Powered by Deep Web Technologies
Note: This page contains sample records for the topic "area transit propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Knoxville Area Transit: Propane Hybrid Electric Trolleys  

SciTech Connect (OSTI)

A 2-page fact sheet summarizing the evaluation done by the U.S. Department of Energy's Advanced Vehicle Testing Activity on the Knoxville Area Transit's use of propane hybrid electric trolleys.

Not Available

2005-04-01T23:59:59.000Z

2

Knoxville Area Transit: Propane Hybrid ElectricTrolleys; Advanced Technology Vehicles in Service, Advanced Vehicle Testing Activity (Fact Sheet)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

website and in print publications. website and in print publications. TESTING ADVANCED VEHICLES KNOXVILLE AREA TRANSITPROPANE HYBRID ELECTRIC TROLLEYS Knoxville Area Transit PROPANE HYBRID ELECTRIC TROLLEYS NREL/PIX 13795 KNOXVILLE AREA TRANSIT (KAT) is recognized nationally for its exceptional service to the City of Knoxville, Tennessee. KAT received the American Public Transportation Associa- tion's prestigious Outstanding Achievement Award in 2004.

3

Propane Outlook  

Gasoline and Diesel Fuel Update (EIA)

4 of 24 4 of 24 Notes: EIA expects lower residential propane prices this winter compared to the high prices seen last winter. As of now, it appears that propane inventories will be more than adequate going into this winter. Although inventories in the Midwest remain low, there is still time for the ample inventories in the Gulf Coast to make their way up into the Midwest before heating season begins in earnest. As always, the major uncertainties affecting demand this winter are the weather and the economy. Other uncertainties affecting the propane market this winter are crude oil and natural gas prices. If natural gas prices this winter are around what EIA expects them to be, we will likely see very little, if any, propane production shut-in at gas plants. However, as the current situation with the TET shows, there could be short

4

Alternative Fuels Data Center: Propane Vehicle Rebate - Minnesota Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane Vehicle Rebate Propane Vehicle Rebate - Minnesota Propane Association (MPA) to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Rebate - Minnesota Propane Association (MPA) on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Rebate - Minnesota Propane Association (MPA) on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Rebate - Minnesota Propane Association (MPA) on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Rebate - Minnesota Propane Association (MPA) on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Rebate - Minnesota Propane Association (MPA) on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Rebate - Minnesota Propane Association (MPA) on AddThis.com...

5

About Kings Area Rural Transit The Kings County Area Public Transit Agency operates the Kings  

E-Print Network [OSTI]

Case Study About Kings Area Rural Transit The Kings County Area Public Transit Agency operates's Central Valley. In the middle is Kings County, home to diverse communities of rural workers. The county the Kings Area Rural Transit (KART) vanpool program in California's San Joaquin Valley. Part of KART

Greenberg, Albert

6

Residential propane prices surges  

U.S. Energy Information Administration (EIA) Indexed Site

Midwest and Northeast propane prices much higher this winter than last year Households that heat with propane will pay for that propane at prices averaging 39 percent higher in the...

7

Alternative Fuels Data Center: Propane Vehicle Rebates - Western Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane Vehicle Propane Vehicle Rebates - Western Propane Gas Association (WPGA) to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Rebates - Western Propane Gas Association (WPGA) on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Rebates - Western Propane Gas Association (WPGA) on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Rebates - Western Propane Gas Association (WPGA) on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Rebates - Western Propane Gas Association (WPGA) on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Rebates - Western Propane Gas Association (WPGA) on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Rebates - Western Propane Gas Association (WPGA) on AddThis.com...

8

Residential propane price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

propane price decrease The average retail price for propane is 2.37 per gallon, down 1.3 cents from last week, based on the residential heating fuel survey by the U.S. Energy...

9

Residential propane price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

propane price decreases The average retail price for propane is 2.35 per gallon, down 1.1 cents from last week, based on the residential heating fuel survey by the U.S. Energy...

10

Residential propane price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

propane price decreases The average retail price for propane is 2.36 per gallon, down 1 cent from last week, based on the residential heating fuel survey by the U.S. Energy...

11

Propane situation update  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Northeast South Midwest West U.S. total 116 million homes natural gas propane heating oil electricity wood keroseneotherno heating propane 4.5% 7% Of all homes heated by...

12

Residential propane prices increase  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

propane prices increase The average retail price for propane rose 3.2 cents from a week ago to 2.86 per gallon. That's up 59.3 cents from a year ago, based on the residential...

13

Residential propane prices decreases  

U.S. Energy Information Administration (EIA) Indexed Site

5, 2014 Residential propane prices decreases The average retail price for propane fell to 3.89 per gallon, that's down 11.9 cents from a week ago, based on the residential heating...

14

Residential propane prices increase  

Gasoline and Diesel Fuel Update (EIA)

propane prices increase The average retail price for propane rose 10.3 cents from a week ago to 2.96 per gallon. That's up 68.1 cents from a year ago, based on the residential...

15

Residential propane prices increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

propane prices increase The average retail price for propane rose 3.9 cents from a week ago to 2.80 per gallon. That's up 53.7 cents from a year ago, based on the residential...

16

Residential propane prices increase  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

propane prices increase The average retail price for propane rose 5.5 cents per gallon from last week to 2.62 per gallon; up 37.4 cents from a year ago, based on the residential...

17

Residential propane prices surges  

Gasoline and Diesel Fuel Update (EIA)

propane prices surges The average retail price for propane rose to an all-time high of 4.01 a gallon, that's up 1.05 from a week ago, based on the residential heating fuel survey...

18

Residential propane price increases  

U.S. Energy Information Administration (EIA) Indexed Site

propane price increases The average retail price for propane is 2.41 per gallon, up 6-tenths of a cent from last week, based on the residential heating fuel survey by the U.S....

19

Residential propane prices stable  

Gasoline and Diesel Fuel Update (EIA)

propane price decreases The average retail price for propane is 2.40 per gallon, down 9-tenths of a cent from last week, based on the residential heating fuel survey by the U.S....

20

Residential propane price decreases  

Gasoline and Diesel Fuel Update (EIA)

6, 2014 Residential propane price decreases The average retail price for propane fell to 3.48 per gallon, down 15.9 cents from a week ago, based on the residential heating fuel...

Note: This page contains sample records for the topic "area transit propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Residential propane prices surges  

U.S. Energy Information Administration (EIA) Indexed Site

9, 2014 Residential propane price decreases The average retail price for propane fell to 3.08 per gallon, down 8.6 cents from a week ago, based on the residential heating fuel...

22

Residential propane prices increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

propane prices increase The average retail price for propane rose 4.8 cents from a week ago to 2.76 per gallon. That's up 51.2 cents from a year ago, based on the residential...

23

Residential propane prices increase  

Gasoline and Diesel Fuel Update (EIA)

propane prices increase The average retail price for propane rose 2.5 cents from a week ago to 2.83 per gallon. That's up 56 cents from a year ago, based on the residential...

24

Residential propane price decreases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

05, 2014 Residential propane price decreases The average retail price for propane fell to 2.40 per gallon, down 1.2 cents from a week ago, based on the residential heating fuel...

25

Residential propane prices increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

propane prices increase The average retail price for propane rose to 2.40 per gallon, up 1.1 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy...

26

Residential propane prices surges  

Gasoline and Diesel Fuel Update (EIA)

2, 2014 Residential propane price decreases The average retail price for propane fell to 3.17 per gallon, down 13.1 cents from a week ago, based on the residential heating fuel...

27

Residential propane prices increase  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

propane prices increase The average retail price for propane rose 2.3 cents per gallon from last week to 2.57 per gallon; up 32.2 cents from a year ago, based on the residential...

28

Residential propane prices available  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

propane prices available The average retail price for propane is 2.30 per gallon, based on the U.S. Energy Information Administration's weekly residential heating fuel survey....

29

Residential propane prices increase  

Gasoline and Diesel Fuel Update (EIA)

propane prices increase The average retail price for propane rose 9.1 cents from a week ago to 2.71 per gallon. That's up 46.9 cents from a year ago, based on the residential...

30

Residential propane prices stable  

U.S. Energy Information Administration (EIA) Indexed Site

propane prices stable The average retail price for propane is 2.37 per gallon. That's down 4-tenths of a penny from a week ago, based on the U.S. Energy Information...

31

Residential propane prices surges  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5, 2014 Residential propane price decreases The average retail price for propane fell to 3.30 per gallon, down 17.5 cents from a week ago, based on the residential heating fuel...

32

Propane on Titan  

E-Print Network [OSTI]

We present the first observations of propane (C$_3$H$_8$) on Titan that unambiguously resolve propane features from other numerous stratospheric emissions. This is accomplished using a $R=\\lambda/\\delta\\lambda\\approx10^5$ spectrometer (TEXES) to observe propane's $\

H. G. Roe; T. K. Greathouse; M. J. Richter; J. H. Lacy

2003-09-23T23:59:59.000Z

33

This Week In Petroleum Propane Section  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Residential propane prices (dollars per gallon) Average Regional Residential propane prices graph Regional residential propane prices 2013-14 graph Residential propane prices...

34

Alternative Fuels Data Center: Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane to someone by E-mail Share Alternative Fuels Data Center: Propane on Facebook Tweet about Alternative Fuels Data Center: Propane on Twitter Bookmark Alternative Fuels Data Center: Propane on Google Bookmark Alternative Fuels Data Center: Propane on Delicious Rank Alternative Fuels Data Center: Propane on Digg Find More places to share Alternative Fuels Data Center: Propane on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Laws & Incentives Propane Fuel Prices Find propane fuel prices and trends. Propane, also known as liquefied petroleum gas (LPG) or autogas, has been used worldwide as a vehicle fuel for decades. It is stored as a liquid, and

35

2013 Propane Market Outlook  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

3 3 Propane Market Outlook Assessment of Key Market Trends, Threats, and Opportunities Facing the Propane Industry Through 2020 P R E S E N T E D B Y : Prepared for the Propane Education & Research Council (PERC) by: ICF International, Inc. 9300 Lee Highway Fairfax, VA 22031 Tel (703) 218-2758 www.icfi.com Principal Authors: Mr. Michael Sloan msloan@icfi.com Mr. Warren Wilczewski wwilczewski@icfi.com Propane Market Outlook at a Glance ¡ Total consumer propane sales declined by more than 17 percent between 2009 and 2012, including 3.3 percent in 2011 and 10 to 12 percent in 2012. The declines in 2011 and 2012 were due primarily to much warmer than normal weather, as well as the impact of higher propane prices and continuing efficiency trends. Sales are expected to rebound in 2013 with a return to more

36

Propane Vehicle Demonstration Grant Program  

SciTech Connect (OSTI)

Project Description: Propane Vehicle Demonstration Grants The Propane Vehicle Demonstration Grants was established to demonstrate the benefits of new propane equipment. The US Department of Energy, the Propane Education & Research Council (PERC) and the Propane Vehicle Council (PVC) partnered in this program. The project impacted ten different states, 179 vehicles, and 15 new propane fueling facilities. Based on estimates provided, this project generated a minimum of 1,441,000 new gallons of propane sold for the vehicle market annually. Additionally, two new off-road engines were brought to the market. Projects originally funded under this project were the City of Portland, Colorado, Kansas City, Impco Technologies, Jasper Engines, Maricopa County, New Jersey State, Port of Houston, Salt Lake City Newspaper, Suburban Propane, Mutual Liquid Propane and Ted Johnson.

Jack Mallinger

2004-08-27T23:59:59.000Z

37

Propane Fuel Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Propane Fuel Basics Propane Fuel Basics July 30, 2013 - 4:31pm Addthis Photo of a man standing next to a propane fuel pump with a tank in the background. Propane, also known as...

38

Alternative Fuels Data Center: Propane Vehicles  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Vehicles to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicles on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicles on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicles on Google Bookmark Alternative Fuels Data Center: Propane Vehicles on Delicious Rank Alternative Fuels Data Center: Propane Vehicles on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicles on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Propane Vehicles Related Information Availability Conversions Emissions Incentives & Laws

39

propane | OpenEI  

Open Energy Info (EERE)

propane propane Dataset Summary Description The Air-Conditioning, Heating, and Refrigeration Institute (AHRI) maintains data on the energy use and efficiency of water heaters for its members. The FTC does not necessarily endorse the views expressed on that site or guarantee the accuracy or completeness of the information on it. Please note that the site you link to may track visitor viewing habits. This spreadsheet contains data on Bosch, Noritz, Paloma and Takagi manufacturing companies. Source Energy Applicance Data - United States Federal Trade Commission, www.ftc.gov Date Released Unknown Date Updated Unknown Keywords energy use Natural Gas propane Water heater Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Combined.xlsx (xlsx, 12.7 KiB)

40

Residential propane price decreases slightly  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

propane price decreases slightly The average retail price for propane is 2.38 per gallon, down 3-tenths of a cent from last week, based on the residential heating fuel survey by...

Note: This page contains sample records for the topic "area transit propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Residential propane price is unchanged  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

13, 2014 Residential propane price is unchanged The average retail price for propane is 2.40 per gallon, down one-tenth of a cent from last week, based on the residential heating...

42

Heating Oil and Propane Update  

Gasoline and Diesel Fuel Update (EIA)

Maps of states participating in Winter Fuels Survey Residential propane PADD map Residential heating oil PADD map...

43

Alternative Fuels Data Center: Propane Vehicle Availability  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Vehicle Availability to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Availability on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Availability on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives

44

High pressure fluid phase equilibrium data of poly(2-ethylhexyl acrylate) in propane  

Science Journals Connector (OSTI)

Substance Name(s): propane; Dimethylmethane; n-Propane; Propyl hydride; R 290; propane liquefied; propane in gaseous state; Propan; Propangas; Propan

Ch. Wohlfarth

2009-01-01T23:59:59.000Z

45

The catalytic oxidation of propane  

E-Print Network [OSTI]

THE CATALYTIC OXIDATION OP PROPANE A Thesis By Charles Frederick Sandersont * * June 1949 Approval as to style and content recommended: Head of the Department of Chemical Engineering THE CATALYTICi OXIDATTON OF PROPANE A Thesis By Charles... Frederick ;Sandersonit * June 1949 THE CATALYTIC OXIDATION OP PROPANE A Thesis Submitted to the Faculty of the Agricultural and Mechanical College of Texas in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Major...

Sanderson, Charles Frederick

2013-10-04T23:59:59.000Z

46

Alternative Fuel Transit Buses: DART's (Dallas Area Rapid Transit) LNG Bus Fleet Final Results  

SciTech Connect (OSTI)

In 1998, Dallas Area Rapid Transit, a public transit agency in Dallas, Texas, began operating a large fleet of heavy-duty buses powered by liquefied natural gas. As part of a $16 million commitment to alternative fuels, DART operates 139 LNG buses serviced by two new LNG fueling stations.

Chandler, K. [Battelle (US); Norton, P. [National Renewable Energy Lab., Golden, CO (US); Clark, N.

2000-11-07T23:59:59.000Z

47

Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives -  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane Infrastructure Propane Infrastructure and Fuel Incentives - Boulden Propane to someone by E-mail Share Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - Boulden Propane on Facebook Tweet about Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - Boulden Propane on Twitter Bookmark Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - Boulden Propane on Google Bookmark Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - Boulden Propane on Delicious Rank Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - Boulden Propane on Digg Find More places to share Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - Boulden Propane on AddThis.com...

48

Alternative Fuels Data Center: Propane Related Links  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Related Links to someone by E-mail Share Alternative Fuels Data Center: Propane Related Links on Facebook Tweet about Alternative Fuels Data Center: Propane Related Links on Twitter Bookmark Alternative Fuels Data Center: Propane Related Links on Google Bookmark Alternative Fuels Data Center: Propane Related Links on Delicious Rank Alternative Fuels Data Center: Propane Related Links on Digg Find More places to share Alternative Fuels Data Center: Propane Related Links on AddThis.com... More in this section... Propane Basics Production & Distribution Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Propane Related Links This list includes links related to propane. The Alternative Fuels Data

49

Case Study ? Propane School Bus Fleets  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

technicians about the safety of propane vehicles, particularly with regards to propane tanks. Data Analysis Results The five fleets operating the 110 school buses described in...

50

Biofuels: Bacteria generate propane gas  

Science Journals Connector (OSTI)

... Genetically engineered bacteria could one day be harnessed to make renewable propane fuel. Patrik Jones at Imperial College London, Kalim Akhtar at University College London and ... different species of bacteria into Escherichia coli, so that the microbe could convert glucose into propane gas. With genetic tinkering and by increasing the levels of oxygen to which the ...

2014-09-10T23:59:59.000Z

51

Alternative Fuels Data Center: Propane Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Exemption Exemption to someone by E-mail Share Alternative Fuels Data Center: Propane Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Propane Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Propane Tax Exemption on Google Bookmark Alternative Fuels Data Center: Propane Tax Exemption on Delicious Rank Alternative Fuels Data Center: Propane Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Propane Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Tax Exemption Liquefied petroleum gas (propane) is exempt from the state fuel excise tax when sold from a licensed propane vendor to a licensed propane user or a propane vehicle owner if it is delivered into a bulk storage tank that can

52

Alternative Fuels Data Center: Propane Vehicle Emissions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicles » Propane Vehicles » Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Emissions on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Propane Vehicle Emissions

53

Alternative Fuels Data Center: Propane Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane Tax to someone Propane Tax to someone by E-mail Share Alternative Fuels Data Center: Propane Tax on Facebook Tweet about Alternative Fuels Data Center: Propane Tax on Twitter Bookmark Alternative Fuels Data Center: Propane Tax on Google Bookmark Alternative Fuels Data Center: Propane Tax on Delicious Rank Alternative Fuels Data Center: Propane Tax on Digg Find More places to share Alternative Fuels Data Center: Propane Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Tax For taxation purposes, liquefied petroleum gas (propane) used as a motor vehicle fuel must be converted to gasoline gallon equivalents (GGE) using the conversion factor of 4.24 pounds per gallon of liquid at 60 degrees Fahrenheit per GGE. Propane is taxed at a rate of $0.20 per GGE. (Reference

54

Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Emission Testing of Washington Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses M. Melendez, J. Taylor, and J. Zuboy National Renewable Energy Laboratory W.S. Wayne West Virginia University D. Smith U.S. Department of Energy Technical Report NREL/TP-540-36355 December 2005 Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses M. Melendez, J. Taylor, and J. Zuboy National Renewable Energy Laboratory W.S. Wayne West Virginia University D. Smith U.S. Department of Energy Prepared under Task No. FC05-9000 Technical Report NREL/TP-540-36355 December 2005 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov

55

Transportation Fuel Basics - Propane | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Propane Propane Transportation Fuel Basics - Propane July 30, 2013 - 4:31pm Addthis Photo of a man standing next to a propane fuel pump with a tank in the background. Propane, also known as liquefied petroleum gas (LPG or LP-gas), or autogas in Europe, is a high-energy alternative fuel. It has been used for decades to fuel light-duty and heavy-duty propane vehicles. Propane is a three-carbon alkane gas (C3H8). Stored under pressure inside a tank, propane turns into a colorless, odorless liquid. As pressure is released, the liquid propane vaporizes and turns into gas that is used for combustion. An odorant, ethyl mercaptan, is added for leak detection. Propane has a high octane rating and excellent properties for spark-ignited internal combustion engines. It is nontoxic and presents no threat to soil,

56

Alternative Fuels Data Center: Propane Benefits  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Benefits to Benefits to someone by E-mail Share Alternative Fuels Data Center: Propane Benefits on Facebook Tweet about Alternative Fuels Data Center: Propane Benefits on Twitter Bookmark Alternative Fuels Data Center: Propane Benefits on Google Bookmark Alternative Fuels Data Center: Propane Benefits on Delicious Rank Alternative Fuels Data Center: Propane Benefits on Digg Find More places to share Alternative Fuels Data Center: Propane Benefits on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Laws & Incentives Propane Benefits and Considerations Also known as liquefied petroleum gas (LPG), propane is a domestically produced, well-established, clean-burning fuel. Using propane as a vehicle fuel increases energy security, provides convenience and performance

57

Alternative Fuels Data Center: Propane Vehicle Training  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane Vehicle Propane Vehicle Training to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Training on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Training on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Training on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Training on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Training on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Training on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Vehicle Training The Railroad Commission of Texas Alternative Energy Division offers free safety and maintenance training on propane vehicles, buses, and forklifts.

58

Alternative Fuels Data Center: Propane Basics  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Basics to Basics to someone by E-mail Share Alternative Fuels Data Center: Propane Basics on Facebook Tweet about Alternative Fuels Data Center: Propane Basics on Twitter Bookmark Alternative Fuels Data Center: Propane Basics on Google Bookmark Alternative Fuels Data Center: Propane Basics on Delicious Rank Alternative Fuels Data Center: Propane Basics on Digg Find More places to share Alternative Fuels Data Center: Propane Basics on AddThis.com... More in this section... Propane Basics Production & Distribution Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Propane Fuel Basics Propane dispenser Also known as liquefied petroleum gas (LPG) or autogas, propane is a clean-burning, high-energy alternative fuel that's been used for decades to

59

Alternative Fuels Data Center: Propane Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane Tax to someone Propane Tax to someone by E-mail Share Alternative Fuels Data Center: Propane Tax on Facebook Tweet about Alternative Fuels Data Center: Propane Tax on Twitter Bookmark Alternative Fuels Data Center: Propane Tax on Google Bookmark Alternative Fuels Data Center: Propane Tax on Delicious Rank Alternative Fuels Data Center: Propane Tax on Digg Find More places to share Alternative Fuels Data Center: Propane Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Tax Motor fuel taxes for propane used in vehicles are collected through an annual sticker permit fee based on the vehicles' registered gross vehicle weight rating and the number of miles driven the previous year. (Reference Texas Statutes, Tax Code 162.305

60

Alternative Fuels Data Center: Propane Supplier Requirements  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane Supplier Propane Supplier Requirements to someone by E-mail Share Alternative Fuels Data Center: Propane Supplier Requirements on Facebook Tweet about Alternative Fuels Data Center: Propane Supplier Requirements on Twitter Bookmark Alternative Fuels Data Center: Propane Supplier Requirements on Google Bookmark Alternative Fuels Data Center: Propane Supplier Requirements on Delicious Rank Alternative Fuels Data Center: Propane Supplier Requirements on Digg Find More places to share Alternative Fuels Data Center: Propane Supplier Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Supplier Requirements A retail supplier may only distribute liquefied petroleum gas (LPG or propane) if the supplier holds a license from the Wisconsin Department of

Note: This page contains sample records for the topic "area transit propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Propane, Liquefied Petroleum Gas (LPG)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Propane: Liquefied Petroleum Gas (LPG) Propane: Liquefied Petroleum Gas (LPG) Ford F-150 (Dual-Fuel LPG) Propane or liquefied petroleum gas (LPG) is a clean-burning fossil fuel that can be used to power internal combustion engines. LPG-fueled vehicles can produce significantly lower amounts of some harmful emissions and the greenhouse gas carbon dioxide (CO2). LPG is usually less expensive than gasoline, it can be used without degrading vehicle performance, and most LPG used in U.S. comes from domestic sources. The availability of LPG-fueled light-duty passenger vehicles is currently limited. A few light-duty vehicles-mostly larger trucks and vans-can be ordered from a dealer with a prep-ready engine package and converted to use propane. Existing conventional vehicles can also be converted for LPG use.

62

Viscosity Measurements on Gaseous Propane  

Science Journals Connector (OSTI)

Viscosity Measurements on Gaseous Propane ... However, in that case, the viscosities will have to be re-evaluated too, which also requires the parameters of the wire oscillation, the logarithmic decrement and the frequency. ...

Jrg Wilhelm; Eckhard Vogel

2001-09-25T23:59:59.000Z

63

Propane Update - November 26, 2014  

Gasoline and Diesel Fuel Update (EIA)

Sep-14 Nov-14 5-year range inventory level rolling 5-year average PADD 2 (Midwest) propane inventories are currently above the five-year average U.S. Energy Information...

64

On the Derivatives of Propane  

Science Journals Connector (OSTI)

1 January 1869 research-article On the Derivatives of Propane C. Schorlemmer The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Proceedings of the Royal Society of London. www.jstor.org

1869-01-01T23:59:59.000Z

65

Heating Oil and Propane Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

data not collected over the summer? The residential pricing data collected on heating oil and propane prices are for the Winter Heating Fuels Survey. The purpose of this survey...

66

Compressible Solution Properties of Amorphous Polystyrene-block-Polybutadiene, Crystalline Polystyrene-block-Poly(Hydrogenated Polybutadiene) and Their Corresponding Homopolymers: Fluid-Fluid, Fluid-Solid and Fluid-Micelle Phase Transitions in Propane and Propylene  

SciTech Connect (OSTI)

Abstract Polystyrene, polybutadiene, hydrogenated polybutadiene, and styrene diblock copolymers of these homopolymers can form homogenous solutions in compressible solvents, such as propane and propylene, which separate into two bulk phases upon reducing pressure. The cloud and micellization pressures for homopolymer and diblock copolymers are generally found to be higher in propane than in propylene, except for hydrogenated polybutadiene and polystyrene-block-(hydrogenated polybutadiene). Hydrogenated polybutadiene homopolymers and copolymers exhibit relatively pressure-independent crystallization and melting observed in both propane and propylene solutions.

Hong, Kunlun [ORNL; Mays, Jimmy [ORNL; Winoto, Winoto [University of Wyoming, Laramie; Radosz, Maciej [University of Wyoming, Laramie

2009-01-01T23:59:59.000Z

67

Assimilation of Propane and Characterization of Propane Monooxygenase from Rhodococcus erythropolis3/89  

Science Journals Connector (OSTI)

The ability of propane-assimilating microorganisms of the genus Rhodococcus...to utilize metabolites of the terminal and subterminal pathways of propane oxidation was studied. Propane monooxygenase of Rhodococcus...

A. K. Kulikova; A. M. Bezborodov

2001-03-01T23:59:59.000Z

68

Antiproton Annihilations in Propane  

Science Journals Connector (OSTI)

An experiment to study the p annihilation process at 1.05 Bev/c was performed with the Lawrence Radiation Laboratory 30-in. propane bubble chamber. It was observed that the K-meson production in annihilation events rises sharply with the increase in energy, namely from 41% for annihilations at or near "rest" to 81%. On the other hand, the pion multiplicity was not observed to increase appreciably with the increase of available energy. We have found a pion multiplicity of 5.00.2. These numbers are discussed in this paper and compared with existing models for the p annihilation process. It is pointed out that with further increase in bombarding energy different models may differ appreciably in the above quantities.We have observed a p-H annihilation cross section of 5110 mb and a p-C annihilation cross section of 36860 mb at a p momentum of 1.05 Bev/c. Crude determinations of the p charge-exchange processwhich turns out to be forward peaked and of p inelastic-scattering events leading to pion production are also discussed.

Sulamith Goldhaber; Gerson Goldhaber; Wilson M. Powell; Rein Silberberg

1961-03-01T23:59:59.000Z

69

Alternative Fuels Data Center: Propane Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Stations to someone by E-mail Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Propane Fueling Stations Photo of a liquefied petroleum gas fueling station. Thousands of liquefied petroleum gas (propane) fueling stations are

70

Liquid Propane Injection Technology Conductive to Today's North...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology Conductive to Today's North American Specification Liquid Propane Injection Technology Conductive to Today's North American Specification Liquid propane injection...

71

Residential propane price decreases slightly decreases slightly  

Gasoline and Diesel Fuel Update (EIA)

7, 2014 Residential propane price decreases slightly The average retail price for propane is 2.38 per gallon, down 3-tenths of a cent from last week, based on the residential...

72

Costs Associated With Propane Vehicle Fueling Infrastructure  

SciTech Connect (OSTI)

This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

Smith, M.; Gonzales, J.

2014-08-01T23:59:59.000Z

73

Residential propane price continues to decrease  

Gasoline and Diesel Fuel Update (EIA)

12, 2014 Residential propane price continues to decrease The average retail price for propane fell to 3.76 per gallon, down 13.4 cents from a week ago, based on the residential...

74

Residential propane price continues to decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0, 2014 Residential propane price decreases The average retail price for propane fell to 3.64 per gallon, down 12.7 cents from a week ago, based on the residential heating fuel...

75

Alternative Fuels Data Center: Propane Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Conversions to someone by E-mail Conversions to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Conversions on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Propane Vehicle Conversions Related Information Conversion Basics Regulations Vehicle conversions provide alternative fuel options beyond what is

76

Liquid Propane Injection Applications | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Liquid propane injection technology meets manufacturingassembly guidelines, maintenancerepair strategy, and regulations, with same functionality, horsepower, and torque as...

77

High-performance Propane Fuel Cells  

Science Journals Connector (OSTI)

... The performance of propane-oxygen cells operating between 150 and 200 C was recently described in detail4.

W. T. GRUBB

1964-02-15T23:59:59.000Z

78

The High-Temperature Oxidation of Propane  

Science Journals Connector (OSTI)

...research-article The High-Temperature Oxidation of Propane J. W. Falconer J. H. Knox Above 400 degrees C propane is oxidized by a two-stage degenerately...of propylene becomes important. While propane still in the main reacts to form propylene...

1959-01-01T23:59:59.000Z

79

Scattering of Slow Neutrons from Propane Gas  

Science Journals Connector (OSTI)

Measurements of the partial differential neutron scattering cross sections for room-temperature propane gas are reported. These measurements were made at incident energies of 0.0101, 0.0254, 0.0736, and 0.102 ev at seven scattering angles between 16.3 and 84.7 using the Materials Testing Reactor phased chopper velocity selector. The data are converted to the scattering-law presentation and compared with three theoretical calculations: (a) The ideal gas, using an effective mass obtained from an average of the mass tensors for the three types of H atoms in propane, gives poor agreement. (b) The Krieger-Nelkin approximation, which includes the effect of zero-point vibrations, gives limited agreement for energy transfer less than 0.5kBT at intermediate momentum transfers. At large momentum transfers where vibrational effects become important it underestimates the cross section. (c) A modification of the Krieger-Nelkin theory that includes the effects of single-quantum transitions from the three lowest vibrational states gives better agreement. The discrepancies still present at large momentum and energy transfers are attributed to an uncertainty in the methyl-group barrier height for the three lowest energy modes, to the harmonic oscillator approximation for these modes, and to the approximate molecular orientation averaging used in the calculation.

K. A. Strong; G. D. Marshall; R. M. Brugger; P. D. Randolph

1962-02-01T23:59:59.000Z

80

GEOTHERMAL FLUID PROPENE AND PROPANE: INDICATORS OF FLUID | Open Energy  

Open Energy Info (EERE)

FLUID PROPENE AND PROPANE: INDICATORS OF FLUID FLUID PROPENE AND PROPANE: INDICATORS OF FLUID Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: GEOTHERMAL FLUID PROPENE AND PROPANE: INDICATORS OF FLUID Details Activities (1) Areas (1) Regions (0) Abstract: The use of fluid inclusion gas analysis propene/propene ratios is investigated. Ratios of these species are affected by geothermal fluid temperature and oxidations state. Our purpose is to determine if analyses of these species in fluid inclusions these species to can be used to interpret fluid type, history, or process. Analyses were performed on drill cuttings at 20ft intervals from four Coso geothermal wells. Two wells are good producers, one has cold-water entrants in the production zone, and the fourth is a non-producer. The ratios show distinct differences between

Note: This page contains sample records for the topic "area transit propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Alternative Fuels Data Center: Propane Fueling Station Locations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Station Locations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Station Locations on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Locations Infrastructure Development

82

Silane-propane ignitor/burner  

DOE Patents [OSTI]

A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

Hill, R.W.; Skinner, D.F. Jr.; Thorsness, C.B.

1983-05-26T23:59:59.000Z

83

Silane-propane ignitor/burner  

DOE Patents [OSTI]

A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

Hill, Richard W. (Livermore, CA); Skinner, Dewey F. (Livermore, CA); Thorsness, Charles B. (Livermore, CA)

1985-01-01T23:59:59.000Z

84

Nationwide: Southeast Propane Autogas Development Program Brings...  

Energy Savers [EERE]

future expansion of propane vehicles. Project participants will reduce 3.9 million gasoline gallon equivalents and 7.8 million pounds of greenhouse gas emissions annually....

85

Oxidation of Propane by Doped Nickel Oxides  

Science Journals Connector (OSTI)

... present study, however, indicate that in the absence of excess oxygen, direct oxidation of propane by the oxide lattice can occur.

D. W. McKEE

1964-04-11T23:59:59.000Z

86

Propane earth materials drying techniques and technologies.  

E-Print Network [OSTI]

??A feasibility study for the use of propane as a subbase drying technique. Michael Blahut (1) Dr. Vernon Schaefer (2) Dr. Chris Williams (3) The (more)

Blahut, Michael Edward

2010-01-01T23:59:59.000Z

87

Comparison of Hydrogen and Propane Fuels (Brochure)  

SciTech Connect (OSTI)

Factsheet comparing the chemical, physical, and thermal properties of hydrogen and propane, designed to facilitate an understanding of the differences and similarites of the two fuels

Not Available

2008-10-01T23:59:59.000Z

88

Comparison of Hydrogen and Propane Fuels (Brochure)  

SciTech Connect (OSTI)

Factsheet comparing the chemical, physical, and thermal properties of hydrogen and propane, designed to facilitate an understanding of the differences and similarites of the two fuels.

