National Library of Energy BETA

Sample records for area rocky mountain

  1. Rocky Mountain Futures: An Ecological Perspective

    E-Print Network [OSTI]

    Aguero, Tania

    2003-01-01

    changes in the Rocky Mountains, global warming, and severalReview: Rocky Mountain Futures: An Ecological Perspective ByJill S. Baron (Ed. ). Rocky Mountain Futures: An Ecological

  2. Mapco's NGL Rocky Mountain pipeline

    SciTech Connect (OSTI)

    Isaacs, S.F.

    1980-01-01

    The Rocky Mountain natural gas liquids (NGL) pipeline was born as a result of major producible gas finds in the Rocky Mountain area after gas deregulation. Gas discoveries in the overthurst area indicated considerable volumes of NGL would be available for transportation out of the area within the next 5 to 7 years. Mapco studied the need for a pipeline to the overthrust, but the volumes were not substantial at the time because there was little market and, consequently, little production for ethane. Since that time crude-based products for ethylene manufacture have become less competitive as a feed product on the world plastics market, and ethane demand has increased substantially. This change in the market has caused a major modification in the plans of the NGL producers and, consequently, the ethane content of the NGL stream for the overthrust area is expected to be 30% by volume at startup and is anticipated to be at 45% by 1985. These ethane volumes enhance the feasibility of the pipeline. The 1196-mile Rocky Mountain pipeline will be installed from the existing facility in W. Texas, near Seminole, to Rock Springs, Wyoming. A gathering system will connect the trunk line station to various plant locations. The pipeline development program calls for a capacity of 65,000 bpd by the end of 1981.

  3. Why sulfonamides are contraindicated in Rocky Mountain spotted fever

    E-Print Network [OSTI]

    Ren, Vicky; Hsu, Sylvia

    2014-01-01

    and mortality in cases of Rocky Mountain spotted fever. ClinNH. Experimental Rocky Mountain spotted fever and endemicRR. Experimental Rocky Mountain spotted fever: Results of

  4. Rocky Mountain Research Station 20142017 Strategic Framework

    E-Print Network [OSTI]

    Rocky Mountain Research Station 2014­2017 Strategic Framework #12;Rocky Mountain Research Station 240 West Prospect Fort Collins, CO 80526 (970) 498-1100 www.fs.fed.us/rmrs High mountain lake at GLEES (Glacier Lakes Ecosystem Experiments Site) #12;1ROCKY MOUNTAIN RESEARCH STATION -- 2014­2017 STRATEg

  5. ROCKY MOUNTAIN Research Station

    E-Print Network [OSTI]

    deployed across the conterminous United States, Alaska, and Hawaii are now routinely used to calculate lands. This report includes descriptive highlights and tables of area, number of trees, biomass, volume

  6. Rocky Mountain White Tilapia Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    Rocky Mountain White Tilapia Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Rocky Mountain White Tilapia Aquaculture Low Temperature Geothermal...

  7. Postglacial adjustment of steep, low-order drainage basins, Canadian Rocky Mountains

    E-Print Network [OSTI]

    Johnson, Edward A.

    Postglacial adjustment of steep, low-order drainage basins, Canadian Rocky Mountains T. Hoffmann,1 sediment flux in mountain systems. An important, but not well constrained, aspect of Pleistocene glacial for mountain headwaters (with basin area

  8. Rocky Mountain Basins Produced Water Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Historical records for produced water data were collected from multiple sources, including Amoco, British Petroleum, Anadarko Petroleum Corporation, United States Geological Survey (USGS), Wyoming Oil and Gas Commission (WOGC), Denver Earth Resources Library (DERL), Bill Barrett Corporation, Stone Energy, and other operators. In addition, 86 new samples were collected during the summers of 2003 and 2004 from the following areas: Waltman-Cave Gulch, Pinedale, Tablerock and Wild Rose. Samples were tested for standard seven component "Stiff analyses", and strontium and oxygen isotopes. 16,035 analyses were winnowed to 8028 unique records for 3276 wells after a data screening process was completed. [Copied from the Readme document in the zipped file available at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the Zipped file to your PC. When opened, it will contain four versions of the database: ACCESS, EXCEL, DBF, and CSV formats. The information consists of detailed water analyses from basins in the Rocky Mountain region.

  9. Rocky Mountain Environment and Society The Rocky Mountain West is the fastest-growing region of the United States. The rapid

    E-Print Network [OSTI]

    MacDonald, Lee

    Rocky Mountain Environment and Society The Rocky Mountain West is the fastest-growing region conflicting uses. The goals of the Rocky Mountain Environment and Society Institute (RMES) are to understand and quantify the influence of natural and human-induced change on Rocky Mountain ecosystems from the mountains

  10. United States Department of Agriculture Forest Rocky Mountain General Technical Report

    E-Print Network [OSTI]

    United States Department of Agriculture Forest Rocky Mountain General Technical Report Service Development: Spring Mountains National Recreation Area Humboldt-Toiyabe National Forest #12;Available only development: Spring Mountains National Recreation Area, Humboldt-Toiyabe National Forest. Gen. Tech. Rep. RMRS

  11. Rocky Mountain Power- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power provides incentives for residential customers in Idaho to install energy efficient equipment in participating homes. Rebates are available for qualified appliances,...

  12. Rocky Mountain Power- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power offers the Home Energy Savings Program for their residential Wyoming customers to improve the energy efficiency of their homes. Incentives are available for energy efficient...

  13. Rocky Mountain Power- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power provides incentives for residential customers to increase the energy efficiency of homes through the Home Energy Savings Program. Rebates are available through this program for...

  14. Rocky Mountain Spotted Fever in a patient treated with anti-TNF-alpha inhibitors

    E-Print Network [OSTI]

    Mays, Rana M; Gordon, Rachel A; Durham, K Celeste; LaPolla, Whitney J; Tyring, Stephen K

    2013-01-01

    SJ, Paddock CD. Rocky Mountain spotted fever: a clinician'sand Prevention. Rocky Mountain Spotted Fever . http://Demma LJ, et al. Rocky mountain spotted fever in the United

  15. Rocky Mountain Power- New Homes Program for Builders

    Broader source: Energy.gov [DOE]

    The Rocky Mountain Power ENERGY STAR New Homes program offers cash incentives to contractors who build energy-efficient homes. To qualify for this incentive, the new home must meet the Version 2.5...

  16. Marketing the Mountains: An Environmental History of Tourism in Rocky Mountain National Park

    E-Print Network [OSTI]

    Frank, Jerritt

    2008-09-05

    Marketing the Mountains explores the impact of tourism upon the natural world of Rocky Mountain National Park. Moving beyond culutral analysis of the development of tourism in the American West, this dissertation seeks to understand both...

  17. Mercury audit at Rocky Mountain Arsenal

    SciTech Connect (OSTI)

    Smith, S.M.; Jensen, M.K. [Oak Ridge National Lab., TN (United States); Anderson, G.M. [Rocky Mountain Arsenal, Denver, CO (United States)

    1994-02-01

    This report presents the results of an environmental compliance audit to identify potential mercury-containing equipment in 261 building and 197 tanks at the Rocky Mountain Arsenal (RMA). The RMA, located near Denver, Colorado, is undergoing clean up and decommissioning by the Department of the Army. Part of the decommissioning procedure is to ensure that all hazardous wastes are properly identified and disposed of. The purpose of the audit was to identify any mercury spills and mercury-containing instrumentation. The audit were conducted from April 7, 1992, through July 16, 1992, by a two-person team. The team interviewed personnel with knowledge of past uses of the buildings and tanks. Information concerning past mercury spills and the locations and types of instrumentation that contain mercury proved to be invaluable for an accurate survey of the arsenal. The team used a Jerome{reg_sign} 431-X{trademark} Mercury Vapor Analyzer to detect spills and confirm locations of mercury vapor. Twelve detections were recorded during the audit and varied from visible mercury spills to slightly elevated readings in the corners of rooms with past spills. The audit also identified instrumentation that contained mercury. All data have been incorporated into a computerized data base that is compatible with the RMA data base.

  18. Passage of chronic wasting disease prion into transgenic mice expressing Rocky Mountain elk

    E-Print Network [OSTI]

    Passage of chronic wasting disease prion into transgenic mice expressing Rocky Mountain elk (Cervus). Subsequently, the disease was diagnosed in black-tailed deer, Rocky Mountain elk (Williams & Young, 1982, 1992

  19. Morphological taxonomy, DNA barcoding, and species diversity in southern Rocky Mountain headwater streams

    E-Print Network [OSTI]

    Zamudio, Kelly R.

    Morphological taxonomy, DNA barcoding, and species diversity in southern Rocky Mountain headwater and Conditions #12;MOLECULAR APPROACHES IN FRESHWATER ECOLOGY Morphological taxonomy, DNA barcoding, and species: diversity, elevation, DNA barcoding, taxonomy, aquatic insect, EPT, southern Rocky Mountain Elevation

  20. OPEN POSITION: Entomological Taxonomist and Research Associate Improving our understanding of the elevational biodiversity gradient of Rocky Mountain National Park

    E-Print Network [OSTI]

    Ishida, Yuko

    of the elevational biodiversity gradient of Rocky Mountain National Park: arthropod diversity and conservation Range, including from Rocky Mountain National Park. The taxonomic groups of most interest include

  1. OUTCROPNewsletter of the Rocky Mountain Association of Geologists Volume 58 No. 1 January 2009

    E-Print Network [OSTI]

    Dueker, Ken

    OUTCROPNewsletter of the Rocky Mountain Association of Geologists Volume 58 · No. 1 · January 2009 Rockies. The Colorado Rockies are the climax of an enigma. They present a major young mountain range Rockies is widely believed to be low-angle subduction of the Farallon plate during the Laramide Orogeny

  2. Determination of hydrologic pathways during snowmelt for alpine/subalpine basins, Rocky Mountain

    E-Print Network [OSTI]

    Ryan, Joe

    Determination of hydrologic pathways during snowmelt for alpine/subalpine basins, Rocky Mountain Abstract. Alpine/subalpine ecosystems in Rocky Mountain National Park may be sensitive to atmospherically with soil and vegetation. Because of this, waters draining granitic terrains, such as Rocky Mountain

  3. Proc. of 36th Rocky Mountain Bioengineering Symposium, April 16-18, 1999, Copper Mountain, Colorado AN INTERACTIVE SYSTEM FOR KINEMATIC ANALYSIS

    E-Print Network [OSTI]

    Hoff, William A.

    Proc. of 36th Rocky Mountain Bioengineering Symposium, April 16-18, 1999, Copper Mountain, Colorado;Proc. of 36th Rocky Mountain Bioengineering Symposium, April 16-18, 1999, Copper Mountain, Colorado

  4. Response of Rocky Mountain Elk (Cervus elaphus) to Wind-power Development

    E-Print Network [OSTI]

    Response of Rocky Mountain Elk (Cervus elaphus) to Wind-power Development W. DAVID WALTER1 Oklahoma) to wind-power development in southwestern Oklahoma. Ten elk were radiocollared in an area of wind-power devel- opment on 31 March 2003 and were relocated bi-weekly through March 2005. Wind-power construction

  5. Natural Gas in the Rocky Mountains: Developing Infrastructure

    Reports and Publications (EIA)

    2007-01-01

    This Supplement to the Energy Information Administration's Short-Term Energy Outlook analyzes current natural gas production, pipeline and storage infrastructure in the Rocky Mountains, as well as prospective pipeline projects in these states. The influence of these factors on regional prices and price volatility is examined.

  6. Rocky Mountain Power- Self-Direction Credit Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power offers a Self-Direction Credit program to its industrial and large commercial customers with annual electric usage of more than 5,000,000 kWh or a 1,000 kW peak load. Through...

  7. Rocky Mountain Power- Self-Direction Credit Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power offers a Self-Direction Credit program to its industrial and large commercial customers with annual electric usage of more than 5 million kWh or a peak load of 1,000 kW or more...

  8. Disturbance and Landscape Dynamics The Rocky Mountains, Lander's Peak, 1863

    E-Print Network [OSTI]

    Hansen, Andrew J.

    environment. (Pickett and White 1985) Defining and Quantifying Disturbance #12;Frequency - number a specified time. Defining and Quantifying Disturbance #12;Frequency: none Frequency: 250-500 yrs SeverityBioe 515 Disturbance and Landscape Dynamics #12;The Rocky Mountains, Lander's Peak, 1863 Albert

  9. Rocky Mountain Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, NewMichigan: EnergyRocklin Biomass FacilityRockwallNewRocky

  10. Breach of the northern Rocky Mountain geoclimatic barrier: initiation of range

    E-Print Network [OSTI]

    Aukema, Brian

    ORIGINAL ARTICLE Breach of the northern Rocky Mountain geoclimatic barrier: initiation of range expansion by the mountain pine beetle Honey-Marie C. de la Giroday1,2 , Allan L. Carroll3 and Brian H is to examine the historical breach of the geoclimatic barrier of the Rocky Mountains by the mountain pine

  11. Rockies Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, NewMichigan: Energy ResourcesRockcreek, Oregon:Michigan:Rockies

  12. SBOT WYOMING ROCKY MOUNTAIN OILFIELD CENTER POC Jenny Krom Telephone

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 -Rob Roberts About UsWYOMING ROCKY MOUNTAIN OILFIELD CENTER POC

  13. Rate gyro surveying of wellbores in the Rocky Mountains

    SciTech Connect (OSTI)

    Wright, J.

    1983-05-01

    The introduction of a rate gyro surveying system was made in the Rocky Mountain area in April 1982. This paper describes that system as well as its accuracy and durability. It appears there has been a significant increase in accuracy and durability, with a decrease in survey time over conventional free gyro systems. This assessment is made from data accumulated over 100 field surveys, many runs in a 1400 foot test well and hundreds of hours on a laboratory test stand. The Eastman Whipstock rate gyro system employs a single floated rate integrating gyroscope gimbled with a single precision accelerometer. This configuration is rotated about the tool axis 360/sup 0/ for every survey measurement. From this rotation the gyro measures a component of the earths horizontal spin vector, which by definition points true north, and the accelerometer measures a component of the earths gravity. The information is then processed to provide inclination, borehole azimuth and tool face. This method provides increased accuracy by producing readings which are independent of those taken previously and by eliminating C-independent sensor bias. Additionally this configuration allows a pressure barrel outside diameter of only 1 3/4'' (45.0mm).

  14. Climate change impacts on fire regimes and key ecosystem services in Rocky Mountain forests

    E-Print Network [OSTI]

    MacDonald, Lee

    Climate change impacts on fire regimes and key ecosystem services in Rocky Mountain forests Monique Collins, CO 80523-1476, USA b Rocky Mountain Tree-Ring Research, 2901 Moore Lane, Fort Collins, CO 80526 Mountains Climate change Fire regime Prescribed fire Ecosystem services a b s t r a c t Forests

  15. Climatological lightning characteristics of the Southern Rocky and Appalachian Mountain chains, a comparison of two distinct mountain effects 

    E-Print Network [OSTI]

    Phillips, Stephen Edward

    2001-01-01

    This study presents a high-resolution lightning climatology for southern portions of both the Rocky Mountains and the Appalachian Mountains. Data from the National Lightning Detection Network (NLDN) are analyzed to produce maps of average annual...

  16. Climate Change in Mountain Ecosystems Areas of Current Research

    E-Print Network [OSTI]

    Climate Change in Mountain Ecosystems Areas of Current Research · Glacier Research · Snow Initiative Glacier Research A Focus on Mountain Ecosystems Climate change is widely acknowledged to be having in the western U.S. and the Northern Rockies in particular are highly sensitive to climate change. In fact

  17. Introduction Rocky Mountain National Park (RMNP) is located at a high

    E-Print Network [OSTI]

    Fischer, Emily V.

    Introduction ·Rocky Mountain National Park (RMNP) is located at a high elevation with low nitrogen retention in plants and soil. ·Upslope wind events in the region are caused by synoptic scale storms as well, et al. A Seasonal Nitrogen Deposition Budget for Rocky Mountain National Park. In preparation

  18. Design Criteria and Construction of a Capillary Barrier Cover System: The Rocky Mountain Arsenal Experience

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    Design Criteria and Construction of a Capillary Barrier Cover System: The Rocky Mountain Arsenal barrier was found to play a critical role. This paper discusses design studies, construction criteria Systems were recently designed and constructed over contaminated materials at the Rocky Mountain Arsenal

  19. State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, July-December 1981

    SciTech Connect (OSTI)

    Lunis, B.C.

    1982-08-01

    The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. The period covered is July through December 1981. Background information is provided, program objectives and the technical approach used are discussed, and the benefits of the program are described. Prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are covered and findings and recommendations are summarized.

  20. Rocky Mountain Research Station Publishing Services Categories of Serial Station Publications

    E-Print Network [OSTI]

    Rocky Mountain Research Station ­ Publishing Services Categories of Serial Station Publications forestry public Information of a technical nature, but not necessarily an original report. Computer (Proc.) Forestry technicians/ practitioners, landowners, homeowners, general public Compilation

  1. Preliminary Notice of Violation, Rocky Mountain Remediation Services...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services related to a Radioactive Material Release during Trench Remediation at the Rocky Flats Environmental Technology Site, (EA-97-04) On June 6, 1997, the U.S. Department of...

  2. Risk Assessment of Geologic Formation Sequestration in The Rocky Mountain Region, USA

    SciTech Connect (OSTI)

    Lee, Si-Yong; McPherson, Brian

    2013-08-01

    The purpose of this report is to describe the outcome of a targeted risk assessment of a candidate geologic sequestration site in the Rocky Mountain region of the USA. Specifically, a major goal of the probabilistic risk assessment was to quantify the possible spatiotemporal responses for Area of Review (AoR) and injection-induced pressure buildup associated with carbon dioxide (CO?) injection into the subsurface. Because of the computational expense of a conventional Monte Carlo approach, especially given the likely uncertainties in model parameters, we applied a response surface method for probabilistic risk assessment of geologic CO? storage in the Permo-Penn Weber formation at a potential CCS site in Craig, Colorado. A site-specific aquifer model was built for the numerical simulation based on a regional geologic model.

  3. Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region (RMCCS)

    SciTech Connect (OSTI)

    McPherson, Brian; Matthews, Vince

    2013-09-30

    The primary objective of the “Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region” project, or RMCCS project, is to characterize the storage potential of the most promising geologic sequestration formations within the southwestern U.S. and the Central Rocky Mountain region in particular. The approach included an analysis of geologic sequestration formations under the Craig Power Station in northwestern Colorado, and application or extrapolation of those local-scale results to the broader region. A ten-step protocol for geologic carbon storage site characterization was a primary outcome of this project.

  4. Unconformity related traps and production, Lower Cretaceous through Mississippian Strata, central and northern Rocky Mountains

    SciTech Connect (OSTI)

    Dolson, J. )

    1990-05-01

    Unconformities provide a useful means of equating stratigraphic traps between basins. Systematic mapping can define new concepts through analogy, often from geographically separate areas. Lower Cretaceous through Mississippian surfaces in the central and northern Rockies provide examples. Late Mississippian and Early Pennsylvanian surfaces formed at least four paleodrainage basins separated by the Transcontinental arch. Tyler Formation valley fills (Montana, North Dakota) have produced more than 100 million BOE. Analogous targets in Utah remain untested, but the Mid-Continent Morrow trend continues to yield new reserves. Permian and Triassic paleodrainages filled primarily with seals and form regional traps. A breached Madison trap (Mississippian, Colorado), more than 350 million BOE (Permian Minnelusa, Wyoming), more than 8 billion BOE (from the White Rim Sandstone tar deposits Permian Utah), and eastern Williston basin (Mississippian) are examples. Minor basal valley fill trapping also occurs. Transgressive carbonate facies changes have trapped more than 40 million BOE (Permian Phosphoria Formation, Wyoming). Additional deep gas potential exists. Jurassic unconformities control seal distribution over Nugget Sandstone (Jurassic) reservoirs and partially control Mississippian porosity on the Sweetgrass arch (Montana). Minor paleohill trapping also occurs. Lower Cretaceous surfaces have trapped nearly 2 billion BOE hydrocarbons in 10 paleodrainage networks. Undrilled paleodrainage basins remain deep gas targets. The systematic examination of Rocky Mountain unconformities has been understudied. New exploration concepts and reserve additions await the creative interpreter.

  5. Aspen Ecology in Rocky Mountain National Park: Age Distribution, Genetics, and the Effects of Elk Herbivory

    E-Print Network [OSTI]

    Pennycook, Steve

    , its natural and living resources, natural hazards, and the environment: World Wide Web: httpAspen Ecology in Rocky Mountain National Park: Age Distribution, Genetics, and the Effects of Elk distribution, genetics, and the effects of elk herbivory: U.S. Geological Survey Open-File Report 2008­1337, 52

  6. Design Rationale for Construction and Monitoring of Unsaturated Soil Covers at the Rocky Mountain Arsenal

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    Design Rationale for Construction and Monitoring of Unsaturated Soil Covers at the Rocky Mountain, a high-profile hazardous waste facility located near Denver, Colorado, USA. The soil cover system has presented by the interdependent criteria, and the post-construction monitoring program. INTRODUCTION The use

  7. September 7 -9, 2007 5th annual rocky mountaIn GerIatrIc conference

    E-Print Network [OSTI]

    Tipple, Brett

    September 7 - 9, 2007 5th annual rocky mountaIn GerIatrIc conference keyStone conference center keyStone AAFP, and AMA Category 1 CME credit for the PRA from organizations accredited by ACCME. Keystone, Colorado is just 90 minutes (105 miles) from Denver. How to get to Keystone: From Denver's International

  8. DOWNSTREAM EFFECTS OF DIVERSION DAMS ON SEDIMENT AND HYDRAULIC CONDITIONS OF ROCKY MOUNTAIN STREAMS

    E-Print Network [OSTI]

    Poff, N. LeRoy

    DOWNSTREAM EFFECTS OF DIVERSION DAMS ON SEDIMENT AND HYDRAULIC CONDITIONS OF ROCKY MOUNTAIN STREAMS & Sons, Ltd. key words: flow diversion; dam; fine sediment; stream management; hydraulic alteration examined the effects of variable levels of flow diversion on fine-sediment deposition, hydraulic conditions

  9. DOE - Office of Legacy Management -- Rocky Mountain Research Laboratories -

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and Myers Co - OH 51 FUSRAP ConsideredRocky FlatsCO

  10. Field testing of new multilateral drilling and completion technology at the Rocky Mountain Oilfield Testing Center

    SciTech Connect (OSTI)

    Giangiacomo, L.A. [Fluor Daniel NPOSR, Inc., Casper, WY (United States). Rocky Mountain Oilfield Testing Center

    1998-12-31

    The Rocky Mountain Oilfield Testing Center (RMOTC) has played an important role in bringing new multilateral well technology to the marketplace. Multilateral technology is more complex than most new technologies being brought to the oilfield. It is very difficult to test new designs in the laboratory or conventional test wells. They must be tested downhole in specialized wells to work out design and procedural details. Most of the applications for multilateral technology are in high cost drilling areas, such as offshore or in remote, environmentally sensitive areas. For this reason, opportunities for testing the new technology in the course of routine drilling and completion operations are scarce. Operators are not willing to risk expensive rig time, or losing a wellbore itself, on a test. RMOTC offers a neutral site where the technology can be tested in a relatively low cost environment. There are two drilling rigs and three workover and completion rigs available. Most associated services such as warehouse, roustabouts, backhoe, welders, and mechanics are also available on site, while specialized oilfield services and machine shops are available in nearby Casper. Technologies such as the hollow whipstock, adjustable stabilizer, downhole kickoff assembly, single trip sidetrack tool, stacked multidrain system, rotary steerable systems, and procedures for abandoning an open hole lateral have benefited through the use of RMOTC`s facilities. This paper details the capabilities of the new technologies and the benefits of testing them in a real oilfield environment before taking them to market.

  11. Prediction of diet quality parameters of Rocky Mountain Elk via near infrared reflectance spectroscopy (NIRS) fecal profiling 

    E-Print Network [OSTI]

    Keating, Marvin Scott

    2006-08-16

    The objective of this experiment was to determine the validity of predicting the diet quality of Rocky Mountain Elk (Cervus elaphus nelsoni) by exposing a dried fecal sample to light energy (a spectrophotometer). The resulting spectra measured were...

  12. Rocky Mountain, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, NewMichigan: EnergyRocklin BiomassMountain, Oklahoma: Energy

  13. Vascular flora of the Rocky Flats area, Jefferson County, Colorado, USA

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nelson, Jody K.

    2010-08-01

    The Rocky Flats Site (Site) is a U.S. Department of Energy (DOE) facility near Golden, Colorado that produced nuclear weapons components during the Cold War. Like many federal properties that have been off-limits to public access for decades, it has become a refugia for biodiversity as surrounding landscapes have been lost to agriculture and urbanization. A floristic study of the area was conducted on approximately 2,505 ha (6,189 ac) and includes the parcels currently managed and operated by DOE and the U.S. Fish and Wildlife Service (Rocky Flats National Wildlife Refuge). A flora of 630 species of vascular plants inmore »84 families and 340 genera was documented, including 12 species endemic to the southern Rocky Mountains and seven species considered rare or imperiled by the Colorado Natural Heritage Program. The flora of the Site is characterized by a predominantly Western North American floristic element, however, an Adventive floristic element contributes the greatest number of species. The vegetation is dominated by xeric tallgrass prairie and mixed grass prairie, with areas of wetland, shrubland, and riparian woodland.« less

  14. Vascular flora of the Rocky Flats area, Jefferson County, Colorado, USA

    SciTech Connect (OSTI)

    Nelson, Jody K.

    2010-08-01

    The Rocky Flats Site (Site) is a U.S. Department of Energy (DOE) facility near Golden, Colorado that produced nuclear weapons components during the Cold War. Like many federal properties that have been off-limits to public access for decades, it has become a refugia for biodiversity as surrounding landscapes have been lost to agriculture and urbanization. A floristic study of the area was conducted on approximately 2,505 ha (6,189 ac) and includes the parcels currently managed and operated by DOE and the U.S. Fish and Wildlife Service (Rocky Flats National Wildlife Refuge). A flora of 630 species of vascular plants in 84 families and 340 genera was documented, including 12 species endemic to the southern Rocky Mountains and seven species considered rare or imperiled by the Colorado Natural Heritage Program. The flora of the Site is characterized by a predominantly Western North American floristic element, however, an Adventive floristic element contributes the greatest number of species. The vegetation is dominated by xeric tallgrass prairie and mixed grass prairie, with areas of wetland, shrubland, and riparian woodland.

  15. Preliminary Notice of Violation, Rocky Mountain Remediation Services -

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary AreasDepartment of Energy 8 Issued toEA-97-04 | Department of

  16. A global model simulation for 3-D radiative transfer impact on surface hydrology over Sierra Nevada and Rocky Mountains

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, W. -L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H. -H.

    2014-12-15

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the Western United States, specifically the Rocky Mountains and Sierra Nevada using CCSM4 (CAM4/CLM4) global model with a 0.23° × 0.31° resolution for simulations over 6 years. In 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation [3-D - PP (plane-parallel)] adjustment to ensure that energy balance at the surface is conserved in global climate simulations based on 3-D radiation parameterization.more »We show that deviations of the net surface fluxes are not only affected by 3-D mountains, but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while decreases for higher elevations with a minimum in April. Liquid runoff significantly decreases in higher elevations after April due to reduced SWE and precipitation.« less

  17. Aspen Ecology in Rocky Mountain National Park: Age Distribution, Genetics, and the Effects of Elk Herbivory

    SciTech Connect (OSTI)

    Tuskan, Gerald A [ORNL; Yin, Tongming [ORNL

    2008-10-01

    Lack of aspen (Populus tremuloides) recruitment and canopy replacement of aspen stands that grow on the edges of grasslands on the low-elevation elk (Cervus elaphus) winter range of Rocky Mountain National Park (RMNP) in Colorado has been a cause of concern for more than 70 years (Packard, 1942; Olmsted, 1979; Stevens, 1980; Hess, 1993; R.J. Monello, T.L. Johnson, and R.G. Wright, Rocky Mountain National Park, 2006, written commun.). These aspen stands are a significant resource since they are located close to the park's road system and thus are highly visible to park visitors. Aspen communities are integral to the ecological structure of montane and subalpine landscapes because they contain high native species richness of plants, birds, and butterflies (Chong and others, 2001; Simonson and others, 2001; Chong and Stohlgren, 2007). These low-elevation, winter range stands also represent a unique component of the park's plant community diversity since most (more than 95 percent) of the park's aspen stands grow in coniferous forest, often on sheltered slopes and at higher elevations, while these winter range stands are situated on the low-elevation ecotone between the winter range grasslands and some of the park's drier coniferous forests.

  18. A global model simulation for 3-D radiative transfer impact on surface hydrology over the Sierra Nevada and Rocky Mountains

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, W.-L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H.-H.

    2015-05-19

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and the Sierra Nevada, using the global CCSM4 (Community Climate System Model version 4; Community Atmosphere Model/Community Land Model – CAM4/CLM4) with a 0.23° × 0.31° resolution for simulations over 6 years. In a 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation (3-D–PP (plane-parallel)) adjustment to ensure that the energy balance atmore »the surface is conserved in global climate simulations based on 3-D radiation parameterization. We show that deviations in the net surface fluxes are not only affected by 3-D mountains but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher-elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while it decreases for higher elevations, with a minimum in April. Liquid runoff significantly decreases at higher elevations after April due to reduced SWE and precipitation.« less

  19. EA-1956: Site-Wide Environmental Assessment for the Divestiture of Rocky Mountain Oilfield Testing Center and Naval Petroleum Reserve No. 3, Natrona County, Wyoming

    Broader source: Energy.gov [DOE]

    DOE prepared an EA that assesses the potential environmental impacts of the proposed discontinuation of DOE operations at the Rocky Mountain Oilfield Testing Center (RMOTC) and the proposed divestiture of Naval Petroleum Reserve Number 3 (NPR-3)

  20. A Ten Step Protocol and Plan for CCS Site Characterization, Based on an Analysis of the Rocky Mountain Region, USA

    SciTech Connect (OSTI)

    McPherson, Brian; Matthews, Vince

    2013-09-15

    This report expresses a Ten-Step Protocol for CO2 Storage Site Characterization, the final outcome of an extensive Site Characterization analysis of the Rocky Mountain region, USA. These ten steps include: (1) regional assessment and data gathering; (2) identification and analysis of appropriate local sites for characterization; (3) public engagement; (4) geologic and geophysical analysis of local site(s); (5) stratigraphic well drilling and coring; (6) core analysis and interpretation with other data; (7) database assembly and static model development; (8) storage capacity assessment; (9) simulation and uncertainty assessment; (10) risk assessment. While the results detailed here are primarily germane to the Rocky Mountain region, the intent of this protocol is to be portable or generally applicable for CO2 storage site characterization.

  1. State geothermal commercialization programs in ten Rocky Mountain states. Semi-annual progress report, July-December 1979

    SciTech Connect (OSTI)

    Griffith, J.L. (comp.)

    1980-08-01

    The activities and findings of the ten state teams participating in the Rocky Mountain Basin and Range Regional Hydrothermal Commercialization Program for the period are described. A summary of the state projects, compilation of project accomplishments, summary of findings, and a description of the major conclusions and recommendations are presented. Also included are chapters on the commercialization activities carried out by individual teams in each state: Arizona, Colorado, Idaho, Montana, Nevada, New-Mexico, North Dakota, South Dakota, Utah, and Wyoming. (MHR)

  2. Aeromagnetic Survey At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Aeromagnetic Survey At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  3. Exploratory Boreholes At Blue Mountain Geothermal Area (Parr...

    Open Energy Info (EERE)

    Exploratory Boreholes At Blue Mountain Geothermal Area (Parr & Percival, 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory...

  4. Preliminary Study of Pesticide Drift into the Maya Mountain Protected Areas of Belize

    E-Print Network [OSTI]

    Kaiser, Kristine

    2011-01-01

    Drift into the Maya Mountain Protected Areas of BelizeProtected Areas of the Maya Mountains rely heavily on theinto the nearby Maya Mountain Protected Areas occurred by

  5. USING HYPERSPECTRAL IMAGERY TO ASSIST FEDERAL FOREST MONITORING AND RESTORATION PROJECTS IN THE SOUTHERN ROCKY MOUNTAINS, COLORADO

    E-Print Network [OSTI]

    Wamser, William Kyle

    2012-12-31

    of this research were to improve the use of ARCHER hyperspectral imagery to classify sub-canopy and open-area vegetation in coniferous forests located in the Southern Rockies and to determine how much fidelity might be lost from a baseline of 1 meter spatial...

  6. SIMULATION MODEL ANALYSIS OF THE MOST PROMISING GEOLOGIC SEQUESTRATION FORMATION CANDIDATES IN THE ROCKY MOUNTAIN REGION, USA, WITH FOCUS ON UNCERTAINTY ASSESSMENT

    SciTech Connect (OSTI)

    Lee, Si-Yong; Zaluski, Wade; Will, Robert; Eisinger, Chris; Matthews, Vince; McPherson, Brian

    2013-09-01

    The purpose of this report is to report results of reservoir model simulation analyses for forecasting subsurface CO2 storage capacity estimation for the most promising formations in the Rocky Mountain region of the USA. A particular emphasis of this project was to assess uncertainty of the simulation-based forecasts. Results illustrate how local-scale data, including well information, number of wells, and location of wells, affect storage capacity estimates and what degree of well density (number of wells over a fixed area) may be required to estimate capacity within a specified degree of confidence. A major outcome of this work was development of a new workflow of simulation analysis, accommodating the addition of “random pseudo wells” to represent virtual characterization wells.

  7. Plutonium contamination in soils in open space and residential areas near Rocky Flats, Colorado

    SciTech Connect (OSTI)

    Litaor, M.I.

