Powered by Deep Web Technologies
Note: This page contains sample records for the topic "area raft river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Deep drilling data, Raft River geothermal area, Idaho-Raft River...  

Open Energy Info (EERE)

Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well sidetrack-C Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Deep...

2

Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal  

Open Energy Info (EERE)

Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well sidetrack-C Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well sidetrack-C Details Activities (1) Areas (1) Regions (0) Abstract: Cassia County Idaho; data; geophysical surveys; Idaho; Raft River geothermal area; surveys; United States; USGS; Well No. 3; well-logging Author(s): Covington, H.R. Published: Open-File Report - U. S. Geological Survey, 1/1/1978 Document Number: Unavailable DOI: Unavailable Exploratory Well At Raft River Geothermal Area (1977) Raft River Geothermal Area Retrieved from "http://en.openei.org/w/index.php?title=Deep_drilling_data,_Raft_River_geothermal_area,_Idaho-Raft_River_geothermal_exploration_well_sidetrack-C&oldid=473365"

3

Raft River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Raft River Geothermal Area Raft River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Raft River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 DOE Involvement 4 Timeline 5 Regulatory and Environmental Issues 6 Future Plans 7 Raft River Unit II (26 MW) and Raft River Unit III (32 MW) 8 Enhanced Geothermal System Demonstration 9 Exploration History 10 Well Field Description 11 Technical Problems and Solutions 12 Geology of the Area 12.1 Regional Setting 12.2 Structure 12.3 Stratigraphy 12.3.1 Raft River Formation 12.3.2 Salt Lake Formation 12.3.3 Precambrian Rocks 13 Hydrothermal System 14 Heat Source 15 Geofluid Geochemistry 16 NEPA-Related Analyses (1) 17 Exploration Activities (77) 18 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.10166667,"lon":-113.38,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

4

Exploratory Well At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

7) 7) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Exploratory Well Activity Date 1977 Usefulness not indicated DOE-funding Unknown Notes Raft River Geothermal Exploratory Hole No. 4, RRGE-4 drilled. During this time Raft River geothermal exploration well sidetrack-C also completed. References Kunze, J. F.; Stoker, R. C.; Allen, C. A. (14 December 1977) Update on the Raft River Geothermal Reservoir Covington, H.R. (1 January 1978) Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well sidetrack-C Retrieved from "http://en.openei.org/w/index.php?title=Exploratory_Well_At_Raft_River_Geothermal_Area_(1977)&oldid=473847"

5

Deep drilling data Raft River geothermal area, Idaho | Open Energy  

Open Energy Info (EERE)

drilling data Raft River geothermal area, Idaho drilling data Raft River geothermal area, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Deep drilling data Raft River geothermal area, Idaho Details Activities (2) Areas (1) Regions (0) Abstract: Stratigraphy and geophysical logs of three petroleum test boreholes in the Raft River Valley are presented. The geophysical logs include: temperature, resistivity, spontaneous potential, gamma, caliper, and acoustic logs. Author(s): Oriel, S. S.; Williams, P. L.; Covington, H. R.; Keys, W. S.; Shaver, K. C. Published: DOE Information Bridge, 1/1/1978 Document Number: Unavailable DOI: 10.2172/6272996 Source: View Original Report Exploratory Well At Raft River Geothermal Area (1975) Exploratory Well At Raft River Geothermal Area (1976) Raft River Geothermal Area

6

Geophysical Method At Raft River Geothermal Area (1975) | Open Energy  

Open Energy Info (EERE)

Method At Raft River Geothermal Area (1975) Method At Raft River Geothermal Area (1975) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geophysical Method At Raft River Geothermal Area (1975) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Geophysical Techniques Activity Date 1975 Usefulness not indicated DOE-funding Unknown Notes Geologic and geophysics studies were completed at the Raft River valley. References Williams, P.L.; Mabey, D.R.; Pierce, K.L.; Zohdy, A.A.R.; Ackermann, H.; Hoover, D.B. (1 May 1975) Geological and geophysical studies of a geothermal area in the southern Raft river valley, Idaho Retrieved from "http://en.openei.org/w/index.php?title=Geophysical_Method_At_Raft_River_Geothermal_Area_(1975)&oldid=59434

7

Geophysical Method At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Geophysical Method At Raft River Geothermal Area (1977) Geophysical Method At Raft River Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geophysical Method At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Geophysical Techniques Activity Date 1977 Usefulness not indicated DOE-funding Unknown Notes Borehole geophysics were completed at the Raft River valley, Idaho. References Applegate, J.K.; Donaldson, P.R.; Hinkley, D.L.; Wallace, T.L. (1 February 1977) Borehole geophysics evaluation of the Raft River geothermal reservoir, Idaho Retrieved from "http://en.openei.org/w/index.php?title=Geophysical_Method_At_Raft_River_Geothermal_Area_(1977)&oldid=594349" Category: Exploration Activities

8

Exploring the Raft River geothermal area, Idaho, with the dc...  

Open Energy Info (EERE)

Home Journal Article: Exploring the Raft River geothermal area, Idaho, with the dc resistivity method (Abstract) edit Details Activities (1) Areas (1) Regions (0)...

9

Numerical Modeling At Raft River Geothermal Area (1983) | Open Energy  

Open Energy Info (EERE)

Raft River Geothermal Area (1983) Raft River Geothermal Area (1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Numerical Modeling At Raft River Geothermal Area (1983) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Numerical Modeling Activity Date 1983 Usefulness not indicated DOE-funding Unknown Notes The numerical modeling of the resistivity data is marginal for changes as small as those observed but the results suggest that changes of a few percent could be expected from a fracture zone extending from depth to within 100 m of the surface. References Sill, W. R. (1 September 1983) Resistivity measurements before and after injection Test 5 at Raft River KGRA, Idaho. Final report Retrieved from "http://en.openei.org/w/index.php?title=Numerical_Modeling_At_Raft_River_Geothermal_Area_(1983)&oldid=47387

10

Ground Gravity Survey At Raft River Geothermal Area (1978) |...  

Open Energy Info (EERE)

Activity Details Location Raft River Geothermal Area Exploration Technique Ground Gravity Survey Activity Date 1978 Usefulness not indicated DOE-funding Unknown Exploration...

11

Magnetotellurics At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Magnetotellurics At Raft River Geothermal Area (1977) Magnetotellurics At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Magnetotellurics Activity Date 1977 Usefulness useful DOE-funding Unknown Notes Magnetotelluric soundings along a profile extending from the Raft River geothermal area in southern Idaho in Yellowstone National Park in Wyoming reveal a highly anomalous crustal structure involving a conductive zone at depths that range from 18 km in the central part of the eastern Snake River Plain to 7 km beneath the Raft River thermal area and as little as 5 km in Yellowstone. Resistivities in this conductive zone are less than 10 ohm-m and at some sites than 1 ohm-m. References Stanley, W.D.; Boehl, J.E.; Bostick, F.X.; Smith, H.W. (10 June

12

DC Resistivity Survey (Schlumberger Array) At Raft River Geothermal Area  

Open Energy Info (EERE)