Not Available

2009-04-01T23:59:59.000Z

89

Experimental Study of Propane-Fueled Pulsed Detonation Rocket Frank K. Lu,* Jason M. Meyers,  

E-Print Network [OSTI]

1 Experimental Study of Propane-Fueled Pulsed Detonation Rocket Frank K. Lu,* Jason M. Meyers detonations into aero-propulsive devices is the transition of deflagration and weak deto- nation into CJ detonation. The longer this transition, the longer the physical length of the engine must be to facilitate

Texas at Arlington, University of

90

Experimental study on transmission of an overdriven detonation wave from propane/oxygen to propane/air  

SciTech Connect (OSTI)

Two sets of experiments were performed to achieve a strong overdriven state in a weaker mixture by propagating an overdriven detonation wave via a deflagration-to-detonation transition (DDT) process. First, preliminary experiments with a propane/oxygen mixture were used to evaluate the attenuation of the overdriven detonation wave in the DDT process. Next, experiments were performed wherein a propane/oxygen mixture was separated from a propane/air mixture by a thin diaphragm to observe the transmission of an overdriven detonation wave. Based on the characteristic relations, a simple wave intersection model was used to calculate the state of the transmitted detonation wave. The results showed that a rarefaction effect must be included to ensure that there is no overestimate of the post-transmission wave properties when the incident detonation wave is overdriven. The strength of the incident overdriven detonation wave plays an important role in the wave transmission process. The experimental results showed that a transmitted overdriven detonation wave occurs instantaneously with a strong incident overdriven detonation wave. The near-CJ state of the incident wave leads to a transmitted shock wave, and then the transition to the overdriven detonation wave occurs downstream. The attenuation process for the overdriven detonation wave decaying to a near-CJ state occurs in all tests. After the attenuation process, an unstable detonation wave was observed in most tests. This may be attributed to the increase in the cell width in the attenuation process that exceeds the detonability cell width limit. (author)

Li, J.; Lai, W.H. [National Cheng Kung University, Institute of Aeronautics and Astronautics, Tainan (China); Chung, K. [National Cheng Kung University, Aerospace Science and Technology Research Center, Tainan (China); Lu, F.K. [University of Texas at Arlington, Mechanical and Aerospace Engineering Department, Aerodynamics Research Center, TX 76019 (United States)

2008-08-15T23:59:59.000Z

91

Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) License  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Liquefied Petroleum Liquefied Petroleum Gas (Propane) License to someone by E-mail Share Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) License on Facebook Tweet about Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) License on Twitter Bookmark Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) License on Google Bookmark Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) License on Delicious Rank Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) License on Digg Find More places to share Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Liquefied Petroleum Gas (Propane) License

92

Southeast Propane AutoGas Development Program | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Southeast Propane AutoGas Development Program Southeast Propane AutoGas Development Program 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit...

93

Southeast Propane AutoGas Development Program | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

D.C. tiarravt065christopher2010p.pdf More Documents & Publications Southeast Propane AutoGas Development Program Southeast Propane AutoGas Development Program Technology...

94

Texas Propane Vehicle Pilot Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Texas Propane Vehicle Pilot Project Texas Propane Vehicle Pilot Project 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

95

Southeast Propane AutoGas Development Program | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Evaluation arravt065tijenkins2011p.pdf More Documents & Publications Southeast Propane AutoGas Development Program Southeast Propane AutoGas Development Program State of...

96

Alternative Fuels Data Center: Propane Production and Distribution  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Production and Production and Distribution to someone by E-mail Share Alternative Fuels Data Center: Propane Production and Distribution on Facebook Tweet about Alternative Fuels Data Center: Propane Production and Distribution on Twitter Bookmark Alternative Fuels Data Center: Propane Production and Distribution on Google Bookmark Alternative Fuels Data Center: Propane Production and Distribution on Delicious Rank Alternative Fuels Data Center: Propane Production and Distribution on Digg Find More places to share Alternative Fuels Data Center: Propane Production and Distribution on AddThis.com... More in this section... Propane Basics Production & Distribution Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Propane Production and Distribution

97

The Properties of Liquid Ethane and Propane  

Science Journals Connector (OSTI)

... of Liebig's Annalen. Owing to the greater ease with which it undergoes liquefaction, propane was first investigated. The hydrocarbon was obtained in a state of purity by means ... transferred to a gas-holder over water In order to determine the boiling-point of propane, the purified gas was first condensed to the liquid state in a U-tube ...

A. E. TUTTON

1894-11-15T23:59:59.000Z

98

Alternative Fuels Data Center: Propane Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane » Laws & Incentives Propane » Laws & Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Propane Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Propane Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Propane Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Propane Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Propane Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Propane Laws and Incentives on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Laws & Incentives Propane Laws and Incentives

99

Heating Oil and Propane Update  

Gasoline and Diesel Fuel Update (EIA)

SHOPP Financial Forms - for State Energy Officials SHOPP Financial Forms - for State Energy Officials The Federal forms below are required for State Energy Officials participating in the State Heating Oil and Propane Program (SHOPP) to execute their cooperative agreements with the U. S. Energy Information Administration. The Application for Federal Assistance, Form SF-424, is required to be submitted annually no later than May 15th in order for the applicant to receive funds for the upcoming season. This form consists of three parts: SF-424 - general funding information SF-424A - annual budget SF-424B - assurance pages The Federal Financial Report, Form SF-425, collects basic data on federal and recipient expenditures related to the SHOPP grant. This form should be submitted by August 1st of each year after the end of the season.

100

Heating Oil and Propane Update  

Gasoline and Diesel Fuel Update (EIA)

Holiday Release Schedule Holiday Release Schedule The Heating Oil and Propane Update is produced during the winter heating season, which extends from October through March of each year. The standard release time and day of the week will be at 1:00 p. m. (Eastern time) on Wednesdays with the following exceptions. All times are Eastern. Data for: Alternate Release Date Release Day Release Time Holiday October 14, 2013 October 17, 2013 Thursday Cancelled Columbus/EIA Closed November 11, 2013 November 14, 2013 Thursday 1:00 p.m. Veterans December 23, 2013 December 27, 2013 Friday 1:00 p.m. Christmas December 30, 2013 January 3, 2014 Friday 1:00 p.m. New Year's January 20, 2014 January 23, 2014 Thursday 1:00 p.m. Martin Luther King Jr. February 17, 2014 February 20, 2014 Thursday 1:00 p.m. President's

Note: This page contains sample records for the topic "area transit propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

DART's (Dallas Area Rapid Transit) LNG Bus Fleet Start-Up Experience (Alternative Fuel Transit Buses Brochure)  

SciTech Connect (OSTI)

This report, based on interviews and site visits conducted in October 1999, describes the start-up activities of the DART liquefied natural gas program, identifying problem areas, highlighting successes, and capturing the lessons learned in DART's ongoing efforts to remain at the forefront of the transit industry.

Battelle

2000-06-30T23:59:59.000Z

102

Propane vehicles : status, challenges, and opportunities.  

SciTech Connect (OSTI)

Propane as an auto fuel has a high octane value and has key properties required for spark-ignited internal combustion engines. To operate a vehicle on propane as either a dedicated fuel or bi-fuel (i.e., switching between gasoline and propane) vehicle, only a few modifications must be made to the engine. Until recently propane vehicles have commonly used a vapor pressure system that was somewhat similar to a carburetion system, wherein the propane would be vaporized and mixed with combustion air in the intake plenum of the engine. This leads to lower efficiency as more air, rather than fuel, is inducted into the cylinder for combustion (Myers 2009). A newer liquid injection system has become available that injects propane directly into the cylinder, resulting in no mixing penalty because air is not diluted with the gaseous fuel in the intake manifold. Use of a direct propane injection system will improve engine efficiency (Gupta 2009). Other systems include the sequential multi-port fuel injection system and a bi-fuel 'hybrid' sequential propane injection system. Carbureted systems remain in use but mostly for non-road applications. In the United States a closed-loop system is used in after-market conversions. This system incorporates an electronic sensor that provides constant feedback to the fuel controller to allow it to measure precisely the proper air/fuel ratio. A complete conversion system includes a fuel controller, pressure regulator valves, fuel injectors, electronics, fuel tank, and software. A slight power loss is expected in conversion to a vapor pressure system, but power can still be optimized with vehicle modifications of such items as the air/fuel mixture and compression ratios. Cold start issues are eliminated for vapor pressure systems since the air/fuel mixture is gaseous. In light-duty propane vehicles, the fuel tank is typically mounted in the trunk; for medium- and heavy-duty vans and trucks, the tank is located under the body of the vehicle. Propane tanks add weight to a vehicle and can slightly increase the consumption of fuel. On a gallon-to-gallon basis, the energy content of propane is 73% that of gasoline, thus requiring more propane fuel to travel an equivalent distance, even in an optimized engine (EERE 2009b).

Rood Werpy, M.; Burnham, A.; Bertram, K.; Energy Systems

2010-06-17T23:59:59.000Z

103

Alternative Fuels Data Center: Michigan Converts Vehicles to Propane,  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Michigan Converts Michigan Converts Vehicles to Propane, Reducing Emissions to someone by E-mail Share Alternative Fuels Data Center: Michigan Converts Vehicles to Propane, Reducing Emissions on Facebook Tweet about Alternative Fuels Data Center: Michigan Converts Vehicles to Propane, Reducing Emissions on Twitter Bookmark Alternative Fuels Data Center: Michigan Converts Vehicles to Propane, Reducing Emissions on Google Bookmark Alternative Fuels Data Center: Michigan Converts Vehicles to Propane, Reducing Emissions on Delicious Rank Alternative Fuels Data Center: Michigan Converts Vehicles to Propane, Reducing Emissions on Digg Find More places to share Alternative Fuels Data Center: Michigan Converts Vehicles to Propane, Reducing Emissions on AddThis.com... April 27, 2013

104

Alternative Fuels Data Center: Commercial Mower Rebate - Minnesota Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Commercial Mower Commercial Mower Rebate - Minnesota Propane Association (MPA) to someone by E-mail Share Alternative Fuels Data Center: Commercial Mower Rebate - Minnesota Propane Association (MPA) on Facebook Tweet about Alternative Fuels Data Center: Commercial Mower Rebate - Minnesota Propane Association (MPA) on Twitter Bookmark Alternative Fuels Data Center: Commercial Mower Rebate - Minnesota Propane Association (MPA) on Google Bookmark Alternative Fuels Data Center: Commercial Mower Rebate - Minnesota Propane Association (MPA) on Delicious Rank Alternative Fuels Data Center: Commercial Mower Rebate - Minnesota Propane Association (MPA) on Digg Find More places to share Alternative Fuels Data Center: Commercial Mower Rebate - Minnesota Propane Association (MPA) on AddThis.com...

105

Alternative Fuels Data Center: Propane Fueling Infrastructure Development  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Infrastructure Development to someone by E-mail Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Infrastructure Development on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives

106

Alternative Fuels Data Center: Propane Excise Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane Excise Tax Propane Excise Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Propane Excise Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Propane Excise Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Propane Excise Tax Exemption on Google Bookmark Alternative Fuels Data Center: Propane Excise Tax Exemption on Delicious Rank Alternative Fuels Data Center: Propane Excise Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Propane Excise Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Excise Tax Exemption Propane is exempt from the state excise tax when it is used to operate motor vehicles on public highways provided that vehicles are equipped with

107

Alternative Fuels Data Center: Propane Safety and Liability  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane Safety and Propane Safety and Liability to someone by E-mail Share Alternative Fuels Data Center: Propane Safety and Liability on Facebook Tweet about Alternative Fuels Data Center: Propane Safety and Liability on Twitter Bookmark Alternative Fuels Data Center: Propane Safety and Liability on Google Bookmark Alternative Fuels Data Center: Propane Safety and Liability on Delicious Rank Alternative Fuels Data Center: Propane Safety and Liability on Digg Find More places to share Alternative Fuels Data Center: Propane Safety and Liability on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Safety and Liability An individual involved in installing liquefied petroleum gas (propane) systems or manufacturing, distributing, selling, storing, or transporting

108

Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane Buses Shuttle Propane Buses Shuttle Visitors in Maine to someone by E-mail Share Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Facebook Tweet about Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Twitter Bookmark Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Google Bookmark Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Delicious Rank Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Digg Find More places to share Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on AddThis.com... Oct. 13, 2012 Propane Buses Shuttle Visitors in Maine W atch how travelers in Bar Harbor, Maine, rely on propane-powered shuttle buses. For information about this project, contact Maine Clean Communities.

109

Alternative Fuels Data Center: Reduced Propane Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Reduced Propane Fuel Reduced Propane Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Reduced Propane Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Reduced Propane Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Reduced Propane Fuel Tax on Google Bookmark Alternative Fuels Data Center: Reduced Propane Fuel Tax on Delicious Rank Alternative Fuels Data Center: Reduced Propane Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Reduced Propane Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Reduced Propane Fuel Tax The tax imposed on liquefied petroleum gas, or propane, used to operate a motor vehicle is equal to half the tax paid on the sale or use of gasoline,

110

Alternative Fuels Data Center: Propane Buses Save Money for Virginia  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane Buses Save Propane Buses Save Money for Virginia Schools to someone by E-mail Share Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Facebook Tweet about Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Twitter Bookmark Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Google Bookmark Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Delicious Rank Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Digg Find More places to share Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on AddThis.com... Feb. 25, 2010 Propane Buses Save Money for Virginia Schools F ind out how Gloucester County Schools' propane buses are quieter and cost

111

Alternative Fuels Data Center: Propane and Natural Gas Safety  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane and Natural Propane and Natural Gas Safety to someone by E-mail Share Alternative Fuels Data Center: Propane and Natural Gas Safety on Facebook Tweet about Alternative Fuels Data Center: Propane and Natural Gas Safety on Twitter Bookmark Alternative Fuels Data Center: Propane and Natural Gas Safety on Google Bookmark Alternative Fuels Data Center: Propane and Natural Gas Safety on Delicious Rank Alternative Fuels Data Center: Propane and Natural Gas Safety on Digg Find More places to share Alternative Fuels Data Center: Propane and Natural Gas Safety on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane and Natural Gas Safety The Railroad Commission of Texas regulates the safety of the natural gas and propane industries. (Reference Texas Statutes, Natural Resources Code

112

Carlsbad Area Office Waste Isolation Division Transition Plan  

SciTech Connect (OSTI)

In October 1993, the US Department of Energy (DOE) announced the Revised Test Strategy for the Waste Isolation Pilot Plant (WIPP). The new strategy involves conducting additional radioactive waste tests in laboratories instead of the underground at the WIPP. It will likely result in an acceleration of regulatory compliance activities needed for a disposal decision, which could result in permanent disposal of transuranic waste earlier than the previous test program and regulatory compliance strategy. The Revised Test Strategy changes the near-term program activities for the WIPP site. The revised strategy deletes radioactive waste tests at the WIPP, prior to completing all activities for initiating disposal operations, and consequently the need to maintain readiness to receive waste in the near-term. However, the new strategy enables the DOE to pursue an earlier disposal decision, supported by an accelerated regulatory compliance strategy. With the new strategy, the WIPP must prepare for disposal operations in early 1998. This Westinghouse Waste Isolation Division (WID) Transition Plan addresses the WID programmatic, budgetary, and personnel changes to conform to the Revised Test Strategy, and to support the accelerated compliance strategy and earlier disposal operations at the WIPP.

Not Available

1994-01-01T23:59:59.000Z

113

Esters of propane-1,3-diboric and propane-1,3-dithioboric acids  

Science Journals Connector (OSTI)

The polymer formed by hydroborating boron-trialkyl reacts with methyl borate, giving the tetramethyl ester of propane-1,3-diboric acid.

B. M. Mikhailov; V. F. Pozdnev

1962-10-01T23:59:59.000Z

114

Propane: A Mid-heating Season Assessment  

Gasoline and Diesel Fuel Update (EIA)

9, 2001 9, 2001 Propane - A Mid-Heating Season Assessment by David Hinton and Alice Lippert, Petroleum Division, Office of Oil and Gas, Energy Information Administration In early October 2000, the Energy Information Administration (EIA) forecast that heating fuel markets would be expected to start the season with much higher prices and lower inventories than in recent years. While this assessment was true for both the heating oil and natural gas markets, propane markets actually began the season with adequate supplies but with high prices. Since EIA's forecast, propane inventories have plunged nearly 20 million barrels from their peak during the first half of the 2000-01 heating season while propane prices have continued to soar even higher than expected during this same period. This report will analyze some

115

U.S. Propane Total Stocks  

Gasoline and Diesel Fuel Update (EIA)

9 9 Notes: U.S. inventories of propane benefited from a late pre-season build that pushed inventories to over 65 million barrels by early November 2000, the second highest peak pre-heating season level since 1986. Although propane inventories were expected to remain within the normal range for the duration of the 2000-01 heating season, cold weather in November and December, along with recently high natural gas prices that discouraged propane production from gas processing, resulted in stocks falling below the normal range by the end of December. However, if the weather remains seasonally normal, and the recent decline in natural gas prices holds, EIA expects the propane inventory drawdown to slow. This is reflected in the data for January 19, which showed a draw of only 2.1 million barrels, compared to more than twice that

116

Propane Vehicles: Status, Challenges, and Opportunities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Propane Vehicles: Propane Vehicles: Status, Challenges, and Opportunities ANL/ESD/10-2 Energy Systems Division Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62

117

Hydrogen Safety Issues Compared to Safety Issues with Methane and Propane  

E-Print Network [OSTI]

Issues with Methane and Propane Michael A. Green LawrenceSAFETY ISSUES WITH METHANE AND PROPANE M. A. Green Lawrencehydrogen. Methane and propane are commonly used by ordinary

Green, Michael A.

2005-01-01T23:59:59.000Z

118

Alternative Fuels Data Center: Missouri Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Missouri Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Missouri Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Missouri Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Missouri Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Missouri Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Missouri Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Missouri Laws and Incentives for Propane (LPG)

119

Alternative Fuels Data Center: Colorado Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Colorado Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Colorado Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Colorado Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Colorado Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Colorado Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Colorado Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Colorado Laws and Incentives for Propane (LPG)

120

Alternative Fuels Data Center: Propane Powers Airport Shuttles in New  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane Powers Airport Propane Powers Airport Shuttles in New Orleans to someone by E-mail Share Alternative Fuels Data Center: Propane Powers Airport Shuttles in New Orleans on Facebook Tweet about Alternative Fuels Data Center: Propane Powers Airport Shuttles in New Orleans on Twitter Bookmark Alternative Fuels Data Center: Propane Powers Airport Shuttles in New Orleans on Google Bookmark Alternative Fuels Data Center: Propane Powers Airport Shuttles in New Orleans on Delicious Rank Alternative Fuels Data Center: Propane Powers Airport Shuttles in New Orleans on Digg Find More places to share Alternative Fuels Data Center: Propane Powers Airport Shuttles in New Orleans on AddThis.com... Feb. 19, 2011 Propane Powers Airport Shuttles in New Orleans D iscover how the New Orleans airport displaced over 139,000 gallons of

Note: This page contains sample records for the topic "area transit propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Alternative Fuels Data Center: Arizona Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Arizona Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Arizona Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Arizona Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Arizona Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Arizona Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Arizona Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Arizona Laws and Incentives for Propane (LPG)

122

Alternative Fuels Data Center: Alabama Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Alabama Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Alabama Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Alabama Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Alabama Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alabama Laws and Incentives for Propane (LPG)

123

Alternative Fuels Data Center: Georgia Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Georgia Laws and Incentives for Propane (LPG)

124

Alternative Fuels Data Center: Tennessee Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Tennessee Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Tennessee Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Tennessee Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Tennessee Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Tennessee Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Tennessee Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Tennessee Laws and Incentives for Propane (LPG)

125

Alternative Fuels Data Center: Washington Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Washington Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Washington Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Washington Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Washington Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Washington Laws and Incentives for Propane (LPG)

126

Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kentucky Laws and Incentives for Propane (LPG)

127

Alternative Fuels Data Center: Propane Education and Research Program  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane Education and Propane Education and Research Program to someone by E-mail Share Alternative Fuels Data Center: Propane Education and Research Program on Facebook Tweet about Alternative Fuels Data Center: Propane Education and Research Program on Twitter Bookmark Alternative Fuels Data Center: Propane Education and Research Program on Google Bookmark Alternative Fuels Data Center: Propane Education and Research Program on Delicious Rank Alternative Fuels Data Center: Propane Education and Research Program on Digg Find More places to share Alternative Fuels Data Center: Propane Education and Research Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Education and Research Program The State Liquefied Compressed Gas Board (Board), operated through the

128

Alternative Fuels Data Center: Oklahoma Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Oklahoma Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Oklahoma Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Oklahoma Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Oklahoma Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Oklahoma Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Oklahoma Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Oklahoma Laws and Incentives for Propane (LPG)

129

Alternative Fuels Data Center: California Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: California Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: California Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: California Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: California Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: California Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: California Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type California Laws and Incentives for Propane (LPG)

130

Alternative Fuels Data Center: Michigan Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Michigan Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Michigan Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Michigan Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Michigan Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Michigan Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Michigan Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Michigan Laws and Incentives for Propane (LPG)

131

Alternative Fuels Data Center: Louisiana Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Louisiana Laws and Incentives for Propane (LPG)

132

Alternative Fuels Data Center: Connecticut Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Connecticut Laws and Incentives for Propane (LPG)

133

Alternative Fuels Data Center: Propane Mowers Help National Park Cut  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane Mowers Help Propane Mowers Help National Park Cut Emissions to someone by E-mail Share Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Facebook Tweet about Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Twitter Bookmark Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Google Bookmark Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Delicious Rank Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Digg Find More places to share Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on AddThis.com... Aug. 8, 2013 Propane Mowers Help National Park Cut Emissions " We're very proud to be an example of what the National Park Service can

134

Alternative Fuels Data Center: Illinois Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Illinois Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Illinois Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Illinois Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Illinois Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Illinois Laws and Incentives for Propane (LPG)

135

Alternative Fuels Data Center: Nebraska Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Nebraska Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Nebraska Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Nebraska Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Nebraska Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Nebraska Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Nebraska Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Nebraska Laws and Incentives for Propane (LPG)

136

Alternative Fuels Data Center: Minnesota Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Minnesota Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Minnesota Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Minnesota Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Minnesota Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Minnesota Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Minnesota Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Minnesota Laws and Incentives for Propane (LPG)

137

Alternative Fuels Data Center: Wisconsin Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Wisconsin Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Wisconsin Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wisconsin Laws and Incentives for Propane (LPG)

138

Alternative Fuels Data Center: Montana Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Montana Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Montana Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Montana Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Montana Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Montana Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Montana Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Montana Laws and Incentives for Propane (LPG)

139

Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Pennsylvania Laws and Incentives for Propane (LPG)

140

Alternative Fuels Data Center: Indiana Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Indiana Laws and Incentives for Propane (LPG)

Note: This page contains sample records for the topic "area transit propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Alternative Fuels Data Center: Florida Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Florida Laws and Incentives for Propane (LPG)

142

Alternative Fuels Data Center: Arkansas Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Arkansas Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Arkansas Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Arkansas Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Arkansas Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Arkansas Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Arkansas Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Arkansas Laws and Incentives for Propane (LPG)

143

Alternative Fuels Data Center: Delaware Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for Propane (LPG)

144

Alternative Fuels Data Center: Mississippi Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Mississippi Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Mississippi Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Mississippi Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Mississippi Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Mississippi Laws and Incentives for Propane (LPG)

145

Alternative Fuels Data Center: Vermont Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for Propane (LPG)

146

Alternative Fuels Data Center: Maryland Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Maryland Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Maryland Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Maryland Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Maryland Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Maryland Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Maryland Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maryland Laws and Incentives for Propane (LPG)

147

Alternative Fuels Data Center: Federal Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Federal Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Federal Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Federal Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Federal Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Federal Laws and Incentives for Propane (LPG)

148

Alternative Fuels Data Center: Virginia Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Virginia Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Virginia Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Virginia Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Virginia Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Virginia Laws and Incentives for Propane (LPG)

149

Alternative Fuels Data Center: Propane Board and Dealer Requirements  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane Board and Propane Board and Dealer Requirements to someone by E-mail Share Alternative Fuels Data Center: Propane Board and Dealer Requirements on Facebook Tweet about Alternative Fuels Data Center: Propane Board and Dealer Requirements on Twitter Bookmark Alternative Fuels Data Center: Propane Board and Dealer Requirements on Google Bookmark Alternative Fuels Data Center: Propane Board and Dealer Requirements on Delicious Rank Alternative Fuels Data Center: Propane Board and Dealer Requirements on Digg Find More places to share Alternative Fuels Data Center: Propane Board and Dealer Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Board and Dealer Requirements The Idaho Liquefied Petroleum Gas (LPG) Public Safety Act established the

150

Propane Prices Influenced by Crude Oil and Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Propane prices have been high this year for several reasons. Propane usually follows crude oil prices more closely than natural gas prices. As crude oil prices rose beginning in 1999, propane has followed. In addition, some early cold weather this year put extra pressure on prices. However, more recently, the highly unusual surge in natural gas prices affected propane supply and drove propane prices up. Propane comes from two sources of supply: refineries and natural gas processing plants. The very high natural gas prices made it more economic for refineries to use the propane they normally produce and sell than to buy natural gas. The gas processing plants found it more economic to leave propane in the natural gas streams than to extract it for sale separately.

151

Propane-Fueled Vehicle Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Propane-Fueled Vehicle Basics Propane-Fueled Vehicle Basics Propane-Fueled Vehicle Basics August 20, 2013 - 9:16am Addthis There are more than 270,000 on-road propane vehicles in the United States and more than 10 million worldwide. Many are used in fleets, including light- and heavy-duty trucks, buses, taxicabs, police cars, and rental and delivery vehicles. Compared with vehicles fueled with conventional diesel and gasoline, propane vehicles can produce significantly fewer harmful emissions. The availability of new light-duty original equipment manufacturer propane vehicles has declined in recent years. However, certified installers can economically and reliably retrofit many light-duty vehicles for propane operation. Propane engines and fueling systems are also available for heavy-duty vehicles such as school buses and street sweepers.

152

Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives -  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane Infrastructure Propane Infrastructure and Fuel Incentives - SchagrinGAS to someone by E-mail Share Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - SchagrinGAS on Facebook Tweet about Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - SchagrinGAS on Twitter Bookmark Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - SchagrinGAS on Google Bookmark Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - SchagrinGAS on Delicious Rank Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - SchagrinGAS on Digg Find More places to share Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - SchagrinGAS on AddThis.com... More in this section...

153

Alternative Fuels Data Center: Propane Self-Service Fueling Station  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane Self-Service Propane Self-Service Fueling Station Regulations to someone by E-mail Share Alternative Fuels Data Center: Propane Self-Service Fueling Station Regulations on Facebook Tweet about Alternative Fuels Data Center: Propane Self-Service Fueling Station Regulations on Twitter Bookmark Alternative Fuels Data Center: Propane Self-Service Fueling Station Regulations on Google Bookmark Alternative Fuels Data Center: Propane Self-Service Fueling Station Regulations on Delicious Rank Alternative Fuels Data Center: Propane Self-Service Fueling Station Regulations on Digg Find More places to share Alternative Fuels Data Center: Propane Self-Service Fueling Station Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

154

Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Publications » Technology Bulletins Publications » Technology Bulletins Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory to someone by E-mail Share Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Facebook Tweet about Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Twitter Bookmark Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Google Bookmark Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Delicious Rank Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Digg Find More places to share Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on AddThis.com... Propane Tank Overfill Safety Advisory

155

Alternative Fuels Data Center: Natural Gas and Propane Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Tax to someone by E-mail Tax to someone by E-mail Share Alternative Fuels Data Center: Natural Gas and Propane Tax on Facebook Tweet about Alternative Fuels Data Center: Natural Gas and Propane Tax on Twitter Bookmark Alternative Fuels Data Center: Natural Gas and Propane Tax on Google Bookmark Alternative Fuels Data Center: Natural Gas and Propane Tax on Delicious Rank Alternative Fuels Data Center: Natural Gas and Propane Tax on Digg Find More places to share Alternative Fuels Data Center: Natural Gas and Propane Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas and Propane Tax Effective January 1, 2019, liquefied petroleum gas (propane), compressed natural gas, and liquefied natural gas will be subject to an excise tax at

156

Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Tennessee Reduces Tennessee Reduces Pollution With Propane Hybrid Trolleys to someone by E-mail Share Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane Hybrid Trolleys on Facebook Tweet about Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane Hybrid Trolleys on Twitter Bookmark Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane Hybrid Trolleys on Google Bookmark Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane Hybrid Trolleys on Delicious Rank Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane Hybrid Trolleys on Digg Find More places to share Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane Hybrid Trolleys on AddThis.com... Dec. 11, 2010 Tennessee Reduces Pollution With Propane Hybrid Trolleys

157

Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Natural Gas and Natural Gas and Propane Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on Google Bookmark Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on Delicious Rank Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas and Propane Fuel Tax Any individual using or selling compressed natural gas (CNG), liquefied

158

Microsoft PowerPoint - Propane_Briefing_140312.pptx  

U.S. Energy Information Administration (EIA) Indexed Site

Northeast South Midwest West U.S. total 116 million homes natural gas propane heating oil electricity wood keroseneotherno heating propane 4.5% 7% Of all homes heated by...

159

Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane and Compressed Propane and Compressed Natural Gas (CNG) Device Fee to someone by E-mail Share Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Facebook Tweet about Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Twitter Bookmark Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Google Bookmark Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Delicious Rank Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Digg Find More places to share Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

160

Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane Buses Help Propane Buses Help Minnesota Schools Carve out Greener Future to someone by E-mail Share Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on Facebook Tweet about Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on Twitter Bookmark Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on Google Bookmark Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on Delicious Rank Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on Digg Find More places to share Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on AddThis.com...

Note: This page contains sample records for the topic "area transit propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renzenberger Inc Saves Renzenberger Inc Saves Money With Propane Vans to someone by E-mail Share Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane Vans on Facebook Tweet about Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane Vans on Twitter Bookmark Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane Vans on Google Bookmark Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane Vans on Delicious Rank Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane Vans on Digg Find More places to share Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane Vans on AddThis.com... June 22, 2012 Renzenberger Inc Saves Money With Propane Vans L earn how Renzenberger Incorporated fuels its road service vans with

162

Liquid Propane Injection Technology Conductive to Today's North American Specification  

Broader source: Energy.gov [DOE]

Liquid propane injection technology can offer the same power, torque, and environmental vehicle performance while reducing imports of foreign oil

163

State Heating Oil & Propane Program. Final report 1997/98 heating season  

SciTech Connect (OSTI)

The following is a summary report of the New Hampshire Governor`s Office of Energy and Community Services (ECS) participation in the State Heating Oil and Propane Program (SHOPP) for the 1997/98 heating season. SHOPP is a cooperative effort, linking energy offices in East Coast and Midwest states, with the Department of Energy (DOE), Energy Information Administration (EIA) for the purpose of collecting retail price data for heating oil and propane. The program is funded by the participating state with a matching grant from DOE. SHOPP was initiated in response to congressional inquires into supply difficulties and price spikes of heating oil and propane associated with the winter of 1989/90. This is important to New Hampshire because heating oil controls over 55% of the residential heating market statewide. Propane controls 10% of the heating market statewide and is widely used for water heating and cooking in areas of the state where natural gas is not available. Lower installation cost, convenience, lower operating costs compared to electricity, and its perception as a clean heating fuel have all worked to increase the popularity of propane in New Hampshire and should continue to do so in the future. Any disruption in supply of these heating fuels to New Hampshire could cause prices to skyrocket and leave many residents in the cold.

Hunton, G.

1998-06-01T23:59:59.000Z

164

Alternative Fuel Tool Kit How to Implement: Propane  

E-Print Network [OSTI]

, colorless gas that is a byproduct of natural gas production and crude oil refining. Propane autogas What is Liquefied Petroleum Gas? Liquefied petroleum gas (LPG) is commonly referred to as propane energy storage, propane is stored as a liquid in a pressurized tank onboard the vehicle, typically at 100

165

This Week In Petroleum Propane Section  

Gasoline and Diesel Fuel Update (EIA)

and Wholesale Propane Prices (Dollars per Gallon) and Wholesale Propane Prices (Dollars per Gallon) Residential Propane Prices Petroleum Data Tables more data Note: Due to updated weighting methodology, national and regional residential heating oil and propane prices from October 2009 to March 2013 have been revised since they were first published. We have created an excel file that shows the differences between the original and revised published data for your convenience. Most Recent Year Ago 11/04/13 11/11/13 11/18/13 11/25/13 12/02/13 12/09/13 12/16/13 12/17/12 Average 2.450 2.482 2.506 2.542 2.566 2.621 2.712 2.243 East Coast (PADD 1) 3.044 3.073 3.090 3.141 3.165 3.246 3.315 2.930 New England (PADD 1A) 3.033 3.047 3.064 3.121 3.172 3.257 3.314 3.063 Central Atlantic (PADD 1B) 3.095 3.122 3.145 3.204 3.213 3.307

166

Portland Public School Children Move with Propane  

SciTech Connect (OSTI)

This 2-page Clean Cities fact sheet describes the use of propane as a fuel source for Portland Public Schools' fleet of buses. It includes information on the history of the program, along with contact information for the local Clean Cities Coordinator and Portland Public Schools.

Not Available

2004-04-01T23:59:59.000Z

167

Alternative Fuels Data Center: Virginia Converts Vehicles to Propane in  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Virginia Converts Virginia Converts Vehicles to Propane in Spotsylvania County to someone by E-mail Share Alternative Fuels Data Center: Virginia Converts Vehicles to Propane in Spotsylvania County on Facebook Tweet about Alternative Fuels Data Center: Virginia Converts Vehicles to Propane in Spotsylvania County on Twitter Bookmark Alternative Fuels Data Center: Virginia Converts Vehicles to Propane in Spotsylvania County on Google Bookmark Alternative Fuels Data Center: Virginia Converts Vehicles to Propane in Spotsylvania County on Delicious Rank Alternative Fuels Data Center: Virginia Converts Vehicles to Propane in Spotsylvania County on Digg Find More places to share Alternative Fuels Data Center: Virginia Converts Vehicles to Propane in Spotsylvania County on AddThis.com...

168

Alternative Fuels Data Center: Natural Gas and Propane Retailer License  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Retailer License to someone by E-mail Retailer License to someone by E-mail Share Alternative Fuels Data Center: Natural Gas and Propane Retailer License on Facebook Tweet about Alternative Fuels Data Center: Natural Gas and Propane Retailer License on Twitter Bookmark Alternative Fuels Data Center: Natural Gas and Propane Retailer License on Google Bookmark Alternative Fuels Data Center: Natural Gas and Propane Retailer License on Delicious Rank Alternative Fuels Data Center: Natural Gas and Propane Retailer License on Digg Find More places to share Alternative Fuels Data Center: Natural Gas and Propane Retailer License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas and Propane Retailer License Compressed natural gas, liquefied natural gas, or liquefied petroleum gas

169

Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Compressed Natural Gas Compressed Natural Gas (CNG) and Propane Deregulation to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on AddThis.com... More in this section... Federal State Advanced Search

170

Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicle Vehicle (NGV) and Propane Vehicle Rebates to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Propane Vehicle Rebates on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Propane Vehicle Rebates on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Propane Vehicle Rebates on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Propane Vehicle Rebates on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Propane Vehicle Rebates on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Propane Vehicle Rebates on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

171

Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Compressed Natural Gas Compressed Natural Gas (CNG) and Propane Regulatory Authority to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on AddThis.com...