    1999-02-01

    Spatial analysis of the {sup 240}Pu:{sup 239}Pu isotopic ratio of 42 soil samples collected around Rocky Flats Plant near Golden, Colorado, was conducted to assess the effect of Rocky Flats Plant activity on the soil environment. Two probability maps that quantified the uncertainty of the spatial distribution of plutonium isotopic ratios were constructed using the sequential Gaussian simulation technique (sGs). Assuming a plutonium isotopic ratio range of 0.152 {+-} 0.003 to 0.169 {+-} 0.009 is characteristic to global fallout in Colorado, and a mean value of 0.155 is representative for the Rocky Flats Plant area, the main findings of the current work were (1) the areas northwest and southwest of Rocky Flats Plant exhibited a plutonium ratio {ge}0.155, this were minimally impacted by the plant activity; (2) he study area east of Rocky Flats Plant exhibited a plutonium isotopic ratio {le}0.155, which is a definitive indicator of Rocky Flats Plant-derived plutonium; and (3) inventory calculations across the study area exhibited large standard error of estimates. These errors were originated from the high variability in plutonium activity over a small sampling scale and the uncertainty in the global fallout isotopic ratio. Using the mean simulated estimates of plutonium isotopic ratio, coupled with plutonium activity measured at 11 soil pits and additional plutonium information published elsewhere, the plutonium loading on the open space and residential areas amounted to 111.2 GBq, with a standard error of estimate of 50.8 GBq.

  8. Time-Domain Electromagnetics At Glass Mountain Area (Cumming...

    Open Energy Info (EERE)

    Time-Domain Electromagnetics At Glass Mountain Area (Cumming And Mackie, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain...

  9. Ground Gravity Survey At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Ground Gravity Survey At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground...

  10. Static Temperature Survey At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Static Temperature Survey At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  11. Aerial Photography At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Aerial Photography At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial...

  12. Flow Test At Blue Mountain Geothermal Area (Fairbank Engineering...

    Open Energy Info (EERE)

    Flow Test At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Blue...

  13. Reflection Survey At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Reflection Survey At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection...

  14. Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering...

    Open Energy Info (EERE)

    Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Blue...

  15. Direct-Current Resistivity Survey At Blue Mountain Area (Fairbank...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Blue Mountain Area (Fairbank Engineering Ltd, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  16. Self Potential At Blue Mountain Geothermal Area (Fairbank Engineering...

    Open Energy Info (EERE)

    Self Potential At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Self Potential...

  17. Dipole-Dipole Resistivity At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Dipole-Dipole Resistivity At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  18. Field Mapping At Blue Mountain Geothermal Area (Fairbank Engineering...

    Open Energy Info (EERE)

    Field Mapping At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At...

  19. Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank & Niggemann, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  20. Geophysical Setting of the Blue Mountain Geothermal Area, North...

    Open Energy Info (EERE)

    Geophysical Setting of the Blue Mountain Geothermal Area, North-Central Nevada and Its Relationship to a Crustal-Scale Fracture Associated with the Inception of the Yellowstone...

  1. Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank & Ross, 1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient...

  2. Hyperspectral Imaging At Blue Mountain Geothermal Area (Calvin...

    Open Energy Info (EERE)

    Hyperspectral Imaging At Blue Mountain Geothermal Area (Calvin, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral...

  3. Dipole-Dipole Resistivity At Blue Mountain Geothermal Area (Ross...

    Open Energy Info (EERE)

    Dipole-Dipole Resistivity At Blue Mountain Geothermal Area (Ross, Et Al., 1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Dipole-Dipole...

  4. Conceptual Model At Blue Mountain Geothermal Area (Faulds & Melosh...

    Open Energy Info (EERE)

    Conceptual Model At Blue Mountain Geothermal Area (Faulds & Melosh, 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At...

  5. Well Log Data At Blue Mountain Geothermal Area (Fairbank & Niggemann...

    Open Energy Info (EERE)

    Well Log Data At Blue Mountain Geothermal Area (Fairbank & Niggemann, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Well Log Data At Blue...

  6. A WRF Simulation of the Impact of 3-D Radiative Transfer on Surface Hydrology over the Rocky Mountains and Sierra Nevada

    SciTech Connect (OSTI)

    Liou, K. N.; Gu, Y.; Leung, Lai-Yung R.; Lee, W- L.; Fovell, R. G.

    2013-12-03

    We investigate 3-D mountains/snow effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and Sierra Nevada. The Weather Research and Forecasting (WRF) model, applied at a 30 km grid resolution, is used in conjunction with a 3-D radiative transfer parameterization covering a time period from 1 November 2007 to 31 May 2008, during which abundant snowfall occurred. A comparison of the 3-D WRF simulation with the observed snow water equivalent (SWE) and precipitation from Snowpack Telemetry (SNOTEL) sites shows reasonable agreement in terms of spatial patterns and daily and seasonal variability, although the simulation generally has a positive precipitation bias. We show that 3-D mountain features have a profound impact on the diurnal and monthly variation of surface radiative and heat fluxes, and on the consequent elevation dependence of snowmelt and precipitation distributions. In particular, during the winter months, large deviations (3-DPP, in which PP denotes the plane-parallel approach) of the monthly mean surface solar flux are found in the morning and afternoon hours due to shading effects for elevations below 2.5 km. During spring, positive deviations shift to the earlier morning. Over mountaintops higher than 3 km, positive deviations are found throughout the day, with the largest values of 40-60Wm?2 occurring at noon during the snowmelt season of April to May. The monthly SWE deviations averaged over the entire domain show an increase in lower elevations due to reduced snowmelt, which leads to a reduction in cumulative runoff. Over higher elevation areas, positive SWE deviations are found because of increased solar radiation available at the surface. Overall, this study shows that deviations of SWE due to 3-D radiation effects range from an increase of 18%at the lowest elevation range (1.5-2 km) to a decrease of 8% at the highest elevation range (above 3 km). Since lower elevation areas occupy larger fractions of the land surface, the net effect of 3-D radiative transfer is to extend snowmelt and snowmelt-driven runoff into the warm season. Because 60-90% of water resources originate from mountains worldwide, the aforementioned differences in simulated hydrology due solely to 3-D interactions between solar radiation and mountains/snow merit further investigation in order to understand the implications of modeling mountain water resources, and these resources’ vulnerability to climate change and air pollution.

  7. CO{sub 2} Sequestration Capacity and Associated Aspects of the Most Promising Geologic Formations in the Rocky Mountain Region: Local-Scale Analyses

    SciTech Connect (OSTI)

    Laes, Denise; Eisinger, Chris; Morgan, Craig; Rauzi, Steve; Scholle, Dana; Scott, Phyllis; Lee, Si-Yong; Zaluski, Wade; Esser, Richard; Matthews, Vince; McPherson, Brian

    2013-07-30

    The purpose of this report is to provide a summary of individual local-­?scale CCS site characterization studies conducted in Colorado, New Mexico and Utah. These site-­? specific characterization analyses were performed as part of the “Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region” (RMCCS) project. The primary objective of these local-­?scale analyses is to provide a basis for regional-­?scale characterization efforts within each state. Specifically, limits on time and funding will typically inhibit CCS projects from conducting high-­? resolution characterization of a state-­?sized region, but smaller (< 10,000 km{sup 2}) site analyses are usually possible, and such can provide insight regarding limiting factors for the regional-­?scale geology. For the RMCCS project, the outcomes of these local-­?scale studies provide a starting point for future local-­?scale site characterization efforts in the Rocky Mountain region.

  8. Pennsylvanian and Permian Fusulinids of the Ferguson Mountain Area

    E-Print Network [OSTI]

    Seamons, Kent E.

    SLADE Humble Oil Company, Salt Lake City, Utah ABSTRACT.--Thestratigraphic section at Ferguson Mountain. The area is accessible via U. S. Highway 50, south- west from Wendover. The base and top of the measured

  9. Regional operations research program for commercialization of geothermal energy in the Rocky Mountain Basin and Range. Final report, August 1, 1978-February 28, 1980

    SciTech Connect (OSTI)

    Marlin, J.M.; Cunniff, R.; McDevitt, P.; Nowotny, K.; O'Dea, P.

    1981-01-01

    The work accomplished from August 1978 to February 1980 in the Regional Operations Research efforts for the Rocky Mountain Basin and Range Geothermal Commercialization Program are described. The work included continued data acquisition and extension of the data base, enhancement and refinement of the economic models for electric and direct use applications, site-specific and aggregated analyses in support of the state teams and special analyses in support of several federal agencies.

  10. Effectiveness of solar heating and lighting in an underground concrete and glass dwelling high in the Rocky Mountains

    SciTech Connect (OSTI)

    Boyer, L.L. (Texas A M Univ., College Station, TX (United States). Div. of Design Technology)

    1993-01-01

    Solar heating and daylighting are two primary design features which can have a major impact on occupant perceptions of an underground living environment. A quantitative design analysis and evaluation of these features has been conducted for an energy conserving earth covered dwelling in a cold climate at high altitude in the Rocky Mountains. For this example, because of the solar contribution, a heating load reduction greater than 45 percent has been calculated and demonstrated on an operational basis, compared to the same earth sheltered construction without solar. The building envelope also has an effective time lag of several months which further increases the annual effectiveness. Also, depending on the sky conditions, the portion of exterior daylight reaching deep into the interior spaces easily exceeds 10 percent in the winter and can reach up to 50 percent or more. Thus, both heating and lighting by natural means are shown to be available in ample quantities in this cave-like structure. Pertinent design features to enhance such performance are highlighted.

  11. NATIVE MYCORRHIZAL FUNGI WITH ASPEN ON SMELTER-IMPACTED SITES IN THE NORTHERN ROCKY MOUNTAINS

    E-Print Network [OSTI]

    Cripps, Cathy

    (ID), and downwind of the Trail, B. C. smelter (Canada). Aspen is able to colonize these areas due to establish various trees on coal spoils and mine sites in eastern U.S., Ohio, and Utah, but use of aspen has the Columbia River downwind of the operating smelter in Trail, B.C., Canada (Cripps, 2001) (Fig. 1

  12. Interagency Visitor Center at Santa Monica Mountains National Recreation Area

    High Performance Buildings Database

    Calabasas, CA This project was to develop the first visitor center for the Santa Monica Mountains National Recreation Area located in the Los Angeles, California area. The previous visitor center was across from a shopping mall in rental space at park headquarters in Thousand Oaks. The new facility is centrally located in the park at a much more appropriate natural and cultural resource setting. It is a partnership project with the Mountains Recreation and Conservation Authority, which is a local land conservation and park agency. It is also a joint facility with California State Parks.

  13. Investigation of the unconfined flow system at the Rocky Mountain Arsenal, Denver, Colorado 

    E-Print Network [OSTI]

    Sturdivant, Peter Laurence

    1993-01-01

    of Problem Research Objectives DATABASE DEVELOPMENT 1 1 5 8 11 12 14 Hydrogeologic Data Water Table Maps . Determination of Unconfined vs Confined Conditions Groundwater Model Model Results Data Combination . Top of Denver Formation Surface.... White areas indicate zones of unsaturated alluvium where the water table exists in the Denver Formation. Referenced Section numbers are located in the center of each Section 60 Figure 28. DPA and HLA 4th quarter water table, with zones of unsaturated...

  14. Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data

    SciTech Connect (OSTI)

    Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

    2007-06-25

    Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, flow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated groundwater ages. The DIC calculated groundwater ages were compared with DOC calculated groundwater ages and both of these ages were compared to travel times developed in ground-water flow and transport models. If nuclear waste is stored in Yucca Mountain, the saturated zone is the final barrier against the release of radionuclides to the environment. The most recent rendition of the TSPA takes little credit for the presence of the saturated zone and is a testament to the inadequate understanding of this important barrier. If radionuclides reach the saturated zone beneath Yucca Mountain, then there is a travel time before they would leave the Yucca Mountain area and flow down gradient to the Amargosa Valley area. Knowing how long it takes groundwater in the saturated zone to flow from beneath Yucca Mountain to down gradient areas is critical information for potential radionuclide transport. Radionuclide transport in groundwater may be the quickest pathway for radionuclides in the proposed Yucca Mountain repository to reach land surface by way of groundwater pumped in Amargosa Valley. An alternative approach to ground-water flow and transport models to determine the travel time of radionuclides from beneath Yucca Mountain to down gradient areas in the saturated zone is by carbon-14 dating of both inorganic and organic carbon dissolved in the groundwater. A standard method of determining ground-water ages is to measure the carbon-13 and carbon-14 of DIC in the groundwater and then correct the measured carbon-14 along a flow path for geochemical reactions that involve carbon containing phases. These geochemical reactions are constrained by carbon-13 and isotopic fractionations. Without correcting for geochemical reactions, the ground-water ages calculated from only the differences in carbon-14 measured along a flow path (assuming the decrease in carbon-14 is due strictly to radioactive decay) could be tens of thousands of years too old. The computer program NETPATH, developed by the USGS, is the best geochemical program for correcting carbon-14 activities for geochemical r

  15. ROCKY MOUNTAIN Research Station

    E-Print Network [OSTI]

    proceedings · Homes and wildfire · Forest Service program descriptions . . . and much more Hot off the press://www.fs.fed.us/rm/main/pubs/ hotoffpress.html How to Order . . . With imprinted name label on order card: Without name label on order card: RMRS-GTR-105). label. 2. If ordering former INT or RM reports, 2. Follow steps 1, 2, and 3 previous

  16. Late Quaternary geomorphology and soils in Crater Flat, Yucca Mountain area, southern Nevada

    E-Print Network [OSTI]

    Dorn, Ron

    Late Quaternary geomorphology and soils in Crater Flat, Yucca Mountain area, southern Nevada for a Crater Flat cation-leaching curve. This curve differs somewhat from a previous Yucca Mountain curve­10 from a previous ``surficial deposits'' stratigraphy used in the Yucca Mountain area. Although

  17. Integrated Vulnerability and Impacts Assessment for Natural and Engineered Water-Energy Systems in the Southwest and Southern Rocky Mountain Region

    SciTech Connect (OSTI)

    Tidwell, Vincent C.; Wolfsberg, Andrew; Macknick, Jordan; Middleton, Richard

    2015-01-01

    In the Southwest and Southern Rocky Mountains (SWSRM), energy production, energy resource extraction, and other high volume uses depend on water supply from systems that are highly vulnerable to extreme, coupled hydro-ecosystem-climate events including prolonged drought, flooding, degrading snow cover, forest die off, and wildfire. These vulnerabilities, which increase under climate change, present a challenge for energy and resource planners in the region with the highest population growth rate in the nation. Currently, analytical tools are designed to address individual aspects of these regional energy and water vulnerabilities. Further, these tools are not linked, severely limiting the effectiveness of each individual tool. Linking established tools, which have varying degrees of spatial and temporal resolution as well as modeling objectives, and developing next-generation capabilities where needed would provide a unique and replicable platform for regional analyses of climate-water-ecosystem-energy interactions, while leveraging prior investments and current expertise (both within DOE and across other Federal agencies).

  18. Thermal And-Or Near Infrared At Socorro Mountain Area (Owens...

    Open Energy Info (EERE)

    Thermal And-Or Near Infrared At Socorro Mountain Area (Owens, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near...

  19. Numerical modeling of the Snowmass Creek paleoglacier, Colorado, and climate in the Rocky Mountains during the Bull Lake glaciation (MIS 6)

    SciTech Connect (OSTI)

    Eric M. Leonard; Mitchell A. Plummer; Paul E. Carrara

    2014-04-01

    Well-preserved moraines from the penultimate, or Bull Lake, glaciation of Snowmass Creek Valley in the Elk Range of Colorado present an opportunity to examine the character of the high-altitude climate in the Rocky Mountains during Marine Oxygen Isotope Stage 6. This study employs a 2-D coupled mass/energy balance and flow model to assess the magnitudes of temperature and precipitation change that could have sustained the glacier in mass-balance equilibrium at its maximum extent during the Bull Lake glaciation. Variable substrate effects on glacier flow and ice thickness make the modeling somewhat more complex than in geologically simpler settings. Model results indicate that a temperature depression of about 6.7°C compared with the present (1971–2000 AD) would have been necessary to sustain the Snowmass Creek glacier in mass-balance equilibrium during the Bull Lake glaciation, assuming no change in precipitation amount or seasonality. A 50% increase or decrease from modern precipitation would have been coupled with 5.2°C and 9.1°C Bull Lake temperature depressions respectively. Uncertainty in these modeled temperature depressions is about 1°C.

  20. In 2006 hIstory buffs celebrated the 200th anniversary of the moment when explorer Zebulon Pike first saw the mountain that would later bear his name.

    E-Print Network [OSTI]

    Polly, David

    first saw the mountain that would later bear his name. A great deal of effort was expended in historical of an area tucked between the Rocky Mountains and the vast interior Plains of North America. Here one escarpments, playa lakes, buttes, and views of mountains. This is not the sea-like, tall-grass prairie

  1. Global Change and Mountain Lakes: Establishing Nutrient Criteria and Critical Loads for Sierra Nevada Lakes

    E-Print Network [OSTI]

    Heard, ANDREA Michelle

    2013-01-01

    and climate change in European mountain lakes assessed usinglimitation in Colorado mountain lakes. Freshwater Biologyparks of the Rocky Mountains. Ecological Applications 19(4):

  2. Zuni Mountains Nm Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:WizardYates County,Zena, NewZhuluZipZoneZoloZuni Mountains

  3. Fission-track tectonic studies of the Transantarctic Mountains, Beardmore Glacier area

    SciTech Connect (OSTI)

    Fitzgerald, P.G.

    1986-01-01

    The Transantarctic Mountains are a major transcontinental range stretching for some 4000 kilometers, varying from 200-400 kilometers in width, and having elevations up to 4500 meters. The uplift and formation of the Transantarctic Mountains have always been something of an enigma, but recent apatite fission-track analysis is providing important new information not only about their uplift history but also about the implications of that uplift history for the glacial history of Antarctica as a whole. The main field objective of this project was to collect samples for fission-track analysis to determine the timing and rate of uplift of the Transantarctic Mountains and measure relative vertical displacements across faults within the range. Results from southern Victoria Land indicate that uplift of the Transantarctic Mountains was initiated at about 50 million years ago and since that time the mountains have undergone some 5 kilometers of uplift at an average rate of 100 meters per million years. It is important to realize, however, that this is an average rate and may well conceal pulses of faster and slower uplift or even periods of subsidence. The amount of uplift across the mountain range is differential; from the axis of maximum uplift about 30 kilometers inland of the Victoria Land coast, the mountains dip gently westward under the polar ice cap. The study was extended to the Beardmore Glacier area to see whether the uplift history and tectonics varies from that observed in southern Victoria Land.

  4. Land policy for integrated development of mountainous areas in the sectors of agriculture, stockbreeding and forestry

    E-Print Network [OSTI]

    Psarrakos, Panayiotis

    to farmers, so as to counterbalance their reduced income due to the natural disadvantages of the land typical example of the contemporary policy directions and strategies that tend to connect the primary Policy for the Integrated Development of mountainous areas, which aim to maximize the poten

  5. "Sustainable" and Worth-living Integrated Development of mountainous areas in Greece and worldwide

    E-Print Network [OSTI]

    Psarrakos, Panayiotis

    "Sustainable" and Worth-living Integrated Development of mountainous areas in Greece and worldwide on initiatives of one-dimensional and mostly urban economic development. The exception to this rule has been is being discovered and its "exploitation" is being pursued, in the context of the ideology of "sustainable

  6. An inventory of glacier changes between 1973 and 2011 for the Geladandong Mountain area, China.

    E-Print Network [OSTI]

    Zhang, J.; Braaten, David A.; Li, X.; Tao, F.

    2013-02-12

    and changes over decades for the Geladandong Mountain area in China has been conducted using remote sensing imagery from Landsat (MSS, TM, ETM+), CERBES CCD, and GIS techniques. Variations in glacier extent has been measured using a~series of digital images...

  7. Land Policy Measures Affecting Livestock Production and Forestry in Mountainous Areas and Worth-Living Integrated Development

    E-Print Network [OSTI]

    Psarrakos, Panayiotis

    1 Land Policy Measures Affecting Livestock Production and Forestry in Mountainous Areas and Worth, livestock production, forestry. Introduction "Land policy can be defined as the set of measures, rules analysis of land policy measures affecting livestock production and forestry in mountainous areas

  8. Geology of the Smoothingiron Mountain-North area, Llano and San Saba counties, Texas 

    E-Print Network [OSTI]

    Greenwood, Bobby Marcum

    1963-01-01

    Sohls't and was intruded late ite abridge (1937, p. 233-237) correlated ths Upper C~n sse bien of the Uyyer MLssissippi V~ with that, of Tomas~ and neet snk defined tbe Zd. on Mountain Sandstens ~r of the Csp Mountain yorme- SrLkge and. Cire (1937, p... in north-central Tomas~ but tbe units he proposed are difficult to distinguish in the L1ano area? Chondr snd Goes (19/2~ p. 2237-226$) descrLbek the structure of central an4 north central Tomas& giving new srLdsnce for ths structural smms feunk...

  9. Dipole-Dipole Resistivity At Blue Mountain Geothermal Area (Fairbank

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsArea (DOE GTP) JumpDillard Road SolarEngineering Ltd, 2003)

  10. Direct-Current Resistivity Survey At Blue Mountain Area (Fairbank

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsArea (DOE GTP) JumpDillard RoadEnergyOpen

  11. Data Acquisition-Manipulation At Socorro Mountain Area (Kooten, 1987) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9) WindGrid Project)Area (1982) | OpenAl.,Open

  12. A revised Litostragraphic Framework for the Southern Yucca Mountain Area, Nye County, Nevada

    SciTech Connect (OSTI)

    R.W. Spengler; F.M. Byers; R.P. Dickerson

    2006-03-24

    An informal, revised lithostratigraphic framework for the southern Yucca Mountain area, Nevada has been developed to accommodate new information derived from subsurface investigations of the Nye County Early Warning Drilling Program. Lithologies penetrated by recently drilled boreholes at locations between Stagecoach Road and Highway 95 in southern Nye County include Quaternary and Pliocene alluvium and alluvial breccia, Miocene pyroclastic flow deposits and intercalated lacustrine siltstone and claystone sequences, early Miocene to Oligocene pre-volcanic sedimentary rocks, and Paleozoic strata. Of the 37 boreholes currently drilled, 21 boreholes have sufficient depth, spatial distribution, or traceable pyroclastic flow, pyroclastic fall, and reworked tuff deposits to aid in the lateral correlation of lithostrata. Medial and distal parts of regional pyroclastic flow deposits of Miocene age can be correlated with the Timber Mountain, Paintbrush, Crater Flat, and Tram Ridge Groups. Rocks intercalated between these regional pyroclastic flow deposits are substantially thicker than in the central part of Yucca Mountain, particularly near the downthrown side of major faults and along the southern extent of exposures at Yucca Mountain.

  13. Air quality at a snowmobile staging area and snow chemistry on and off trail in a Rocky Mountain subalpine forest,

    E-Print Network [OSTI]

    ), particu- late matter (PM), carbon monoxide (CO), and non- combusted fuel vapors (USDI 2000). Combustion quality at this high elevation site by measuring levels of nitrogen oxides (NOx, NO), carbon monoxide (CO, but numbers were difficult to quantify with an infrared sensor. Nitrogen oxides and carbon monoxide were

  14. Mountains

    E-Print Network [OSTI]

    Unknown

    2011-09-05

    of Guadalupe Mountains National Park (GUMO) as a reintroduction area for desert bighorn sheep. The study used landscape metrics to compare GUMO to a nearby mountain range that is currently supporting an estimated population of 400 bighorn sheep. This study...

  15. Pumped storage job is a rocky challenge

    SciTech Connect (OSTI)

    Setzer, S.W.

    1994-03-07

    Georgia mountain lives up to its rugged name as excavators fight some unexpected ground conditions. When settlers pushed into the remote valleys of far northwestern Georgia, they had no idea just how apt the name given one odd geologic formation would become to a new generation of pioneers. Rocky Mountain`s 700 ft of diagonally upthrusting limestone, shale and sandstone layers have become the main antagonists in a decade-long struggle to place an 848-Mw pumped storage power project in and around the mountain.

  16. Aeromagnetic Survey At Blue Mountain Geothermal Area (U.S. Geological...

    Open Energy Info (EERE)

    near Blue Mountain and Pumpernickel Valley near Winnemucca to study regional crustal structures to help understand the geologic framework of Blue Mountain and help in mineral and...

  17. Ground Gravity Survey At Blue Mountain Geothermal Area (U.S....

    Open Energy Info (EERE)

    near Blue Mountain and Pumpernickel Valley near Winnemucca to study regional crustal structures to help understand the geologic framework of Blue Mountain and help in mineral and...

  18. Ground Magnetics At Blue Mountain Geothermal Area (U.S. Geological...

    Open Energy Info (EERE)

    near Blue Mountain and Pumpernickel Valley near Winnemucca to study regional crustal structures to help understand the geologic framework of Blue Mountain and help in mineral and...

  19. Rock Sampling At Blue Mountain Geothermal Area (U.S. Geological...

    Open Energy Info (EERE)

    near Blue Mountain and Pumpernickel Valley near Winnemucca to study regional crustal structures to help understand the geologic framework of Blue Mountain and help in mineral and...

  20. Analysis of resuspension source area impacts at Rocky Flats surveillance air samplers S-7 and S-8, July 25-August 25, 1983 and September 8-October 4, 1983

    SciTech Connect (OSTI)

    Hammer, R.J.

    1984-01-01

    An on-going study at the Rocky Flats Plant is being used to evaluate resuspension source area contributions to Pu-239 concentrations at 2 of the samplers in the Plants air sampling network. Early results from the study indicate that Pu-239 concentration levels are being affected primarily by resuspension from a zone 150 meters east and west of the study samplers. Initial results have also shown that net transport of Pu-239 during the sampling period has been from the east toward the west, onto the plant proper. These early findings show that sources immediately east of the 2 samplers are responsible for most of the Pu-239 exposure at the samplers. 2 references, 1 figure, 4 tables.

  1. Flora of the Mayacmas Mountains. [Listing of 679 species in the Geysers Geothermal Resource area

    SciTech Connect (OSTI)

    Neilson, J.A.

    1981-09-01

    This flora describes the plants that occur within the Mayacmas Mountain Range of northern California. It is the result of ten years of environmental assessment by the author in the Geysers Geothermal Resource area, located in the center of the Mayacmas Range. The flora includes notes on plant communities and ecology of the area, as well as habitat and collection data for most of the 679 species covered. Altogether 74 families, 299 genera and 679 species are included in the flora. The work is divided into eight subdivisions: trees; shrubs; ferns and fern allies; aquatic plants; tules, sedges, and rushes; lilies and related plants; dicot herbs; and grasses. Within each subdivision, family, genera and species are listed alphabetically. Keys are provided at the beginning of each subdivision. A unique combination of physical, environmental and geologic factors have resulted in a rich and diverse flora in the Mayacmas. Maps have been provided indicating known locations for species of rare or limited occurrence.

  2. Hydrogeology of the unsaturated zone, North Ramp area of the Exploratory Studies Facility, Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Rousseau, J.P.; Kwicklis, E.M.; Gillies, D.C. [eds.

    1999-03-01

    Yucca Mountain, in southern Nevada, is being investigated by the US Department of Energy as a potential site for a repository for high-level radioactive waste. This report documents the results of surface-based geologic, pneumatic, hydrologic, and geochemical studies conducted during 1992 to 1996 by the US Geological Survey in the vicinity of the North Ramp of the Exploratory Studies Facility (ESF) that are pertinent to understanding multiphase fluid flow within the deep unsaturated zone. Detailed stratigraphic and structural characteristics of the study area provided the hydrogeologic framework for these investigations. Shallow infiltration is not discussed in detail in this report because the focus in on three major aspects of the deep unsaturated-zone system: geologic framework, the gaseous-phase system, and the aqueous-phase system. However, because the relation between shallow infiltration and deep percolation is important to an overall understanding of the unsaturated-zone flow system, a summary of infiltration studies conducted to date at Yucca Mountain is provided in the section titled Shallow Infiltration. This report describes results of several Site Characterization Plan studies that were ongoing at the time excavation of the ESF North Ramp began and that continued as excavation proceeded.

  3. Overview of Rocky Mountain Region's Capital Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TPL-001, -002, -003, -004 Ensure system is adequate to meet present and future needs Demonstrate through assessment * Planning for near and long term * Cover all...

  4. Rocky Mountain Power- Solar Incentive Program

    Broader source: Energy.gov [DOE]

    Note: Applications for 2015 were accepted during a two-week period from January 15 to 5:00 PM through January 29, 2015. The program is now closed through the remainder of 2015.

  5. Rocky Mountain Institute | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,EnergyEast Jump to:Ridgway,Rochester PublicRockwoolInstitute

  6. Rocky Mountain Research Station and LANL build

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis of Protein Structures Print Scientists haveConference -

  7. Rocky Mountain Humane Investing | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewable Energy|Gas and ElectricofWindHumane Investing

  8. Predicting Potential Risk Areas of Human Plague for the Western Usambara Mountains, Lushoto District, Tanzania

    E-Print Network [OSTI]

    Neerinckx, Simon B.; Peterson, A. Townsend; Gulinck, Hubert; Deckers, Jozef; Kimaro, Didas; Leirs, Herwig

    2010-03-01

    A natural focus of plague exists in the Western Usambara Mountains of Tanzania. Despite intense research, questions remain as to why and how plague emerges repeatedly in the same suite of villages. We used human plague incidence data for 1986...

  9. Exhumation History of the Alam Kuh Area, Central Alborz Mountains, Northern Iran: Implications for Caspian subsidence and Collision-Related Tectonics

    E-Print Network [OSTI]

    Harrison, Mark

    Exhumation History of the Alam Kuh Area, Central Alborz Mountains, Northern Iran: Implications, University of Tehran, Iran Abstract. Crystallization and thermal histories of two plutons in the northwestern Alborz (also Elburz, Elburs) Mountains, northern Iran were obtained by U/Pb, 40 Ar/39 Ar, and (U

  10. Environmental assessment: Yucca Mountain Site, Nevada Research and Development Area, Nevada; Volume 2

    SciTech Connect (OSTI)

    NONE

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE`s General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that is is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as one of five sites suitable for characterization.

  11. Environmental assessment: Yucca Mountain site, Nevada research and development area, Nevada; Volume 1

    SciTech Connect (OSTI)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high- level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE`s General Guideline for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EA), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as of five sites suitable for characterization.

  12. Environmental assessment: Yucca Mountain site, Nevada research and development area, Nevada; Volume 3

    SciTech Connect (OSTI)

    NONE

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE`s General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as one of five sites suitable for characterization.

  13. Rocky flats teams forming

    SciTech Connect (OSTI)

    1994-08-01

    Bidding teams are shaping up to go after the $3.5-billion, five-year contract to manage ongoing operations and cleanup of the US Dept. of Energy`s Rocky Flats nuclear weapon plant near Denver.

  14. ACULEATA HYMENOPTERA OF SAND MOUNTAIN AND BLOW SAND MOUNTAINS, NEVADA

    E-Print Network [OSTI]

    Hanks, Lawrence M.

    ACULEATA HYMENOPTERA OF SAND MOUNTAIN AND BLOW SAND MOUNTAINS, NEVADA R. W. Rust1, L. !\\1. Hanks collected from Sand !\\1ountain and Blow Sand Mountains, Nevada. Four species are considered new to science and none are considered endemic to ei ther dune area. Sand Mountain and Blow Sand Mountains were visited 19

  15. The effect of a small creek valley on drainage flows in the Rocky Flats region

    SciTech Connect (OSTI)

    Porch, W.

    1996-12-31

    Regional scale circulation and mountain-plain interactions and effects on boundary layer development are important for understanding the fate of an atmospheric release from Rocky Flats, Colorado. Numerical modeling of Front Range topographic effects near Rocky Flats have shown that though the Front Range dominates large scale flow features, small-scale terrain features near Rocky Flats are important to local transport during nighttime drainage flow conditions. Rocky Flats has been the focus of interest for the Department of Energy`s Atmospheric Studies in Complex Terrain (ASCOT) program.

  16. Independent Oversight Review, Rocky Flats Environmental Technology...

    Energy Savers [EERE]

    Rocky Flats Environmental Technology Site - March 2000 Independent Oversight Review, Rocky Flats Environmental Technology Site - March 2000 March 2000 Review of the Rocky Flats...

  17. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 9, Index

    SciTech Connect (OSTI)

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules.

  18. Thermal Gradient Holes At Mcgee Mountain Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergyOpen EnergyInformation Mcgee Mountain

  19. Site characterization plan overview: Yucca Mountain site, Nevada Research and Development Area, Nevada

    SciTech Connect (OSTI)

    1988-12-01

    To help the public better understand both the SCP and the site characterization program, the DOE has prepared this overview and the SCP Public Handbook. The overview presents summaries of selected topics covered in the SCP; it is not a substitute for the SCP. The organization of the overview is similar to that of the SCP itself, with brief descriptions of the Yucca Mountain site, the repository, and the containers in which the waste would be packaged, followed by a discussion of the characterization program to be carried out at the Yucca Mountain site. This overview is intended primarily for those persons who want to understand the general scope and basis of the site-characterization program, the activities to be conducted, and the facilities to be constructed without spending the time necessary to become familiar with all of the technical details presented in the SCP. For the readers of the SCP, the overview will be useful as a general guide to the plan. The SCP Public Handbook is a short document that contains brief descriptions of the SCP process and the contents of the SCP. It also explains how the public can submit comments on the SCP and lists the libraries and reading rooms at which the SCP is available. 9 refs., 18 tabs.

