric power generation accounts for significant portions of fuel demands 30% of the natural gas demand (over 50% in the summer) 90% of the coal demand over 45% of the residual fuel oil demand #12;OutlineOutline Introduction Literature Review Electric Power Supply Chains Empirical Examples Conclusions

Nagurney, Anna

238

Introduction Literature Review Integrated Electric Power Supply Chains Empirical Examples Conclusions An Integrated Electric Power Supply Chain and Fuel  

E-Print Network [OSTI]

of fuel demands 30% of the natural gas demand (over 50% in the summer) 90% of the coal demand over 45% of the residual fuel oil demand. #12;Introduction Literature Review Integrated Electric Power Supply ChainsIntroduction Literature Review Integrated Electric Power Supply Chains Empirical Examples

Nagurney, Anna

239

Fuse Control for Demand Side Management: A Stochastic Pricing Analysis  

E-Print Network [OSTI]

a service contract for load curtailment. Index Terms--Demand side management, aggregated demand response

Oren, Shmuel S.

240

Alternative Fuels Is US Investment in Hydrogen,  

E-Print Network [OSTI]

Worth It? Alex Apple Andrew Cochrane Matt Goodman 4/23/09 #12;Hydrogen Fuel Cells Powerful potential similar to a diesel engine ­ Hydrogen Fuel Cell · Separates H2 into protons and electrons and works · Additional power demands to make H2 · Fuel cells themselves are expensive ­ Hydrogen cars today cost over

Bowen, James D.

Note: This page contains sample records for the topic "areas fuel demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The Value of Renewable Energy as a Hedge Against Fuel Price Risk: Analytic Contributions from Economic and Finance Theory  

E-Print Network [OSTI]

prices hurt the economy), then natural gas is said to have aNatural Gas Policy – Fueling the Demands of a Growing Economy.Natural Gas Policy – Fueling the Demands of a Growing Economy.

Bolinger, Mark A

2009-01-01T23:59:59.000Z

242

Open Automated Demand Response Communications in Demand Response for Wholesale Ancillary Services  

E-Print Network [OSTI]

in Demand Response for Wholesale Ancillary Services Silain Demand Response for Wholesale Ancillary Services Silasuccessfully in the wholesale non- spinning ancillary

Kiliccote, Sila

2010-01-01T23:59:59.000Z

243

Industrial Equipment Demand and Duty Factors  

E-Print Network [OSTI]

Demand and duty factors have been measured for selected equipment (air compressors, electric furnaces, injection molding machines, centrifugal loads, and others) in industrial plants. Demand factors for heavily loaded air compressors were near 100...

Dooley, E. S.; Heffington, W. M.

244

Residential-energy-demand modeling and the NIECS data base: an evaluation  

SciTech Connect (OSTI)

The purpose of this report is to evaluate the 1978-1979 National Interim Energy Consumption Survey (NIECS) data base in terms of its usefulness for estimating residential energy demand models based on household appliance choice and utilization decisions. The NIECS contains detailed energy usage information at the household level for 4081 households during the April 1978 to March 1979 period. Among the data included are information on the structural and thermal characteristics of the housing unit, demographic characteristics of the household, fuel usage, appliance characteristics, and actual energy consumption. The survey covers the four primary residential fuels-electricity, natural gas, fuel oil, and liquefied petroleum gas - and includes detailed information on recent household conservation and retrofit activities. Section II contains brief descriptions of the major components of the NIECS data set. Discussions are included on the sample frame and the imputation procedures used in NIECS. There are also two extensive tables, giving detailed statistical and other information on most of the non-vehicle NIECS variables. Section III contains an assessment of the NIECS data, focusing on four areas: measurement error, sample design, imputation problems, and additional data needed to estimate appliance choice/use models. Section IV summarizes and concludes the report.

Cowing, T.G.; Dubin, J.A.; McFadden, D.

1982-01-01T23:59:59.000Z

245

PAN-on-Demand: Leveraging multiple radios to build self-organizing, energy-efficient PANs  

E-Print Network [OSTI]

, it adapts the network struc- ture to minimize energy usage. Our results show that PAN-on- Demand reducesPAN-on-Demand: Leveraging multiple radios to build self-organizing, energy-efficient PANs Manish- area network (PAN) that balances performance and energy con- cerns by scaling the structure

Flinn, Jason

246

Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings  

E-Print Network [OSTI]

A demand-side management framework from building operationsdemand-side management (DSM) framework presented in Table 2 provides three major areas for changing electric loads in buildings:buildings in California. This paper summarizes the integration of DR in demand-side management

Kiliccote, Sila; Piette, Mary Ann; Hansen, David

2006-01-01T23:59:59.000Z

247

Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings  

E-Print Network [OSTI]

a building operations perspective, a demand-side managementdemand-side management (DSM) framework presented in Table 2 provides three major areas for changing electric loads in buildings:buildings in California. This report summarizes the integration of DR in demand-side management

Piette, Mary Ann; Kiliccote, Sila

2006-01-01T23:59:59.000Z

248

Marketing & Driving Demand Collaborative - Social Media Tools...  

Energy Savers [EERE]

drivingdemandsocialmedia010611.pdf More Documents & Publications Marketing & Driving Demand: Social Media Tools & Strategies - January 16, 2011 Social Media for Natural...

249

Wireless Demand Response Controls for HVAC Systems  

E-Print Network [OSTI]

temperature-based demand response in buildings that havedemand response advantages of global zone temperature setup in buildings

Federspiel, Clifford

2010-01-01T23:59:59.000Z

250

Response to changes in demand/supply  

E-Print Network [OSTI]

Response to changes in demand/supply through improved marketing 21.2 #12;#12;111 Impacts of changes log demand in 1995. The composites board mills operating in Korea took advantage of flexibility environment changes on the production mix, some economic indications, statistics of demand and supply of wood

251

Response to changes in demand/supply  

E-Print Network [OSTI]

Response to changes in demand/supply through improved marketing 21.2 http with the mill consuming 450 000 m3 , amounting to 30% of total plywood log demand in 1995. The composites board, statistics of demand and supply of wood, costs and competitiveness were analysed. The reactions

252

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 1: Statewide Electricity forecast is the combined product of the hard work and expertise of numerous staff members in the Demand prepared the peak demand forecast. Ravinderpal Vaid provided the projections of commercial floor space

253

FINAL STAFF FORECAST OF 2008 PEAK DEMAND  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION FINAL STAFF FORECAST OF 2008 PEAK DEMAND STAFFREPORT June 2007 CEC-200 of the information in this paper. #12;Abstract This document describes staff's final forecast of 2008 peak demand demand forecasts for the respective territories of the state's three investor-owned utilities (IOUs

254

THE STATE OF DEMAND RESPONSE IN CALIFORNIA  

E-Print Network [OSTI]

THE STATE OF DEMAND RESPONSE IN CALIFORNIA Prepared For: California Energy in this report. #12; ABSTRACT By reducing system loads during criticalpeak times, demand response (DR) can.S. and internationally and lay out ideas that could help move California forward. KEY WORDS demand response, peak

255

THE STATE OF DEMAND RESPONSE IN CALIFORNIA  

E-Print Network [OSTI]

THE STATE OF DEMAND RESPONSE IN CALIFORNIA Prepared For: California Energy in this report. #12; ABSTRACT By reducing system loads during criticalpeak times, demand response can help reduce the threat of planned rotational outages. Demand response is also widely regarded as having

256

Demand Response Resources in Pacific Northwest  

E-Print Network [OSTI]

Demand Response Resources in Pacific Northwest Chuck Goldman Lawrence Berkeley National Laboratory cagoldman@lbl.gov Pacific Northwest Demand Response Project Portland OR May 2, 2007 #12;Overview · Typology Annual Reports ­ Journal articles/Technical reports #12;Demand Response Resources · Incentive

257

Barrier Immune Radio Communications for Demand Response  

E-Print Network [OSTI]

LBNL-2294E Barrier Immune Radio Communications for Demand Response F. Rubinstein, G. Ghatikar, J Ann Piette of Lawrence Berkeley National Laboratory's (LBNL) Demand Response Research Center (DRRC and Environment's (CIEE) Demand Response Emerging Technologies Development (DRETD) Program, under Work for Others

258

Demand Response and Ancillary Services September 2008  

E-Print Network [OSTI]

Demand Response and Ancillary Services September 2008 #12;© 2008 EnerNOC, Inc. All Rights Reserved programs The purpose of this presentation is to offer insight into the mechanics of demand response and industrial demand response resources across North America in both regulated and restructured markets As of 6

259

Demand Responsive Lighting: A Scoping Study  

E-Print Network [OSTI]

LBNL-62226 Demand Responsive Lighting: A Scoping Study F. Rubinstein, S. Kiliccote Energy Environmental Technologies Division January 2007 #12;LBNL-62226 Demand Responsive Lighting: A Scoping Study in this report was coordinated by the Demand Response Research Center and funded by the California Energy

260

Modeling Energy Demand Aggregators for Residential Consumers  

E-Print Network [OSTI]

Modeling Energy Demand Aggregators for Residential Consumers G. Di Bella, L. Giarr`e, M. Ippolito, A. Jean-Marie, G. Neglia and I. Tinnirello § January 2, 2014 Abstract Energy demand aggregators are new actors in the energy scenario: they gather a group of energy consumers and implement a demand

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "areas fuel demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Demand Response Valuation Frameworks Paper  

SciTech Connect (OSTI)

While there is general agreement that demand response (DR) is a valued component in a utility resource plan, there is a lack of consensus regarding how to value DR. Establishing the value of DR is a prerequisite to determining how much and what types of DR should be implemented, to which customers DR should be targeted, and a key determinant that drives the development of economically viable DR consumer technology. Most approaches for quantifying the value of DR focus on changes in utility system revenue requirements based on resource plans with and without DR. This ''utility centric'' approach does not assign any value to DR impacts that lower energy and capacity prices, improve reliability, lower system and network operating costs, produce better air quality, and provide improved customer choice and control. Proper valuation of these benefits requires a different basis for monetization. The review concludes that no single methodology today adequately captures the wide range of benefits and value potentially attributed to DR. To provide a more comprehensive valuation approach, current methods such as the Standard Practice Method (SPM) will most likely have to be supplemented with one or more alternative benefit-valuation approaches. This report provides an updated perspective on the DR valuation framework. It includes an introduction and four chapters that address the key elements of demand response valuation, a comprehensive literature review, and specific research recommendations.

Heffner, Grayson

2009-02-01T23:59:59.000Z

262

Alternative transportation fuels  

SciTech Connect (OSTI)

The commercialization of alternative fuels is analyzed. Following a synopsis of US energy use, the concept of commercialization, the impacts of supply shortages and demand inelasticity upon commercialization, and the status of alternative fuels commercialization to date in the US are discussed. The US energy market is viewed as essentially numerous submarkets. The interrelationship among these submarkets precludes the need to commercialize for a specific fuel/use. However, the level of consumption, the projected growth in demand, and the inordinate dependence upon foreign fuels dictate that additional fuel supplies in general be brought to the US energy marketplace. Commercialization efforts encompass a range of measures designed to accelerate the arrival of technologies or products in the marketplace. As discussed in this paper, such a union of willing buyers and willing sellers requires that three general conditions be met: product quality comparable to existing products; price competitiveness; and adequate availability of supply. Product comparability presently appears to be the least problematic of these three requirements. Ethanol/gasoline and methanol/gasoline blends, for example, demonstrate the fact that alternative fuel technologies exist. Yet price and availability (i.e., production capacity) remain major obstacles. Given inelasticity (with respect to price) in the US and abroad, supply shortages - actual or contrived - generate upward price pressure and should make once-unattractive alternative fuels more price competitive. It is noted, however, that actual price competitiveness has been slow to occur and that even with price competitiveness, the lengthy time frame needed to achieve significant production capacity limits the near-term impact of alternative fuels.

Askew, W.S.; McNamara, T.M.; Maxfield, D.P.

1980-01-01T23:59:59.000Z

263

New demands on manufacturing of composite materials  

SciTech Connect (OSTI)

Traditionally the field of advanced composites has been dominated by the needs of the aerospace industry. This has strongly influenced the materials and processes developed. However, during the last few years, a shift of emphasis into other engineering areas has been obvious. Branches such as the mechanical industry, ground transportation, the building industry and the leisure industry are today defining many of the new areas of application for these materials. In these applications fiber-reinforced composites are not just used in large structures but also in crucial small complex-shaped elements of larger machinery in order to improve overall performance. To satisfy these new demands, it is essential to develop innovative material systems and processing techniques which enable the production of composite parts with complex geometries at reasonable cost and with high precision. Most likely the solution to this task lies in the closely integrated development of the material system and the manufacturing method. Several different approaches are today taken in order to reach this goal for composite materials. Furthermore, it is nowadays important that the introduction of any new material or application, especially for high volume production, be accompanied by a thorough life-cycle and environmental plan.

Manson, J.A.E. [Ecole Polytechnique Federale de Lausanne (Switzerland). Lab. de Technologie des Composites et Polymeres

1994-12-31T23:59:59.000Z

264

Winters fuels report  

SciTech Connect (OSTI)

The outlook for distillate fuel oil this winter is for increased demand and a return to normal inventory patterns, assuming a resumption of normal, cooler weather than last winter. With industrial production expected to grow slightly from last winter`s pace, overall consumption is projected to increase 3 percent from last winter, to 3.4 million barrels per day during the heating season (October 1, 1995-March 31, 1996). Much of the supply win come from stock drawdowns and refinery production. Estimates for the winter are from the Energy Information Administration`s (EIA) 4th Quarter 1995 Short-Tenn Energy Outlook (STEO) Mid-World Oil Price Case forecast. Inventories in place on September 30, 1995, of 132 million barrels were 9 percent below the unusually high year-earlier level. Inventories of high-sulfur distillate fuel oil, the principal type used for heating, were 13 percent lower than a year earlier. Supply problems are not anticipated because refinery production and the ready availability of imports should be adequate to meet demand. Residential heating off prices are expected to be somewhat higher than last winter`s, as the effects of lower crude oil prices are offset by lower distillate inventories. Heating oil is forecast to average $0.92 per gallon, the highest price since the winter of 1992-93. Diesel fuel (including tax) is predicted to be slightly higher than last year at $1.13 per gallon. This article focuses on the winter assessment for distillate fuel oil, how well last year`s STEO winter outlook compared to actual events, and expectations for the coming winter. Additional analyses include regional low-sulfur and high-sulfur distillate supply, demand, and prices, and recent trends in distillate fuel oil inventories.

NONE

1995-10-27T23:59:59.000Z

265

oday the spotlight in the United States is on the increasing world demand for  

E-Print Network [OSTI]

. Future of agriculture: supply of food fiber and bio-fuels. Forest Residues Agricultural Crops Aquatic sources, such as bio fuels, forests, wind, solar and animal manure. While demand for hydrocarbon energy of energy from biomass, including trees, agricultural crops, animal manure and municipal solid waste

Mukhtar, Saqib

266

Energy demand and population changes  

SciTech Connect (OSTI)

Since World War II, US energy demand has grown more rapidly than population, so that per capita consumption of energy was about 60% higher in 1978 than in 1947. Population growth and the expansion of per capita real incomes have led to a greater use of energy. The aging of the US population is expected to increase per capita energy consumption, despite the increase in the proportion of persons over 65, who consume less energy than employed persons. The sharp decline in the population under 18 has led to an expansion in the relative proportion of population in the prime-labor-force age groups. Employed persons are heavy users of energy. The growth of the work force and GNP is largely attributable to the growing participation of females. Another important consequence of female employment is the growth in ownership of personal automobiles. A third factor pushing up labor-force growth is the steady influx of illegal aliens.