172

Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) and  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Liquefied Petroleum Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity to someone by E-mail Share Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity on Facebook Tweet about Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity on Twitter Bookmark Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity on Google Bookmark Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity on Delicious Rank Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity on Digg Find More places to share Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity on

173

Alternative Fuels Data Center: Natural Gas and Propane Reports  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Reports to someone by E-mail Reports to someone by E-mail Share Alternative Fuels Data Center: Natural Gas and Propane Reports on Facebook Tweet about Alternative Fuels Data Center: Natural Gas and Propane Reports on Twitter Bookmark Alternative Fuels Data Center: Natural Gas and Propane Reports on Google Bookmark Alternative Fuels Data Center: Natural Gas and Propane Reports on Delicious Rank Alternative Fuels Data Center: Natural Gas and Propane Reports on Digg Find More places to share Alternative Fuels Data Center: Natural Gas and Propane Reports on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas and Propane Reports The Florida Office of Program Policy Analysis and Government Accountability (Office) must complete a report that analyzes the taxation and use of

174

Different behaviors of PdAu/C catalysts in electrooxidation of propane-1,3-diol and propane-1,2-diol  

Science Journals Connector (OSTI)

The different behaviors of PdAu/C catalysts in the electrocatalytic oxidation of propane-1,3-diol and propane-1,2-diol in alkaline solution are ... by instrumental analysis and electrochemical analysis. In propane

Changchun Jin; Zhongyu Wang; Qisheng Huo; Rulin Dong

2014-09-01T23:59:59.000Z

175

Adsorptive separation of propylene-propane mixtures  

SciTech Connect (OSTI)

The separation of propylene-propane mixtures is of great commercial importance and is carried out by fractional distillation. It is claimed to be the most energy-intensive distillation practiced in the United States. The purpose of this paper is to describe experimental work that suggests a practical alternative to distillation for separating the C[sub 3] hydrocarbons: adsorption. As studied, the process involves three adsorptive steps: initial separation with molecular sieves with heavy dilution with an inert gas; separation of propylene and propane separately from the inert gas, using activated carbon; and drying of the product streams with any of several available desiccants. The research information presented here deals with the initial step and includes both equilibrium and kinetic data. Isotherms are provided for propylene and propane adsorbed on three zeolites, activated alumina, silica gel, and coconut-based activated carbon. Breakthrough data are provided for both adsorption and regeneration steps for the zeolites, which were found to be superior to the other adsorbents for breakthrough separations. A flow diagram for the complete proposed process is included.

Jaervelin, H.; Fair, J.R. (Univ. of Texas, Austin, TX (United States))

1993-10-01T23:59:59.000Z

176

Titan's Prolific Propane: The Cassini CIRS Perspective  

E-Print Network [OSTI]

In this paper we select large spectral averages of data from the Cassini Composite Infrared Spectrometer (CIRS) obtained in limb-viewing mode at low latitudes (30S--30N), greatly increasing the path length and hence signal-to-noise ratio for optically thin trace species such as propane. By modeling and subtracting the emissions of other gas species, we demonstrate that at least six infrared bands of propane are detected by CIRS, including two not previously identified in Titan spectra. Using a new line list for the range 1300-1400cm -1, along with an existing GEISA list, we retrieve propane abundances from two bands at 748 and 1376 cm-1. At 748 cm-1 we retrieve 4.2 +/- 0.5 x 10(-7) (1-sigma error) at 2 mbar, in good agreement with previous studies, although lack of hotbands in the present spectral atlas remains a problem. We also determine 5.7 +/- 0.8 x 10(-7) at 2 mbar from the 1376 cm-1 band - a value that is probably affected by systematic errors including continuum gradients due to haze and also an imperf...

Nixon, C A; Flaud, J -M; Bezard, B; Teanby, N A; Irwin, P G J; Ansty, T M; Coustenis, A; Vinatier, S; Flasar, F M; 10.1016/j.pss.2009.06.021

2009-01-01T23:59:59.000Z

177

Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Dealer License to someone by E-mail Dealer License to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

178

Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

throughout the United States. There has been some concern over reported cases of fuel tanks on propane vehicles being overfilled, potentially resulting in emissions from pressure...

179

Texas Propane Vehicle Pilot Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt058tikelly2011p.pdf More Documents & Publications Texas Propane Vehicle Pilot Project Texas...

180

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

U.S. Energy Information Administration (EIA) Indexed Site

See footnotes at end of table. 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State 386 Energy Information...

Note: This page contains sample records for the topic "area transit propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

U.S. Energy Information Administration (EIA) Indexed Site

Marketing Annual 1999 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

182

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

U.S. Energy Information Administration (EIA) Indexed Site

Marketing Annual 1995 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

183

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

Gasoline and Diesel Fuel Update (EIA)

Marketing Annual 1998 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

184

Propane demand modeling for residential sectors- A regression analysis.  

E-Print Network [OSTI]

??This thesis presents a forecasting model for the propane consumption within the residential sector. In this research we explore the dynamic behavior of different variables (more)

Shenoy, Nitin K.

2011-01-01T23:59:59.000Z

185

Reaction with Propane of I(52P1/2), produced by Photolysis of Iodine in the Continuum of the B3?ou+X1?g+ System, and by Collisional Release inside the Banded Region  

Science Journals Connector (OSTI)

... and the ^-propyl iodide was determined by gas chromatography, after separation of the unreacted propane on a low-temperature still. The quantum yield is independent of the area of ... 60 C in a mixture of 0-20 mm of iodine with 100 mm of propane, the quantum yield for the formation of ^-propyl iodide is 1-5 x ...

A. B. CALLEAR; J. F. WILSON

1966-07-30T23:59:59.000Z

186

Effect of catalyst structure on oxidative dehydrogenation of ethane and propane on alumina-supported vanadia  

E-Print Network [OSTI]

catalysts: (a) ethane ODH, (b) propane ODH (663 K, 14 kPa CDehydrogenation of Ethane and Propane on Alumina-Supporteddehydrogenation of ethane and propane. UV-visible and Raman

Argyle, Morris D.; Chen, Kaidong; Bell, Alexis T.; Iglesia, Enrique

2001-01-01T23:59:59.000Z

187

Two-Phase Equilibrium in Binary and Ternary Systems. IV. The Thermodynamic Properties of Propane  

Science Journals Connector (OSTI)

...IV. The Thermodynamic Properties of Propane J. H. Burgoyne Existing physical and thermal data relative to propane have been summarized and correlated...obtained the entropy and enthalpy of propane have been calculated for conditions of...

1940-01-01T23:59:59.000Z

188

New ?-Complexation Adsorbents for Propane?Propylene Separation  

Science Journals Connector (OSTI)

1-4 Some new materials were also reported to adsorb propylene, excluding partially or totally propane. ... Table 2.? Experimental Conditions (Masses of Adsorbent and Flow Rates) for Breakthrough Curves, Stoichiometric Times, and Adsorbed Phase Concentration ... Figure 8 Propylene?propane ratio of the amount adsorbed at 343 K in the different adsorbents. ...

Carlos A. Grande; Jos D. P. Araujo; Simone Cavenati; Norberto Firpo; Elena Basaldella; Alrio E. Rodrigues

2004-05-26T23:59:59.000Z

189

Low-Temperature Oxidation and Cool Flames of Propane  

Science Journals Connector (OSTI)

...1954 research-article Low-Temperature Oxidation and Cool Flames of Propane J. H. Knox R. G. W. Norrish A detailed analytical study of the cool-flame oxidation of propane has been carried out using a continuous-flow technique with a view...

1954-01-01T23:59:59.000Z

190

Carcinogenicity of Industrial Chemicals Propylene Imine and Propane Sultone  

Science Journals Connector (OSTI)

... Range-finding experiments have shown that the maximal tolerated doses of propylene imine and propane sultone, in distilled water, administered by gavage twice a week to 6 week old ... levels, that is, 10 mg/kg for propylene imine, and 28 mg/kg for propane sultone, with groups of twenty-six male and twenty-six female rats at each ...

B. ULLAND; M. FINKELSTEIN; E. K. EISBURGER; J. M. RICE; J. H. WEISBURGER

1971-04-16T23:59:59.000Z

191

Research on Temperature Field Measuring of Oxygen Propane  

Science Journals Connector (OSTI)

By substituting alumina particles for soot created in burning flame and using the three-color method, the temperature field of the oxygen propane is calculated based on the image taken by CCD and digital image processing technology. The results show ... Keywords: CCD, oxygen propane flame, temperature field, image processing

Zhang Rui-ping

2010-09-01T23:59:59.000Z

192

High propane recovery process, Delpro{trademark} saves energy  

SciTech Connect (OSTI)

There are several technologies for recovering propane from natural gas. These include simple refrigeration which typically operate at {minus}10 F for dewpoint control operations or {minus}40 F for propane recovery. Turbo-expander systems are well established for levels of propane recovery. Other processes include lean oil systems (or hydrocarbon liquid as in the Mehra process) for recovering propane up to about the 95% recovery level. Delta Hudson has developed a new process which recovers propane from natural gas using a turbo-expander. This new process has the trade name DELPRO{trademark} and has been patented in the United States, Canada and several other countries. The advantages of the DELPRO{trademark} high recovery process are as follows: Propane recovery up to 99% is economically achievable; Simple flow scheme; Power consumption is reduced by up to 15% compared to competing processes for the same propane recovery level; For the same power consumption as used by competing processes, significantly higher propane recovery levels are achieved; and DELPRO{trademark} can be adapted to ethane recovery. In this mode, the process has the advantage that it rejects carbon dioxide to a greater extent than other processes. This reduces, or in some cases, eliminates subsequent treating requirements.

Sorensen, J. [Delta Hudson Engineering Ltd., Calgary, Alberta (Canada)

1998-12-31T23:59:59.000Z

193

Heating Oil and Propane Update - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

all Petroleum Reports all Petroleum Reports Heating Oil and Propane Update Weekly heating oil and propane prices are only collected during the heating season, which extends from October through March. U.S. Heating Oil and Propane Prices Residential Heating Oil Graph. Residential Propane Graph. change from change from Heating Oil 12/16/2013 week ago year ago Propane 12/16/2013 week ago year ago Residential 3.952 values are down 0.004 values are down 0.008 Residential 2.712 values are up 0.091 values are up 0.469 Wholesale 3.074 values are down 0.063 values are not available NA Wholesale 1.637 values are up 0.113 values are not available NA Note: Price in dollars per gallon, excluding taxes. Values shown on the graph and corresponding data pages for the previous week may be revised to account for late submissions and corrections.

194

Propane Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel vehicle technologies. This chart shows the SDOs responsible for leading the support and development of key codes and standards for propane. Propane Vehicle and Infrastructure Codes and Standards Chart Vehicle Systems Safety: Vehicle Tanks and Piping: Vehicle Components: Vehicle Dispensing Systems: Vehicle Dispensing System Components: Storage Systems: Storage Containers and Piping: Storage Container Pressure Relief Devices and Venting: Production Storage Systems: Production Process Safety: Pipelines: Building and Fire Code Requirements: Organization Name Standards Development Areas AGA American Gas Association Materials testing standards

195

Crude Oil, Heating Oil, and Propane Market Outlook  

Gasoline and Diesel Fuel Update (EIA)

Oil, Heating Oil, and Propane Market Outlook Oil, Heating Oil, and Propane Market Outlook 8/13/01 Click here to start Table of Contents Crude Oil, Heating Oil, and Propane Market Outlook Short-Term World Oil Price Forecast Price Movements Related to Supply/Demand Balance OPEC Production Likely To Remain Low U.S. Reflects World Market Crude Oil Outlook Conclusions Distillate Prices Increase With Crude Oil Distillate Stocks on the East Coast Were Very Low Entering Last Winter Distillate Demand Strong Last Winter More Supply Possible This Fall than Forecast Distillate Fuel Oil Imports Could Be Available - For A Price Distillate Supply/Demand Balance Reflected in Spreads Distillate Stocks Expected to Remain Low Winter Crude Oil and Distillate Price Outlook Heating Oil Outlook Conclusion Propane Prices Follow Crude Oil

196

Syngas Production from Propane Using Atmospheric Non-thermal Plasma  

Science Journals Connector (OSTI)

Propane steam reforming using a sliding discharge reactor was investigated under atmospheric pressure and low temperature (420K). Non-thermal plasma steam reforming proceeded efficiently and hydrogen was...2 con...

F. Ouni; A. Khacef; J. M. Cormier

2009-04-01T23:59:59.000Z

197

Auswirkung der Verwendung von Methan an Stelle von Propan  

Science Journals Connector (OSTI)

Um zu prfen, welche Verhltnisse sich ergeben, wenn man an Stelle von Propan, wie es in den international vorgeschlagenen Dreistoff-Gemischen vorgesehen ist, Methan heranzge, wurden fr das Normprfgas folgende...

Prof. Dr. Ing. Fritz Schuster

1961-01-01T23:59:59.000Z

198

Texas Propane Fleet Pilot Program | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. tiarravt058kelly2010p.pdf More Documents & Publications Texas Propane Vehicle Pilot Project Texas...

199

Hydronic Heating Coil Versus Propane Furnace, Rehoboth Beach...  

Energy Savers [EERE]

source heat pump (ASHP) with supplemental propane furnace heating. The Building America test house uses the same ASHP unit, but supplemental heat is provided by a combined DHW and...

200

Lower oil prices also cutting winter heating oil and propane...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lower oil prices also cutting winter heating oil and propane bills Lower oil prices are not only driving down gasoline costs, but U.S. consumers will also see a bigger savings in...

Note: This page contains sample records for the topic "area transit propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

VEE-0040- In the Matter of Western Star Propane, Inc.  

Broader source: Energy.gov [DOE]

On February 18, 1997, Western Star Propane, Inc. (Western) filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its application,...

202

Revised Propane Stock Levels for 6/7/13  

Gasoline and Diesel Fuel Update (EIA)

Revised Propane Stock Levels for 6713 Release Date: June 19, 2013 Following the release of the Weekly Petroleum Status Report (WPSR) for the week ended June 7, 2013, EIA...

203

RECS Propane Usage Form_v1 (Draft).xps  

Gasoline and Diesel Fuel Update (EIA)

propane usage for this housing unit between September 2008 and April 2010. Delivery Number Enter the Delivery Date for each delivery 1 2 3 4 5 6 7 8 9 10 Enter the Total Dollar...

204

Can propane school buses save money and provide other benefits...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Can propane school buses save money and provide other benefits? October 1, 2014 Tweet EmailPrint School districts across the country are looking for ways to save money and be more...

205

Advisory on the reporting error in the combined propane stocks...  

Gasoline and Diesel Fuel Update (EIA)

Advisory on the reporting error in the combined propane stocks for PADDs 4 and 5 Release Date: June 12, 2013 The U.S. Energy Information Administration issued the following...

206

E-Print Network 3.0 - area transit authority Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies and Information Sciences 2 Technical Report Documentation Page 1. Report No. Summary: at four transit centers and one park and ride facility in Houston's...

207

Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Texas Laws and Incentives for Propane (LPG) The list below contains summaries of all Texas laws and incentives related

208

Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Oregon Laws and Incentives for Propane (LPG)

209

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives for Propane (LPG)

210

Alternative Fuels Data Center: North Dakota Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: North Dakota Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: North Dakota Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: North Dakota Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: North Dakota Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: North Dakota Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: North Dakota Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type North Dakota Laws and Incentives for Propane (LPG)

211

Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Iowa Laws and Incentives for Propane (LPG) The list below contains summaries of all Iowa laws and incentives related

212

Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Utah Laws and Incentives for Propane (LPG) The list below contains summaries of all Utah laws and incentives related

213

Alternative Fuels Data Center: New Mexico Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: New Mexico Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: New Mexico Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: New Mexico Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: New Mexico Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: New Mexico Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: New Mexico Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New Mexico Laws and Incentives for Propane (LPG)

214

Alternative Fuels Data Center: New York Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: New York Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: New York Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: New York Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: New York Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: New York Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: New York Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New York Laws and Incentives for Propane (LPG)

215

Alternative Fuels Data Center: South Dakota Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: South Dakota Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: South Dakota Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: South Dakota Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: South Dakota Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: South Dakota Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: South Dakota Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type South Dakota Laws and Incentives for Propane (LPG)

216

Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Propane (LPG) The list below contains summaries of all Maine laws and incentives related

217

Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hawaii Laws and Incentives for Propane (LPG)

218

Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kansas Laws and Incentives for Propane (LPG)

219

Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Nevada Laws and Incentives for Propane (LPG)

220

Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives for Propane (LPG)

Note: This page contains sample records for the topic "area transit propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idaho Laws and Incentives for Propane (LPG) The list below contains summaries of all Idaho laws and incentives related

222

Alternative Fuels Data Center: New Jersey Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: New Jersey Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: New Jersey Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: New Jersey Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: New Jersey Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: New Jersey Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: New Jersey Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New Jersey Laws and Incentives for Propane (LPG)

223

Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ohio Laws and Incentives for Propane (LPG) The list below contains summaries of all Ohio laws and incentives related

224

Hybrid adsorption-distillation process for separating propane and propylene  

SciTech Connect (OSTI)

The separation of propylene from a propane-propylene mixture by distillation is a energy-intensive process. A hybrid adsorption-distillation system has a great potential in reducing the energy consumption. A significant amount of energy can be saved relative to a process using only distillation, if a typical separation is carried out by distillation up to a propylene concentration of approximately 80% and then continuing the separation of propane from propylene by adsorption. A volumetric adsorption apparatus was designed to obtain the data at high pressures. The pure component data of propane and propylene were obtained on silica gel, molecular sieve 13X, and activated carbon. Although activated carbon has a greater capacity for both propane and propylene than either of the two adsorbents, it was only slightly selective for propylene. Silica gel has the greatest selectivity for propylene, which ranged from 2 to 4. None of the adsorbents was found to be selective for propane. The propane-propylene mixture behaved nonideally on the solid surface as indicated by the negative deviations of activity coefficients. The nonideality of the mixture can be attributed primarily to surface effects rather than to interactions between adsorbate molecules. A binary model has been proposed to predict mole fractions in the adsorbed phase and the total amount adsorbed from the pure component data. The pure component isotherm model of Hines et al. was extended to binary mixtures when the binary model was developed. Excellent agreement was obtained between experimental data and predicted values for mole fractions in the adsorbed phased, the total amount adsorbed, and adsorbed-phase activity coefficients.

Ghosh, T.K.; Lin, Hon-Da; Hines, A.L. (Univ. of Missouri, Columbia, MO (United States))

1993-10-01T23:59:59.000Z

225

Alternative Fuels Data Center: Yellow Cab Converts Taxis to Propane in  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Yellow Cab Converts Yellow Cab Converts Taxis to Propane in Columbus, Ohio to someone by E-mail Share Alternative Fuels Data Center: Yellow Cab Converts Taxis to Propane in Columbus, Ohio on Facebook Tweet about Alternative Fuels Data Center: Yellow Cab Converts Taxis to Propane in Columbus, Ohio on Twitter Bookmark Alternative Fuels Data Center: Yellow Cab Converts Taxis to Propane in Columbus, Ohio on Google Bookmark Alternative Fuels Data Center: Yellow Cab Converts Taxis to Propane in Columbus, Ohio on Delicious Rank Alternative Fuels Data Center: Yellow Cab Converts Taxis to Propane in Columbus, Ohio on Digg Find More places to share Alternative Fuels Data Center: Yellow Cab Converts Taxis to Propane in Columbus, Ohio on AddThis.com... July 9, 2011 Yellow Cab Converts Taxis to Propane in Columbus, Ohio

226

Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Tax to someone by E-mail Tax to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) and Propane Tax Retail sales for CNG and liquefied petroleum gas (propane) used to operate

227

Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel and Propane Biodiesel and Propane Fuel Buses for Dallas County Schools to someone by E-mail Share Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas County Schools on Facebook Tweet about Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas County Schools on Twitter Bookmark Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas County Schools on Google Bookmark Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas County Schools on Delicious Rank Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas County Schools on Digg Find More places to share Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas County Schools on AddThis.com... Oct. 2, 2009

228

U.S. Natural Gas Supplemental Gas - Propane Air (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Propane Air (Million Cubic Feet) U.S. Natural Gas Supplemental Gas - Propane Air (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

229

Microsoft PowerPoint - Propane_Briefing_140205_nn.pptx  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

add to 100%) Northeast South Midwest West U.S. total 116 million homes natural gas propane heating oil electricity wood keroseneotherno heating propane 4.5% 7% 81% 5% 10% 4%...

230

E-Print Network 3.0 - area rapid transit Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Idaho Collection: Engineering 6 OBILITY BENEFITS FROM PUBLIC TRANSPORTATION Buses and trains carry a significant number of trips in many large areas, and provide important...

231

Induction of Anchorage-independent Growth in Human Fibroblasts by Propane Sultone  

Science Journals Connector (OSTI)

...Anchorage-independent Growth in Human Fibroblasts by Propane Sultone 1 1 Supported in part by Department...growth after treatment with the carcinogen propane sultone, followed by exponential growth...Exposure to these same concentrations of propane sultone also resulted in a dose-dependent...

K. Charles Silinskas; Suzanne A. Kateley; John E. Tower; Veronica M. Maher; J. Justin McCormick

1981-05-01T23:59:59.000Z

232

The Intramolecular Isotope Effect in the Pyrolysis of 1-$^{14}$C Propane  

Science Journals Connector (OSTI)

...Intramolecular Isotope Effect in the Pyrolysis of 1- C Propane H. M. Frey C. J. Danby Cyril Hinshelwood 1- C propane has been synthesized from active barium carbonate in 50% yield. This propane has been pyrolyzed at temperatures from 550 to 603...

1956-01-01T23:59:59.000Z

233

Propane/Propylene Days of Supply  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Weekly Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 102414 103114 110714 111414...

234

Alternative Fuels Data Center: Liquefied Natural Gas (LNG) and Propane Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Liquefied Natural Gas Liquefied Natural Gas (LNG) and Propane Tax and User Permit to someone by E-mail Share Alternative Fuels Data Center: Liquefied Natural Gas (LNG) and Propane Tax and User Permit on Facebook Tweet about Alternative Fuels Data Center: Liquefied Natural Gas (LNG) and Propane Tax and User Permit on Twitter Bookmark Alternative Fuels Data Center: Liquefied Natural Gas (LNG) and Propane Tax and User Permit on Google Bookmark Alternative Fuels Data Center: Liquefied Natural Gas (LNG) and Propane Tax and User Permit on Delicious Rank Alternative Fuels Data Center: Liquefied Natural Gas (LNG) and Propane Tax and User Permit on Digg Find More places to share Alternative Fuels Data Center: Liquefied Natural Gas (LNG) and Propane Tax and User Permit on AddThis.com...

235

Experimental and kinetic study of autoignition in methane/ethane/air and methane/propane/air mixtures under engine-relevant conditions  

SciTech Connect (OSTI)

The ignition delay of homogeneous methane/air mixtures enriched with small fractions of ethane/propane was measured using the reflected-shock technique at temperatures from 900 to 1400 K and pressures from 16 to 40 bar. The results show complex effects of ethane/propane on the ignition of methane, but a common trend observed with both hydrocarbons is an increased promotion effect for temperatures below 1100 K. A detailed kinetic mechanism was used to investigate the interaction between ethane/propane and the ignition chemistry of methane under the above conditions. It was found that at relatively low temperatures, the reactions between ethane/propane and methylperoxy (CH{sub 3}O{sub 2}) lead to an enhanced rate of formation of OH radicals in the initiation phase of the ignition. By systematically applying the quasi-steady-state assumptions to the intermediate species involved in the main reaction path identified, we have achieved an analytical description of the ignition process in the transitional temperature regime. The analytical solutions agree reasonably well with the detailed kinetic model and the experimental results for both ignition delay and concentrations of major intermediate species.

Huang, J.; Bushe, W.K. [Department of Mechanical Engineering, University of British Columbia, 6950 Applied Science Lane, Vancouver, British Columbia (Canada V6T 1Z4)

2006-01-01T23:59:59.000Z

236

AREA  

Broader source: Energy.gov (indexed) [DOE]

AREA AREA FAQ # Question Response 316 vs DCAA FAQ 1 An inquiry from CH about an SBIR recipient asking if a DCAA audit is sufficient to comply with the regulation or if they need to add this to their audit they have performed yearly by a public accounting firm. 316 audits are essentially A-133 audits for for-profit entities. They DO NOT replace DCAA or other audits requested by DOE to look at indirect rates or incurred costs or closeouts. DCAA would never agree to perform A-133 or our 316 audits. They don't do A-133 audits for DOD awardees. The purpose of the audits are different, look at different things and in the few instances of overlap, from different perspectives. 316

237

Combustion behaviour of a heavy duty common rail marine Diesel engine fumigated with propane  

Science Journals Connector (OSTI)

This paper presents results from the testing of a heavy duty common rail marine Diesel engine with electronically controlled two stage liquid fuel injection, operating under load on a test bench with propane mixed into the inlet air at various rates. Results are presented for a range of engine loads, with brake mean effective pressure up to 22bar at 1800rpm. The electronic engine control unit is not modified and allowed to respond to the addition of propane according to its inbuilt map. This results in retarded injection timing with increased propane addition at some test points. At each test point, constant engine speed and brake torque are maintained for various rates of propane addition. Cylinder pressure and the injector activation voltage are recorded with a high speed data acquisition system. Apparent heat release rate is calculated from the measured cylinder pressure. At high rates of propane addition very high pressure rise rates and severe knock are measured. At the high brake mean effective pressure conditions tested, knock limits propane supply rates to less than 20% by energy. Small increases in thermal efficiency are indicated with moderate rates of propane addition. Exhaust emissions of NOx, CO, HC and smoke are measured. CO, HC and smoke emissions increase significantly with increasing propane addition. For high propane supply rates, two distinct peaks in heat release rate are measured. Analysis is made of the flammability of the propaneair mixtures at the elevated temperatures at the end of the compression stroke, using the modified BurgessWheeler Law. At propane supply rates greater than 25%, the propaneair mixture is flammable in its own right at compression temperature. The apparent heat release rate, fuel injection timing and flammability data allow analysis of the mechanism of the combustion process with propane fumigation.

L. Goldsworthy

2012-01-01T23:59:59.000Z

238

Strange Particle Production by Bevatron Neutrons in Propane  

Science Journals Connector (OSTI)

A liquid propane bubble chamber was exposed to a beam of neutrons with energies up to 6 Bev from the Bevatron. 10 000 pictures of interactions in the hydrocarbon were scanned to detect neutral heavy unstable particles. 349 neutral V-events were found, most of which came from the stainless steel walls of the chamber. 86% of these events could be identified as one or the other or either of the neutral strange particles: ?0 or ?10. The ?0?10 ratio is about 0.6.8200 stars of 2 or more prongs formed by neutrons interacting in the liquid propane were observed in the chamber and 17 of these produced V0's. An additional 5 V0's were formed in single-prong events produced by neutrons, and 8 others were produced in events in the propane caused by charged particles.The energy spectrum of the incident neutrons was estimated from study of ?-meson production interactions in the hydrogen. The distribution shows that the neutrons had energies up to 6 Bev with a mean value of about 4 Bev. For the energy range 1 to 6 Bev, the production of strange particles occurs in about 1% of all inelastic interactions of neutrons with hydrogen and carbon.

Charles O. Dechand

1959-09-15T23:59:59.000Z

239

Clean Cities Helps Nonprofit Cut Fuel Costs with Propane | Department of  

Broader source: Energy.gov (indexed) [DOE]

Clean Cities Helps Nonprofit Cut Fuel Costs with Propane Clean Cities Helps Nonprofit Cut Fuel Costs with Propane Clean Cities Helps Nonprofit Cut Fuel Costs with Propane May 15, 2013 - 4:10pm Addthis Mississippi's Community Counseling Services converted 29 vans to run on propane, saving more than $1.50 per gallon on fuel or more than $60,000 a year. | Photo courtesy of Community Counseling Services. Mississippi's Community Counseling Services converted 29 vans to run on propane, saving more than $1.50 per gallon on fuel or more than $60,000 a year. | Photo courtesy of Community Counseling Services. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the key facts? Mississippi's Community Counseling Services converted 29 vans to run on propane, saving more than $1.50 per gallon on fuel or more than $60,000

240

Clean Cities Helps Nonprofit Cut Fuel Costs with Propane | Department of  

Broader source: Energy.gov (indexed) [DOE]

Helps Nonprofit Cut Fuel Costs with Propane Helps Nonprofit Cut Fuel Costs with Propane Clean Cities Helps Nonprofit Cut Fuel Costs with Propane May 15, 2013 - 4:10pm Addthis Mississippi's Community Counseling Services converted 29 vans to run on propane, saving more than $1.50 per gallon on fuel or more than $60,000 a year. | Photo courtesy of Community Counseling Services. Mississippi's Community Counseling Services converted 29 vans to run on propane, saving more than $1.50 per gallon on fuel or more than $60,000 a year. | Photo courtesy of Community Counseling Services. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the key facts? Mississippi's Community Counseling Services converted 29 vans to run on propane, saving more than $1.50 per gallon on fuel or more than $60,000

Note: This page contains sample records for the topic "area transit propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Propane Market Outlook Assessment of Key Market Trends, Threats, and Opportunities Facing  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

0 0 Propane Market Outlook Assessment of Key Market Trends, Threats, and Opportunities Facing the Propane Industry Through 2020 P r e s e n T e d B y : Declining Sales in the Recent Past and Near-Term Future After peaking in 2003, nationwide propane consumption fell by more than 10 percent through 2006. Although propane demand rebounded somewhat in 2007 and 2008 due to colder weather, propane demand appears to have declined again in 2009. The collapse of the new housing market, combined with decreases in fuel use per customer resulting from efficiency upgrades in homes and equipment, resulted in a decline in residential propane sales. The recession also reduced demand in the industrial and commercial sectors. Colder weather in the last half of 2009 and in January

242

AC Transit  

Broader source: Energy.gov [DOE]

AC Transit (or the Alameda-Contra Costa Transit District) is based in Oakland, California, and provides transportation services to the East Bay of San Francisco. The 360-square-mile service area includes 13 cities and adjacent unincorporated areas in Alameda and Contra Costa counties. AC Transit's approximately 638 vehicles serve more than 65 million annual passengers.

243

State heating oil and propane program. Final report, 1990--1991  

SciTech Connect (OSTI)

The following is a report of New Hampshire`s participation in the State Heating Oil and Propane Program (SHOPS) for the 1990--91 heating season. The program is a joint effort between participating states and the Department of Energy (DOE), Energy Information Administration (EYE) to collect retail price data for heating oil and propane through phone surveys of 25 oil and 20 propane retailers in New Hampshire. SHOPS is funded through matching grants from DOE and the participating state. (VC)

Not Available

1991-12-31T23:59:59.000Z

244

Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...  

Gasoline and Diesel Fuel Update (EIA)

Marketing Annual 1995 467 Table A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) -...

245

Chemisorption of Propane on Platinum Surfaces in the Presence of Pre-adsorbed Water  

Science Journals Connector (OSTI)

... adsorbed water. In order to study this question, we have investigated the chemisorption of propane on platinum in the presence of pre-adsorbed water.

G. SANDSTEDE; G. WALTER; G. WURZBACHER

1967-11-04T23:59:59.000Z

246

Oxygen-Free Propane Oxidative Dehydrogenation Over Vanadium Oxide Catalysts: Reactivity and Kinetic Modelling.  

E-Print Network [OSTI]

??Propane conversion to propylene has been the subject of intensive researches. This is due to the increasing demand for propylene. Current propylene production processes suffer (more)

Al-Ghamdi, Sameer Ali

2013-01-01T23:59:59.000Z

247

Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...  

Gasoline and Diesel Fuel Update (EIA)

Marketing Annual 1999 421 Table A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) -...

248

STUDY OF PROPANE ADSORPTION ISOTHERM ON PURIFIED HIPCO SINGLE-WALLED CARBON NANOTUBES.  

E-Print Network [OSTI]

??Isotherms of one atom thick film of adsorption for propane on purified Hipco single-walled carbon nanotube were experimentally studied at 6 different temperatures ranging from (more)

Furuhashi, Toyohisa

2009-01-01T23:59:59.000Z

249

Table 14. U.S. Propane (Consumer Grade) Prices by Sales Type  

U.S. Energy Information Administration (EIA) Indexed Site

and EIA-782B, "Resellers'Retailers' Monthly Petroleum Product Sales Report." 14. U.S. Propane (Consumer Grade) Prices by Sales Type 28 Energy Information Administration ...

250

Process Simulation, Modeling & Design for Soybean Oil Extraction Using Liquid Propane.  

E-Print Network [OSTI]

??This study investigates the use of liquid propane for soybean oil extraction and the use of commercial software for process modeling and simulation. Soybean oil (more)

Patrachari, Anirudh Ramanujan

2008-01-01T23:59:59.000Z

251

Microsoft PowerPoint - Propane_Briefing_140131_summary_v2_nn...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

add to 100%) Northeast South Midwest West U.S. total 116 million homes natural gas propane heating oil electricity wood keroseneotherno heating 81% 5% 10% 4% Northeast...

252

Experimental studies of steam-propane and enriched gas injection for the Minas light crude oil.  

E-Print Network [OSTI]

??Experimental studies were carried out to compare the benefits of propane as an additive in steam injection and in lean gas injection to enhance production (more)

Yudishtira, Wan Dedi

2012-01-01T23:59:59.000Z

253

Experimental studies of steam-propane injection for the Duri intermediate crude oil.  

E-Print Network [OSTI]

??Laboratory experimental studies were carried out to better understand production mechanisms involved in steam-propane injection and to investigate effects of expected field pressure and temperature (more)

Hendroyono, Arief

2012-01-01T23:59:59.000Z

254

Process Design and Simulation for Extraction of Milk Fat Using Liquid Propane.  

E-Print Network [OSTI]

??Numerous studies have been conducted to increase the utilization of milk by fractionating the fat. This work examines the use of liquid propane for extraction (more)

Byluppala, Harita

2010-01-01T23:59:59.000Z

255

Dynamics of Propane in Silica Mesopores Formed upon Propylene Hydrogenation over Pt Nanoparticles by Time-Resolved FT-IR Spectroscopy  

E-Print Network [OSTI]

state distribution of propane between gas and mesopore phaseWavenumber (cm ) B Gas Phase Propane 2968 cm k 1 = 3.1 0.4slices showing the gas phase propane component at 216, 648,

Waslylenko, Walter; Frei, Heinz

2008-01-01T23:59:59.000Z

256

Nanostructure of Solid Precipitates Obtained by Expansion of Polystyrene-block-Polybutadiene Solutions in Near Critical Propane: Block Ratio and Micellar Solution Effects  

SciTech Connect (OSTI)

In contrast to incompressible liquid solutions, compressible near-critical solutions of block copolymers allow for controlling rapid structure transformations with pressure alone. For example, when dissolved in near-critical propane, polystyrene-block-polybutadiene can form a random molecular solution at high pressures, a micellar solution at moderate pressures, and a solvent-free precipitate at low pressures. In contrast to the unstructured virgin copolymer, such a propane-treated precipitate rapidly self-assembles toward structures characteristic of equilibrated block copolymers, such as lamellae, spheres, or cylinders, which depend on the block ratio rather than on the decompression rate or temperature, at least within the rate and temperature ranges investigated in this work. At lower temperatures, however, say below 40 C, glass transition of the styrene-butadiene diblocks can inhibit independent structure formation, while crystallization of their hydrogenated-butadiene analogues can preserve the micellar-solution structure.