  20. Solar Treatment for Mountain Pine Beetle Solar treatment may be appropriate in some areas of Colorado to reduce beetle populations in

    E-Print Network [OSTI]

    Solar Treatment for Mountain Pine Beetle Solar treatment may be appropriate in some areas number of logs in high-value areas. There are two options of solar treatment: with plastic sheeting, and without plastic. Below is a brief description on set-up and difficulties when using solar treatment

  1. The Role of Plate Tectonic-Climate Coupling and Exposed Land Area in the Development of Habitable Climates on Rocky Planets

    E-Print Network [OSTI]

    Foley, Bradford J

    2015-01-01

    The long-term carbon cycle is vital for maintaining liquid water oceans on rocky planets due to the negative climate feedbacks involved in silicate weathering. Plate tectonics plays a crucial role in driving the long-term carbon cycle because it is responsible for CO$_2$ degassing at ridges and arcs, the return of CO$_2$ to the mantle through subduction, and supplying fresh, weatherable rock to the surface via uplift and orogeny. However, the presence of plate tectonics itself may depend on climate according to recent geodynamical studies showing that cool surface temperatures are important for maintaining vigorous plate tectonics. Using a simple carbon cycle model, I show that the negative climate feedbacks inherent in the long-term carbon cycle are uninhibited by climate's effect on plate tectonics. Furthermore, initial atmospheric CO$_2$ conditions do not impact the final climate state reached when the carbon cycle comes to equilibrium, as long as liquid water is present and silicate weathering can occur. ...

  2. Hydrogeologic characterization report for the Rocky Flats environmental technology site

    SciTech Connect (OSTI)

    Reeder, D.C.; Burcar, S.; Smith, R.

    1996-12-31

    The Denver groundwater basin encompasses approximately 6,700 square miles, extending east from the Front Range of the Rocky Mountains. This structural basin contains four Cretaceous bedrock aquifers overlain by a regional Quaternary alluvial aquifer. The Rocky Flats Site is located on the northwest margin of the basin. The shallow groundwater system at the Rocky Flats Site is divided into upper and lower hydrostratigraphic units (UHSU and LHSU, respectively). The UHSU at the Rocky Flats site comprises Quaternary alluvium, colluvium, valley-fill alluvium, artificial fill, weathered bedrock of the undifferentiated Arapahoe and Laramie formations and all sandstones that are hydraulically connected with overlying surficial groundwater. The LHSU comprises unweathered claystone with interbedded siltstones and sandstones of the undifferentiated Arapahoe and Laramie formations. The contact separating the UHSU and LHSU is identified as the base of the weathered zone. The separation of hydrostratigraphic units is supported by the contrasting permeabilities of the units comprising the UHSU and LHSU, well hydrograph data indicating that the units respond differently to seasonal recharge events, and geochemical data reflecting distinct major ion chemistries in the groundwaters of the UHSU and LHSU. Surface-water/groundwater interactions at the Rocky Flats site generally respond to seasonal fluctuations in precipitation, recharge, groundwater storage, and stream and ditch flow. Effluent conditions are dominant in the spring along western stream segments and influent conditions are common in the late summer and fall along most stream reaches.

  3. Rock Sampling At Socorro Mountain Area (Armstrong, Et Al., 1995) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, NewMichigan: Energy Resources JumpMt Ranier AreaEnergy

  4. Gas Flux Sampling At Socorro Mountain Area (Owens, Et Al., 2005) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: Energy ResourcesMaui Area (DOE GTP)Energy Information

  5. Dipole-Dipole Resistivity At Blue Mountain Geothermal Area (Ross, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsArea (DOE GTP) JumpDillard Road SolarEngineering Ltd,

  6. Thermal Gradient Holes At Tungsten Mountain Area (Kratt, Et Al., 2008) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergyOpenInformation Silver Peak AreaOpen

  7. Thermal Gradient Holes At Tungsten Mountain Area (Shevenell, Et Al., 2008)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergyOpenInformation Silver Peak AreaOpen|

  8. Flow Test At Mcgee Mountain Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flatsInformationFlint Geothermal AreaOpen

  9. Core Analysis At Jemez Mountain Area (Eichelberger & Koch, 1979) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercialRenewableGlobal L PGabbs Valley Area

  10. Geomorphology and morphometric characteristics of alluvial fans, Guadalupe Mountains National Park and adjacent areas, west Texas and New Mexico 

    E-Print Network [OSTI]

    Given, Jeffrey Lyle

    2004-09-30

    , near the Last Glacial Maximum (LGM), that pluvial Lake King (to be discussed in section 2.6) occupied Salt Basin- Crow Flats (Wilkins and Currey, 1997). The late Pleistocene was characterized by a final period of minor uplift that displaced... of the Guadalupe Mountains Region... 20 7 Fault map of the Guadalupe and Brokeoff Mountains ............................ 21 8 Alluvial fans and bajada in Salt Basin-Crow Flats.................................. 22 9 Photograph of a drainage...

  11. Geothermal br Resource br Area Geothermal br Resource br Area...

    Open Energy Info (EERE)

    Area Central Nevada Seismic Zone Pull Apart in Strike Slip Fault Zone Ordovician shale quartzite MW K Blue Mountain Geothermal Area Blue Mountain Geothermal Area Northwest...

  12. Development of discrete flow paths in unsaturated fractures at Yucca Mountain

    E-Print Network [OSTI]

    Bodvarsson, G.S.; Wu, Yu-Shu; Zhang, Keni

    2002-01-01

    into drifts at Yucca Mountain. Journal of Contaminantof infiltration for the Yucca Mountain Area, Nevada, U. S.matrix properties, Yucca Mountain, Nevada, U.S. Geological

  13. Massively parallel computing simulation of fluid flow in the unsaturated zone of Yucca Mountain, Nevada

    E-Print Network [OSTI]

    Zhang, Keni; Wu, Yu-Shu; Bodvarsson, G.S.

    2001-01-01

    Central Block Area, Yucca Mountain, Nye County, Nevada. Mapunsaturated zone, Yucca Mountain, Nevada. Water-Resourcesisotope distributions at Yucca Mountain. Sandia National

  14. Calibration of Yucca Mountain unsaturated zone flow and transport model using porewater chloride data

    E-Print Network [OSTI]

    Liu, Jianchun; Sonnenthal, Eric L.; Bodvarsson, Gudmundur S.

    2002-01-01

    of hydrogeologic units at Yucca Mountain, Nevada. U.S.infiltration for the Yucca Mountain Area, Nevada. Milestonethe unsaturated zone at Yucca Mountain, Nevada. J. Contam.

  15. Independent Oversight Special Review, Rocky Flats Closure Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rocky Flats Closure Project Site - April 2001 Independent Oversight Special Review, Rocky Flats Closure Project Site - April 2001 April 2001 Special Review of the Rocky Flats...

  16. Rocky Flats Environmental Technology Site Archived Soil & Groundwater...

    Office of Environmental Management (EM)

    Rocky Flats Environmental Technology Site Archived Soil & Groundwater Master Reports Rocky Flats Environmental Technology Site Archived Soil & Groundwater Master Reports Rocky...

  17. Preliminary surficial geologic map of the Rocky Flats Plant and vicinity, Jefferson and Boulder Counties, Colorado

    SciTech Connect (OSTI)

    Shroba, R.R.; Carrara, P.E.

    1994-11-01

    This report contains a 1:6000 scale map of the 3-mile by 4-mile rectangular area surrounding the Rocky Flats Plant. The map shows the surface deposits estimated to be at least one meter thick. The accompanying report contains a detailed description of the map units, a discussion of the Rocky Flats alluvium and landslides, and cited references. 37 references.

  18. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 1, Part A: Chapters 1 and 2

    SciTech Connect (OSTI)

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 750 refs., 123 figs., 42 tabs.

  19. Site Characterization Plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 3, Part A: Chapters 6 and 7

    SciTech Connect (OSTI)

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 218 figs., 50 tabs.

  20. Three long mountain adventures Below is a detailed description of three long (24 hour) routes undertaken in early summer 2009.

    E-Print Network [OSTI]

    Holland, Mark

    Three long mountain adventures Below is a detailed description of three long (24 hour) routes. This was to be the first of my spring/summer mountain trips with fairly little long-distance preparations in the preceeding a mountainous atmosphere once one glances the Langdale Pikes with their rocky tops and the distant cloud topped

  1. Deep Blue No.1-A Slimhole Geothermal Discovery At Blue Mountain...

    Open Energy Info (EERE)

    Area (Fairbank & Niggemann, 2004) Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank &...

  2. Risk, media, and stigma at Rocky Flats

    SciTech Connect (OSTI)

    Flynn, J.; Peters, E.; Mertz, C.K.; Slovic, P.

    1998-12-01

    Public responses to nuclear technologies are often strongly negative. Events, such as accidents or evidence of unsafe conditions at nuclear facilities, receive extensive and dramatic coverage by the news media. These news stories affect public perceptions of nuclear risks and the geographic areas near nuclear facilities. One result of these perceptions, avoidance behavior, is a form of technological stigma that leads to losses in property values near nuclear facilities. The social amplification of risk is a conceptual framework that attempts to explain how stigma is created through media transmission of information about hazardous places and public perceptions and decisions. This paper examines stigma associated with the US Department of energy`s Rocky Flats facility, a major production plant in the nation`s nuclear weapons complex, located near Denver, Colorado. This study, based upon newspaper analyses and a survey of Denver area residents, finds that the social amplification theory provides a reasonable framework for understanding the events and public responses that took place in regard to Rocky Flats during a 6-year period, beginning with an FBI raid of the facility in 1989.

  3. Was/were Variation in the Middle Rocky Mountains

    E-Print Network [OSTI]

    Antieau, Lamont D.

    2011-10-03

    and vernacular universals. In Bernd Kortmann (ed.), Dialectology meets typology: dialect grammar from a cross-linguistic perspective. De Gruyter, Berlin. 128-145. Chambers, J. K. (2006). Linguistic continuum from vernacular to standard. Paper presented... and vernacular universals. In Bernd Kortmann (ed.), Dialectology meets typology: dialect grammar from a cross-linguistic perspective. De Gruyter, Berlin. 128-145. Chambers, J. K. (2006). Linguistic continuum from vernacular to standard. Paper presented...

  4. Domestic campsites and cyber landscapes in the Rocky Mountains

    E-Print Network [OSTI]

    Polly, David

    Plains `You have perhaps noticed on the northwestern plains, circles of stones or small boulders, varying of lodge skins, to prevent the structure being blown over by a hard wind, and when camp was moved they were to the historic use of wooden 1 Department of Anthropology, Student Building 130, Indiana University, Bloomington

  5. Rocky Mountain Power - Energy FinAnswer | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary From: v2.7|EnergyandEnergy|EnergyRebate

  6. Rocky Mountain Power - Energy FinAnswer | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary From: v2.7|EnergyandEnergy|EnergyRebateConstruction

  7. Rocky Mountain Power - Energy FinAnswer | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary From:

  8. Rocky Mountain Power - FinAnswer Express | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary From:Construction Industrial Agricultural Multifamily Residential

  9. Rocky Mountain Power - FinAnswer Express | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary From:Construction Industrial Agricultural Multifamily

  10. Rocky Mountain Power - FinAnswer Express | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary From:Construction Industrial Agricultural Multifamily< Back

  11. Rocky Mountain Power - Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary From:Construction Industrial Agricultural Multifamily<

  12. Rocky Mountain Power - New Homes Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary From:Construction Industrial Agricultural Multifamily<<

  13. Rocky Mountain Power - WattSmart Residential Efficiency Program |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary From:Construction Industrial Agricultural

  14. Rocky Mountain Power - WattSmart Residential Efficiency Program |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary From:Construction Industrial AgriculturalDepartment of Energy

  15. Rocky Mountain Power - WattSmart Residential Efficiency Program |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary From:Construction Industrial AgriculturalDepartment of

  16. Rocky Mountain Oilfield Testing Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, NewMichigan: EnergyRocklin Biomass FacilityRockwallNew

  17. Rocky Mountain White Tilapia Aquaculture Low Temperature Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, NewMichigan: EnergyRocklin Biomass

  18. Rocky Mountain (PADD 4) Total Crude Oil and Products Imports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis of Protein Structures Print Scientists have

  19. Rocky Mountain Electrical League (RMEL) Physical and Cyber Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis of Protein Structures Print Scientists haveConference - January

  20. Rocky Mountain Sustainable Enterprises LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewable Energy|Gas and ElectricofWindHumane

  1. Rocky Mountain (PADD 4) Total Crude Oil and Products Imports

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988 1.996 2.003 1990-2016 East CoastReviw

  2. PIA - Rocky Mountain OTC GSS | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergy EEREPlateau Training System PIA -Injury

  3. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 2

    SciTech Connect (OSTI)

    NONE

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site; to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. Chapter 3 summarizes present knowledge of the regional and site hydrologic systems. The purpose of the information presented is to (1) describe the hydrology based on available literature and preliminary site-exploration activities that have been or are being performed and (2) provide information to be used to develop the hydrologic aspects of the planned site characterization program. Chapter 4 contains geochemical information about the Yucca Mountain site. The chapter references plan for continued collection of geochemical data as a part of the site characterization program. Chapter 4 describes and evaluates data on the existing climate and site meterology, and outlines the suggested procedures to be used in developing and validating methods to predict future climatic variation. 534 refs., 100 figs., 72 tabs.

  4. Air pollution, precipitation chemistry and forest health in the Retezat Mountains,

    E-Print Network [OSTI]

    Air pollution, precipitation chemistry and forest health in the Retezat Mountains, Southern Station, 4955 Canyon Crest Drive, Riverside, CA, USA b Forest Research and Management Institute, Bucharest, Romania c Forest Research and Management Institute, Simeria, Romania d USDA Forest Service, Rocky Mountain

  5. Residue management at Rocky Flats

    SciTech Connect (OSTI)

    Olencz, J.

    1995-12-31

    Past plutonium production and manufacturing operations conducted at the Rocky Flats Environmental Technology Site (RFETS) produced a variety of plutonium-contaminated by-product materials. Residues are a category of these materials and were categorized as {open_quotes}materials in-process{close_quotes} to be recovered due to their inherent plutonium concentrations. In 1989 all RFETS plutonium production and manufacturing operations were curtailed. This report describes the management of plutonium bearing liquid and solid wastes.

  6. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act

    SciTech Connect (OSTI)

    NONE

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended by the Secretary of Energy and approved by the President for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared by the US Department of Energy (DOE) in accordance with the requirements of the Nulcear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of the site characterization plan are oulined, and compliance with applicable regulations is discussed.

  7. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 1

    SciTech Connect (OSTI)

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in acordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and eveloping a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing prinicples, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed. 880 refs., 130 figs., 25 tabs.

  8. Rocky Flats Closure Unit Cost Data

    SciTech Connect (OSTI)

    Sanford, P.C.; Skokan, B.

    2007-07-01

    The Rocky Flats Closure Project has completed the process of stabilizing residual nuclear materials, decommissioning nuclear facilities, remediating environmental media and closing the Rocky Flats Site (Site). The project cost approximately $4.1 B and included the decommissioning of over 700 structures including 5 major plutonium facilities and 5 major uranium facilities, shipping over 14,600 cubic meters of transuranic and 565,000 cubic meters of low level radioactive waste, and remediating a 385-acre industrial area and the surrounding land. Actual costs were collected for a large variety of closure activities. These costs can be correlated with metrics associated with the facilities and environmental media to capture cost factors from the project that could be applicable to a variety of other closure projects both within and outside of the Department of Energy's weapons complex. The paper covers four general topics: the process to correlate the actual costs and metrics, an example of the correlated data for one large sub-project, a discussion of the results, and the additional activities that are planned to correlate and make this data available to the public. The process to collect and arrange the project control data of the Closure Project relied on the actual Closure Project cost information. It was used to correlate these actual costs with the metrics for the physical work, such as building area or waste generated, to support the development of parametric cost factors. The example provides cost factors for the Industrial Sites Project. The discussion addresses the strengths and weaknesses of the data, followed by a section identifying future activities to improve and extend the analyses and integrate it within the Department's Environmental Cost Analysis System. (authors)

  9. Predevelopment Water-Level Contours for Aquifers in the Rainier Mesa and Shoshone Mountain area of the Nevada Test Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Joseph M. Fenelon; Randell J. Laczniak; and Keith J. Halford

    2008-06-24

    Contaminants introduced into the subsurface of the Nevada Test Site at Rainier Mesa and Shoshone Mountain by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. Although contaminants were introduced into low-permeability rocks above the regional flow system, the potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by ground-water transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the water-level distribution within each of the major aquifers underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. The contoured water-level distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped, presented, and discussed in general terms as being one of three aquifer types—volcanic aquifer, upper carbonate aquifer, or lower carbonate aquifer. Each of these aquifer types was subdivided and mapped as independent continuous and isolated aquifers, based on the continuity of its component rock. Ground-water flow directions, as related to the transport of test-generated contaminants, were developed from water-level contours and are presented and discussed for each of the continuous aquifers. Contoured water-level altitudes vary across the study area and range from more than 5,000 feet in the volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,450 feet in the lower carbonate aquifer in the southern part of the study area. Variations in water-level altitudes within any single continuous aquifer range from a few hundred feet in a lower carbonate aquifer to just more than 1,100 feet in a volcanic aquifer. Flow directions throughout the study area are dominantly southward with minor eastward or westward deviations. Primary exceptions are westward flow in the northern part of the volcanic aquifer and eastward flow in the eastern part of the lower carbonate aquifer. Northward flow in the upper and lower carbonate aquifers in the northern part of the study area is possible but cannot be substantiated because data are lacking. Interflow between continuous aquifers is evaluated and mapped to define major flow paths. These flow paths delineate tributary flow systems, which converge to form the regional ground-water flow system. The implications of these tributary flow paths in controlling transport away from the underground test areas at Rainier Mesa and Shoshone Mountain are discussed. The obvious data gaps contributing to uncertainties in the delineation of aquifers and development of water-level contours are identified and evaluated.

  10. Piegan Mountains 

    E-Print Network [OSTI]

    Unknown

    2011-09-05

    mountain bikers and hikers focus in the environment and to identify the key environmental elements and cognitive processes relevant to creating the mode of experience and underlying conflict, Visitor Employed Photography, VEP, and follow-up interviews were...

  11. LM Records Handling System (LMRHS01) - Rocky Flats Environmental...

    Energy Savers [EERE]

    Rocky Flats Environmental Records Database, Office of Legacy Management LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy...

  12. Preliminary Notice of Violation , Rocky Flats Environmental Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Violation , Rocky Flats Environmental Technology Site - EA-96-05 Preliminary Notice of Violation , Rocky Flats Environmental Technology Site - EA-96-05 October 7, 1996 Preliminary...

  13. Closing Rocky Flats by 2006

    SciTech Connect (OSTI)

    Tuor, N. R.; Schubert, A. L.

    2002-02-26

    Safely accelerating the closure of Rocky Flats to 2006 is a goal shared by many: the State of Colorado, the communities surrounding the site, the U.S. Congress, the Department of Energy, Kaiser-Hill and its team of subcontractors, the site's employees, and taxpayers across the country. On June 30, 2000, Kaiser-Hill (KH) submitted to the Department of Energy (DOE), KH's plan to achieve closure of Rocky Flats by December 15, 2006, for a remaining cost of $3.96 billion (February 1, 2000, to December 15, 2006). The Closure Project Baseline (CPB) is the detailed project plan for accomplishing this ambitious closure goal. This paper will provide a status report on the progress being made toward the closure goal. This paper will: provide a summary of the closure contract completion criteria; give the current cost and schedule variance of the project and the status of key activities; detail important accomplishments of the past year; and discuss the challenges ahead.

  14. A Metallicity Recipe for Rocky Planets

    E-Print Network [OSTI]

    Dawson, Rebekah I; Lee, Eve J

    2015-01-01

    Planets with sizes between those of Earth and Neptune divide into two populations: purely rocky bodies whose atmospheres contribute negligibly to their sizes, and larger gas-enveloped planets possessing voluminous and optically thick atmospheres. We show that whether a planet forms rocky or gas-enveloped depends on the solid surface density of its parent disk. Assembly times for rocky cores are sensitive to disk solid surface density. Lower surface densities spawn smaller planetary embryos; to assemble a core of given mass, smaller embryos require more mergers between bodies farther apart and therefore exponentially longer formation times. Gas accretion simulations yield a rule of thumb that a rocky core must be at least 2$M_\\oplus$ before it can acquire a volumetrically significant atmosphere from its parent nebula. In disks of low solid surface density, cores of such mass appear only after the gas disk has dissipated, and so remain purely rocky. Higher surface density disks breed massive cores more quickly,...

  15. RCRA Part B permit modifications for cost savings and increased flexibility at the Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Jierree, C.; Ticknor, K.

    1996-10-01

    With shrinking budgets and downsizing, a need for streamlined compliance initiatives became evident at the Rocky Flats Environmental Technology Site (RFETS). Therefore, Rocky Mountain Remediation Services (RMRS) at the RFETS successfully and quickly modified the RFETS RCRA Part B Permit to obtain significant cost savings and increased flexibility. This `was accomplished by requesting operations personnel to suggest changes to the Part B Permit which did not diminish overall compliance and which would be most. cost beneficial. The U.S. Department of Energy (DOE) subsequently obtained approval of those changes from the Colorado Department of Public Health and the Environment (CDPHE).

  16. 1. INTRODUCTION 1.1. Yucca Mountain Project

    E-Print Network [OSTI]

    Maerz, Norbert H.

    1. INTRODUCTION 1.1. Yucca Mountain Project The Yucca Mountain site in Nevada has been designated as United States choice for nuclear waste repository. Yucca Mountain is in a remote dry area, on federal has been made to characterize the nature of the discontinuities of the Yucca Mountain proposed nuclear

  17. Rocky Flats ash test procedure (sludge stabilization)

    SciTech Connect (OSTI)

    Winstead, M.L.

    1995-09-14

    Rocky Flats Ash items have been identified as the next set of materials to be stabilized. This test is being run to determine charge sizes and soak times to completely stabilize the Rocky Flats Ash items. The information gathered will be used to generate the heating rampup cycle for stabilization. This test will also gain information on the effects of the glovebox atmosphere (moisture) on the stabilized material. This document provides instructions for testing Rocky Flats Ash in the HC-21C muffle furnace process.

  18. Rocky Flats Ash test procedure (sludge stabilization)

    SciTech Connect (OSTI)

    Funston, G.A.

    1995-06-14

    Rocky Flats Ash items have been identified as the next set of materials to be stabilized. This test is being run to determine charge sizes and soak times to completely stabilize the Rocky Flats Ash items. The information gathered will be used to generate the heating rampup cycle for stabilization. The test will provide information to determine charge sizes, soak times and mesh screen sizes (if available at time of test) for stabilization of Rocky Flats Ash items to be processed in the HC-21C Muffle Furnace Process. Once the charge size and soak times have been established, a program for the temperature controller of the HC-21C Muffle Furnace process will be generated for processing Rocky Flats Ash.

  19. Rocky Flats beryllium health surveillance

    SciTech Connect (OSTI)

    Stange, A.W.; Furman, F.J.; Hilmas, D.E.

    1996-10-01

    The Rocky Flats Beryllium Health Surveillance Program (BHSP), initiated in June 1991, was designed to provide medical surveillance for current and former employees exposed to beryllium. The BHSP identifies individuals who have developed beryllium sensitivity using the beryllium lymphocyte proliferation test (BeLPT). A detailed medical evaluation to determine the prevalence of chronic beryllium disease (CBD) is offered to individuals identified as beryllium sensitized or to those who have chest X-ray changes suggestive of CBD. The BHSP has identified 27 cases of CBD and another 74 cases of beryllium sensitization out of 4268 individuals tested. The distribution of BeLPT values for normal, sensitized, and CBD-identified individuals is described. Based on the information collected during the first 3 1/3 years of the BHSP, the BeLPT is the most effective means for the early identification of beryllium-sensitized individuals and to identify individuals who may have CBD. The need for BeLPT retesting is demonstrated through the identification of beryllium sensitization in individuals who previously tested normal. Posterior/anterior chest X-rays were not effective in the identification of CBD. 12 refs., 8 tabs.

  20. Quaternary geologic and geomorphic framework for neotectonic analysis of the northeastern Franklin Mountains, El Paso, Texas 

    E-Print Network [OSTI]

    Scherschel, Craig A.

    1995-01-01

    The Quaternary geology and geomorphology of a 45 km2 area along the northeastern Franklin Mountains near El Paso, Texas was characterized as part of a paleoseismic evaluation of the East Franklin Mountains fault. The East Franklin Mountains fault...

  1. MULTICOMPONENT SEISMIC ANALYSIS AND CALIBRATION TO IMPROVE RECOVERY FROM ALGAL MOUNDS: APPLICATION TO THE ROADRUNNER/TOWAOC AREA OF THE PARADOX BASIN, UTE MOUNTAIN UTE RESERVATION, COLORADO

    SciTech Connect (OSTI)

    Paul La Pointe; Claudia Rebne; Steve Dobbs

    2003-07-10

    This report describes the results made in fulfillment of contract DE-FG26-02NT15451, ''Multicomponent Seismic Analysis and Calibration to Improve Recovery from Algal Mounds: Application to the Roadrunner/Towaoc Area of the Paradox Basin, Ute Mountain Ute Reservation, Colorado''. Optimizing development of highly heterogeneous reservoirs where porosity and permeability vary in unpredictable ways due to facies variations can be challenging. An important example of this is in the algal mounds of the Lower and Upper Ismay reservoirs of the Paradox Basin in Utah and Colorado. It is nearly impossible to develop a forward predictive model to delineate regions of better reservoir development, and so enhanced recovery processes must be selected and designed based upon data that can quantitatively or qualitatively distinguish regions of good or bad reservoir permeability and porosity between existing well control. Recent advances in seismic acquisition and processing offer new ways to see smaller features with more confidence, and to characterize the internal structure of reservoirs such as algal mounds. However, these methods have not been tested. This project will acquire cutting edge, three-dimensional, nine-component (3D9C) seismic data and utilize recently-developed processing algorithms, including the mapping of azimuthal velocity changes in amplitude variation with offset, to extract attributes that relate to variations in reservoir permeability and porosity. In order to apply advanced seismic methods a detailed reservoir study is needed to calibrate the seismic data to reservoir permeability, porosity and lithofacies. This will be done by developing a petrological and geological characterization of the mounds from well data; acquiring and processing the 3D9C data; and comparing the two using advanced pattern recognition tools such as neural nets. In addition, should the correlation prove successful, the resulting data will be evaluated from the perspective of selecting alternative enhanced recovery processes, and their possible implementation. The work is being carried out on the Roadrunner/Towaoc Fields of the Ute Mountain Ute Tribe, located in the southwestern corner of Colorado. Although this project is focused on development of existing resources, the calibration established between the reservoir properties and the 3D9C seismic data can also enhance exploration success. During the time period covered by this report, the majority of the project effort has gone into the permitting, planning and design of the 3D seismic survey, and to select a well for the VSP acquisition. The business decision in October, 2002 by WesternGeco, the projects' seismic acquisition contractor, to leave North America, has delayed the acquisition until late summer, 2003. The project has contracted Solid State, a division of Grant Geophysical, to carry out the acquisition. Moreover, the survey has been upgraded to a 3D9C from the originally planned 3D3C survey, which should provide even greater resolution of mounds and internal mound structure.

  2. Analysis of offsite Emergency Planning Zones for Rocky Flats Plant

    SciTech Connect (OSTI)

    Inger, J.R. ); Brown-Strattan, M.A. . Rocky Flats Plant)

    1991-01-01

    The purpose of this quality assurance program was to ensure the quality and technical adequacy of Phase 2 of the Analysis of Offsite Emergency Planning Zones (EPZ) for the Rocky Flats Plant project. Quality assurance was accomplished by managing and controlling the processes in the development of the product. The quality assurance task team conducted audits, reviews, and surveillances of project and related activities. This process contributed to identifying areas where the quality assurance plan was not fully implemented, areas needing improvement, and/or corrective actions resulting in a improved product. During the reviews and audits, several key areas were identified where quality assurance plan implementation needed to be improved. These areas included maintaining adequate documentation, reviewing technical results, making inputs traceable to technical results, and understanding that all personnel are responsible for quality.

  3. Rocky Flats Compliance Program; Technology summary

    SciTech Connect (OSTI)

    1994-02-01

    The Department of Energy (DOE) established the Office of Technology Development (EM-50) (OTD) as an element of Environmental Restoration and Waste Management (EM) in November 1989. The primary objective of the Office of Technology Development, Rocky Flats Compliance Program (RFCP), is to develop altemative treatment technologies for mixed low-level waste (wastes containing both hazardous and radioactive components) to use in bringing the Rocky Flats Plant (RFP) into compliance with Federal and state regulations and agreements. Approximately 48,000 cubic feet of untreated low-level mixed waste, for which treatment has not been specified, are stored at the RFP. The cleanup of the Rocky Flats site is driven by agreements between DOE, the Environmental Protection Agency (EPA), and the Colorado Department of Health (CDH). Under these agreements, a Comprehensive Treatment and Management Plan (CTMP) was drafted to outline the mechanisms by which RFP will achieve compliance with the regulations and agreements. This document describes DOE`s strategy to treat low-level mixed waste to meet Land Disposal Restrictions and sets specific milestones related to the regulatory aspects of technology development. These milestones detail schedules for the development of technologies to treat all of the mixed wastes at the RFP. Under the Federal Facilities Compliance Act (FFCA), the CTMP has been incorporated into Rocky Flats Plant Conceptual Site Treatment Plan (CSTP). The CSTP will become the Rocky Flats Plant site Treatment Plan in 1995 and will supersede the CTMP.

  4. Finite - difference modeling of the Yucca Mountain, Nevada Area: a study of the regional water table gradients based on hydraulic conductivity contrasts 

    E-Print Network [OSTI]

    Davidson, Timothy Ross

    1994-01-01

    The Nevada Yucca Mountain site is being investigated to determine if it is a suitable site for the construction of a high-level nuclear waste repository. A feature of concern north of the selected site is an abrupt rise in the water table. This high...

  5. Multicomponent Seismic Analysis and Calibration to Improve Recovery from Algal Mounds: Application to the Roadrunner/Towaoc area of the Paradox Basin, UTE Mountain UTE Reservation, Colorado

    SciTech Connect (OSTI)

    Joe Hachey

    2007-09-30

    The goals of this project were: (1) To enhance recovery of oil contained within algal mounds on the Ute Mountain Ute tribal lands. (2) To promote the use of advanced technology and expand the technical capability of the Native American Oil production corporations by direct assistance in the current project and dissemination of technology to other Tribes. (3) To develop an understanding of multicomponent seismic data as it relates to the variations in permeability and porosity of algal mounds, as well as lateral facies variations, for use in both reservoir development and exploration. (4) To identify any undiscovered algal mounds for field-extension within the area of seismic coverage. (5) To evaluate the potential for applying CO{sub 2} floods, steam floods, water floods or other secondary or tertiary recovery processes to increase production. The technical work scope was carried out by: (1) Acquiring multicomponent seismic data over the project area; (2) Processing and reprocessing the multicomponent data to extract as much geological and engineering data as possible within the budget and time-frame of the project; (3) Preparing maps and data volumes of geological and engineering data based on the multicomponent seismic and well data; (4) Selecting drilling targets if warranted by the seismic interpretation; (5) Constructing a static reservoir model of the project area; and (6) Constructing a dynamic history-matched simulation model from the static model. The original project scope covered a 6 mi{sup 2} (15.6 km{sup 2}) area encompassing two algal mound fields (Towaoc and Roadrunner). 3D3C seismic data was to acquired over this area to delineate mound complexes and image internal reservoir properties such as porosity and fluid saturations. After the project began, the Red Willow Production Company, a project partner and fully-owned company of the Southern Ute Tribe, contributed additional money to upgrade the survey to a nine-component (3D9C) survey. The purpose of this upgrade to nine components was to provide additional shear wave component data that might prove useful in delineating internal mound reservoir attributes. Also, Red Willow extended the P-wave portion of the survey to the northwest of the original 6 mi{sup 2} (15.6 km{sup 2}) 3D9C area in order to extend coverage further to the northwest to the Marble Wash area. In order to accomplish this scope of work, 3D9C seismic data set covering two known reservoirs was acquired and processed. Three-dimensional, zero-offset vertical seismic profile (VSP) data was acquired to determine the shear wave velocities for processing the sh3Dseismic data. Anisotropic velocity, and azimuthal AVO processing was carried out in addition to the conventional 3D P-wave data processing. All P-, PS- and S-wave volumes of the seismic data were interpreted to map the seismic response. The interpretation consisted of conventional cross-plots of seismic attributes vs. geological and reservoir engineering data, as well as multivariate and neural net analyses to assess whether additional resolution on exploration and engineering parameters could be achieved through the combined use of several seismic variables. Engineering data in the two reservoirs was used to develop a combined lithology, structure and permeability map. On the basis of the seismic data, a well was drilled into the northern mound trend in the project area. This well, Roadrunner No.9-2, was brought into production in late April 2006 and continues to produce modest amounts of oil and gas. As of the end of August 2007, the well has produced approximately 12,000 barrels of oil and 32,000 mcf of gas. A static reservoir model was created from the seismic data interpretations and well data. The seismic data was tied to various markers identified in the well logs, which in turn were related to lithostratigraphy. The tops and thicknesses of the various units were extrapolated from well control based upon the seismic data that was calibrated to the well picks. The reservoir engineering properties were available from a number of wel

  6. Timber Mountain Precipitation Monitoring Station

    SciTech Connect (OSTI)

    Lyles, Brad; McCurdy, Greg; Chapman, Jenny; Miller, Julianne

    2012-01-01

    A precipitation monitoring station was placed on the west flank of Timber Mountain during the year 2010. It is located in an isolated highland area near the western border of the Nevada National Security Site (NNSS), south of Pahute Mesa. The cost of the equipment, permitting, and installation was provided by the Environmental Monitoring Systems Initiative (EMSI) project. Data collection, analysis, and maintenance of the station during fiscal year 2011 was funded by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office Environmental Restoration, Soils Activity. The station is located near the western headwaters of Forty Mile Wash on the Nevada Test and Training Range (NTTR). Overland flows from precipitation events that occur in the Timber Mountain high elevation area cross several of the contaminated Soils project CAU (Corrective Action Unit) sites located in the Forty Mile Wash watershed. Rain-on-snow events in the early winter and spring around Timber Mountain have contributed to several significant flow events in Forty Mile Wash. The data from the new precipitation gauge at Timber Mountain will provide important information for determining runoff response to precipitation events in this area of the NNSS. Timber Mountain is also a groundwater recharge area, and estimation of recharge from precipitation was important for the EMSI project in determining groundwater flowpaths and designing effective groundwater monitoring for Yucca Mountain. Recharge estimation additionally provides benefit to the Underground Test Area Sub-project analysis of groundwater flow direction and velocity from nuclear test areas on Pahute Mesa. Additionally, this site provides data that has been used during wild fire events and provided a singular monitoring location of the extreme precipitation events during December 2010 (see data section for more details). This letter report provides a summary of the site location, equipment, and data collected in fiscal year 2011.