Allen, E.L.; Edmonds, J.A.

1980-12-01T23:59:59.000Z

267

Demand Forecast and Performance Prediction in Peer-Assisted On-Demand Streaming Systems  

E-Print Network [OSTI]

Demand Forecast and Performance Prediction in Peer-Assisted On-Demand Streaming Systems Di Niu on the Internet. Automated demand forecast and performance prediction, if implemented, can help with capacity an accurate user demand forecast. In this paper, we analyze the operational traces collected from UUSee Inc

Li, Baochun

268

Risk Management for Video-on-Demand Servers leveraging Demand Forecast  

E-Print Network [OSTI]

Risk Management for Video-on-Demand Servers leveraging Demand Forecast Di Niu, Hong Xu, Baochun Li on demand history using time se- ries forecasting techniques. The prediction enables dynamic and efficient}@eecg.toronto.edu Shuqiao Zhao Multimedia Development Group UUSee, Inc. shuqiao.zhao@gmail.com ABSTRACT Video-on-demand (Vo

Li, Baochun

269

US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier  

E-Print Network [OSTI]

that energy intensity is not necessarily a good indicator of energy efficiency, whereas by controllingUS Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier Approach Massimo www.cepe.ethz.ch #12;US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier

270

Demand response enabling technology development  

E-Print Network [OSTI]

occupied Bay Area house under study. Passive Proximity ACPASSIVE PROXIMITY AC CURRENT SENSOR 27 WIRELESSLY CONTROLLED MONITORING-OUTLETS28 WIRELESS MONITORING OF A TEST HOUSE House Meter”. ) Some final observations for sensors a) Size matters: Though the passive

2006-01-01T23:59:59.000Z

271

Estimation and specification tests of count data recreation demand functions  

E-Print Network [OSTI]

addressed this issue by employing various estimators which are based on a count distribution. Although researchers have recognized the need to model recreation demand as stemming from a count data generating process, there is little guidance in selecting... a stochastic model for this type of data, Previous research in this area has so far engaged only in heuristic comparisons of various count data estimators. Hence, as in standard regression analysis, it is desirable to test whether the fitted count...

Gomez, Irma Adriana

1991-01-01T23:59:59.000Z

272

An analysis of intraseasonal demand for Texas winter carrots  

E-Print Network [OSTI]

variable in addition to traditional (quantity and income) pre- determined variables to test for systematic within season changes in demand. An alternative technique f' or allowing within season changes in slope or level utilizing "dussqy" (zero.... The second problem en- countered was derivation of a positive coefficient for the Cali- fornia and. Arizona interstate shipments variables, indicating an apparent, supply response by these two areas to changes in the general carrot pri. ce level. The posi...

Carlson, Chriss Heath

1970-01-01T23:59:59.000Z

273

Rates and technologies for mass-market demand response  

E-Print Network [OSTI]

Roger. 2002. Using Demand Response to Link Wholesale andfor advanced metering, demand response, and dynamic pricing.EPRI. 2001. Managing Demand-Response To Achieve Multiple

Herter, Karen; Levy, Roger; Wilson, John; Rosenfeld, Arthur

2002-01-01T23:59:59.000Z

274

Open Automated Demand Response Dynamic Pricing Technologies and Demonstration  

E-Print Network [OSTI]

Goodin. 2009. “Open Automated Demand Response Communicationsin Demand Response for Wholesale Ancillary Services. ” InOpen Automated Demand Response Demonstration Project. LBNL-

Ghatikar, Girish

2010-01-01T23:59:59.000Z

275

Coordination of Retail Demand Response with Midwest ISO Markets  

E-Print Network [OSTI]

Robinson, Michael, 2008, "Demand Response in Midwest ISOPresentation at MISO Demand Response Working Group Meeting,Coordination of Retail Demand Response with Midwest ISO

Bharvirkar, Ranjit

2008-01-01T23:59:59.000Z

276

Results and commissioning issues from an automated demand response pilot  

E-Print Network [OSTI]

of Fully Automated Demand Response in Large Facilities"Management and Demand Response in Commercial Buildings", L Band Commissioning Issues from an Automated Demand Response.

Piette, Mary Ann; Watson, Dave; Sezgen, Osman; Motegi, Naoya

2004-01-01T23:59:59.000Z

277

Demand Response Opportunities in Industrial Refrigerated Warehouses in California  

E-Print Network [OSTI]

and Open Automated Demand Response. In Grid Interop Forum.work was sponsored by the Demand Response Research Center (load-management.php. Demand Response Research Center (2009).

Goli, Sasank

2012-01-01T23:59:59.000Z

278

Demand Response in U.S. Electricity Markets: Empirical Evidence  

E-Print Network [OSTI]

Reliability Corporation. Demand response data task force:Energy. Benefits of demand response in electricity marketsAssessment of demand response & advanced metering, staff

Cappers, Peter

2009-01-01T23:59:59.000Z

279

Linking Continuous Energy Management and Open Automated Demand Response  

E-Print Network [OSTI]

A. Barat, D. Watson. Demand Response Spinning ReserveOpen Automated Demand Response Communication Standards:Dynamic Controls for Demand Response in a New Commercial

Piette, Mary Ann

2009-01-01T23:59:59.000Z

280

Direct versus Facility Centric Load Control for Automated Demand Response  

E-Print Network [OSTI]

Interoperable Automated Demand Response Infrastructure.and Techniques for Demand Response. LBNL Report 59975. Mayand Communications for Demand Response and Energy Efficiency

Piette, Mary Ann

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "areas fuel demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Open Automated Demand Response Communications Specification (Version 1.0)  

E-Print Network [OSTI]

and Techniques for Demand Response. May 2007. LBNL-59975.to facilitate automating  demand response actions at the Interoperable Automated Demand Response Infrastructure,

Piette, Mary Ann

2009-01-01T23:59:59.000Z

282

Open Automated Demand Response for Small Commerical Buildings  

E-Print Network [OSTI]

of Fully Automated Demand  Response in Large Facilities.  Fully Automated Demand Response Tests in Large Facilities.  Open Automated  Demand Response Communication Standards: 

Dudley, June Han

2009-01-01T23:59:59.000Z

283

LEED Demand Response Credit: A Plan for Research towards Implementation  

E-Print Network [OSTI]

C. McParland, Open Automated Demand Response Communicationsand Open Automated Demand Response", Grid Interop Forum,Testing of Automated Demand Response for Integration of

Kiliccote, Sila

2014-01-01T23:59:59.000Z

284

Opportunities, Barriers and Actions for Industrial Demand Response in California  

E-Print Network [OSTI]

13 Table 2. Demand Side Management Framework for IndustrialDR Strategies The demand-side management (DSM) frameworkpresented in Table 2. Demand Side Management Framework for

McKane, Aimee T.

2009-01-01T23:59:59.000Z

285

FINAL DEMAND FORECAST FORMS AND INSTRUCTIONS FOR THE 2007  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION FINAL DEMAND FORECAST FORMS AND INSTRUCTIONS FOR THE 2007 INTEGRATED Table of Contents General Instructions for Demand Forecast Submittals.............................................................................. 4 Protocols for Submitted Demand Forecasts

286

Linking Continuous Energy Management and Open Automated Demand Response  

E-Print Network [OSTI]

description of six energy and demand management concepts.how quickly it can modify energy demand. This is not a newimprovements in both energy efficiency and demand response (

Piette, Mary Ann

2009-01-01T23:59:59.000Z

287

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network [OSTI]

Institute, “Curbing Global Energy Demand Growth: The Energyup Assessment of Energy Demand in India Transportationa profound effect on energy demand. Policy analysts wishing

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

288

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network [OSTI]

Building Control Strategies and Techniques for Demand Response.Building Systems and DR Strategies 16 Demand ResponseDemand Response Systems. ” Proceedings, 16 th National Conference on Building

Kiliccote, Sila

2010-01-01T23:59:59.000Z

289

LEED Demand Response Credit: A Plan for Research towards Implementation  

E-Print Network [OSTI]

in California. DEMAND RESPONSE AND COMMERCIAL BUILDINGSload and demand response against other buildings and alsoDemand Response and Energy Efficiency in Commercial Buildings",

Kiliccote, Sila

2014-01-01T23:59:59.000Z

290

Open Automated Demand Response Communications Specification (Version 1.0)  

E-Print Network [OSTI]

Keywords: demand response, buildings, electricity use, Interface  Automated Demand Response  Building Automation of demand response in  commercial buildings.   One key 

Piette, Mary Ann

2009-01-01T23:59:59.000Z

291

Results and commissioning issues from an automated demand response pilot  

E-Print Network [OSTI]

Management and Demand Response in Commercial Buildings", L BAutomated Demand Response National Conference on BuildingAutomated Demand Response National Conference on Building

Piette, Mary Ann; Watson, Dave; Sezgen, Osman; Motegi, Naoya

2004-01-01T23:59:59.000Z

292

Scenarios for Consuming Standardized Automated Demand Response Signals  

E-Print Network [OSTI]

Keywords: Demand response, automation, commercial buildings,Demand Response and Energy Efficiency in Commercial Buildings,Building Control Strategies and Techniques for Demand Response.

Koch, Ed

2009-01-01T23:59:59.000Z

293

Open Automated Demand Response for Small Commerical Buildings  

E-Print Network [OSTI]

Demand  Response for Small Commercial Buildings.   CEC?500?automated demand response  For small commercial buildings, AUTOMATED DEMAND RESPONSE FOR SMALL COMMERCIAL BUILDINGS

Dudley, June Han

2009-01-01T23:59:59.000Z

294

Automated Demand Response Strategies and Commissioning Commercial Building Controls  

E-Print Network [OSTI]

for Demand Response in New and Existing Commercial BuildingsDemand Response Strategies and National Conference on BuildingDemand Response Strategies and Commissioning Commercial Building

Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Linkugel, Eric

2006-01-01T23:59:59.000Z

295

Open Automated Demand Response Dynamic Pricing Technologies and Demonstration  

E-Print Network [OSTI]

for Automated Demand Response in Commercial Buildings. Inbased demand response information to building controlDemand Response Standard for the Residential Sector. California Energy Commission, PIER Buildings

Ghatikar, Girish

2010-01-01T23:59:59.000Z

296

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network [OSTI]

is manual demand response where building staff receive acommercial buildings’ demand response technologies andBuilding Control Strategies and Techniques for Demand Response.

Kiliccote, Sila

2010-01-01T23:59:59.000Z

297

Direct versus Facility Centric Load Control for Automated Demand Response  

E-Print Network [OSTI]

Keywords: Demand response, automation, commercial buildings,Demand Response and Energy Efficiency in Commercial Buildings,Building Control Strategies and Techniques for Demand Response.

Piette, Mary Ann

2010-01-01T23:59:59.000Z

298

Miniature fuel-cell system complete with on-demand fuel and oxidant supply  

E-Print Network [OSTI]

Energy consumption of personal computing including portable communication devices,” Journal of Green

Hur, JI; Kim, C-J

2015-01-01T23:59:59.000Z

299

Fuel pin  

DOE Patents [OSTI]

A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

1987-11-24T23:59:59.000Z

300

Changes in worldwide demand for metals (final). Open File report  

SciTech Connect (OSTI)

Worldwide demand for metals was analyzed to identify the important factors that explain differences in the level of demand among world countries. The per capita demand for steel, aluminum, copper, and total nonferrous metals was investigated for 40 to 50 countries over a 22-year period. These countries have been further grouped into four world regions for purposes of making generalizations about the importance of these factors for countries in different stages of development and with dissimilar levels of per capita gross domestic product (GDP). Intercountry and intertemporal differences are explained largely by differences in per capita GDP and changes over time in per capita GDP, oil real prices, and to a lesser extent, metal real prices. The trend in world consumption is dramatically different in the last decade than the previous one. In 1962-73, per capita consumption increased in all areas and consumption intensity (consumption divided by (GDP) increased in most areas). In 1973-84, per capita consumption fell in most areas and intensity fell dramatically, except in developing nations.

Faucett, J.G.; Chmelynski, H.J.

1986-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "areas fuel demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Electricity Demand and Energy Consumption Management System  

E-Print Network [OSTI]

This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

Sarmiento, Juan Ojeda

2008-01-01T23:59:59.000Z

302

Small-scale circulating fluidized bed combustor (CFBC) system for heat and power in remote areas  

SciTech Connect (OSTI)

Demand for heating and electric power has steadily increased in remote areas. The use of locally available fuel to achieve self sufficiency has become an important objective. Energy demands may require steam generation for district heating, power generation and process consumption. In addition, the steam generation unit can also be required to burn waste that includes MSW and sewage sludge. To meet these demands, new systems must be installed that use local fuel. This paper describes a lower cost CFBC for use in remote areas. With the support of DOE METC, in late summer 1994, DONLEE performed a test burn at its 10 MM btu/hr pilot CFBC using subbituminous coal from Wyoming. The Wyoming coal`s sulfur dioxide emissions were very low due to the low sulfur content of the Wyoming coal and the excellent efficiency at temperatures as low as 1,500 F thereby indicating no limestone addition was needed for sulfur capture. The CFBC testing indicated emissions met all of the environmental requirements, both Federal and state. These requirements include: particulates, SO{sub 2}, CO, NO{sub x}, opacity, chlorinated dioxins/furans, etc. The unit can be fabricated in modules, making the installation easier and less expensive for use in remote areas. The design is highly reliable and can be fully automated thereby requiring limited staffing.

Stuart, J.M.; Korenberg, J. [DONLEE Technologies Inc., York, PA (United States)

1995-12-31T23:59:59.000Z

303

Program Area of Interest: Fuel Transformer Solid Oxide Fuel Cell  

SciTech Connect (OSTI)

The following report documents the technical approach and conclusions made by Acumentrics Corporation during latest budget period toward the development of a low cost 10kW tubular SOFC power system. The present program, guided under direction from the National Energy Technology Laboratory of the US DOE, is a nine-year cost shared Cooperative Agreement totaling close to $74M funded both by the US DOE as well as Acumentrics Corporation and its partners. The latest budget period ran from July of 2005 through December 2005. Work focused on cell technology enhancements as well as BOP and power electronics improvements and overall system design. Significant progress was made in increasing cell power enhancements as well as decreasing material cost in a drive to meet the SECA cost targets. The following report documents these accomplishments in detail as well as the layout plans for further progress in next budget period.