Green, Jade [University of Wyoming, Laramie; Tyrrell, Zachary [University of Wyoming, Laramie; Radosz, Maciej [University of Wyoming, Laramie; Hong, Kunlun [ORNL; Mays, Jimmy [ORNL

2011-01-01T23:59:59.000Z

257

Novel adsorption distillation hybrid scheme for propane/propylene separation  

SciTech Connect (OSTI)

A novel adsorption-distillation hybrid scheme is proposed for propane/propylene separation. The suggested scheme has potential for saving up to [approximately]50% energy and [approximately]15-30% in capital costs as compared with current technology. The key concept of the proposed scheme is to separate olefins from alkanes by adsorption and then separate individual olefins and alkanes by simple distillation, thereby eliminating energy intensive and expensive olefin-alkane distillation. A conceptual flow schematic for the proposed hybrid scheme and potential savings are outlined.s

Kumar, R.; Golden, T.C.; White, T.R.; Rokicki, A. (Air Products an Chemicals, Inc., Allentown, PA (United States))

1992-12-01T23:59:59.000Z

258

Ethynyl terminated ethers. Synthesis and thermal characterization of 2,2 bis (ethynyl-4-phenylcarbonyl-4-phenoxy-4-phenyl) propane and 2,2 bis (ethynyl-4-phenylsulfonyl-4-phenoxy-4-phenyl) propane  

Science Journals Connector (OSTI)

Two ethynyl end-capped ethers 2,2 Bis [ethynyl-4-phenylsulfonyl-4-phenoxy-4-phenyl] propane and 2,2 Bis [ethynyl-4-phenylcarbonyl-4-phenoxy-4-phenyl] propane have been prepared by a three steps...

Georges Lucotte; Laurent Cormier; Bruno Delfort

1990-12-01T23:59:59.000Z

259

Final report of the Rhode Island State Energy Office on residential no. 2 heating oil and propane prices [SHOPP  

SciTech Connect (OSTI)

Summary report on residential No.2 heating oil and propane prepared under grant. Summarizes the monitoring and analysis of heating oil and propane prices from October 2000 through March 2001.

McClanahan, Janice

2001-04-01T23:59:59.000Z

260

Novel Methane, Ethane, and Propane Oxidizing Bacteria at Marine Hydrocarbon Seeps Identified by Stable Isotope Probing  

E-Print Network [OSTI]

Novel Methane, Ethane, and Propane Oxidizing Bacteria at Marine Hydrocarbon Seeps Identified by Stable Isotope Probing Running Title: Novel Methane, Ethane, and Propane Oxidizing Bacteria Section hydrocarbons in surface sediment from the Coal Oil Point seep field, offshore Santa4 Barbara, California. After

Sessions, Alex L.

Note: This page contains sample records for the topic "area transit propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Further experimental studies of steam-propane injection to enhance recovery of Morichal oil  

E-Print Network [OSTI]

In 1998-1999, experimental research was conducted by Goite at Texas A&M University into steam-propane injection to enhance oil recovery from the Morichal field, Venezuela. Goite's results showed that, compared with steam injection alone, steam-propane...

Ferguson,Mark Anthony

2012-06-07T23:59:59.000Z

262

Experimental studies of steam-propane injection to enhance recovery of an intermediate crude oil  

E-Print Network [OSTI]

In the past few years, research has been conducted at Texas A&M University on steam-propane injection to enhance oil recovery from the Morichal field, Venezuela, which contains 13.5 ?API gravity oil. Experimental results show that a 5:100 propane...

Tinss, Judicael Christopher

2001-01-01T23:59:59.000Z

263

Fuel cellsI. Propane on palladium catalyst  

Science Journals Connector (OSTI)

For the reaction at low temperatures of a gaseous hydrocarbon as a fuel gas at a negative electrode in a fuel cell, the choice of a suitable catalyst is of the first importance. In the present study, catalysts consisting of palladium reduced by hydrogen and palladium reduced by formate, supported on four types of porous skeleton disks (thin nickel, thick nickel and two types of carbon), were examined. In many cases, the electrodes were given a water-proofing treatment. The specific fuel cell used involved the prepared fuel electrode using gaseous propane, 30% KOH solution, a carbon-black air electrode and a temperature of 5OC We attempt to distinguish the behaviour of propane from that due to hydrogen contained in the electrode, mainly on the basis of the relationship between (a) electrode preparation and treatment and (b) the open-circuit potential behaviour of the fuel electrode. The repetition of small current discharges resulted in open-circuit potentials reaching steady high potentials and in electrodes exhibiting comparatively good dischargeabilities.

M. Fukuda; C.L. Rulfs; P.J. Elving

1964-01-01T23:59:59.000Z

264

Activation of VOHPO4 0.5H2O in Propane/Air Mixture: Effect on Structural, Morphological, Oxidants Behaviour and Catalytic Property of (VO)2P2O7 Catalysts for Propane Oxidation  

Science Journals Connector (OSTI)

VOHPO4 0.5H2O synthesized by VOPO4 2H2O and isobutanol was activated in a flow of propane/air mixture (1% propane in air) at 673K for 36 ... VPD75P and VPD132P. The crystallinity of all propane/air pretreate...

Y. H. Taufiq-Yap; C. S. Saw; R. Irmawati

2005-11-01T23:59:59.000Z

265

Propane ammoxidation over MoVTeNbO M1 phase: Density functional theory study of propane oxidative dehydrogenation steps  

Science Journals Connector (OSTI)

Abstract Propane ammoxidation to acrylonitrile catalyzed by the bulk MoVTeNb oxides has received considerable attention because it is more environmentally benign than the current process of propylene ammoxidation and relies on a more abundant feedstock. This process is proposed to consist of a series of elementary steps including propane oxidative dehydrogenation (ODH), ammonia and O2 activation, \\{NHx\\} insertion into C3 surface intermediates, etc. Density functional theory calculations were performed here to investigate the three sequential H abstraction steps that successively convert propane into isopropyl, propene, and ?-allyl on cation sites in the proposed selective and active center present in the ab plane of the MoVTeNbO M1 phase. The initial H abstraction from propane was found to be the rate-limiting step of this process, consistent with both the proposed reaction mechanism for propane ammoxidation on the MoVTeNb oxides and current understanding of V5+ as the active site for alkane activation on V-based oxides. Te=O was found to be significantly more active than V5+=O for the H abstraction from propane, which suggests that the surface and bulk Te species may be different. The role of Mo=O is most likely limited to being an H acceptor from isopropyl to form propene under ammoxidation conditions.

Junjun Yu; Ye Xu; Vadim V. Guliants

2014-01-01T23:59:59.000Z

266

Histological Analysis of the Antimetastatic Effect of ()-1,2-Bis(3,5-dioxopiperazin-1-yl)propane  

Science Journals Connector (OSTI)

...2-Bis(3,5-dioxopiperazin-1-yl)propane A. J. Salsbury Karen Burrage K. Hellmann...2-bis(3,5-dioxopiperazine-1-yl)propane (ICRF 159) on the Lewis lung carcinoma...2-bis(3,5-dioxopiperazin-1-yl)propane. | Comparative Study Journal Article...

A. J. Salsbury; Karen Burrage; K. Hellmann

1974-04-01T23:59:59.000Z

267

Polarization effects on low-energy electron collisions with propane  

Science Journals Connector (OSTI)

We employed the Schwinger multichannel method to compute elastic cross sections for low-energy electron collisions with propane (C3H8). The calculations are carried out within the static-exchange and static-exchange plus polarization approximations and covered the energy range from 0 to 15 eV. The computed differential cross sections show good agreement with the experiment, and the computed integral cross sections present the same shape as the measured total cross sections. We found a broad structure in the integral cross section around 8.5 eV and also a Ramsauer-Townsend minimum around 0.1 eV. These results are in agreement with the experimental observations.

Mrcio H. F. Bettega; Romarly F. da Costa; Marco A. P. Lima

2008-05-08T23:59:59.000Z

268

An analysis of US propane markets, winter 1996-1997  

SciTech Connect (OSTI)

In late summer 1996, in response to relatively low inventory levels and tight world oil markets, prices for crude oil, natural gas, and products derived from both began to increase rapidly ahead of the winter heating season. Various government and private sector forecasts indicated the potential for supply shortfalls and sharp price increases, especially in the event of unusually severe winter weather. Following a rapid runup in gasoline prices in the spring of 1996, public concerns were mounting about a possibly similar situation in heating fuels, with potentially more serious consequences. In response to these concerns, the Energy Information Administration (EIA) participated in numerous briefings and meetings with Executive Branch officials, Congressional committee members and staff, State Energy Offices, and consumers. EIA instituted a coordinated series of actions to closely monitor the situation and inform the public. This study constitutes one of those actions: an examination of propane supply, demand, and price developments and trends.

NONE

1997-06-01T23:59:59.000Z

269

Simulation of hydrogen and hydrogen-assisted propane ignition in Pt catalyzed microchannel  

SciTech Connect (OSTI)

This paper deals with self-ignition of catalytic microburners from ambient cold-start conditions. First, reaction kinetics for hydrogen combustion is validated with experimental results from the literature, followed by validation of a simplified pseudo-2D microburner model. The model is then used to study the self-ignition behavior of lean hydrogen/air mixtures in a Platinum-catalyzed microburner. Hydrogen combustion on Pt is a very fast reaction. During cold start ignition, hydrogen conversion reaches 100% within the first few seconds and the reactor dynamics are governed by the ''thermal inertia'' of the microburner wall structure. The self-ignition property of hydrogen can be used to provide the energy required for propane ignition. Two different modes of hydrogen-assisted propane ignition are considered: co-feed mode, where the microburner inlet consists of premixed hydrogen/propane/air mixtures; and sequential feed mode, where the inlet feed is switched from hydrogen/air to propane/air mixtures after the microburner reaches propane ignition temperature. We show that hydrogen-assisted ignition is equivalent to selectively preheating the inlet section of the microburner. The time to reach steady state is lower at higher equivalence ratio, lower wall thermal conductivity, and higher inlet velocity for both the ignition modes. The ignition times and propane emissions are compared. Although the sequential feed mode requires slightly higher amount of hydrogen, the propane emissions are at least an order of magnitude lower than the other ignition modes. (author)

Seshadri, Vikram; Kaisare, Niket S. [Department of Chemical Engineering, Indian Institute of Technology - Madras, Chennai 600 036 (India)

2010-11-15T23:59:59.000Z

270

Effect of temperature and pressure on the dynamics of nanoconfined propane  

SciTech Connect (OSTI)

We report the effect of temperature and pressure on the dynamical properties of propane confined in nanoporous silica aerogel studied using quasielastic neutron scattering (QENS). Our results demonstrate that the effect of a change in the pressure dominates over the effect of temperature variation on the dynamics of propane nano-confined in silica aerogel. At low pressures, most of the propane molecules are strongly bound to the pore walls, only a small fraction is mobile. As the pressure is increased, the fraction of mobile molecules increases. A change in the mechanism of motion, from continuous diffusion at low pressures to jump diffusion at higher pressures has also been observed.

Gautam, Siddharth, E-mail: gautam.25@osu.edu; Liu, Tingting, E-mail: gautam.25@osu.edu; Welch, Susan; Cole, David [School of Earth Sciences, The Ohio State University, 275 Mendenhall Laboratory, 125 S Oval Mall, Columbus, OH 43210 (United States); Rother, Gernot [Geochemistry and Interfacial Science Group, Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Jalarvo, Niina [Jlich Center for Neutron Sciences (JCNS-1), Forschungszentrum Jlich Outstation at Spallation Neutron Source(SNS), Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Mamontov, Eugene [Spallation Neutron Source (SNS), Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

2014-04-24T23:59:59.000Z

271

VEE-0060 - In the Matter of Blakeman Propane, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

60 - In the Matter of Blakeman Propane, Inc. 60 - In the Matter of Blakeman Propane, Inc. VEE-0060 - In the Matter of Blakeman Propane, Inc. On May 11, 1999, Blakeman Propane, Inc. (Blakeman) of Moorcroft, Wyoming, filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its application, Blakeman requests that it be relieved of the requirement that it file the Energy Information Administration's (EIA) form entitled "Resellers'/Retailers' Monthly Petroleum Product Sales Report" (Form EIA-782B). As explained below, we have determined that the Application for Exception should be denied. vee0060.pdf More Documents & Publications TEE-0060 - In the Matter of 7 Oil Co., Inc. TEE-0068 - In the Matter of Bowlin Travel Centers, Inc. VEE-0080 - In the Matter of Potter Oil Co.

272

Detonation of propane-air mixtures under injection of hot detonation products  

Science Journals Connector (OSTI)

The tube for spontaneous detonation (Institute of Technical Physics, Russian Federal ... used to study the initiation and development of detonation in propane-air mixtures under injection of hot detonation produc...

V. I. Tarzhanov; I. V. Telichko; V. G. Vildanov

2006-05-01T23:59:59.000Z

273

Simulation studies of steam-propane injection for the Hamaca heavy oil field.  

E-Print Network [OSTI]

??Simulation studies were performed to evaluate a novel technology, steam-propane injection, for the heavy Hamaca crude oil. The oil has a gravity of 9.3?API and (more)

Venturini, Gilberto Jose

2012-01-01T23:59:59.000Z

274

Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles  

Broader source: Energy.gov [DOE]

Emissions tests of in-use heavy-duty vehicles showed that, natural gas- and propane-fueled vehicles have high emissions of NH3 and CO, compared to diesel vehicles, while meeting certification requirements

275

Further experimental studies of steam-propane injection to enhance recovery of Morichal oil.  

E-Print Network [OSTI]

??In 1998-1999, experimental research was conducted by Goite at Texas A&M University into steam-propane injection to enhance oil recovery from the Morichal field, Venezuela. Goite's (more)

Ferguson,Mark Anthony

2012-01-01T23:59:59.000Z

276

Detection of Propane by IR-ATR in a Teflon-Clad Fluoride Glass Optical Fiber  

Science Journals Connector (OSTI)

The detection of propane with the use of ATR spectroscopy at 3.3 ?m, as the gas diffuses through the Teflon cladding of a fluoride optical fiber, is reported. A...

Ruddy, V; McCabe, S

1990-01-01T23:59:59.000Z

277

Metal oxide catalysts for the low temperature selective oxidation of propane to iso-propanol.  

E-Print Network [OSTI]

??A range of Ga203/Mo03 and C03O4 catalysts have been prepared and tested for the oxidative dehydrogenation of propane to propene. The Ga2(VMo03 physical mixture demonstrated (more)

Davies, Thomas Edward.

2006-01-01T23:59:59.000Z

278

Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...  

Gasoline and Diesel Fuel Update (EIA)

- W 73.5 See footnotes at end of table. A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present Energy Information Administration ...

279

The Effect of Propane on Atomic Spectrometric Signals in the Direct-Current Plasma  

Science Journals Connector (OSTI)

The addition of small amounts of propane to the direct-current plasma (DCP) affects the emission signal of analyte species in the plasma. In the normal analytical region of the...

McCreary, Terry W; Long, Gary L

1988-01-01T23:59:59.000Z

280

ROLE OF CONSTITUENT ELEMENTS IN PROPANE OXIDATION OVER MIXED METAL OXIDES.  

E-Print Network [OSTI]

??Recently discovered multi-component Mo-V-Te-Nb-O catalysts contain so-called M1 and M2 phases with orthorhombic and hexagonal structures, respectively, proposed to be active and selective in propane (more)

BHANDARI, RISHABH

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "area transit propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Treatment of Nuclear Waste Solutions Using a New Class of Extractants: Pentaalkyl Propane Diamides  

Science Journals Connector (OSTI)

A new class of bifunctional extractants pentaalkyl propane diamides is studied in order to extract trivalent cations (Am3+, Cm3+) and other actinides contained in waste solutions of nuclear industry. These solve...

C. Cuillerdier; C. Musikas; P. Hoel

1991-01-01T23:59:59.000Z

282

Crossover SAFT Equation of State and Thermodynamic Properties of Propan-1-ol  

Science Journals Connector (OSTI)

In this work we have developed a new equation of state (EOS) for propan-1-ol on the basis of the crossover modification (CR) of the statistical-associating-fluid-theory (SAFT) EOS recently developed and applied t...

S. B. Kiselev; J. F. Ely; I. M. Abdulagatov

2000-11-01T23:59:59.000Z

283

Experimental studies of steam-propane injection to enhance recovery of an intermediate crude oil.  

E-Print Network [OSTI]

??In the past few years, research has been conducted at Texas A&M University on steam-propane injection to enhance oil recovery from the Morichal field, Venezuela, (more)

Tinss, Judicael Christopher

2012-01-01T23:59:59.000Z

284

Etude cin\\'etique de CVD de pyrocarbone obtenu par pyrolyse de propane  

E-Print Network [OSTI]

High temeperature (900-1000\\degree C) low pressure (propane yields a pyrocarbon deposit, but also mainly hydrogen and hydrocarbons from methane to polyaromatics. 30 reaction products were exeperimentally quantified at different operating conditions. A detailed kinetic pyrolysis model (600 reactions) has been developed and validated based on the totality of experiments. This model includes a homogeneous model (describing the gas phase pyrolysis of propane) coupled with a heterogeneous model describing the pyrocarbon deposit.

Ziegler-Devin, Isabelle; Marquaire, Paul-Marie

2009-01-01T23:59:59.000Z

285

Nitrous Oxide as a Scavenger for Electrons in the Radiolysis of Propane  

Science Journals Connector (OSTI)

... (~400 ml.) using a cobalt-60 -ray source. The dose-rate in propane was 5 1014 eV ml,?1 min?1 (nitrous oxide dosimeter: assuming ... eV2 and using an experimentally determined value of 1.42 for the stopping power of propane relative to N2O). Total doses were 1016?1017 eV ml.?1. The results ...

G. R. A. JOHNSON; J. M. WARMAN

1964-07-04T23:59:59.000Z

286

Subnanometer platinum clusters highly active and selective catalysts for the oxidative dehydrogenation of propane.  

SciTech Connect (OSTI)

Small clusters are known to possess reactivity not observed in their bulk analogues, which can make them attractive for catalysis. Their distinct catalytic properties are often hypothesized to result from the large fraction of under-coordinated surface atoms. Here, we show that size-preselected Pt{sub 8-10} clusters stabilized on high-surface-area supports are 40-100 times more active for the oxidative dehydrogenation of propane than previously studied platinum and vanadia catalysts, while at the same time maintaining high selectivity towards formation of propylene over by-products. Quantum chemical calculations indicate that under-coordination of the Pt atoms in the clusters is responsible for the surprisingly high reactivity compared with extended surfaces. We anticipate that these results will form the basis for development of a new class of catalysts by providing a route to bond-specific chemistry, ranging from energy-efficient and environmentally friendly synthesis strategies to the replacement of petrochemical feedstocks by abundant small alkanes.

Vajda, S; Pellin, M. J.; Greeley, J. P.; Marshall, C. L.; Curtiss, L. A.; Ballentine, G. A.; Elam, J. W.; Catillon-Mucherie, S.; Redfern, P. C.; Mehmood, F.; Zapol, P.; Yale Univ.

2009-03-01T23:59:59.000Z

287

Specification for the flexible metal bellows, transition pieces and flanges for the vacuun tubes for magnets in the West Experimental Area of the 300 GeV proton synchroton  

E-Print Network [OSTI]

Specification for the flexible metal bellows, transition pieces and flanges for the vacuun tubes for magnets in the West Experimental Area of the 300 GeV proton synchroton

Pearce, N

1974-01-01T23:59:59.000Z

288

No. 2 heating oil/propane program 1994--1995. Final report  

SciTech Connect (OSTI)

During the 1994--95 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1994 through March 1995. This program augmented the existing Massachusetts data collection system and served several important functions. The information helped the federal and state governments respond to consumer, congressional and media inquiries regarding No. 2 oil and propane. The information also provided policy decision-makers with timely, accurate and consistent data to monitor current heating oil and propane markets and develop appropriate state responses when necessary. In addition, the communication network between states and the DOE was strengthened through this program. This final report begins with an overview of the unique events that had an impact on the petroleum markets prior to and during the reporting period. Next, the report summarizes the results from residential heating oil and propane price surveys conducted by DOER over the 1994--95 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by EIA and distributed to the states. Finally, the report outlines DOER`s use of the data.

McBrien, J.

1995-05-01T23:59:59.000Z

289

An Analysis of U.S. Propane Markets Winter 1996-97  

Gasoline and Diesel Fuel Update (EIA)

OOG/97-01 OOG/97-01 Distribution Category UC-950 An Analysis of U.S. Propane Markets Winter 1996-97 June 1997 Energy Information Administration Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. Contacts and Acknowledgments This report was prepared by the Energy Information Administration (EIA) under the direction of Dr. John Cook, Director, Petroleum Marketing Division, Office of Oil and Gas, (202) 586-5214, jcook@eia.doe.gov. Questions for this report can be directed to: Propane Supply and Demand David Hinton (202) 586-2990, dhinton@eia.doe.gov Propane Markets

290

Propane Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Propane Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used for U.S. propane vehicle and infrastructure projects. To determine which codes and standards apply to a specific project, identify the codes and standards currently in effect within the jurisdiction where the project will be located. Some jurisdictions also have unique ordinances or regulations that could apply. Learn about codes and standards basics at www.afdc.energy.gov/afdc/codes_standards_basics.html. Find propane vehicle and infrastructure codes and standards in these categories:

291

The determination of compressibility factors of gaseous propane-nitrogen mixtures  

E-Print Network [OSTI]

LIBRARY A A N O'iLLEOE OF 1EXAS THE DETERMINATION OF COMPRESSIBILITY FACTORS OF GASEOUS PROPANE-NITROGEIN MIXTURES A Thesis Cecil Herman Dickson Submitted to the Graduate School of the Agricultural and Mechanical College of' Texas in partial... f'ulf'illment of the requirements for the de~ree of MASTER OF SCIENCE Ma]or GubjectI Chemistry May I&55 THE DETERMINATION OF COMPRESSIBILITY FACTORS OF GASEOUS PROPANE-NITROGEN MIXTURES A Thesis Cecil Herman Dickson Approved as to style...

Dickson, Cecil Herman

2012-06-07T23:59:59.000Z

292

The determination of compressibility factors of gaseous propane-nitrogen mixtures  

E-Print Network [OSTI]

of thc Beg;voc cf kBSTBACT The propane-nitrogen system has been investigated in the gaseous phase at a temperature of 300 F. and at pressures up to 4/0 atmospheres. Compressibility curves for three mixtures of this system have been determined. A... the pressure corresponding to the "n " expansion ? th? the partial pressure of nitrogen the partial pressure oi' propane the total pressure of a gaseous system the universal gas constant (0. 08206 liter-atmosphere/ gram mole - oK) the absolute...

Hodges, Don

2012-06-07T23:59:59.000Z

293

Inhibition of the R3327MAT-Lu Prostatic Tumor by Diethylstilbestrol and 1,2-Bis(3,5-dioxopiperazin-1-yl)propane  

Science Journals Connector (OSTI)

...2-Bis(3,5-dioxopiperazin-1-yl)propane 1 1 This investigation was supported by...2-bis(3,5-dioxopiperazin-1-yl)propane. Inhibition of the R3327MAT-Lu prostatic...2-bis(3,5-dioxopiperazin-1-yl)propane. | We have previously described the inhibitory...

David W. Lazan; Warren D. W. Heston; Dov Kadmon; William R. Fair

1982-04-01T23:59:59.000Z

294

Shock tube and theoretical studies on the thermal decomposition of propane : evidence for a roaming radical channel.  

SciTech Connect (OSTI)

The thermal decomposition of propane has been studied using both shock tube experiments and ab initio transition state theory-based master equation calculations. Dissociation rate constants for propane have been measured at high temperatures behind reflected shock waves using high-sensitivity H-ARAS detection and CH{sub 3} optical absorption. The two major dissociation channels at high temperature are C{sub 3}H{sub 8} {yields} CH{sub 3} + C{sub 2}H{sub 5} (eq 1a) and C{sub 3}H{sub 8} {yields} CH{sub 4} + C{sub 2}H{sub 4} (eq 1b). Ultra high-sensitivity ARAS detection of H-atoms produced from the decomposition of the product, C{sub 2}H{sub 5}, in (1a), allowed measurements of both the total decomposition rate constants, k{sub total}, and the branching to radical products, k{sub 1a}/k{sub total}. Theoretical analyses indicate that the molecular products are formed exclusively through the roaming radical mechanism and that radical products are formed exclusively through channel 1a. The experiments were performed over the temperature range 1417-1819 K and gave a minor contribution of (10 {+-} 8%) due to roaming. A multipass CH{sub 3} absorption diagnostic using a Zn resonance lamp was also developed and characterized in this work using the thermal decomposition of CH{sub 3}I as a reference reaction. The measured rate constants for CH{sub 3}I decomposition agreed with earlier determinations from this laboratory that were based on I-atom ARAS measurements. This CH{sub 3} diagnostic was then used to detect radicals from channel 1a allowing lower temperature (1202-1543 K) measurements of k1a to be determined. Variable reaction coordinate-transition state theory was used to predict the high pressure limits for channel (1a) and other bond fission reactions in C{sub 3}H{sub 8}. Conventional transition state theory calculations were also used to estimate rate constants for other tight transition state processes. These calculations predict a negligible contribution (<1%) from all other bond fission and tight transition state processes, indicating that the bond fission channel (1a) and the roaming channel (1b) are indeed the only active channels at the temperature and pressure ranges of the present experiments. The predicted reaction exo- and endothermicities are in excellent agreement with the current version of the Active Thermochemical Tables. Master equation calculations incorporating these transition state theory results yield predictions for the temperature and pressure dependence of the dissociation rate constants for channel 1a. The final theoretical results reliably reproduce the measured dissociation rate constants that are reported here and in the literature. The experimental data are well reproduced over the 500-2500 K and 1 x 10{sup -4} to 100 bar range (errors of {approx}15% or less) by the following Troe parameters for Ar as the bath gas: k{sub {infinity}} = 1.55 x 10{sup 24}T{sup -2.034} exp(-45490/T) s{sup -1}, k{sub 0} = 7.92 x 10{sup 53}T{sup -16.67} exp(-50380/T) cm{sup 3} s{sup -1}, and F{sub c} = 0.190 exp(-T/3091) + 0.810 exp(-T/128) + exp(-8829/T).

Sivaramakrishnan, R.; Su, M.-C.; Michael, J. V.; Klippenstein, S. J.; Harding, L. B.; Ruscic, B. (Chemical Sciences and Engineering Division)

2011-04-21T23:59:59.000Z

295

State heating oil and propane program: 1995-96 heating season. Final report  

SciTech Connect (OSTI)

This is a summary report of the New Hampshire Governor`s Office of Energy and Community Services (ECS) participation in the State Heating Oil and Propane Program (SHOPP) for the 1995/96 heating season. SHOPP is a cooperative effort, linking energy offices in East Coast and Midwest states, with the Department of Energy (DOE), Energy Information Administration (EIA) for the purpose of collecting retail price data for heating oil and propane. The program funded by the participating state with a matching grant from DOE. EIA provides ECS with a list of oil and propane retailers that serve customers in New Hampshire. In turn ECS conduct phone surveys twice per month from October through March to determine the average retail price for each fuel. Data collected by ECS is entered into the Petroleum Electronic Data Reporting Option (PEDRO) and transmitted via modem to EIA. The results of the state retail price surveys along with wholesale prices, supply, production and stock levels for oil, and propane are published by EIA in the Weekly Petroleum Status Report. Data is also published electronically via the internet or through the Electronic Publication System.

NONE

1996-12-31T23:59:59.000Z

296

Syngas Production from Propane using Atmospheric Non-Thermal Plasma F. Ouni, A. Khacef*  

E-Print Network [OSTI]

1 Syngas Production from Propane using Atmospheric Non-Thermal Plasma F. Ouni, A. Khacef* and J. M and low temperature (420 K). Non-thermal plasma steam reforming proceeded efficiently and hydrogen by increasing the gas fraction through the discharge. By improving the reactor design, the non-thermal plasma

Paris-Sud XI, Université de

297

State of Missouri 1991--1992 Energy Information Administration State Heating Oil and Propane Program (SHOPP)  

SciTech Connect (OSTI)

The objective of the Missouri State Heating Oil and Propane Program was to develop a joint state-level company-specific data collective effort. The State of Missouri provided to the US Department of Energy's Energy Information Administration company specific price and volume information on residential No. 2 heating oil and propane on a semimonthly basis. The energy companies participating under the program were selected at random by the US Department of Energy and provided to the Missouri Department of Natural Resources' Division of Energy prior to the implementation of the program. The specific data collection responsibilities for the Missouri Department of Natural Resources' Division of Energy included: (1) Collection of semimonthly residential heating oil and propane prices, collected on the first and third Monday from August 1991 through August 1992; and, (2) Collection of annual sales volume data for residential propane for the period September 1, 1990 through August 31. 1991. This data was required for the first report only. These data were provided on a company identifiable level to the extent permitted by State law. Information was transmitted to the US Department of Energy's Energy Information Administration through the Petroleum Electronic Data Reporting Option (PEDRO).

Not Available

1992-01-01T23:59:59.000Z

298

Partial oxidation of propane on ceria-and alumina-supported platinum catalysts.  

E-Print Network [OSTI]

??Three Pt/CeO2 catalysts and Pt/Al2O3 catalyst were studied for partial oxidation of propane. The 1 % Pt/CeO2 (C) catalyst which was prepared using CeO2 prepared (more)

Bansode, Vijaya Anil.

2006-01-01T23:59:59.000Z

299

Aromatization of propane: Techno-economic analysis by multiscale kinetics-to-process simulation  

Science Journals Connector (OSTI)

Abstract This paper addresses the techno-economic analysis of the propane aromatization process, by adopting a novel kinetics-to-process approach. The recent interest in this technological route derives from the development of new third generation biorefinery concepts, in which, algal oil is subjected to catalytic hydrodeoxygenation processes for the production of (Hydrotreated Renewable Jet) HRJ fuels. Beside biofuels, co-production of large amounts of propane is observed, which can be upgraded by a catalytic conversion to aromatics on zeolites. Kinetic studies of propane aromatization over H-ZSM-5 zeolite in a wide range of conversions are reported in the literature. Based on these results, a general kinetic model of propane aromatization has been developed. The revised kinetic scheme is then embedded in a process simulation, performed with the commercial code SimSci PRO/II by Schneider Electric. Basing on the process simulation and on available price assessments, a techno-economic analysis has been performed to show limits as well as potentialities of the proposed layout.

Michele Corbetta; Flavio Manenti; Carlo Pirola; Mark V. Tsodikov; Andrey V. Chistyakov

2014-01-01T23:59:59.000Z

300

Metallurgical failure analysis of a propane tank boiling liquid expanding vapor explosion (BLEVE).  

SciTech Connect (OSTI)

A severe fire and explosion occurred at a propane storage yard in Truth or Consequences, N.M., when a truck ran into the pumping and plumbing system beneath a large propane tank. The storage tank emptied when the liquid-phase excess flow valve tore out of the tank. The ensuing fire engulfed several propane delivery trucks, causing one of them to explode. A series of elevated-temperature stress-rupture tears developed along the top of a 9800 L (2600 gal) truck-mounted tank as it was heated by the fire. Unstable fracture then occurred suddenly along the length of the tank and around both end caps, along the girth welds connecting the end caps to the center portion of the tank. The remaining contents of the tank were suddenly released, aerosolized, and combusted, creating a powerful boiling liquid expanding vapor explosion (BLEVE). Based on metallography of the tank pieces, the approximate tank temperature at the onset of the BLEVE was determined. Metallurgical analysis of the ruptured tank also permitted several hypotheses regarding BLEVE mechanisms to be evaluated. Suggestions are made for additional work that could provide improved predictive capabilities regarding BLEVEs and for methods to decrease the susceptibility of propane tanks to BLEVEs.

Kilgo, Alice C.; Eckelmeyer, Kenneth Hall; Susan, Donald Francis

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "area transit propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Novel Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation  

SciTech Connect (OSTI)

Catalysts for the dehydrogenation of light alkanes were prepared by dispersing Pt on the surface of a calcined hydrotalcite-like support containing indium, Mg(In)(Al)O. Upon reduction in H{sub 2} at temperatures above 673 K, bimetallic particles of PtIn are observed by TEM, which have an average diameter of 1 nm. Analysis of Pt LIII-edge extended X-ray absorption fine structure (EXAFS) data shows that the In content of the bimetallic particles increases with increasing bulk In/Pt ratio and reduction temperature. Pt LIII-edge X-ray absorption near edge structure (XANES) indicates that an increasing donation of electronic charge from In to Pt occurs with increasing In content in the PtIn particles. The activity and selectivity of the Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation reactions are strongly dependent on the bulk In/Pt ratio. For both reactants, maximum activity was achieved for a bulk In/Pt ratio of 0.48, and at this In/Pt ratio, the selectivity to alkene was nearly 100%. Coke deposition was observed after catalyst use for either ethane or propane dehydrogenation, and it was observed that the alloying of Pt with In greatly reduced the amount of coke deposited. Characterization of the deposit by Raman spectroscopy indicates that the coke is present as highly disordered graphite particles <30 nm in diameter. While the amount of coke deposited during ethane and propane dehydrogenation are comparable, the effects on activity are dependent on reactant composition. Coke deposition had no effect on ethane dehydrogenation activity, but caused a loss in propane dehydrogenation activity. This difference is attributed to the greater ease with which coke produced on the surface of PtIn nanoparticles migrates to the support during ethane dehydrogenation versus propane dehydrogenation.

Sun, Pingping; Siddiqi, Georges; Vining, William C.; Chi, Miaofang; Bell, Alexis T. (UCB); (ORNL)

2011-10-28T23:59:59.000Z

302

Experimentelle Untersuchung ber die Koeffizienten der inneren Reibung von Stickoxyd und Propan und deren Mischungen mit Wasserstoff  

Science Journals Connector (OSTI)

Es wird also die innere Reibung von Stickoxyd nachgeprft, die Messung von Propan neu ausgefhrt. Ferner wird die innere Reibung von Mischungen NO-H2 und C3H8-H2 gemessen und gezeigt, inwieweit bereinstimmung mi...