Area Area (1974-1975) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: DC Resistivity Survey (Schlumberger Array) At Raft River Geothermal Area (1974-1975) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique DC Resistivity Survey (Schlumberger Array) Activity Date 1974 - 1975 Usefulness not indicated DOE-funding Unknown Exploration Basis Hydrogeologic study of the area Notes In 1975, the U.S. Geological Survey made 70 Schlumberger resistivity soundings in the Upper Raft River Valley and in parts of the Raft River Valley. These soundings complement the 79 soundings made previously in the Raft River Valley and bring the total number of soundings to 149. This work was done as part of a hydrogeologic study of the area. The location,

13

Simulation analysis of the unconfined aquifer, Raft River Geothermal Area,  

Open Energy Info (EERE)

Simulation analysis of the unconfined aquifer, Raft River Geothermal Area, Simulation analysis of the unconfined aquifer, Raft River Geothermal Area, Idaho-Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Simulation analysis of the unconfined aquifer, Raft River Geothermal Area, Idaho-Utah Details Activities (1) Areas (1) Regions (0) Abstract: This study covers about 1000 mi2 (2600 km2) of the southern Raft River drainage basin in south-central Idaho and northwest Utah. The main area of interest, approximately 200 mi2 (520 km2) of semiarid agricultural and rangeland in the southern Raft River Valley that includes the known Geothermal Resource Area near Bridge, Idaho, was modelled numerically to evaluate the hydrodynamics of the unconfined aquifer. Computed and estimated transmissivity values range from 1200 feet squared per day (110

14

Telluric Survey At Raft River Geothermal Area (1978) | Open Energy  

Open Energy Info (EERE)

Raft River Geothermal Area (1978) Raft River Geothermal Area (1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Telluric Survey At Raft River Geothermal Area (1978) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Telluric Survey Activity Date 1978 Usefulness not indicated DOE-funding Unknown Exploration Basis Infer the structure and the general lithology underlying the valley Notes The relative ellipse area contour map compiled from the telluric current survey generally conforms to the gravity map except for lower values in the area of the geothermal system. References Mabey, D.R.; Hoover, D.B.; O'Donnell, J.E.; Wilson, C.W. (1 December 1978) Reconnaissance geophysical studies of the geothermal system in southern Raft River Valley, Idaho

15

Self Potential Measurements At Raft River Geothermal Area (1983) | Open  

Open Energy Info (EERE)

Measurements At Raft River Geothermal Area (1983) Measurements At Raft River Geothermal Area (1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Self Potential Measurements At Raft River Geothermal Area (1983) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Self Potential Measurements Activity Date 1983 Usefulness not indicated DOE-funding Unknown Notes Self-potential measurements before and during injection tests at Raft River KGRA, Idaho indicate a small negative change. The magnitude of the change (5 to 10 mV) is near the noise level (5 mV) but they extend over a fairly broad area. The presence of a cathodic protection system clouds the issue of the validity of the changes, however the form of the observed changes cannot be explained by any simple change in the current strength of the

16

Development Wells At Raft River Geothermal Area (2004) | Open Energy  

Open Energy Info (EERE)

Development Wells At Raft River Geothermal Area (2004) Development Wells At Raft River Geothermal Area (2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Raft River Geothermal Area (2004) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Development Wells Activity Date 2004 Usefulness not indicated DOE-funding GRED II Notes Geothermal Resource Exploration and Definition Projects Raft River (GRED II): Re-assessment and testing of previously abandoned production wells. The objective of the U.S. Geothermal effort is to re-access the available wellbores, assess their condition, perform extensive testing of the reservoir to determine its productive capacity, and perform a resource utilization assessment. At the time of this paper, all five wells had been

17

Acoustic Logs At Raft River Geothermal Area (1979) | Open Energy  

Open Energy Info (EERE)

Raft River Geothermal Area (1979) Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Acoustic Logs Activity Date 1979 Usefulness useful DOE-funding Unknown Exploration Basis To permit the lateral and vertical extrapolation of core and test data and bridged the gap between surface geophysical data and core analyses. Notes Televiewer logs permitted the location and orientation of numerous fractures and several features that may be faults. References Keys, W. S.; Sullivan, J. K. (1 June 1979) Role of borehole geophysics in defining the physical characteristics of the Raft River geothermal reservoir, Idaho Retrieved from "http://en.openei.org/w/index.php?title=Acoustic_Logs_At_Raft_River_Geothermal_Area_(1979)&oldid=473816"

18

Field Mapping At Raft River Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

Raft River Geothermal Area (1980) Raft River Geothermal Area (1980) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Field Mapping Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis Delineate the subsurface geology Notes The Raft River Valley occupies an upper Cenozoic structural basin filled with nearly 1600 m of fluvial silt, sand, and gravel. Rapid facies and thickness changes, steep initial dips (30 0C), and alteration make correlation of basin-fill depositional units very difficult. The Raft River geothermal system is a hot water convective system relying on deep circulation of meteoric water in a region of high geothermal gradients and open fractures near the base of the Tertiary basin fill. References Covington, H. R. (1 September 1980) Subsurface geology of the

19

Injectivity Test At Raft River Geothermal Area (1979) | Open Energy  

Open Energy Info (EERE)

Injectivity Test At Raft River Geothermal Area (1979) Injectivity Test At Raft River Geothermal Area (1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Injectivity Test Activity Date 1979 Usefulness useful DOE-funding Unknown Notes Quantification of the pressure response prior to 600 minutes is not always possible. Short-duration (< 24-hour) injection or pump tests are conducted with the drilling rig equipment, and long-duration (21-day) injection and pump tests are then conducted with the permanent pumping facilities. References Allman, D. W.; Goldman, D.; Niemi, W. L. (1 January 1979) Evaluation of testing and reservoir parameters in geothermal wells at Raft

20

Exploratory Well At Raft River Geothermal Area (1975) | Open Energy  

Open Energy Info (EERE)

5) 5) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Raft River Geothermal Area (1975) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Exploratory Well Activity Date 1975 Usefulness not indicated DOE-funding Unknown Exploration Basis First exploratory well Notes Raft River Geothermal Exploratory Hole No. 1 (RRGE-1) is drilled. References Reynolds Electrical and Engineering Co., Inc., Las Vegas, Nev. (USA) (1 October 1975) Raft River Geothermal Exploratory Hole No. 1 (RRGE-1). Completion report Kunze, J.F. (1 May 1977) Geothermal R and D project report, October 1, 1976--March 31, 1977 Oriel, S. S.; Williams, P. L.; Covington, H. R.; Keys, W. S.; Shaver, K. C. (1 January 1978) Deep drilling data Raft River geothermal

Note: This page contains sample records for the topic "area raft river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Conceptual Model At Raft River Geothermal Area (1988) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Conceptual Model At Raft River Geothermal Area (1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Raft River Geothermal Area (1988) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Conceptual Model Activity Date 1988 Usefulness not indicated DOE-funding Unknown Exploration Basis Use geophysical logs to determine the reservoir transmissivity Notes Seven fracture orientation sets are recognized in the sedimentary and metamorphic rock units. Although the conventional geophysical logs showed

22

Tracer Testing At Raft River Geothermal Area (1983) | Open Energy  

Open Energy Info (EERE)

3) 3) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Tracer Testing Activity Date 1983 Usefulness not indicated DOE-funding Unknown Exploration Basis To develop chemical tracing procedures for geothermal areas. Notes Two field experiments were conducted to develop chemical tracer procedures for use with injection-backflow testing, one on the fracture-permeability Raft River reservoir and the other on the matrix-permeability East Mesa reservoir. Results from tests conducted with incremental increases in the injection volume at both East Mesa and Raft River suggests that, for both reservoirs, permeability remained uniform with increasing distance from the well bore. Increased mixing during quiescent periods, between injection and