Norman Bessette; Douglas S. Schmidt; Jolyon Rawson; Rhys Foster; Anthony Litka

2006-02-01T23:59:59.000Z

304

Industrial Demand-Side Management in Texas  

E-Print Network [OSTI]

of programs result in lower consumption and/or lower peak demand, and ultimately reduce the need to build new capacity. Hence demand-side management can be used as a resource option to be considered alongside more traditional supply-side resources in a...INDUSTRIAL DEMAND-SIDE MANAGEMENT IN TEXAS Danielle Jaussaud Economic Analysis Section Public Utility Commission of Texas Austin, Texas ABSTRACT The industrial sector in Texas is highly energy intensive and represents a large share...

Jaussaud, D.

305

Demand Response in the West: Lessons for States and Provinces  

SciTech Connect (OSTI)

OAK-B135 This paper is submitted in fulfillment of DOE Grant No. DE-FG03-015F22369 on the experience of western states/provinces with demand response (DR) in the electricity sector. Demand-side resources are often overlooked as a viable option for meeting load growth and addressing the challenges posed by the region's aging transmission system. Western states should work together with utilities and grid operators to facilitate the further deployment of DR programs which can provide benefits in the form of decreased grid congestion, improved system reliability, market efficiency, price stabilization, hedging against volatile fuel prices and reduced environmental impacts of energy production. This report describes the various types of DR programs; provides a survey of DR programs currently in place in the West; considers the benefits, drawbacks and barriers to DR; and presents lessons learned and recommendations for states/provinces.

Douglas C. Larson; Matt Lowry; Sharon Irwin

2004-06-29T23:59:59.000Z

306

Maximum-Demand Rectangular Location Problem  

E-Print Network [OSTI]

Oct 1, 2014 ... Demand and service can be defined in the most general sense. ... Industrial and Systems Engineering, Texas A&M University, September 2014.

Manish Bansal

2014-10-01T23:59:59.000Z

307

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network [OSTI]

in the presence of renewable resources and on the amount ofprimarily from renewable resources, and to a limited extentintegration of renewable resources and deferrable demand. We

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

308

Demand Responsive Lighting: A Scoping Study  

E-Print Network [OSTI]

3 3.0 Previous Experience with Demand Responsive Lighting11 4.3. Prevalence of Lighting13 4.4. Impact of Title 24 on Lighting

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

309

Wastewater plant takes plunge into demand response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commission and the Bonneville Power Administration, the Eugene-Springfield Water Pollution Control Facility in Eugene, Ore., was put through a series of demand response tests....

310

Demand Responsive Lighting: A Scoping Study  

E-Print Network [OSTI]

peak demand management. Photo sensors for daylight drivenare done by local photo-sensors and control hardwaresensing device in a photo sensor is typically a photodiode,

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

311

Wireless Demand Response Controls for HVAC Systems  

E-Print Network [OSTI]

Response Controls for HVAC Systems Clifford Federspiel,tests. Figure 5: Specific HVAC electric power consumptioncontrol, demand response, HVAC, wireless Executive Summary

Federspiel, Clifford

2010-01-01T23:59:59.000Z

312

Retail Demand Response in Southwest Power Pool  

E-Print Network [OSTI]

Commission (FERC) 2008a. “Wholesale Competition in RegionsDemand Response into Wholesale Electricity Markets,” (URL:1 2. Wholesale and Retails Electricity Markets in

Bharvirkar, Ranjit

2009-01-01T23:59:59.000Z

313

Demand Response - Policy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

prices or when grid reliability is jeopardized. In regions with centrally organized wholesale electricity markets, demand response can help stabilize volatile electricity prices...

314

Robust newsvendor problem with autoregressive demand  

E-Print Network [OSTI]

May 19, 2014 ... bust distribution-free autoregressive forecasting method, which copes .... (Bandi and Bertsimas, 2012) to estimate the demand forecast. As.

2014-05-19T23:59:59.000Z

315

Optimization of Demand Response Through Peak Shaving  

E-Print Network [OSTI]

Jun 19, 2013 ... efficient linear programming formulation for the demand response of such a consumer who could be a price taker, industrial or commercial user ...

2013-06-19T23:59:59.000Z

316

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

water heaters with embedded demand responsive controls can be designed to automatically provide day-ahead and real-time response

Goldman, Charles

2010-01-01T23:59:59.000Z

317

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

in peak demand. This definition of energy efficiency makesthe following definitions are used: Energy efficiency refersThis definition implicitly distinguishes energy efficiency

Goldman, Charles

2010-01-01T23:59:59.000Z

318

Geographically Based Hydrogen Demand and Infrastructure Rollout...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Rollout Scenario Analysis Geographically Based Hydrogen Demand and Infrastructure Rollout Scenario Analysis Presentation by Margo Melendez at the 2010-2025 Scenario Analysis for...

319

Property:OpenEI/UtilityRate/DemandChargePeriod2 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump to:DemandChargePeriod2 Jump

320

Property:OpenEI/UtilityRate/DemandChargePeriod2FAdj | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump to:DemandChargePeriod2

Note: This page contains sample records for the topic "areas fuel demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Property:OpenEI/UtilityRate/DemandChargePeriod4 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump Name: Demand Charge Period 4

322

Property:OpenEI/UtilityRate/DemandChargePeriod4FAdj | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump Name: Demand Charge Period

323

Property:OpenEI/UtilityRate/DemandChargePeriod5 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump Name: Demand Charge

324

Property:OpenEI/UtilityRate/DemandChargePeriod5FAdj | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump Name: Demand

325

Property:OpenEI/UtilityRate/DemandChargePeriod6 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump Name: DemandNumber. Name:

326

Property:OpenEI/UtilityRate/DemandChargePeriod6FAdj | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump Name: DemandNumber.

327

Property:OpenEI/UtilityRate/DemandChargePeriod7 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump Name: DemandNumber.This is a

328

Property:OpenEI/UtilityRate/DemandChargePeriod7FAdj | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump Name: DemandNumber.This is

329

Property:OpenEI/UtilityRate/DemandChargePeriod8 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump Name: DemandNumber.This is

330

Property:OpenEI/UtilityRate/DemandChargePeriod8FAdj | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump Name: DemandNumber.This

331

Property:OpenEI/UtilityRate/DemandChargePeriod9 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI Jump Name: DemandNumber.This

332

Property:OpenEI/UtilityRate/DemandWindow | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms JumpEnergyDemandWindow Jump to: navigation,

333

Property:OpenEI/UtilityRate/EnableDemandCharge | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms JumpEnergyDemandWindow Jump to:

334

Property:OpenEI/UtilityRate/FlatDemandMonth3 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscotInformation Max Jump to:FlatDemandMonth3 Jump to: navigation, search This is

335

Modular fuel-cell stack assembly  

DOE Patents [OSTI]

A fuel cell assembly having a plurality of fuel cells arranged in a stack. An end plate assembly abuts the fuel cell at an end of said stack. The end plate assembly has an inlet area adapted to receive an exhaust gas from the stack, an outlet area and a passage connecting the inlet area and outlet area and adapted to carry the exhaust gas received at the inlet area from the inlet area to the outlet area. A further end plate assembly abuts the fuel cell at a further opposing end of the stack. The further end plate assembly has a further inlet area adapted to receive a further exhaust gas from the stack, a further outlet area and a further passage connecting the further inlet area and further outlet area and adapted to carry the further exhaust gas received at the further inlet area from the further inlet area to the further outlet area.

Patel, Pinakin (Danbury, CT)

2010-07-13T23:59:59.000Z

336

Solid Oxide Fuel Cells Victoria A. Liem and Jeongmin Ahn  

E-Print Network [OSTI]

Solid Oxide Fuel Cells Victoria A. Liem and Jeongmin Ahn Introduction to Multiscale Engineering With the continually increasing demand of fuel in modern times and the long-term goal of sustainability, fuel cell technology has become important and vital to further advancement in energy production. Solid oxide fuel cells

Collins, Gary S.

337

Incentives for demand-side management  

SciTech Connect (OSTI)

This report is the first product of an ongoing project to monitor the efforts of states to remove regulatory barriers to, and provide financial incentives for, utility investment in demand-side management (DSM) resources. The project was commissioned by the National Association of Regulatory Utility Commissioners (NARUC) in response to growing interest among regulators for a comprehensive survey of developments in this area. Each state report beings with an overview of the state's progress toward removing regulatory barriers and providing incentives for DSM. Information is organized under five headings: status; IRP regulations and practice; current treatment of DSM, directions and trends; commission contact person. Where applicable, each overview is followed by one or more sections that report on specific incentive proposals or mechanisms within the state. Information on each proposal or mechanism is organized under eight headings. A notation on each page identifies the utility or other group associated with the proposal or mechanism. The eight headings are as follows: status; background; treatment of cost recovery; treatment of lost revenues/decoupling; treatment of profitability; other features; issues, and additional observations.

Reid, M.W.; Brown, J.B. (Barakat and Chamberlin, Inc., Oakland, CA (United States))

1992-01-01T23:59:59.000Z

338

Incentives for demand-side management  

SciTech Connect (OSTI)

This report is the first product of an ongoing project to monitor the efforts of states to remove regulatory barriers to, and provide financial incentives for, utility investment in demand-side management (DSM) resources. The project was commissioned by the National Association of Regulatory Utility Commissioners (NARUC) in response to growing interest among regulators for a comprehensive survey of developments in this area. Each state report beings with an overview of the state`s progress toward removing regulatory barriers and providing incentives for DSM. Information is organized under five headings: status; IRP regulations and practice; current treatment of DSM, directions and trends; commission contact person. Where applicable, each overview is followed by one or more sections that report on specific incentive proposals or mechanisms within the state. Information on each proposal or mechanism is organized under eight headings. A notation on each page identifies the utility or other group associated with the proposal or mechanism. The eight headings are as follows: status; background; treatment of cost recovery; treatment of lost revenues/decoupling; treatment of profitability; other features; issues, and additional observations.

Reid, M.W.; Brown, J.B. [Barakat and Chamberlin, Inc., Oakland, CA (United States)] [Barakat and Chamberlin, Inc., Oakland, CA (United States)

1992-01-01T23:59:59.000Z

339

Workshop on Demand Response, Ballerup, 7. February 2006 1 Monte Carlo Simulations of the Nordic Power System  

E-Print Network [OSTI]

· Nordic power market · Time resolution: Hour · Simulates the electricity and heat markets based on: · Heat and electricity demand prognoses · Technical and economic data for power plants · Power and heat capacities · Fuel Power System · How to estimate the value of demand response? · Method · Model · Setup · Results Stine

340

2009 Fuel Cell Market Report, November 2010  

SciTech Connect (OSTI)

Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

Not Available

2010-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "areas fuel demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Chicago Area Alternative Fuels Deployment Project (CAAFDP)  

Broader source: Energy.gov (indexed) [DOE]

310 CNG Vehicles (129 Medium & Heavy Duty), 83 Gasoline Hybrids, 10 Heavy Duty Diesel Hybrids and PHEVs 316 Electric Charging stations (73 DC Fast Charging), 17 CNG...

342

Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds"OfficeTourFrom3, 2015 7:00FuelFuelFuel

343

area southeastern yunnan: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

M. C. Lpez-martnez 7 Demand for Wildlife Hunting in the Southeastern United States Biology and Medicine Websites Summary: ;4 Study Area Southeastern United States:...

344

Strategies for Aligning Program Demand with Contractor's Seasonal...  

Energy Savers [EERE]

Aligning Program Demand with Contractor's Seasonal Fluctuations Strategies for Aligning Program Demand with Contractor's Seasonal Fluctuations Better Buildings Neighborhood Program...

345

Fuel option for gas turbine  

SciTech Connect (OSTI)

Growth in electricity demand is an average of 10% per year. Energy, emission, and economy are importance of critical concerns for generating systems. Therefore, combined cycle power plant is preferred to Electricity Generating Authority of Thailand (EGAT) new power generating capacity. The various option of available fuel for gas turbine are natural gas, liquid fuel and coal fuel. Particularly with the tremendous price increases in imported and domestic fuel supplies, natural gas is an attractive low cost alternative for power generation. EGAT has researched using heavy fuel instead of natural gas since the year 1991. The problems of various corrosion characteristics have been found. In addition, fuel treatment for gas turbine are needed, and along with it, the environmental consideration are options that provide the limitation of environmental regulation.

Tantayakom, S. [Electricity Generating Authority of Thailand, Nonthaburi (Thailand). Chemical and Analysis Dept.

1995-12-31T23:59:59.000Z

346

Western Area Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun Deng Associate ResearchWestern Area Power

347

700 Area - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011 Mon, Next2025Steps to MakingImportance of700 Area

348

CEES - Focus Areas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASL Symposium: Celebrating the Past - VisualizingFocus Areas

349

100 Area - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | BlandinePrincetonOPT Optics MetrologyDepartment of00 Area

350

Green optical network design : power optimization of wide area and metropolitan area networks  

E-Print Network [OSTI]

Advancements in technology are fueling huge growth in network traffic capacity. Demand for low cost, reliable, and high bitrate transmissions grows 40-110% internationally every year. To date, most research has focused on ...

Lin, Katherine Xiaoyan

2011-01-01T23:59:59.000Z

351

Manufacturing Fuel Pellets from Biomass Introduction  

E-Print Network [OSTI]

Manufacturing Fuel Pellets from Biomass Introduction Wood pellets have increased tremendously pellet stoves or boilers over traditional wood-fired equipment due to their relative ease of use. As a result, the demand for fuel pellets has also grown quickly. However, wood is not the only suitable

Boyer, Elizabeth W.

352

Fueling America Through Renewable Resources Purdue extension  

E-Print Network [OSTI]

Fueling America Through Renewable Resources BioEnergy Purdue extension The Value of distillers and global marketplaces as the price of corn increases to meet the ethanol demand. An estimated 1.4 to 1 Nutrient Digestibility and Availability #12; Fueling America Through Renewable Crops BioEnergy Variation

353

Value of Demand Response -Introduction Klaus Skytte  

E-Print Network [OSTI]

Pool Spot Time of use tariffs Load management Consumers active at the spot market Fast decrease in demand to prices. Similar to Least-cost planning and demand-side management. DR differs by using prices side. Investors want more stable prices ­ less fluctuations. Higher short-term security of supply

354

DEMAND SIMULATION FOR DYNAMIC TRAFFIC ASSIGNMENT  

E-Print Network [OSTI]

of the response of travelers to real-time pre- trip information. The demand simulator is an extension of dynamicDEMAND SIMULATION FOR DYNAMIC TRAFFIC ASSIGNMENT Constantinos Antoniou, Moshe Ben-Akiva, Michel Bierlaire, and Rabi Mishalani Massachusetts Institute of Technology, Cambridge, MA 02139 Abstract

Bierlaire, Michel

355

Demand Response and Electric Grid Reliability  

E-Print Network [OSTI]

Demand Response and Electric Grid Reliability Paul Wattles Senior Analyst, Market Design & Development, ERCOT CATEE Conference, Galveston October 10, 2012 2 North American Bulk Power Grids CATEE Conference October 10, 2012 ? The ERCOT... adequacy ? ?Achieving more DR participation would . . . displace some generation investments, but would achieve the same level of reliability... ? ?Achieving this ideal requires widespread demand response and market structures that enable loads...

Wattles, P.