  7. Solid waste recycling programs at Rocky Flats

    SciTech Connect (OSTI)

    Millette, R.L.; Blackman, T.E.; Shepard, M.D.

    1994-12-31

    The Rocky Flats (RFP) recycling programs for solid waste materials have been in place for over ten years. Within the last three years, the programs were centralized under the direction of the Rocky Flats Waste Minimization department, with the assistance of various plant organizations (e.g., Trucking, Building Services, Regulated Waste Operations, property Utilization and Disposal and Security). Waste Minimization designs collection and transportation systems for recyclable materials and evaluates recycling markets for opportunities to add new commodities to the existing programs. The Waste Minimization department also promotes employee participation in the Rocky Flats Recycling Programs, and collects all recycling data for publication. A description of the program status as of January 1994 is given.

  8. Issues evaluation process at Rocky Flats Plant

    SciTech Connect (OSTI)

    Smith, L.C.

    1992-04-16

    This report describes the issues evaluation process for Rocky Flats Plant as established in July 1990. The issues evaluation process was initiated February 27, 1990 with a Charter and Process Overview for short-term implementation. The purpose of the process was to determine the projects required for completion before the Phased Resumption of Plutonium Operations. To determine which projects were required, the issues evaluation process and emphasized risk mitigation, based on a ranking system. The purpose of this report is to document the early design of the issues evaluation process to record the methodologies used that continue as the basis for the ongoing Issues Management Program at Rocky Flats Plant.

  9. Hanford/Rocky Flats collaboration on development of supercritical carbon dioxide extraction to treat mixed waste

    SciTech Connect (OSTI)

    Hendrickson, D.W.; Biyani, R.K.; Brown, C.M.; Teter, W.L.

    1995-11-01

    Proposals for demonstration work under the Department of Energy`s Mixed Waste Focus Area, during the 1996 through 1997 fiscal years included two applications of supercritical carbon dioxide to mixed waste pretreatment. These proposals included task RF15MW58 of Rocky Flats and task RL46MW59 of Hanford. Analysis of compatibilities in wastes and work scopes yielded an expectation of substantial collaboration between sites whereby Hanford waste streams may undergo demonstration testing at Rocky Flats, thereby eliminating the need for test facilities at Hanford. This form of collaboration is premised the continued deployment at Rocky Flats and the capability for Hanford samples to be treated at Rocky Flats. The recent creation of a thermal treatment contract for a facility near Hanford may alleviate the need to conduct organic extraction upon Rocky Flats wastes by providing a cost effective thermal treatment alternative, however, some waste streams at Hanford will continue to require organic extraction. Final site waste stream treatment locations are not within the scope of this document.

  10. Implications of mountain shading on calculating energy for snowmelt using unstructured

    E-Print Network [OSTI]

    Spiteri, Raymond J.

    of the world, snowmelt energetics are dominated by solar irradiance. This is particularly the case in the Canadian Rocky Moun- tains, where clear skies dominate the winter and spring. In mountains, solar irradiance at the snow surface is not only affected by solar angles, atmospheric transmittance, and the slope

  11. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 2, Part A: Chapters 3, 4, and 5

    SciTech Connect (OSTI)

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1--5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 575 refs., 84 figs., 68 tabs.

  12. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 4, Part B: Chapter 8, Sections 8.0 through 8.3.1.4

    SciTech Connect (OSTI)

    NONE

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 74 figs., 32 tabs.

  13. Evaluation of the geologic relations and seismotectonic stability of the Yucca Mountain area, Nevada Nuclear Waste Site Investigation (NNWSI); Final report, January 1, 1987--June 30, 1988: Volume 1

    SciTech Connect (OSTI)

    NONE

    1988-10-01

    This report provides a summary of progress for the project ``Evaluation of the Geologic Relations and Seismotectonic Stability of the Yucca Mountain Area, Nevada Nuclear Waste Site Investigation (NNWSI)`` for the eighteen month period of January 1, 1987 to June 10, 1988. This final report was preceded by the final report for the initial six month period, July 1, 1986 to December 31, 1986 (submitted on January 25, 1987, and revised in June 1987.) Quaternary Tectonics, Geochemical, Mineral Deposits, Vulcanic Geology, Seismology, Tectonics, Neotectonics, Remote Sensing, Geotechnical Assessments, Geotechnical Rock Mass Assessments, Basinal Studies, and Strong Ground Motion.

  14. Ute Mountain Tribe- 2012 Project

    Broader source: Energy.gov [DOE]

    The Ute Mountain Ute Tribe has the renewable resources and the opportunity to become a national leader in renewable energy production through its local and commercial-scale solar developments due to its proximity to key interconnections in the Four Corners area and interest from various companies that can fund such projects.

  15. Electrical Resistivity and Self-Potential Surveys Blue Mountain...

    Open Energy Info (EERE)

    Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal Area, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  16. Kuuchamaa: The Kumeyaay Sacred Mountain

    E-Print Network [OSTI]

    Shipek, Florence C

    1985-01-01

    The Kumeyaay Sacred Mountain^ FLORENCE C. SHIPEK ASSAGE ofthe importance of the mountain and its relation- ship toin order to have the mountain preserved by nomination to the

  17. Release fractions for Rocky Flats specific accidents

    SciTech Connect (OSTI)

    Weiss, R.C.

    1992-09-01

    As Rocky Flats and other DOE facilities begin the transition process towards decommissioning, the nature of the scenarios to be studied in safety analysis will change. Whereas the previous emphasis in safety accidents related to production, now the emphasis is shifting to accidents related tc decommissioning and waste management. Accident scenarios of concern at Rocky Flats now include situations of a different nature and different scale than are represented by most of the existing experimental accident data. This presentation will discuss approaches@to use for applying the existing body of release fraction data to this new emphasis. Mention will also be made of ongoing efforts to produce new data and improve the understanding of physical mechanisms involved.

  18. Immobilization of Rocky Flats graphite fines residues

    SciTech Connect (OSTI)

    Rudisill, T.S.; Marra, J.C.; Peeler, D.K.

    1999-07-01

    The Savannah River Technology Center (SRTC) is developing an immobilization process for graphite fines residues generated during nuclear materials production activities at the Rocky Flats Environmental Technology Site (Rocky Flats). The continued storage of this material has been identified as an item of concern. The residue was generated during the cleaning of graphite casting molds and potentially contains reactive plutonium metal. The average residue composition is 73 wt% graphite, 15 wt% calcium fluoride (CaF{sub 2}), and 12 wt% plutonium oxide (PuO{sub 2}). Approximately 950 kg of this material are currently stored at Rocky Flats. The strategy of the immobilization process is to microencapsulate the residue by mixing with a sodium borosilicate (NBS) glass frit and heating at nominally 700 C. The resulting waste form would be sent to the Waste Isolation Pilot Plant (WIPP) for disposal. Since the PuO{sub 2} concentration in the residue averages 12 wt%, the immobilization process was required to meet the intent of safeguards termination criteria by limiting plutonium recoverability based on a test developed by Rocky Flats. The test required a plutonium recovery of less than 4 g/kg of waste form when a sample was leached using a nitric acid/CaF{sub 2} dissolution flowsheet. Immobilization experiments were performed using simulated graphite fines with cerium oxide (CeO{sub 2}) as a surrogate for PuO{sub 2} and with actual graphite fines residues. Small-scale surrogate experiments demonstrated that a 4:1 frit to residue ratio was adequate to prevent recovery of greater than 4 g/kg of cerium from simulated waste forms. Additional experiments investigated the impact of varying concentrations of CaF{sub 2} and the temperature/heating time cycle on the cerium recovery. Optimal processing conditions developed during these experiments were subsequently demonstrated at full-scale with surrogate materials and on a smaller scale using actual graphite fines.

  19. Status Update: Closing Rocky Flats by 2006

    SciTech Connect (OSTI)

    Tuor, N.; Schubert, A.

    2003-02-25

    Safely closing Rocky Flats by December 2006 is a goal shared by many: the State of Colorado, the communities surrounding the site, the U.S. Congress, the Department of Energy (DOE), Kaiser-Hill and its team of subcontractors, the site's employees and taxpayers across the country. This paper will: provide a status of the Closure Project to date; describe important accomplishments of the past year; describe some of the closure-enhancing technologies enabling acceleration; and discuss the remaining challenges ahead.

  20. Microwave solidification development for Rocky Flats waste

    SciTech Connect (OSTI)

    Dixon, D.; Erle, R.; Eschen, V.

    1994-04-01

    The Microwave Engineering Team at the Rocky Flats Plant has developed a production-scale system for the treatment of hazardous, radioactive, and mixed wastes using microwave energy. The system produces a vitreous final form which meets the acceptance criteria for shipment and disposal. The technology also has potential for application on various other waste streams from the public and private sectors. Technology transfer opportunities are being identified and pursued for commercialization of the microwave solidification technology.

  1. Basic TRUEX process for Rocky Flats Plant

    SciTech Connect (OSTI)

    Leonard, R.A.; Chamberlain, D.B.; Dow, J.A.; Farley, S.E.; Nunez, L.; Regalbuto, M.C.; Vandegrift, G.F.

    1994-08-01

    The Generic TRUEX Model was used to develop a TRUEX process flowsheet for recovering the transuranics (Pu, Am) from a nitrate waste stream at Rocky Flats Plant. The process was designed so that it is relatively insensitive to changes in process feed concentrations and flow rates. Related issues are considered, including solvent losses, feed analysis requirements, safety, and interaction with an evaporator system for nitric acid recycle.

  2. Southern Rockies Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) Jump to: navigation, search Name: SouthernRockies

  3. Rocky Flats Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 -Rob Roberts About Us Rob Roberts - FormerRocky Flats Overview

  4. The interaction of katabatic winds and mountain waves

    SciTech Connect (OSTI)

    Poulos, G.S.

    1997-01-01

    The variation in the oft-observed, thermally-forced, nocturnal katabatic winds along the east side of the Rocky Mountains can be explained by either internal variability or interactions with various other forcings. Though generally katabatic flows have been studied as an entity protected from external forcing by strong thermal stratification, this work investigates how drainage winds along the Colorado Front Range interact with, in particular, topographically forced mountain waves. Previous work has shown, based on measurements taken during the Atmospheric Studies in Complex Terrain 1993 field program, that the actual dispersion in katabatic flows is often greater than reflected in models of dispersion. The interaction of these phenomena is complicated and non-linear since the amplitude, wavelength and vertical structure of mountain waves developed by flow over the Rocky Mountain barrier are themselves partly determined by the evolving atmospheric stability in which the drainage flows develop. Perturbations to katabatic flow by mountain waves, relative to their more steady form in quiescent conditions, are found to be caused by both turbulence and dynamic pressure effects. The effect of turbulent interaction is to create changes to katabatic now depth, katabatic flow speed, katabatic jet height and, vertical thermal stratification. The pressure effect is found to primarily influence the variability of a given katabatic now through the evolution of integrated column wave forcing on surface pressure. Variability is found to occur on two scales, on the mesoscale due to meso-gamma scale mountain wave evolution, and on the microscale, due to wave breaking. Since existing parameterizations for the statically stable case are predominantly based on nearly flat terrain atmospheric measurements under idealized or nearly quiescent conditions, it is no surprise that these parameterizations often contribute to errors in prediction, particularly in complex terrain.

  5. Rocky Flats CAAS System Recalibrated, Retested, and Analyzed to Install in the Criticality Experiments Facility at the Nevada Test Site

    E-Print Network [OSTI]

    2009-01-01

    LLNL-CONF-414017 Rocky Flats CAAS System Recalibrated,endorsement purposes. ROCKY FLATS CAAS SYSTEM RECALIBRATED,panels transferred from the Rocky Flats Plant (RFP) were

  6. Long-Term Surveillance and Maintenance at Rocky Flats: Early Experiences and Lessons Learned

    SciTech Connect (OSTI)

    Surovchak, S.; Kaiser, L.; DiSalvo, R.; Boylan, J.; Squibb, G.; Nelson, J.; Darr, B.; Hanson, M.

    2008-07-01

    The U.S. Department of Energy's (DOE's) Rocky Flats Site was established in 1951 as part of the United States' nationwide nuclear weapons complex to manufacture nuclear weapons components. In 1992 weapons production halted, and the Rocky Flats mission changed to include environmental investigations, cleanup, and site closure. In October 2005, DOE and its contractor completed an accelerated 10-year, $7 billion cleanup of chemical and radiological contamination left from nearly 50 years of production. The cleanup required the decommissioning, decontamination, demolition, and removal of more than 800 structures; removal of more than 500,000 cubic meters of low-level radioactive waste; and remediation of more than 360 potentially contaminated environmental sites. The final remedy for the site was selected in September 2006 and included institutional controls, physical controls, and continued monitoring for the former industrial portion of the site. The remainder of the site, which served as a buffer zone surrounding the former industrial area, was transferred to the U.S. Fish and Wildlife Service in July 2007 for a national wildlife refuge. DOE's Office of Legacy Management is responsible for the long-term surveillance and maintenance of Rocky Flats, which includes remedy implementation activities and general site maintenance. Several factors have complicated the transition from closure to post-closure at Rocky Flats. The early experiences associated with the two years since the physical cleanup and closure work were completed have led to several valuable lessons learned. (authors)

  7. Mountaineer Creed As a Mountaineer, I will

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Mountaineer Creed As a Mountaineer, I will: · practice academic and personal integrity, · value standards of academic integrity; · to live and work according to the laws of man and the highest standards of professional conduct; · to place before profit, the honor and standing of the profession before person

  8. 2006 Annual Ecology Report for the Rocky Flats Site

    Office of Legacy Management (LM)

    Ecology Report for the Rocky Flats Site Click on the links below to access different portions of the electronic annual report. 2006 Annual Report Sections Diffuse Knapweed...

  9. Final Rocky Flats Cleanup Agreement, July 19, 1996 Summary

    Office of Environmental Management (EM)

    Rocky Flats Cleanup Agreement State Colorado Agreement Type Federal Facility Agreement Legal Driver(s) CERCLARCRA Scope Summary Establish the regulatory framework for achieving...

  10. EIS-0276: Rocky Flats Plutonium Storage, Golden, Colorado

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's proposed action to provide safe interim storage of approximately 10 metric tons of plutonium at the Rocky Flats Environmental Technology Site (RFETS).

  11. Unique process combination decontaminates mixed wastewater at Rocky Flats

    SciTech Connect (OSTI)

    Kelso, William J.; Cirillo, J. Russ

    1999-08-01

    This paper describes the Sitewide Water Treatment Facility (SWTF) used to process environmental remediation wastewaters found at the Rocky Flats Environmental Technology Site.

  12. MOUNTAIN LAKE USER HANDBOOK

    E-Print Network [OSTI]

    Huang, Wei

    MOUNTAIN LAKE BIOLOGICAL STATION USER HANDBOOK Updated: 02 June 2015 #12;2 #12;3 Fundamental Code, and Purchases ------------------------------------------------------------ 14 The Mountain Lake Lodge;4 #12;5 Welcome Welcome to the Mountain Lake Biological Station! MLBS was established in 1929

  13. GREEN MOUNTAIN MORRIS DANCERS

    E-Print Network [OSTI]

    GREEN MOUNTAIN MORRIS DANCERS A young men's team performing Morris & Sword dances from England Mountain (boys) and Maple Leaf (girls) will be recruiting new members in January 2009, typically 6th grade, but as a springtime dance, to awaken the earth. The Green Mountain Morris and Maple Leaf Morris are based in Norwich

  14. Risk-Quantified Decision-Making at Rocky Flats

    SciTech Connect (OSTI)

    Myers, Jeffrey C.

    2008-01-15

    Surface soils in the 903 Pad Lip Area of the Rocky Flats Environmental Technology Site (RFETS) were contaminated with {sup 239/240}Pu by site operations. To meet remediation goals, accurate definition of areas where {sup 239/240}Pu activity exceeded the threshold level of 50 pCi/g and those below 50- pCi/g needed definition. In addition, the confidence for remedial decisions needed to be quantified and displayed visually. Remedial objectives needed to achieve a 90 percent certainty that unremediated soils had less than a 10 percent chance of {sup 239/240}Pu activity exceeding 50-pCi/g. Removing areas where the chance of exceedance is greater than 10 percent creates a 90 percent confidence in the remedial effort results. To achieve the stipulated goals, the geostatistical approach of probability kriging (Myers 1997) was implemented. Lessons learnt: Geostatistical techniques provided a risk-quantified approach to remedial decision-making and provided visualizations of the excavation area. Error analysis demonstrated compliance and confirmed that more than sufficient soils were removed. Error analysis also illustrated that any soils above the threshold that were not removed would be of nominal activity. These quantitative approaches were useful from a regulatory, engineering, and stakeholder satisfaction perspective.

  15. Repackaging Rocky Flats Legacy Transuranic Waste

    SciTech Connect (OSTI)

    McTaggart, Jerri Lynne

    2008-01-15

    Repackaging legacy Transuranic (TRU), Transuranic Mixed (TRM), Low Level Waste (LLW), and Low Level Mixed (LLM) waste requires good characterization skills and the ability to adapt to less than ideal conditions. Repackaging legacy waste in a facility that is not undergoing Decontamination and Decommission (D and D) is optimum. However, repackaging any waste in a D and D facility, under cold and dark conditions, can be difficult. Cold and dark conditions are when the heating and air conditioning are no longer in service and the lighting consists of strands of lights hung throughout each of the rooms. Working under these conditions adds an additional level of stress and danger that must be addressed. The use of glovebags was very useful at Rocky Flats during the D and D of many buildings. Glovebags can be adapted for many different types of wastes and unusual conditions. Repackaging of legacy TRU waste, in a D and D facility, can be accomplished safely and cost effectively with the use of glovebags. In conclusion: the use of glovebags to repackage legacy TRU, TRM, LLW, or LLM waste was done safely and cost effectively at Rocky Flats. The cost of using glovebags was minimal. Glovebags are easily adaptable to whatever the waste configuration is. The use of glovebags, for repackaging of Legacy waste, allows D and D efforts to stay on schedule and on task. Without the use of glovebags, additional gloveboxes would have been required at Rocky Flats. Larger items, such as the HEPA filters, would have required the construction of a new large item repackaging glovebox. Repackaging in glovebags allows the freedom to either locate the glovebag by the waste or locate the glovebag in a place that least impacts D and D efforts. The use of glovebags allowed numerous configurations of waste to be repackaged without the use of gloveboxes. During the D and D of the Rocky Flats facility, which was in a cold and dark stage, D and D work was not impacted by the repackaging activity. Glovebags work well in facilities that are in the process of D and D or still in full operations because glovebags are very safe and cost effective.

  16. DOE - Office of Legacy Management -- Rocky

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and Myers Co - OH 51 FUSRAP ConsideredRocky Flats

  17. Rocky Flats resumes shipments to WIPP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis of Protein Structures Print Scientists have developedSoRocky

  18. Beverly Blakeney DeJarnett Publications

    E-Print Network [OSTI]

    Yang, Zong-Liang

    and adjacent areas: Rocky Mountain Association of Geologists, p. 131­142. Krystinik, L. F., and Blakeney, B. A Colorado and adjacent areas: Rocky Mountain Association of Geologists, p. 37­50. Burruss, R. C., Blakeney., Morrow sandstone of SE Colorado and adjacent areas: Rocky Mountain Association of Geologists, p. 59

  19. Disposal of Rocky Flats residues as waste

    SciTech Connect (OSTI)

    Dustin, D.F.; Sendelweck, V.S. . Rocky Flats Plant); Rivera, M.A. )

    1993-01-01

    Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

  20. Disposal of Rocky Flats residues as waste

    SciTech Connect (OSTI)

    Dustin, D.F.; Sendelweck, V.S.; Rivera, M.A.

    1993-03-01

    Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

  1. Immobilization of Rocky Flats Graphite Fines Residues

    SciTech Connect (OSTI)

    Rudisill, T. S.

    1998-11-06

    The Savannah River Technology Center (SRTC) is developing an immobilization process for graphite fines residues generated during nuclear materials production activities at the Rocky Flats Environmental Technology Site (Rocky Flats). The continued storage of this material has been identified as an item of concern. The residue was generated during the cleaning of graphite casting molds and potentially contains reactive plutonium metal. The average residue composition is 73 wt percent graphite, 15 wt percent calcium fluoride (CaF2), and 12 wt percent plutonium oxide (PuO2). Approximately 950 kilograms of this material are currently stored at Rocky Flats. The strategy of the immobilization process is to microencapsulate the residue by mixing with a sodium borosilicate (NBS) glass frit and heating at nominally 700 degrees C. The resulting waste form would be sent to the Waste Isolation Pilot Plant (WIPP) for disposal. Since the PuO2 concentration in the residue averages 12 wt percent, the immobilization process was required to meet the intent of safeguards termination criteria by limiting plutonium recoverability based on a test developed by Rocky Flats. The test required a plutonium recovery of less than 4 g/kg of waste form when a sample was leached using a nitric acid/CaF2 dissolution flowsheet. Immobilization experiments were performed using simulated graphite fines with cerium oxide (CeO2) as a surrogate for PuO2 and with actual graphite fines residues. Small-scale surrogate experiments demonstrated that a 4:1 frit to residue ratio was adequate to prevent recovery of greater than 4 g/kg of cerium from simulated waste forms. Additional experiments investigated the impact of varying concentrations of CaF2 and the temperature/heating time cycle on the cerium recovery. Optimal processing conditions developed during these experiments were subsequently demonstrated at full-scale with surrogate materials and on a smaller scale using actual graphite fines.In general, the recovery of cerium from the full-scale waste forms was higher than for smaller scale experiments. The presence of CaF2 also caused a dramatic increase in cerium recovery not seen in the small-scale experiments. However, the results from experiments with actual graphite fines were encouraging. A 4:1 frit to residue ratio, a temperature of 700 degrees C, and a 2 hr heating time produced waste forms with plutonium recoveries of 4 plus/minus 1 g/kg. With an increase in the frit to residue ratio, waste forms fabricated at this scale should meet the Rocky Flats product specification. The scale-up of the waste form fabrication process to nominally 3 kg is expected to require a 5:1 to 6:1 frit to residue ratio and maintaining the waste form centerline temperature at 700 degrees C for 2 hr.

  2. Fiscal year 1990 Rocky Flats Plant Environmental Restoration program Current-Year Work Plan

    SciTech Connect (OSTI)

    Nielsen, T. ); Waage, E.; Miller, D. Corp., Boulder, CO )

    1990-01-01

    The Rocky Flats Plant (RFP) is a nuclear weapons manufacturing facility currently operated by EG G for the US Department of Energy (DOE). RFP is located at the foot of the Rocky Mountains in Jefferson Country, Colorado. The Fiscal Year 1990 (FY90) Current-Year Work Plan (CYWP) is intended to serve as a guidance document for the Environmental Restoration (ER) and RCRA Compliance programs that will be implemented at RFP. The CYWP provides in one document any cross-references necessary to understand the interrelationships between the CYWP and the DOE Five-Year Plan (FYP), Site-Specific Plan (SSP), and other related documents. The scope of this plan includes comparison of planned FY90 ER activities to those actually achieved. The CYWP has been updated to include Colorado Department of Health (CDH), US Environmental Protection Agency (EPA), and DOE Inter-Agency Agreement ER activities. It addresses hazardous wastes, radioactive wastes, mixed wastes (radioactive and hazardous), and sanitary wastes. The CYWP also addresses facilities and sites contaminated with or used in management of those wastes.

  3. Rocky Flats Environmental Technology Site Ecological Monitoring Program 1995 annual report

    SciTech Connect (OSTI)

    1995-05-31

    The Ecological Monitoring Program (ECMP) was established at the Rocky Flats Environmental Technology Site (Site) in September 1992. At that time, EcMP staff developed a Program Plan that was peer-reviewed by scientists from western universities before submittal to DOE RFFO in January 1993. The intent of the program is to measure several quantitative variables at different ecological scales in order to characterize the Rocky Flats ecosystem. This information is necessary to document ecological conditions at the Site in impacted and nonimpacted areas to determine if Site practices have had ecological impacts, either positive or negative. This information can be used by managers interested in future use scenarios and CERCLA activities. Others interested in impact analysis may also find the information useful. In addition, these measurements are entered into a database which will serve as a long-term information repository that will document long-term trends and potential future changes to the Site, both natural and anthropogenic.

  4. Technical Safety Appraisal of the Rocky Flats Plant

    SciTech Connect (OSTI)

    Brown, Blake P.

    1989-01-01

    This report provides the results of a Technical Safety Appraisal (TSA) of the Rocky Flats Plant (RFP) conducted November 14 to 18 and November 28 to December 9, 1988. This appraisal covered the effectiveness and improvements in the RFP safety program across the site, evaluating progress to date against standards of accepted practice. The appraisal included coverage of the timeliness and effectiveness of actions taken in response to the recommendations/concerns in three previous Technical Safety Appraisals (TSAs) of RFP Bldg. 707 conducted in July 1986, Bldgs. 771/774 conducted in October/November 1986, and Bldgs. 776/777 conducted in January/February 1988. Results of this appraisal are given in Section IV for each of 14 technical safety areas at RFP. These results include a discussion, conclusions and any new safety concerns for each technical safety area. Appendix A contains a description of the system for categorizing concerns, and the concerns are tabulated in Appendix B. Appendix C reports on the evaluation of the contractor's actions and the current status of each of the 230 recommendations and concerns contained in the three previous TSA reports.

  5. Environmental Survey preliminary report, Rocky Flats Plant, Golden, Colorado

    SciTech Connect (OSTI)

    Not Available

    1987-06-01

    This report presents the preliminary findings of the Environmental Survey of the United States Department of Energy (DOE), Rocky Flats Plant (RFP), conducted August 11 through 22, 1986. The Survey is being conducted by an multidisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team members are outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the RFP. The Survey covers all environmental media and all areas of environmental regulations. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data observations of the operations carried on at RFP, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain environmental problems identified during its on-site activates. The Sampling and Analysis Plan is being executed by DOE's Oak Ridge National Laboratory. When completed, the results will be incorporated into the RFP Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the RFP Survey. 75 refs., 24 figs., 33 tabs.

  6. Creative problem solving at Rocky Reach

    SciTech Connect (OSTI)

    Bickford, B.M.; Garrison, D.H.

    1997-04-01

    Tainter gate inspection and thrust bearing cooling system problems at the 1287-MW Rocky Reach hydroelectric project on the Columbia River in Washington are described. Gate inspection was initiated in response to a failure of similar gates at Folsom Dam. The approach involved measuring the actual forces on the gates and comparing them to original model study parameters, rather than the traditional method of building a hydraulic model. Measurement and visual inspection was completed in one day and had no effect on migration flows. Two problems with the thrust bearing cooling system are described. First, whenever a generating unit was taken off line, cooling water continued circulating and lowered oil temperatures. The second problem involved silt buildup in flow measuring device tubes on the cooling water system. Modifications to correct cooling system problems and associated costs are outlined.

  7. Observed Impacts on Plants Sprayed with Tordon 22K at Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Nelson, Jody K.

    1999-10-21

    Newsletter article for The Central Rockies Chapter of the Society for Ecological Restoration newsletter

  8. Historical Exposures to Chemicals at the Rocky Flats Nuclear Weapons Plant: A Pilot Retrospective Exposure Assessment

    SciTech Connect (OSTI)

    Janeen Denise Robertson

    1999-02-01

    In a mortality study of white males who had worked at the Rocky Flats Nuclear Weapons Plant between 1952 and 1979, an increased number of deaths from benign and unspecified intracranial neoplasms was found. A case-control study nested within this cohort investigated the hypothesis that an association existed between brain tumor death and exposure to either internally deposited plutonium or external ionizing radiation. There was no statistically significant association found between estimated radiation exposure from internally deposited plutonium and the development of brain tumors. Exposure by job or work area showed no significant difference between the cohort and the control groups. An update of the study found elevated risk estimates for (1) all lymphopoietic neoplasms, and (2) all causes of death in employees with body burdens greater than or equal to two nanocuries of plutonium. There was an excess of brain tumors for the entire cohort. Similar cohort studies conducted on worker populations from other plutonium handling facilities have not yet shown any elevated risks for brain tumors. Historically, the Rocky Flats Nuclear Weapons Plant used large quantities of chemicals in their production operations. The use of solvents, particularly carbon tetrachloride, was unique to Rocky Flats. No investigation of the possible confounding effects of chemical exposures was done in the initial studies. The objectives of the present study are to (1) investigate the history of chemical use at the Rocky Flats facility; (2) locate and analyze chemical monitoring information in order to assess employee exposure to the chemicals that were used in the highest volume; and (3) determine the feasibility of establishing a chemical exposure assessment model that could be used in future epidemiology studies.

  9. Briefing and Ancillary Materials for Rocky Branch Watershed Tour

    E-Print Network [OSTI]

    James, L. Allan

    1 Briefing and Ancillary Materials for Rocky Branch Watershed Tour Allan James This briefing available on the Water as a Resource, Geog 347, website: http://people.cas.sc.edu/ajames/347 Go to Ancillary

  10. METEOROLOGYMETEOROLOGYMETEOROLOGYMETEOROLOGY 280280280280 Intro to Mountain MeteorologyIntro to Mountain MeteorologyIntro to Mountain MeteorologyIntro to Mountain Meteorology

    E-Print Network [OSTI]

    Clements, Craig

    1 METEOROLOGYMETEOROLOGYMETEOROLOGYMETEOROLOGY 280280280280 Intro to Mountain MeteorologyIntro to Mountain MeteorologyIntro to Mountain MeteorologyIntro to Mountain Meteorology Course Description This course will introduce the student to meteorological phenomena associated with mountain environments

  11. Benchmarking and performance improvement at Rocky Flats Technology Site

    SciTech Connect (OSTI)

    Elliott, C.; Doyle, G.; Featherman, W.L.

    1997-03-01

    The Rocky Flats Environmental Technology Site has initiated a major work process improvement campaign using the tools of formalized benchmarking and streamlining. This paper provides insights into some of the process improvement activities performed at Rocky Flats from November 1995 through December 1996. It reviews the background, motivation, methodology, results, and lessons learned from this ongoing effort. The paper also presents important gains realized through process analysis and improvement including significant cost savings, productivity improvements, and an enhanced understanding of site work processes.

  12. Annual Rocky Mountain Geriatrics Conference Navigating Complexity: A Road Map for Successful

    E-Print Network [OSTI]

    Tipple, Brett

    : Parking for the Lodge at Snowbird is located in Entry #3. If that lot is full, parking can also be found.snowbird.com PARKING FOR CONFERENCE: Parking for the Snowbird Center is located in Entry #2. PARKING FOR LODGING in Entry #2. Please observe signage regarding overnight parking. PERENNIAL AWARD WINNER: Snowbird and its

  13. Rocky Mountain Regional CO{sub 2} Storage Capacity and Significance

    SciTech Connect (OSTI)

    Laes, Denise; Eisinger, Chris; Esser, Richard; Morgan, Craig; Rauzi, Steve; Scholle, Dana; Matthews, Vince; McPherson, Brian

    2013-08-30

    The purpose of this study includes extensive characterization of the most promising geologic CO{sub 2} storage formations on the Colorado Plateau, including estimates of maximum possible storage capacity. The primary targets of characterization and capacity analysis include the Cretaceous Dakota Formation, the Jurassic Entrada Formation and the Permian Weber Formation and their equivalents in the Colorado Plateau region. The total CO{sub 2} capacity estimates for the deep saline formations of the Colorado Plateau region range between 9.8 metric GT and 143 metric GT, depending on assumed storage efficiency, formations included, and other factors.

  14. Mapping Dominant Vegetation Communities in the Colorado Rocky Mountain Front Range with

    E-Print Network [OSTI]

    Frank, Thomas D.

    Thematic Mapper and Digital Terrain Data Thomas D. Frank Department of Geography, University of Illinois, 220 Davenport Hall, 607 South Mathews Street, Urbana, IL 61801 ABSTRACT: Landsat Thematic Mapper (TM

  15. Dendroclimatic Response along a Moisture Gradient in the Southern Rocky Mountains 

    E-Print Network [OSTI]

    Young, Shelby Lynn

    2015-06-01

    the moisture gradient. Using tree-ring analysis, I found growth to be slower and more sensitive to climate at the low moisture distributional limit than elsewhere within the spatial distribution. Trees at this site were more impacted by the 1950s drought...