23

Aeromagnetic Survey At Raft River Geothermal Area (1978) | Open Energy  

Open Energy Info (EERE)

Area (1978) Area (1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Raft River Geothermal Area (1978) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Aeromagnetic Survey Activity Date 1978 Usefulness not indicated DOE-funding Unknown Exploration Basis To infer the structure and the general lithology underlying the valley Notes The aeromagnetic data indicate the extent of the major Cenozoic volcanic units. References Mabey, D.R.; Hoover, D.B.; O'Donnell, J.E.; Wilson, C.W. (1 December 1978) Reconnaissance geophysical studies of the geothermal system in southern Raft River Valley, Idaho Retrieved from "http://en.openei.org/w/index.php?title=Aeromagnetic_Survey_At_Raft_River_Geothermal_Area_(1978)&oldid=473817"

24

Electromagnetic Soundings At Raft River Geothermal Area (1977) | Open  

Open Energy Info (EERE)

Electromagnetic Soundings At Raft River Geothermal Area (1977) Electromagnetic Soundings At Raft River Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Electromagnetic Soundings At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Electromagnetic Sounding Techniques Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis The purpose of the survey was: (1) to field test U.S. Geological Survey extra-low-frequency (ELF) equipment using a grounded wire source and receiver loop configuration (which is designed to measure the vertical magnetic field (Hz) at the loop center for various frequencies); (2) to present an example of the EM sounding data and interpretations using a

25

Chemical Logging At Raft River Geothermal Area (1979) | Open Energy  

Open Energy Info (EERE)

Logging At Raft River Geothermal Area (1979) Logging At Raft River Geothermal Area (1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Chemical Logging At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Chemical Logging Activity Date 1979 Usefulness useful DOE-funding Unknown Exploration Basis To use new methods to assist geothermal well drilling. Notes Chemical logging resulted in the development of a technique to assist in geothermal well drilling and resource development. Calcium-alkalinity ratios plotted versus drill depth assisted in defining warm and hot water aquifers. Correlations between the calcium-alkalinity log and lithologic logs were used to determine aquifer types and detection of hot water zones

26

Petrography Analysis At Raft River Geothermal Area (2011) | Open Energy  

Open Energy Info (EERE)

Petrography Analysis At Raft River Geothermal Area (2011) Petrography Analysis At Raft River Geothermal Area (2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Petrography Analysis At Raft River Geothermal Area (2011) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Petrography Analysis Activity Date 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Explore for development of an EGS demonstration project Notes X-ray diffraction and thin section analyses are being conducted on samples from 5 deep wells, RRG- 1, 2, 3, 7 and 9, to determine the characteristics of the rock types and hydrothermal alteration within the geothermal system. Thin section analyses of samples from RRG-9 document the presence of strong alteration and brecciation at the contact between the Tertiary and basement

27

Fault Mapping At Raft River Geothermal Area (1993) | Open Energy  

Open Energy Info (EERE)

Fault Mapping At Raft River Geothermal Area (1993) Fault Mapping At Raft River Geothermal Area (1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fault Mapping At Raft River Geothermal Area (1993) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Fault Mapping Activity Date 1993 Usefulness useful DOE-funding Unknown Exploration Basis Geologic mapping, strain and kinematic analysis Notes The mountains expose a detachment fault that separates a hanging wall of Paleozoic rocks from Proterozoic and Archean rocks of the footwall. Beneath the detachment lies a 100 to 300m-thick top-to-the-east extensional shear zone. Geologic mapping, strain and kinematic analysis, and 40Ar/39Ar thermochronology suggest that the shear zone and detachment fault had an

28

Conceptual Model At Raft River Geothermal Area (1981) | Open Energy  

Open Energy Info (EERE)

Conceptual Model At Raft River Geothermal Area (1981) Conceptual Model At Raft River Geothermal Area (1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Raft River Geothermal Area (1981) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Conceptual Model Activity Date 1981 Usefulness not indicated DOE-funding Unknown Exploration Basis Use geoscience data to develop a conceptual model of the reservoir. Notes The geoscience data gathered in the drilling and testing of seven geothermal wells suggest that the thermal reservoir is: (a) produced from fractures found at the contact metamorphic zone, apparently the base of detached normal faulting from the Bridge and Horse Well Fault zones of the Jim Sage Mountains; (b) anisotropic, with the major axis of hydraulic

29

Field Mapping At Raft River Geothermal Area (1990) | Open Energy  

Open Energy Info (EERE)

Field Mapping At Raft River Geothermal Area (1990) Field Mapping At Raft River Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Raft River Geothermal Area (1990) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Field Mapping Activity Date 1990 Usefulness not indicated DOE-funding Unknown Notes Together, field and 40Ar/39Ar results suggest that Late Cretaceous extension occurred in the Sevier belt hinterland at the same time as shortening in the eastern foreland and at depth in the hinterland. Sufficient topography must have been present to drive upper-crustal extension in the eastern hinterland. References Wells, M.L.; Allmendinger, R.W.; Dallmeyer, R.D. (1 October 1990) Late Cretaceous extension in the hinterland of the Sevier thrust belt,

30

Airborne Electromagnetic Survey At Raft River Geothermal Area (1979) | Open  

Open Energy Info (EERE)

Electromagnetic Survey At Raft River Electromagnetic Survey At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Airborne Electromagnetic Survey Activity Date 1979 Usefulness not indicated DOE-funding Unknown Exploration Basis To show that AEM methods can be useful in exploration for and defining geothermal systems Notes Extensive audio-magnetotelluric (AMT) work by the USGS in KGRA's showed that many geothermal systems do have a near-surface electrical signature which should be detectable by an AEM system. References Christopherson, K.R.; Long, C.L.; Hoover, D.B. (1 September 1980) Airborne electromagnetic surveys as a reconnaissance technique for geothermal exploration Retrieved from "http://en.openei.org/w/index.php?title=Airborne_Electromagnetic_Survey_At_Raft_River_Geothermal_Area_(1979)&oldid=510231

31

Conceptual Model At Raft River Geothermal Area (1990) | Open Energy  

Open Energy Info (EERE)

Conceptual Model At Raft River Geothermal Area (1990) Conceptual Model At Raft River Geothermal Area (1990) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Conceptual Model Activity Date 1990 Usefulness not indicated DOE-funding Unknown Exploration Basis Develop a conceptual model to explain the exposed rocks. Notes Although commonly obscured by simple shear, pure shear fabrics occur locally within many metamorphic core complexes. The cover rocks of the Raft River metamorphic core complex exposed within the Black Pine Mountains display an early coaxial strain history which developed prior to the formation of low-angle fault-bounded allochthons. At higher structural levels this is documented by pressure shadows with straight sutures, and oppositely-rotated antitaxial calcite veins.