2012-01-01T23:59:59.000Z

356

A Vision of Demand Response - 2016  

SciTech Connect (OSTI)

Envision a journey about 10 years into a future where demand response is actually integrated into the policies, standards, and operating practices of electric utilities. Here's a bottom-up view of how demand response actually works, as seen through the eyes of typical customers, system operators, utilities, and regulators. (author)

Levy, Roger

2006-10-15T23:59:59.000Z

357

SUMMER 2007 ELECTRICITY SUPPLY AND DEMAND OUTLOOK  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION SUMMER 2007 ELECTRICITY SUPPLY AND DEMAND OUTLOOK DRAFTSTAFFREPORT May ELECTRICITY ANALYSIS OFFICE Sylvia Bender Acting Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION B. B assessment of the capability of the physical electricity system to provide power to meet electricity demand

358

Demand for NGL as olefin plant feedstock  

SciTech Connect (OSTI)

Olefin plant demand for natural gas liquids as feedstock constitutes a key market for the NGL industry. Feedstock flexibility and the price sensitive nature of petrochemical demand are described. Future trends are presented. The formation and objectives of the Petrochemical Feedstock Association of the Americas are discussed.

Dodds, A.R. [Quantum Chemical Corp., Houston, TX (United States)

1997-12-31T23:59:59.000Z

359

Demand Response Programs Oregon Public Utility Commission  

E-Print Network [OSTI]

, Demand Side Management #12;Current Programs/Tariffs ­ Load Control Programs Cool Keeper, Utah (currentlyDemand Response Programs Oregon Public Utility Commission January 6, 2005 Mike Koszalka Director 33 MW, building to 90 MW) Irrigation load control, Idaho (35 MW summer, 2004) Lighting load control

360

Puget Sound Area Electric Reliability Plan : Final Environmental Impact Statement.  

SciTech Connect (OSTI)

A specific need exists in the Puget Sound area for balance between east-west transmission capacity and the increasing demand to import power generated east of the Cascades. At certain times of the year, and during certain conditions, there is more demand for power in the Puget Sound area than the transmission system and existing generation can reliably supply. This high demand, called peak demand occurs during the winter months when unusually cold weather increases electricity use for heating. The existing power system can supply enough power if no emergencies occur. However, during emergencies the system will not operate properly. As demand grows, the system becomes more strained. To meet demand, the rate of growth of demand must be reduced or the ability to serve the demand must be increased, or both.

United States. Bonneville Power Administration.

1992-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "areas fuel demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Fuel cycles for the 80's  

SciTech Connect (OSTI)

Papers presented at the American Nuclear Society's topical meeting on the fuel cycle are summarized. Present progress and goals in the areas of fuel fabrication, fuel reprocessing, spent fuel storage, accountability, and safeguards are reported. Present governmental policies which affect the fuel cycle are also discussed. Individual presentations are processed for inclusion in the Energy Data Base.(DMC)

Not Available

1980-01-01T23:59:59.000Z

362

Coordination of Energy Efficiency and Demand Response  

SciTech Connect (OSTI)

This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

2010-01-29T23:59:59.000Z

363

Revised Economic andRevised Economic and Demand ForecastsDemand Forecasts  

E-Print Network [OSTI]

Revised Economic andRevised Economic and Demand ForecastsDemand Forecasts April 14, 2009 Massoud,000 MW #12;6 Demand Forecasts Price Effect (prior to conservation) - 5,000 10,000 15,000 20,000 25,000 30 Jourabchi #12;2 Changes since the Last Draft ForecastChanges since the Last Draft Forecast Improved

364

Demand Response This is the first of the Council's power plans to treat demand response as a resource.1  

E-Print Network [OSTI]

Demand Response This is the first of the Council's power plans to treat demand response the resource and describes some of the potential advantages and problems of the development of demand response. WHAT IS DEMAND RESPONSE? Demand response is a change in customers' demand for electricity corresponding

365

Synthetic Fuel  

ScienceCinema (OSTI)

Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

2010-01-08T23:59:59.000Z

366

Fuel Interchangeability Considerations for Gas Turbine Combustion  

SciTech Connect (OSTI)

In recent years domestic natural gas has experienced a considerable growth in demand particularly in the power generation industry. However, the desire for energy security, lower fuel costs and a reduction in carbon emissions has produced an increase in demand for alternative fuel sources. Current strategies for reducing the environmental impact of natural gas combustion in gas turbine engines used for power generation experience such hurdles as flashback, lean blow-off and combustion dynamics. These issues will continue as turbines are presented with coal syngas, gasified coal, biomass, LNG and high hydrogen content fuels. As it may be impractical to physically test a given turbine on all of the possible fuel blends it may experience over its life cycle, the need to predict fuel interchangeability becomes imperative. This study considers a number of historical parameters typically used to determine fuel interchangeability. Also addressed is the need for improved reaction mechanisms capable of accurately modeling the combustion of natural gas alternatives.

Ferguson, D.H.

2007-10-01T23:59:59.000Z

367

California Energy Demand Scenario Projections to 2050  

E-Print Network [OSTI]

and natural gas scenarios, is that fuel economy increasesvehicle fuel economy). For natural gas and electricity, theNatural gas EUI All Shipments CEC, 2005a Electricity EUI VMT Vehicle stock Fuel economy

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

368

Fuel Economy  

Broader source: Energy.gov [DOE]

The Energy Department is investing in groundbreaking research that will make cars weigh less, drive further and consume less fuel.

369

FERC sees huge potential for demand response  

SciTech Connect (OSTI)

The FERC study concludes that U.S. peak demand can be reduced by as much as 188 GW -- roughly 20 percent -- under the most aggressive scenario. More moderate -- and realistic -- scenarios produce smaller but still significant reductions in peak demand. The FERC report is quick to point out that these are estimates of the potential, not projections of what could actually be achieved. The main varieties of demand response programs include interruptible tariffs, direct load control (DLC), and a number of pricing schemes.

NONE

2010-04-15T23:59:59.000Z

370

Outline Introduction Literature Review Electric Power Supply Chains Empirical Examples Conclusions An Integrated Electric Power Supply Chain and Fuel Market  

E-Print Network [OSTI]

Supply Chains and Fuel Markets In the U.S., electric power generation accounts for 30% of the natural gas demand (over 50% in the summer), 90% of the coal demand, and over 45% of the residual fuel oil demand, the wholesale electricity price in New England decreased by 38% mainly because the delivered natural gas price

Nagurney, Anna

371

Demand for Food for People in Need Remains High Throughout the Year |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005Department ofDOE AccidentWasteZone Modeling |Demand Response

372

ESnet's On-Demand Bandwidth Reservation Service Wins R&D 100 Award  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct:DirectivesSAND2015-21271MostMirrorESnet'sOn-Demand

373

Supply and Demand of Helium-3| U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,BiosScience (SC)Supply and Demand of Helium-3 Nuclear

374

Transportation Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButler TinaContact-Information-TransmissionLaboratoryFuels

375

Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note:Computing | ArgonnechallengingFryFuel

376

Hydrogen: Fueling the Future  

SciTech Connect (OSTI)

As our dependence on foreign oil increases and concerns about global climate change rise, the need to develop sustainable energy technologies is becoming increasingly significant. Worldwide energy consumption is expected to double by the year 2050, as will carbon emissions along with it. This increase in emissions is a product of an ever-increasing demand for energy, and a corresponding rise in the combustion of carbon containing fossil fuels such as coal, petroleum, and natural gas. Undisputable scientific evidence indicates significant changes in the global climate have occurred in recent years. Impacts of climate change and the resulting atmospheric warming are extensive, and know no political or geographic boundaries. These far-reaching effects will be manifested as environmental, economic, socioeconomic, and geopolitical issues. Offsetting the projected increase in fossil energy use with renewable energy production will require large increases in renewable energy systems, as well as the ability to store and transport clean domestic fuels. Storage and transport of electricity generated from intermittent resources such as wind and solar is central to the widespread use of renewable energy technologies. Hydrogen created from water electrolysis is an option for energy storage and transport, and represents a pollution-free source of fuel when generated using renewable electricity. The conversion of chemical to electrical energy using fuel cells provides a high efficiency, carbon-free power source. Hydrogen serves to blur the line between stationary and mobile power applications, as it can be used as both a transportation fuel and for stationary electricity generation, with the possibility of a distributed generation energy infrastructure. Hydrogen and fuel cell technologies will be presented as possible pollution-free solutions to present and future energy concerns. Recent hydrogen-related research at SLAC in hydrogen production, fuel cell catalysis, and hydrogen storage will be highlighted in this seminar.

Leisch, Jennifer

2007-02-27T23:59:59.000Z

377

Volatile coal prices reflect supply, demand uncertainties  

SciTech Connect (OSTI)

Coal mine owners and investors say that supply and demand are now finally in balance. But coal consumers find that both spot tonnage and new contract coal come at a much higher price.

Ryan, M.

2004-12-15T23:59:59.000Z

378

Micro economics for demand-side management  

E-Print Network [OSTI]

This paper aims to interpret Demand-Side Management (DSM) activity and to point out its problems, adopting microeconomics as an analytical tool. Two major findings follow. first, the cost-benefit analysis currently in use ...

Kibune, Hisao

1991-01-01T23:59:59.000Z

379

Capitalize on Existing Assets with Demand Response  

E-Print Network [OSTI]

Industrial facilities universally struggle with escalating energy costs. EnerNOC will demonstrate how commercial, industrial, and institutional end-users can capitalize on their existing assets—at no cost and no risk. Demand response, the voluntary...

Collins, J.

2008-01-01T23:59:59.000Z

380

Global Energy: Supply, Demand, Consequences, Opportunities  

ScienceCinema (OSTI)

July 29, 2008 Berkeley Lab lecture: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

Arun Majumdar

2010-01-08T23:59:59.000Z

Note: This page contains sample records for the topic "areas fuel demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

A residential energy demand system for Spain  

E-Print Network [OSTI]

Sharp price fluctuations and increasing environmental and distributional concerns, among other issues, have led to a renewed academic interest in energy demand. In this paper we estimate, for the first time in Spain, an ...

Labandeira Villot, Xavier

2005-01-01T23:59:59.000Z

382

Abstract--Forecasting of future electricity demand is very important for decision making in power system operation and  

E-Print Network [OSTI]

Abstract--Forecasting of future electricity demand is very important for decision making in power industry, accurate forecasting of future electricity demand has become an important research area sector. This paper presents a novel approach for mid-term electricity load forecasting. It uses a hybrid

Ducatelle, Frederick

383

Effects on Hydrogen Adsorption and Activation on Platinum in a Fuel Cell Catalyst.  

E-Print Network [OSTI]

??Proton exchange membrane fuel cells are a highly efficient source of power generation that is needed to sustain the energy demands of today's more environmentally… (more)

Zhang, Jack

2011-01-01T23:59:59.000Z

384

E-Print Network 3.0 - alcohol transportation fuels Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

resources demands new... and better production paths. One of these is using biogas to create alcohol as a fuel. Higher... Characterization of Catalysts for Synthesis of...

385

Measuring the capacity impacts of demand response  

SciTech Connect (OSTI)

Critical peak pricing and peak time rebate programs offer benefits by increasing system reliability, and therefore, reducing capacity needs of the electric power system. These benefits, however, decrease substantially as the size of the programs grows relative to the system size. More flexible schemes for deployment of demand response can help address the decreasing returns to scale in capacity value, but more flexible demand response has decreasing returns to scale as well. (author)

Earle, Robert; Kahn, Edward P.; Macan, Edo

2009-07-15T23:59:59.000Z

386

The Economics of Energy (and Electricity) Demand  

E-Print Network [OSTI]

home to charge up at night. 12 The Tesla Roadster is an electric sport car prototype manufactured by Tesla Motors (http://www.teslamotors.com/). 13 This is based on there being around 25 million homes... 25 3.3.2 Electrification of personal transport New sources of electricity demand may emerge which substantially change the total demand for electricity and the way electricity is consumed by the household. The Tesla Roadster12 stores 53 k...

Platchkov, Laura M.; Pollitt, Michael G.

387

Real-Time Demand Side Energy Management  

E-Print Network [OSTI]

Real-Time Demand Side Energy Management Annelize Victor Michael Brodkorb Sr. Business Consultant Business Development Manager Aspen Technology, Inc. Aspen Technology España, S.A. Houston, TX Barcelona, Spain ABSTRACT To remain... competitive, manufacturers must capture opportunities to increase bottom-line profitability. The goal of this paper is to present a new methodology for reducing energy costs – “Demand-Side Energy Management.” Learn how process manufacturers assess energy...

Victor, A.; Brodkorb, M.

2006-01-01T23:59:59.000Z

388

Seasonal demand and supply analysis of turkeys  

E-Print Network [OSTI]

SEASONAL DEMAND AND SUPPLY ANALYSIS OF TURKEYS A Thesis by VITO JAMES BLOMO Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1972 Ma)or Sub...)ect: Agricultural Economics SEASONAL DEMAND AND SUPPLY ANALYSIS OF TURKEYS A Thesis by VITO JAMES BLOMO Approved as to style and content by: (Chairman of C mmittee) (Head of Department) (Member) (Member) ( ber) (Memb er) May 1972 ABSTRACT Seasonal...

Blomo, Vito James

1972-01-01T23:59:59.000Z

389

Decentralized demand management for water distribution  

E-Print Network [OSTI]

DECENTRALIZED DEMAND MANAGEMENT FOR WATER DISTRIBUTION A Thesis by DOW JOSEPH ZABOLIO, III Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May... OF THE DEMAND CURVE 30 31 35 39 Model Development Results 39 45 VI CONTROLLER DESIGN AND COSTS 49 Description of Controller Production and Installation Costs 49 50 VII SYSTEM EVALUATION AND ECONOMICS 53 System Response and Degree of Control...

Zabolio, Dow Joseph

2012-06-07T23:59:59.000Z

390

An Empirical Study of Alternative Fuel Vehicle Choice by Commercial Fleets: Lessons in Transportation Choices, and Public Agencies' Organization  

E-Print Network [OSTI]

1990). “The Economics of Alternative Fuel Use: SubstitutingAn Empirical Study of Alternative Fuel Vehicle Choice byFleet Demand for Alternative-Fuel Vehicles,” with T. Golob,

Crane, Soheila Soltani

1996-01-01T23:59:59.000Z

391

Ethanol Demand in United States Gasoline Production  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

Hadder, G.R.