Alfons Klemenc; Walter Remi

1923-01-01T23:59:59.000Z

303

Influence of Ceria and Nickel Addition to Alumina-Supported Rhodium Catalyst for Propane Steam Reforming at Low Temperatures.  

E-Print Network [OSTI]

??This work aims to develop a fundamental understanding of the catalyst composition-structure-activity relationships for propane steam reforming over supported Rh catalysts. The work investigates the (more)

Li, Yan

2009-01-01T23:59:59.000Z

304

Thermophysical property predictions of propane, propylene and their mixtures by Benedict-Webb-Rubin type equations of state  

E-Print Network [OSTI]

THERMOPHYSICAL PROPERTY PREDICTIONS OF PROPANE, PROPYLENE AND THEIR MIXTURES BY BENEDICT-WEBB-RUBIN TYPE EQUATIONS OF STATE A Thesis by PRAMOD KUMAR BENGANI Submitted to the Office of Graduate Studies of Texas A & M University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1990 Major Subject: Chemical Engineering THERMOPHYSICAL PROPERTY PREDICTIONS OF PROPANE, PROPYLENE AND THEIR MIXTURES BY BENEDICT-WEBB-RUBIN TYPE EQUATIONS OF STATE A Thesis...

Bengani, Pramod Kumar

2012-06-07T23:59:59.000Z

305

Towards a kinetic understanding of the ignition of air-propane mixture by a non-equilibrium discharge: the decomposition mechanisms of propane  

Science Journals Connector (OSTI)

The decomposition of propane in non-thermal plasmas of N2/C3H8 and N2/O2/C3H8 mixtures (oxygen percentage up to 20%) at low temperature is studied in a photo-triggered discharge. Quenching of nitrogen metastable states dissociate C3H8 to produce propene and hydrogen. Oxidation reactions are growing in importance when the O2 concentration increases, but the dissociation quenching reactions still occurs for the air-based mixture. Even for a low concentration of oxygen, OH is an important specie involved in the conversion of the hydrocarbon. A kinetic analysis emphasises that OH comes in great part from the production of H, in which the methyl radical plays a role, strengthening the role of the dissociation processes of propane and propene in the medium reactivity. Results of PLIF measurements performed on OH during the diffuse afterglow of a nanosecond corona discharge correlate with results obtained on the photo-triggered discharge.

Stéphane Pasquiers; Sabrina Bentaleb; Pascal Jeanney; Nicole Blin-Simiand; Pierre Tardiveau; Lionel Magne; Katell Gadonna; Nicolas Moreau; François Jorand

2013-01-01T23:59:59.000Z

306

Fraction of stopped K- mesons which interact with free hydrogen in propane  

Science Journals Connector (OSTI)

In a sample of film containing 13 400 stopped K- mesons in a liquid-propane bubble chamber, 98 examples of the reaction K-p??-?+ were found. Using the known branching ratio for this channel, we find the fraction of K- which interact at rest with free protons to be (3.2 0.4)%. The result is compared with measurements of the same fraction for ?- mesons and anti-protons.

C. T. Murphy; G. Keyes; M. Saha; M. Tanaka

1974-03-01T23:59:59.000Z

307

Propane dehydrogenation over Al2O3 supported Pt nanoparticles: Effect of cerium addition  

Science Journals Connector (OSTI)

Abstract The catalyst of Pt nanoparticles loaded on Al2O3 support has been prepared by a facile liquid phase synthesisultrasonic vibration method. With propane dehydrogenation as a probe reaction, the influence of promoter cerium (Ce) on the catalyst was investigated by means of transmission electron microscope (TEM), X-ray diffraction (XRD), N2 adsorptiondesorption, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy of CO adsorption, H2-temperature programmed reduction (H2-TPR), and catalytic properties for propane dehydrogenation. The results revealed that the Pt nanograins with diameter of 1.64.8nm were evenly dispersed on the Ce-containing Al2O3 support. The introduction of a small amount Ce into Pt/Al2O3 results in a bimetallic surface interaction, enhancing the surface reducibility and dispersity of Pt nanoparticles. The study of propane dehydrogenation performance shows that Ce-containing Pt catalyst is more active and less coke deposition than Ce-free Pt/Al2O3 counterpart. This study can provide an insight into the design and development of new Pt-based catalyst, especially for the improvement of catalytic activity and stability towards alkane dehydrogenation.

Zhanhua Ma; Jun Wang; Jun Li; Ningning Wang; Changhua An; Lanyi Sun

2014-01-01T23:59:59.000Z

308

Vanadium oxide based nanostructured materials for catalytic oxidative dehydrogenation of propane : effect of heterometallic centers on the catalyst performance.  

SciTech Connect (OSTI)

Catalytic properties of a series of new class of catalysts materials-[Co{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42} (XO{sub 4})].24H{sub 2}O (VNM-Co), [Fe{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42}(XO{sub 4})].24H{sub 2}O (VNM-Fe) (X = V, S) and [H{sub 6}Mn{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42}(VO{sub 4})].30H{sub 2}O for the oxidative dehydrogenation of propane is studied. The open-framework nanostructures in these novel materials consist of three-dimensional arrays of {l_brace}V{sub 18}O{sub 42}(XO{sub 4}){r_brace} (X = V, S) clusters interconnected by {l_brace}-O-M-O-{r_brace} (M = Mn, Fe, Co) linkers. The effect of change in the heterometallic center M (M = Mn, Co, Fe) of the linkers on the catalyst performance was studied. The catalyst material with Co in the linker showed the best performance in terms of propane conversion and selectivity at 350 C. The material containing Fe was most active but least selective and Mn containing catalyst was least active. The catalysts were characterized by Temperature Programmed Reduction (TPR), BET surface area measurement, Diffuse Reflectance Infrared Fourier Transform Spectroscopy, and X-ray Absorption Spectroscopy. TPR results show that all three catalysts are easily reducible and therefore are active at relatively low temperature. In situ X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure spectroscopy (EXAFS) studies revealed that the oxidation state of Co(II) remained unchanged up to 425 C (even after pretreatment). The reduction of Co(II) into metallic form starts at 425 C and this process is completed at 600 C.

Khan, M. I.; Deb, S.; Aydemir, K.; Alwarthan, A. A.; Chattopadhyay, S.; Miller, J. T.; Marshall, C. L. (Chemical Sciences and Engineering Division); (Illinois Inst. of Tech.); (King Saud Univ.)

2010-01-01T23:59:59.000Z

309

Propane (Consumer Grade) Prices - Sales to End Users  

U.S. Energy Information Administration (EIA) Indexed Site

Sales Type: Sales to End Users, Average Residential Commercial/Institutional Industrial Through Retail Outlets Petro-Chemical Other End Users Sales for Resale Period: Monthly Annual Sales Type: Sales to End Users, Average Residential Commercial/Institutional Industrial Through Retail Outlets Petro-Chemical Other End Users Sales for Resale Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Sales Type Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. - - - - - - 1993-2013 East Coast (PADD 1) - - - - - - 1993-2013 New England (PADD 1A) - - - - - - 1993-2013 Central Atlantic (PADD 1B) - - - - - - 1993-2013 Lower Atlantic (PADD 1C) - - - - - - 1993-2013 Midwest (PADD 2) - - - - - - 1993-2013 Gulf Coast (PADD 3) - - - - - - 1993-2013 Rocky Mountain (PADD 4)

310

An investigation of dieselignited propane dual fuel combustion in a heavy-duty diesel engine  

Science Journals Connector (OSTI)

Abstract This paper presents a detailed experimental analysis of dieselignited propane dual fuel combustion on a 12.9-l, six-cylinder, production heavy-duty diesel engine. Gaseous propane was fumigated upstream of the turbocharger air inlet and ignited using direct injection of diesel sprays. Results are presented for brake mean effective pressures (BMEP) from 5 to 20bar and different percent energy substituted (PES) by propane at a constant engine speed of 1500rpm. The effect of propane PES on apparent heat release rates, combustion phasing and duration, fuel conversion and combustion efficiencies, and engine-out emissions of oxides of nitrogen (NOx), smoke, carbon monoxide (CO), and total unburned hydrocarbons (HC) were investigated. Exhaust particle number concentrations and size distributions were also quantified for dieselignited propane combustion. With stock engine parameters, the maximum propane PES was limited to 86%, 60%, 33%, and 25% at 5, 10, 15, and 20bar BMEPs, respectively, either by high maximum pressure rise rates (MPRR) or by excessive HC and CO emissions. With increasing PES, while fuel conversion efficiencies increased slightly at high \\{BMEPs\\} or decreased at low BMEPs, combustion efficiencies uniformly decreased. Also, with increasing PES, \\{NOx\\} and smoke emissions were generally decreased but these reductions were accompanied by higher HC and CO emissions. Exhaust particle number concentrations decreased with increasing PES at low loads but showed the opposite trends at higher loads. At 10bar BMEP, by adopting a different fueling strategy, the maximum possible propane PES was extended to 80%. Finally, a limited diesel injection timing study was performed to identify the optimal operating conditions for the best efficiency-emissions-MPRR tradeoffs.

Andrew C. Polk; Chad D. Carpenter; Kalyan Kumar Srinivasan; Sundar Rajan Krishnan

2014-01-01T23:59:59.000Z

311

Experimental study of enhancement of injectivity and in-situ oil upgrading by steam-propane injection for the Hamaca heavy oil field.  

E-Print Network [OSTI]

??Experiments were conducted to study the feasibility of using propane as a steam additive to accelerate oil production and improve steam injectivity in the Hamaca (more)

Rivero Diaz, Jose Antonio

2012-01-01T23:59:59.000Z

312

Federal Transit Administration-National Transit Database (NTD) | Open  

Open Energy Info (EERE)

Federal Transit Administration-National Transit Database (NTD) Federal Transit Administration-National Transit Database (NTD) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Federal Transit Administration-National Transit Database (NTD) Agency/Company /Organization: Federal Transit Administration Sector: Energy Focus Area: Transportation Resource Type: Dataset User Interface: Website Website: www.ntdprogram.gov/ntdprogram/ Cost: Free Language: English Federal Transit Administration-National Transit Database (NTD) Screenshot References: National Transit Database[1] "The NTD was established by Congress to be the Nation's primary source for information and statistics on the transit systems of the United States. Recipients or beneficiaries of grants from the Federal Transit Administration (FTA) under the Urbanized Area Formula Program (§5307) or

313

When the train comes : exploring the use of property and land acquisition funds to ensure affordability in future transit station areas  

E-Print Network [OSTI]

Living in walkable, transit-accessible neighborhoods has many economic, health and social advantages. Yet, as demand for housing in this type of neighborhood increases, low-income people already living in or who would like ...

Padilla, Sandra

2010-01-01T23:59:59.000Z

314

Fraction of Stopped Antiprotons which Annihilate on Free Hydrogen in Propane  

Science Journals Connector (OSTI)

Antiprotons were stopped in a liquid-propane bubble chamber. In a sample of film containing 75 000 annihilations at rest, 21 examples of the reactions pp??+?- or pp?K+K- were identified. This number, together with the previously measured branching ratios of these channels in liquid hydrogen, leads to a determination that (113)% of the antiprotons annihilate on free protons. The remaining 89% annihilate on bound nucleons in carbon. This fraction is markedly higher than the fraction of ?- at rest which charge exchange on free protons in similar hydrocarbons. An explanation of the large difference is suggested.

W. T. Pawlewicz; C. T. Murphy; J. G. Fetkovich; T. Dombeck; M. Derrick; T. Wangler

1970-12-01T23:59:59.000Z

315

Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area  

E-Print Network [OSTI]

C-130 T0 T1 G1 Ethane Propane i-Butane n-Butane i-Pentane n-ppbv) Ethane Ethene Ethyne Propane Propene i-Butane n-Butanee.g. , ethane, ethene, propane, propane, methanol, ethanol,

2010-01-01T23:59:59.000Z

316

Analysis of ignition behavior in a turbocharged direct injection dual fuel engine using propane and methane as primary fuels  

SciTech Connect (OSTI)

This paper presents experimental analyses of the ignition delay (ID) behavior for diesel-ignited propane and diesel-ignited methane dual fuel combustion. Two sets of experiments were performed at a constant speed (1800 rev/min) using a 4-cylinder direct injection diesel engine with the stock ECU and a wastegated turbocharger. First, the effects of fuel-air equivalence ratios (???© pilot ?¢???¼ 0.2-0.6 and ???© overall ?¢???¼ 0.2-0.9) on IDs were quantified. Second, the effects of gaseous fuel percent energy substitution (PES) and brake mean effective pressure (BMEP) (from 2.5 to 10 bar) on IDs were investigated. With constant ???© pilot (> 0.5), increasing ???© overall with propane initially decreased ID but eventually led to premature propane autoignition; however, the corresponding effects with methane were relatively minor. Cyclic variations in the start of combustion (SOC) increased with increasing ???© overall (at constant ???© pilot), more significantly for propane than for methane. With increasing PES at constant BMEP, the ID showed a nonlinear (initially increasing and later decreasing) trend at low BMEPs for propane but a linearly decreasing trend at high BMEPs. For methane, increasing PES only increased IDs at all BMEPs. At low BMEPs, increasing PES led to significantly higher cyclic SOC variations and SOC advancement for both propane and methane. Finally, the engine ignition delay (EID) was also shown to be a useful metric to understand the influence of ID on dual fuel combustion.

Polk, A. C.; Gibson, C. M.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

2011-10-05T23:59:59.000Z

317

Influence of propane on CO2/CH4 and N2/CH4 separations in CHA zeolite membranes  

Science Journals Connector (OSTI)

Abstract Two types of CHA zeolite membranes (SAPO-34, SSZ-13) were used for CO2/CH4, N2/CH4, and CO2/i-butane separations at both low (270 and 350kPa) and high (1.73MPa) pressures. The SSZ-13 membranes were more selective, with CO2/CH4 separation selectivities as high as 280 and N2/CH4 separation selectivities of 12 at 270kPa feed pressure. For both types of membranes, selectivities and permeances decreased as the feed pressure increased. The CO2/i-butane separation selectivities were greater than 500,000 for SAPO-34 membranes, indicating extremely low densities of defects because i-butane is too large to enter the CHA pores. The CO2/i-butane selectivities were smaller for SSZ-13 membranes (2,80020,000), in part because the SSZ-13 layer was on the outside of the porous mullite tubes and sealing the membrane on the zeolite surface was more difficult than for the SAPO-34 membranes that were grown on the inside of glazed alumina tubes. Propane, in feed concentrations from 1 to 9%, significantly influenced separations by decreasing permeances in most cases. The effect was larger for N2/CH4 than for CO2/CH4 mixtures, apparently because the more strongly-adsorbing CO2 competes better than N2 with propane for adsorption sites. Although propane caused permeances to decrease significantly over time, selectivities decreased much less. Propane decreased permeances more for SAPO-34 membranes than for SSZ-13 membranes at 350kPa, and at high pressure propane even increased CO2 permeances and decreased CH4 permeances in SSZ-13 membranes, thus significantly increasing CO2/CH4 selectivities. Propane permeances reached steady state relatively quickly because its permeation was mostly through defects, but CO2, N2, and CH4 permeances did not stabilize in the presence of propane, even after seven days. The effects of propane were reversible when it was removed from the feed and the membranes were heated.

Ting Wu; Merritt C. Diaz; Yihong Zheng; Rongfei Zhou; Hans H. Funke; John L. Falconer; Richard D. Noble

2015-01-01T23:59:59.000Z

318

The catalytic oxidation of propane and propylene with air: total aldehyde production and selectivity at low conversions.  

E-Print Network [OSTI]

~ Ths writer is izntebteg to pr, P G~ ~och Tor his assistance azsi guidance in this work aC to Br~ J+ 9 Kinds Tor his aery. suggestions eel Succor~ a The oxidation cf propane~ propylene and prcya~cregyimm mbetccres ctver a ~ aiucdna ~st in a flew... formation of aldehyde fran pure grade propane The ~ce of Within the range of variables of this investigation and with propylene ~& aldehyde pr~cn was f'ennd to bs independent of" residence Qorrcgations relating aldehyde pressure to ~ and cncygsn pressure...

Looney, Franklin Sittig

2012-06-07T23:59:59.000Z

319

Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions  

SciTech Connect (OSTI)

U.S. natural gas composition is expected to be more variable in the future. Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Unconventional gas supplies, like coal-bed methane, are also expected to grow. As a result of these anticipated changes, the composition of fuel sources may vary significantly from existing domestic natural gas supplies. To allow the greatest use of gas supplies, end-use equipment should be able to accommodate the widest possible gas composition. For this reason, the effect of gas composition on combustion behavior is of interest. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 589K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx emissions. These results vary from data reported in the literature for some engine applications and potential reasons for these differences are discussed.

D. Straub; D. Ferguson; K. Casleton; G. Richards

2006-03-01T23:59:59.000Z

320

Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions  

SciTech Connect (OSTI)

Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Likewise, it is expected that changes to the domestic gas supply may also introduce changes in natural gas composition. As a result of these anticipated changes, the composition of fuel sources may vary significantly from conventional domestic natural gas supplies. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 588 K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx or CO emissions. These results are different from data collected on some engine applications and potential reasons for these differences will be described.

Straub, D.L.; Ferguson, D.H.; Casleton, K.H.; Richards, G.A.

2007-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "area transit propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Comparison of propane and methane performance and emissions in a turbocharged direct injection dual fuel engine  

SciTech Connect (OSTI)

With increasingly restrictive NO x and particulate matter emissions standards, the recent discovery of new natural gas reserves, and the possibility of producing propane efficiently from biomass sources, dual fueling strategies have become more attractive. This paper presents experimental results from dual fuel operation of a four-cylinder turbocharged direct injection (DI) diesel engine with propane or methane (a natural gas surrogate) as the primary fuel and diesel as the ignition source. Experiments were performed with the stock engine control unit at a constant speed of 1800 rpm, and a wide range of brake mean effective pressures (BMEPs) (2.7-11.6 bars) and percent energy substitutions (PESs) of C 3 H 8 and CH 4. Brake thermal efficiencies (BTEs) and emissions (NO x, smoke, total hydrocarbons (THCs), CO, and CO 2) were measured. Maximum PES levels of about 80-95% with CH 4 and 40-92% with C 3 H 8 were achieved. Maximum PES was limited by poor combustion efficiencies and engine misfire at low loads for both C 3 H 8 and CH 4, and the onset of knock above 9 bar BMEP for C 3 H 8. While dual fuel BTEs were lower than straight diesel BTEs at low loads, they approached diesel BTE values at high loads. For dual fuel operation, NO x and smoke reductions (from diesel values) were as high as 66-68% and 97%, respectively, but CO and THC emissions were significantly higher with increasing PES at all engine loads

Gibson, C. M.; Polk, A. C.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

2011-04-20T23:59:59.000Z

322

Optimized design of a heat exchanger for an air-to-water reversible heat pump working with propane (R290)  

E-Print Network [OSTI]

Optimized design of a heat exchanger for an air-to-water reversible heat pump working with propane-to-water reversible heat pump unit was carried out using two different fin-and-tube heat exchanger ``coil'' designs concepts. The performance of the heat pump was evaluated for each coil design at different superheat

Fernández de Córdoba, Pedro

323

Using Membrane Reactive Absorption Modeling to Predict Optimum Process Conditions in the Separation of PropanePropylene Mixtures  

Science Journals Connector (OSTI)

Chilukuri, P.; Rademakers, K.; Nymeijer, K.; Van der Ham, L.; Van Berg, H. D.Propylene/propane separation with a gas/liquid membrane contactor using a silver salt solution Ind. Eng. ... Chilukuri, Pavan; Rademakers, Karlijn; Nymeijer, Kitty; van der Ham, Louis; van den Berg, Henk ...

Marcos Fallanza; Alfredo Ortiz; Daniel Gorri; Inmaculada Ortiz

2013-01-11T23:59:59.000Z

324

Effect of treatment technology for the surface of multicomponent oxide compounds with sillenite structure on the electron-transition kinetics in surface areas  

Science Journals Connector (OSTI)

The regularities in variation of the photocurrent kinetic curve for sillenite crystals are clarified for pulse photoactivation depending on the technological features of formation of their surface areas. A the...

A. N. Chaplygin; E. A. Spirin; A. S. Sizov

2008-12-01T23:59:59.000Z

325

A comparison of advanced distillation control techniques for a propylene/propane splitter  

SciTech Connect (OSTI)

A detailed dynamic simulator of a propylene/propane (C{sub 3}) splitter, which was bench-marked against industrial data, has been used to compare dual composition control performance for a diagonal PI controller and several advanced controllers. The advanced controllers considered are DMC, nonlinear process model based control, and artificial neural networks. Each controller was tuned based upon setpoint changes in the overhead production composition using 50% changes in the impurity levels. Overall, there was not a great deal of difference in controller performance based upon the setpoint and disturbance tests. Periodic step changes in feed composition were also used to compare controller performance. In this case, oscillatory variations of the product composition were observed and the variabilities of the DMC and nonlinear process model based controllers were substantially smaller than that of the PI controller. The sensitivity of each controller to the frequency of the periodic step changes in feed composition was also investigated.

Gokhale, V.; Hurowitz, S.; Riggs, J.B. [Texas Tech Univ., Lubbock, TX (United States). Dept. of Chemical Engineering

1995-12-01T23:59:59.000Z

326

Cross sections for electron scattering by propane in the low- and intermediate-energy ranges  

SciTech Connect (OSTI)

We present a joint theoretical-experimental study on electron scattering by propane (C{sub 3}H{sub 8}) in the low- and intermediate-energy ranges. Calculated elastic differential, integral, and momentum transfer as well as total (elastic + inelastic) and total absorption cross sections are reported for impact energies ranging from 2 to 500 eV. Also, experimental absolute elastic cross sections are reported in the 40- to 500-eV energy range. A complex optical potential is used to represent the electron-molecule interaction dynamics. A theoretical method based on the single-center-expansion close-coupling framework and corrected by the Pade approximant is used to solve the scattering equations. The experimental angular distributions of the scattered electrons are converted to absolute cross sections using the relative flow technique. The comparison of our calculated with our measured results, as well as with other experimental and theoretical data available in the literature, is encouraging.

Souza, G. L. C. de; Lee, M.-T.; Sanches, I. P.; Rawat, P.; Iga, I.; Santos, A. S. dos; Machado, L. E.; Sugohara, R. T.; Brescansin, L. M.; Homem, M. G. P.; Lucchese, R. R. [Departamento de Quimica, UFSCar, 13565-905 Sao Carlos, SP (Brazil); Departamento de Fisica, UFSCar, 13565-905 Sao Carlos, SP (Brazil); Instituto de Fisica 'Gleb Wataghin', UNICAMP, 13083-970 Campinas, SP (Brazil); Departamento de Fisica, UFSC, 88010-970 Florianopolis, SC (Brazil); Department of Chemistry, Texas A and M University, College Station, Texas 7784-3255 (United States)

2010-07-15T23:59:59.000Z

327

Synthesis and Characterization of Gold Clusters Ligated with 1,3-Bis(dicyclohexylphosphino)propane  

SciTech Connect (OSTI)

In this multidisciplinary study we combine chemical reduction synthesis of novel gold clusters in solution with high-resolution analytical mass spectrometry (MS) to gain insight into the composition of the gold clusters and how their size, ionic charge state and ligand substitution influences their gas-phase fragmentation pathways. Ultra small cationic gold clusters ligated with 1,3-bis(dicyclohexylphosphino)propane (DCPP) were synthesized for the first time and introduced into the gas phase using electrospray ionization (ESI). Mass-selected cluster ions were fragmented employing collision induced dissociation (CID) and the product ions were analysed using MS. The solutions were found to contain the multiply charged cationic gold clusters Au9L43+, Au13L53+, Au6L32+, Au8L32+ and Au10L42+ (L = DCPP). The gas-phase fragmentation pathways of these cluster ions were examined systematically employing CID combined with MS. In addition, CID experiments were performed on related gold clusters of the same size and ionic charge state but capped with 1,3-bis(diphenylphosphino)propane (DPPP) ligands containing phenyl functional groups at the two phosphine centers instead of cyclohexane rings. It is shown that this relatively small change in the molecular substitution of the two phosphine centers in diphosphine ligands (C6H11 versus C6H5) exerts a pronounced influence on the size of the species that are preferentially formed in solution during reduction synthesis as well as the gas-phase fragmentation channels of otherwise identical gold cluster ions. The mass spectrometry results indicate that in addition to the length of the alkyl chain between the two phosphine centers, the substituents at the phosphine centers also play a crucial role in determining the composition, size and stability of diphosphine ligated gold clusters synthesized in solution.

Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia

2013-09-01T23:59:59.000Z

328

Application of fluid opacity for determining the phase behavior of binary mixtures near their critical loci CO2 plus ethane and CO2 plus propane  

Science Journals Connector (OSTI)

The rapid determination of critical data of binary mixtures of carbon dioxide plus propane and carbon dioxide plus ethane has been carried out using the opalescence effect of pure substances or mixtures near ...

A. Martin; Sigmar Mothes; Gerhard Mannsfeld

1999-08-01T23:59:59.000Z

329

Use of a thermodynamic cycle simulation to determine the difference between a propane-fuelled engine and an iso-octane-fuelled engine  

E-Print Network [OSTI]

the engine cycle simulation to determine the difference between a propane-fuelled and an iso-octane-fuelled engine for the same operating conditions and engine specifications. A comprehensive parametric investigation was conducted to examine the effects...

Pathak, Dushyant

2006-04-12T23:59:59.000Z

330

Adsorption of propane, isopropyl, and hydrogen on cluster models of the M1 phase of Mo-V-Te-Nb-O mixed metal oxide catalyst  

SciTech Connect (OSTI)

The Mo-V-Te-Nb-O mixed metal oxide catalyst possessing the M1 phase structure is uniquely capable of directly converting propane into acrylonitrile. However, the mechanism of this complex eight-electron transformation, which includes a series of oxidative H-abstraction and N-insertion steps, remains poorly understood. We have conducted a density functional theory study of cluster models of the proposed active and selective site for propane ammoxidation, including the adsorption of propane, isopropyl (CH{sub 3}CHCH{sub 3}), and H which are involved in the first step of this transformation, that is, the methylene C-H bond scission in propane, on these active site models. Among the surface oxygen species, the telluryl oxo (Te=O) is found to be the most nucleophilic. Whereas the adsorption of propane is weak regardless of the MO{sub x} species involved, isopropyl and H adsorption exhibits strong preference in the order of Te=O > V=O > bridging oxygens > empty Mo apical site, suggesting the importance of TeO{sub x} species for H abstraction. The adsorption energies of isopropyl and H and consequently the reaction energy of the initial dehydrogenation of propane are strongly dependent on the number of ab planes included in the cluster, which points to the need to employ multilayer cluster models to correctly capture the energetics of surface chemistry on this mixed metal oxide catalyst.

Govindasamy, Agalya [University of Cincinnati; Muthukumar, Kaliappan [University of Cincinnati; Yu, Junjun [University of Cincinnati; Xu, Ye [ORNL; Guliants, Vadim V. [University of Cincinnati

2010-01-01T23:59:59.000Z

331

Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season. Final report  

SciTech Connect (OSTI)

This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

Not Available

1991-10-01T23:59:59.000Z

332

Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season  

SciTech Connect (OSTI)

This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

Not Available

1991-10-01T23:59:59.000Z

333

Transition from Consultation to Monitoring-NRC's Increasingly Focused Review of Factors Important to F-Area Tank Farm Facility Performance - 13153  

SciTech Connect (OSTI)

In consultation with the NRC, DOE issued a waste determination for the F-Area Tank Farm (FTF) facility in March 2012. The FTF consists of 22 underground tanks, each 2.8 to 4.9 million liters in capacity, used to store liquid high-level waste generated as a result of spent fuel reprocessing. The waste determination concluded stabilized waste residuals and associated tanks and auxiliary components at the time of closure are not high-level and can be disposed of as LLW. Prior to issuance of the final waste determination, during the consultation phase, NRC staff reviewed and provided comments on DOE's revision 0 and revision 1 FTF PAs that supported the waste determination and produced a technical evaluation report documenting the results of its multi-year review in October 2011. Following issuance of the waste determination, NRC began to monitor DOE disposal actions to assess compliance with the performance objectives in 10 CFR Part 61, Subpart C. To facilitate its monitoring responsibilities, NRC developed a plan to monitor DOE disposal actions. NRC staff was challenged in developing a focused monitoring plan to ensure limited resources are spent in the most cost-effective manner practical. To address this challenge, NRC prioritized monitoring areas and factors in terms of risk significance and timing. This prioritization was informed by NRC staff's review of DOE's PA documentation, independent probabilistic modeling conducted by NRC staff, and NRC-sponsored research conducted by the Center for Nuclear Waste Regulatory Analyses in San Antonio, TX. (authors)

Barr, Cynthia; Grossman, Christopher; Alexander, George; Parks, Leah; Fuhrmann, Mark; Shaffner, James; McKenney, Christepher [U.S. NRC, Rockville, MD (United States)] [U.S. NRC, Rockville, MD (United States); Pabalan, Roberto; Pickett, David [Center for Nuclear Waste Regulatory Analyses, Southwest Research Institute, San Antonio, TX (United States)] [Center for Nuclear Waste Regulatory Analyses, Southwest Research Institute, San Antonio, TX (United States); Dinwiddie, Cynthia [Southwest Research Institute, San Antonio, TX (United States)] [Southwest Research Institute, San Antonio, TX (United States)

2013-07-01T23:59:59.000Z

334

Operation of a Four-Cylinder 1.9L Propane Fueled HCCI Engine  

SciTech Connect (OSTI)

A four-cylinder 1.9 Volkswagen TDI Engine has been converted to run in Homogeneous Charge Compression Ignition (HCCI) mode. The stock configuration is a turbocharged direct injection Diesel engine. The combustion chamber has been modified by discarding the in-cylinder Diesel fuel injectors and replacing them with blank inserts (which contain pressure transducers). The stock pistons contain a reentrant bowl and have been retained for the tests reported here. The intake and exhaust manifolds have also been retained, but the turbocharger has been removed. A heater has been installed upstream of the intake manifold and fuel is added just downstream of this heater. The performance of this engine in naturally aspirated HCCI operation, subject to variable intake temperature and fuel flow rate, has been studied. The engine has been run with propane fuel at a constant speed of 1800 rpm. This work is intended to characterize the HCCI operation of the engine in this configuration that has been minimally modified from the base Diesel engine. The performance (BMEP, IMEP, efficiency, etc) and emissions (THC, CO, NOx) of the engine are presented, as are combustion process results based on heat release analysis of the pressure traces from each cylinder.

Flowers, D; Aceves, S M; Martinez-Frias, J; Smith, J R; Au, M; Girard, J; Dibble, R

2001-03-15T23:59:59.000Z

335

Autoignited laminar lifted flames of propane in coflow jets with tribrachial edge and mild combustion  

SciTech Connect (OSTI)

Characteristics of laminar lifted flames have been investigated experimentally by varying the initial temperature of coflow air over 800 K in the non-premixed jets of propane diluted with nitrogen. The result showed that the lifted flame with the initial temperature below 860 K maintained the typical tribrachial structure at the leading edge, which was stabilized by the balance mechanism between the propagation speed of tribrachial flame and the local flow velocity. For the temperature above 860 K, the flame was autoignited without having any external ignition source. The autoignited lifted flames were categorized in two regimes. In the case with tribrachial edge structure, the liftoff height increased nonlinearly with jet velocity. Especially, for the critical condition near blowout, the lifted flame showed a repetitive behavior of extinction and reignition. In such a case, the autoignition was controlled by the non-adiabatic ignition delay time considering heat loss such that the autoignition height was correlated with the square of the adiabatic ignition delay time. In the case with mild combustion regime at excessively diluted conditions, the liftoff height increased linearly with jet velocity and was correlated well with the square of the adiabatic ignition delay time. (author)

Choi, B.C.; Kim, K.N.; Chung, S.H. [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744 (Korea)

2009-02-15T23:59:59.000Z

336

Modeling of the formation of short-chain acids in propane flames  

E-Print Network [OSTI]

In order to better understand their potential formation in combustion systems, a detailed kinetic mechanism for the formation of short-chain monocarboxylic acids, formic (HCOOH), acetic (CH3COOH), propionic (C2H5COOH) and propenic (C2H3COOH)) acids, has been developed. Simulations of lean (equivalence ratios from 0.9 to 0.48) laminar premixed flames of propane stabilized at atmospheric pressure with nitrogen as diluent have been performed. It was found that amounts up to 25 ppm of acetic acid, 15 ppm of formic acid and 1 ppm of C3 acid can be formed for some positions in the flames. Simulations showed that the more abundant C3 acid formed is propenic acid. A quite acceptable agreement has been obtained with the scarce results from the literature concerning oxygenated compounds, including aldehydes (CH2O, CH3CHO) and acids. A reaction pathways analysis demonstrated that each acid is mainly derived from the aldehyde of similar structure.