32

Exploratory Well At Raft River Geothermal Area (1950) | Open Energy  

Open Energy Info (EERE)

50) 50) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Raft River Geothermal Area (1950) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Exploratory Well Activity Date 1950 Usefulness not indicated DOE-funding Unknown Exploration Basis Agricultural Wells Notes The geothermal resource at Raft River was discovered sometime prior to 1950 when two shallow agricultural wells, the Bridge and Crank wells, encountered boiling water. References Diek, A.; White, L.; Roegiers, J.-C.; Moore, J.; McLennan, J. D. (1 January 2012) BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM RESERVOIR DEVELOPMENT Retrieved from "http://en.openei.org/w/index.php?title=Exploratory_Well_At_Raft_River_Geothermal_Area_(1950)&oldid=473844

33

Conceptual Model At Raft River Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

6) 6) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Conceptual Model Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine productive zones in the reservoir Notes Borehole geophysics techniques were used in evaluating the Raft River geothermal reservoir to establish a viable model for the system. The assumed model for the hot water 1450C reservoir was a zone of higher conductivity, increased porosity, decreased density, and lower sonic velocity. References Applegate, J.K.; Donaldson, P.R.; Kinkley, D.L.; Wallace, T.L. (1 January 1976) Borehole geophysics evaluation of the Raft River geothermal reservoir Retrieved from "http://en.openei.org/w/index.php?title=Conceptual_Model_At_Raft_River_Geothermal_Area_(1976)&oldid=473821

34

Exploratory Well At Raft River Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

76) 76) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Raft River Geothermal Area (1976) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Exploratory Well Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Second and third exploratory wells drilled Notes Raft River Geothermal Exploratory Hole No. 2, RRGE-2 drilled. During this period, a third well, RRGE-3 was also drilled and well production was tested. Down-hole data was obtained from RRGE-3. References Speake, J.L. (1 August 1976) Raft River Geothermal Exploratory Hole No. 2, RRGE-2. Completion report Kunze, J.F. (1 October 1976) Geothermal R and D Project report for period April 1, 1976 to June 30, 1976

35

Core Analysis At Raft River Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

6) 6) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Core Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Fracture analysis to determine if sealing or open fractures exist Notes Core samples show diagenesis superimposed on episodic fracturing and fracture sealing. The minerals that fill fractures show significant temporal variations. Fracture sealing and low fracture porosity imply that only the most recently formed fractures are open to fluids. References Michael L. Batzle; Gene Simmons (1 January 1976) Microfractures in rocks from two geothermal areas Retrieved from "http://en.openei.org/w/index.php?title=Core_Analysis_At_Raft_River_Geothermal_Area_(1976)&oldid=47383

36

Field Mapping At Raft River Geothermal Area (1993) | Open Energy  

Open Energy Info (EERE)

Exploration Activity: Field Mapping At Raft River Geothermal Area (1993) Exploration Activity: Field Mapping At Raft River Geothermal Area (1993) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Field Mapping Activity Date 1993 Usefulness not indicated DOE-funding Unknown Exploration Basis To determine the importance of Early to Middle Miocene period in the northern Basin and Range region. Notes New apatite fission track cooling age and track length data, supplemented by other information, point to the Early to Middle Miocene as an additional time of very significant extension-induced uplift and range formation. Many ranges in a 700-km-long north-south corridor from the Utah-Nevada-Idaho border to southernmost Nevada experience extension and major exhumation in Early to Middle Miocene time. Reconnaissance apatite ages from the Toiyabe

37

Field Mapping At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Field Mapping At Raft River Geothermal Area (1977) Field Mapping At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Field Mapping Activity Date 1977 Usefulness useful DOE-funding Unknown Exploration Basis To estimate the permeability and storage parameters of the geothermal reservoir, and the possible existence of barrier boundaries. Notes Production and interference tests were conducted on the geothermal wells RRGE 1 and RRGE 2 during September--November, 1975. In all, three tests were conducted, two of them being short-duration production tests and one, a long duration interference test. The data collected during the tests also indicated that the reservoir pressure varies systematically in response to the changes in the Earth's gravitational field caused by the passage of the

38

Geothermometry At Raft River Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

Geothermometry At Raft River Geothermal Area (1980) Geothermometry At Raft River Geothermal Area (1980) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Geothermometry Activity Date 1980 Usefulness not indicated DOE-funding Unknown Notes Geothermometer temperatures of shallow samples suggest significant re-equilibration at temperatures below those found in the deep wells. Silica geothermometer temperatures of water samples from the deep wells are in reasonable agreement with measured temperatures, whereas Na-K-Ca temperatures are significantly higher than measured temperatures. The chemical characteristics of the water, as indicated by chloride concentration, are extremely variable in shallow and deep samples. Chloride concentrations of the deep samples range from 580 to 2200 mg/kg.

39

Core Analysis At Raft River Geothermal Area (2011) | Open Energy  

Open Energy Info (EERE)

2011) 2011) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Core Analysis Activity Date 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Explore for development of an EGS demonstration project Notes Core was obtained from RRG-3C. The sample is a brecciated and altered siltstone from the base of the Tertiary sequence and is similar to rocks at the base of the Tertiary deposits in RRG-9. The results of thermal and quasi-static mechanical property measurements that were conducted on the core sample are presented. References Jones, C.; Moore, J.; Teplow, W.; Craig, S. (1 January 2011) GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, IDAHO Retrieved from "http://en.openei.org/w/index.php?title=Core_Analysis_At_Raft_River_Geothermal_Area_(2011)&oldid=473834

40

Thermochronometry At Raft River Geothermal Area (1993) | Open Energy  

Open Energy Info (EERE)

) ) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermochronometry At Raft River Geothermal Area (1993) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Thermochronometry Activity Date 1993 Usefulness not indicated DOE-funding Unknown Notes Constraints on the initial orientation and crustal position of the shear zone have been derived from 40Ar/39Ar thermochronology of mineral suites (hornblende, muscovite, biotite, and k-feldspar) collected within and beneath the shear zone along a 27 km transect parallel to the transport direction. References Wells, M.L.; Snee, L.W. (1 April 1993) Geologic and thermochronologic constraints on the initial orientation of the Raft River detachment and footwall shear zone

Note: This page contains sample records for the topic "area raft river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Conceptual Model At Raft River Geothermal Area (1987) | Open Energy  

Open Energy Info (EERE)

Exploration Activity Details Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Conceptual Model Activity Date 1987 Usefulness not indicated DOE-funding Unknown Exploration Basis To model the kinematics of compressional and extensional ductile shearing deformation Notes Analysis of shear criteria enables the kinematics of two main ductile-shearing events (D1 and D2) to be established in the Raft River, Grouse Creek and Albion 'metamorphic core complex'. The first event (D1) is a NNE-thrusting and corresponds to Mesozoic shortening. A well developed non-coaxial ductile deformation (D2), of Cenozoic age, is marked by the occurrence of opposing eastward (in Raft River) and westward shear criteria (in Albion-Grouse Creek). These characterize an arch structure

42

Conceptual Model At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

) ) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Conceptual Model Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine time to cool the geothermal field with reinjection Notes If reinjection and production wells intersect connected fractures, it is expected that reinjected fluid would cool the production well much sooner than would be predicted from calculations of flow in a porous medium. A method for calculating how much sooner that cooling will occur was developed. References Kasameyer, P. W.; Schroeder, R. C. (1 January 1977) Application of thermal depletion model to geothermal reservoirs with fracture and pore permeability Retrieved from "http://en.openei.org/w/index.php?title=Conceptual_Model_At_Raft_River_Geothermal_Area_(1977)&oldid=473822