1998-11-24T23:59:59.000Z

392

International Atomic Energy Agency (IAEA) activities on spent fuel management options  

SciTech Connect (OSTI)

Many countries have in the past several decades opted for storage of spent fuel for undefined periods of time. They have adopted the 'wait and see' strategy for spent fuel management. A relatively small number of countries have adopted reprocessing and use of MOX fuel as part of their strategy in spent fuel management. From the 10, 000 tonnes of heavy metal that is removed annually from nuclear reactors throughout the world, only approximately 30 % is currently being reprocessed. Continuous re-evaluation of world energy resources, announcement of the Global Nuclear Energy Partnership (GNEP) and the Russian initiative to form international nuclear centers, including reprocessing, are changing the stage for future development of nuclear energy. World energy demand is expected to more than double by 2050, and expansion of nuclear energy is a key to meeting this demand while reducing pollution and greenhouse gases. Since its foundation, the International Atomic Energy Agency (IAEA) has served as an interface between countries in exchanging information on the peaceful development of nuclear energy and at the same time guarding against proliferation of materials that could be used for nuclear weapons. The IAEA's Department of Nuclear Energy has been generating technical documents, holding meetings and conferences, and supporting technical cooperation projects to facilitate this exchange of information. This paper focuses on the current status of IAEA activities in the field of spent fuel management being carried out by the Division of Nuclear Fuel Cycle and Waste Technology. Information on those activities could be found on the web site link www.iaea.org/OurWork/ST/NE/NEFW/nfcms. To date, the IAEA has given priority in its spent fuel management activities to supporting Member States in their efforts to deal with growing accumulations of spent power reactor fuel. There is technical consensus that the present technologies for spent fuel storage, wet and dry, provide adequate protection to people and environment. As storage durations grow, the IAEA has expanded its work related to the implications of extended storage periods. Operation and maintenance of containers for storage and transport have also been investigated related to long term storage periods. In addition, as international interest in reprocessing of spent fuel increases, the IAEA continues to serve as a crossroads for sharing the latest developments in spent fuel treatment options. A Coordinated Research Project is currently addressing spent fuel performance assessment and research to evaluate long term effects of storage on spent fuel. The effect of increased burnup and mixed oxide fuels on spent fuel management is also the focus of interest as it follows the trend in optimizing the use of nuclear fuel. Implications of damaged fuel on storage and transport as well as burnup credit in spent fuel applications are areas that the IAEA is also investigating. Since spent fuel management considerations require social stability and institutional control, those aspects are taken into account in most IAEA activities. Data requirements and records management as storage durations extend were also investigated as well as the potential for regional spent fuel storage facilities. Spent fuel management activities continue to be coordinated with others in the IAEA to ensure compliance and consistency with efforts in the Department of Safety and Security and the Department of Safeguards, as well as with activities related to geologic disposal. Either disposal of radioactive waste or spent fuel will be an ultimate consideration in all spent fuel management options. Updated information on spent fuel treatment options that include fuel reprocessing as well as transmutation of minor actinides are investigated to optimize the use of nuclear fuel and minimize impact on environment. Tools for spent fuel management economics are also investigated to facilitate assessment of industrial applicability for these options. Most IAEA spent fuel management activities will ultimately be reported in o

Lovasic, Z.; Danker, W. [International Atomic Energy Agency (IAEA) Vienna (Austria)

2007-07-01T23:59:59.000Z

393

The Effect of CO2 Pricing on Conventional and Non- Conventional Oil Supply and Demand  

E-Print Network [OSTI]

if conventional oil production was no longer able to satisfy demand? Fuels from non-conventional oil resources would then become the backstop fuel. These resources involve higher CO2 emissions per unit of energy produced than conventional oil as they require... ?EMUC ? GDPgrowth ?POPgrowth? ? (13) r is the consumption discount rate (% per year) EMUC is the elasticity of marginal utility of consumption (no unit) ptp is the pure time preference rate (% per year) GDPgrowth is the growth of GDP (% per year...

Méjean, Aurélie; Hope, Chris

394

Alternatives to traditional transportation fuels: An overview  

SciTech Connect (OSTI)

This report presents the first compilation by the Energy Information Administration (EIA) of information on alternatives to gasoline and diesel fuel. The purpose of the report is: (1) to provide background information on alternative transportation fuels and replacement fuels compared with gasoline and diesel fuel, and (2) to furnish preliminary estimates of alternative transportation fuels and alternative fueled vehicles as required by the Energy Policy Act of 1992 (EPACT), Title V, Section 503, ``Replacement Fuel Demand Estimates and Supply Information.`` Specifically, Section 503 requires the EIA to report annually on: (1) the number and type of alternative fueled vehicles in existence the previous year and expected to be in use the following year, (2) the geographic distribution of these vehicles, (3) the amounts and types of replacement fuels consumed, and (4) the greenhouse gas emissions likely to result from replacement fuel use. Alternative fueled vehicles are defined in this report as motorized vehicles licensed for on-road use, which may consume alternative transportation fuels. (Alternative fueled vehicles may use either an alternative transportation fuel or a replacement fuel.) The intended audience for the first section of this report includes the Secretary of Energy, the Congress, Federal and State agencies, the automobile manufacturing industry, the transportation fuel manufacturing and distribution industries, and the general public. The second section is designed primarily for persons desiring a more technical explanation of and background for the issues surrounding alternative transportation fuels.

Not Available

1994-06-01T23:59:59.000Z

395

Laboratory Testing of Demand-Response Enabled Household Appliances  

SciTech Connect (OSTI)

With the advent of the Advanced Metering Infrastructure (AMI) systems capable of two-way communications between the utility's grid and the building, there has been significant effort in the Automated Home Energy Management (AHEM) industry to develop capabilities that allow residential building systems to respond to utility demand events by temporarily reducing their electricity usage. Major appliance manufacturers are following suit by developing Home Area Network (HAN)-tied appliance suites that can take signals from the home's 'smart meter,' a.k.a. AMI meter, and adjust their run cycles accordingly. There are numerous strategies that can be employed by household appliances to respond to demand-side management opportunities, and they could result in substantial reductions in electricity bills for the residents depending on the pricing structures used by the utilities to incent these types of responses.The first step to quantifying these end effects is to test these systems and their responses in simulated demand-response (DR) conditions while monitoring energy use and overall system performance.

Sparn, B.; Jin, X.; Earle, L.

2013-10-01T23:59:59.000Z

396

Geographically Based Hydrogen Demand and Infrastructure Analysis |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject: Guidance for naturalGeneral Service LEDDepartment

397

Biodiesel Fuel  

E-Print Network [OSTI]

publication 442-880 There are broad and increasing interests across the nation in using domestic, renewable bioenergy. Virginia farmers and transportation fleets use considerable amounts of diesel fuel in their operations. Biodiesel is an excellent alternative fuel for the diesel engines. Biodiesel can be produced from crops commonly grown in Virginia, such as soybean and canola, and has almost the same performance as petrodiesel. The purpose of this publication is to introduce the basics of biodiesel fuel and address some myths and answer some questions about biodiesel fuel before farmers and fleet owners use this type of fuel. ASTM standard for biodiesel (ASTM D6751) Biodiesel fuel, hereafter referred to as simply biodiesel,

unknown authors

398

The Vehicle Scheduling Problem with Intermittent Customer Demands W. C. Benton  

E-Print Network [OSTI]

Engineering The Ohio State University May 9, 1991 revised June 11, 2008 #12;Abstract The vehicle scheduling is to minimize the total cost of operating the vehicle fleet. The key cost components are labor, fuelThe Vehicle Scheduling Problem with Intermittent Customer Demands W. C. Benton Academic Faculty

Rossetti, Manuel D.

399

Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. The NEMS Commercial Sector Demand Module is a simulation tool based upon economic and engineering relationships that models commercial sector energy demands at the nine Census Division level of detail for eleven distinct categories of commercial buildings. Commercial equipment selections are performed for the major fuels of electricity, natural gas, and distillate fuel, for the major services of space heating, space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The algorithm also models demand for the minor fuels of residual oil, liquefied petroleum gas, steam coal, motor gasoline, and kerosene, the renewable fuel sources of wood and municipal solid waste, and the minor services of office equipment. Section 2 of this report discusses the purpose of the model, detailing its objectives, primary input and output quantities, and the relationship of the Commercial Module to the other modules of the NEMS system. Section 3 of the report describes the rationale behind the model design, providing insights into further assumptions utilized in the model development process to this point. Section 3 also reviews alternative commercial sector modeling methodologies drawn from existing literature, providing a comparison to the chosen approach. Section 4 details the model structure, using graphics and text to illustrate model flows and key computations.

NONE

1998-01-01T23:59:59.000Z

400

Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds"OfficeTourFrom3, 2015

Note: This page contains sample records for the topic "areas fuel demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Constraint Management in Fuel Cells: A Fast Reference Governor Approach  

E-Print Network [OSTI]

admissible current demand to the fuel cell based on on-line optimization of a scalar parameter and onConstraint Management in Fuel Cells: A Fast Reference Governor Approach Ardalan Vahidi Ilya Kolmanovsky Anna Stefanopoulou Abstract-- The air supply system in a fuel cell may be susceptible

Stefanopoulou, Anna

402

A DISTRIBUTED INTELLIGENT AUTOMATED DEMAND RESPONSE BUILDING MANAGEMENT SYSTEM  

SciTech Connect (OSTI)

The goal of the 2.5 year Distributed Intelligent Automated Demand Response (DIADR) project was to reduce peak electricity load of Sutardja Dai Hall at UC Berkeley by 30% while maintaining a healthy, comfortable, and productive environment for the occupants. We sought to bring together both central and distributed control to provide “deep” demand response1 at the appliance level of the building as well as typical lighting and HVAC applications. This project brought together Siemens Corporate Research and Siemens Building Technology (the building has a Siemens Apogee Building Automation System (BAS)), Lawrence Berkeley National Laboratory (leveraging their Open Automated Demand Response (openADR), Auto-­?Demand Response, and building modeling expertise), and UC Berkeley (related demand response research including distributed wireless control, and grid-­?to-­?building gateway development). Sutardja Dai Hall houses the Center for Information Technology Research in the Interest of Society (CITRIS), which fosters collaboration among industry and faculty and students of four UC campuses (Berkeley, Davis, Merced, and Santa Cruz). The 141,000 square foot building, occupied in 2009, includes typical office spaces and a nanofabrication laboratory. Heating is provided by a district heating system (steam from campus as a byproduct of the campus cogeneration plant); cooling is provided by one of two chillers: a more typical electric centrifugal compressor chiller designed for the cool months (Nov-­? March) and a steam absorption chiller for use in the warm months (April-­?October). Lighting in the open office areas is provided by direct-­?indirect luminaries with Building Management System-­?based scheduling for open areas, and occupancy sensors for private office areas. For the purposes of this project, we focused on the office portion of the building. Annual energy consumption is approximately 8053 MWh; the office portion is estimated as 1924 MWh. The maximum peak load during the study period was 1175 kW. Several new tools facilitated this work, such as the Smart Energy Box, the distributed load controller or Energy Information Gateway, the web-­?based DR controller (dubbed the Central Load-­?Shed Coordinator or CLSC), and the Demand Response Capacity Assessment & Operation Assistance Tool (DRCAOT). In addition, an innovative data aggregator called sMAP (simple Measurement and Actuation Profile) allowed data from different sources collected in a compact form and facilitated detailed analysis of the building systems operation. A smart phone application (RAP or Rapid Audit Protocol) facilitated an inventory of the building’s plug loads. Carbon dioxide sensors located in conference rooms and classrooms allowed demand controlled ventilation. The extensive submetering and nimble access to this data provided great insight into the details of the building operation as well as quick diagnostics and analyses of tests. For example, students discovered a short-­?cycling chiller, a stuck damper, and a leaking cooling coil in the first field tests. For our final field tests, we were able to see how each zone was affected by the DR strategies (e.g., the offices on the 7th floor grew very warm quickly) and fine-­?tune the strategies accordingly.

Auslander, David; Culler, David; Wright, Paul; Lu, Yan; Piette, Mary

2013-12-30T23:59:59.000Z

403

New Demand for Old Food: the U.S. Demand for Olive Oil  

E-Print Network [OSTI]

U.S. consumption of olive oil has tripled over the past twenty years, but nearly all olive oil continues to be imported. Estimation of demand parameters using monthly import data reveals that demand for non-virgin oil is income inelastic, but virgin oils have income elasticities above one. Moreover, demand for oils differentiated by origin and quality is price-elastic. These olive oils are highly substitutable with each other but not with other vegetable oils. News about the health and culinary benefits of olive oil and the spread of Mediterranean diet contribute significantly to the rising demand in the United States.

Bo Xiong; William Matthews; Daniel Sumner

404

Automated Demand Response Strategies and Commissioning Commercial Building Controls  

E-Print Network [OSTI]

4 9 . Piette et at Automated Demand Response Strategies andDynamic Controls for Demand Response in New and ExistingFully Automated Demand Response Tests in Large Facilities"

Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Linkugel, Eric

2006-01-01T23:59:59.000Z

405

Demand-Side Management and Energy Efficiency Revisited  

E-Print Network [OSTI]

EPRI). 1984. ”Demand Side Management. Vol. 1:Overview of Key1993. ”Industrial Demand-Side Management Programs: What’sJ. Kulick. 2004. ”Demand side management and energy e?ciency

Auffhammer, Maximilian; Blumstein, Carl; Fowlie, Meredith

2007-01-01T23:59:59.000Z

406

Coordination of Retail Demand Response with Midwest ISO Markets  

E-Print Network [OSTI]

Data Collection for Demand-side Management for QualifyingPrepared by Demand-side Management Task Force of the4. Status of Demand Side Management in Midwest ISO 5.

Bharvirkar, Ranjit

2008-01-01T23:59:59.000Z

407

CALIFORNIA ENERGY CALIFORNIA ENERGY DEMAND 2010-2020  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2010-2020 ADOPTED FORECAST for this report: Kavalec, Chris and Tom Gorin, 2009. California Energy Demand 20102020, Adopted Forecast. California Energy Commission. CEC2002009012CMF #12; i Acknowledgments The demand forecast

408

Coordinating production quantities and demand forecasts through penalty schemes  

E-Print Network [OSTI]

Coordinating production quantities and demand forecasts through penalty schemes MURUVVET CELIKBAS1 departments which enable organizations to match demand forecasts with production quantities. This research problem where demand is uncertain and the marketing de- partment provides a forecast to manufacturing

Swaminathan, Jayashankar M.

409

Forecasting Market Demand for New Telecommunications Services: An Introduction  

E-Print Network [OSTI]

Forecasting Market Demand for New Telecommunications Services: An Introduction Peter Mc in demand forecasting for new communication services. Acknowledgments: The writing of this paper commenced employers or consultancy clients. KEYWORDS: Demand Forecasting, New Product Marketing, Telecommunica- tions

Parsons, Simon

410

Analysis of Open Automated Demand Response Deployments in California  

E-Print Network [OSTI]

LBNL-6560E Analysis of Open Automated Demand Response Deployments in California and Guidelines The work described in this report was coordinated by the Demand Response Research. #12; #12;Abstract This report reviews the Open Automated Demand Response

411

PIER: Demand Response Research Center Director, Mary Ann Piette  

E-Print Network [OSTI]

1 PIER: Demand Response Research Center Director, Mary Ann Piette Program Development and Outreach Response Research Plan #12;2 Demand Response Research Center Objective Scope Stakeholders Develop, prioritize, conduct and disseminate multi- institutional research to facilitate Demand Response. Technologies

412

California Baseline Energy Demands to 2050 for Advanced Energy Pathways  

E-Print Network [OSTI]

ED2, September. CEC (2005b) Energy demand forecast methodsCalifornia Baseline Energy Demands to 2050 for Advancedof a baseline scenario for energy demand in California for a

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

413

Demand Control Utilizing Energy Management Systems - Report of Field Tests  

E-Print Network [OSTI]

Energy Management systems and particularly demand controllers are becoming more popular as commercial and light industrial operations attempt to reduce their electrical usage and demand. Numerous techniques are used to control energy use and demand...