  16. 2015 AGS Annual Meeting Poster Presentations Annual Rocky Mountain Geriatrics Conference

    E-Print Network [OSTI]

    Tipple, Brett

    Conference "The Aging Brain: Exploring the Intersection of Behavioral and Cognitive Disorders" Monday August make your plans to attend! http://medicine.utah.edu/internalmedicine/geriatrics/conferences/rm_conference

  17. SOUTHEAST WASHINGTON SUBBASIN PLANNING ECOREGION WILDLIFE ASSESSMENT F-62 Rocky Mountain Mule Deer

    E-Print Network [OSTI]

    . A late summer/fall drought can result in increased winter mortality of adults and fawns, lower fertility result in high mortality, especially among the old and young. Diet Mule deer diets are as varied the number of adult bucks available for breeding. From 1990 to 1998, the percentage of adult mule deer bucks

  18. NewsletteroftheRockyMountainAssociationofGeologistsVolume55No.5May2007 In This Issue...

    E-Print Network [OSTI]

    Downs, Robert T.

    ,000 in 2006 21 2007 Coalbed Methane Symposium 33 Extensional Tectonic Systems in Exploration and Production. The potential of Raman spectroscopy for identification purposes was recognized almost immediately after its

  19. A continuous climatic impact on Holocene human population in the Rocky Mountains

    E-Print Network [OSTI]

    | demography | hunter-gatherers | paleoecology Many cultural changes have been linked to climate change, from

  20. Evaluation of an Unsuccessful Brook Trout Electrofishing Removal Project in a Small Rocky Mountain Stream.

    SciTech Connect (OSTI)

    Meyer, Kevin A.; Lamansky, Jr., James A.; Schill, Daniel J.

    2006-01-26

    In the western United States, exotic brook trout Salvelinus fontinalis frequently have a deleterious effect on native salmonids, and biologists often attempt to remove brook trout from streams by means of electrofishing. Although the success of such projects typically is low, few studies have assessed the underlying mechanisms of failure, especially in terms of compensatory responses. A multiagency watershed advisory group (WAG) conducted a 3-year removal project to reduce brook trout and enhance native salmonids in 7.8 km of a southwestern Idaho stream. We evaluated the costs and success of their project in suppressing brook trout and looked for brook trout compensatory responses, such as decreased natural mortality, increased growth, increased fecundity at length, and earlier maturation. The total number of brook trout removed was 1,401 in 1998, 1,241 in 1999, and 890 in 2000; removal constituted an estimated 88% of the total number of brook trout in the stream in 1999 and 79% in 2000. Although abundance of age-1 and older brook trout declined slightly during and after the removals, abundance of age-0 brook trout increased 789% in the entire stream 2 years after the removals ceased. Total annual survival rate for age-2 and older brook trout did not decrease during the removals, and the removals failed to produce an increase in the abundance of native redband trout Oncorhynchus mykiss gairdneri. Lack of a meaningful decline and unchanged total mortality for older brook trout during the removals suggest that a compensatory response occurred in the brook trout population via reduced natural mortality, which offset the removal of large numbers of brook trout. Although we applaud WAG personnel for their goal of enhancing native salmonids by suppressing brook trout via electrofishing removal, we conclude that their efforts were unsuccessful and suggest that similar future projects elsewhere over such large stream lengths would be costly, quixotic enterprises.

  1. PREDICTING HABITAT RESPONSE TO FLOW USING GENERALIZED HABITAT MODELS FOR TROUT IN ROCKY MOUNTAIN STREAMS

    E-Print Network [OSTI]

    Bledsoe, Brian

    The Nature Conservancy, Fort Collins, Colorado USA ABSTRACT Dams and water diversions can dramatically alter the hydraulic habitats of stream ecosystems. Predicting how water depth and velocity respond to flow alteration is possible using hydraulic models, such as Physical Habitat Simulation (PHABSIM); however, such models

  2. Redelegation Order No. 00-006.02-02 to the Director, Rocky Mountain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impactsand engineers EngineeringReddy MuthyalaGlobal

  3. 2013 Annual Planning Summary for the Rocky Mountain Oilfield Testing Center

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s i sEnergy It isRichland| Department of

  4. A three-dimensional spatial model of plutonium in soil near Rocky Flats, Colorado

    SciTech Connect (OSTI)

    Webb, S.B.; Ibrahim, S.A.; Whicker, F.W.

    1997-08-01

    The horizontal and depth distribution of plutonium was measured in soil east of the Rocky Flats Environmental Technology Site (formerly the Rocky Flats Plant) near Denver, Colorado, during 1992-1994. The study area was centered on the eastern plume of plutonium contamination and included transacts extending from 0.2 km east of the primary origin of the contamination (the 903 Pad) to distances of up to 19 km northeast, east, southeast and south-southeast of the 903 Pad. Soil was collected in 3 cm layers down to 21 cm at exponentially increasing distances along the four transacts. Plutonium concentrations decreased rapidly with depth, distance from the 903 Pad, and angle from due east. Depth distributions were independent of distance and angle from the 903 Pad, and our profile model can be used to adjust to a common basis, historical measurements made from sampling to different depths. Based on a total of {approximately}1,400 independent measurements, mathematical functions were developed to describe the distance, directional, and depth relationships. These equations, combined with soil density and rock measurements, provided a new method to estimate the plutonium concentration or total deposition per unit area anywhere within the study area. Total deposition per unit area measurements at 50 sites provided an independent test of the model`s predictive accuracy. Sampling coefficients of variation based on replicate samples at the main sampling locations averaged 33%, but ranged from 12 to 98%. The analytical measurement coefficient of variation averaged 8%. Mean 0-3 cm soil concentrations of {sup 239}Pu among 10 Front Range {open_quotes}background{close_quotes} and 11 community locations near Rocky Flats were 2.1 and 2.3 Bq kg{sup -1}, respectively. 45 refs., 8 figs., 1 tab.

  5. Elemental compositions of two extrasolar rocky planetesimals

    SciTech Connect (OSTI)

    Xu, S.; Jura, M.; Klein, B.; Zuckerman, B. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1562 (United States); Koester, D., E-mail: sxu@astro.ucla.edu, E-mail: jura@astro.ucla.edu, E-mail: kleinb@astro.ucla.edu, E-mail: ben@astro.ucla.edu, E-mail: koester@astrophysik.uni-kiel.de [Institut fur Theoretische Physik und Astrophysik, University of Kiel, D-24098 Kiel (Germany)

    2014-03-10

    We report Keck/HIRES and Hubble Space Telescope/COS spectroscopic studies of extrasolar rocky planetesimals accreted onto two hydrogen atmosphere white dwarfs, G29-38 and GD 133. In G29-38, eight elements are detected, including C, O, Mg, Si, Ca, Ti, Cr, and Fe while in GD 133, O, Si, Ca, and marginally Mg are seen. These two extrasolar planetesimals show a pattern of refractory enhancement and volatile depletion. For G29-38, the observed composition can be best interpreted as a blend of a chondritic object with some refractory-rich material, a result from post-nebular processing. Water is very depleted in the parent body accreted onto G29-38, based on the derived oxygen abundance. The inferred total mass accretion rate in GD 133 is the lowest of all known dusty white dwarfs, possibly due to non-steady state accretion. We continue to find that a variety of extrasolar planetesimals all resemble to zeroth order the elemental composition of bulk Earth.

  6. The Critical Mass Laboratory at Rocky Flats

    SciTech Connect (OSTI)

    Rothe, Robert E

    2003-10-15

    The Critical Mass Laboratory (CML) at Rocky Flats northwest of Denver, Colorado, was built in 1964 and commissioned to conduct nuclear experiments on January 28, 1965. It was built to attain more accurate and precise experimental data to ensure nuclear criticality safety at the plant than were previously possible. Prior to its construction, safety data were obtained from long extrapolations of subcritical data (called in situ experiments), calculated parameters from reactor engineering 'models', and a few other imprecise methods. About 1700 critical and critical-approach experiments involving several chemical forms of enriched uranium and plutonium were performed between then and 1988. These experiments included single units and arrays of fissile materials, reflected and 'bare' systems, and configurations with various degrees of moderation, as well as some containing strong neutron absorbers. In 1989, a raid by the Federal Bureau of Investigation (FBI) caused the plant as a whole to focus on 'resumption' instead of further criticality safety experiments. Though either not recognized or not admitted for a few years, that FBI raid did sound the death knell for the CML. The plant's optimistic goal of resumption evolved to one of deactivation, decommissioning, and plantwide demolition during the 1990s. The once-proud CML facility was finally demolished in April of 2002.

  7. Seismic hazard analysis at Rocky Flats Plant

    SciTech Connect (OSTI)

    McGuire, R.K.

    1993-10-01

    A probabilistic seismic hazard analysis is being conducted for the DOE Rocky Flats Plant, Jefferson County, Colorado. This is part of the overall review of the seismic exposure to facilities being conducted by DOE. The study has four major elements. (1) The historical seismicity in Colorado is being reviewed and synthesized to estimate historical rates of earthquake activity in the region of the site. (2) The geologic and tectonic evidence in Colorado and along the Front Range is being reviewed to determine appropriate seismic zones, potentially active faults, and constraints on fault slip rates. (3) Earthquake ground motion equations are being derived based on seismological knowledge of the earth`s crust. Site specific soil amplification factors are also being developed using on-site shear wave velocity measurements. (4) The probability of exceedence of various seismic ground motion levels is being calculated based on the inputs developed on tectonic sources, faults, ground motion, and soil amplification. Deterministic ground motion estimates are also being made. This study is a state-of-the-art analysis of seismic hazard. It incorporates uncertainties in the major aspects governing seismic hazard, and has a documented basis founded on solid data interpretations for the ranges of inputs used. The results will be a valid basis on which to evaluate plant structures, equipment, and components for seismic effects.

  8. Mountain hydrology of the western United States Roger C. Bales,1

    E-Print Network [OSTI]

    Dozier, Jeff

    Mountain hydrology of the western United States Roger C. Bales,1 Noah P. Molotch,2,3 Thomas H. In the mountainous West and other similar areas worldwide, three pressing hydrologic needs stand out: first, modeling, and sensing the mountain environment that will improve understanding and prediction of hydrologic

  9. Ecological and allometric determinants of home-range size for mountain lions (Puma concolor)

    E-Print Network [OSTI]

    Beier, Paul

    Ecological and allometric determinants of home-range size for mountain lions (Puma concolor) INTRODUCTION Mountain lions (Puma concolor) are distributed through- out much of California, including the Sierra Nevada mountains, Coastal Ranges, eastern Sierran deserts and suburban areas. Despite our

  10. Mountain Peak Identification in Visual Content Based on Coarse Digital Elevation Models

    E-Print Network [OSTI]

    Tagliasacchi, Marco

    Mountain Peak Identification in Visual Content Based on Coarse Digital Elevation Models Roman for the identification of mountain peaks in geo-tagged photos. The key tenet is to perform an edge- based matching of the position of mountain peaks with a coarse resolution DEM available in the corresponding ge- ographical area

  11. Surface-to-tunnel seismic tomography studies at Yucca Mountain, Nevada

    E-Print Network [OSTI]

    Korneev, Valeri A.

    Surface-to-tunnel seismic tomography studies at Yucca Mountain, Nevada Roland Gritto, Valeri A in the proposed nuclear waste repository area at Yucca Mountain, Nevada. A 5-km-long source line and a 3-km-long receiver line were located on top of Yucca Mountain ridge and inside the Exploratory Study Facility (ESF

  12. Origami DNA model Mountain fold

    E-Print Network [OSTI]

    Csürös, Miklós

    Origami DNA model Mountain fold Solid lines are "mountains" and are to be folded away from you with the peak pointing towards you. 1. Fold all solid lines going lengthwise down the page into "mountain folds fold 2. Fold all dashed lines going lengthwise down the page into "valley folds". Mountain folds along

  13. Gaglardi Way Burnaby Mountain Parkway

    E-Print Network [OSTI]

    Kavanagh, Karen L.

    Mountain Parkway To Hastings Street University Drive East Gaglardi Way University Drive East Tower Road

  14. Winter in Sacramento Mountains 

    E-Print Network [OSTI]

    Unknown

    2011-09-05

    Beginning in the late 1930s, fire exclusion has drastically altered the vegetation dynamics of the southern Appalachian Mountains. Extremely low fire frequency has allowed for more shade-tolerant species to invade once predominantly open forests...

  15. YUCCA MOUNTAIN SITE DESCRIPTION

    SciTech Connect (OSTI)

    A.M. Simmons

    2004-04-16

    The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.

  16. Geologic evolution of Iron Mountain, central Mojave Desert, California

    E-Print Network [OSTI]

    Boettcher, Stefan S.; Walker, J. Douglas

    1993-04-01

    Geologic mapping, structural analysis, petrologic study, and U-Pb geochronology at Iron Mountain, 20 km southwest of Barstow, California, place important constraints on the paleogeographic affinities of metasedimentary rocks in the area and provide...

  17. Improvements to the Rocky Flats Metrology Laboratories Velocity Meter Calibration System

    SciTech Connect (OSTI)

    Abercrombie, K.R.

    1992-03-12

    The Rocky Flats Standards Laboratory has undertaken a project to improve calibration of air velocity meters by reducing the uncertainty of the Velocity Meter Calibration System. The project was accomplished by analyzing the governing equation in order to determine which areas within the system contributed most to the overall system uncertainty. Then, based upon this new analysis, new components were selected to replace the components identified in the analysis. Finally, the system was re-evaluated to determine the new systematic uncertainty for the system.

  18. Implementation of IAEA safeguards at the Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Giacomini, J.J.; Finleon, C.A.; Larsen, R.K.; Lucas, M.; Langner, D.

    1995-07-01

    When President Clinton spoke to the United Nations General Assembly in September 1993, he offered to place US excess defense nuclear material under International Atomic Energy Agency (IAEA) safeguards, before the next Nuclear Nonproliferation Treaty (NPT) Extension Conference. This set in motion a flurry of activities at three DOE facilities, including Rocky Flats Environmental Technology Site (Site). With general guidance from DOE Headquarters, the facility selected a suitable storage area, identified appropriate materials, and acquired the necessary instrumentation to implement full-scale IAEA safeguards on excess plutonium oxide.

  19. White Mountains Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: EnergyMaryland:Meadow Lake, New Jersey: Energy Resources JumpWhite

  20. Tungsten Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergyTrailTrosky,EnergyTullahassee,

  1. Socorro Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Power Projects: 0 No geothermal projects listed. Add a new Developing Power Project Power Production Profile Gross Production Capacity: Net Production Capacity: Owners :...

  2. Florida Mountains Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport Jump to:Flanders, NewFlorham Park, NewLLC JumpFlorida

  3. Florida Mountains Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport Jump to:Flanders, NewFlorham Park, NewLLC

  4. Mcgee Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy Resources Jump to:Electric Coop, Inc JumpMcSherrystown,

  5. Jemez Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder atHills, Pennsylvania: Energy ResourcesJehin Co Ltd Jump

  6. Drum Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:of the National ClimateDongyingOpen Energy

  7. Glass Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEniaElectric Jump to:GerGlacialGlacialGlass ButtesGlass

  8. Tungsten Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company) Jump to:Tucson Electric Power Co Jump to:TudelTungsten

  9. Socorro Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbH JumpSlough Heat andCreekSnohomish

  10. White Mountains Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw,What Is a Small Community WindWhere is DBWindWhite

  11. Augusta Mountains Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpenAshley,AtlantisstromAugusta County, Virginia:

  12. Blue Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-GasIllinois: EnergyHills, Connecticut: EnergyMotionBlue

  13. Blue Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-GasIllinois: EnergyHills, Connecticut: EnergyMotionBlueBlue

  14. Chocolate Mountains Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR JumpMaine:WestTexas:Chittenango, New York: EnergyIndicator

  15. Chocolate Mountains Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR JumpMaine:WestTexas:Chittenango, New York:

  16. Jemez Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:onItron (California) JumpJefferson Utilities JumpJemez

  17. Mountain View, California: Fiat Res Publica

    E-Print Network [OSTI]

    Tung, Gregory

    1989-01-01

    Mountain View, California: Fiat Res Publica Gregory Tungundifferen­ tiated. In Mountain View, California (populationtoward San Francisco. Mountain View is avoiding a "just say

  18. An assessment of criticality safety at the Department of Energy Rocky Flats Plant, Golden, Colorado, July--September 1989

    SciTech Connect (OSTI)

    Mattson, Roger J.

    1989-09-01

    This is a report on the 1989 independent Criticality Safety Assessment of the Rocky Flats Plant, primarily in response to public concerns that nuclear criticality accidents involving plutonium may have occurred at this nuclear weapon component fabrication and processing plant. The report evaluates environmental issues, fissile material storage practices, ventilation system problem areas, and criticality safety practices. While no evidence of a criticality accident was found, several recommendations are made for criticality safety improvements. 9 tabs.

  19. Rocky Flats Plant Site Environmental Report, January--December 1990

    SciTech Connect (OSTI)

    Cirrincione, D.A.; Costain, D.B.

    1990-12-31

    This report provides information to the public about the impact of the Rocky Flats Plant on the environment and public health. The report contains a compliance summary, a description of environmental monitoring programs, and radiation dose estimates for the surrounding population for the period January 1 through December 31, 1990. An environmental surveillance program has been ongoing at the Rocky Flats Plant since the 1950s. Early programs focused on radiological impacts to the environment. The current program examines potential impacts to air, surface water, groundwater, and soils from radiological and nonradiological sources. Environmental operations at Rocky Flats Plant are under the jurisdiction of several local, state, and federal agencies, most notably the Colorado Department of Health, Environmental Protection Agency, and Department of Energy. A variety of reports are prepared at different intervals for these and other agencies in addition to the annual environmental report.

  20. Benchmarking and Performance Improvement at Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Elliott, C. , Doyle, D. , Featherman, W.D.

    1997-12-31

    The Rocky Flats Environmental Technology Site (RFETS) has initiated a major work process improvement campaign using the tools of formalized benchmarking and streamlining. This paper provides insights into some of the process improvement activities performed at Rocky Flats from November 1995 through December 1996. It reviews the background, motivation, methodology, results, and lessons learned from this ongoing effort. The paper also presents important gains realized through process analysis and improvement including significant cost savings, productivity improvements, and an enhanced understanding of site work processes.

  1. Modeling a ponded infiltration experiment at Yucca Mountain, NV

    SciTech Connect (OSTI)

    Hudson, D.B.; Guertal, W.R. [Foothill Engineering, Inc., Mercury, NV (United States); Flint, A.L. [Geological Survey, Mercury, NV (United States)

    1994-12-31

    Yucca Mountain, Nevada is being evaluated as a potential site for a geologic repository for high level radioactive waste. As part of the site characterization activities at Yucca Mountain, a field-scale ponded infiltration experiment was done to help characterize the hydraulic and infiltration properties of a layered dessert alluvium deposit. Calcium carbonate accumulation and cementation, heterogeneous layered profiles, high evapotranspiration, low precipitation, and rocky soil make the surface difficult to characterize.The effects of the strong morphological horizonation on the infiltration processes, the suitability of measured hydraulic properties, and the usefulness of ponded infiltration experiments in site characterization work were of interest. One-dimensional and two-dimensional radial flow numerical models were used to help interpret the results of the ponding experiment. The objective of this study was to evaluate the results of a ponded infiltration experiment done around borehole UE25 UZN {number_sign}85 (N85) at Yucca Mountain, NV. The effects of morphological horizons on the infiltration processes, lateral flow, and measured soil hydaulic properties were studied. The evaluation was done by numerically modeling the results of a field ponded infiltration experiment. A comparison the experimental results and the modeled results was used to qualitatively indicate the degree to which infiltration processes and the hydaulic properties are understood. Results of the field characterization, soil characterization, borehole geophysics, and the ponding experiment are presented in a companion paper.

  2. The US Department of Energy`s facility reuse at the Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    1998-08-01

    This audit was initiated to determine whether the Rocky Flats Environmental Technology Site was maximizing its reuse of excess facilities.

  3. Mountain Home Well - Photos

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shervais, John

    2012-01-11

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  4. Mountain Home Well - Photos

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shervais, John

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  5. Moving Beyond the Yucca Mountain

    E-Print Network [OSTI]

    Moving Beyond the Yucca Mountain Viability Assessment U.S. Nuclear Waste Technical Review Board the Yucca Mountain site in Nevada as the sole location to be studied for possi- ble development of the Yucca Mountain site. The U.S. Department of Energy (DOE) recently published Viability As- sessment

  6. Rocky Flats Cleanup Agreement implementation successes and challenges

    SciTech Connect (OSTI)

    Shelton, D.C.

    1997-02-01

    On July 19, 1996 the US Department of Energy (DOE), State of Colorado (CDPHE), and US Environmental Protection Agency (EPA) entered into an agreement called the Rocky Flats Cleanup Agreement (RFCA) for the cleanup and closure of the Rocky Flats Environmental Technology Site (RFETS or Rocky Flats). Major elements of the agreement include: an Integrated Site-Wide Baseline; up to twelve significant enforceable milestones per year; agreed upon soil and water action levels and standards for cleanup; open space as the likely foreseeable land use; the plutonium and TRU waste removed by 2015; streamlined regulatory process; agreement with the Defense Nuclear Facilities Safety Board (DNFSB) to coordinate activities; and a risk reduction focus. Successful implementation of RFCA requires a substantial effort by the parties to change their way of thinking about RFETS and meet the deliverables and commitments. Substantial progress toward Site closure through the implementation of RFCA has been accomplished in the short time since the signing, yet much remains to be done. Much can be learned from the Rocky Flats experience by other facilities in similar situations.

  7. TGS measurements of pyrochemical salts at Rocky Flats

    SciTech Connect (OSTI)

    Mercer, D. J.; Hansen, J. S.; Lestone, J. P.; Prettyman, T. H.

    2001-01-01

    A new skid-mounted tomographic gamma scanner (TGS) was designed to assist in the decommissioning of Rocky Flats Building 37 1, This instrument was used to assay pyrochemical salts as a prerequisite for disposal at the Waste Isolation Pilot Plant (WIPP). The following paper discusses measurement challenges and results from the first year of operation of the instrument.

  8. Site wide integration of the Rocky Flats closure project

    SciTech Connect (OSTI)

    Burdge, L.F.; Golan, P.

    1998-06-01

    The prime contractor for the Rocky Flats Closure Project (RFCP), Kaiser-Hill, in concert with the Department of Energy--Rocky Flats Field Office (DOE-RFFO) has applied a fully integrated, life-cycle, critical path schedule and work planning system to manage the work that is required to close the Site. The closure of the Site is complex, in that it houses over 700 facilities, 19,600 kilograms of Special Nuclear Material (Plutonium and Uranium), and over 160,000 cubic meters of Transuranic, Low Level, and Hazardous Waste. The deactivation, decommissioning, decontaminating, and demolition of this large number of facilities, while at the same time accommodating difficult on-going activities, significantly increases the sophistication required in the planning process. The Rocky Flats team has overcome these difficulties by establishing a money oriented critical path process, to provide a least-cost avenue to supporting on-going activities and a line-of-balance process for production oriented activities. These processes, when integrated with a typical activity-based project planning system, guide the way to the shortest and most cost-effective course for the closure of the Rocky Flats Site.

  9. Adsorption study for uranium in Rocky Flats groundwater

    SciTech Connect (OSTI)

    Laul, J.C.; Rupert, M.C.; Harris, M.J.; Duran, A.

    1995-01-01

    Six adsorbents were studied to determine their effectiveness in removing uranium in Rocky Flats groundwater. The bench column and batch (Kd) tests showed that uranium can be removed (>99.9%) by four adsorbents. Bone Charcoal (R1O22); F-1 Alumina (granular activated alumina); BIOFIX (immobilized biological agent); SOPBPLUS (mixed metal oxide); Filtrasorb 300 (granular activated carbon); and Zeolite (clinoptilolite).

  10. Rocky Flats Plant Site Environmental Report for 1992

    SciTech Connect (OSTI)

    Cirrincione, D.A.; Erdmann, N.L.

    1992-12-31

    The Rocky Rats Plant Site Environmental Report provides summary information on the plant`s environmental monitoring programs and the results recorded during 1992. The report contains a compliance summary, results of environmental monitoring and other related programs, a review of environmental remediation activities, information on external gamma radiation dose monitoring, and radiation dose estimates for the surrounding population.

  11. Repository site data report for unsaturated tuff, Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

    1985-11-01

    The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs.

  12. Integrated Weed Control for Land Stewardship at Legacy Management's Rocky Flats Site in Colorado - 13086

    SciTech Connect (OSTI)

    Nelson, Jody K.

    2013-07-01

    Land stewardship is one of nine sustainability programs in the U.S. Department of Energy's Environmental Management System. Land stewardship includes maintaining and improving ecosystem health. At the Rocky Flats Site near Westminster, Colorado, land stewardship is an integral component of the Office of Legacy Management's post-closure monitoring and management at the site. Nearly 263 hectares (650 acres) were disturbed and re-vegetated during site cleanup and closure operations. Proactive management of revegetation areas is critical to the successful reestablishment of native grasslands, wetlands, and riparian communities. The undisturbed native plant communities that occur at the site also require active management to maintain the high-quality wetlands and other habitats that are home to numerous species of birds and other wildlife such as elk and deer, rare plant communities, and the federally listed threatened Preble's meadow jumping mouse. Over the past several decades, an increase of Noxious weeds has impacted much of Colorado's Front Range. As a result, weed control is a key component of the land stewardship program at Rocky Flats. Thirty-three species of state-listed Noxious weeds are known to occur in the Central and Peripheral Operable Units at Rocky Flats, along with another five species that are considered invasive at the site. Early detection and rapid response to control new invasive species is crucial to the program. An integrated weed control/vegetation management approach is key to maintaining healthy, sustainable plant communities that are able to resist Noxious weed invasions. Weed mapping, field surveys, and field-staff training sessions (to learn how to identify new potential problem species) are conducted to help detect and prevent new weed problems. The integrated approach at Rocky Flats includes administrative and cultural techniques (prevention), mechanical controls, biological controls, and chemical controls. Several species of biocontrol insects have been released to assist with control of different target weed species. Monitoring is conducted to evaluate the effectiveness of control efforts and to provide information for future control efforts. The effective implementation of this integrated approach has reduced the infestation levels of many species and has kept several newly discovered invasive species from spreading and becoming larger problems at the site. (authors)

  13. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 8, Part B: Chapter 8, Sections 8.4 through 8.7; Glossary and Acronyms

    SciTech Connect (OSTI)

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Section 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 88 figs., 42 tabs.

  14. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 5, Part B: Chapter 8, Sections 8.3.1.5 through 8.3.1.17

    SciTech Connect (OSTI)

    NONE

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the SOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules.

  15. Modeling studies of mountain-scale radionuclide transport in the unsaturated zone at Yucca Mountain, Nevada

    E-Print Network [OSTI]

    Moridis, George J.; Seol, Yongkoo; Wu, Yu-Shu

    2003-01-01

    Investigations at Yucca Mountain - The Potential Repositoryin the Unsaturated Zone, Yucca Mountain, Nevada, ResourcesMODELING STUDIES OF MOUNTAIN-SCALE RADIONUCLIDE TRANSPORT IN

  16. A Mountain-Scale Monitoring Network for Yucca Mountain Performance Confirmation

    E-Print Network [OSTI]

    Freifeld, Barry; Tsang, Yvonne

    2006-01-01

    A Mountain-Scale MonitoringNetwork for Yucca Mountain Performance Confirmation Barrythe performance of Yucca Mountain is required by 10 CFR Part

  17. Reactive barrier technologies for treatment of contaminated groundwater at Rocky Flats

    SciTech Connect (OSTI)

    Marozas, D.C.; Bujewski, G.E.; Castaneda, N.

    1997-12-31

    The U.S. Department of Energy (DOE) Office of Science and Technology Subsurface Contaminants Focus Area is supporting the investigation of reactive barrier technologies to mitigate the risks associated with mixed organic/radioactive waste at several DOE sites. Groundwater from a small contaminated plume at the Rocky Flats Environmental Technology Site (RFETS) is being used to evaluate passive reactive material treatment. Permeable reactive barriers which intercept contaminants and destroy the VOC component while containing radionuclides are attractive for a number of reasons relating to public and regulatory acceptance. In situ treatment keeps contaminants away from the earth`s surface, there is no above-ground treatment equipment that could expose workers and the public and operational costs are expected to be lower than currently used technologies. This paper will present results from preliminary site characterization and in-field small-scale column testing of reactive materials at RFETS. Successful demonstration is expected to lead to full-scale implementation of the technology at several DOE sites, including Rocky Flats.

  18. U-234/U-238 ratio: Qualitative estimate of groundwater flow in Rocky Flats monitoring wells

    SciTech Connect (OSTI)

    Laul, J.C.

    1994-02-01

    Groundwater movement through various pathways is the primary mechanism for the transport of radionuclides and trace elements in a water/rock interaction. About three dozen wells, installed in the Rocky Flats Plant (RFP) Solar Evaporation Ponds (SEP) area, are monitored quarterly to evaluate the extent of any lateral and downgradient migration of contaminants from the Solar Evaporation Ponds: 207-A; 207-B North, 207-B Center, and 207-B South; and 207-C. The Solar Ponds are the main source for the various contaminants: radionuclides (U-238, U-234, Pu-239, 240 and Am-241); anions; and trace metals to groundwaters. The U-238 concentrations in Rocky Flats groundwaters vary from <0.2 to 69 pCi/I (IpCi = 3 ug). However, the activity U-234/U-238 ratios are low and range mostly 1.2 to 2.7. The low activity ratios can be interpreted to suggest that the groundwaters are moving slow (

  19. Evolution of the unsaturated zone testing at Yucca Mountain

    E-Print Network [OSTI]

    Wang, J.S.Y.; Bodvarsson, G.S.

    2002-01-01

    INTO DRIFTS AT YUCCA MOUNTAIN." JOURNAL OF CONTAMINANTFRACTURES AT YUCCA MOUNTAIN." JOURNAL OF CONTAMINANTPneumatic Testing at Yucca Mountain." International Journal

  20. Mountainous | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformationOliver, Pennsylvania: EnergyPark,Mountainous Jump to:

  1. A Regional Atmospheric Continuous CO2 Network in the Rocky Mountains (Rocky RACCOON) Panel 2. Storm Peak Laboratory (SPL), near Steamboat Springs, Colorado

    E-Print Network [OSTI]

    Stephens, Britton B.

    0.0 0.2 0.4 0.6 0.8 1.0 374375376377 Fraction of Day (GMT) CO2(ppm) 2.5m 5.8m 9.1m 2.5m 5.8m 9.1m 0.0 0.2 0.4 0.6 0.8 1.0 375376377378 Fraction of Day (GMT) CO2(ppm) Timeseries and average diurnal 360380400420440460 Day of Year (GMT) CO2(ppm) 2.6m 9.5m 17.8m 0.0 0.2 0.4 0.6 0.8 1.0 380390400410420 Fraction of Day

  2. The September 1957 Rocky Flats fire: A guide to record series of the Department of Energy and its contractors

    SciTech Connect (OSTI)

    1995-07-19

    The primary purpose of this guide is to help the DOE locate and make available information relating to the 1957 Rocky Flats fire. The records are arranged into six categories: administrative and general; facilities and equipment; production and materials handling; waste management; workplace and environmental monitoring; and employee occupational exposure and health. A brief explanation of each category follows. The administrative and general section pertains to the administration of individual contractor organizations and DOE divisions at Rocky Flats. It also contains records which encompass several different subject areas and therefore can not be placed in a single category. The facilities and equipment category relates to the routine construction and maintenance of plant buildings as well as the purchase and installation of equipment. The production and materials handling records relate primarily to the inventory and production of nuclear materials and weapons components. The waste management records series found under this heading relate to the storage, handling, treatment, and disposal of radioactive, chemical or mixed materials produced or used at Rocky Flats. The records consist mostly of waste sampling and shipment records. The workplace and environmental monitoring records series found in this section pertain to monitoring of the workplace. The section also includes records that document efforts to monitor the environment outside of buildings, either onsite or offsite. Records in this category consist of sampling data and environmental impact reports. The employee occupational exposure and health section pertains to documentation relating to the health and occupational exposures of employees and visitors at Rocky Flats. Records series consist generally of dosimeter data, radiation exposure records, and medical records. Many of the records contain personal data pertaining to individual employees and may therefore be Privacy Act systems and records.

  3. EIS-0417: South Mountain Freeway (Loop 202); Phoenix, Arizona

    Broader source: Energy.gov [DOE]

    Federal Highway Administration and Arizona Department of Transportation, with Western Area Power Administration as a cooperating agency, prepared an EIS that analyzes the potential environmental impacts of the proposed South Mountain Freeway (Loop 202) project in the Greater Metropolitan Phoenix Area.

  4. Colorado and the Accelerated Cleanup at Rocky Flats

    SciTech Connect (OSTI)

    Spreng, C.

    2007-07-01

    When the Rocky Flats closure project was declared complete in October 2005, it was the largest environmental cleanup to date. Even more impressive, it was ahead of schedule and well under budget. Several factors combined to produce this success including a performance-based contract with financial incentives, development and application of innovative technologies, and a regulator-backed accelerated approach to the cleanup process. The factor in this success in which the State of Colorado had the largest role was in developing and enforcing the Rocky Flats Cleanup Agreement. In compliance with this agreement, cleanup was accomplished by means of multiple interim actions that led to a comprehensive final decision at the end. A key element that allowed the accelerated cleanup was constant consultation among DOE, its contractor, and the regulators plus collaboration with stakeholders. (authors)

  5. Facility overview for commercial application of selected Rocky Flats facilities

    SciTech Connect (OSTI)

    1996-11-01

    The purpose of this Facility Overview is to support the Rocky Flats Local Impacts Initiative`s Request for Interest, to solicit interest from commercial corporations for utilizing buildings 865 and 883, and the equipment contained within each building, for a commercial venture. In the following sections, this document describes the Rocky Flats Site, the buildings available for lease, the equipment within these buildings, the site services available to a tenant, the human resources available to support operations in buildings 865 and 883, and the environmental condition of the buildings and property. In addition, a brief description is provided of the work performed to date to explore the potential products that might be manufactured in Buildings 865 and 883, and the markets for these products.