43

Core Analysis At Raft River Geothermal Area (1981) | Open Energy  

Open Energy Info (EERE)

81) 81) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Raft River Geothermal Area (1981) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Core Analysis Activity Date 1981 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine fault and joint geometry Notes Core taken from less than 200 m above the decollement contains two sets of normal faults. The major set of faults dips between 500 and 70 0. These faults occur as conjugate pairs that are bisected by vertical extension fractures. The second set of faults dips 100 to 200 and may parallel part of the basal decollement or reflect the presence of listric normal faults in the upper plate. References Guth, L. R.; Bruhn, R. L.; Beck, S. L. (1 July 1981) Fault and

44

Conceptual Model At Raft River Geothermal Area (1979) | Open Energy  

Open Energy Info (EERE)

79) 79) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Conceptual Model Activity Date 1979 Usefulness not indicated DOE-funding Unknown Exploration Basis Recommendations are made concerning field expansion and additional work needed to refine the overall reservoir model. Notes Models described in this report show the source of various minerals in the geothermal water. There appears to be a regional heat source that gives rise to uniform conductive heat flow in the region, but convective flow is concentrated near the upwelling in the Crook well vicinity. References Overton, H. L.; Chaney, R. E.; Mcatee, R. E.; Graham, D. L. (1 November 1979) Geochemical modeling of the Raft River geothermal field Overton, H. L.; Chaney, R. E.; Mcatee, D. L.; Graham, D. L. (1

45

Flow Test At Raft River Geothermal Area (2008) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Raft River Geothermal Area (2008) Flow Test At Raft River Geothermal Area (2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (2008) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Flow Test Activity Date 2008 Usefulness not indicated DOE-funding Unknown Exploration Basis To confirm resource using flow tests Notes Both production and injection wells were flow tested. Aslo includes interference testing across the well field. References Glaspey, Douglas J. (30 January 2008) Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho Retrieved from "http://en.openei.org/w/index.php?title=Flow_Test_At_Raft_River_Geothermal_Area_(2008)&oldid=473856

46

Well Log Techniques At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Well Log Techniques At Raft River Geothermal Area Well Log Techniques At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Well Log Techniques Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Characterize the rock using well log data. Notes Information is given on the following logs: dual-induction focused log, including resistivity, sp, and conductivity; acoustic log; compensated neutron; compensated densilog; and caliper. Lithologic breaks for a drill core to a depth of 2840 ft are illustrated. References Covington, H.R. (1 January 1978) Deep drilling data, Raft River geothermal area, Idaho Raft River geothermal exploration well No. 4 Retrieved from "http://en.openei.org/w/index.php?title=Well_Log_Techniques_At_Raft_River_Geothermal_Area_(1977)&oldid=6004

47

Groundwater Sampling At Raft River Geothermal Area (1974-1982) | Open  

Open Energy Info (EERE)

Groundwater Sampling At Raft River Geothermal Area (1974-1982) Groundwater Sampling At Raft River Geothermal Area (1974-1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Groundwater Sampling At Raft River Geothermal Area (1974-1982) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Groundwater Sampling Activity Date 1974 - 1982 Usefulness useful DOE-funding Unknown Exploration Basis Collect baseline chemical data Notes Ground-water monitoring near the Raft River site was initiated in 1974 by the IDWR. This effort consisted of semiannual chemical sampling of 22 irrigation wells near the Raft River geothermal development area. This program yielded useful baseline chemical data; however, several problems were inherent. For example, access to water pumped from the wells is

48

Modeling-Computer Simulations At Raft River Geothermal Area (1977) | Open  

Open Energy Info (EERE)

Raft River Geothermal Area (1977) Raft River Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Simulate reservoir performance Notes Computer models describing both the transient reservoir pressure behavior and the time dependent temperature response of the wells were developed. A horizontal, two-dimensional, finite-difference model for calculating pressure effects was constructed to simulate reservoir performance. Vertical, two-dimensional, finite-difference, axisymmetric models for each

49

Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) |  

Open Energy Info (EERE)

Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Thermal And-Or Near Infrared Activity Date 1974 - 1976 Usefulness useful DOE-funding Unknown Exploration Basis Reconnaissance geothermal exploration Notes A TIR survey of the Raft River geothermal area prospect in Idaho where thermal waters move laterally in an alluvial plain and have no visible surface manifestations was undertaken as part of geothermal exploration. References K. Watson (1974) Geothermal Reconnaissance From Quantitative Analysis Of Thermal Infrared Imagery

50

Thermal And-Or Near Infrared At Raft River Geothermal Area (1997) | Open  

Open Energy Info (EERE)

Raft River Geothermal Area (1997) Raft River Geothermal Area (1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Raft River Geothermal Area (1997) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Thermal And-Or Near Infrared Activity Date 1997 Usefulness not indicated DOE-funding Unknown Exploration Basis Locate geothermal surface manifestations Notes Several examples of the use of TIR to locate geothermal surface manifestations and notes that TIR is more useful in remote areas. The analysis of three TIR images acquired during a diurnal cycle at Raft River is presented. The purpose of these images was to minimize the masking of temperature variations by vegetation and topography. References

51

Conceptual Model At Raft River Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

0) 0) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Conceptual Model Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the relevant data necessary to assess a geothermal reservoir in similar rock types and use cross plots to potentially define the producing zones. Notes A conceptual model was developed that uses all geophysical data that has been collected on the area to determine the rock types and reasonable values of the parameters of interest. Emphasis has been on developing a simple interpretation scheme from a minimum of data sets. However, the cross plotting of various parameters has allowed a determination of rock types and an analysis of the degree of alteration and the density of

52

Flow Test At Raft River Geothermal Area (2006) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Raft River Geothermal Area (2006) Flow Test At Raft River Geothermal Area (2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (2006) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Flow Test Activity Date 2006 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine field hydraulic conductivity using borehole impeller flowmeter data Notes A quantitative evaluation of borehole-impeller flowmeter data leads to estimated field hydraulic conductivity. Data were obtained during an injection test of a geothermal well at the Raft River geothermal test site in Idaho. Both stationary and trolling calibrations of the flowmeter were made in the well. Methods were developed to adjust for variations in hole

53

Isotopic Analysis-Fluid At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Isotopic Analysis-Fluid At Raft River Geothermal Area (1977) Isotopic Analysis-Fluid At Raft River Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Estimate deep reservoir temperature Notes The oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes have been tested. Methods are described to calculate the effects of boiling and dilution. The geothermometer, is applied to thermal systems of Yellowstone Park, Wyoming, Long Valley, California, and Raft River, Idaho to estimate deep reservoir temperatures

54

Fluid Inclusion Analysis At Raft River Geothermal Area (2011) | Open Energy  

Open Energy Info (EERE)

Fluid Inclusion Analysis At Raft River Geothermal Area (2011) Fluid Inclusion Analysis At Raft River Geothermal Area (2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Raft River Geothermal Area (2011) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Fluid Inclusion Analysis Activity Date 2011 Usefulness not indicated DOE-funding Unknown Notes Hydrogen isotope values of muscovite (δDMs ∼-100‰) and fluid inclusions in quartz (δDFluid ∼-85‰) indicate the presence of meteoric fluids during detachment dynamics. Recrystallized grain-shape fabrics and quartz c-axis fabric patterns reveal a large component of coaxial strain (pure shear), consistent with thinning of the detachment section. Therefore, the high thermal gradient preserved in the Raft River