Battin-Leclerc, Frdrique; Jaffrezo, J L; Legrand, M

2009-01-01T23:59:59.000Z

337

A rapid compression machine study of the oxidation of propane in the negative temperature coefficient regime  

SciTech Connect (OSTI)

The oxidation of propane has been studied in the temperature range 680-970 K at compressed gas pressures of 21, 27, and 37 atm and at varying equivalence ratios of 0.5, 1.0, and 2.0. These data are consistent with other experiments presented in the literature for alkane fuels in that, when ignition delay times are plotted as a function of temperature, a characteristic negative coefficient behavior is observed. In addition, these data were simulated using a detailed chemical kinetic model. It was found that qualitatively the model correctly simulated the effect of change in equivalence ratio and pressure, predicting that fuel-rich, high-pressure mixtures ignite fastest, while fuel-lean, low-pressure mixtures ignite slowest. Moreover, reactivity as a function of temperature is well captured, with the model predicting negative temperature coefficient behavior similar to the experiments. Quantitatively the model is faster than experiment for all mixtures at the lowest temperatures (650-750 K) and is also faster than experiment throughout the entire temperature range for fuel-lean mixtures. (author)

Gallagher, S.M.; Curran, H.J.; Metcalfe, W.K.; Healy, D.; Simmie, J.M. [Combustion Chemistry Centre, National University of Ireland, Galway (Ireland); Bourque, G. [Rolls-Royce Canada, Montreal (Canada)

2008-04-15T23:59:59.000Z

338

DOE Grids Service Transition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Grids Service Transition DOE Grids Service Transition Services Overview ECS Audio/Video Conferencing Fasterdata IPv6 Network Network Performance Tools (perfSONAR) ESnet OID Registry PGP Key Service Virtual Circuits (OSCARS) DOE Grids Service Transition Contact Us Technical Assistance: 1 800-33-ESnet (Inside the US) 1 800-333-7638 (Inside the US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net DOE Grids Service Transition Background ESnet has decided to transition support and management for the certificate services provided by the DOE Grids public key infrastructure (PKI) to the Open Sciences Grid (OSG). OSG and ESnet provide service to many of the same user communities, and have long been collaborators in the areas of identity

339

ED-XAS Data Reveal In-situ Time-Resolved Adsorbate Coverage on Supported Molybdenum Oxide Catalysts during Propane Dehydrogenation  

SciTech Connect (OSTI)

Energy-Dispersive X-ray Absorption Spectroscopy (ED-XAS) data combined with UV/Vis, Raman, and mass spectrometry data on alumina- and silica-supported molybdenum oxide catalysts under propane dehydrogenation conditions have been previously reported. A novel {delta}{mu} adsorbate isolation technique was applied here to the time-resolved (0.1 min) Mo K-edge ED-XAS data by taking the difference of absorption, {mu}, at t>1 against the initial time, t=0. Further, full multiple scattering calculations using the FEFF 8.0 code are performed to interpret the {delta}{mu} signatures. The resulting difference spectra and interpretation provide real time propane coverage and O depletion at the MoOn surface. The propane coverage is seen to correlate with the propene and/or coke production, with the maximum coke formation occurring when the propane coverage is the largest. Combined, these data give unprecedented insight into the complicated dynamics for propane dehydrogenation.

Ramaker, David; Gatewood, Daniel [Department of Chemistry, George Washington University, Washington D.C. 20052 (United States); Beale, Andrew M.; Weckhuysen, Bert M. [Inorganic Chemistry and Catalysis, Dept. of Chem., Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht (Netherlands)

2007-02-02T23:59:59.000Z

340

Functions and Requirements for the Transition Project  

SciTech Connect (OSTI)

This document describes the functional requirement baseline for the Transition of 100 K Area Facilities Project (Transition Project). This baseline information consists of top-level functions, requirements, concept description, interface description, issues, and enabling assumptions.

YANOCHKO, R.M.

2000-04-24T23:59:59.000Z

Note: This page contains sample records for the topic "area transit propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Effects of Fuel Injection Timing on Combustion and Emission Characteristics of a Diesel Engine Fueled with Diesel?Propane Blends  

Science Journals Connector (OSTI)

Effects of Fuel Injection Timing on Combustion and Emission Characteristics of a Diesel Engine Fueled with Diesel?Propane Blends ... State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China, and College of Vehicle & Motive Power Engineering, Henan University of Science and Technology, Luoyang, 471003, China ... It is the third most widely used vehicle fuel behind the gasoline and diesel fuels.1 Diesel fuel has been widely used in internal combustion engines due to its high thermal efficiency and low CO2 emission. ...

Zhihao Ma; Zuohua Huang; Chongxiao Li; Xinbin Wang; Haiyan Miao

2007-03-07T23:59:59.000Z

342

Automobile Control Systems Transition from Controller Area  

E-Print Network [OSTI]

to concerns about the negative impacts of powering vehicles using fossil fuel and the future availability of fossil fuel, there has been an increased focus on electric vehicles. However, current electric vehicle a vehicle using Ethernet. Additionally, the use of Power over Ethernet can be used for powering some

Maguire Jr., Gerald Q.

343

High-Pressure Micellar Solutions of Polystyrene-block-Polybutadiene and Polystyrene-block-Polyisoprene Solutions in Propane Exhibit Cloud-Pressure Reduction and Distinct Micellization End Points  

SciTech Connect (OSTI)

Micellar solutions of polystyrene-block-polybutadiene and polystyrene-block-polyisoprene in propane are found to exhibit significantly lower cloud pressures than the corresponding hypothetical non-micellar solutions. Such a cloud-pressure reduction indicates the extent to which micelle formation enhances the apparent diblock solubility in near-critical and hence compressible propane. Pressure-temperature points beyond which no micelles can be formed, referred to as the micellization end points, are found to depend on the block type, size and ratio, and on the polymer concentration. For a given pressure, the micellization end-point temperature corresponds to the "critical micelle temperature." The cloud-pressure reduction and the micellization end point measured for styrene-diene diblocks in propane should be characteristic of all amphiphilic diblock copolymer solutions that form micelles in compressible solvents.

Winoto, Winoto [University of Wyoming, Laramie; Radosz, Maciej [University of Wyoming, Laramie; Tan, Sugata [University of Wyoming, Laramie; Hong, Kunlun [ORNL; Mays, Jimmy [ORNL

2009-01-01T23:59:59.000Z

344

,"U.S. Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates"  

U.S. Energy Information Administration (EIA) Indexed Site

Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates" Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates",11,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refoth_d_nus_vtr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refoth_d_nus_vtr_mgalpd_m.htm"

345

,"U.S. Sales for Resale Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates"  

U.S. Energy Information Administration (EIA) Indexed Site

Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates" Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Sales for Resale Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates",11,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refoth_d_nus_vwr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refoth_d_nus_vwr_mgalpd_m.htm"

346

Transition-Metal Hydrides  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transition-Metal Hydride Electrochromics Transition-Metal Hydride Electrochromics A new type of electrochromic hydride material has interesting and unusual properties. Thin Ni-Mg films, for example, are mirror-like in appearance and have very low visible transmittance. On exposure to hydrogen gas or on reduction in alkaline electrolyte, the films become transparent. The transition is believed to result from formation of nickel magnesium hydride, Mg2NiH4. Switchable mirrors based on rare earth hydrides were discovered in 1996 at Vrije University in the Netherlands, Rare earth-magnesium alloy films were subsequently found to be superior to the pure lanthanides in maximum transparency and mirror-state reflectivity by Philips Laboratories. The newer transition-metal types which use less expensive and less reactive materials were discovered at LBNL. This has now become a very active area of study with a network of researchers.

347

Synergistic effect of mixing dimethyl ether with methane, ethane, propane, and ethylene fuels on polycyclic aromatic hydrocarbon and soot formation  

SciTech Connect (OSTI)

Characteristics of polycyclic aromatic hydrocarbon (PAH) and soot formation in counterflow diffusion flames of methane, ethane, propane, and ethylene fuels mixed with dimethyl ether (DME) have been investigated. Planar laser-induced incandescence and fluorescence techniques were employed to measure relative soot volume fractions and PAH concentrations, respectively. Results showed that even though DME is known to be a clean fuel in terms of soot formation, DME mixture with ethylene fuel increases PAH and soot formation significantly as compared to the pure ethylene case, while the mixture of DME with methane, ethane, and propane decreases PAH and soot formation. Numerical calculations adopting a detailed kinetics showed that DME can be decomposed to produce a relatively large number of methyl radicals in the low-temperature region where PAH forms and grows; thus the mixture of DME with ethylene increases CH{sub 3} radicals significantly in the PAH formation region. Considering that the increase in the concentration of O radicals is minimal in the PAH formation region with DME mixture, the enhancement of PAH and soot formation in the mixture flames of DME and ethylene can be explained based on the role of methyl radicals in PAH and soot formation. Methyl radicals can increase the concentration of propargyls, which could enhance incipient benzene ring formation through the propargyl recombination reaction and subsequent PAH growth. Thus, the result substantiates the importance of methyl radicals in PAH and soot formation, especially in the PAH formation region of diffusion flames. (author)

Yoon, S.S. [Corporate Research and Development Division, Hyundai-Kia Motors, Gyeonggi-do 445-706 (Korea); Anh, D.H. [Korea Electric Power Research Institute, Daejeon 305-380 (Korea); Chung, S.H. [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742 (Korea)

2008-08-15T23:59:59.000Z

348

SunLine Transit Agency  

Broader source: Energy.gov [DOE]

SunLine Transit Agency provides public transit and community services to California's Coachella Valley. The service area is more than 1,100 square miles and includes nine member cities, as well as Riverside County. Over the years, SunLine has pursued an aggressive strategy for implementing clean technologies into its fleet.

349

Clean Fuel Advanced Technology Public Education Campaign: Billboards According to the U.S. Department of Energy's July 2013 alternative fuel price report, the price of propane  

E-Print Network [OSTI]

.S. Department of Energy's July 2013 alternative fuel price report, the price of propane (LPG) in North Carolina.S. Department of Energy and U.S. Environmental Protection Agency, gas mileage decreases rapidly above 50 MPH fuel, regardless of vehicle type. · According to the U.S. Department of Energy (and based on North

350

Experimental study of oil yields and properties of light and medium Venezuelan crude oils under steam and steam-propane distillation  

E-Print Network [OSTI]

Six experimental runs were carried out to study the yields for a light crude oil (34.2API) and an intermediate crude oil (25.1API) under steam distillation and steam-propane distillation. Yields, were measured at five temperatures, 110, 150, 200...

Plazas Garcia, Joyce Vivia

2002-01-01T23:59:59.000Z

351

An In-Situ XAS Study of the Structural Changes in a CuO-CeO2/Al2O3 Catalyst during Total Oxidation of Propane  

SciTech Connect (OSTI)

A CuOx-CeOx/Al2O3 catalyst was studied with in-situ transmission Cu K XAS for the total oxidation of propane as model reaction for the catalytic elimination of volatile organic compounds. The local Cu structure was determined for the catalyst as such, after pre-oxidation and after reduction with propane. The catalyst as such has a local CuO structure. No structural effect was observed upon heating in He up to 600 deg. C or after pre-oxidation at 150 deg. C. A full reduction of the Cu2+ towards metallic Cu0 occurred, when propane was fed to the catalyst. The change in local Cu structure during propane reduction was followed with a time resolution of 1 min. The {chi}(k) scans appeared as linear combinations of start and end spectra, CuO and Cu structure, respectively. However, careful examination of the XANES edge spectra indicates the presence of a small amount of additional Cu1+ species.

Silversmith, Geert; Poelman, Hilde; Poelman, Dirk; Gryse, Roger de [Ghent University, Department of Solid State Sciences, Krijgslaan 281 S1, B-9000 Gent (Belgium); Olea, Maria; Balcaen, Veerle; Heynderickx, Philippe; Marin, Guy B. [Ghent University, Laboratorium voor Petrochemische Techniek, Krijgslaan 281 S5, B-9000 Gent (Belgium)

2007-02-02T23:59:59.000Z

352

The preliminary result from spectra of $K^0_s ?^-$ in reaction p+propane at 10 GeV/c  

E-Print Network [OSTI]

The experimental data from 2m propane bubble chamber have been analyzed to search for scalar meson $\\kappa(800)$ in a $K^0_s\\pi$ decay mode for the reaction p+$C_3H_8$ at 10 GeV/c. The $K^0_s\\pi^-$ invariant mass spectrum has shown resonant structures with $M_{K^0_s\\pi^-}$=730, 900 and $\\Gamma$=143, 48 MeV/$c^2$, respectively. The statistical significance are estimated to be of 14.2$\\sigma$ and 4.2$\\sigma$, respectively. The peak in M(900) is identified as reflection from the well known resonance with mass of 892 MeV/c$^2$.

P. Zh. Aslanyan

2006-04-29T23:59:59.000Z

353

TIME-VARYING FLAME IONIZATION SENSING APPLIED TO NATURAL GAS AND PROPANE BLENDS IN A PRESSURIZED LEAN PREMIXED (LPM) COMBUSTOR  

SciTech Connect (OSTI)

In-situ monitoring of combustion phenomena is a critical need for optimal operation and control of advanced gas turbine combustion systems. The concept described in this paper is based on naturally occurring flame ionization processes that accompany the combustion of hydrocarbon fuels. Previous work has shown that flame ionization techniques may be applied to detect flashback, lean blowout, and some aspects of thermo-acoustic combustion instabilities. Previous work has focused on application of DC electric fields. By application of time-varying electric fields, significant improvements to sensor capabilities have been observed. These data have been collected in a lean premixed combustion test rig operating at 0.51-0.76 MPa (5-7.5 atm) with air preheated to 588 K (600F). Five percent of the total fuel flow is injected through the centerbody tip as a diffusion pilot. The fuel composition is varied independently by blending approximately 5% (volume) propane with the pipeline natural gas. The reference velocity through the premixing annulus is kept constant for all conditions at a nominal value of 70 m/s. The fuel-air equivalence ratio is varied independently from 0.46 0.58. Relative to the DC field version, the time-varying combustion control and diagnostic sensor (TV-CCADS) shows a significant improvement in the correlation between the measured flame ionization current and local fuel-air equivalence ratio. In testing with different fuel compositions, the triangle wave data show the most distinct change in flame ionization current in response to an increase in propane content. Continued development of this sensor technology will improve the capability to control advanced gas turbine combustion systems, and help address issues associated with variations in fuel supplies.

D. L. Straub; B. T. Chorpening; E. D. Huckaby; J. D. Thornton; W. L. Fincham

2008-06-13T23:59:59.000Z

354

U.S. Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA) Indexed Site

Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia Maryland New Jersey New York Pennsylvania Lower Atlantic (PADD 1C) North Carolina Virginia Midwest (PADD 2) Illinois Indiana Iowa Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio South Dakota Wisconsin Period: Weekly Monthly Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia Maryland New Jersey New York Pennsylvania Lower Atlantic (PADD 1C) North Carolina Virginia Midwest (PADD 2) Illinois Indiana Iowa Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio South Dakota Wisconsin Period: Weekly Monthly Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area

355

U.S. Total Propane (Consumer Grade) Prices by Sales Type  

U.S. Energy Information Administration (EIA) Indexed Site

Area: U.S. East Coast (PADD 1) New England (PADD 1A) Central Atlantic (PADD 1B) Lower Atlantic (PADD 1C) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period: Monthly Annual Area: U.S. East Coast (PADD 1) New England (PADD 1A) Central Atlantic (PADD 1B) Lower Atlantic (PADD 1C) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Sales Type Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Sales to End Users, Average - - - - - - 1993-2013 Residential - - - - - - 1993-2013 Commercial/Institutional - - - - - - 1993-2013 Industrial - - - - - - 1993-2013 Through Retail Outlets - - - - - - 1993-2013 Petro-Chemical - - - - - - 1994-2013 Other End Users - - - - - - 1993-2013 Sales for Resale

356

Fluid Inclusion Analysis At Coso Geothermal Area (2004) | Open Energy  

Open Energy Info (EERE)

Fluid Inclusion Analysis At Coso Geothermal Area Fluid Inclusion Analysis At Coso Geothermal Area (2004) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Fluid Inclusion Analysis Activity Date 2004 Usefulness not indicated DOE-funding Unknown Exploration Basis 1) To determine if analyses of fluid propene and propane species in fluid inclusions can be used to interpret fluid type, history, or process. 2) To evaluate the geology and thermal history of the East Flank, in order to better understand how the rocks will behave during hydro-fracturing. Notes 1) Analyses were performed on drill cuttings at 20ft intervals from four Coso geothermal wells. Two wells are good producers, one has cold-water entrants in the production zone, and the fourth is a non-producer. The ratios show distinct differences between producing and the non-producing

357

Fluid Inclusion Analysis At Coso Geothermal Area (2003) | Open Energy  

Open Energy Info (EERE)

Coso Geothermal Area Coso Geothermal Area (2003) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Fluid Inclusion Analysis Activity Date 2003 Usefulness not indicated DOE-funding Unknown Exploration Basis 1) Fracture/stress analysis. 2)To determine the driver of the relationship between hydrogen and organic species. Notes 1) Fluid inclusion analyses of cuttings from well 83-16 were used to determine the temperatures of vein mineralization. 2) Measurement of organic compounds in fluid inclusions shows that there are strong relationships between H2 concentrations and alkane/alkene ratios and benzene concentrations. Inclusion analyses that indicate H2 concentrations > 0.001 mol % typically have ethane > ethylene, propane > propylene, and

358

Direct growth of few-layer graphene on 6H-SiC and 3C-SiC/Si via propane chemical vapor deposition  

SciTech Connect (OSTI)

We propose to grow graphene on SiC by a direct carbon feeding through propane flow in a chemical vapor deposition reactor. X-ray photoemission and low energy electron diffraction show that propane allows to grow few-layer graphene (FLG) on 6H-SiC(0001). Surprisingly, FLG grown on (0001) face presents a rotational disorder similar to that observed for FLG obtained by annealing on (000-1) face. Thanks to a reduced growth temperature with respect to the classical SiC annealing method, we have also grown FLG/3C-SiC/Si(111) in a single growth sequence. This opens the way for large-scale production of graphene-based devices on silicon substrate.

Michon, A.; Vezian, S.; Portail, M. [CNRS-CRHEA, Rue Bernard Gregory, 06560 Valbonne (France); Ouerghi, A. [CNRS-LPN, Route de Nozay, 91460 Marcoussis (France); Zielinski, M.; Chassagne, T. [NOVASiC, Savoie Technolac, Arche Bat 4, BP267, 73375 Le Bourget du Lac (France)

2010-10-25T23:59:59.000Z

359

Deuteration Can Impact Micellization Pressure and Cloud Pressure of Polystyrene-block-polybutadiene and Polystyrene-block-polyisoprene in Compressible Propane  

SciTech Connect (OSTI)

The deuterated homopolymers and their corresponding polystyrene-block-polybutadiene and polystyrene-block-polyisoprene copolymers require lower cloud pressures than their hydrogenous analogues to dissolve in a compressible alkane solvent, such as propane. For symmetric diblocks, deuteration reduces the micellization pressure. By contrast, for asymmetric diblocks with a long diene block relative to the styrene block, deuteration can increase the micellization pressure. All in all, however, the deuteration effects, while measurable, do not qualitatively change the principal diblock properties in compressible propane solutions, such as pressure-induced micelle decomposition, micelle formation and micelle size, and their temperature dependence. Therefore, isotope labeling should be a useful approach to neutron-scattering characterization for styrene-diene block copolymers in compressible alkane systems.

Winoto, Winoto [University of Wyoming, Laramie; Shen, Youqin [University of Wyoming, Laramie; Radosz, Maciej [University of Wyoming, Laramie; Hong, Kunlun [ORNL; Mays, Jimmy [ORNL

2009-01-01T23:59:59.000Z

360

Crystal structure of [propane-1,3-diylbis(piperidine-4,1-diyl)]bis[(pyridin-4-yl)methanone]-isophthalic acid (1/1)  

Science Journals Connector (OSTI)

In the co-crystal of isophthalic acid and [propane-1,3-diylbis(piperidine-4,1-diyl)]bis[(pyridin-4-yl)methanone], molecules are connected into supramolecular chains aligned along the c axis by O-HN hydrogen bonding. These aggregate into supramolecular layers oriented parallel to the ac plane by C-HO interactions.

Murray, N.H.

2014-10-04T23:59:59.000Z

Note: This page contains sample records for the topic "area transit propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Electrochemical properties of a cobalt(II) complex with sulfadiazine and 1,3-bis(pyridin-4-yl)propane  

Science Journals Connector (OSTI)

A one-dimensional polymeric structure of CoII with sulfadiazine and 1,3-bis(pyridin-4-yl)propane is further stabilized by intermolecular hydrogen bonding. The structure is of interest with respect to its electrochemical properties in the reduction reaction of H2O2 to H2O. Investigation of the thermal stability shows that the complex is stable up to 543 K.

Zhao, Y.-Y.

2013-09-06T23:59:59.000Z

362

Performance and Emissions Characteristics of Bio-Diesel (B100)-Ignited Methane and Propane Combustion in a Four Cylinder Turbocharged Compression Ignition Engine  

SciTech Connect (OSTI)

Different combustion strategies and fuel sources are needed to deal with increasing fuel efficiency demands and emission restrictions. One possible strategy is dual fueling using readily available resources. Propane and natural gas are readily available with the current infrastructure and biodiesel is growing in popularity as a renewable fuel. This paper presents experimental results from dual fuel combustion of methane (as a surrogate for natural gas) and propane as primary fuels with biodiesel pilots in a 1.9 liter, turbocharged, 4 cylinder diesel engine at 1800 rev/min. Experiments were performed with different percentage energy substitutions (PES) of propane and methane and at different brake mean effective pressures (BMEP/bmep). Brake thermal efficiency (BTE) and emissions (NOx, HC, CO, CO2, O2 and smoke) were also measured. Maximum PES levels for B100-methane dual fuelling were limited to 70% at 2.5 bar bmep and 48% at 10 bar bmep, and corresponding values for B100-propane dual fuelling were 64% and 43%, respectively. Maximum PES was limited by misfire at 2.5 bar bmep and the onset of engine knock at 10 bar bmep. Dual fuel BTEs approached straight B100 values at 10 bar bmep while they were significantly lower than B100 values at 2.5 bar bmep. In general dual fuelling was beneficial in reducing NOx and smoke emissions by 33% and 50%, respectively from baseline B100 levels; however, both CO and THC emissions were significantly higher than baseline B100 levels at all PES and loads.

Shoemaker, N. T.; Gibson, C. M.; Polk, A. C.; Krishnan, S. R.; Srinivasan, K. K.

2011-10-05T23:59:59.000Z

363

TRANSITION DE MOTT METAL-INSULATOR TRANSITIONS  

E-Print Network [OSTI]

predominantly non-trivalent ions favor the metallicstate. I. Introduction. -Transition metal oxides form a class that such a transition would be dis- continuous as a function of volume [8], and he later proposed a phase diagramTRANSITION DE MOTT METAL-INSULATOR TRANSITIONS IN TRANSITION METAL OXIDES by D. B. McWHAN, A. MENTH

Paris-Sud XI, Université de

364

Effects of pressure, temperature, and hydrogen during graphene growth on SiC(0001) using propane-hydrogen chemical vapor deposition  

SciTech Connect (OSTI)

Graphene growth from a propane flow in a hydrogen environment (propane-hydrogen chemical vapor deposition (CVD)) on SiC differentiates from other growth methods in that it offers the possibility to obtain various graphene structures on the Si-face depending on growth conditions. The different structures include the (6{radical}3 Multiplication-Sign 6{radical}3)-R30 Degree-Sign reconstruction of the graphene/SiC interface, which is commonly observed on the Si-face, but also the rotational disorder which is generally observed on the C-face. In this work, growth mechanisms leading to the formation of the different structures are studied and discussed. For that purpose, we have grown graphene on SiC(0001) (Si-face) using propane-hydrogen CVD at various pressure and temperature and studied these samples extensively by means of low energy electron diffraction and atomic force microscopy. Pressure and temperature conditions leading to the formation of the different structures are identified and plotted in a pressure-temperature diagram. This diagram, together with other characterizations (X-ray photoemission and scanning tunneling microscopy), is the basis of further discussions on the carbon supply mechanisms and on the kinetics effects. The entire work underlines the important role of hydrogen during growth and its effects on the final graphene structure.

Michon, A.; Vezian, S.; Roudon, E.; Lefebvre, D.; Portail, M. [CNRS-CRHEA, Rue Bernard Gregory, 06560 Valbonne (France)] [CNRS-CRHEA, Rue Bernard Gregory, 06560 Valbonne (France); Zielinski, M.; Chassagne, T. [NOVASiC, Savoie Technolac, Arche Bat 4, BP267, 73375 Le Bourget du Lac (France)] [NOVASiC, Savoie Technolac, Arche Bat 4, BP267, 73375 Le Bourget du Lac (France)

2013-05-28T23:59:59.000Z

365

Unusual behavior of propane as a co-guest during hydrate formation in silica sand: Potential application to seawater desalination and carbon dioxide capture  

Science Journals Connector (OSTI)

Abstract We report an unusual behavior of hydrate formation in silica sand with gas mixtures containing propane as a co-guest. Based on morphology study we observed that propane as a co-guest has the ability to draw water dispersed in silica sand to the hydrate formation region and showed a tendency to result in drastic hydrate growth due to the migration of water molecules to the gas phase region. Hydrate nucleation occurred in the interstitial pore space between the silica sand particles and hydrate growth occurred in the gas phase above the silica sand bed and to sustain the hydrate growth, dispersed water was drawn towards the hydrate growth front. In addition, we elucidated the effect of sand bed height to maximize the growth rates utilizing this behavior that results in enhanced kinetics. We propose conceptual designs for utilizing this behavior of propane as a co-guest in sand for seawater desalination and an innovative approach to simultaneously capture carbon dioxide and desalinate seawater.

Ponnivalavan Babu; Rajnish Kumar; Praveen Linga

2014-01-01T23:59:59.000Z

366

Synthesis of Pt?Pd Core?Shell Nanostructures by Atomic Layer Deposition: Application in Propane Oxidative Dehydrogenation to Propylene  

SciTech Connect (OSTI)

Atomic layer deposition (ALD) was employed to synthesize supported Pt?Pd bimetallic particles in the 1 to 2 nm range. The metal loading and composition of the supported Pt?Pd nanoparticles were controlled by varying the deposition temperature and by applying ALD metal oxide coatings to modify the support surface chemistry. Highresolution scanning transmission electron microscopy images showed monodispersed Pt?Pd nanoparticles on ALD Al2O3 - and TiO2 -modi?ed SiO2 gel. X-ray absorption spectroscopy revealed that the bimetallic nanoparticles have a stable Pt-core, Pd-shell nanostructure. Density functional theory calculations revealed that the most stable surface con?guration for the Pt? Pd alloys in an H2 environment has a Pt-core, Pd-shell nanostructure. In comparison to their monometallic counterparts, the small Pt?Pd bimetallic core?shell nanoparticles exhibited higher activity in propane oxidative dehydrogenation as compared to their physical mixture.

Lei, Y.; Liu, Bin; Lu, Junling; Lobo-Lapidus, Rodrigo J.; Wu, Tianpin; Feng, Hao; Xia, Xiaoxing; Mane, Anil U.; Libera, Joseph A.; Greeley, Jeffrey P.; Miller, Jeffrey T.; Elam, J. W.

2012-08-20T23:59:59.000Z

367

A novel integrated thermally double coupled configuration for methane steam reforming, methane oxidation and dehydrogenation of propane  

Science Journals Connector (OSTI)

Abstract The goal of this study is the simultaneous production of synthesis gas, hydrogen and propylene in a thermally double coupled steam reformer reactor. This reactor has three concentric tubes where the exothermic reaction of methane oxidation is supposed to occur in the middle tube and the inner and outer tubes are considered to be endothermic sides of steam reforming and propane dehydrogenation, respectively. The motivation is to combine the energy efficient concept of coupling one exothermic reaction with two endothermic reactions, enhancement of synthesis gas production, propylene and hydrogen production and also producing two different H2/CO ratio streams of syngas. A steady state homogeneous model of fixed bed for three sides predicts the performance of this new configuration. The simulation results are compared with corresponding predictions of the conventional steam reformer. The results prove that synthesis gas production is increased in a thermally double coupled reactor in comparison with conventional steam reforming. In addition, the thermally double coupled reactor reduces the capital and operating costs by reducing the reactor size and consumption of energy.

D. Karimipourfard; S. Kabiri; M.R. Rahimpour

2014-01-01T23:59:59.000Z

368

Effect of heat recirculation on the self-sustained catalytic combustion of propane/air mixtures in a quartz reactor  

SciTech Connect (OSTI)

The self-sustained catalytic combustion of propane is experimentally studied in a two-pass, quartz heat-recirculation reactor (HRR) and compared to that in a no (heat) recirculation reactor (NRR). Structured monolithic reactors with Pt/{gamma}-Al{sub 2}O{sub 3}, LaMnO{sub 3}/{gamma}-Al{sub 2}O{sub 3}, and Pt doped perovskite catalysts have been compared in the HRR and NRR configurations. Heat recirculation enhances combustion stability, by widening the operating window of self-sustained operation, and changes the mode of stability loss from blowout to extinction. It is found that thermal shields (upstream and downstream of the monolith) play no role in the stability of a HRR but increase the stability of a NRR. The stability of a HRR follows this trend: Pt/{gamma}-Al{sub 2}O{sub 3} > doped perovskite > LaMnO{sub 3}/{gamma}-Al{sub 2}O{sub 3}. Finally, a higher cell density monolith enlarges the operating window of self-sustained combustion, and allows further increase of the power density of the process. (author)

Scarpa, A. [Dipartimento di Ingegneria Chimica, Universita degli Studi di Napoli ''Federico II'', P.le V. Tecchio 80, 80125 Naples (Italy); Department of Chemical Engineering, Center for Catalytic Science and Technology (CCST), and Center for Composite Materials (CCM), University of Delaware, 150 Academy Street, Newark, DE 19716 (United States); Pirone, R. [Istituto di Ricerche sulla Combustione-CNR, P.le V. Tecchio 80, 80125 Naples (Italy); Russo, G. [Dipartimento di Ingegneria Chimica, Universita degli Studi di Napoli ''Federico II'', P.le V. Tecchio 80, 80125 Naples (Italy); Vlachos, D.G. [Department of Chemical Engineering, Center for Catalytic Science and Technology (CCST), and Center for Composite Materials (CCM), University of Delaware, 150 Academy Street, Newark, DE 19716 (United States)

2009-05-15T23:59:59.000Z

369

Teels Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Teels Marsh Geothermal Area Teels Marsh Geothermal Area (Redirected from Teels Marsh Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Teels Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

370

Propane ammoxidation over the Mo-V-Te-Nb-O M1 phase: Reactivity of surface cations in hydrogen abstraction steps  

SciTech Connect (OSTI)

Density functional theory calculations (GGA-PBE) have been performed to investigate the adsorption of C3 (propane, isopropyl, propene, and allyl) and H species on the proposed active center present in the surface ab planes of the bulk Mo-V-Te-Nb-O M1 phase in order to better understand the roles of the different surface cations in propane ammoxidation. Modified cluster models were employed to isolate the closely spaced V=O and Te=O from each other and to vary the oxidation state of the V cation. While propane and propene adsorb with nearly zero adsorption energy, the isopropyl and allyl radicals bind strongly to V=O and Te=O with adsorption energies, {Delta}E, being {le} -1.75 eV, but appreciably more weakly on other sites, such as Mo=O, bridging oxygen (Mo-O-V and Mo-O-Mo), and empty metal apical sites ({Delta}E > -1 eV). Atomic H binds more strongly to Te = O ({Delta}E {le} -3 eV) than to all the other sites, including V = O ({Delta}E = -2.59 eV). The reduction of surface oxo groups by dissociated H and their removal as water are thermodynamically favorable except when both H atoms are bonded to the same Te=O. Consistent with the strong binding of H, Te=O is markedly more active at abstracting the methylene H from propane (E{sub a} {le} 1.01 eV) than V = O (E{sub a} = 1.70 eV on V{sup 5+} = O and 2.13 eV on V{sup 4+} = O). The higher-than-observed activity and the loose binding of Te = O moieties to the mixed metal oxide lattice of M1 raise the question of whether active Te = O groups are in fact present in the surface ab planes of the M1 phase under propane ammoxidation conditions.

Muthukumar, Kaliappan [University of Cincinnati; Yu, Junjun [University of Cincinnati; Xu, Ye [ORNL; Guliants, Vadim V. [University of Cincinnati

2011-01-01T23:59:59.000Z

371

Alameda-Contra Costa Transit District (AC Transit) Fuel Cell...  

Energy Savers [EERE]

(AC Transit) Fuel Cell Transit Buses: Preliminary Evaluation Results Alameda-Contra Costa Transit District (AC Transit) Fuel Cell Transit Buses: Preliminary Evaluation Results This...

372

Development and demonstration of advanced technologies for direct electrochemical oxidation of hydrocarbons (methanol, methane, propane)  

SciTech Connect (OSTI)

Direct methanol fuel cells use methanol directly as a fuel, rather than the reformate typically required by fuel cells, thus eliminating the reformer and fuel processing train. In this program, Giner, Inc. advanced development of two types of direct methanol fuel cells for military applications. Advancements in direct methanol proton-exchange membrane fuel cell (DMPEMFC) technology included developement of a Pt-Ru anode catalyst and an associated electrode structure which provided some of the highest DMPEMFC performance reported to date. Scale-up from a laboratory-scale single cell to a 5-cell stack of practical area, providing over 100 W of power, was also demonstrated. Stable stack performance was achieved in over 300 hours of daily on/off cycling. Direct methanol aqueous carbonate fuel cells were also advanced with development of an anode catalyst and successful operation at decreased pressure. Improved materials for the cell separator/matrix and the hardware were also identified.

Kosek, J.A.; LaConti, A.B.

1994-07-01T23:59:59.000Z

373

Research Areas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Areas Areas Research Areas Print Scientists from a wide variety of fields come to the ALS to perform experiements. Listed below are some of the most common research areas covered by ALS beamlines. Below each heading are a few examples of the specific types of topics included in that category. Click on a heading to learn more about that research area at the ALS. Energy Science Photovoltaics, photosynthesis, biofuels, energy storage, combustion, catalysis, carbon capture/sequestration. Bioscience General biology, structural biology. Materials/Condensed Matter Correlated materials, nanomaterials, magnetism, polymers, semiconductors, water, advanced materials. Physics Atomic, molecular, and optical (AMO) physics; accelerator physics. Chemistry Surfaces/interfaces, catalysts, chemical dynamics (gas-phase chemistry), crystallography, physical chemistry.

374

Geothermal br Resource br Area Geothermal br Resource br Area Geothermal  

Open Energy Info (EERE)

Geothermal Area Brady Hot Springs Geothermal Area Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region MW K Coso Geothermal Area Coso Geothermal Area Walker Lane Transition Zone Geothermal Region Pull Apart in Strike Slip Fault Zone Mesozoic Granitic MW K Dixie Valley Geothermal Area Dixie Valley Geothermal Area Central Nevada Seismic Zone Geothermal Region Stepover or Relay Ramp in Normal Fault Zones major range front fault Jurassic Basalt MW K Geysers Geothermal Area Geysers Geothermal Area Holocene Magmatic Geothermal Region Pull Apart in Strike Slip Fault Zone intrusion margin and associated fractures MW K Long Valley Caldera Geothermal Area Long Valley Caldera Geothermal Area Walker Lane Transition Zone Geothermal Region Displacement Transfer Zone Caldera Margin Quaternary Rhyolite MW K

375

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Broader source: Energy.gov (indexed) [DOE]

419 Oaklawn Road, Pelzer, SC Propane Corridor Development Program Installation of propane fueling infrastructure to service propane fueled vehicle fleets in the Greenville SC area....