  6. Polymer solidification of mixed wastes at the Rocky Flats Plant

    SciTech Connect (OSTI)

    Faucette, A.M.; Logsdon, B.W.; Lucerna, J.J.; Yudnich, R.J.

    1994-02-01

    The Rocky Flats Plant is pursuing polymer solidification as a viable treatment option for several mixed waste streams that are subject to land disposal restrictions within the Resource Conservation and Recovery Act provisions. Tests completed to date using both surrogate and actual wastes indicate that polyethylene microencapsulation is a viable treatment option for several mixed wastes at the Rocky Flats Plant, including nitrate salts, sludges, and secondary wastes such as ash. Treatability studies conducted on actual salt waste demonstrated that the process is capable of producing waste forms that comply with all applicable regulatory criteria, including the Toxicity Characteristic Leaching Procedure. Tests have also been conducted to evaluate the feasibility of macroencapsulating certain debris wastes in polymers. Several methods and plastics have been tested for macroencapsulation, including post-consumer recycle and regrind polyethylene.

  7. Actinide solution processing at the Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    1995-04-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-1039, for radioactive solution removal and processing at Rocky Flats Environmental Technology Site, Golden, Colorado. The proposal for solution removal and processing is in response to independent safety assessments and an agreement with the State of Colorado to remove mixed residues at Rocky Flats and reduce the risk of future accidents. Monthly public meetings were held during the scoping and preparation of the EA. The scope of the EA included evaluations of alternative methods and locations of solution processing. A comment period from February 20, 1995 through March 21, 1995 was provided to the public and the State of Colorado to offer written comment on the EA. Comments were received from the State of Colorado and the U.S. Environmental Protection Agency. A response to the agency comments is included in the Final EA.

  8. DECOMMISSIONING CHALLENGES AT THE ROCKY FLATS ENVIRONMENTAL TECHNOLOGY SITE

    SciTech Connect (OSTI)

    Dorr, K. A.; Hoover, J.

    2002-02-25

    This paper presents a discussion of the demolition of the Building 788 cluster at the Rocky Flats Environmental Technology Site (RFETS) in Golden, Colorado. The Building 788 Cluster was a Resource Conservation and Recovery Act (RCRA) permitted storage facilities and ancillary structures. Topics covered include the methods employed for Project Planning, Regulatory Compliance, Waste Management, Hazard Identification, Radiological Controls, Risk Management, Field Implementation, and Cost Schedule control, and Lessons Learned and Project Closeout.

  9. Rocky Flats Plant Site Environmental Report: 1993 Highlights

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    The Rocky Flats Plant Site Environmental Report provides summary information on the plant`s environmental monitoring programs and the results recorded during 1993. The report contains a compliance summary, results of environmental monitoring and other related programs, a review of environmental remediation activities, information on external gamma radiation dose monitoring, and radiation dose estimates for the surrounding population. This section provides an overview of these topics and summarizes more comprehensive discussions found in the main text of this annual report.

  10. ROCKY FLATS CLOSURE PROJECT EM, AUG 2006 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProject Developsfor UCNI Reviewing OfficialsRES Las Vegas 2016ROCKY FLATS

  11. Rocky Flats Site Expands Solar Power for Treating Groundwater | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 -Rob Roberts About Us Rob Roberts - FormerRocky Flats

  12. Yucca Mountain - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopmentatabout Who Works for NIFYucca Mountain In 2009, the

  13. Post-Closure Land Jurisdiction Transfer to the US Fish and Wildlife Service at Rocky Flats: Surviving the Safari Through Old Records and Other Lessons Learned

    SciTech Connect (OSTI)

    Schiesswohl, S.; Hanson, M.

    2008-07-01

    The U.S. Department of Energy's (DOE's) Rocky Flats Site (Rocky Flats), located near Denver, Colorado, was listed on the Comprehensive Environmental Response, Compensation, and Liability Act National Priorities List (NPL) in 1989. Subsequent cleanup and closure activities were completed in October 2005 and the final remedy was selected in September 2006. The remedy is 'no further action' for the generally un-impacted Peripheral Operable Unit (OU), formerly known as the Buffer Zone, and institutional and physical controls with continued monitoring for the Central OU, formerly the industrialized area. The Peripheral OU has been deleted from the NPL and jurisdiction over the majority of land in that OU (3,953 acres) was transferred to the U.S. Fish and Wildlife Service (USFWS) on July 12, 2007, to establish the Rocky Flats National Wildlife Refuge. The remaining approximately 929 acres in the Peripheral OU were retained by DOE's Office of Legacy Management where outstanding mineral leases and mining operations exist. As mineral rights are purchased or mining operations and mineral leases are completed and fully reclaimed, jurisdiction of portions of the 929 acres will also be transferred to USFWS for inclusion into the refuge. During the almost 2 years since cleanup and closure work was completed at Rocky Flats, DOE and USFWS have worked the specific legal parameters, timing, and constraints of the 3,953-acre transfer. Many lessons have been learned, based on these early experiences. (authors)

  14. SEARCH FOR UNDERGROUND OPENINGS FOR IN SITU TEST FACILITIES IN CRYSTALLINE ROCK

    E-Print Network [OSTI]

    Wallenberg, H.A.

    2010-01-01

    Uplifts, Rocky Mountain Association Geologists, 14th Field12, p. 67. Rocky Mountain Association of Geologists - 19601963, Rocky Mountain Association of Geologists, Denver. )

  15. Hydraulic model analysis of water distribution system, Rockwell International, Rocky Flats, Colorado

    SciTech Connect (OSTI)

    Perstein, J.; Castellano, J.A.

    1989-01-20

    Rockwell International requested an analysis of the existing plant site water supply distribution system at Rocky Flats, Colorado, to determine its adequacy. On September 26--29, 1988, Hughes Associates, Inc., Fire Protection Engineers, accompanied by Rocky Flats Fire Department engineers and suppression personnel, conducted water flow tests at the Rocky Flats plant site. Thirty-seven flows from various points throughout the plant site were taken on the existing domestic supply/fire main installation to assure comprehensive and thorough representation of the Rocky Flats water distribution system capability. The analysis was completed in four phases which are described, together with a summary of general conclusions and recommendations.

  16. YUCCA MOUNTAIN PROJECT - A BRIEFING --

    SciTech Connect (OSTI)

    NA

    2003-08-05

    This report has the following articles: Nuclear waste--a long-term national problem; Spent nuclear fuel; High-level radioactive waste; Radioactivity and the environment; Current storage methods; Disposal options; U.S. policy on nuclear waste; The focus on Yucca Mountain; The purpose and scope of the Yucca Mountain Project; The approach for permanently disposing of waste; The scientific studies at Yucca Mountain; The proposed design for a repository at Yucca Mountain; Natural and engineered barriers would work together to isolate waste; Meticulous science and technology to protect people and the environment; Licensing a repository; Transporting waste to a permanent repository; The Environmental Impact Statement for a repository; Current status of the Yucca Mountain Project; and Further information available on the Internet.

  17. CX-005381: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Casper Service Center Floor Drain Date: 02/28/2011Location(s): WyomingOffice(s): Western Area Power Administration-Rocky Mountain Region

  18. Electronics Engineer

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Maintenance, (J5500) Technical Support 5555 E. Crossroads...

  19. Electrical Engineer (Project Manager)

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Maintenance, Engineering & Construction Facility...

  20. Endolithic Microbial Ecosystems: Molecular Phylogenetic Composition,

    E-Print Network [OSTI]

    Pace, Norman

    in Yellowstone geothermal environments. Electron microscopic analysis indicated Yellowstone communities three distinct areas: the Rocky Mountain region and Yellowstone National Park of the USA, and Shark Bay

  1. CX-006242: Categorical Exclusion Determination | Department of...

    Office of Environmental Management (EM)

    142011 Location(s): Gunnsion, CO Office(s): Western Area Power Administration-Rocky Mountain Region Western proposes to replace mechanical jumper cables on five existing wood...

  2. Power System Dispatcher (Technical Writer)

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Power System Operations Operations Reliability and Balancing...

  3. Electrical Engineer | Department of Energy

    Office of Environmental Management (EM)

    4 Job Summary (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Maintenance Eastern Colorado...

  4. Electrical Engineer | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    5 Job Summary (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Maintenance Eastern Colorado...

  5. Construction Control Representative

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Maintenance, (J5600) Engineering and Construction 5555 E....

  6. Rocky Flats Neutron Detector Testing at Valduc, France

    SciTech Connect (OSTI)

    Kim, S S; Dulik, G M

    2011-01-03

    Recent program requirements of the US Department of Energy/NNSA have led to a need for a criticality accident alarm system to be installed at a newly activated facility. The Criticality Safety Group of the Lawrence Livermore National Laboratory (LLNL) was able to recover and store for possible future use approximately 200 neutron criticality detectors and 20 master alarm panels from the former Rocky Flats Plant in Golden, Colorado when the plant was closed. The Criticality Safety Group participated in a facility analysis and evaluation, the engineering design and review process, as well as the refurbishment, testing, and recalibration of the Rocky Flats criticality alarm system equipment to be used in the new facility. In order to demonstrate the functionality and survivability of the neutron detectors to the effects of an actual criticality accident, neutron detector testing was performed at the French CEA Valduc SILENE reactor from October 7 to October 19, 2010. The neutron detectors were exposed to three criticality events or pulses generated by the SILENE reactor. The first excursion was performed with a bare or unshielded reactor, and the second excursion was made with a lead shielded/reflected reactor, and the third excursion with a polyethylene reflected core. These tests of the Rocky Flats neutron detectors were performed as a part of the 2010 Criticality Accident Alarm System Benchmark Measurements at the SILENE Reactor. The principal investigators for this series of experiments were Thomas M. Miller and John C. Wagner of the Oak Ridge National Laboratory, with Nicolas Authier and Nathalie Baclet of CEA Valduc. Several other organizations were also represented, including the Y-12 National Security Complex, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, CEA Saclay, and Babcock International Group.

  7. The Pahrump Valley Museum Yucca Mountain History Exhibit - 12389

    SciTech Connect (OSTI)

    Voegele, Michael; McCracken, Robert [Consultant, Nye County Nuclear Waste Repository Project Office (United States); Herrera, Troy [Sambooka Group, Reno, NV. (United States)

    2012-07-01

    As part of its management of the Yucca Mountain project, the Department of Energy maintained several information centers to provide public access to information about the status of the Yucca Mountain project. Those information centers contained numerous displays, historical information, and served as the location for the Department's outreach activities. As the Department of Energy dealt with reduced budgets in 2009 following the Obama Administration's intent to terminate the program, it shut down its information centers. Nye County considered it important to maintain a public information center where people would be able to find information about what was happening with the Yucca Mountain project. Initially the Nye County assumed responsibility for the information center in Pahrump; eventually the County made a decision to move that information center into an expansion of the existing Pahrump Valley Museum. Nye County undertook an effort to update the information about the Yucca Mountain project and modernize the displays. A parallel effort to create a source of historical information where people could find out about the Yucca Mountain project was undertaken. To accompany the Yucca Mountain exhibits in the Pahrump Valley Museum, Nye County also sponsored a series of interviews to document, through oral histories, as much information about the Yucca Mountain project as could be found in these interviews. The paper presents an overview of the Yucca Mountain exhibits in the Pahrump Valley Museum, and the accompanying oral histories. An important conclusion that can be drawn from the interviews is that construction of a repository in Nevada should have been conceptualized as but the first step in transforming the economy of central Nevada by turning part of the Nevada National Security Site and adjoining area into a world-class energy production and energy research center. (authors)

  8. Final Land Configuration for the Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Stegen, R. L.; Kapinos, J. M.; Wehner, J. P.; Snyder, B.; Davis, R. W.

    2006-07-01

    Closure of the Rocky Flats Environmental Technology Site (RFETS) has been completed. The future land use of the site is designated as a National Wildlife Refuge. A joint effort between Kaiser-Hill, Department of Energy, U.S. Fish and Wildlife Service, Environmental Protection Agency, State of Colorado, and other stakeholders was initiated to provide direction for developing the final land configuration. Through early identification of issues and developing mutually agreeable solutions, the final land configuration of the site was successfully completed. (authors)

  9. The Rocky Flats Environmental Technology Site beryllium characterization project

    SciTech Connect (OSTI)

    Morrell, D.M.; Miller, J.R.; Allen, D.F.

    1999-06-01

    A site beryllium characterization project was completed at the Rocky Flats Environmental Technology Site (RFETS) in 1997. Information from historical reviews, previous sampling surveys, and a new sampling survey were used to establish a more comprehensive understanding of the locations and levels of beryllium contamination in 35 buildings. A feature of the sampling strategy was to test if process knowledge was a good predictor of where beryllium contamination could be found. Results revealed that this technique was effective at identifying where surface contamination levels might exceed the RFETS smear control level but that it was not effective in identifying where low concentrations of beryllium might be found.

  10. DOE - Office of Legacy Management -- Rocky Flats SOG

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and700, 1.Reports FernaldNewSOG Rocky Flats Site,

  11. Sustainability Center of the Rockies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEuropeEnergySustainability Center of the Rockies Jump to:

  12. City of Rocky Mount, North Carolina (Utility Company) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla,ThermalCubaParker, South DakotaFloridaInformation Rocky

  13. Health Surveillance Outcomes in Former Rocky Flats Radiation Workers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-DoseOptions for Accidental ReleasesSurveillance of Rocky

  14. KV04: Baxter Mountain This route visits

    E-Print Network [OSTI]

    Reiter, Clifford A.

    11 KV04: Baxter Mountain General This route visits Baxter Mountain which is a short hike that has between Hurricane and Green Mountains. The hike is relatively short although there is a good elevation Description The trail begins on Rt9N directly across from Hurricane Mountain Road. From Keene Valley, go north

  15. Cementation of residue ion exchange resins at Rocky Flats

    SciTech Connect (OSTI)

    Dustin, D.F.; Beckman, T.D.; Madore, C.M.

    1998-03-03

    Ion exchange resins have been used to purify nitric acid solutions of plutonium at Rocky Flats since the 1950s. Spent ion exchange resins were retained for eventual recovery of residual plutonium, typically by incineration followed by the aqueous extraction of plutonium from the resultant ash. The elimination of incineration as a recovery process in the late 1980s and the absence of a suitable alternative process for plutonium recovery from resins led to a situation where spent ion exchange resins were simply placed into temporary storage. This report describes the method that Rocky Flats is currently using to stabilize residue ion exchange resins. The objective of the resin stabilization program is: (1) to ensure their safety during interim storage at the site, and (2) to prepare them for ultimate shipment to the Waste Isolation Pilot Plant (WIPP) in New Mexico. Included in the discussion is a description of the safety concerns associated with ion exchange resins, alternatives considered for their stabilization, the selection of the preferred treatment method, the means of implementing the preferred option, and the progress to date.

  16. Geologic and geotechnical assessment RFETS Building 371, Rocky Flats, Colorado

    SciTech Connect (OSTI)

    Maryak, M.E.; Wyatt, D.E.; Bartlett, S.F.; Lewis, M.R.; Lee, R.C.

    1995-12-13

    This report describes the review and evaluation of the geological, geotechnical and geophysical data supporting the design basis analysis for the Rocky Flats Environmental Test Site (RFETS) Building 371. The primary purpose of the geologic and geotechnical reviews and assessments described herein are to assess the adequacy of the crustal and near surface rock and soil model used in the seismic analysis of Building 371. This review was requested by the RFETS Seismic Evaluation Program. The purpose was to determine the adequacy of data to support the design basis for Building 371, with respect to seismic loading. The objectives required to meet this goal were to: (1) review techniques used to gather data (2) review analysis and interpretations of the data; and (3) make recommendations to gather additional data if required. Where there were questions or inadequacies in data or interpretation, recommendations were made for new data that will support the design basis analysis and operation of Building 371. In addition, recommendations are provided for a geologic and geophysical assessment for a new facility at the Rocky Flats Site.

  17. Trans Mountain Response to SFU IR No. 2 Trans Mountain Pipeline ULC

    E-Print Network [OSTI]

    Kavanagh, Karen L.

    Trans Mountain Response to SFU IR No. 2 Trans Mountain Pipeline ULC Trans Mountain Expansion Terminal as well as key civil tasks. Request: (1) Please advise whether Trans Mountain has investigated Way and Burnaby Mountain Parkway either during normal operation of the tank farm, or in the event

  18. Santa Monica Mountain Steelhead Assessment Santa Monica Mountains Steelhead Habitat Assessment

    E-Print Network [OSTI]

    Keller, Ed

    Santa Monica Mountain Steelhead Assessment 1 Santa Monica Mountains Steelhead Habitat Assessment identify which basins in the Santa Monica Mountains (SMM) are most capable of supporting steelhead trout watersheds within the SMM. Field Setting Geology of the Santa Monica Mountains The Santa Monica Mountains

  19. Carbon monoxide (CO) maximum over the Zagros mountains in the Middle East: Signature of mountain venting?

    E-Print Network [OSTI]

    Jones, Dylan

    Carbon monoxide (CO) maximum over the Zagros mountains in the Middle East: Signature of mountain- posphere (MOPITT) satellite instrument. Enhanced CO is observed over the Zagros mountains of Iran), Carbon monoxide (CO) maximum over the Zagros mountains in the Middle East: Signature of mountain venting

  20. ForPeerReview Verification of Mountain Weather Information Service

    E-Print Network [OSTI]

    Birch, Cathryn

    ForPeerReview Verification of Mountain Weather Information Service forecasts for three upland areas in the UK Journal: Weather Manuscript ID: WEA-13-0098.R1 Wiley - Manuscript type: Research Article Date and Environment Birch, Cathryn; University of Leeds, School of Earth and Environment Monk, Geoffrey; The Weather

  1. The FIA BioSum model was used to simulate three fire-hazard-reduction policies in an area comprising northern California. southwestern Oregon. and the east slopes of the Cascade Mountains in Oregon. The policy

    E-Print Network [OSTI]

    Fried, Jeremy S.

    The FIA BioSum model was used to simulate three fire-hazard-reduction policies in an area. The policy scenarios. all subject to a stand-scale fire-hazard-reduction effectiveness constraint. included merchantable timber removal (Min Merch). Differences in the area treated under each scenario were considerable

  2. Review of Yucca Mountain Disposal Criticality Studies

    SciTech Connect (OSTI)

    Scaglione, John M [ORNL] [ORNL; Wagner, John C [ORNL] [ORNL

    2011-01-01

    The U.S. Department of Energy (DOE), Office of Civilian Radioactive Waste Management, submitted a license application for construction authorization of a deep geologic repository at Yucca Mountain, Nevada, in June of 2008. The license application is currently under review by the U.S. Nuclear Regulatory Commission. However,on March 3, 2010 the DOE filed a motion requesting withdrawal of the license application. With the withdrawal request and the development of the Blue Ribbon Commission to seek alternative strategies for disposing of spent fuel, the status of the proposed repository at Yucca Mountain is uncertain. What is certain is that spent nuclear fuel (SNF) will continue to be generated and some long-lived components of the SNF will eventually need a disposition path(s). Strategies for the back end of the fuel cycle will continue to be developed and need to include the insights from the experience gained during the development of the Yucca Mountain license application. Detailed studies were performed and considerable progress was made in many key areas in terms of increased understanding of relevant phenomena and issues regarding geologic disposal of SNF. This paper reviews selected technical studies performed in support of the disposal criticality analysis licensing basis and the use of burnup credit. Topics include assembly misload analysis, isotopic and criticality validation, commercial reactor critical analyses, loading curves, alternative waste package and criticality control studies, radial burnup data and effects, and implementation of a conservative application model in the criticality probabilistic evaluation as well as other information that is applicable to operations regarding spent fuel outside the reactor. This paper summarizes the work and significant accomplishments in these areas and provides a resource for future, related activities.

  3. Rocky Flats CAAS System Recalibrated, Retested, and Analyzed to Install in the Criticality Experiments Facility at the Nevada Test Site

    E-Print Network [OSTI]

    2009-01-01

    the Nevada Test Site (NTS). Prior to the Rocky Flats Plant (Rocky Flats CAAS System Recalibrated, Retested, and Analyzed to Install in the Criticality Experiments Facility at the Nevada TestROCKY FLATS CAAS SYSTEM RECALIBRATED, RETESTED, AND ANALYZED TO INSTALL IN THE CRITICALITY EXPERIMENTS FACILITY AT THE NEVADA TEST

  4. Comparison of {sup 241}Am, {sup 239,240}Pu, and {sup 137}Cs concentrations in soil around Rocky Flats

    SciTech Connect (OSTI)

    Hulse, S.E.; Ibrahim, S.A.; Whicker, F.W.; Chapman, P.L.

    1999-03-01

    Gamma spectroscopy measurements were used to estimate concentrations of {sup 241}Am and {sup 137}Cs in soil profiles to depths of 21 cm at on-site and off-site locations around the Rocky Flats Environmental Technology Site and at regional background locations east of the Front Range between Colorado`s borders with New Mexico and Wyoming. Concentrations of these radionuclides were compared with concentrations of {sup 239,240}Pu in the same samples. Concentrations of {sup 241}Am in soil from depths of 0 to 3 cm decreased in an easterly direction from more than 5.3 kBq kg{sup {minus}1} 5 to 7 km away at a rate that was nearly proportional to the inverse square of distance. Deposits of {sup 137}Cs were ubiquitous, averaging 0.12 kBq kg{sup {minus}1} in soil from depths of 0 to 3 cm, but were unevenly distributed around Rocky Flats and the regional background locations. Deviations from the uniform exponential rate at which soil concentrations of {sup 137}Cs typically decreased with depth, {minus}0.25 cm{sup {minus}1} at undisturbed sites, enabled the authors to determine that about 10% of their sampling sites had been disturbed by erosion, tillage, or other factors. The mean rate at which {sup 239,240}Pu decreased with depth was about the same, {minus}0.23 cm{sup {minus}1}, throughout the study area. Soil concentrations of {sup 241}Am decreased with depth at a similar mean rate of {minus}0.22 cm{sup {minus}1} at locations close to the 903 pad where measurements were robust. Ratios between {sup 241}Am or {sup 239,240}Pu and {sup 137}Cs proved more useful for delineating the extent and pattern of contamination from Rocky Flats than did activity concentrations in soil.

  5. Holy Mother of Chiri Mountain: A Female Mountain Spirit in Korea

    E-Print Network [OSTI]

    Stiller, Maya

    2011-01-01

    pilgrimage route in Chiri mountain. The images have informedCSW upda te OCTOBER 2011 The Holy Mother of Chiri Mountain aFemale Mountain Spirit in Korea by Maya Stiller UCLA Center

  6. Soil Organic Carbon Storage and Aggregate Stability in an Arid Mountain Range, White Mountains, CA

    E-Print Network [OSTI]

    Frisbie, Juanita Aapris

    2014-01-01

    D.L. 1989. Responses of Mountain Big Sagebrush to inducedgradient in the Gongga Mountain on the Tibetan plateau. J.relationships in an arid mountain range, Mojave Desert,

  7. commentary: Is climate change making plants go up mountains?

    E-Print Network [OSTI]

    Lovett, Jon C.; Hemp, Andreas

    2010-01-01

    Plant Ecology of High Mountain Ecosystems. pp 1-344altitudinal distribution in mountain forests during themaking plants go up mountains? Paleontological evidence

  8. Seepage into drifts in unsaturated fractured rock at Yucca Mountain

    E-Print Network [OSTI]

    Birkholzer, Jens; Li, Guomin; Tsang, Chin-Fu; Tsang, Yvonne

    1998-01-01

    Fractured Rock at Yucca Mountain Jens Birkholzer, Guomin Lrepository site at Yucca Mountain, Nevada, as it is locatedclimate conditions at Yucca Mountain. The numerical study is

  9. Evolution of the unsaturated zone testing at Yucca Mountain

    E-Print Network [OSTI]

    Wang, J.S.Y.; Bodvarsson, G.S.

    2002-01-01

    Studies Facility, Yucca Mountain, Nevada. Water-ResourcesGeologic Map of Yucca Mountain, Nye County, Nevada, withWater and Calcite, Yucca Mountain, Nevada: Water." Science,

  10. State geothermal commercialization programs in seven Rocky Mountain States. Semi-annual progress report, January-June 1980

    SciTech Connect (OSTI)

    Tuttle, J.; Coe, B.A.; Gertsch, W.D.; Meyer, R.T.

    1980-12-01

    The following are included: a summary of the state projects, a summary of findings, public outreach, and a description of the major conclusions and recommendations. The commercialization activities carried out by the state teams are described for Colorado, Montana, New Mexico, North Dakota, South Dakota, Utah, and Wyoming. (MHR)

  11. Interannual variability of snowmelt in the Sierra Nevada and Rocky Mountains, United States: Examples from two alpine

    E-Print Network [OSTI]

    Williams, Mark W.

    of dam releases for municipal and agricultural water supplies, hydropower, and flood control [Molotch et al., 2004]. Accurate water supply assessments in snowpacks is challenging because of the high spatial change effects on hydrology. Similarly, potential future changes in the spatial distribution of SWE could

  12. Sitewide risk perspectives for the Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Olinger, S.J.; Foppe, T.L.

    1998-05-01

    The US Department of Energy (DOE) has recently finalized a closure plan (originally called the Ten Year Plan) for closure and environmental cleanup of previous nuclear weapons facilities. The DOE Rocky Flats Field Office has established priorities for risk reduction work to Support closure activities, as well as addressing those hazards associated with storage and management of radioactive materials and hazardous chemicals. To provide information for future National Environmental Policy Act (NEPA) or other regulatory assessments of specific risk reduction projects identified in the Closure Plan, a risk assessment of normal operations and potential accidents was recently prepared to provide an updated baseline of the cumulative impacts to the worker, public and environment due to the Site`s operations, activities, and environmental conditions in light of the Site`s change in mission, and of future closure projects. This paper summarizes the risk assessment approach, results, and conclusions.

  13. Rocky Flats Plant Live-Fire Range Risk Analysis Report

    SciTech Connect (OSTI)

    Nicolosi, S.L.; Rodriguez, M.A.

    1994-04-01

    The objective of the Live-Fire Range Risk Analysis Report (RAR) is to provide an authorization basis for operation as required by DOE 5480.16. The existing Live-Fire Range does not have a safety analysis-related authorization basis. EG&G Rocky Flats, Inc. has worked with DOE and its representatives to develop a format and content description for development of an RAR for the Live-Fire Range. Development of the RAR is closely aligned with development of the design for a baffle system to control risks from errant projectiles. DOE 5480.16 requires either an RAR or a safety analysis report (SAR) for live-fire ranges. An RAR rather than a SAR was selected in order to gain flexibility to more closely address the safety analysis and conduct of operation needs for a live-fire range in a cost-effective manner.

  14. Cementation and solidification of Rocky Flats Plant incinerator ash

    SciTech Connect (OSTI)

    Phillips, J.A.; Semones, G.B.

    1994-04-01

    Cementation studies on various aqueous waste streams at Rocky Flats have shown this technology to be effective for immobilizing the RCRA constituents in the waste. Cementation is also being evaluated for encapsulation of incinerator ash. Experiments will initially evaluate a surrogate ash waste using a Taguchi experimental design to optimize the cement formulation and waste loading levels for this application. Variables of waste loading, fly ash additions, water/cement ratio, and cement type will be tested at three levels each during the course of this work. Tests will finally be conducted on actual waste using the optimized cement formulation developed from this testing. This progression of tests will evaluate the effectiveness of cement encapsulation for this waste stream without generating any additional wastes.

  15. Properties of vitrified Rocky Flats TRUW with different waste loadings

    SciTech Connect (OSTI)

    Eddy, T.L.; Sears, J.W.; Grandy, J.D.; Miley, D.V.; Erickson, A.W.; Fransworth, R.N.; Larsen, E.D.

    1994-07-01

    One of the major waste streams at the Idaho National Laboratory (INEL) is a combination of the Rocky Flats Plant 1st and 2nd stage sludges (hydrated metal oxides or H-series), which constitutes about 20 wt % of the buried waste. A similar mass fraction is in interim storage. The buried waste is commingled with about five times as much soil that has become contaminated as the containers have deteriorated. The purpose of this paper is to report on waste form property variations of the H-series waste melted with various fractions of soil, plus volatile and hazardous metals and transuranic surrogates. Optimally, the waste form will minimize the bulk leach rate, maximize the volume reduction, minimize the additives needed, and stabilize the transuranic nuclides. Topics to be discussed include the input and final compositions, the melting and crystallization processes, the test results, and conclusions.

  16. Field trip guide to selected outcrops, Arbuckle Mountains, Oklahoma

    SciTech Connect (OSTI)

    1991-11-17

    The Arbuckle Mountains, named for Brigadier General Matthew Arbuckle, are located in south-central Oklahoma. The formations that comprise the Arbuckle Mountains have been extensively studied for hydrocarbon source rock and reservoir rock characteristics that can be applied to the subsurface in the adjacent Anadarko and Ardmore basins. Numerous reports and guidebooks have been written concerning the Arbuckle Mountains. A few important general publications are provided in the list of selected references. The purpose of this handout is to provide general information on the geology of the Arbuckle Mountains and specific information on the four field trip stops, adapted from the literature. The four stops were at: (1) Sooner Rock and Sand Quarry; (2) Woodford Shale; (3) Hunton Anticline and Hunton Quarry; and (4) Tar Sands of Sulfur Area. As part of this report, two papers are included for more detail: Paleomagnetic dating of basinal fluid migration, base-metal mineralization, and hydrocarbon maturation in the Arbuckle Mountains, Oklahoma and Laminated black shale-bedded chert cyclicity in the Woodford Formation, southern Oklahoma.

  17. A mountain-scale model for characterizing unsaturated flow and transport in fractured tuffs of Yucca Mountain

    E-Print Network [OSTI]

    Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Bodvarsson, G.S.

    2003-01-01

    to Fault Zones at Yucca Mountain, Nevada, InternationalPneumatic Response of at Yucca Mountain, Nevada, Journal ofZone Site-Scale Model, Yucca Mountain Site Characterization

  18. Sorbent Testing for the Solidification of Unidentified Rocky Flats Laboratory Waste Stored at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Bickford, J.; Kimmitt, R.

    2007-07-01

    At the request of the U.S. Department of Energy (DOE), MSE Technology Applications, Inc. (MSE) evaluated various commercially available sorbents to solidify unidentified laboratory liquids from Rocky Flats that are stored at the Idaho National Laboratory (INL). The liquids are a collection of laboratory wastes that were generated from various experiments and routine analytical laboratory activities carried out at Rocky Flats. The liquids are in bottles discovered inside of buried waste drums being exhumed from the subsurface disposal area at the Radioactive Waste Management Complex (RWMC) by the contractor, CH2M Hill Washington International (CWI). Free liquids are unacceptable at the Waste Isolation Pilot Plant (WIPP), and some of these liquids cannot be returned to the retrieval pit. Stabilization of the liquids into a solid mass will allow these materials to be sent to an appropriate disposal location. The selected sorbent or sorbent combinations should produce a stabilized mass that is capable of withstanding conditions similar to those experienced during storage, shipping, and burial. The final wasteform should release less than 1% liquid by volume per the WIPP Waste Acceptance Criteria (WAC). The absence or presence of free liquid in the solidified waste-forms was detected when tested by SW-846, Method 9095B, Paint Filter Free Liquids, and the amount of liquid released from the wasteform was determined by SW-846, Method 9096, Liquid Release Test. Reactivity testing was also conducted on the solidified laboratory liquids. (authors)

  19. Rocky Point, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, NewMichigan: EnergyRocklin BiomassMountain, Oklahoma:

  20. Rocky Ridge, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, NewMichigan: EnergyRocklin BiomassMountain, Oklahoma:Ridge,

  1. Rocky Ripple, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, NewMichigan: EnergyRocklin BiomassMountain,

  2. Rocky River, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, NewMichigan: EnergyRocklin BiomassMountain,River, Ohio: Energy

  3. CX-011613: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Bald Mountain Fiber Optic Splice Temporary Pad CX(s) Applied: B1.15 Date: 12/11/2013 Location(s): Colorado, Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  4. CX-011860: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Magnetic Mountain Microwave Tower Access road Maintenance, Rio Blanco County, Colorado CX(s) Applied: B1.3 Date: 01/28/2014 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  5. CX-009801: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Copper Mountain to Boysen 34.5 Kilovolt Transmission Line Structure Replacement CX(s) Applied: B1.3 Date: 01/11/2013 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  6. EA-1146: Radioactive Waste Storage at Rocky Flats Environmental Technology Site, Golden, Colorado

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to convert buildings at the U.S. Department of Energy Rocky Flats Environmental Technology Site from their former uses to interim waste...

  7. VWZ-0008- In the Matter of EG&G Rocky Flats, Inc.

    Broader source: Energy.gov [DOE]

    This decision will consider a Motion for Partial Dismissal and Limitation on Scope of Complainant's Claims filed by EG&G Rocky Flats, Inc. (EG&G) on June 13, 1997. In its motion, EG&G...

  8. Rocky Planets Around Cool Stars A Marie Curie Initial Training Network

    E-Print Network [OSTI]

    Pinfield, David J.

    Rocky Planets Around Cool Stars A Marie Curie Initial Training Network Degenerate companions and extra-solar planets RoPACS May 2010 Munich Joana Gomes #12;RoPACS Degenarate companion and extrasolar planets L/ T dwarfs White

  9. Comparison and evaluation of turbulence estimation schemes at Rocky Flats Plant

    SciTech Connect (OSTI)

    Bowen, B.M.; Pamp, S.E.

    1993-10-01

    The Rocky Flats Plant (RFP) routinely measures meteorological data to support Air Quality and Emergency Response activities. These data help to characterize the transport and dispersion of actual or potential airborne releases of radionuclides or other hazardous materials.