55

Flow Test At Raft River Geothermal Area (2004) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Raft River Geothermal Area (2004) Flow Test At Raft River Geothermal Area (2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (2004) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Flow Test Activity Date 2004 Usefulness useful DOE-funding GRED II Notes Geothermal Resource Exploration and Definition Projects Raft River (GRED II): Re-assessment and testing of previously abandoned production wells. The objective of the U.S. Geothermal effort is to re-access the available wellbores, assess their condition, perform extensive testing of the reservoir to determine its productive capacity, and perform a resource utilization assessment. At the time of this paper, all five wells had been

56

Core Analysis At Raft River Geothermal Area (1979) | Open Energy  

Open Energy Info (EERE)

9) 9) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Core Analysis Activity Date 1979 Usefulness not indicated DOE-funding Unknown Exploration Basis Permitted the lateral and vertical extrapolation of core and test data and bridged the gap between surface geophysical data and core analyses. Notes 1) Microcracks were observed in core samples. A set of observable characteristics of microcracks were discovered in racks from geothermal regions that appears to be unique and to have considerable potential for exploration for geothermal regions. Both permeability and electrical conductivity were measured for a suite of samples with a range of microcracks characteristics. A partial set of samples were collected to study migration of radioactive elements. 2) Laboratory analyses of cores

57

Conceptual Model At Raft River Geothermal Area (2011) | Open Energy  

Open Energy Info (EERE)

2011) 2011) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Conceptual Model Activity Date 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Explore for development of an EGS demonstration project Notes The reservoir is developed in fractured Proterozoic schist and quartzite, and Archean quartz monzonite cut by younger diabase intrusions. The basement complex was deformed during the mid Tertiary and covered by approximately 5000 ft of late Tertiary sedimentary and volcanic deposits. Listric normal faults of Cenozoic age disrupt the Tertiary deposits but do not offset the basement rocks. RRG-9, the target well, was drilled southwest of the main well field to a measured depth (MD) of 6089 ft. The well is deviated to the west and cased to a depth of 2316 ft MD. It

58

Micro-Earthquake At Raft River Geothermal Area (1982) | Open Energy  

Open Energy Info (EERE)

) ) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Raft River Geothermal Area (1982) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Micro-Earthquake Activity Date 1982 Usefulness not indicated DOE-funding Unknown Exploration Basis Develop a background seismicity before power production begins Notes Local seismic networks were established to monitor the background seismicity prior to initiation of geothermal power production. The Raft River study area is currently seismically quiet down to the level of approximately magnitude one. References Zandt, G.; Mcpherson, L.; Schaff, S.; Olsen, S. (1 May 1982) Seismic baseline and induction studies- Roosevelt Hot Springs, Utah and

59

Ground Gravity Survey At Raft River Geothermal Area (1957-1961) | Open  

Open Energy Info (EERE)

Ground Gravity Survey At Raft River Geothermal Area (1957-1961) Ground Gravity Survey At Raft River Geothermal Area (1957-1961) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Raft River Geothermal Area (1957-1961) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Ground Gravity Survey Activity Date 1957 - 1961 Usefulness not indicated DOE-funding Unknown Notes From 1957 to 1961 a regional gravity survey was made over the northern part of the Great Salt Lake Desert and adjacent areas in Utah, eastern Nevada, and southeastern Idaho. A total of 1040 stations were taken over an area of about 7000 square miles. The results were compiled as a Bouguer gravity anomaly map with a contour interval of 2 mgal. The Bouguer values ranged

60

Earth Tidal Analysis At Raft River Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

Earth Tidal Analysis At Raft River Geothermal Earth Tidal Analysis At Raft River Geothermal Area(1980) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the reservoir response to tidal and barometric effects Notes Porosity-total compressibility product evaluation based on tidal strain response compares favorably with results based on conventional pumping techniques. Analysis of reservoir response to barometric loading using Auto Regressive Integrated Moving Average (ARIMA) stochastic modeling appears also to have potential use for the evaluation of reservoir parameters. References Hanson, J. M. (29 May 1980) Reservoir response to tidal and barometric effects

Note: This page contains sample records for the topic "area raft river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Seismic refraction study of the Raft River geothermal area, Idaho | Open  

Open Energy Info (EERE)

refraction study of the Raft River geothermal area, Idaho refraction study of the Raft River geothermal area, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Seismic refraction study of the Raft River geothermal area, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: The Raft River geothermal system in southeastern Idaho is a convective hot water system, presently being developed to demonstrate the production of electricity from low-temperature (approx. 150 0C) water. Interpretation of seismic refraction recordings in the area yielded compressional velocities from near the surface to the crystalline basement at a maximum depth of approximately 1600 m. The results show a complex sequence of sediments and volcanic flows overlying basement. Velocities in the sedimentary section vary laterally. Correlation with well data suggests

62

Groundwater Sampling At Raft River Geothermal Area (2004-2011) | Open  

Open Energy Info (EERE)

Groundwater Sampling At Raft River Geothermal Area (2004-2011) Groundwater Sampling At Raft River Geothermal Area (2004-2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Groundwater Sampling At Raft River Geothermal Area (2004-2011) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Groundwater Sampling Activity Date 2004 - 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Collect new water chemistry data on geothermal field Notes From mid-2004 to present, US Geothermal Inc. has collected geochemical data from geothermal and monitoring wells in the field, as well as other shallow wells in the area. An additional sampling program was completed in July 2010 to measure a wider range of trace elements and key water isotopes (δ18O, δD, and 3H (Tritium)) in the field. The data indicate that the

63

Isotopic Analysis-Fluid At Raft River Geothermal Area (1982) | Open Energy  

Open Energy Info (EERE)

Analysis-Fluid At Raft River Geothermal Area Analysis-Fluid At Raft River Geothermal Area (1982) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1982 Usefulness not useful DOE-funding Unknown Exploration Basis Determine which reservoir model best matches the isotope data. Notes 1) Chemical and light-stable isotope data are presented for water samples from the Raft River geothermal area and nearby. On the basis of chemical character, as defined by a trilinear plot of per cent milliequivalents, and light-stable isotope data, the waters in the geothermal area can be divided into waters that have and have not mixed with cold water. 2) Helium isotope ratios have been measured in geothermal fluids. These ratios have been interpreted in terms of the processes which supply He in distinct isotopic

64

Modeling-Computer Simulations At Raft River Geothermal Area (1979) | Open  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date 1979 Usefulness useful DOE-funding Unknown Exploration Basis To evaluate the hydrodynamics of the unconfined aquifer. Notes This study covers about 1000 mi2 (2600 km2) of the southern Raft River drainage basin in south-central Idaho and northwest Utah. The main area of interest, approximately 200 mi2 (520 km2) of semiarid agricultural and rangeland in the southern Raft River Valley that includes the known Geothermal Resource Area near Bridge, Idaho, was modelled numerically. Computed and estimated transmissivity values range from 1200 ft2 per day

65

Direct-Current Resistivity Survey At Raft River Geothermal Area (1983) |  

Open Energy Info (EERE)