376

THE 2012 KINDER HOUSTON AREA SURVEY  

E-Print Network [OSTI]

ADJUSTED. #12;WHAT IS THE BIGGEST PROBLEM IN THE HOUSTON AREA TODAY? (1982-2012) 51 47 25 1510 36 71 27 10THE 2012 KINDER HOUSTON AREA SURVEY: Perspectives on a City inTransition STEPHEN L. KLINEBERG The GHP-Kinder Institute Luncheon and Release of the Findings, 24 April 2012 #12;KINDER HOUSTON AREA

377

Research Areas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Areas Print Research Areas Print Scientists from a wide variety of fields come to the ALS to perform experiements. Listed below are some of the most common research areas covered by ALS beamlines. Below each heading are a few examples of the specific types of topics included in that category. Click on a heading to learn more about that research area at the ALS. Energy Science Photovoltaics, photosynthesis, biofuels, energy storage, combustion, catalysis, carbon capture/sequestration. Bioscience General biology, structural biology. Materials/Condensed Matter Correlated materials, nanomaterials, magnetism, polymers, semiconductors, water, advanced materials. Physics Atomic, molecular, and optical (AMO) physics; accelerator physics. Chemistry Surfaces/interfaces, catalysts, chemical dynamics (gas-phase chemistry), crystallography, physical chemistry.

378

coherence area  

Science Journals Connector (OSTI)

1....In an electromagnetic wave, such as a lightwave or a radio wave, the area of a surface (a) every point on which the surface is perpendicular to the direction of propagation, (b) over which the e...

2001-01-01T23:59:59.000Z

379

309 Building transition plan  

SciTech Connect (OSTI)

The preparation for decontamination and decommissioning (transition) of the 309 Building is projected to be completed by the end of the fiscal year (FY) 1998. The major stabilization and decontamination efforts include the Plutonium Recycle Test Reactor (PRTR), fuel storage and transfer pits, Transfer Waste (TW) tanks and the Ion Exchange Vaults. In addition to stabilizing contaminated areas, equipment, components, records, waste products, etc., will be dispositioned. All nonessential systems, i.e., heating, ventilation, and air conditioning (HVAC), electrical, monitoring, fluids, etc., will be shut down and drained/de-energized. This will allow securing of the process, laboratory, and office areas of the facility. After that, the facility will be operated at a level commensurate with its surveillance needs while awaiting D&D. The implementation costs for FY 1995 through FY 1998 for the transition activities are estimated to be $1,070K, $2,115K, $2,939K, and $4,762K, respectively. Costs include an assumed company overhead of 20% and a 30% out year contingency.

Graves, C.E.

1994-08-31T23:59:59.000Z

380

A practical grinding-assisted dry synthesis of nanocrystalline NiMoO{sub 4} polymorphs for oxidative dehydrogenation of propane  

SciTech Connect (OSTI)

A practical two-stage reactive grinding-assisted pathway waste-free and cost-effective for the synthesis of NiMoO{sub 4} has been successfully developed. It was demonstrated that proper design in synthetic strategy for grinding plays a crucial role in determining the ultimate polymorph of NiMoO{sub 4}. Specifically, direct grinding (DG) of MoO{sub 3} and NiO rendered {alpha}-NiMoO{sub 4} after annealing, whereas sequential grinding (SG) of the two independently pre-ground oxides followed by annealing generated {beta}-NiMoO{sub 4} solid solution. Characterizations in terms of Raman and X-ray diffraction suggest the creation of {beta}-NiMoO{sub 4} precursor in the latter alternative is the key aspect for the formation of {beta}-NiMoO{sub 4}. The DG-derived {alpha}-NiMoO{sub 4} tested by oxidative dehydrogenation of propane exhibited superior activity in contrast to its analog synthesized via conventional coprecipitation. It is suggested that the favorable chemical composition facilely obtained via grinding in contrast to that by coprecipitation was essential for achieving a more selective production of propylene. - Graphical Abstract: Grinding-assisted synthesis of NiMoO{sub 4} offers higher and more reproducible activities in contrast to coprecipitation for oxidative dehydrogenation of propane, and both {alpha}- and {beta}-NiMoO{sub 4} can be synthesized. Highlights: Black-Right-Pointing-Pointer NiMoO{sub 4} was prepared through grinding-assisted pathway. Black-Right-Pointing-Pointer Direct/sequential grinding rendered {alpha}-, {beta}-NiMoO{sub 4}, respectively. Black-Right-Pointing-Pointer Grinding-derived {alpha}-NiMoO{sub 4} showed high and reproducible activity for oxidative dehydrogenation of propane.

Chen Miao, E-mail: chenmiao@sinochem.com [Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433 (China); Zhejiang Chemical Industry Research Institute, Hangzhou 310023 (China); Wu Jialing; Liu Yongmei [Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433 (China); Cao Yong, E-mail: yongcao@fudan.edu.cn [Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433 (China); Guo Li [Zhejiang Chemical Industry Research Institute, Hangzhou 310023 (China); He Heyong; Fan Kangnian [Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433 (China)

2011-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "area transit propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Geothermal br Resource br Area Geothermal br Resource br Area Geothermal  

Open Energy Info (EERE)

Tectonic br Setting Host br Rock br Age Host br Rock br Lithology Tectonic br Setting Host br Rock br Age Host br Rock br Lithology Mean br Capacity Mean br Reservoir br Temp Amedee Geothermal Area Amedee Geothermal Area Walker Lane Transition Zone Geothermal Region Extensional Tectonics Mesozoic granite granodiorite MW K Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area Central Nevada Seismic Zone Geothermal Region Extensional Tectonics MW K Blue Mountain Geothermal Area Blue Mountain Geothermal Area Northwest Basin and Range Geothermal Region Extensional Tectonics triassic metasedimentary MW K Brady Hot Springs Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region Extensional Tectonics MW Coso Geothermal Area Coso Geothermal Area Walker Lane Transition Zone

382

Transit Rider Information King County Metro Transit  

E-Print Network [OSTI]

Transit Rider Information King County Metro Transit Rider Information (206) 553-3000 http the On the Move Blog http://www.seattle.gov/transportation King County Road Services Division Road Maintenance closely with King County Metro Transit, the Seattle School District, local universities, hospitals

Queitsch, Christine

383

Dynamics of Propane in Silica Mesopores Formed upon PropyleneHydrogenation over Pt Nanoparticles by Time-Resolved FT-IRSpectroscopy  

SciTech Connect (OSTI)

Propylene hydrogenation over Pt nanoparticles supported onmesoporous silica type SBA-15 was monitored by time-resolved FT-IRspectroscopy at 23 ms resolution using short propylene gas pulses thatjoined a continuous flow of hydrogen in N2 (1 atm total pressure).Experiments were conducted in the temperature range 323-413 K. Propanewas formed within 100 milliseconds or faster. The CH stretching regionrevealed distinct bands for propane molecules emerging inside thenanoscale channels of the silica support. Spectral analysis gave thedistribution of the propane product between support and surrounding gasphase as function of time. Kinetic analysis showed that the escape ofpropane molecules from the channels occurred within hundreds ofmilliseconds (3.1 + 0.4 s-1 at 383 K). A steady state distribution ofpropane between gas phase and mesoporous support is established as theproduct is swept from the catalyst zone by the continuous flow ofhydrogen co-reactant. This is the first direct spectroscopic observationof emerging products of heterogeneous catalysis on nanoporous supportsunder reaction conditions.

Waslylenko, Walter; Frei, Heinz

2007-01-31T23:59:59.000Z

384

Radiological Areas  

Broader source: Energy.gov (indexed) [DOE]

Revision to Clearance Policy Associated with Recycle of Scrap Metals Originating from Revision to Clearance Policy Associated with Recycle of Scrap Metals Originating from Radiological Areas On July 13, 2000, the Secretary of Energy imposed an agency-wide suspension on the unrestricted release of scrap metal originating from radiological areas at Department of Energy (DOE) facilities for the purpose of recycling. The suspension was imposed in response to concerns from the general public and industry groups about the potential effects of radioactivity in or on material released in accordance with requirements established in DOE Order 5400.5, Radiation Protection of the Public and Environment. The suspension was to remain in force until DOE developed and implemented improvements in, and better informed the public about, its release process. In addition, in 2001 the DOE announced its intention to prepare a

385

Liquid Propane Injection Applications  

Broader source: Energy.gov [DOE]

Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

386

Propane/Propylene Exports  

Gasoline and Diesel Fuel Update (EIA)

414 446 389 431 404 457 1973-2014 East Coast (PADD 1) 20 6 15 6 14 24 1981-2014 Midwest (PADD 2) 8 10 9 10 11 9 1981-2014 Gulf Coast (PADD 3) 372 417 352 403 366 411 1981-2014...

387

Lake Charles Urbanized Area MTP 2034  

E-Print Network [OSTI]

................................................................................................................................ 2-9 National Highway System ........................................................................................................................... 2-10 City of Lake Charles Transit System Routes... transportation. The Lake Charles Urbanized Area is located wholly within Calcasieu Parish and includes the cities of Lake Charles, Sulphur, and Westlake, as well as the unincorporated areas known as Moss Bluff, and Carlyss (see map on following page...

Lake Charles Urbanized Area Metropolitan Planning Organization

2009-08-04T23:59:59.000Z

388

Whiskey Flats Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Whiskey Flats Geothermal Area Whiskey Flats Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Whiskey Flats Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Map: Whiskey Flats Geothermal Area Whiskey Flats Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

389

Xanes Study of Hydrothermal Mo-V-Based Mixed Oxide M1-Phase Catalysts for the (Amm)oxidation of propane  

SciTech Connect (OSTI)

The hydrothermal Mo-V-based mixed oxide catalysts possessing the M1-phase structure were investigated by XANES and in situ X-ray diffraction under ambient and dynamic redox conditions in the presence of O{sub 2} and H{sub 2} at 693 K. Under ambient conditions, XANES, with the use of model compounds, suggested oxidation states of Nb, Te, Mo, and V close to 5+, 4+, 6+, and 4+, respectively, in the bulk M1 phase. The oxidation state changes of Nb, Te, and Mo were not detected under the dynamic redox conditions employed, while the pre-edge peak of vanadium in the M1 phase exhibited small, reproducible shifts, suggesting that VO{sub x} is the active catalytic species in the bulk M1-phase catalysts for selective (amm)oxidation of propane.

Shiju, N.R. [University of Cincinnati; Rondinone, Adam Justin [ORNL; Overbury, Steven {Steve} H [ORNL; Mullins, David R [ORNL; Schwartz, Viviane [ORNL; Guliants, Vadim V. [University of Cincinnati

2008-01-01T23:59:59.000Z

390

XANES Study of Hydrothermal Mo-V-Based Mixed Oxide M1-Phase Catalysts for the (Amm)oxidation of Propane  

SciTech Connect (OSTI)

The hydrothermal Mo-V-based mixed oxide catalysts possessing the M1-phase structure were investigated by XANES and in situ X-ray diffraction under ambient and dynamic redox conditions in the presence of O{sub 2} and H{sub 2} at 693 K. Under ambient conditions, XANES, with the use of model compounds, suggested oxidation states of Nb, Te, Mo, and V close to 5+, 4+, 6+, and 4+, respectively, in the bulk M1 phase. The oxidation state changes of Nb, Te, and Mo were not detected under the dynamic redox conditions employed, while the pre-edge peak of vanadium in the M1 phase exhibited small, reproducible shifts, suggesting that VO{sub x} is the active catalytic species in the bulk M1-phase catalysts for selective (amm)oxidation of propane.

Shuju, N.; Rondinone, A; Mullins, D; Schwartz, V; Overbury, S; Gulaints, V

2008-01-01T23:59:59.000Z

391

Exotic narrow resonance searches in the system Lambda K0s in p+propane collisions at 10 GeV/c  

E-Print Network [OSTI]

Experimental data from the 2m propane bubble chamber have been analyzed to search for an exotic baryon states, in the $\\Lambda K^0_s$ decay mode for the reaction p+$C_3H_8$ at 10 GeV/c. The invariant mass spectrum $\\Lambda K^0_s$ observe a narrow peaks at 1750$\\pm$18, 1795$\\pm$18,1850$\\pm19$ MeV/$c^2$ and full widths of $\\Gamma_{exp.}$= 32$\\pm$6, 44$\\pm$15, 29.0$\\pm$8 MeV/$c^2$. The statistical significance of these peaks has been estimated as 5.6, 3.3 and 3.0 S.D., respectively. There are the small enhancements in mass regions of (1650-1675) and (1925-1950) ???/?$^2$. These would be candidates for the $N^0$ or the $\\Xi^0$ pentaquark states. The investigation has been performed at the Veksler and Baldin Laboratory of High Energies, JINR.

P. Zh. Aslanyan; V. N. Emelyanenko; G. G. Rikhkvitzkaya

2005-04-15T23:59:59.000Z

392

Xanes Study of Hydrothermal Mo-V-Based Mixed Oxide M1-Phase Catalysts for the (Amm)oxidation of Propane  

SciTech Connect (OSTI)

The hydrothermal Mo-V-based mixed oxide catalysts possessing the M1-phase structure were investigated by XANES and in situ X-ray diffraction under ambient and dynamic redox conditions in the presence of O{sub 2} and H{sub 2} at 693 K. Under ambient conditions, XANES, with the use of model compounds, suggested oxidation states of Nb, Te, Mo, and V close to 5+, 4+, 6+, and 4+, respectively, in the bulk M1 phase. The oxidation state changes of Nb, Te, and Mo were not detected under the dynamic redox conditions employed, while the pre-edge peak of vanadium in the M1 phase exhibited small, reproducible shifts, suggesting that VO{sub x} is the active catalytic species in the bulk M1-phase catalysts for selective (amm)oxidation of propane.

Mullins, David R [ORNL; Overbury, Steven {Steve} H [ORNL; Rondinone, Adam Justin [ORNL; Schwartz, Viviane [ORNL; Guliants, Vadim [ORNL; Shiju, N.R. [University of Cincinnati

2008-01-01T23:59:59.000Z

393

STEM HAADF Image Simulation of the Orthorhombic M1 Phase in the Mo-V-Nb-Te-O Propane Oxidation Catalyst  

SciTech Connect (OSTI)

A full frozen phonon multislice simulation of high angle annular dark field scanning transmission electron microscopy (HAADF STEM) images from the M1 phase of the Mo-V-Nb-Te-O propane oxidation catalyst has been performed by using the latest structural model obtained using the Rietveld method. Simulated contrast results are compared with experimental HAADF images. Good agreement is observed at ring sites, however significant thickness dependence is noticed at the linking sites. The remaining discrepancies between the model based on Rietveld refinement and image simulations indicate that the sampling of a small volume element in HAADF STEM and averaging elemental contributions of a disordered site in a crystal slab by using the virtual crystal approximation might be problematic, especially if there is preferential Mo/V ordering near the (001) surface.

D Blom; X Li; S Mitra; T Vogt; D Buttrey

2011-12-31T23:59:59.000Z

394

The preliminary result from spectra of $K^0_s \\pi^-$ in reaction p+propane at 10 GeV/c  

E-Print Network [OSTI]

The experimental data from 2m propane bubble chamber have been analyzed to search for scalar meson $\\kappa(800)$ in a $K^0_s\\pi$ decay mode for the reaction p+$C_3H_8$ at 10 GeV/c. The $K^0_s\\pi^-$ invariant mass spectrum has shown resonant structures with $M_{K^0_s\\pi^-}$=730, 900 and $\\Gamma$=143, 48 MeV/$c^2$, respectively. The statistical significance are estimated to be of 14.2$\\sigma$ and 4.2$\\sigma$, respectively. The peak in M(900) is identified as reflection from the well known resonance with mass of 892 MeV/c$^2$.

Aslanyan, P Z

2006-01-01T23:59:59.000Z

395

Exotic narrow resonance searches in the system Lambda K0s in p+propane collisions at 10 GeV/c  

E-Print Network [OSTI]

Experimental data from the 2m propane bubble chamber have been analyzed to search for an exotic baryon states, in the $\\Lambda K^0_s$ decay mode for the reaction p+$C_3H_8$ at 10 GeV/c. The invariant mass spectrum $\\Lambda K^0_s$ observe a narrow peaks at 1750$\\pm$18, 1795$\\pm$18,1850$\\pm19$ MeV/$c^2$ and full widths of $\\Gamma_{exp.}$= 32$\\pm$6, 44$\\pm$15, 29.0$\\pm$8 MeV/$c^2$. The statistical significance of these peaks has been estimated as 5.6, 3.3 and 3.0 S.D., respectively. There are the small enhancements in mass regions of (1650-1675) and (1925-1950) ???/?$^2$. These would be candidates for the $N^0$ or the $\\Xi^0$ pentaquark states. The investigation has been performed at the Veksler and Baldin Laboratory of High Energies, JINR.

Aslanyan, P Z; Rikhkvitzkaya, G G

2005-01-01T23:59:59.000Z

396

Partial miscibility behavior of the ternary systems methane-propane-n-octane, methane-n-butane-n-octane, and methane-carbon dioxide-n-octane  

SciTech Connect (OSTI)

The phase behavior of three ternary systems (methane-propane-n-octane, methane-n-butane-n-octane, methane-carbon dioxide-n-octane) was studied in their regions of L/sub 1/-L/sub 2/-V immiscibility. Liquid-phase composition and molar volume data for both liquid phases are presented as a function of temperature and pressure in the three-phase region. The boundaries of the three-phase regions, locl of K points (L/sub 1/-L/sub 2/ = V), LCST points (L/sub 1/ = L/sub 2/-V), and Q points (S-L/sub 1/-L/sub 2/-V) are detailed. A detailed study of the immiscibility behavior of the binary system carbon dioxide-n-octane is also presented.

Hottovy, J.D.; Kohn, J.P.; Luks, K.D.

1982-07-01T23:59:59.000Z

397

Amedee Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Amedee Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Amedee Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Map: Amedee Geothermal Area Amedee Geothermal Area Location Map Area Overview Geothermal Area Profile Location: California Exploration Region: Walker-Lane Transition Zone GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

398

Gas turbine combustor transition  

DOE Patents [OSTI]

A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.

Coslow, B.J.; Whidden, G.L.

1999-05-25T23:59:59.000Z

399

Southeast Idaho Area Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Area Attractions and Events Area Geography Area History Area Links Driving Directions Idaho Falls Attractions and Events INL History INL Today Research Park Sagebrush Steppe...

400

Western Area Power Administration  

Broader source: Energy.gov (indexed) [DOE]

v*Zy- i , . v*Zy- i , . r ,v * -i S # Af [, (e- . - o -A tl }r- 0 v-" l^~4~S J l ^-)^ I^U^ck iM clti ^ Area Power Administration Follow-up to Nov. 25, 2008 Transition Meeting Undeveloped Transmission Right-of-Way Western has very little undeveloped transmission right-of-way. There is a 7-mile right- of-way between Folsom, CA and Roseville, CA where Western acquired a 250' wide right-of-way but is only using half of it. Another line could be built parallel to Western's line to relieve congestion in the Sacramento area. In addition, Western has rights-of- way for many transmission lines that could be rebuilt to increase transmission capacity. For example, Western's Tracy-Livermore 230-kV line is a single circuit line but the existing towers could support a double circuit line. These rights-of-way would have to

Note: This page contains sample records for the topic "area transit propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Piecewise Linear Phase Transitions  

E-Print Network [OSTI]

It is shown how simple assumptions lead to piecewise linear behavior, which is observed in certain phase transitions.

Joseph B. Keller

2007-11-26T23:59:59.000Z

402

Under Steamboat Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Under Steamboat Springs Geothermal Area Under Steamboat Springs Geothermal Area (Redirected from Under Steamboat Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Under Steamboat Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure

403

Columbus Salt Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Columbus Salt Marsh Geothermal Area Columbus Salt Marsh Geothermal Area (Redirected from Columbus Salt Marsh Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Columbus Salt Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure

404

Management Transition Guidance  

Broader source: Energy.gov (indexed) [DOE]

Records and Information Records and Information Management Transition Guidance November 2013 Records and Information Management Transition Guidance i Records and Information Management Transition Guidance Table of Contents Executive Summary ........................................................................................................................ 1 1.0 Introduction and Purpose ..................................................................................................... 1 LM Records Functions ................................................................................................................ 1 2.0 The Records Life Cycle ....................................................................................................... 2 3.0 Organizational Responsibilities ........................................................................................... 2

405

Quantifying Greenhouse Gas Emissions from Transit | Open Energy Information  

Open Energy Info (EERE)

Quantifying Greenhouse Gas Emissions from Transit Quantifying Greenhouse Gas Emissions from Transit Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Quantifying Greenhouse Gas Emissions from Transit Agency/Company /Organization: American Public Transportation Association Focus Area: GHG Inventory Development Topics: Analysis Tools Resource Type: Reports, Journal Articles, & Tools Website: www.aptastandards.com/Portals/0/SUDS/SUDSPublished/APTA_Climate_Change This Recommended Practice provides guidance to transit agencies for quantifying their greenhouse gas emissions, including both emissions generated by transit and the potential reduction of emissions through efficiency and displacement How to Use This Tool This tool is most helpful when using these strategies: Shift - Change to low-carbon modes

406

Rhodes Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Rhodes Marsh Geothermal Area (Redirected from Rhodes Marsh Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Rhodes Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase:

407

Rhodes Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Rhodes Marsh Geothermal Area Rhodes Marsh Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Rhodes Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

408

Teels Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Teels Marsh Geothermal Area Teels Marsh Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Teels Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

409

Transitive associations 1 Running head: TRANSITIVE ASSOCIATIONS  

E-Print Network [OSTI]

transitions; across-pair associations (e.g. A-C) showed no evidence for asymmetry. While this pattern; Kahana, Howard, Zaromb, & Wingfield, 2002; Klein, Addis, & Kahana, 2005) estimates the probability

Howard, Marc

410

Redfield Campus Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Redfield Campus Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Redfield Campus Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate

411

Site Monitoring Area Maps  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to the Site Monitoring Area (SMA) The Site Monitoring Area sampler Control measures (best management practices) installed at the Site Monitoring Area Structures such as...

412

Multi-disciplinary development of state and transition models  

E-Print Network [OSTI]

Multi-disciplinary development of state and transition models An Example from Northwestern Colorado and Transition Models: A Road Map to Ecological Change #12;STMs also help us learn · Tacit explicit knowledge Adaptive Management Cycle Grantham et al. 2010 Front. Ecol. Environment #12;Study Area: Elkhead Watershed

413

MARKOV CHAIN APPROXIMATIONS FOR TRANSITION DENSITIES OF LEVY PROCESSES  

E-Print Network [OSTI]

MARKOV CHAIN APPROXIMATIONS FOR TRANSITION DENSITIES OF L´EVY PROCESSES ALEKSANDAR MIJATOVI for the existence of transition densities of X, we establish sharp convergence rates of the normalised probability class with applications in diverse areas such as mathematical finance, risk management, insurance

414

Bus Rapid Transit Planning Guide | Open Energy Information  

Open Energy Info (EERE)

Bus Rapid Transit Planning Guide Bus Rapid Transit Planning Guide Jump to: navigation, search Tool Summary Name: Bus Rapid Transit Planning Guide Agency/Company /Organization: Institute for Transportation & Development Policy Focus Area: Public Transit & Infrastructure Topics: Best Practices Resource Type: Reports, Journal Articles, & Tools Website: www.itdp.org/microsites/bus-rapid-transit-planning-guide/ The Bus Rapid Transit Planning Guide is the most comprehensive resource for planning a bus rapid transit (BRT) system, beginning with project preparation all the way through to implementation. How to Use This Tool This tool is most helpful when using these strategies: Improve - Enhance infrastructure & policies Learn more about the avoid, shift, improve framework for limiting air

415

Fact #555: January 26, 2009 Transit Buses are Relying Less on...  

Energy Savers [EERE]

detailed information, see the table below. * Other non-diesel includes gasoline, LNG, propane, biosoy fuel, biodiesel, hydrogen, methanol, ethanol, and various blends. Graph...

416

QUESTIONS BY AREA OF INTEREST : AOI #4  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

QUESTIONS BY AREA OF INTEREST : AOI #4 QUESTIONS BY AREA OF INTEREST : AOI #4 Q4. How does the application process work? We are getting conflicting information with the Federal Stimulus money that we need to go through the Clean Cities Coalitions. Do they need to be the applicants? Or can they just be partners in our project? Same with the Transit Authorities..originally we did not need them to be a partner; however, new information states we need to have both the Clean Cities Coalitions and local Transit Authority as participants/applicants? A. For Areas of Interest #1-3, there are no restrictions to eligibility for apply for funds. While it is not mandatory that the applicant be a Clean Cities coalition (designated or non-designated), it is strongly encouraged that teams include one or more Clean Cities

417

Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Second...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Second Evaluation Report and Appendices Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Second Evaluation Report and Appendices This report describes operations at...

418

Holographic Magnetic Phase Transition  

E-Print Network [OSTI]

We study four-dimensional interacting fermions in a strong magnetic field, using the holographic Sakai-Sugimoto model of intersecting D4 and D8 branes in the deconfined, chiral-symmetric parallel phase. We find that as the magnetic field is varied, while staying in the parallel phase, the fermions exhibit a first-order phase transition in which their magnetization jumps discontinuously. Properties of this transition are consistent with a picture in which some of the fermions jump to the lowest Landau level. Similarities to known magnetic phase transitions are discussed.

Gilad Lifschytz; Matthew Lippert

2009-06-21T23:59:59.000Z

419

Information and Records Management Transition Guidance | Department...  

Energy Savers [EERE]

Information and Records Management Transition Guidance Information and Records Management Transition Guidance Information and Records Management Transition Guidance (March 2004)...

420

Wildfire Policy in Transition Yellowstone  

E-Print Network [OSTI]

Wildfire Policy in Transition 1910 #12;Yellowstone 1988 #12;Colorado South Canyon Fire 1994 #12;#12;Wildfire Policy in Transition 1910 #12;

Note: This page contains sample records for the topic "area transit propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

MATHEMATICS: RETHINKING THE TRANSITION  

E-Print Network [OSTI]

SENIOR SECONDARY MATHEMATICS: RETHINKING THE TRANSITION BILL BARTON THE UNIVERSITY OF AUCKLAND, NZ #12;THE ENVISIONING PROJECT · Mathematics education project of NZIMA (New Zealand Institute of Mathematics & Its Applications--the mathematics research funding body). · Brought together mathematics

Peters, Achim

422

Alternative fuel transit buses  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory (NREL) is a U.S. Department of Energy (DOE) national laboratory; this project was funded by DOE. One of NREL`s missions is to objectively evaluate the performance, emissions, and operating costs of alternative fuel vehicles so fleet managers can make informed decisions when purchasing them. Alternative fuels have made greater inroads into the transit bus market than into any other. Each year, the American Public Transit Association (APTA) surveys its members on their inventory and buying plans. The latest APTA data show that about 4% of the 50,000 transit buses in its survey run on an alternative fuel. Furthermore, 1 in 5 of the new transit buses that members have on order are alternative fuel buses. This program was designed to comprehensively and objectively evaluate the alternative fuels in use in the industry.

Motta, R.; Norton, P.; Kelly, K. [and others

1996-10-01T23:59:59.000Z

423

Oligocyclopentadienyl transition metal complexes  

SciTech Connect (OSTI)

Synthesis, characterization, and reactivity studies of oligocyclopentadienyl transition metal complexes, namely those of fulvalene, tercyclopentadienyl, quatercyclopentadienyl, and pentacyclopentadienyl(cyclopentadienyl) are the subject of this account. Thermal-, photo-, and redox chemistries of homo- and heteropolynuclear complexes are described.

de Azevedo, Cristina G.; Vollhardt, K. Peter C.

2002-01-18T23:59:59.000Z

424

,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera"  

U.S. Energy Information Administration (EIA) Indexed Site

8. Energy Sources, Floorspace, 1999" 8. Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings Using Any Energy Source","Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera" "All Buildings ................",67338,65753,65716,45525,13285,5891,2750,6290,2322 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,6309,6280,3566,620,"Q","Q",635,292 "5,001 to 10,000 ..............",8238,7721,7721,5088,583,"Q","Q",986,"Q"

425

Certificate in Transit Management and  

E-Print Network [OSTI]

Certificate in Transit Management and Operations UMass Transit, in partnership with the UMass Transportation Center and CTTransit, are pleased to offer "A Certificate in Transit Management and Operations Engineering and the School of Management - Internships with UMass Transit and CTTransit - A summer workshop

Massachusetts at Amherst, University of

426

Certificate in Transit Management and  

E-Print Network [OSTI]

Certificate in Transit Management and Operations UMass Transit, in partnership with the UMass Transportation Center and CTTransit, are pleased to offer "A Certificate in Transit Management and Operations contract to provide transit management services in Hartford and other cities in Connecticut. CTTRANSIT

Massachusetts at Amherst, University of

427

Corrosion behavior of mesoporous transition metal nitrides  

SciTech Connect (OSTI)

Transition metal nitrides (TMN) have many desirable characteristics such as high hardness and good thermal stability under reducing conditions. This work reports an initial survey of the chemical stability of mesoporous TMNs (TM=Nb, V, Cr and Ti) in water at 80 C at neutral, acidic and alkaline pH. The mesoporous TMNs had specific surface areas of 2560 m{sup 2}/g with average pore sizes ranging from 10 to 50 nm. The high surface areas of these materials enhance the rate of corrosion per unit mass over that of a bulk material, making detection of corrosion much easier. The products were characterized by Rietveld refinement of powder X-ray diffraction (PXRD) patterns and by scanning electron microscopy (SEM). Several nitrides have corrosion rates that are, within error, not distinguishable from zero (1 /day). Of the nitrides examined, CrN appears to be the most corrosion resistant under acidic conditions. None of the nitrides studied are corrosion resistant under alkaline conditions. - Graphical abstract: Corrosion behavior of mesoporous transition metal nitrides (TM=Nb, V, Cr and Ti) in acidic and alkaline solutions at 80 C for 2 weeks. Display Omitted - highlights: Corrosion rates of mesoporous transition metal nitrides in aqueous solution is reported. The mesoporous TMNs had surface areas of 2560 m{sup 2}/g. CrN is the most corrosion resistant under the conditions studied.

Yang, Minghui, E-mail: m.yang@cornell.edu [Department of Chemistry, Cornell University, Ithaca 14853-1301, NY (United States); Allen, Amy J.; Nguyen, Minh T. [Department of Chemistry, Cornell University, Ithaca 14853-1301, NY (United States); Ralston, Walter T. [College of Chemistry, University of California, Berkeley 94720-1460, CA (United States); MacLeod, Michelle J. [Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139-4307, MA (United States); DiSalvo, Francis J., E-mail: fjd3@cornell.edu [Department of Chemistry, Cornell University, Ithaca 14853-1301, NY (United States)

2013-09-15T23:59:59.000Z

428

Functionalized Silicone Nanospheres: Synthesis, Transition Metal...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Functionalized Silicone Nanospheres: Synthesis, Transition Metal Immobilization, and Catalytic Applications. Functionalized Silicone Nanospheres: Synthesis, Transition Metal...

429

site_transition.cdr  

Broader source: Energy.gov (indexed) [DOE]

Legacy Legacy Management U.S. DEPARTMENT OF This fact sheet explains the process for transferring a site to the U.S. Department of Energy Office of Legacy Management. Site Transition Process Upon Cleanup Completion Introduction Transition Process After environmental remediation is completed at a site and there is no continuing mission, responsibility for the site and the associated records are transferred to the U.S. Department of Energy (DOE) Office of Legacy Management for post-closure management. Where residual hazards (e.g., disposal cells, ground water contamination) remain, active long-term surveillance and maintenance will be required to ensure protection of human health and the environment. The DOE Office of Legacy Management (LM) established transition guidance for remediated sites that will transfer to LM for long-term surveillance and maintenance. The

430

Wholesale Propane Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA) Indexed Site

1.381 1.412 1.427 1.406 1.524 1.637 2013-2013 1.381 1.412 1.427 1.406 1.524 1.637 2013-2013 East Coast (PADD 1) 1.442 1.509 1.551 1.548 1.660 1.712 2013-2013 Central Atlantic (PADD 1B) 1.493 1.530 1.584 1.587 1.702 1.751 2013-2013 New Jersey 1.575 1.583 1.596 1.624 1.672 1.672 2013-2013 New York 1.516 1.562 1.637 1.642 1.792 1.864 2013-2013 Pennsylvania 1.432 1.478 1.541 1.529 1.659 1.720 2013-2013 Lower Atlantic (PADD 1C) 1.366 1.479 1.503 1.489 1.596 1.653 2013-2013 North Carolina 1.327 1.440 1.468 1.428 1.540 1.596 2013-2013 Virginia 1.468 1.578 1.592 1.645 1.740 1.800 2013-2013 Midwest (PADD 2) 1.356 1.373 1.379 1.351 1.471 1.607 2013-2013 Illinois 1.358 1.388 1.375 1.332 1.473 1.644 2013-2013 Indiana 1.436 1.484 1.509 1.484 1.636 1.772 2013-2013

431

State Heating Oil and Propane Program Expansion of Propane Data...  

Gasoline and Diesel Fuel Update (EIA)

- end of season July 1- funding applications due July 15 - applications submitted to contracting office for review August 1 - applications submitted into STRIPES Late August -...

432

Residential Propane Weekly Heating Oil and Propane Prices (October...  

Gasoline and Diesel Fuel Update (EIA)

413 2.401 2.411 2.404 2.401 2.407 1990-2014 East Coast (PADD 1) 3.079 3.029 3.055 3.040 3.023 3.040 1990-2014 New England (PADD 1A) 3.109 3.098 3.106 3.093 3.089 3.098 1990-2014...

433

Diffusion of propane (1); 2-methyl-propane (2)  

Science Journals Connector (OSTI)

This document is part of Subvolume A Gases in Gases, Liquids and their Mixtures of Volume 15 Diffusion in Gases, Liquids and Electrolytes of Landolt-Brnstein Group IV Physical Chemistry. It is part of the ...

J. Winkelmann

2007-01-01T23:59:59.000Z

434

Viscosity near phase transitions  

E-Print Network [OSTI]

Probably the most enticing observation in theoretical physics during the last decade was the discovery of the great amount of consequences obtained from the AdS/CFT conjecture put forward by Maldacena. In this work we review how this correspondence can be used to address hydrodynamic properties such as the viscosity of some strongly interacting systems. We also employ the Boltzmann equation for those systems closer to low-energy QCD, and argue that this kind of transport coefficients can be related to phase transitions, in particular the QGP/hadronic phase transition studied in heavy ion collisions.