  10. Mountain Goat Software, LLC Una Introduccin a

    E-Print Network [OSTI]

    Cabalar, Pedro

    Mountain Goat Software, LLC Una Introducción a Scrum Mike Cohen Traducido: Ernesto Grafeuille Revisado y modificado: Pedro Cabalar Noviembre 2013 #12;Mountain Goat Software, LLC Estamos perdiendo la hacia atrás -pueden servir mejor a los actuales requisitos competitivos". #12;Mountain Goat Software

  11. Environmental Aspects of Two Volatile Organic Compound Groundwater Treatment Designs at the Rocky Flats Site - 13135

    SciTech Connect (OSTI)

    Michalski, Casey C.; DiSalvo, Rick; Boylan, John

    2013-07-01

    DOE's Rocky Flats Site in Colorado is a former nuclear weapons production facility that began operations in the early 1950's. Because of releases of hazardous substances to the environment, the federally owned property and adjacent offsite areas were placed on the CERCLA National Priorities List in 1989. The final remedy was selected in 2006. Engineered components of the remedy include four groundwater treatment systems that were installed before closure as CERCLA-accelerated actions. Two of the systems, the Mound Site Plume Treatment System and the East Trenches Plume Treatment System, remove low levels of volatile organic compounds using zero-valent iron media, thereby reducing the loading of volatile organic compounds in surface water resulting from the groundwater pathway. However, the zero-valent iron treatment does not reliably reduce all volatile organic compounds to consistently meet water quality goals. While adding additional zero-valent iron media capacity could improve volatile organic compound removal capability, installation of a solar powered air-stripper has proven an effective treatment optimization in further reducing volatile organic compound concentrations. A comparison of the air stripper to the alternative of adding additional zero-valent iron capacity to improve Mound Site Plume Treatment System and East Trenches Plume Treatment System treatment based on several key sustainable remediation aspects indicates the air stripper is also more 'environmentally friendly'. These key aspects include air pollutant emissions, water quality, waste management, transportation, and costs. (authors)

  12. TREATMENT OF PLUTONIUM- AND URANIUM-CONTAMINATED OIL FROM ROCKY FLATS ENVIRONMENTAL TECHNOLOGY SITE

    SciTech Connect (OSTI)

    Klasson, KT

    2002-12-05

    A removal method for plutonium and uranium has been tested at the Rocky Flats Environmental Technology Site (RFETS). This alternative treatment technology is applicable to U.S. Department of Energy (DOE) organics (mainly used pump oil) contaminated with actinides. In our studies, greater than 70% removal of the actinides was achieved. The technology is based on contacting the oil with a sorbent powder consisting of a surface modified mesoporous material. The SAMMS (Self-Assembled Monolayers on Mesoporous Support) technology was developed by the Pacific Northwest National Laboratory for removal and stabilization of RCRA (i.e., lead, mercury, cadmium, silver, etc.) and actinides in water and for removal of mercury from organic solvents [1, 2]. The SAMMS material is based on self-assembly of functionalized monolayers on mesoporous oxide surfaces. The unique mesoporous oxide support provides a high surface area, thereby enhancing the metal-loading capacity. The testing described in this report was conducted on a small scale but larger-scale testing of the technology has been performed on mercury-contaminated oil without difficulty [3].

  13. Idaho National Engineering Laboratory code assessment of the Rocky Flats transuranic waste

    SciTech Connect (OSTI)

    1995-07-01

    This report is an assessment of the content codes associated with transuranic waste shipped from the Rocky Flats Plant in Golden, Colorado, to INEL. The primary objective of this document is to characterize and describe the transuranic wastes shipped to INEL from Rocky Flats by item description code (IDC). This information will aid INEL in determining if the waste meets the waste acceptance criteria (WAC) of the Waste Isolation Pilot Plant (WIPP). The waste covered by this content code assessment was shipped from Rocky Flats between 1985 and 1989. These years coincide with the dates for information available in the Rocky Flats Solid Waste Information Management System (SWIMS). The majority of waste shipped during this time was certified to the existing WIPP WAC. This waste is referred to as precertified waste. Reassessment of these precertified waste containers is necessary because of changes in the WIPP WAC. To accomplish this assessment, the analytical and process knowledge available on the various IDCs used at Rocky Flats were evaluated. Rocky Flats sources for this information include employee interviews, SWIMS, Transuranic Waste Certification Program, Transuranic Waste Inspection Procedure, Backlog Waste Baseline Books, WIPP Experimental Waste Characterization Program (headspace analysis), and other related documents, procedures, and programs. Summaries are provided of: (a) certification information, (b) waste description, (c) generation source, (d) recovery method, (e) waste packaging and handling information, (f) container preparation information, (g) assay information, (h) inspection information, (i) analytical data, and (j) RCRA characterization.

  14. Comparative risk analysis for the Rocky Flats Plant Integrated Project Planning

    SciTech Connect (OSTI)

    Jones, M.E.; Shain, D.I.

    1994-12-31

    The Rocky Flats Plant is developing a comprehensive planning strategy that will support transition of the Rocky Flats Plant from a nuclear weapons production facility to site cleanup and final disposition. Final disposition of the Rocky Flats Plant materials and contaminants requires consideration of the interrelated nature of sitewide problems, such as material movement and disposition, facility and land use endstates, costs, relative risks to workers and the public, and waste disposition. Comparative Risk Analysis employs both incremental risk and cumulative risk evaluations to compare risk from postulated options or endstates. Comparative Risk Analysis is an analytical tool for the Rocky Flats Plant Integrated Project Planning which can assist a decision-maker in evaluating relative risks among proposed remedial options or future endstates. It addresses the cumulative risks imposed by the Rocky Flats Plant and provides risk information, both human health and ecological, to aid in reducing unnecessary resource and monetary expenditures. Currently, there is no approved methodology that aggregates various risk estimates. Along with academic and field expert review, the Comparative Risk Analysis methodology is being reviewed and refined. A Rocky Flats Plant Risk Assessment Focus Group was established. Stakeholder involvement in the development provides an opportunity to influence the information delivered to a decision-maker. This paper discusses development of the methodology.

  15. Analysis of offsite Emergency Planning Zones (EPZ) for the Rocky Flats Plant

    SciTech Connect (OSTI)

    Hodgin, C.R.; Armstrong, C.; Daugherty, N.M.; Foppe, T.L.; Petrocchi, A.J.; Southward, B.

    1990-05-01

    This project plan for Phase II summarizes the design of a project to complete analysis of offsite Emergency Planning Zones (EPZ) for the Rocky Flats Plant. Federal, state, and local governments develop emergency plans for facilities that may affect the public in the event of an accidental release of nuclear or hazardous materials. One of the purposes of these plans is to identify EPZs where actions might be necessary to protect public health. Public protective actions include sheltering, evacuation, and relocation. Agencies use EPZs to develop response plans and to determine needed resources. The State of Colorado, with support from the US Department of Energy (DOE) and Rocky Flats contractors, has developed emergency plans and EPZs for the Rocky Flats Plant periodically beginning in 1980. In Phase II, Interim Emergency Planning Zones Analysis, Maximum Credible Accident'' we will utilize the current Rocky Flats maximum credible accident (MCA), existing dispersion methodologies, and upgraded dosimetry methodologies to update the radiological EPZs. Additionally, we will develop recommendations for EPZs for nonradiological hazardous materials releases and evaluate potential surface water releases from the facility. This project will allow EG G Rocky Flats to meet current commitments to the state of Colorado and make steady, tangible improvements in our understanding of risk to offsite populations during potential emergencies at the Rocky Flats Plant. 8 refs., 5 figs., 4 tabs.

  16. Assessment of industrial minerals and rocks in the controlled area

    SciTech Connect (OSTI)

    Castor, S.B.; Lock, D.E.

    1996-08-01

    Yucca Mountain in Nye County, Nevada, is a potential site for a permanent repository for high-level nuclear waste in Miocene ash flow tuff. The Yucca Mountain controlled area occupies approximately 98 km{sup 2} that includes the potential repository site. The Yucca Mountain controlled area is located within the southwestern Nevada volcanic field, a large area of Miocene volcanism that includes at least four major calderas or cauldrons. It is sited on a remnant of a Neogene volcanic plateau that was centered around the Timber Mountain caldera complex. The Yucca Mountain region contains many occurrences of valuable or potentially valuable industrial minerals, including deposits with past or current production of construction aggregate, borate minerals, clay, building stone, fluorspar, silicate, and zeolites. The existence of these deposits in the region and the occurrence of certain mineral materials at Yucca Mountain, indicate that the controlled area may have potential for industrial mineral and rock deposits. Consideration of the industrial mineral potential within the Yucca Mountain controlled area is mainly based on petrographic and lithologic studies of samples from drill holes in Yucca Mountain. Clay minerals, zeolites, fluorite, and barite, as minerals that are produced economically in Nevada, have been identified in samples from drill holes in Yucca Mountain.

  17. Supercompaction and Repackaging Facility for Rocky Flats Plant transuranic waste

    SciTech Connect (OSTI)

    Barthel, J.M.

    1988-01-01

    The Supercompaction and Repackaging Facility (SaRF) for processing Rocky Flats Plant (RFP) generated transuranic (TRU) waste was conceptualized and has received funding of $1.9 million. The SaRF is scheduled for completion in September, 1989 and will eliminate a labor intensive manual repackaging effort. The semi-automated glovebox-contained SaRF is being designed to process 63,500 cubic feet of TRU waste annually for disposal at the Waste Isolation Pilot Plant (WIPP). Waste will enter the process through an airlock or drum dump and the combustible waste will be precompacted. Drums will be pierced to allow air to escape during supercompaction. Each drum will be supercompacted and transferred to a load out station for final packaging into a 55 gallon drum. Preliminary evaluations indicate an average 5 to 1 volume reduction, 2 to 1 increased processing rate, and 50% reduction in manpower. The SaRF will produce a significant annual savings in labor, material, shipping, and burial costs over the projected 15 year life, and also improve operator safety, reduce personnel exposure, and improve the quality of the waste product. 1 ref., 10 figs., 3 tabs.

  18. Project Fever - Fostering Electric Vehicle Expansion in the Rockies

    SciTech Connect (OSTI)

    Swalnick, Natalia

    2013-06-30

    Project FEVER (Fostering Electric Vehicle Expansion in the Rockies) is a part of the Clean Cities Community Readiness and Planning for Plug-in Electric Vehicles and Charging Infrastructure Funding Opportunity funded by the U.S. Department of Energy (DOE) for the state of Colorado. Tasks undertaken in this project include: Electric Vehicle Grid Impact Assessment; Assessment of Electrical Permitting and Inspection for EV/EVSE (electric vehicle/electric vehicle supply equipment); Assessment of Local Ordinances Pertaining to Installation of Publicly Available EVSE;Assessment of Building Codes for EVSE; EV Demand and Energy/Air Quality Impacts Assessment; State and Local Policy Assessment; EV Grid Impact Minimization Efforts; Unification and Streamlining of Electrical Permitting and Inspection for EV/EVSE; Development of BMP for Local EVSE Ordinances; Development of BMP for Building Codes Pertaining to EVSE; Development of Colorado-Specific Assessment for EV/EVSE Energy/Air Quality Impacts; Development of State and Local Policy Best Practices; Create Final EV/EVSE Readiness Plan; Develop Project Marketing and Communications Elements; Plan and Schedule In-person Education and Outreach Opportunities.

  19. Washing of Rocky Flats Combustible Residues (Conducted March - May 1995)

    SciTech Connect (OSTI)

    Mary E. Barr; Ann R. Schake; David A. Romero; Gordon D. Jarvinen

    1999-03-01

    The scope of this project is to determine the feasibility of washing plutonium-containing combustible residues using ultrasonic disruption as a method for dislodging particulate. Removal of plutonium particulate and, to a lesser extent, solubilized plutonium from the organic substrate should substantially reduce potential fire, explosion or radioactive release hazards due to radiolytic hydrogen generation or high flammability. Tests were conducted on polypropylene filters which were used as pre-filters in the rich-residue ion-exchange process at the Los Alamos Plutonium Facility. These filters are similar to the Ful-Flo{reg_sign} cartridges used at Rocky Flats that make up a substantial fraction of the combustible residues with the highest hazard rating. Batch experiments were run on crushed filter material in order to determine the amount of Pu removed by stirring, stirring and sonication, and stirring and sonication with the introduction of Pu-chelating water-soluble polymers or surfactants. Significantly more Pu is removed using sonication and sonication with chelators than is removed with mechanical stirring alone.

  20. DISPOSITION PATHS FOR ROCKY FLATS GLOVEBOXES: EVALUATING OPTIONS

    SciTech Connect (OSTI)

    Lobdell, D.; Geimer, R.; Larsen, P.; Loveland, K.

    2003-02-27

    The Kaiser-Hill Company, LLC has the responsibility for closure activities at the Rocky Flats Environmental Technology Site (RFETS). One of the challenges faced for closure is the disposition of radiologically contaminated gloveboxes. Evaluation of the disposition options for gloveboxes included a detailed analysis of available treatment capabilities, disposal facilities, and lifecycle costs. The Kaiser-Hill Company, LLC followed several processes in determining how the gloveboxes would be managed for disposition. Currently, multiple disposition paths have been chosen to accommodate the needs of the varying styles and conditions of the gloveboxes, meet the needs of the decommissioning team, and to best manage lifecycle costs. Several challenges associated with developing a disposition path that addresses both the radiological and RCRA concerns as well as offering the most cost-effective solution were encountered. These challenges included meeting the radiological waste acceptance criteria of available disposal facilities, making a RCRA determination, evaluating treatment options and costs, addressing void requirements associated with disposal, and identifying packaging and transportation options. The varying disposal facility requirements affected disposition choices. Facility conditions that impacted decisions included radiological and chemical waste acceptance criteria, physical requirements, and measurement for payment options. The facility requirements also impacted onsite activities including management strategies, decontamination activities, and life-cycle cost.

  1. MOUNTAIN-VALLEY AND KATABATIC FLOW IN BOULDER Find mountain valley circulation patterns that indicate mountain-valley flow, e.g.,

    E-Print Network [OSTI]

    MOUNTAIN-VALLEY AND KATABATIC FLOW IN BOULDER TASK: Find mountain valley circulation patterns that indicate mountain-valley flow, e.g., in the Boulder Canyon or katabatic flow between the mountain ranges and the lower terrains around Denver and Colorado. MOTIVATION: Mountain-valley flow is a common well understood

  2. Vascular Flora of the Rocky Flats Area, Jefferson County, Colorado, USA |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Lacledeutilities. The EconomicsVulnerabilitiesServicePREPARED FOR:

  3. Cleanup levels for Am-241, Pu-239, U-234, U-235 & U-238 in soils at the Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Roberts, R.; Colby, B.; Brooks, L.; Slaten, S.

    1997-07-03

    This presentation briefly outlines a cleanup program at a Rocky Flats site through viewgraphs and an executive summary. Exposure pathway analyses to be performed are identified, and decontamination levels are listed for open space and office worker exposure areas. The executive summary very briefly describes the technical approach, RESRAD computer code to be used for analyses, recommendations for exposure levels, and application of action levels to multiple radionuclide contamination. Determination of action levels for surface and subsurface soils, based on radiation doses, is discussed. 1 tab.

  4. Transportation of pyrochemical salts from Rocky Flats to Los Alamos

    SciTech Connect (OSTI)

    Schreiber, S.B.

    1997-02-01

    Radioactive legacy wastes or residues are currently being stored on numerous Sites around the former Department of Energy`s (DOE) Nuclear Weapons Complex. Since most of the operating facilities were shut down and have not operated since before the declared end to the Cold War in 1993, the historical method for treating these residues no longer exists. The risk associated with continued storage of these residues will dramatically increase with time. Thus, the DOE was directed by the Defense Nuclear Facility Safety Board in its Recommendation 94-1 to address and stabilize these residues and established an eight year time frame for doing so. There are only two options available to respond to this requirement: (1) restart existing facilities to treat and package the residues for disposal or (2) transport the residues to another operating facility within the Complex where they can be treated and packaged for disposal. This paper focuses on one such residue type, pyrochemical salts, produced at one Complex site, the Rocky Flats Plant located northwest of Denver, Colorado. One option for treating the salts is their shipment to Los Alamos, New Mexico, for handling at the Plutonium Facility. The safe transportation of these salts can be accomplished at present with several shipping containers including a DOT 6M, a DOE 9968, Type A or Type B quantity 55-gallon drum overpacks, or even the TRUPACT II. The tradeoffs between each container is examined with the conclusion that none of the available shipping containers is fully satisfactory. Thus, the advantageous aspects of each container must be utilized in an integrated and efficient way to effectively manage the risk involved. 1 fig.

  5. The willingness to pay for the conservation of mountain landscape in Cortina D'Ampezzo (Italy) Tiziano Tempesta Mara Thiene

    E-Print Network [OSTI]

    Tempesta, Tiziano

    with the plain. Secondly, tourism development has strongly increased the opportunity cost of labour, by inducing. It is worth stressing that mountain areas have been receiving incentives for mowing meadows for many years

  6. Is proportion burned severely related to daily area burned?

    E-Print Network [OSTI]

    burn severity for individual daily areas burned that occurred during 42 large forest fires in central progression, forest fires, infrared perimeter mapping, northern Rockies 1. Introduction Extreme wildfires Yellowstone Fires (Turner et al 1994), the 1997 Indonesian Forest Fires, and the Australian Black Saturday

  7. Conceptual evaluation of the potential role of fractures in unsaturated processes at Yucca Mountain

    E-Print Network [OSTI]

    Hinds, Jennifer J.; Bodvarsson, Gudmundur S.; Nieder-Westermann, Gerald H.

    2002-01-01

    of Process Models, Yucca Mountain, Nevada. U.S. GeologicalZone Model of Yucca Mountain, Nevada. J. Contam. Hydrol. ,Studies Facility, Yucca Mountain Project. Yucca Mountain,

  8. Conceptual evaluation of the potential role of fractures in unsaturated processes at Yucca Mountain

    E-Print Network [OSTI]

    Hinds, Jennifer J.; Bodvarsson, Gudmundur S.; Nieder-Westermann, Gerald H.

    2002-01-01

    of Process Models, Yucca Mountain, Nevada. U.S. GeologicalUnsaturated Zone Model of Yucca Mountain, Nevada. J. Contam.Studies Facility, Yucca Mountain Project. Yucca Mountain,

  9. FINAL REPORT FORMER RADIATION WORKER MEDICAL SURVEILLANCE PROGRAM AT ROCKY FLATS For Department of Energy Programs

    SciTech Connect (OSTI)

    Joe M. Aldrich

    2004-11-01

    The Former Radiation Worker Medical Surveillance Program at Rocky Flats was conducted in Arvada, CO, by Oak Ridge Associated Universities through the Oak Ridge Institute for Science and Education under DOE Contract DE-AC05-00OR22750. Objectives of the program were to obtain information on the value of medical surveillance among at-risk former radiation workers and to provide long-term internal radiation dosimetry information to the scientific community. This program provided the former radiation workers of the Rocky Flats Environmental Technology Site (formerly Rocky Flats Plant) an opportunity to receive follow-up medical monitoring and a re-evaluation of their internal radiation dose. The former Rocky Flats radiation worker population is distinctive because it was a reasonably stable work force that received occupational exposures, at times substantial, over several decades. This report reflects the summation of health outcomes, statistical analyses, and dose assessment information on former Rocky Flats radiation workers to the date of study termination as of March 2004.

  10. Observation and Responses to Post-Closure Instances of Localized Instability and Subsidence at the DOE Legacy Management Rocky Flats Site, Colorado-13052

    SciTech Connect (OSTI)

    DiSalvo, Rick; Darr, Bob; Boylan, John; Surovchak, Scott

    2013-07-01

    The former Rocky Flats Plant in Colorado began operations as part of the nation's nuclear weapons complex in the early 1950's. By the 1980's the associated heavily industrialized area covered approximately 1.2 km{sup 2} (300 acres) and was surrounded by an approximately 25.3 km{sup 2} (6,245 acre) security buffer zone. The federally owned property and adjacent offsite areas were placed on the CERCLA National Priority List in 1989. To complete closure, all buildings and other structures that composed the Rocky Flats industrial complex were removed from the surface, but remnants remain in the subsurface. Contouring and grading to return the surface to approximate conditions that were present prior to the plant's construction was completed in 2005. A goal of the final land configuration was to provide long-term surface and subsurface land stability. Several instances of localized surface subsidence or instability have occurred since the final configuration. The localized nature and the relatively small areas of observed subsidence and instability indicate that, overall, the final configuration is performing well, but responses to these occurrences and the observations that followed may be useful in planning for the closure and designing the final land configuration and post-closure monitoring at other sites. (authors)

  11. Long-term risk stabilization of the Rocky Flats Plant residues

    SciTech Connect (OSTI)

    Melberg, T.A.

    1994-12-31

    The liquid and solid residues continue to be a concern at Rocky Flats, primarily due to safety aspects of long-term storage and of the need for processing them into a form for ultimate disposal. Currently, Rocky Flats is processing the low-level solutions from bottles and tanks by direct cementation for storage and disposal. Plans for actinide precipitation of the high-level solutions are being finalized with an anticipated completion date of 2 to 3 yr. The solid residues present a more difficult challenge because of the numerous forms that these exist. Rocky Flats is developing several strategies to handle these materials for safe long-term storage and eventual disposal.

  12. Comparative risk analysis for the Rocky Flats Plant integrated project planning

    SciTech Connect (OSTI)

    Jones, M.E.; Shain, D.I.

    1994-12-31

    The Rocky Flats Plant is developing, with active stakeholder participation, a comprehensive planning strategy that will support transition of the Rocky Flats Plant from a nuclear weapons production facility to site cleanup and final disposition. Final disposition of the Rocky Flats Plant materials and contaminants requires consideration of the interrelated nature of sitewide problems, such as material movement and disposition, facility and land use endstates, costs, relative risks to workers and the public, and waste disposition. Comparative risk analysis employs both incremental risk and cumulative risk evaluations to compare risks from postulated options or end states. These postulated options or end states can be various remedial alternatives, or future endstate uses of federal land.

  13. Comparative risk analysis for the Rocky Flats Plant integrated project planning

    SciTech Connect (OSTI)

    Jones, M.E.; Shain, D.I.

    1994-05-01

    The Rocky Flats Plant is developing, with active stakeholder a comprehensive planning strategy that will support transition of the Rocky Flats Plant from a nuclear weapons production facility to site cleanup and final disposition. Final disposition of the Rocky Flats Plant materials and contaminants requires consideration of the interrelated nature of sitewide problems, such as material movement and disposition, facility and land use endstates, costs relative risks to workers and the public, and waste disposition. Comparative Risk Analysis employs both incremental risk and cumulative risk evaluations to compare risks from postulated options or endstates. These postulated options or endstates can be various remedial alternatives, or future endstate uses of federal agency land. Currently, there does not exist any approved methodology that aggregates various incremental risk estimates. Comparative Risk Analysis has been developed to aggregate various incremental risk estimates to develop a site cumulative risk estimate. This paper discusses development of the Comparative Risk Analysis methodology, stakeholder participation and lessons learned from these challenges.

  14. Tectonic Geomorphology of the Sierra Nacimiento: Traditional and New Techniques in Assessing Long-Term Landscape Evolution

    E-Print Network [OSTI]

    Pazzaglia, Frank J.

    -Term Landscape Evolution in the Southern Rocky Mountains1 Merri Lisa Formento-Trigilio2 and Frank J. Pazzaglia area as stream networks have become well integrated. To test the idea that epeirogenic uplift, perhaps to estimate the relative residence time of topographic forms in the Southern Rocky Mountain landscape. The GIS

  15. Zuni Mountains Nm Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:WizardYates County,Zena, NewZhuluZipZoneZolo

  16. Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe2009) | Open Energy2008) ||

  17. Modeling-Computer Simulations At White Mountains Area (Goff ...

    Open Energy Info (EERE)

    useful DOE-funding Unknown Notes Review and identification of 24 potential sites for EGS development across the U.S., as well as modeling of the representative geologic systems...

  18. Geothermal Literature Review At White Mountains Area (Goff &...

    Open Energy Info (EERE)

    useful DOE-funding Unknown Notes Review and identification of 24 potential sites for EGS development across the U.S., as well as modeling of the representative geologic systems...

  19. Ground Gravity Survey At Blue Mountain Geothermal Area (Fairbank

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County,Solar Jump to:ResourcesGriggs County,Groom(Redirected1978)

  20. Geothermometry At Blue Mountain Geothermal Area (Casteel, Et Al., 2010) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky:Bore TechnologiesAssessmentOpen Energy InformationOpen

  1. Earth Tidal Analysis At Marysville Mountain Geothermal Area (1984) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to: navigation, search Name:Earlsboro,

  2. Exploratory Boreholes At Blue Mountain Geothermal Area (Parr & Percival,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,PowerEvaporative CoolersExosun Sas

  3. Field Mapping At Blue Mountain Geothermal Area (Fairbank Engineering Ltd,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbHFarinello GeothermalFideris Inc formerly Lynntech Industries Jump2003)

  4. Rock Sampling At Florida Mountains Area (Brookins, 1982) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, NewMichigan: Energy Resources Jump to:RockPoint,Information

  5. Self Potential At Blue Mountain Geothermal Area (Fairbank Engineering Ltd,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,SageScheucoSedco Hills, California:SekisuiEnergy

  6. Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering Ltd,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSilicium de ProvenceSolar Jump to:Illinois:2003) | Open Energy

  7. Static Temperature Survey At Blue Mountain Geothermal Area (Fairbank

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) Jumpand Maintenance Geothermal Project(Cull, 1981) Jump

  8. Mercury Vapor At Socorro Mountain Area (Kooten, 1987) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy Resources Jump1.2619821°,Energy Information MickeyInformation

  9. Isotopic Analysis At Florida Mountains Area (Brookins, 1982) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13RenewableIrem GeothermalIslipNotOpen

  10. Reflection Survey At Blue Mountain Geothermal Area (Fairbank Engineering

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/WaterEnergyRedfield CampusReedsville,ReferenceReflectiaLtd,

  11. McGee Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to: navigation, searchScotland JumpPlantation Elec CoSAMcCoy

  12. Aerial Photography At Blue Mountain Geothermal Area (Fairbank Engineering

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar Energy LLCAdemaInformationwebsite JumpLtd, 2003) |

  13. Aeromagnetic Survey At Blue Mountain Geothermal Area (Fairbank Engineering

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar EnergyAerodyn Energiesysteme GmbH JumpOcean | Open

  14. Cuttings Analysis At Jemez Mountain Geothermal Area (1976) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments Inc Jump to: navigation, searchCut and1983)

  15. Cuttings Analysis At Marysville Mountain Geothermal Area (1976) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments Inc Jump to: navigation, searchCut and1983)Energy

  16. Hydroprobe At Mcgee Mountain Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea,MagazineTechnologiesInformationOpen

  17. Hyperspectral Imaging At Blue Mountain Geothermal Area (Calvin, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on Openei | Open Energy2010) | Open Energy Information

  18. Magnetotellurics At Glass Mountain Area (Cumming And Mackie, 2007) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump| Open Energy

  19. Magnetotellurics At Mcgee Mountain Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump| Open Energy| OpenMcgee

  20. Magnetotellurics At Socorro Mountain Area (Owens, Et Al., 2005) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump|

  1. McGee Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenariosMarysville Mt GeothermalMauna LoaMcAdoo WindMcFadden RidgeMcGee

  2. Comprehensive appraisal of {sup 239+240}Pu in soils around Rocky Flats, Colorado

    SciTech Connect (OSTI)

    Litaor, M.I.; Allen, L.; Ellerbroek, D.

    1995-12-01

    Plutonium contamination of soils around Rocky Flats Environmental & Technology Site, near Golden, Colorado, resulted from past outdoor storage practices and subsequent remobilization due to inadequate cleanup practices. Until now human-health risk assessment has not been performed because of a lack of sufficient information regarding the spatial extent of {sup 239+240}Pu in soils. The purpose of this work was to elucidate the extent of plutonium contamination in surface soils, and to assess the uncertainty associated with the spatial distribution of {sup 239+240}Pu around Rocky Flats Environmental & Technology Site.

  3. Future is new focus at energy department`s Rocky Flats facility

    SciTech Connect (OSTI)

    Lobsenz, G.

    1993-11-12

    After several years of intensive effort to address radioactive pollution threatening nearby communities, officials at the Energy Department`s Rocky Flats plant now are turning their attention to the site`s plutonium buildings and finding a cleanup challenge of equally daunting proportions. Containing and mopping up off-site soil and water contamination remains the first priority at the Colorado facility, but site environmental managers say the huge volumes of plutonium and associated radioactive waste stored in Rocky Flats` aging building pose increasingly urgent safety concerns.

  4. Decontamination and decommissioning of building 889 at Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Dorr, K.A.; Hickman, M.E.; Henderson, B.J.; Sexton, R.J.

    1997-09-01

    At the Rocky Flats site, the building 889 decommissioning project was the first large-scale decommissioning project of a radiologically contaminated facility at Rocky Flats. The scope consisted of removal of all equipment and utility systems from the interior of the building, decontamination of interior building surfaces, and the demolition of the facility to ground level. Details of the project management plan, including schedule, engineering, cost, characterization methodologies, decontamination techniques, radiological control requirements, and demolition methods, are provided in this article. 1 fig., 3 tabs.

  5. Evaluation of an emergency response model for the Rocky Flats Plant: Charter

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This Charter provides a basis for a cooperative, interagency effort to evaluate the Terrain-Responsive Atmospheric Code for emergency response and emergency planning for the Rocky Flats Plant. This document establishes the foundation for the project entitled, Evaluation of an Emergency Response Model for the Rocky Flats Plant'' (to be referred to as the Project). This document meets the following objectives: Identify the Project; establish the project management structure, organizational responsibilities, and organizational commitments for reaching the goals of the Project, and identify a process for model revision and revelation for acceptance. 2 figs.

  6. Getting Beyond Yucca Mountain - 12305

    SciTech Connect (OSTI)

    Halstead, Robert J. [State of Nevada Agency for Nuclear Projects, Carson City, NV 89706 (United States); Williams, James M. [Western Interstate Energy Board, Denver, CO 80202 (United States)

    2012-07-01

    The U.S. Department of Energy has terminated the Yucca Mountain repository project. The U.S. Nuclear Regulatory Commission has indefinitely suspended the Yucca Mountain licensing proceeding. The presidentially-appointed Blue Ribbon Commission (BRC) on America's Nuclear Future is preparing a report, due in January 2012, to the Secretary of Energy on recommendations for a new national nuclear waste management and disposal program. The BRC Draft Report published in July 2011 provides a compelling critique of the past three decades failed efforts in the United States to site storage and disposal facilities for spent nuclear fuel (SNF) and high-level radioactive waste (HLW). However, the BRC Draft Report fails to provide detailed guidance on how to implement an alternative, successful approach to facility site selection. The comments submitted to the BRC by the State of Nevada Agency for Nuclear Projects provide useful details on how the US national nuclear waste program can get beyond the failed Yucca Mountain repository project. A detailed siting process, consisting of legislative elements, procedural elements, and 'rules' for volunteer sites, could meet the objectives of the BRC and the Western Governors Association (WGA), while promoting and protecting the interests of potential host states. The recent termination of the proposed Yucca Mountain repository provides both an opportunity and a need to re-examine the United States' nuclear waste management program. The BRC Draft Report published in July 2011 provides a compelling critique of the past three decades failed efforts in the United States to site storage and disposal facilities for SNF and HLW. It is anticipated that the BRC Final report in January 2012 will recommend a new general course of action, but there will likely continue to be a need for detailed guidance on how to implement an alternative, successful approach to facility site selection. Getting the nation's nuclear waste program back on track requires, among other things, new principles for siting-principles based on partnership between the federal implementing agency and prospective host states. These principles apply to the task of developing an integrated waste management strategy, to interactions between the federal government and prospective host states for consolidated storage and disposal facilities, and to the logistically and politically complicated task of transportation system design. Lessons from the past 25 years, in combination with fundamental parameters of the nuclear waste management task in the US, suggest new principles for partnership outlined in this paper. These principles will work better if well-grounded and firm guidelines are set out beforehand and if the challenge of maintaining competence, transparency and integrity in the new organization is treated as a problem to be addressed rather than a result to be expected. (authors)

  7. Georgia Mountain | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprintGEXAGeminiEnergyHawaii |Methods3.376834°,Mountain

  8. King Mountain | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:onItronKanoshKetchikan PublicMountain Jump to: navigation,

  9. Laurel Mountain | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWinds Jump to:Laredo Ridge WindHill Jump to:Mountain

  10. BLUE MOUNTAIN | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, Inc | DepartmentPeer20InsulatedofBESTCorn CanBLUE MOUNTAIN

  11. Solar-Powered Air Stripping at the Rocky Flats Site, Colorado - 12361

    SciTech Connect (OSTI)

    Boylan, John A.