Raft River Geothermal Area (1983) Raft River Geothermal Area (1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Raft River Geothermal Area (1983) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date 1983 Usefulness not indicated DOE-funding Unknown Notes The objectives of the resistivity measurements were to determine if measureable changes could be observed and whether they could be used to infer the direction of fluid flow. Most of the apparent resistivity changes observed after the injection phase of Test 5 are smaller than the estimated standard deviation of the measurements. However, the contour map of the changes suggest an anomalous trend to the northeast which is similar to the

66

Subsurface geology of the Raft River geothermal area, Idaho | Open Energy  

Open Energy Info (EERE)

geology of the Raft River geothermal area, Idaho geology of the Raft River geothermal area, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Subsurface geology of the Raft River geothermal area, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: The Raft River Valley occupies an upper Cenozoic structural basin filled with nearly 1600 m of fluvial silt, sand, and gravel. Rapid facies and thickness changes, steep initial dips (30 0C), and alteration make correlation of basin-fill depositional units very difficult. Hydrothermal alteration products in the form of clays and zeolites, and deposition of secondary calcite and silica increase with depth. The abundance of near-vertical open fractures also increases with depth, allowing greater movement of hydrothermal fluids near the base of the Cenozoic basin fill.

67

Modeling-Computer Simulations At Raft River Geothermal Area (1983) | Open  

Open Energy Info (EERE)

Modeling-Computer Simulations At Raft River Geothermal Area (1983) Modeling-Computer Simulations At Raft River Geothermal Area (1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Raft River Geothermal Area (1983) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date 1983 Usefulness useful DOE-funding Unknown Exploration Basis Predict flow rate and porosity Notes The objectives of the physical modeling effort are to: (1) evaluate injection-backflow testing for fractured reservoirs under conditions of known reservoir parameters (porosity, fracture width, etc.); (2) study the mechanisms controlling solute transport in fracture systems; and (3) provide data for validation of numerical models that explicitly simulate

68

Exploring the Raft River geothermal area, Idaho, with the dc resistivity  

Open Energy Info (EERE)

Exploring the Raft River geothermal area, Idaho, with the dc resistivity Exploring the Raft River geothermal area, Idaho, with the dc resistivity method (Abstract) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Exploring the Raft River geothermal area, Idaho, with the dc resistivity method (Abstract) Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; ELECTRICAL SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER VALLEY; ELECTRIC CONDUCTIVITY; GEOTHERMAL WELLS; KGRA; TEMPERATURE MEASUREMENT; ELECTRICAL PROPERTIES; EXPLORATION; GEOPHYSICAL SURVEYS; NORTH AMERICA; PACIFIC NORTHWEST REGION; PHYSICAL PROPERTIES; USA; WELLS Author(s): Zohdy, A.A.R.; Jackson, D.B.; Bisdorf, R.J. Published: Geophysics, 10/12/1975 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article

69

Surface Water Sampling At Raft River Geothermal Area (1973) | Open Energy  

Open Energy Info (EERE)

Surface Water Sampling At Raft River Geothermal Area (1973) Surface Water Sampling At Raft River Geothermal Area (1973) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Water Sampling At Raft River Geothermal Area (1973) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Surface Water Sampling Activity Date 1973 Usefulness not indicated DOE-funding Unknown Exploration Basis At least 380 hot springs and wells are known to occur throughout the central and southern parts of Idaho. Notes One hundred twenty-four of 380 hot springs and wells in the central and southern parts of Idaho were inventoried as a part of the study reported on herein. At the spring vents and wells visited, the thermal waters flow from rocks ranging in age from Precambrian to Holocene and from a wide range of

70

Gamma Log At Raft River Geothermal Area (1979) | Open Energy Information  

Open Energy Info (EERE)

Gamma Log At Raft River Geothermal Area (1979) Gamma Log At Raft River Geothermal Area (1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gamma Log At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Gamma Log Activity Date 1979 Usefulness useful DOE-funding Unknown Exploration Basis To allow for the lateral and vertical extrapolation of core and test data and bridged the gap between surface geophysical data and core analyses. Notes Borehole gamma spectrometry can be used to identify anomalous concentration of uranium, thorium, and potassium which are probably due to transportation by hydrothermal solutions. Computer crossplotting was used as an aid to the identification of such rock types as quartzite, quartz monzonite, and

71

Flow Test At Raft River Geothermal Area (1979) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Raft River Geothermal Area (1979) Flow Test At Raft River Geothermal Area (1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Flow Test Activity Date 1979 Usefulness useful DOE-funding Unknown Exploration Basis To allow for the lateral and vertical extrapolation of core and test data and bridged the gap between surface geophysical data and core analyses. Notes Temperature and flowmeter logs provide evidence that these fractures and faults are conduits that conduct hot water to the wells. One of the intermediate depth core holes penetrated a hydrothermally altered zone that includes several fractures producing hot water. This altered production

72

Temperature, thermal-conductivity, and heat-flux data,Raft River area,  

Open Energy Info (EERE)

Temperature, thermal-conductivity, and heat-flux data,Raft River area, Temperature, thermal-conductivity, and heat-flux data,Raft River area, Cassia County, Idaho (1974-1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Temperature, thermal-conductivity, and heat-flux data,Raft River area, Cassia County, Idaho (1974-1976) Details Activities (1) Areas (1) Regions (0) Abstract: Basin and Range Province; Cassia County Idaho; economic geology; exploration; geophysical surveys; geothermal energy; heat flow; heat flux; Idaho; North America; Raft River basin; south-central Idaho; surveys; temperature; thermal conductivity; United States; USGS Author(s): Urban, T.C.; Diment, W.H.; Nathenson, M.; Smith, E.P.; Ziagos, J.P.; Shaeffer, M.H. Published: Open-File Report - U. S. Geological Survey, 1/1/1986 Document Number: Unavailable

73

Fault and joint geometry at Raft River geothermal area, Idaho | Open Energy  

Open Energy Info (EERE)

and joint geometry at Raft River geothermal area, Idaho and joint geometry at Raft River geothermal area, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Fault and joint geometry at Raft River geothermal area, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Raft River geothermal reservoir is formed by fractures in sedimentary strata of the Miocene and Pliocene Salt Lake Formation. The fracturing is most intense at the base of the Salt Lake Formation, along a decollement that dips eastward at less than 5 0 on top of metamorphosed Precambrian and Lower Paleozoic rocks. Core taken from less than 200 m above the decollement contains two sets of normal faults. The major set of faults dips between 50 0 and 70 0. These faults occur as conjugate pairs that are bisected by vertical extension fractures. The second set of faults

74

Earth Tidal Analysis At Raft River Geothermal Area (1984) | Open Energy  

Open Energy Info (EERE)

Earth Tidal Analysis At Raft River Geothermal Area Earth Tidal Analysis At Raft River Geothermal Area (1984) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1984 Usefulness useful DOE-funding Unknown Exploration Basis Determine porosity of the reservoir Notes The response of a confined, areally infinite aquifer to external loads imposed by earth tides is examined. Because the gravitational influence of celestial objects occurs over large areas of the earth, the confined aquifer is assumed to respond in an undrained fashion. Since undrained response is controlled by water compressibility, earth tide response can be directly used only to evaluate porous medium compressibility if porosity is known. In the present work, change in external stress is estimated from

75

Audio-Magnetotellurics At Raft River Geothermal Area (1978) | Open Energy  

Open Energy Info (EERE)