Antonio Dobado; Felipe J. Llanes-Estrada; Juan M. Torres-Rincon

2010-09-30T23:59:59.000Z

435

Walker-Lane Transition Zone Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Walker-Lane Transition Zone Geothermal Region Walker-Lane Transition Zone Geothermal Region (Redirected from Walker-Lane Transition Zone) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Walker-Lane Transition Zone Geothermal Region Details Areas (37) Power Plants (15) Projects (10) Techniques (30) Map: {{{Name}}} The northern Walker Lane (NWL) is a structurally complex zone of transition between the Sierra Nevada/Great Valley microplate and the Basin and Range Province. It is a major right-lateral shear zone which has been defined on both physiographic and geologic grounds Evidence from seismic and geologic studies together indicate that this 100 km wide zone is actively deforming and accommodates 20% of the relative motion between the Pacific and North American plates. Block modeling of crustal deformation of the northern

436

Inclusive production of $\\Lambda$, $K^0_s$ and exotic narrow resonances for systems $K_s^0 p$, $K_s^0 \\Lambda$, $\\Lambda p$ from p+propane interactions at 10 GeV/c  

E-Print Network [OSTI]

Experimental data from the 2m propane bubble chamber for production of $\\Lambda$, $K^0_s$ have been used to search of exotic baryon states, in the $K_s^0 p$, $K_s^0 \\Lambda$ and $\\Lambda p$ decay mode for the reaction p+propane at 10 GeV/c. The estimation of experimental inclusive cross sections for $\\Lambda$ and $K^0_s$ production in the p$^{12}C$ collision is equal to $\\sigma_{\\Lambda}$= 13.3$\\pm$1.7 mb and $\\sigma_{K^0_s}$= 3.8$\\pm$0.6 mb, respectively. The measured $\\Lambda /\\pi^+$ ratio from pC reaction is equal to (5.3$\\pm0.8)*10^{-2}$. The experimental $\\Lambda /\\pi^+$ ratio from the pC reaction is approximately two times larger than the $\\Lambda /\\pi^+$ ratio simulated by FRITIOF model from the pC reaction. The invariant mass spectrum $\\Lambda K^0_s$ registered narrow peaks in regions of 1750 and 1795 MeV/$c^2$. The statistical significance of these peaks has been estimated as 5.6 and 3.3 S.D., respectively. These would be candidates for the $N^0$ or the $\\Xi^0$ pentaquark states. The $pK^0_s$ invaria...

Aslanyan, P Z

2005-01-01T23:59:59.000Z

437

Gabbs Alkali Flat Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Gabbs Alkali Flat Geothermal Area Gabbs Alkali Flat Geothermal Area (Redirected from Gabbs Alkali Flat Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Gabbs Alkali Flat Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

438

Winnemucca Dry Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Winnemucca Dry Lake Geothermal Area Winnemucca Dry Lake Geothermal Area (Redirected from Winnemucca Dry Lake Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Winnemucca Dry Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

439

Walker Lake Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Walker Lake Valley Geothermal Area Walker Lake Valley Geothermal Area (Redirected from Walker Lake Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Walker Lake Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

440

Transition Implementation Guide  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Guide was prepared to aid in the development, planning, and implementation of requirements and activities during the transition phase at Department of Energy (DOE) facilities that have been declared or are forecast to become excess to any future mission requirements.

2001-04-24T23:59:59.000Z

Note: This page contains sample records for the topic "area transit propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Variational transition state theory  

SciTech Connect (OSTI)

This research program involves the development of variational transition state theory (VTST) and semiclassical tunneling methods for the calculation of gas-phase reaction rates and selected applications. The applications are selected for their fundamental interest and/or their relevance to combustion.

Truhlar, D.G. [Univ. of Minnesota, Minneapolis (United States)

1993-12-01T23:59:59.000Z

442

Heating Oil and Propane Update  

Gasoline and Diesel Fuel Update (EIA)

State Energy Offices State Energy Offices Q1: What price should be reported to EIA when submitting weekly data? EIA requests that you collect / report the residential credit price (keep-full prices being preferred) and that all prices exclude taxes for the Monday of each survey week, even if that Monday falls on a holiday. Prices should not include discounts for payment of cash or for payment made within a short period of time. However, if a company deals exclusively in cash, then this price should be reported and noted in the file sent to EIA. Q2: When is this data due to EIA each week? The EIA-877 "Winter Heating Fuels Telephone Survey" will begin the first Monday in October. Data should be submitted to EIA as soon as they are available but no later than noon on Tuesday of each week. Data collection

443

Propane Supply & Infrastructure Suggested Slides  

U.S. Energy Information Administration (EIA) Indexed Site

7, 2014 28 * ILLINOIS - retailers indicate the majority of end-users have filled tanks, record corn crop could mean large demand for drying. * IOWA - retailers' storage full...

444

Imports of Propane/Propylene  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

123 87 72 74 85 92 2004-2014 East Coast (PADD 1) 19 23 23 32 41 48 1993-2014 Midwest (PADD 2) 92 42 36 25 25 21 1993-2014 Gulf Coast (PADD 3) 0 0 0 0 0 0 1993...

445

Stocks of Propane/Propylene  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

80,271 80,127 81,053 81,152 79,201 79,416 1993-2014 PADD 1 6,167 6,143 6,218 6,187 6,111 6,061 1993-2014 New England 654 651 646 641 629 612 1993-2014 Central Atlantic 3,684 3,664...

446

Propane (Consumer Grade) Prices - Industrial  

Gasoline and Diesel Fuel Update (EIA)

23 1.706 1.880 - - - 1994-2013 East Coast (PADD 1) 2.216 1.686 1.945 - - - 1994-2013 New England (PADD 1A) 2.355 1.765 1.954 - - - 1994-2013 Central Atlantic (PADD 1B) 2.321 1.760...

447

Supporting RBEC Transition to Low-Emission Development | Open Energy  

Open Energy Info (EERE)

RBEC Transition to Low-Emission Development RBEC Transition to Low-Emission Development Jump to: navigation, search Name Supporting RBEC Transition to Low-Emission Development Agency/Company /Organization United Nations Development Programme (UNDP), UNDP Bratislava Regional Center Partner Interministerial committees headed by the national focal point on climate change Sector Climate, Energy Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Biomass, Buildings, Economic Development, Greenhouse Gas, Industry, People and Policy, Transportation Topics Background analysis, Baseline projection, Co-benefits assessment, Low emission development planning, -LEDS Website http://europeandcis.undp.org/e Program Start 2010 Program End 2012 Country Kazakhstan, Moldova, Republic of Kosovo, Turkey, Turkmenistan, Uzbekistan

448

PNNL: Biological Sciences - A Subsurface Science Scientific Focus Area -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Role of Microenvironments and Transition Zones in Subsurface Reactive Role of Microenvironments and Transition Zones in Subsurface Reactive Contaminant Transport Subsurface Science Scientific Focus Area (SFA) The Subsurface Science Scientific Focus Area (SFA) is funded by the U.S. Department of Energy's Office of Biological and Environmental Research. The SFA team is performing integrated, multidisciplinary, science-theme-focused research on the role of microenvironments and transition zones in the reactive transport of technetium (Tc), uranium (U), and plutonium (Pu). The primary environmental system being studied is the groundwater-river interaction zone in the 300 area of the Hanford Site in southeastern Washington State. Ringold Sediments Redox boundary in Ringold sediments about 2.5 m below the Hanford-Ringold contact. The boundary is the point where oxygen and other terminal electron

449

FE Transition Deliverables  

Broader source: Energy.gov (indexed) [DOE]

Transition Deliverables Transition Deliverables To: Cynthia Quarterman From: Charles Roy, FE-3 Date: 12/04/08 Re: On 12/03/08 Cynthia Quarterman requested a list of major projects with quick starts and job creation from Vic Der. Attached is a hard copy of this document. An electronic version of this document will be submitted to Cynthia Quarterman through the Office of Management. If there are any questions, please contact Charles Roy at 202-586-8977. ,^ (^// Cc~y Major Projects with Quick Starts & Jobs Creation Office of Clean Coal Summary of Projects and Job Creation The following table outlines the near-term possibilities for projects that capture and sequester carbon from coal-based systems. The potential jobs associated with these activities are listed along with likely construction and operation dates. Since the funding

450

Alternative Fuel Transit Buses  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

35th St. Craig Ave. Alt Blvd. Colucci Pkwy. Final Results from the National Renewable Energy Laboratory Vehicle Evaluation Program Final Results from the National Renewable Energy Laboratory Vehicle Evaluation Program N T Y A U E O F E N E R G D E P A R T M E N I T E D S T A T S O F A E R I C M Produced for the U.S. Department of Energy (DOE) by the National Renewable Energy Laboratory (NREL), a U.S. DOE national laboratory Transit Buses Alternative Fuel Alternative Fuel Final Results from the National Renewable Energy Laboratory (NREL) Vehicle Evaluation Program by Robert Motta, Paul Norton, and Kenneth Kelly, NREL Kevin Chandler, Battelle Leon Schumacher, University of Missouri Nigel Clark,West Virginia University October 1996 The authors wish to thank all the transit agencies that participated in this program.

451

3000 Area Phase 1 environmental assessment  

SciTech Connect (OSTI)

The US Department of Energy (DOE) is planning to sell the 3000 Area to prospective buyers. Environmental Services was requested by the WHC Economic Transition group to assess potential environmental liabilities in the area. Historical review of the area indicated that the site was the location of ``Camp Hanford`` in 1951 and has been used for a variety of purposes since then. The activities in the area have changed over the years. A number of Buildings from the area have been demolished and at least 15 underground storage tanks (USTs) have been removed. Part of the 3000 Area was identified as Operable Unit 1100-EM-3 in the Tri-Party Agreement and was cleaned up by the US Army Corps of Engineers (USACE). The cleanup included removal of contaminated soil and USTS. WHC and ICF KH had also performed sampling and analysis at some locations in the 3000 Area prior to USACE`s work on the Operable Unit 1100-EM-3. They removed a number of USTs and performed remediation.

Ranade, D.G.

1995-09-01T23:59:59.000Z

452

Transition of Sites from Environmental Management Memorandum...  

Broader source: Energy.gov (indexed) [DOE]

Transition of Sites from Environmental Management Memorandum of Understanding Transition of Sites from Environmental Management Memorandum of Understanding Transition of Sites from...

453

Under Steamboat Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Under Steamboat Springs Geothermal Area Under Steamboat Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Under Steamboat Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

454

Winnemucca Dry Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Winnemucca Dry Lake Geothermal Area Winnemucca Dry Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Winnemucca Dry Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

455

Dead Horse Wells Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dead Horse Wells Geothermal Area Dead Horse Wells Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dead Horse Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

456

Walker Lake Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Walker Lake Valley Geothermal Area Walker Lake Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Walker Lake Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

457

Columbus Salt Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Columbus Salt Marsh Geothermal Area Columbus Salt Marsh Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Columbus Salt Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

458

Gabbs Alkali Flat Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Gabbs Alkali Flat Geothermal Area Gabbs Alkali Flat Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Gabbs Alkali Flat Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

459

Material Disposal Areas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Material Disposal Areas Material Disposal Areas Material Disposal Areas Material Disposal Areas, also known as MDAs, are sites where material was disposed of below the ground surface in excavated pits, trenches, or shafts. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Material Disposal Areas at LANL The following are descriptions and status updates of each MDA at LANL. To view a current fact sheet on the MDAs, click on LA-UR-13-25837 (pdf). MDA A MDA A is a Hazard Category 2 nuclear facility comprised of a 1.25-acre, fenced, and radiologically controlled area situated on the eastern end of Delta Prime Mesa. Delta Prime Mesa is bounded by Delta Prime Canyon to the north and Los Alamos Canyon to the south.

460

Alameda-Contra Costa Transit District (AC Transit) Fuel Cell Transit Buses: Preliminary Evaluation Results  

SciTech Connect (OSTI)

This report provides an evaluation of three prototype fuel cell-powered transit buses operating at AC Transit in Oakland, California, and six baseline diesel buses similar in design to the fuel cell buses.

Chandler, K.; Eudy, L.

2007-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "area transit propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Alameda-Contra Costa Transit District (AC Transit) Fuel Cell Transit Buses: Preliminary Evaluation Results  

Broader source: Energy.gov [DOE]

This report provides an evaluation of three prototype fuel cell-powered transit buses operating at AC Transit in Oakland, California, and six baseline diesel buses similar in design to the fuel cell buses.

462

Concerted Allosteric Transition Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

combined use of x-ray crystallography and solution small angle x-ray scattering has enabled a research collaboration involving scientists from Boston College and SSRL to provide structural evidence supporting a 30-year old model accounting for the cooperative binding of ligands to allosteric proteins and enzymes - a function central to physiology and cellular processes. combined use of x-ray crystallography and solution small angle x-ray scattering has enabled a research collaboration involving scientists from Boston College and SSRL to provide structural evidence supporting a 30-year old model accounting for the cooperative binding of ligands to allosteric proteins and enzymes - a function central to physiology and cellular processes. Over 30 years ago, two major models were developed to account for the cooperativity observed in oligomeric allosteric proteins such as hemoglobin, the oxygen carrier protein in blood: the concerted model, in which a protein has only two ”all-or-none” global states, vs. the sequential model that allows a number of different global conformational/energy states. Both, however, are based on just two local states of building blocks (subunits) in close analogy to magnetic spin states. In either model, a transition of one or more protein subunits leads to the global transition, in the case of hemoglobin, from the oxygen-releasing form to the oxygen-binding form, depending on the oxygen level in the blood stream. The concerted model, based on highly positive cooperativity, resembles the ferromagnetic phase transition, in which only two spin states account for the sharp phase transition between two global states. The sequential model, on the other hand, permits mixture of active and inactive subunits. Macol et al., constructed a version of an allosteric enzyme E. coli aspartate transcarbamoylase, which is composed of six equivalent catalytic monomers and six equivalent regulatory monomers in its native form, in such a way that only one of the six catalytic monomers could bind a substrate analog. Using solution x-ray scattering data recorded at BL4-2 to monitor the global structural state, they provided the first structural evidence that the transition of only one catalytic monomer is sufficient to transform the entire enzyme into the highly active state, lending strong support to the concerted model.

463

PPPL Area Map | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PPPL Area Map PPPL Area Map Screen reader users: click here for plain HTML Go to Google Maps Home PPPL, Stellarator Road, Princeton, NJ Loading... Map Sat Ter Did you mean a different: Did you mean a different: Did you mean a different: Add Destination - Show options Hide options Get Directions Note: Public transit coverage may not be available in this area. PPPL, Stellarator Road, Princeton, NJ A Princeton Plasma Physics Laboratory Photo 100 Stellarator Rd, Plainsboro Township, NJ ‎ (609) 243-2000 () ‎ · pppl.gov 2 reviews · fusion science · lyman spitzer · ncsx · evolution "Princeton University Princeton Plasma Physics Laboratory P.O. Box 451. Princeton, NJ 08543-0451. GPS: 100 Stellarator Road Princeton, NJ, 08540 (609) 243-2000" - pppl.gov B James Forrestal Campus of Princeton University

464

Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration: First Results Report  

SciTech Connect (OSTI)

This report documents the early implementation experience for the Zero Emission Bay Area (ZEBA) Demonstration, the largest fleet of fuel cell buses in the United States. The ZEBA Demonstration group includes five participating transit agencies: AC Transit (lead transit agency), Santa Clara Valley Transportation Authority (VTA), Golden Gate Transit (GGT), San Mateo County Transit District (SamTrans), and San Francisco Municipal Railway (Muni). The ZEBA partners are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service.

Chandler, K.; Eudy, L.

2011-08-01T23:59:59.000Z

465

Mechanisms of deflagration-to-detonation transition under initiation by high-voltage nanosecond discharges  

SciTech Connect (OSTI)

An experimental study of detonation initiation in a stoichiometric propane-oxygen mixture by a high-voltage nanosecond gas discharge was performed in a detonation tube with a single-cell discharge chamber. The discharge study performed in this geometry showed that three modes of discharge development were realized under the experimental conditions: a spark mode with high-temperature channel formation, a streamer mode with nonuniform gas excitation, and a transient mode. Under spark and transient initiation, simultaneous ignition inside the discharge channel occurred, forming a shock wave and leading to a conventional deflagration-to-detonation transition (DDT) via an adiabatic explosion. The DDT length and time at 1 bar of initial pressure in the square smooth tube with a 20-mm transverse size amounted to 50 mm and 50{mu}s, respectively. The streamer mode of discharge development at an initial pressure of 1 bar resulted in nonuniform mixture excitation and a successful DDT via a gradient mechanism, which was confirmed by high-speed time resolved ICCD imaging. The gradient mechanism implied a longer DDT time of 150{mu}s, a DDT run-up distance of 50 mm, and an initiation energy of 1 J, which is two orders of magnitude less than the direct initiation energy for a planar detonation under these conditions. (author)

Rakitin, Aleksandr E.; Starikovskii, Andrei Yu. [Physics of Nonequilibrium Systems Lab, Moscow Institute of Physics and Technology, 9 Institutski Lane, Dolgoprudny 141700 (Russian Federation)

2008-10-15T23:59:59.000Z

466

,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Energy Sources, Number of Buildings, 1999" 7. Energy Sources, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Buildings Using Any Energy Source","Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera" "All Buildings ................",4657,4403,4395,2670,434,117,50,451,153 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,2193,2186,1193,220,"Q","Q",215,93 "5,001 to 10,000 ..............",1110,1036,1036,684,74,"Q","Q",124,"Q" "10,001 to 25,000 .............",708,689,688,448,65,24,"Q",74,19

467

BACKGROUND AND PURPOSE In hilly areas and climates prone to local controls, thermally-induced wind systems develop (e.g., Fernando et al, 2001 and Hunt et al, In Review). Two "transitions" occur morning and evening when winds reverse from downvalley to  

E-Print Network [OSTI]

BACKGROUND AND PURPOSE In hilly areas and climates prone to local controls, thermally-induced wind and at the west end of the lake. A complete energy budget set of sensors are recording diurnal data and records

Hall, Sharon J.

468

Transition Strategies: Government Options and Market Penetration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Strategies: Government Options and Market Penetration Scenarios Transition Strategies: Government Options and Market Penetration Scenarios Presentation on Transition Strategies:...

469

Inclusive production of $?$, $K^0_s$ and exotic narrow resonances for systems $K_s^0 p$, $K_s^0 ?$, $?p$ from p+propane interactions at 10 GeV/c  

E-Print Network [OSTI]

Experimental data from the 2m propane bubble chamber for production of $\\Lambda$, $K^0_s$ have been used to search of exotic baryon states, in the $K_s^0 p$, $K_s^0 \\Lambda$ and $\\Lambda p$ decay mode for the reaction p+propane at 10 GeV/c. The estimation of experimental inclusive cross sections for $\\Lambda$ and $K^0_s$ production in the p$^{12}C$ collision is equal to $\\sigma_{\\Lambda}$= 13.3$\\pm$1.7 mb and $\\sigma_{K^0_s}$= 3.8$\\pm$0.6 mb, respectively. The measured $\\Lambda /\\pi^+$ ratio from pC reaction is equal to (5.3$\\pm0.8)*10^{-2}$. The experimental $\\Lambda /\\pi^+$ ratio from the pC reaction is approximately two times larger than the $\\Lambda /\\pi^+$ ratio simulated by FRITIOF model from the pC reaction. The invariant mass spectrum $\\Lambda K^0_s$ registered narrow peaks in regions of 1750 and 1795 MeV/$c^2$. The statistical significance of these peaks has been estimated as 5.6 and 3.3 S.D., respectively. These would be candidates for the $N^0$ or the $\\Xi^0$ pentaquark states. The $pK^0_s$ invariant mass spectrum shows resonant structures with $M_{K_s^0 p}$=1540, 1613, 1821 MeV/$c^2$. The statistical significance of these peaks have been estimated as 5.5,4.8 and 5.0 s.d., respectively. The invariant mass spectrum S=-1 $\\Lambda p$ observed a narrow peaks at 2100, 2175,2285 and 2353 MeV/$c^2$. Their excess above background by the second method is 6.9, 4.9, 3.8 and 2.9 S.D., respectively.

P. Zh. Aslanyan

2005-11-05T23:59:59.000Z

470

Enabling a Transition to Low Carbon Economies in Developing Countries:  

Open Energy Info (EERE)

Enabling a Transition to Low Carbon Economies in Developing Countries: Enabling a Transition to Low Carbon Economies in Developing Countries: Bangladesh Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Enabling a Transition to Low Carbon Economies in Developing Countries: Bangladesh Agency/Company /Organization: Imperial College-London Sector: Energy, Climate Focus Area: Energy Efficiency, Biomass, - Waste to Energy, - Anaerobic Digestion, Solar, - Concentrating Solar Power, - Solar PV, Wind Topics: GHG inventory, Low emission development planning, Policies/deployment programs, Resource assessment, Pathways analysis, Background analysis Resource Type: Publications, Case studies/examples Website: workspace.imperial.ac.uk/energyfutureslab/Public/2010-03-17-Bangladesh Country: Bangladesh Southern Asia Enabling a Transition to Low Carbon Economies in Developing Countries: Bangladesh Screenshot

471

Walker-Lane Transition Zone Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Transition Zone Geothermal Region Transition Zone Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Walker-Lane Transition Zone Geothermal Region Details Areas (37) Power Plants (15) Projects (10) Techniques (30) Map: {{{Name}}} The northern Walker Lane (NWL) is a structurally complex zone of transition between the Sierra Nevada/Great Valley microplate and the Basin and Range Province. It is a major right-lateral shear zone which has been defined on both physiographic and geologic grounds Evidence from seismic and geologic studies together indicate that this 100 km wide zone is actively deforming and accommodates 20% of the relative motion between the Pacific and North American plates. Block modeling of crustal deformation of the northern Walker Lane and Basin and Range from GPS velocities[1]

472

area | OpenEI  

Open Energy Info (EERE)

area area Dataset Summary Description These estimates are derived from a composite of high resolution wind resource datasets modeled for specific countries with low resolution data originating from the National Centers for Environmental Prediction (United States) and the National Center for Atmospheric Research (United States) as processed for use in the IMAGE model. The high resolution datasets were produced by the National Renewable Energy Laboratory (United States), Risø DTU National Laboratory (Denmark), the National Institute for Space Research (Brazil), and the Canadian Wind Energy Association. The data repr Source National Renewable Energy Laboratory Date Released Unknown Date Updated Unknown Keywords area capacity clean energy international National Renewable Energy Laboratory

473

NSTB Summarizes Vulnerable Areas  

Broader source: Energy.gov (indexed) [DOE]

NSTB Summarizes Vulnerable Areas NSTB Summarizes Vulnerable Areas Commonly Found in Energy Control Systems Experts at the National SCADA Test Bed (NSTB) discovered some common areas of vulnerability in the energy control systems assessed between late 2004 and early 2006. These vulnerabilities ranged from conventional IT security issues to specific weaknesses in control system protocols. The paper "Lessons Learned from Cyber Security Assessments of SCADA and Energy Management Systems" describes the vulnerabilities and recommended strategies for mitigating them. It should be of use to asset owners and operators, control system vendors, system integrators, and third-party vendors interested in enhancing the security characteristics of current and future products.

474

Progress and Challenges for PEM Transit Fleet Applications  

E-Print Network [OSTI]

. #12;· Brief company history in area of fuel cell buses · Current fuel cell bus deployments commercialization of fuel cell buses · Fuel cell bus R&D needs · Future plans Agenda 2 #12;UTC Fleet history · 14+ yr experience integrating fuel cell technology into buses SunLine, AC Transit, LAMTA, Chula Vista 30

475

Neutron Science Research Areas | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home | Science & Discovery | Neutron Science | Research Areas SHARE Research Areas Neutron scattering research at ORNL covers four broad research areas: biology and soft...

476

Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Third...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three new diesel buses operating from the same location. The prototype fuel cell bus was...

477

Alameda-Contra Costa Transit District Fuel Cell Transit Buses...  

Office of Environmental Management (EM)

Results Update This report is an update to the 2007 preliminary results report on hydrogen fuel cell and diesel buses operating at Alameda-Contra Costa Transit District....

478

Western Area Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Loveland Area Projects November 29-30, 2011 2 Agenda * Overview of Western Area Power Administration * Post-1989 Loveland Area Projects (LAP) Marketing Plan * Energy Planning and Management Program * Development of the 2025 PMI Proposal * 2025 PMI Proposal * 2025 PMI Comment Period & Proposal Information * Questions 3 Overview of Western Area Power Administration (Western) * One of four power marketing administrations within the Department of Energy * Mission: Market and deliver reliable, renewable, cost-based Federal hydroelectric power and related services within a 15-state region of the central and western U.S. * Vision: Provide premier power marketing and transmission services Rocky Mountain Region (RMR) is one of five regional offices 4 Rocky Mountain Region

479

Decontamination & decommissioning focus area  

SciTech Connect (OSTI)

In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

NONE

1996-08-01T23:59:59.000Z

480

Honey Lake Geothermal Area  

Broader source: Energy.gov [DOE]

The Honey Lake geothermal area is located in Lassen County, California and Washoe County, Nevada. There are three geothermal projects actively producing electrical power. They are located at Wendel...

Note: This page contains sample records for the topic "area transit propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

AREA 5 RWMS CLOSURE  

National Nuclear Security Administration (NNSA)

153 CLOSURE STRATEGY NEVADA TEST SITE AREA 5 RADIOACTIVE WASTE MANAGEMENT SITE Revision 0 Prepared by Under Contract No. DE-AC52-06NA25946 March 2007 DISCLAIMER Reference herein to...

482

Geographic Area Month  

U.S. Energy Information Administration (EIA) Indexed Site

Fuels by PAD District and State (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month No. 1 Distillate No. 2 Distillate a No. 4 Fuel b Sales to End Users Sales for...

483

Alternative Fuels at AC Transit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alternative Fuels at AC Transit Alternative Fuels at AC Transit Speaker(s): Jaimie Levin Date: November 1, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Eve Edelson Mr. Levin will discuss AC Transit's range of environmental technology initiatives, including: zero emission fuel cell transit buses; state-of-the-art, high-capacity, hydrogen fueling stations; solar energy systems; and stationary solid oxide fuel cell power generators. AC Transit has the largest fleet of fuel cell buses in the United States, featuring fuel cell systems with more than 10,000 hours of continuous operation without any failures or power degradation. Their fuel cell fleet has logged more than 400,000 miles of service and carried in excess of one million passengers. Come hear what AC Transit has learned, where they're headed,

484

Examining changes in transit passenger travel behavior through a Smart Card activity analysis  

E-Print Network [OSTI]

Transit passenger behavior is an area of major interest for public transportation agencies. The relationship between ridership and maintenance projects, however, is unexplored but increasingly relevant in the era of aging ...

Mojica, Carlos H

2008-01-01T23:59:59.000Z

485

The Effect of Light Rail Transit on Employment: A Case Study of Dallas, Texas  

E-Print Network [OSTI]

in the area. This can help attract more jobs into the central city, while potentially increasing the employment opportunities for low income residents. This study aims to investigate whether proximity to light rail transit influence total employment...

Mendez, Joel

2014-08-05T23:59:59.000Z

486

FTA-Characteristics of Bus Rapid Transit for Decision-Making | Open Energy  

Open Energy Info (EERE)

FTA-Characteristics of Bus Rapid Transit for Decision-Making FTA-Characteristics of Bus Rapid Transit for Decision-Making Jump to: navigation, search Tool Summary LAUNCH TOOL Name: FTA-Characteristics of Bus Rapid Transit for Decision-Making Agency/Company /Organization: Federal Transit Administration, United States Department of Transportation Focus Area: Transportation Resource Type: Publications, Guide/manual User Interface: Other Website: www.nbrti.org/docs/pdf/Characteristics_BRT_Decision-Making.pdf Cost: Free Language: English FTA-Characteristics of Bus Rapid Transit for Decision-Making Screenshot References: FTA-Characteristics of Bus Rapid Transit for Decision-Making[1] "The Characteristics of Bus Rapid Transit for Decision-Making (CBRT) report was prepared to provide transportation planners and decision makers with

487

TRB-Transit Cooperative Research Program (TCRP): Case Studies in Bus Rapid  

Open Energy Info (EERE)

TRB-Transit Cooperative Research Program (TCRP): Case Studies in Bus Rapid TRB-Transit Cooperative Research Program (TCRP): Case Studies in Bus Rapid Transit Jump to: navigation, search Tool Summary LAUNCH TOOL Name: TRB-Transit Cooperative Research Program (TCRP): Case Studies in Bus Rapid Transit Agency/Company /Organization: Transportation Research Board Focus Area: Transportation Resource Type: Publications, Lessons learned/best practices, Case studies/examples Website: www.trb.org/Main/Public/Blurbs/152921.aspx Country: United States, Australia, United Kingdom, France, Colombia, Brazil, Ecuador Cost: Free Northern America, Australia and New Zealand, Northern Europe, Western Europe, South America, South America, South America Language: English TRB-Transit Cooperative Research Program (TCRP): Case Studies in Bus Rapid Transit Screenshot

488

New York City Transit Diesel Hybrid-Electric Buses Final Results: DOE/ NREL  

Open Energy Info (EERE)

Transit Diesel Hybrid-Electric Buses Final Results: DOE/ NREL Transit Diesel Hybrid-Electric Buses Final Results: DOE/ NREL Transit Bus Evaluation Project Jump to: navigation, search Name New York City Transit Diesel Hybrid-Electric Buses Final Results: DOE/ NREL Transit Bus Evaluation Project Agency/Company /Organization Department of Energy Partner National Renewable Energy Laboratory Batelle"National Renewable Energy Laboratory Batelle" cannot be used as a page name in this wiki. Focus Area Transportation Phase Bring the Right People Together, Determine Baseline, Evaluate Options, Develop Finance and Implement Projects Resource Type Guide/manual Availability Publicly available--Free Publication Date 7/1/2002 Website http://www.nrel.gov/docs/fy02o Locality New York City References New York City Transit Diesel Hybrid-Electric Buses Final Results: DOE/ NREL Transit Bus Evaluation Project[1]

489

Transition Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and training needs for system operation and maintenance, planning for data migration, etc Transition Plan More Documents & Publications System Design Feasibility Study Report...

490

Even more Oak Ridge transitions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Even more Oak Ridge transitions The University of Chicago managed the Clinton Laboratories until July 1, 1945 when Monsanto Chemical Company took over operations. Charles A....

491

DOE Hydrogen Transition Analysis Workshop  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy sponsored a Hydrogen Transition Analysis Workshop in Washington, DC, on January 26, 2006. Attendees included automobile and energy company representatives, industrial...

492

IDEA Reauthorized Statute SECONDARY TRANSITION  

E-Print Network [OSTI]

to Kindergarten Age; Procedural Safeguards: Surrogates, Notice and Consent; Procedural Safeguards: Mediation and Resolution Sessions; Procedural Safeguards: Due Process Hearings; Secondary Transition; State Funding

493

Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Preliminary Evaluation Results  

Broader source: Energy.gov [DOE]

This report provides preliminary results from the evaluation of a protoptye fuel cell transit bus operating at Connecticut Transit in Hartford. Included are descriptions of the planned fuel cell bus demonstration and equipment, early results and agency experience are also provided.

494

Seismic stratigraphy and salt tectonics of the Alaminos Canyon area, Gulf of Mexico.  

E-Print Network [OSTI]

morphology, salt structure, and suprasalt sediments indicate the majority of the slope is covered by a shallow salt canopy. The salt structure map indicates that the Alaminos Canyon study area represents a transition from a semi-continuous salt sheet...

Mechler, Suzanne Marie

2012-06-07T23:59:59.000Z

495

Alameda-Contra Costa Transit District (AC Transit) Fuel Cell Transit Buses: Third Evaluation Report  

Broader source: Energy.gov [DOE]

This report describes operations at Alameda-Contra Costa Transit district for three protoype fuel cell buses and six diesel buses operating from the same location.

496

Alameda-Contra Costa Transit District (AC Transit) Fuel Cell Transit Buses: Third Evaluation Report- Appendices  

Broader source: Energy.gov [DOE]

This report describes operations at Alameda-Contra Costa Transit district for three protoype fuel cell buses and six diesel buses operating from the same location.

497

Operational Area Monitoring Plan  

Office of Legacy Management (LM)

' ' SECTION 11.7B Operational Area Monitoring Plan for the Long -Term H yd rol og ical M o n i to ri ng - Program Off The Nevada Test Site S . C. Black Reynolds Electrical & Engineering, Co. and W. G. Phillips, G. G. Martin, D. J. Chaloud, C. A. Fontana, and 0. G. Easterly Environmental Monitoring Systems Laboratory U. S. Environmental Protection Agency October 23, 1991 FOREWORD This is one of a series of Operational Area Monitoring Plans that comprise the overall Environmental Monitoring Plan for the DOE Field Office, Nevada (DOEINV) nuclear and non- nuclear testing activities associated with the Nevada Test Site (NTS). These Operational Area Monitoring Plans are prepared by various DOE support contractors, NTS user organizations, and federal or state agencies supporting DOE NTS operations. These plans and the parent

498

Bay Area | Open Energy Information  

Open Energy Info (EERE)

Bay Area Bay Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Bay Area 1.1 Products and Services in the Bay Area 1.2 Research and Development Institutions in the Bay Area 1.3 Networking Organizations in the Bay Area 1.4 Investors and Financial Organizations in the Bay Area 1.5 Policy Organizations in the Bay Area Clean Energy Clusters in the Bay Area Products and Services in the Bay Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

499

Texas Area | Open Energy Information  

Open Energy Info (EERE)

Area Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Texas Area 1.1 Products and Services in the Texas Area 1.2 Research and Development Institutions in the Texas Area 1.3 Networking Organizations in the Texas Area 1.4 Investors and Financial Organizations in the Texas Area 1.5 Policy Organizations in the Texas Area Clean Energy Clusters in the Texas Area Products and Services in the Texas Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

500

Rockies Area | Open Energy Information  

Open Energy Info (EERE)

Rockies Area Rockies Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Rockies Area 1.1 Products and Services in the Rockies Area 1.2 Research and Development Institutions in the Rockies Area 1.3 Networking Organizations in the Rockies Area 1.4 Investors and Financial Organizations in the Rockies Area 1.5 Policy Organizations in the Rockies Area Clean Energy Clusters in the Rockies Area Products and Services in the Rockies Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026