Russell, B. D.; Heller, R. P.; Perry, L. W.

1984-01-01T23:59:59.000Z

414

Behavioral Aspects in Simulating the Future US Building Energy Demand  

E-Print Network [OSTI]

Importance Total off- site energy demand (2030) 20% decreaseImportance Total off-site energy demand (2030) 20% decreaseImportance Total off-site energy demand (2030) 20% decrease

Stadler, Michael

2011-01-01T23:59:59.000Z

415

Learning Energy Demand Domain Knowledge via Feature Transformation  

E-Print Network [OSTI]

Learning Energy Demand Domain Knowledge via Feature Transformation Sanzad Siddique Department -- Domain knowledge is an essential factor for forecasting energy demand. This paper introduces a method knowledge substantially improves energy demand forecasting accuracy. However, domain knowledge may differ

Povinelli, Richard J.

416

Energy Demands and Efficiency Strategies in Data Center Buildings  

E-Print Network [OSTI]

iv Chapter 5: National energy demand and potential energyEnergy Demands and Efficiency Strategies   in Data Center AC02?05CH11231.   Energy Demands and Efficiency Strategies

Shehabi, Arman

2010-01-01T23:59:59.000Z

417

Linking Continuous Energy Management and Open Automated Demand Response  

E-Print Network [OSTI]

for Demand Response in a New Commercial Building in NewDemand Response and Energy Efficiency in Commercial Buildings.Demand Response Mary Ann Piette, Sila Kiliccote, and Girish Ghatikar Lawrence Berkeley National Laboratory Building

Piette, Mary Ann

2009-01-01T23:59:59.000Z

418

Smart Buildings Using Demand Response March 6, 2011  

E-Print Network [OSTI]

Smart Buildings Using Demand Response March 6, 2011 Sila Kiliccote Deputy, Demand Response Research Center Program Manager, Building Technologies Department Environmental Energy Technologies only as needed) · Energy Efficiency strategies are permanent (occur daily) 4 #12;Demand-Side

Kammen, Daniel M.

419

Opportunities for Automated Demand Response in Wastewater Treatment Facilities in California - Southeast Water Pollution Control Plant Case Study  

SciTech Connect (OSTI)

This report details a study into the demand response potential of a large wastewater treatment facility in San Francisco. Previous research had identified wastewater treatment facilities as good candidates for demand response and automated demand response, and this study was conducted to investigate facility attributes that are conducive to demand response or which hinder its implementation. One years' worth of operational data were collected from the facility's control system, submetered process equipment, utility electricity demand records, and governmental weather stations. These data were analyzed to determine factors which affected facility power demand and demand response capabilities The average baseline demand at the Southeast facility was approximately 4 MW. During the rainy season (October-March) the facility treated 40% more wastewater than the dry season, but demand only increased by 4%. Submetering of the facility's lift pumps and centrifuges predicted load shifts capabilities of 154 kW and 86 kW, respectively, with large lift pump shifts in the rainy season. Analysis of demand data during maintenance events confirmed the magnitude of these possible load shifts, and indicated other areas of the facility with demand response potential. Load sheds were seen to be possible by shutting down a portion of the facility's aeration trains (average shed of 132 kW). Load shifts were seen to be possible by shifting operation of centrifuges, the gravity belt thickener, lift pumps, and external pump stations These load shifts were made possible by the storage capabilities of the facility and of the city's sewer system. Large load reductions (an average of 2,065 kW) were seen from operating the cogeneration unit, but normal practice is continuous operation, precluding its use for demand response. The study also identified potential demand response opportunities that warrant further study: modulating variable-demand aeration loads, shifting operation of sludge-processing equipment besides centrifuges, and utilizing schedulable self-generation.

Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

2012-12-20T23:59:59.000Z

420

Fuel-cycle energy and emissions impacts of tripled fuel economy vehicles  

SciTech Connect (OSTI)

This paper presents estimates of the full cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. The fuel efficiency gain by 3X vehicles translated directly into reductions in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide, carbon monoxide, volatile organic compounds, sulfur oxide, and particulate matter smaller than 10 microns, particularly under the High Market Share Scenario.

Mintz, M.M.; Wang, M.Q.; Vyas, A.D.

1998-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "areas fuel demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Spent-fuel-storage alternatives  

SciTech Connect (OSTI)

The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

Not Available

1980-01-01T23:59:59.000Z

422

Secondary fuel delivery system  

DOE Patents [OSTI]

A secondary fuel delivery system for delivering a secondary stream of fuel and/or diluent to a secondary combustion zone located in the transition piece of a combustion engine, downstream of the engine primary combustion region is disclosed. The system includes a manifold formed integral to, and surrounding a portion of, the transition piece, a manifold inlet port, and a collection of injection nozzles. A flowsleeve augments fuel/diluent flow velocity and improves the system cooling effectiveness. Passive cooling elements, including effusion cooling holes located within the transition boundary and thermal-stress-dissipating gaps that resist thermal stress accumulation, provide supplemental heat dissipation in key areas. The system delivers a secondary fuel/diluent mixture to a secondary combustion zone located along the length of the transition piece, while reducing the impact of elevated vibration levels found within the transition piece and avoiding the heat dissipation difficulties often associated with traditional vibration reduction methods.

Parker, David M. (Oviedo, FL); Cai, Weidong (Oviedo, FL); Garan, Daniel W. (Orlando, FL); Harris, Arthur J. (Orlando, FL)

2010-02-23T23:59:59.000Z

423

Why is Eastern Redcedar a Hazardous Fuel?  

E-Print Network [OSTI]

Why is Eastern Redcedar a Hazardous Fuel? Why is Eastern Redcedar a Hazardous Fuel? Homes built the destruction of fire-tolerant trees if a wildfire moves through the area. Creating fuel breaks (such ignite it. · When ERC grows in forests and wood- lands, it acts as a ladder fuel to allow fire to climb

Balasundaram, Balabhaskar "Baski"

424

The business value of demand response for balance responsible parties.  

E-Print Network [OSTI]

?? By using IT-solutions, the flexibility on the demand side in the electrical systems could be increased. This is called demand response and is part… (more)

Jonsson, Mattias

2014-01-01T23:59:59.000Z

425

Implementation Proposal for the National Action Plan on Demand...  

Broader source: Energy.gov (indexed) [DOE]

and the Department of Energy. Implementation Proposal for the National Action Plan on Demand Response - July 2011 More Documents & Publications National Action Plan on Demand...

426

FERC Presendation: Demand Response as Power System Resources...  

Broader source: Energy.gov (indexed) [DOE]

Federal Energy Regulatory Commission (FERC) presentation on demand response as power system resources before the Electicity Advisory Committee, October 29, 2010 Demand Response as...

427

ASSESSMENT OF VARIABLE EFFECTS OF SYSTEMS WITH DEMAND RESPONSE RESOURCES  

E-Print Network [OSTI]

ASSESSMENT OF VARIABLE EFFECTS OF SYSTEMS WITH DEMAND RESPONSE RESOURCES BY ANUPAMA SUNIL KOWLI B of consumers - called demand response resources (DRRs) - whose role has become increasingly important

Gross, George

428

Tool Improves Electricity Demand Predictions to Make More Room...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Tool Improves Electricity Demand Predictions to Make More Room for Renewables Tool Improves Electricity Demand Predictions to Make More Room for Renewables October 3, 2011 -...

429

Energy Upgrade California Drives Demand From Behind the Wheel...  

Energy Savers [EERE]

Upgrade California Drives Demand From Behind the Wheel Energy Upgrade California Drives Demand From Behind the Wheel Photo of a trailer with the Energy Upgrade California logo and...

430

Reducing Energy Demand in Buildings Through State Energy Codes...  

Energy Savers [EERE]

Reducing Energy Demand in Buildings Through State Energy Codes Reducing Energy Demand in Buildings Through State Energy Codes Building Codes Project for the 2013 Building...

431

BUILDINGS SECTOR DEMAND-SIDE EFFICIENCY TECHNOLOGY SUMMARIES  

E-Print Network [OSTI]

LBL-33887 UC-000 BUILDINGS SECTOR DEMAND-SIDE EFFICIENCY TECHNOLOGY SUMMARIES Jonathan G. Koomey ............................................................................................... 2 Demand-Side Efficiency Technologies I. Energy Management Systems (EMSs

432

assessing workforce demand: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Utilization Websites Summary: LBNL-5319E Assessing the Control Systems Capacity for Demand Response in California Industries in this report was coordinated by the Demand...

433

air cargo demand: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Websites Summary: 1 Aggregated Modeling and Control of Air Conditioning Loads for Demand Response Wei Zhang, Member, IEEE Abstract--Demand response is playing an...

434

Energy Policy 33 (2005) 483498 Simulating the impacts of a strategic fuels reserve in California  

E-Print Network [OSTI]

of a strategic fuels reserve (SFR) designed to limit the increase in gasoline prices in the days following. The demand for gasoline is the sum of the retail demand and the wholesale demand to rebuild inventory. Background Gasoline prices in California are more volatile than in the rest of the country due to a variety

Ford, Andrew

2005-01-01T23:59:59.000Z

435

International Oil Supplies and Demands. Volume 1  

SciTech Connect (OSTI)

The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world`s dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group`s thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

Not Available

1991-09-01T23:59:59.000Z

436

Centralized and Decentralized Control for Demand Response  

SciTech Connect (OSTI)

Demand response has been recognized as an essential element of the smart grid. Frequency response, regulation and contingency reserve functions performed traditionally by generation resources are now starting to involve demand side resources. Additional benefits from demand response include peak reduction and load shifting, which will defer new infrastructure investment and improve generator operation efficiency. Technical approaches designed to realize these functionalities can be categorized into centralized control and decentralized control, depending on where the response decision is made. This paper discusses these two control philosophies and compares their relative advantages and disadvantages in terms of delay time, predictability, complexity, and reliability. A distribution system model with detailed household loads and controls is built to demonstrate the characteristics of the two approaches. The conclusion is that the promptness and reliability of decentralized control should be combined with the predictability and simplicity of centralized control to achieve the best performance of the smart grid.

Lu, Shuai; Samaan, Nader A.; Diao, Ruisheng; Elizondo, Marcelo A.; Jin, Chunlian; Mayhorn, Ebony T.; Zhang, Yu; Kirkham, Harold

2011-04-29T23:59:59.000Z

437

Wireless Demand Response Controls for HVAC Systems  

SciTech Connect (OSTI)

The objectives of this scoping study were to develop and test control software and wireless hardware that could enable closed-loop, zone-temperature-based demand response in buildings that have either pneumatic controls or legacy digital controls that cannot be used as part of a demand response automation system. We designed a SOAP client that is compatible with the Demand Response Automation Server (DRAS) being used by the IOUs in California for their CPP program, design the DR control software, investigated the use of cellular routers for connecting to the DRAS, and tested the wireless DR system with an emulator running a calibrated model of a working building. The results show that the wireless DR system can shed approximately 1.5 Watts per design CFM on the design day in a hot, inland climate in California while keeping temperatures within the limits of ASHRAE Standard 55: Thermal Environmental Conditions for Human Occupancy.

Federspiel, Clifford

2009-06-30T23:59:59.000Z

438

International Oil Supplies and Demands. Volume 2  

SciTech Connect (OSTI)

The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world`s dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group`s thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

Not Available

1992-04-01T23:59:59.000Z

439

DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION  

SciTech Connect (OSTI)

This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included: ? The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).? Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.? Currently-available optical people counting systems work well much of the time but have large counting errors in some situations. ? In meeting rooms, measurements of carbon dioxide at return-air grilles appear to be a better choice than wall-mounted sensors.? In California, demand controlled ventilation in general office spaces is projected to save significant energy and be cost effective only if typical VRs without demand controlled ventilation are very high relative to VRs in codes. Based on the research, several recommendations were developed for demand controlled ventilation specifications in the California Title 24 Building Energy Efficiency Standards.The research on classroom ventilation collected data over two years on California elementary school classrooms to investigate associations between VRs and student illness absence (IA). Major findings included: ? Median classroom VRs in all studied climate zones were below the California guideline, and 40percent lower in portable than permanent buildings.? Overall, one additional L/s per person of VR was associated with 1.6percent less IA. ? Increasing average VRs in California K-12 classrooms from the current average to the required level is estimated to decrease IA by 3.4percent, increasing State attendance-based funding to school districts by $33M, with $6.2 M in increased energy costs. Further VR increases would provide additional benefits.? Confirming these findings in intervention studies is recommended. ? Energy costs of heating/cooling unoccupied classrooms statewide are modest, but a large portion occurs in relatively few classrooms.

Fisk, William J.; Mendell, Mark J.; Davies, Molly; Eliseeva, Ekaterina; Faulkner, David; Hong, Tienzen; Sullivan, Douglas P.

2014-01-06T23:59:59.000Z

440

A systems engineering methodology for fuel efficiency and its application to a tactical wheeled vehicle demonstrator  

E-Print Network [OSTI]

The U.S. Department of Defense faces growing fuel demand, resulting in increasing costs and compromised operational capability. In response to this issue, the Fuel Efficient Ground Vehicle Demonstrator (FED) program was ...

Luskin, Paul (Paul L.)

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "areas fuel demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Patterns of crude demand: Future patterns of demand for crude oil as a func-  

E-Print Network [OSTI]

from the perspective of `peak oil', that is from the pers- pective of the supply of crude, and price#12;2 #12;Patterns of crude demand: Future patterns of demand for crude oil as a func- tion is given on the problems within the value chain, with an explanation of the reasons why the price of oil

Langendoen, Koen

442

Market Response ModelsMarket Response Models Demand CreationDemand Creation  

E-Print Network [OSTI]

Market Response ModelsMarket Response Models andand Demand CreationDemand Creation Dominique MImportance of Marketing Investments Need for a Market Response focusNeed for a Market Response focus Digital data enriched acquisition and retention costsasymmetry between acquisition and retention costs In both cases, longIn both

Brock, David

443

Ecotourism demand in North-East Italy.fig Ecotourism demand in North-East Italy  

E-Print Network [OSTI]

Ecotourism demand in North-East Italy.fig 1 Ecotourism demand in North-East Italy Tempesta T.1 and analyse ecotourism in North-East Italy. The main objectives were to: a) define a methodology that would quantify the recreational flow from the results of phone and in-person interviews, b) analyse ecotourism

Tempesta, Tiziano

444

Direct methanol fuel cells for transportation applications. Quarterly technical report, June 1996--September 1996  

SciTech Connect (OSTI)

The purpose of this research and development effort is to advance the performance and viability of direct methanol fuel cell technology for light-duty transportation applications. For fuel cells to be an attractive alternative to conventional automotive power plants, the fuel cell stack combined with the fuel processor and ancillary systems must be competitive in terms of both performance and costs. A major advantage for the direct methanol fuel cell is that a fuel processor is not required. A direct methanol fuel cell has the potential of satisfying the demanding requirements for transportation applications, such as rapid start-up and rapid refueling. The preliminary goals of this effort are: (1) 310 W/l, (2) 445 W/kg, and (3) potential manufacturing costs of $48/kW. In the twelve month period for phase 1, the following critical areas will be investigated: (1) an improved proton-exchange membrane that is more impermeable to methanol, (2) improved cathode catalysts, and (3) advanced anode catalysts. In addition, these components will be combined to form membrane-electrode assemblies (MEA`s) and evaluated in subscale tests. Finally a conceptual design and program plan will be developed for the construction of a 5 kW direct methanol stack in phase II of the program.