    2012-07-01

    The U.S. Department of Energy's Rocky Flats Site (the Site), near Denver, Colorado, is a former nuclear weapons facility that was constructed beginning in 1951. With the end of the Cold War, the Site was cleaned up and closed in 2005. Four gravity-driven groundwater treatment systems were installed during cleanup, and their continued operation was incorporated into the final remedy for the Site. All utilities, including electrical power, were removed as part of this closure, so all Site electrical power needs are now met with small solar-powered systems. The Mound Site Plume Treatment System (MSPTS) was installed in 1998 as an innovative system based on zero-valent iron (ZVI). Groundwater flow from the Mound source area containing elevated concentrations of volatile organic compounds (VOCs), primarily in the tetrachloroethene (PCE)-trichloroethene (TCE) family of chlorinated solvents, is intercepted by a collection trench and routed to twin ZVI treatment cells. Later, in 2005, remediation of VOC-contaminated soils at a second up-gradient source area included adding an electron donor to the backfill to help stimulate biodegradation. This reduced concentrations of primary constituents but caused down-gradient groundwater to contain elevated levels of recalcitrant degradation byproducts, particularly cis-1,2-dichloroethene and vinyl chloride. A gravel drain installed as part of the 2005 remediation directs contaminated groundwater from this second source area to the MSPTS for treatment. This additional contaminant load, coupled with correspondingly reduced residence time within the ZVI media due to the increased flow rate, resulted in reduced treatment effectiveness. Elevated concentrations of VOCs were then detected in MSPTS effluent, as well as in surface water at the downstream performance monitoring location for the MSPTS. Subsequent consultations with the Site regulators led to the decision to add a polishing component to reduce residual VOCs in MSPTS effluent. Initially, several alternatives such as commercial air strippers and cascade aerators were evaluated; resulting cost estimates exceeded $100,000. After several simpler alternatives were considered and prototype testing was conducted, the existing effluent metering manhole was converted to house a spray-nozzle based, solar-powered air stripper, at a cost of approximately $20,000. About two-thirds of this cost was for the solar power system, which was initially designed to only provide power for 12 hours per day. Performance data are being collected and adjustments made to optimize the design, determine maintenance requirements, and establish power needs for continuous operation. Analytical data confirm the air stripper is sharply reducing concentrations of residual contaminants. (authors)

  12. Trial by Mountain: Suffering and Healing in Difficult Landscapes

    E-Print Network [OSTI]

    Collins, Lindsey

    2012-01-01

    survivors_1.html. Where the Mountain Casts Its Shadow: The1980. MacFarlane, Robert. Mountains of the Mind. New York:A Woman’s Journey Into the Mountains to Find Her Soul. New

  13. THERMAL PROPERTIES OF GABLE MOUNTAIN BASALT CORES HANFORD NUCLEAR RESERVATION

    E-Print Network [OSTI]

    Martinez-Baez, L.F.

    2011-01-01

    70 THERMAL PROPERTIES OF GABLE MOUNTAIN BASALT CORES HANFORDft); we used the data giyen for Gable Mountain K1005 for oursamples of Gable Mountain DB-5 (521 ft and 524 ft); and we

  14. Mountain Snowmobilers and Avalanches: An Examination of Precautionary Behaviour

    E-Print Network [OSTI]

    Mountain Snowmobilers and Avalanches: An Examination of Precautionary Behaviour by Luke Robbins of Resource Management (Planning) Report No. 586 Title of Thesis: Mountain Snowmobilers and Avalanches within the snowmobiling community. Since there was limited information available on mountain snowmobilers

  15. Drift Natural Convection and Seepage at the Yucca Mountain Repository

    E-Print Network [OSTI]

    Halecky, Nicholaus Eugene

    2010-01-01

    2 A Simulation Code for Yucca Mountain Transport Processes:List of Figures Yucca Mountain location, southwest1 Introduction 1.1 Yucca Mountain Repository . . . . 1.1.1

  16. Application of natural analogues in the Yucca Mountain project - overview

    E-Print Network [OSTI]

    Simmons, Ardyth M.

    2003-01-01

    Contractor) 2000. Yucca Mountain Site Description. TDR-CRW-in silicic tuff from Yucca Mountain, Nevada. Clays and ClayHazard Analysis for Yucca Mountain, Nevada. BA0000000-01717-

  17. A Preliminary Structural Model for the Blue Mountain Geothermal...

    Open Energy Info (EERE)

    thewest flanks of Blue Mountain and the Eugene Mountains, and amore local WNW-striking, SW-dipping normal-dextral fault onthe southwest side of Blue Mountain. The WNW-striking...

  18. Mountain

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall to $3.43 by September1Louisiana - SedsN O F D e c e mb e

  19. Understanding Contaminant Transport Pathways at Rocky Flats - A Basis for the Remediation Strategy

    SciTech Connect (OSTI)

    Paton, Ian

    2008-01-15

    The Rocky Flats Environmental Technology Site (RFETS) is a Department of Energy facility located approximately 16 miles northwest of Denver, Colorado. Processing and fabrication of nuclear weapons components occurred at Rocky Flats from 1952 through 1989. Operations at the Site included the use of several radionuclides, including plutonium-239/240 (Pu), americium-241 (Am), and various uranium (U) isotopes, as well as several types of chlorinated solvents. The historic operations resulted in legacy contamination, including contaminated facilities, process waste lines, buried wastes and surface soil contamination. Decontamination and removal of buildings at the site was completed in late 2005, culminating more than ten years of active environmental remediation work. The Corrective Action Decision/Record of Decision was subsequently approved in 2006, signifying regulatory approval and closure of the site. The use of RFETS as a National Wildlife Refuge is scheduled to be in full operation by 2012. To develop a plan for remediating different types of radionuclide contaminants present in the RFETS environment required understanding the different environmental transport pathways for the various actinides. Developing this understanding was the primary objective of the Actinide Migration Evaluation (AME) project. Findings from the AME studies were used in the development of RFETS remediation strategies. The AME project focused on issues of actinide behavior and mobility in surface water, groundwater, air, soil and biota at RFETS. For the purposes of the AME studies, actinide elements addressed included Pu, Am, and U. The AME program, funded by DOE, brought together personnel with a broad range of relevant expertise in technical investigations. The AME advisory panel identified research investigations and approaches that could be used to solve issues related to actinide migration at the Site. An initial step of the AME was to develop a conceptual model to provide a qualitative description of the relationships among potential actinide sources and transport pathways at RFETS. One conceptual model was developed specifically for plutonium and americium, because of their similar geochemical and transport properties. A separate model was developed for uranium because of its different properties and mobility in the environment. These conceptual models were guidelines for quantitative analyses described in the RFETS Pathway Analysis Report, which used existing data from the literature as well as site-specific analyses, including field, laboratory and modeling studies to provide quantitative estimates of actinide migration in the RFETS environment. For pathways where more than one method was used to estimate offsite loads for a specific pathway, the method yielding the highest estimated off-site was used for comparison purposes. For all actinides studied, for pre-remediation conditions, air and surface water were identified to be the dominant transport mechanisms. The estimated annual airborne plutonium-239/240 load transported off site exceeded the surface water load by roughly a factor of 40. However, despite being the largest transport pathway, airborne radionuclide concentrations at the monitoring location with the highest measurements during the period studied were less than two percent of the allowable 10 milli-rem standard governing DOE facilities. Estimated actinide loads for other pathways were much less. Shallow groundwater was approximately two orders of magnitude lower, or 1/100 of the load conveyed in surface water. The estimated biological pathway load for plutonium was approximately five orders of magnitude less, or 1/100,000, of the load estimated for surface-water. The pathway analysis results were taken into consideration during subsequent remediation activities that occurred at the site. For example, when the 903 Pad area was remediated to address elevated concentrations of Pu and Am in the surface soil, portable tent structures were constructed to prevent wind and water erosion from occurring while remediation activitie

  20. Motion to Withdraw from Yucca Mountain application | Department...

    Broader source: Energy.gov (indexed) [DOE]

    it's pending license application for a permanent geologic repository at Yucca Mountain, Nevada. Motion to Withdraw from Yucca Mountain application More Documents &...

  1. Department of Energy Files Motion to Withdraw Yucca Mountain...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Files Motion to Withdraw Yucca Mountain License Application Department of Energy Files Motion to Withdraw Yucca Mountain License Application March 3, 2010 -...

  2. Midwest/Mountain Alternative Fuel Initiative | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MidwestMountain Alternative Fuel Initiative MidwestMountain Alternative Fuel Initiative Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on...

  3. Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature...

    Open Energy Info (EERE)

    Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature...

  4. EA-1746: Blue Mountain Geothermal Development Project, Humboldt...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    46: Blue Mountain Geothermal Development Project, Humboldt & Pershing County, NV EA-1746: Blue Mountain Geothermal Development Project, Humboldt & Pershing County, NV December 3,...

  5. Statement from Ward Sproat on Yucca Mountain, Director of the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ward Sproat on Yucca Mountain, Director of the Office of Civilian Radioactive Waste Management Statement from Ward Sproat on Yucca Mountain, Director of the Office of Civilian...

  6. The WFCAM Transit Survey: a search for rocky planets around cool stars

    E-Print Network [OSTI]

    Pinfield, David J.

    WTS 17h WTS 19h The WFCAM Transit Survey: a search for rocky planets around cool stars Motivation and of the WTS consortium) M-dwarf Sample jlb@ast.cam.ac.uk The theory of core accretion makes two intriguing The WFCAM Transit Survey (WTS) is a near-infrared, photometric monitoring campaign on the 3.8m United

  7. Rocky Flats Plant site environmental report for 1988, January through December 1988

    SciTech Connect (OSTI)

    Daugherty, N.M.

    1989-05-01

    This report documents the 1988 environmental surveillance program at the Rocky Flats Plant. The report includes an evaluation of plant compliance with all appropriate guides, environmental limits, and standards. Potential radiation dose to the public was calculated from average radionuclide concentrations measured at the plant property boundary and in surrounding communities. 37 refs., 14 figs., 32 tabs.

  8. Composition and temporal dynamics of a temperate rocky cryptobenthic sh assemblage

    E-Print Network [OSTI]

    explained by the arrival of new recruits of some of the most abundant species in the assemblage. Assemblage). The ecological importance of cryptobenthic ¢sh, as energy mediators (Depczynski & Bellwood, 2003), justi¢es an increased e¡ort aimed at a deeper understanding of this overlooked component of the rocky coast ¢sh

  9. Radiological/Health physics program assessement at Rocky Flats, the process

    SciTech Connect (OSTI)

    Psomas, P.O.

    1996-06-01

    The Department of Energy, Rocky Flats Office, Safety and Health Group, Health Physics Team (HPT) is responsible for oversight of the Radiation Protection and Health Physics Program (RPHP) of the Integrating Management Contractor (IMC), Kaiser-Hill (K-H) operations at the Rocky Flats Environmental Technology Site (RFETS). As of 1 January 1996 the Rocky Flats Plant employed 300 DOE and 4,300 contractor personnel (K-H and their subcontractors). WSI is a subcontractor and provides plant security. To accomplish the RPHP program oversight HPT personnel developed a systematic methodology for performing a functional RPHP Assessment. The initial process included development of a flow diagram identifying all programmatic elements and assessment criteria documents. Formulation of plans for conducting interviews and performance of assessments constituted the second major effort. The generation of assessment reports was the final step, based on the results of this process. This assessment will be a 6 person-year effort, over the next three years. This process is the most comprehensive assessment of any Radiation Protection and Health Physics (RPHP) Program ever performed at Rocky Flats. The results of these efforts will establish a baseline for future RPHP Program assessments at RFETS. This methodology has been well-received by contractor personnel and creates no Privacy Act violations or other misunderstandings.

  10. Vitrification of plutonium at Rocky Flats the argument for a pilot plant

    SciTech Connect (OSTI)

    Moore, L.

    1996-05-01

    Current plans for stabilizing and storing the plutonium at Rocky Flats Plant fail to put the material in a form suitable for disposition and resistant to proliferation. Vitrification should be considered as an alternate technology. The vitrification should begin with a small-scale pilot plant.

  11. Tools for Closure Project and Contract Management: Development of the Rocky Flats Integrated Closure Project Baseline

    SciTech Connect (OSTI)

    Gelles, C. M.; Sheppard, F. R.

    2002-02-26

    This paper details the development of the Rocky Flats Integrated Closure Project Baseline - an innovative project management effort undertaken to ensure proactive management of the Rocky Flats Closure Contract in support of the Department's goal for achieving the safe closure of the Rocky Flats Environmental Technology Site (RFETS) in December 2006. The accelerated closure of RFETS is one of the most prominent projects within the Department of Energy (DOE) Environmental Management program. As the first major former weapons plant to be remediated and closed, it is a first-of-kind effort requiring the resolution of multiple complex technical and institutional challenges. Most significantly, the closure of RFETS is dependent upon the shipment of all special nuclear material and wastes to other DOE sites. The Department is actively working to strengthen project management across programs, and there is increasing external interest in this progress. The development of the Rocky Flats Integrated Closure Project Baseline represents a groundbreaking and cooperative effort to formalize the management of such a complex project across multiple sites and organizations. It is original in both scope and process, however it provides a useful precedent for the other ongoing project management efforts within the Environmental Management program.

  12. Rocky PlanetsAround Cool Stars A Marie Curie Initial Training Network

    E-Print Network [OSTI]

    Pinfield, David J.

    Rocky PlanetsAround Cool Stars A Marie Curie Initial Training Network Annual Network Meeting Ro limit the goals of projects like the SPHERE planet finder if the metallicity-giant planet connection to exoplanet host stars ·the evaporation of hot Jupiter planets ; ·effects of gravitational scattering over

  13. EIS-0064: Rocky Flats Plant Site, Jefferson County, Golden, Colorado (see also ERDA-1545-D)

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the site specific environmental impacts of continuing to conduct nuclear weapons production activities at the Rocky Flats Plant; alternatives for the conduct of such activities; and environmental impacts of the U.S. policy to produce nuclear weapons.

  14. Rocky Flats CAAS System Recalibrated, Retested, and Analyzed to Install in the Criticality Experiments Facility at the Nevada Test Site

    SciTech Connect (OSTI)

    Kim, S; Heinrichs, D; Biswas, D; Huang, S; Dulik, G; Scorby, J; Boussoufi, M; Liu, B; Wilson, R

    2009-05-27

    Neutron detectors and control panels transferred from the Rocky Flats Plant (RFP) were recalibrated and retested for redeployment to the CEF. Testing and calibration were successful with no failure to any equipment. Detector sensitivity was tested at a TRIGA reactor, and the response to thermal neutron flux was satisfactory. MCNP calculated minimum fission yield ({approx} 2 x 10{sup 15} fissions) was applied to determine the thermal flux at selected detector positions at the CEF. Thermal flux levels were greater than 6.39 x 10{sup 6} (n/cm{sup 2}-sec), which was about four orders of magnitude greater than the minimum alarm flux. Calculations of detector survivable distances indicate that, to be out of lethal area, a detector needs to be placed greater than 15 ft away from a maximum credible source. MCNP calculated flux/dose results were independently verified by COG. CAAS calibration and the testing confirmed that the RFP CAAS system is performing its functions as expected. New criteria for the CAAS detector placement and 12-rad zone boundaries at the CEF are established. All of the CAAS related documents and hardware have been transferred from LLNL to NSTec for installation at the CEF high bay areas.

  15. Simulating 3-D Radiative Transfer Effects over the Sierra Nevada Mountains using WRF

    SciTech Connect (OSTI)

    Gu, Yu; Liou, K. N.; Lee, W- L.; Leung, Lai-Yung R.

    2012-10-30

    A surface solar radiation parameterization based on deviations between 3-D and conventional plane-parallel radiative transfer models has been incorporated into the Weather Research and Forecasting (WRF) model to understand the solar insolation over mountain/snow areas and to investigate the impact of the spatial and temporal distribution and variation of surface solar fluxes on land-surface processes. Using the Sierra-Nevada in the western United States as a testbed, we show that mountain effect could produce up to ?50 to + 50Wm?2 deviations in the surface solar fluxes over the mountain areas, resulting in a temperature increase of up to 1 °C on the sunny side. Upward surface sensible and latent heat fluxes are modulated accordingly to compensate for the change in surface solar fluxes. Snow water equivalent and surface albedo both show decreases on the sunny side of the mountains, indicating more snowmelt and hence reduced snow albedo associated with more solar insolation due to mountain effect. Soil moisture increases on the sunny side of the mountains due to enhanced snowmelt, while decreases on the shaded side. Substantial differences are found in the morning hours from 8-10 a.m. and in the afternoon around 3-5 p.m., while differences around noon and in the early morning and late afternoon are comparatively smaller. Variation in the surface energy balance can also affect atmospheric processes, such as cloud fields, through the modulation of vertical thermal structure. Negative changes of up to ?40 gm?2 are found in the cloud water path, associated with reductions in the surface insolation over the cloud region. The day-averaged deviations in the surface solar flux are positive over the mountain areas and negative in the valleys, with a range between ?12~12Wm?2. Changes in sensible and latent heat fluxes and surface skin temperature follow the solar insolation pattern. Differences in the domain-averaged diurnal variation over the Sierras show that the mountain area receives more solar insolation during early morning and late afternoon, resulting in enhanced upward sensible heat and latent heat fluxes from the surface and a corresponding increase in surface skin temperature. During the middle of the day, however, the surface insolation and heat fluxes show negative changes, indicating a cooling effect. Hence overall, the diurnal variations of surface temperature and surface fluxes in the Sierra-Nevada are reduced through the interactions of radiative transfer and mountains. The hourly differences of the surface solar insolation in higher elevated regions, however, show smaller magnitude in negative changes during the middle of the day and possibly more solar fluxes received during the whole day.

  16. Karstic mountain almost conquered. [Guatemala

    SciTech Connect (OSTI)

    Not Available

    1982-06-10

    International design and construction teams building a 300-Mw hydroelectric system high in central Guatemala's rugged mountains since 1977 have persevered through karstic-limestone nightmares, logistical bottlenecks and political upheaval to bring the $700-million Rio Chixoy project close to completion. The costly power push, requiring the largest construction effort in Guatemala's modern history, plays a critical role for the future. When all five Pelton-wheel turbines are spinning late next year, their output will more than double electricity production in Central America's poorest, most populous country. Despite numerous delays, design changes and cost increases above the original $240-million bid package, work has progressed to the final stages on a 360-ft-high rockfill dam, 16-mile power tunnel and aboveground powerhouse.

  17. Finding of no significant impact. Consolidation and interim storage of special nuclear material at Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    1995-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA -- 1060, for the consolidation, processing, and interim storage of Category I and II special nuclear material (SNM) in Building 371 at the Rocky Flats Environmental Technology Site (hereinafter referred to as Rocky Flats or Site), Golden, Colorado. The scope of the EA included alternatives for interim storage including the no action alternative, the construction of a new facility for interim storage at Rocky Flats, and shipment to other DOE facilities for interim storage.

  18. Analysis of offsite Emergency Planning Zones (EPZs) for the Rocky Flats Plant. Phase 3, Sitewide spectrum-of-accidents and bounding EPZ analysis

    SciTech Connect (OSTI)

    Petrocchi, A.J.; Zimmerman, G.A.

    1994-03-14

    During Phase 3 of the EPZ project, a sitewide analysis will be performed applying a spectrum-of-accidents approach to both radiological and nonradiological hazardous materials release scenarios. This analysis will include the MCA but will be wider in scope and will produce options for the State of Colorado for establishing a bounding EPZ that is intended to more comprehensively update the interim, preliminary EPZ developed in Phase 2. EG&G will propose use of a hazards assessment methodology that is consistent with the DOE Emergency Management Guide for Hazards Assessments and other methods required by DOE orders. This will include hazards, accident, safety, and risk analyses. Using this methodology, EG&G will develop technical analyses for a spectrum of accidents. The analyses will show the potential effects from the spectrum of accidents on the offsite population together with identification of offsite vulnerable zones and areas of concern. These analyses will incorporate state-of-the-art technology for accident analysis, atmospheric plume dispersion modeling, consequence analysis, and the application of these evaluations to the general public population at risk. The analyses will treat both radiological and nonradiological hazardous materials and mixtures of both released accidentally to the atmosphere. DOE/RFO will submit these results to the State of Colorado for the State`s use in determining offsite emergency planning zones for the Rocky Flats Plant. In addition, the results will be used for internal Rocky Flats Plant emergency planning.

  19. Evaluation of beryllium exposure assessment and control programs at AWE, Cardiff Facility, Rocky Flats Plant, Oak Ridge Y-12 Plant and Lawrence Livermore National Laboratory. Phase 1

    SciTech Connect (OSTI)

    Johnson, J.S.; Foote, K.L.; Slawski, J.W.; Cogbill, G.

    1995-04-28

    Site visits were made to DOE beryllium handling facilities at the Rocky Flats Plant; Oak Ridge Y-12 Plant, LLNL; as well as to the AWE Cardiff Facility. Available historical data from each facility describing its beryllium control program were obtained and summarized in this report. The AWE Cardiff Facility computerized Be personal and area air-sampling database was obtained and a preliminary evaluation was conducted. Further validation and documentation of this database will be very useful in estimating worker Be. exposure as well as in identifying the source potential for a variety of Be fabrication activities. Although all of the Be control programs recognized the toxicity of Be and its compounds, their established control procedures differed significantly. The Cardiff Facility, which was designed for only Be work, implemented a very strict Be control program that has essentially remained unchanged, even to today. LLNL and the Oak Ridge Y-12 Plant also implemented a strict Be control program, but personal sampling was not used until the mid 1980s to evaluate worker exposure. The Rocky Flats plant implemented significantly less controls on beryllium processing than the three previous facilities. In addition, records were less available, management and industrial hygiene staff turned over regularly, and less control was evident from a management perspective.

  20. CX-004299: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Tree Cutting Cheyenne Field Office Maintenance AreaCX(s) Applied: B1.3Date: 10/21/2010Location(s): Larimer, ColoradoOffice(s): Western Area Power Administration-Rocky Mountain Region

  1. Flow over Heated Terrain. Part II: Generation of Convective Precipitation

    E-Print Network [OSTI]

    Tucker, Donna F.; Crook, N. Andrew

    2005-09-01

    Previous studies have shown that thunderstorms in the Rocky Mountain region have preferred areas in which to form. There has been some indication that these areas depend on the midtropospheric wind direction. A nonhydrostatic model with a terrain...

  2. CX-011206: Categorical Exclusion Determination | Department of...

    Office of Environmental Management (EM)

    Maintenance CX(s) Applied: B1.3 Date: 08302013 Location(s): Colorado, Colorado, New Mexico Offices(s): Western Area Power Administration-Rocky Mountain Region Western Area Power...

  3. CX-012766: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Loveland Area Hazard Trees Larimer County, Colorado CX(s) Applied: B1.3Date: 41858 Location(s): ColoradoOffices(s): Western Area Power Administration-Rocky Mountain Region

  4. The Virginia Mountain Streams Symposium October 30, 2004

    E-Print Network [OSTI]

    Lawrence, Deborah

    The Virginia Mountain Streams Symposium October 30, 2004 University of Virginia Summary Virginia mountains. The coordinated SWAS/VTSSS program now involves routine water quality monitoring in 65 forested mountain watersheds and associated mountain streams. To mark 25 years of investigation on Virginia

  5. The mountain whitefish (Prosopium williamsoni ): a potential indicator species for the Fraser System.

    E-Print Network [OSTI]

    System. DOE FRAP 1998-16 Prepared for: Environment Canada Environmental Conservation Branch Aquatic indicate that the life history, habitat use, and movements of mountain whitefish in the Prince George area different foraging forms; and distinctive stocks. Despite this complex life history and stock structure

  6. Savage Arms Sales Office 118 Mountain Road

    E-Print Network [OSTI]

    New Hampshire, University of

    Savage Arms Sales Office 118 Mountain Road Suffield, Ct. 06078 Phone: (413) 642-4121 Fax: (860) 668 to change.) California orders will also need the Dealers CFD# Sales Tax must be added for orders shipping

  7. Rank Quantization Mountain View, CA, USA

    E-Print Network [OSTI]

    Singh, Jaswinder Pal

    Rank Quantization Ravi Kumar Google Mountain View, CA, USA ravi.k53@gmail.com Ronny Lempel Yahoo and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post

  8. EIS-0277: Management of Certain Plutonium Residues and Scrub Alloy Stored at the Rocky Flats Environmental Technology Site

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential alternatives and impacts associated with a proposal to process certain plutonium residues and all of the scrub alloy currently stored at Rocky Flats. While ongoing...

  9. ADVANCES IN YUCCA MOUNTAIN DESIGN

    SciTech Connect (OSTI)

    Harrington, P.G.; Gardiner, J.T.; Russell, P.R.Z.; Lachman, K.D.; McDaniel, P.W.; Boutin, R.J.; Brown, N.R.; Trautner, L.J.

    2003-02-27

    Since site designation of the Yucca Mountain Project by the President, the U.S. Department of Energy (DOE) has begun the transition from the site characterization phase of the project to preparation of the license application. As part of this transition, an increased focus has been applied to the repository design. Several evolution studies were performed to evaluate the repository design and to determine if improvements in the design were possible considering advances in the technology for handling and packaging nuclear materials. The studies' main focus was to reduce and/or eliminate uncertainties in both the pre-closure and post-closure performance of the repository and to optimize operations. The scope and recommendations from these studies are the subjects of this paper and include the following topics: (1) a more phased approach for the surface facility that utilize handling and packaging of the commercial spent nuclear fuel in a dry environment rather than in pools as was presented in the site recommendation; (2) slight adjustment of the repository footprint and a phased approach for construction and emplacement of the repository subsurface; and (3) simplification of the construction, fabrication and installation of the waste package and drip shield.

  10. Rocky Flats Plant fluidized-bed incinerator. Engineering design and reference manual

    SciTech Connect (OSTI)

    Meile, L.J.

    1982-11-05

    The information in this manual is being presented to complete the documentation of the fluidized-bed incineration (FBI) process development at the Rocky Flats Plant. The information pertains to the 82-kg/hour demonstration unit at the Rocky Flats Plant. This document continues the presentation of design reference material in the aeas of equipment drawings, space requirements, and unit costs. In addition, appendices contain an operating procedure and an operational safety analysis of the process. The cost figures presented are based on 1978 dollars and have not been converted to a current dollar value. Also, the cost of modifications are not included, since they would be insignificant if they were incorporated into a new installation.

  11. The marriage of RCRA and CERCLA at the Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Shelton, D.C.; Brooks, L.M.

    1998-11-01

    A key goal of the Rocky Flats Cleanup Agreement (RFCA) signed in July of 1996 was to provide a seamless marriage of the Resource Conservation and Recovery Act (RCRA) (and other media specific programs) and the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the implementing agencies of each. This paper examines the two years since the signing of RFCA and identifies the successes, failures, and stresses of the marriage. RFCA has provided an excellent vehicle for regulatory and substantive progress at the Department of Energy`s Rocky Flats facility. The key for a fully successful marriage is to build on the accomplishments to date and to continually improve the internal and external systems and relationships. To date, the parties can be proud of both the substantial accomplishment of substantive environmental work and the regulatory systems that have enabled the work.

  12. Rocky Flats 1990--91 winter validation tracer study: Volume 1

    SciTech Connect (OSTI)

    Brown, K.J.

    1991-10-01

    During the winter of 1990--91, North American Weather Consultants (NAWC) and its subcontractor, ABB Environmental Services (ABBES), conducted a Winter Validation Study (WVS) for EG&G Rocky Flats involving 12 separate tracer experiments conducted between February 3 and February 19, 1991. Six experiments were conducted during nighttime hours and four experiments were conducted during daytime hours. In addition, there was one day/night and one night/day transitional experiment conducted. The primary purpose of the WVS was to gather data to further the approval process for the Terrain Responsive Atmospheric Code (TRAC). TRAC is an atmospheric dispersion model developed and operated at the Department of Energy`s (DOE`s) Rocky Flats Plant (RFP) north of Denver, Colorado. A secondary objective was to gather data that will serve to validate the TRAC model physics.

  13. Seismicity in the Vicinity of Yucca Mountain, Nevada, for the Period October 1, 2004 to September 30, 2006

    SciTech Connect (OSTI)

    Smith, Ken

    2007-11-26

    This report describes earthquake activity within approximately 65 km of Yucca Mountain site during the October 1, 2004 to September 30, 2006 time period (FY05-06). The FY05-06 earthquake activity will be compared with the historical and more recent period of seismic activity in the Yucca Mountain region. The relationship between the distribution of seismicity and active faults, historical patterns of activity, and rates of earthquakes (number of events and their magnitudes) are important components in the assessment of the seismic hazard for the Yucca Mountain site. Since October 1992 the University of Nevada has compiled a catalog of earthquakes in the Yucca Mountain area. Seismicity reports have identified notable earthquake activity, provided interpretations of the seismotectonics of the region, and documented changes in the character of earthquake activity based on nearly 30 years of site-characterization monitoring. Data from stations in the seismic network in the vicinity of Yucca Mountain is collected and managed at the Nevada Seismological Laboratory (NSL) at the University of Nevada Reno (UNR). Earthquake events are systematically identified and cataloged under Implementing Procedures developed in compliance with the Nevada System of Higher Education (NSHE) Quality Assurance Program. The earthquake catalog for FY05-06 in the Yucca Mountain region submitted to the Yucca Mountain Technical Data Management System (TDMS) forms the basis of this report.

  14. -Patch dynamics and local succession in a sandstone area with frequent disturbance -533 Journal of Vegetation Science 12: 533-544, 2001

    E-Print Network [OSTI]

    Herben, Tomas

    - Patch dynamics and local succession in a sandstone area with frequent disturbance - 533 Journal succession in a sandstone area with frequent disturbance Gutzerová, Nadzda1 & Herben, Tomás2* 1 Sv. Cecha 389@site.cas.cz Abstract. A system of sand talus cones in a small forested rocky sandstone area was investigated

  15. Preliminary Notice of Violation , Rocky Flats Environmental Technology Site

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary Areas ofEnergyCorps Capitalsolar array.CERTIFIED MAIL RETURN-

  16. Waste drum gas generation sampling program at Rocky Flats during FY 1989

    SciTech Connect (OSTI)

    Roggenthen, D.K.; Nieweg, R.G.

    1990-10-01

    Rocky Flats Plant transuranic waste drums were sampled for gas composition. Glass, metal, graphite, and solidified inorganic sludge transuranic waste forms were sampled. A vacuum system was used to sample each layer of containment inside a waste drum, including individual waste bags. G values were calculated for the waste drums. G(H{sub 2}) was below 0.6 and G(Total) was below 1.3 for all waste forms discussed in this report. 5 refs., 3 figs., 3 tabs.

  17. Tomographic gamma scanning of uranium-contaminated waste at Rocky Flats

    SciTech Connect (OSTI)

    Mercer, D.J.; Betts, S.E.; Prettyman, T.H.; Rael, C.D.

    1998-12-31

    A tomographic gamma-ray scanning (TGS) instrument was deployed at Rocky Flats Environmental Technology Site (RFETS) to assist with the deactivation of Building 886. Many 208-L drums containing waste contaminated with highly enriched uranium were measured in order to certify these sites for shipment and disposal. This project marks a successful cooperation between RFETS and Los Alamos National Laboratory and is the first major field experience using TGS technology to assay uranium.

  18. Analysis of offsite emergency planning zones for the Rocky Flats Plant

    SciTech Connect (OSTI)

    Hodgin, C.R.; Daugherty, N.M.; Smith, M.L. . Rocky Flats Plant); Bunch, D.; Toresdahl, J.; Verholek, M.G. )

    1991-01-01

    The objective of this report is to fully document technical data and information that have been developed to support offsite emergency planning by the State of Colorado for potential accidents at the Rocky Flats Plant. Specifically, this report documents information and data that will assist the State of Colorado in upgrading its radiological emergency planning zones for Rocky Flats Plant. The Colorado Division of Disaster Emergency Services (DODES) and the Colorado Department of Health (CDH) represent the primary audience for this report. The secondary audience for this document includes the Rocky Flats Plant; federal, State, and local governmental agencies; the scientific community; and the interested public. Because the primary audience has a pre-existing background on the subject, this report assumes some exposure to emergency planning, health physics, and dispersion modeling on the part of the reader. The authors have limited their assumptions of background knowledge as much as possible, recognizing that the topics addressed in the report may be new to some secondary audiences.

  19. The role of macrobiota in structuring microbial communities along rocky shores

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pfister, Catherine A.; Gilbert, Jack A.; Gibbons, Sean M.

    2014-10-16

    Rocky shore microbial diversity presents an excellent system to test for microbial habitat specificity or generality, enabling us to decipher how common macrobiota shape microbial community structure. At two coastal locations in the northeast Pacific Ocean, we show that microbial composition was significantly different between inert surfaces, the biogenic surfaces that included rocky shore animals and an alga, and the water column plankton. While all sampled entities had a core of common OTUs, rare OTUs drove differences among biotic and abiotic substrates. For the mussel Mytilus californianus, the shell surface harbored greater alpha diversity compared to internal tissues of themore »gill and siphon. Strikingly, a 7-year experimental removal of this mussel from tidepools did not significantly alter the microbial community structure of microbes associated with inert surfaces when compared with unmanipulated tidepools. However, bacterial taxa associated with nitrate reduction had greater relative abundance with mussels present, suggesting an impact of increased animal-derived nitrogen on a subset of microbial metabolism. Because the presence of mussels did not affect the structure and diversity of the microbial community on adjacent inert substrates, microbes in this rocky shore environment may be predominantly affected through direct physical association with macrobiota.« less

  20. Environment, safety and Health Progress Assessment of the Rocky Flats Plant

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    This report documents the result of the US Department of Energy`s (DOE) Environment, Safety and Health (ES&H) Progress Assessment of the DOE Rocky Flats Plant (RFP) in Golden, Colorado. The assessment, which was conducted during the period of May 17 through May 28, 1993, included a selective review of the ES&H management systems and programs of the responsible DOE Headquarters Program Offices (Defense Programs (DP) and Environmental Restoration and Waste Management (EM)), the DOE Rocky Flats Office (RFO), and the site contractor, EG&G Rocky Flats, Inc. (EG&G). Despite the near constant state of flux under which RFP has been required to operate, the Progress Assessment Team has concluded that significant progress has been made in correcting the deficiencies identified in the 1989 Assessment and in responding responsibly to regulations, and DOE directives and guidance that have been issued since that time. The Team concluded that the improvements have been concentrated in the activities associated with plutonium facilities and in regulatory driven programs. Much remains to be done with respect to implementing on a sitewide basis those management systems that anchor an organization`s pursuit of continuous ES&H improvement. Furthermore the Team concluded that the pace of improvement has been constrained by a combination of factors that have limited the site`s ability to manage change in the pursuit of sitewide ES&H excellence.