Fuller, T.F.; Kunz, H.R.; Moore, R.

1996-11-01T23:59:59.000Z

445

ERCOT's Weather Sensitive Demand Response Pilot  

E-Print Network [OSTI]

ERCOT’s Weather Sensitive Demand Response Pilot CATEE 12-17-13 ESL-KT-13-12-21 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Disclaimer The information contained in this report has been obtained from... services along with other information about our business is available online at constellation.com. ESL-KT-13-12-21 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Demand Response in ERCOT CATEE 121313 - Tim Carter...

Carter, T.

2013-01-01T23:59:59.000Z

446

Demand Response Initiatives at CPS Energy  

E-Print Network [OSTI]

Demand Response Initiatives at CPS Energy Clean Air Through Energy Efficiency (CATEE) Conference December 17, 2013 ESL-KT-13-12-53 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 CPSE’s DR Program • DR... than the military bases and Toyota combined. • Schools & Universities contributed 6 MW’s of Demand Response in 2013. 2013 DR Participants Trinity University - $5,654 Fort Sam ISD - $18,860 Judson ISD - $45,540 Alamo Colleges - $98,222 UTSA - $168...

Luna, R.

2013-01-01T23:59:59.000Z

447

Demand Responsive Lighting: A Scoping Study  

SciTech Connect (OSTI)

The objective of this scoping study is: (1) to identify current market drivers and technology trends that can improve the demand responsiveness of commercial building lighting systems and (2) to quantify the energy, demand and environmental benefits of implementing lighting demand response and energy-saving controls strategies Statewide. Lighting systems in California commercial buildings consume 30 GWh. Lighting systems in commercial buildings often waste energy and unnecessarily stress the electrical grid because lighting controls, especially dimming, are not widely used. But dimmable lighting equipment, especially the dimming ballast, costs more than non-dimming lighting and is expensive to retrofit into existing buildings because of the cost of adding control wiring. Advances in lighting industry capabilities coupled with the pervasiveness of the Internet and wireless technologies have led to new opportunities to realize significant energy saving and reliable demand reduction using intelligent lighting controls. Manufacturers are starting to produce electronic equipment--lighting-application specific controllers (LAS controllers)--that are wirelessly accessible and can control dimmable or multilevel lighting systems obeying different industry-accepted protocols. Some companies make controllers that are inexpensive to install in existing buildings and allow the power consumed by bi-level lighting circuits to be selectively reduced during demand response curtailments. By intelligently limiting the demand from bi-level lighting in California commercial buildings, the utilities would now have an enormous 1 GW demand shed capability at hand. By adding occupancy and light sensors to the remotely controllable lighting circuits, automatic controls could harvest an additional 1 BkWh/yr savings above and beyond the savings that have already been achieved. The lighting industry's adoption of DALI as the principal wired digital control protocol for dimming ballasts and increased awareness of the need to standardize on emerging wireless technologies are evidence of this transformation. In addition to increased standardization of digital control protocols controller capabilities, the lighting industry has improved the performance of dimming lighting systems over the last two years. The system efficacy of today's current dimming ballasts is approaching that of non-dimming program start ballasts. The study finds that the benefits of applying digital controls technologies to California's unique commercial buildings market are enormous. If California were to embark on an concerted 20 year program to improve the demand responsiveness and energy efficiency of commercial building lighting systems, the State could avoid adding generation capacity, improve the elasticity of the grid, save Californians billion of dollars in avoided energy charges and significantly reduce greenhouse gas emissions.

Rubinstein, Francis; Kiliccote, Sila

2007-01-03T23:59:59.000Z

448

Scoping Study for Demand Respose DFT II Project in Morgantown, WV  

SciTech Connect (OSTI)

This scoping study describes the underlying data resources and an analysis tool for a demand response assessment specifically tailored toward the needs of the Modern Grid Initiatives Demonstration Field Test in Phase II in Morgantown, WV. To develop demand response strategies as part of more general distribution automation, automated islanding and feeder reconfiguration schemes, an assessment of the demand response resource potential is required. This report provides the data for the resource assessment for residential customers and describes a tool that allows the analyst to estimate demand response in kW for each hour of the day, by end-use, season, day type (weekday versus weekend) with specific saturation rates of residential appliances valid for the Morgantown, WV area.

Lu, Shuai; Kintner-Meyer, Michael CW

2008-06-06T23:59:59.000Z

449

Installation and Commissioning Automated Demand Response Systems  

SciTech Connect (OSTI)

Demand Response (DR) can be defined as actions taken to reduce electric loads when contingencies, such as emergencies and congestion, occur that threaten supply-demand balance, or market conditions raise supply costs. California utilities have offered price and reliability DR based programs to customers to help reduce electric peak demand. The lack of knowledge about the DR programs and how to develop and implement DR control strategies is a barrier to participation in DR programs, as is the lack of automation of DR systems. Most DR activities are manual and require people to first receive notifications, and then act on the information to execute DR strategies. Levels of automation in DR can be defined as follows. Manual Demand Response involves a labor-intensive approach such as manually turning off or changing comfort set points at each equipment switch or controller. Semi-Automated Demand Response involves a pre-programmed demand response strategy initiated by a person via centralized control system. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. The receipt of the external signal initiates pre-programmed demand response strategies. We refer to this as Auto-DR (Piette et. al. 2005). Auto-DR for commercial and industrial facilities can be defined as fully automated DR initiated by a signal from a utility or other appropriate entity and that provides fully-automated connectivity to customer end-use control strategies. One important concept in Auto-DR is that a homeowner or facility manager should be able to 'opt out' or 'override' a DR event if the event comes at time when the reduction in end-use services is not desirable. Therefore, Auto-DR is not handing over total control of the equipment or the facility to the utility but simply allowing the utility to pass on grid related information which then triggers facility defined and programmed strategies if convenient to the facility. From 2003 through 2006 Lawrence Berkeley National Laboratory (LBNL) and the Demand Response Research Center (DRRC) developed and tested a series of demand response automation communications technologies known as Automated Demand Response (Auto-DR). In 2007, LBNL worked with three investor-owned utilities to commercialize and implement Auto-DR programs in their territories. This paper summarizes the history of technology development for Auto-DR, and describes the DR technologies and control strategies utilized at many of the facilities. It outlines early experience in commercializing Auto-DR systems within PG&E DR programs, including the steps to configure the automation technology. The paper also describes the DR sheds derived using three different baseline methodologies. Emphasis is given to the lessons learned from installation and commissioning of Auto-DR systems, with a detailed description of the technical coordination roles and responsibilities, and costs.

Global Energy Partners; Pacific Gas and Electric Company; Kiliccote, Sila; Kiliccote, Sila; Piette, Mary Ann; Wikler, Greg; Prijyanonda, Joe; Chiu, Albert

2008-04-21T23:59:59.000Z

450

Surrounding Area Restaurants...Hungry  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof theRestoration at Young -Final»EnergySupportSurrounding Area

451

Demand Management Institute (DMI) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text09-0018-CXBasin JumpTexas Elec CoopInstitute

452

Transportation Demand Management (TDM) Encyclopedia | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,LtdInformation Dixie ValleyLibrary <NAMATransport Topics Ask

453

Fuel Flexible, Low Emission Catalytic Combustor for Opportunity Fuel Applications  

SciTech Connect (OSTI)

Limited fuel resources, increasing energy demand and stringent emission regulations are drivers to evaluate process off-gases or process waste streams as fuels for power generation. Often these process waste streams have low energy content and/or highly reactive components. Operability of low energy content fuels in gas turbines leads to issues such as unstable and incomplete combustion. On the other hand, fuels containing higher-order hydrocarbons lead to flashback and auto-ignition issues. Due to above reasons, these fuels cannot be used directly without modifications or efficiency penalties in gas turbine engines. To enable the use of these wide variety of fuels in gas turbine engines a rich catalytic lean burn (RCL®) combustion system was developed and tested in a subscale high pressure (10 atm.) rig. The RCL® injector provided stability and extended turndown to low Btu fuels due to catalytic pre-reaction. Previous work has shown promise with fuels such as blast furnace gas (BFG) with LHV of 85 Btu/ft3 successfully combusted. This program extends on this work by further modifying the combustor to achieve greater catalytic stability enhancement. Fuels containing low energy content such as weak natural gas with a Lower Heating Value (LHV) of 6.5 MJ/m3 (180 Btu/ft3 to natural gas fuels containing higher hydrocarbon (e.g ethane) with LHV of 37.6 MJ/m3 (1010 Btu/ft3) were demonstrated with improved combustion stability; an extended turndown (defined as the difference between catalytic and non-catalytic lean blow out) of greater than 250oF was achieved with CO and NOx emissions lower than 5 ppm corrected to 15% O2. In addition, for highly reactive fuels the catalytic region preferentially pre-reacted the higher order hydrocarbons with no events of flashback or auto-ignition allowing a stable and safe operation with low NOx and CO emissions.

Eteman, Shahrokh

2013-06-30T23:59:59.000Z

454

Northwest Open Automated Demand Response Technology Demonstration Project  

SciTech Connect (OSTI)

The Lawrence Berkeley National Laboratory (LBNL) Demand Response Research Center (DRRC) demonstrated and evaluated open automated demand response (OpenADR) communication infrastructure to reduce winter morning and summer afternoon peak electricity demand in commercial buildings the Seattle area. LBNL performed this demonstration for the Bonneville Power Administration (BPA) in the Seattle City Light (SCL) service territory at five sites: Seattle Municipal Tower, Seattle University, McKinstry, and two Target stores. This report describes the process and results of the demonstration. OpenADR is an information exchange model that uses a client-server architecture to automate demand-response (DR) programs. These field tests evaluated the feasibility of deploying fully automated DR during both winter and summer peak periods. DR savings were evaluated for several building systems and control strategies. This project studied DR during hot summer afternoons and cold winter mornings, both periods when electricity demand is typically high. This is the DRRC project team's first experience using automation for year-round DR resources and evaluating the flexibility of commercial buildings end-use loads to participate in DR in dual-peaking climates. The lessons learned contribute to understanding end-use loads that are suitable for dispatch at different times of the year. The project was funded by BPA and SCL. BPA is a U.S. Department of Energy agency headquartered in Portland, Oregon and serving the Pacific Northwest. BPA operates an electricity transmission system and markets wholesale electrical power at cost from federal dams, one non-federal nuclear plant, and other non-federal hydroelectric and wind energy generation facilities. Created by the citizens of Seattle in 1902, SCL is the second-largest municipal utility in America. SCL purchases approximately 40% of its electricity and the majority of its transmission from BPA through a preference contract. SCL also provides ancillary services within its own balancing authority. The relationship between BPA and SCL creates a unique opportunity to create DR programs that address both BPA's and SCL's markets simultaneously. Although simultaneously addressing both market could significantly increase the value of DR programs for BPA, SCL, and the end user, establishing program parameters that maximize this value is challenging because of complex contractual arrangements and the absence of a central Independent System Operator or Regional Transmission Organization in the northwest.

Kiliccote, Sila; Piette, Mary Ann; Dudley, Junqiao

2010-03-17T23:59:59.000Z

455

Spent fuel storage system for LMFBR fuel experiments  

SciTech Connect (OSTI)

Fuel that had been irradiated in the Argonne National Laboratory Experimental Breeder Reactor II (EBR-II) at Idaho Falls, Idaho, and examined at the Hanford Engineering Development Laboratory at Richland, Washington, was placed in long term retrievable storage utilizing a system designed at Hanford. The Spent Fuel Storage Cask system was designed for transport and storage of a large quantity of spent fuel at the Hanford 200 Area transuranic (TRU) asphalt storage pad. The entire system is designed for long term retrievable storage to allow future reprocessing of the fuel. The system was designed to meet the criticality, shielding, and thermal requirements for a maximum fuel load of four kilograms fissile. The Spent Fuel Storage Cask was built to transport and store the fuel from EBR-II on the TRU asphalt storage pad.

Seay, J.M.; Gruber, W.J.

1983-01-01T23:59:59.000Z

456

Senior Center Network Redesign Under Demand Uncertainty  

E-Print Network [OSTI]

Senior Center Network Redesign Under Demand Uncertainty Osman Y. ¨Ozaltin Department of Industrial of Massachusetts Boston, Boston, MA 02125-3393, USA, michael.johnson@umb.edu Andrew J. Schaefer Department. In response, we propose a two-echelon network of senior centers. We for- mulate a two-stage stochastic

Schaefer, Andrew

457

PUBLISH ON DEMAND Recasting the Textbook  

E-Print Network [OSTI]

of history helped students evaluate the sources of information and better understand the perspectives from which history is written? WHAT WE SET OUT TO DO We recast the history textbook as an edited on- demand- source documents and interactive technology. WHAT WE FOUND High school students accessed our database

Das, Rhiju

458

INVENTORY MANAGEMENT WITH PARTIALLY OBSERVED NONSTATIONARY DEMAND  

E-Print Network [OSTI]

INVENTORY MANAGEMENT WITH PARTIALLY OBSERVED NONSTATIONARY DEMAND ERHAN BAYRAKTAR AND MICHAEL LUDKOVSKI Abstract. We consider a continuous-time model for inventory management with Markov mod- ulated non inventory level. We then solve this equivalent formulation and directly characterize an optimal inventory

Ludkovski, Mike

459

Global Climate Change and Demand for Energy  

E-Print Network [OSTI]

-CARES) Washington University in St. Louis #12;9 Jun ­ Jul ­ Aug Temperature Anomaly Distribution Frequency of air and water temperatures Losses of ice from Greenland and Antarctica Sea-level rise Energy demands 169 390 327 90 16 H2O, CO2, O3 Earth receives visible light from hot Sun and Earth radiates to space

Subramanian, Venkat

460

SHORT-RUN MONEY DEMAND Laurence Ball  

E-Print Network [OSTI]

SHORT-RUN MONEY DEMAND Laurence Ball Johns Hopkins University August 2002 I am grateful with Goldfeld's partial adjustment model. A key innovation is the choice of the interest rate in the money on "near monies" -- close substitutes for M1 such as savings accounts and money market mutual funds

Niebur, Ernst

Note: This page contains sample records for the topic "areas fuel demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Energy technologies and their impact on demand  

SciTech Connect (OSTI)

Despite the uncertainties, energy demand forecasts must be made to guide government policies and public and private-sector capital investment programs. Three principles can be identified in considering long-term energy prospects. First energy demand will continue to grow, driven by population growth, economic development, and the current low per capita energy consumption in developing countries. Second, energy technology advancements alone will not solve the problem. Energy-efficient technologies, renewable resource technologies, and advanced electric power technologies will all play a major role but will not be able to keep up with the growth in world energy demand. Third, environmental concerns will limit the energy technology choices. Increasing concern for environmental protection around the world will restrict primarily large, centralized energy supply facilities. The conclusion is that energy system diversity is the only solution. The energy system must be planned with consideration of both supply and demand technologies, must not rely on a single source of energy, must take advantage of all available technologies that are specially suited to unique local conditions, must be built with long-term perspectives, and must be able to adapt to change.

Drucker, H.

1995-06-01T23:59:59.000Z

462

Demand side management in India: Opportunities and challenges  

SciTech Connect (OSTI)

India`s electricity demand has been growing by more than 8% per year over the last decade. However, despite the fact that more than 70% of its 130 million households do not have access to electricity, demand for electricity has outstripped supply resulting in frequent blackouts and routine brownouts. India`s per capita consumption of electricity is about 240 KWh compared to about 500 KWh in other developing countries and 7,000 KWh in developed nations. According to the Fifteenth Power Survey by Indian Ministry of Energy, per capita energy consumption is projected to grow at about 5.5% per year until 2020, when India`s population is projected to reach 1.2 billion people. Based on these projections, India will need a generating capacity of 450,000 MW in 2020, compared to the current capacity of about 80,000 MW. Considering rising costs, limited fuel supply, and shortages of capital for power plant construction, it is unlikely that projected capacity will be realized. The only viable option would be to utilize available power through intensive energy efficiency improvements and load management.

Nezhad, H.G.; Mehta, J.V.

1997-06-01T23:59:59.000Z

463

Storing hydroelectricity to meet peak-hour demand  

SciTech Connect (OSTI)

This paper reports on pumped storage plants which have become an effective way for some utility companies that derive power from hydroelectric facilities to economically store baseload energy during off-peak hours for use during peak hourly demands. According to the Electric Power Research Institute (EPRI) in Palo Alto, Calif., 36 of these plants provide approximately 20 gigawatts, or about 3 percent of U.S. generating capacity. During peak-demand periods, utilities are often stretched beyond their capacity to provide power and must therefore purchase it from neighboring utilities. Building new baseload power plants, typically nuclear or coal-fired facilities that run 24 hours per day seven days a week, is expensive, about $1500 per kilowatt, according to Robert Schainker, program manager for energy storage at the EPRI. Schainker the that building peaking plants at $400 per kilowatt, which run a few hours a day on gas or oil fuel, is less costly than building baseload plants. Operating them, however, is more expensive because peaking plants are less efficient that baseload plants.

Valenti, M.

1992-04-01T23:59:59.000Z

464

Value of Demand Response: Quantities from Production Cost Modeling (Presentation)  

SciTech Connect (OSTI)

Demand response (DR) resources present a potentially important source of grid flexibility particularly on future systems with high penetrations of variable wind and solar power generation. However, managed loads in grid models are limited by data availability and modeling complexity. This presentation focuses on the value of co-optimized DR resources to provide energy and ancillary services in a production cost model. There are significant variations in the availabilities of different types of DR resources, which affect both the operational savings as well as the revenue for each DR resource. The results presented include the system-wide avoided fuel and generator start-up costs as well as the composite revenue for each DR resource by energy and operating reserves. In addition, the revenue is characterized by the capacity, energy, and units of DR enabled.

Hummon, M.

2014-04-01T23:59:59.000Z

465

Market and Policy Barriers for Demand Response Providing Ancillary Services in U.S. Markets  

E-Print Network [OSTI]

Wholesale Electricity Demand Response Program Comparison,J. (2009) Open Automated Demand Response Communicationsin Demand Response for Wholesale Ancillary Services.

Cappers, Peter

2014-01-01T23:59:59.000Z

466

Climate, extreme heat, and electricity demand in California  

E-Print Network [OSTI]

demand responses to climate change: Methodology and application to the Commonwealth of Massachusetts.

Miller, N.L.

2008-01-01T23:59:59.000Z

467

Price-responsive demand management for a smart grid world  

SciTech Connect (OSTI)

Price-responsive demand is essential for the success of a smart grid. However, existing demand-response programs run the risk of causing inefficient price formation. This problem can be solved if each retail customer could establish a contract-based baseline through demand subscription before joining a demand-response program. (author)

Chao, Hung-po

2010-01-15T23:59:59.000Z

468

AUTOMATION OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S.  

E-Print Network [OSTI]

AUTOMATION OF ENERGY DEMAND FORECASTING by Sanzad Siddique, B.S. A Thesis submitted to the Faculty OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S. Marquette University, 2013 Automation of energy demand of the energy demand forecasting are achieved by integrating nonlinear transformations within the models

Povinelli, Richard J.

469

Univariate Modeling and Forecasting of Monthly Energy Demand Time Series  

E-Print Network [OSTI]

Univariate Modeling and Forecasting of Monthly Energy Demand Time Series Using Abductive and Neural demand time series based only on data for six years to forecast the demand for the seventh year. Both networks, Neural networks, Modeling, Forecasting, Energy demand, Time series forecasting, Power system

Abdel-Aal, Radwan E.

470

California's Summer 2004 Electricity Supply and Demand Outlook  

E-Print Network [OSTI]

forecast for 2004 is higher to reflect increased demand from more robust economic growth. In this newCALIFORNIA ENERGY COMMISSION California's Summer 2004 Electricity Supply and Demand Outlook Supply and Demand Outlook The California Energy Commission staff's electricity supply and demand outlook

471

CE 469 / 569 TRAVEL DEMAND MODELING Spring 2006 Course Syllabus  

E-Print Network [OSTI]

of travel demand data, and should apply these methods to estimating and to forecasting travel demand these to practical modeling scenarios. The student should also use existing computer tools to forecast travel demand1 CE 469 / 569 TRAVEL DEMAND MODELING Spring 2006 Course Syllabus Catalog Detailed investigation

Hickman, Mark

472

A Simulation Study of Demand Responsive Transit System Design  

E-Print Network [OSTI]

A Simulation Study of Demand Responsive Transit System Design Luca Quadrifoglio, Maged M. Dessouky changed the landscape for demand responsive transit systems. First, the demand for this type of transit experiencing increased usage for demand responsive transit systems. The National Transit Summaries and Trends

Dessouky, Maged

473

The Role of Demand Response Policy Forum Series  

E-Print Network [OSTI]

The Role of Demand Response Policy Forum Series Beyond 33 Percent: California's Renewable Future and Demand Response #12;Historic focus on Seasonal Grid Stress PG&E Demand Bid Test Day 0 2000 4000 6000 8000 Communication Latency #12;Bottom Up Review of End-Use Loads for Demand Response 5 Commercial Residential

California at Davis, University of

474

Opportunities, Barriers and Actions for Industrial Demand Response in California  

E-Print Network [OSTI]

industrial demand response (DR) with energy efficiency (EE) to most effectively use electricity and natural gas

McKane, Aimee T.

2009-01-01T23:59:59.000Z

475

Flexible Demand Management under Time-Varying Prices  

E-Print Network [OSTI]

planning, multi-periods procurement, optimal stopping problem, the demand management for the Smart Grid

Liang, Yong

2012-01-01T23:59:59.000Z

476

Advanced thermally stable jet fuels  

SciTech Connect (OSTI)

The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume (Sections 1 through 5).

Schobert, H.H.

1999-01-31T23:59:59.000Z

477

23 Reformulated Fuels and Related Issues REFORMULATED FUELS AND  

E-Print Network [OSTI]

reduced benzene, lower Reid vapor pressure (RVP) specifications, added oxygenates, and heavy metal with the greatest ozone pollution and additional areas around the country which have voluntarily opted pollutants by 15 to 19 percent from 1990 levels. This fuel is required in the nine areas, nationwide

478

Sixth Northwest Conservation and Electric Power Plan Appendix C: Demand Forecast  

E-Print Network [OSTI]

Sixth Northwest Conservation and Electric Power Plan Appendix C: Demand Forecast Energy Demand................................................................................................................................. 1 Demand Forecast Methodology.................................................................................................. 3 New Demand Forecasting Model for the Sixth Plan

479

Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California  

E-Print Network [OSTI]

in significant energy and demand savings for refrigeratedbe modified to reduce energy demand during demand responsein refrigerated warehouse energy demand if they are not

Lekov, Alex

2009-01-01T23:59:59.000Z

480

Nonconventional Liquid Fuels (released in AEO2006)  

Reports and Publications (EIA)

Higher prices for crude oil and refined petroleum products are opening the door for nonconventional liquids to displace petroleum in the traditional fuel supply mix. Growing world demand for diesel fuel is helping to jump-start the trend toward increasing production of nonconventional liquids, and technological advances are making the nonconventional alternatives more viable commercially. Those trends are reflected in the Annual Energy Outlook 2006 projections.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "areas fuel demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Climate Change Fuel Cell Program  

SciTech Connect (OSTI)

Verizon is presently operating the largest Distributed Generation Fuel Cell project in the USA. Situated in Long Island, NY, the power plant is composed of seven (7) fuel cells operating in parallel with the Utility grid from the Long Island Power Authority (LIPA). Each fuel cell has an output of 200 kW, for a total of 1.4 mW generated from the on-site plant. The remaining power to meet the facility demand is purchased from LIPA. The fuel cell plant is utilized as a co-generation system. A by-product of the fuel cell electric generation process is high temperature water. The heat content of this water is recovered from the fuel cells and used to drive two absorption chillers in the summer and a steam generator in the winter. Cost savings from the operations of the fuel cells are forecasted to be in excess of $250,000 per year. Annual NOx emissions reductions are equivalent to removing 1020 motor vehicles from roadways. Further, approximately 5.45 million metric tons (5 millions tons) of CO2 per year will not be generated as a result of this clean power generation. The project was partially financed with grants from the New York State Energy R&D Authority (NYSERDA) and from Federal Government Departments of Defense and Energy.

Paul Belard

2006-09-21T23:59:59.000Z

482

Unconventional fuel: Tire derived fuel  

SciTech Connect (OSTI)

Material recovery of scrap tires for their fuel value has moved from a pioneering concept in the early 1980`s to a proven and continuous use in the United States` pulp and paper, utility, industrial, and cement industry. Pulp and paper`s use of tire derived fuel (TDF) is currently consuming tires at the rate of 35 million passenger tire equivalents (PTEs) per year. Twenty mills are known to be burning TDF on a continuous basis. The utility industry is currently consuming tires at the rate of 48 million PTEs per year. Thirteen utilities are known to be burning TDF on a continuous basis. The cement industry is currently consuming tires at the rate of 28 million PTEs per year. Twenty two cement plants are known to be burning TDF on a continuous basis. Other industrial boilers are currently consuming tires at the rate of 6.5 million PTEs per year. Four industrial boilers are known to be burning TDF on a continuous basis. In total, 59 facilities are currently burning over 117 million PTEs per year. Although 93% of these facilities were not engineered to burn TDF, it has become clear that TDF has found acceptance as a supplemental fuel when blending with conventional fuels in existing combustion devices designed for normal operating conditions. The issues of TDF as a supplemental fuel and its proper specifications are critical to the successful development of this fuel alternative. This paper will focus primarily on TDF`s use in a boiler type unit.

Hope, M.W. [Waste Recovery, Inc., Portland, OR (United States)

1995-09-01T23:59:59.000Z

483

Empirical modeling of uranium nitride fuels  

E-Print Network [OSTI]

SD Fuel swelling ( volume % ) Fission gas release (% ) Area average fuel temperature at the peak axial location Fuel burnup Fuel density Smear density The empirical fits shown above were produced using a least squares fit program with data... rejected due to a demonstrated lack of stability. The fuel swelling and fission gas release values predicted by the nonlinear correlations show fair agreement with the two experimental pins from the SP-1 irradiation test . Additionally, the trends...

Brozak, Daniel Edward

2012-06-07T23:59:59.000Z

484

1990 fuel cell seminar: Program and abstracts  

SciTech Connect (OSTI)

This volume contains author prepared short resumes of the presentations at the 1990 Fuel Cell Seminar held November 25-28, 1990 in Phoenix, Arizona. Contained herein are 134 short descriptions organized into topic areas entitled An Environmental Overview, Transportation Applications, Technology Advancements for Molten Carbonate Fuel Cells, Technology Advancements for Solid Fuel Cells, Component Technologies and Systems Analysis, Stationary Power Applications, Marine and Space Applications, Technology Advancements for Acid Type Fuel Cells, and Technology Advancement for Solid Oxide Fuel Cells.

Not Available

1990-12-31T23:59:59.000Z

485

Illegal logging and destruction continues in the Greenpeace demands all companies stop buying wood  

E-Print Network [OSTI]

Illegal logging and destruction continues in the Amazon Greenpeace demands all companies stop. Pombo, one of the largest log traders in the Porto de Moz area, supplies companies such as Eidai do of Brazil's Para State. Activists painted "Crime" on 6,000 cubic metres of logs and on a barge used

486

New Demand for Old Food: the U.S. Demand for Olive Oil Bo Xiong, William Matthews, Daniel Sumner  

E-Print Network [OSTI]

New Demand for Old Food: the U.S. Demand for Olive Oil Bo Xiong, William Matthews, Daniel Sumner, demand for oils differentiated by origin and quality is price-elastic. These olive oils are highly of olive oil and the spread of Mediterranean diet contribute significantly to the rising demand

Schladow, S. Geoffrey

487

BWR Fuel Assembly BWR Fuel Assembly PWR Fuel Assembly  

National Nuclear Security Administration (NNSA)

BWR Fuel Assembly BWR Fuel Assembly PWR Fuel Assembly PWR Fuel Assembly The PWR 17x17 assembly is approximately 160 inches long (13.3 feet), 8 inches across, and weighs 1,500 lbs....

488

Diagnostics on Demand | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData FilesShape,Physics Diagnostics UW Madison PlasmaThe

489

Distributed Automated Demand Response - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocation oftheAmperometricEnergy Analysis Energy Analysis

490

Demand Response - Policy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. DepartmenttoJuneEnergy This document

491

Next Update: December 2011 Net Internal Demand  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecade Year-0 Year-1 Year-2Thousand Cubic3ae .f . Net

492

NCEP_Demand_Response_Draft_111208.indd  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:Diesel Engines |Servicesfrom

493

National Action Plan on Demand Response  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:DieselEnergy Auditor U.S. Department 6 3 9 12 6 3 9

494

Chinese Oil Demand: Steep Incline Ahead  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOil andMCKEESPORTfor the 2012 CBECS4X I

495

Emerging Trends in US Vehicle Travel Demand  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment > Voluntary826Industry forEmerging

496

Implications of Low Electricity Demand Growth  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,992000Implications ofU.S. Energy

497

U.S. Coal Supply and Demand  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1EnergyU O P J‹CoalU.S.

498

Solar in Demand | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee on Energy andDepartment ofAnShare yourAof Energy

499

Sandia National Laboratories: demand response inverter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NRELdeep-water multiple-megawatt VAWT Studydemand response

500

BPA, Energy Northwest launch demand response pilot  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch HighlightsToolsBES ReportsExperiment Rain drop