Audio-Magnetotellurics At Raft River Geothermal Area Audio-Magnetotellurics At Raft River Geothermal Area (1978) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Audio-Magnetotellurics Activity Date 1978 Usefulness not indicated DOE-funding Unknown Exploration Basis To infer the structure and the general lithology underlying the valley Notes An area of low apparent resistivity values defined by the audiomagnetotelluric (AMT) survey appears to outline the extent of the geothermal reservoir even though the reservoir is deeper than the penetration of the survey. Self-potential anomalies relate to near surface hydrology. Upward leakage from the reservoir produces shallower effects that were measured by the AMT survey. References Mabey, D.R.; Hoover, D.B.; O'Donnell, J.E.; Wilson, C.W. (1

76

Micro-Earthquake At Raft River Geothermal Area (1979) | Open Energy  

Open Energy Info (EERE)

9) 9) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Micro-Earthquake Activity Date 1979 Usefulness not indicated DOE-funding Unknown Exploration Basis Refraction Survey Notes Interpretation of seismic refraction recordings in the area yielded compressional velocities from near the surface to the crystalline basement at a maximum depth of approximately 1600 m. The results show a complex sequence of sediments and volcanic flows overlying basement. Velocities in the sedimentary section vary laterally. Correlation with well data suggests that zones of higher velocities may correspond to zones where sediments are

77

Micro-Earthquake At Raft River Geothermal Area (2011) | Open Energy  

Open Energy Info (EERE)

Micro-Earthquake At Raft River Geothermal Area (2011) Micro-Earthquake At Raft River Geothermal Area (2011) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Micro-Earthquake Activity Date 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine seismicity before and after reservoir stimulation for EGS Notes The overall goal is to gather high resolution seismicity data before, during and after stimulation activities at the EGS projects. This will include both surface and borehole deployments to provide high quality seismic data for improved processing and interpretation methodologies. This will allow the development and testing of seismic methods for understanding the performance of the EGS systems, as well as aid in developing induced seismicity mitigation techniques that can be used for a variety of EGS

78

Earth Tidal Analysis At Raft River Geothermal Area (1982) | Open Energy  

Open Energy Info (EERE)

Tidal Analysis At Raft River Geothermal Area Tidal Analysis At Raft River Geothermal Area (1982) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1982 Usefulness not indicated DOE-funding Unknown Exploration Basis To estimate subsurface fracture orientation based on an analysis of solid earth tidal strains. Notes A new practical method has been developed. The tidal strain fracture orientation technique is a passive method which has no depth limitation. The orientation of either natural or hydraulically stimulated fractures can be measured using either new or old static observation wells. Estimates for total compressibility and areal interconnected porosity can also be developed for reservoirs with matrix permeability using a combination of

79

Schlumberger soundings in the Upper Raft River and Raft River...  

Open Energy Info (EERE)

soundings in the Upper Raft River and Raft River Valleys, Idaho and Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Schlumberger soundings in the Upper...

80

Modeling-Computer Simulations At Raft River Geothermal Area (1980) | Open  

Open Energy Info (EERE)

80) 80) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Raft River Geothermal Area (1980) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis From refined estimates of reservoir coefficients better predictions of interference effects and long-term drawdown in the wells can be made. Notes Analytic methods have been used during reservoir testing to calculate reservoir coefficients. However, anisotropy of the reservoir due to fractures has not been taken into account in these calculations and estimates of these coefficients need to be refined. In conjunction with the

Note: This page contains sample records for the topic "area raft river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Schlumberger soundings in the Upper Raft River and Raft River Valleys,  

Open Energy Info (EERE)

soundings in the Upper Raft River and Raft River Valleys, soundings in the Upper Raft River and Raft River Valleys, Idaho and Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Schlumberger soundings in the Upper Raft River and Raft River Valleys, Idaho and Utah Details Activities (1) Areas (1) Regions (0) Abstract: In 1975, the U.S. Geological Survey made seventy Schlumberger resistivity soundings in the Upper Raft River Valley and in parts of the Raft River Valley. These soundings complement the seventy-nine soundings made previously in the Raft River Valley (Zohdy and others, 1975) and bring the total number of soundings to 149. This work was done as part of a hydrogeologic study of the area. The location, number, and azimuth of all 149 Schlumberger sounding stations are presented. The location of the new

82

Compound and Elemental Analysis At Raft River Geothermal Area (1981) | Open  

Open Energy Info (EERE)

) ) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Raft River Geothermal Area (1981) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Compound and Elemental Analysis Activity Date 1981 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the validity of data from multiple sources to develop a better conceptual model Notes Five analytical laboratories have conducted analyses on waters from the KGRA. Charge-balance error calculations conducted on the data produced from these laboratories indicated that data from three laboratories were reliable while two were not. A method of equating all data was established by using linear regression analyses on sets of paired data from various

83

Raft River monitor well potentiometric head responses and water...  

Open Energy Info (EERE)

River site was initiated in 1974 by the IDWR. This effort consisted of semiannual chemical sampling of 22 irrigation wells near the Raft River geothermal development area. This...

84

Incidence of human dental fluorosis in the Raft River geothermal area in southern Idaho. Final report  

DOE Green Energy (OSTI)

A total of 270 school aged individuals representing 151 families living in the vicinity of the Raft River Geothermal area of Idaho were examined for evidence of dental fluorosis. Of these 132 had some dental anomaly. Fifty-two individuals from 45 families had lesions classified as typical dental fluorosis. Eleven of these, some of which had severe dental fluorosis recently moved into the area from other locations. Samples of the drinking waters that were likely consumed by the individuals with dental fluorosis were collected for analyses. In most instances the fluoride content of the waters were low and would not account for the tooth lesions. Possible reasons for lack of correlation are changing of the composition of the water, other sources of fluoride in the diet, and possibly analytical errors.

Shupe, J.L.; Olson, A.E.; Peterson, H.B.

1978-09-01T23:59:59.000Z

85

DC Resistivity Survey (Schlumberger Array) At Raft River Geothermal...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon DC Resistivity Survey (Schlumberger Array) At Raft River Geothermal Area (1974-1975) Jump...

86

Simulation analysis of the unconfined aquifer, Raft River Geothermal...  

Open Energy Info (EERE)

Simulation analysis of the unconfined aquifer, Raft River Geothermal Area, Idaho-Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Simulation analysis of...

87

Total field aeromagnetic map of the Raft River known Geothermal...  

Open Energy Info (EERE)

field aeromagnetic map of the Raft River known Geothermal Resource Area, Idaho by the US Geological Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report:...

88

Final Technical Resource Confirmation Testing at the Raft River Geothermal  

Open Energy Info (EERE)

Final Technical Resource Confirmation Testing at the Raft River Geothermal Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Incorporates the results of flow tests for geothermal production and injection wells in the Raft River geothermal field in southern Idaho. Interference testing was also accomplished across the wellfield. Author(s): Glaspey, Douglas J. Published: DOE Information Bridge, 1/30/2008 Document Number: Unavailable DOI: 10.2172/922630 Source: View Original Report Flow Test At Raft River Geothermal Area (2008) Raft River Geothermal Area Retrieved from

89

Borehole geophysics evaluation of the Raft River geothermal reservoir,  

Open Energy Info (EERE)

reservoir, reservoir, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Borehole geophysics evaluation of the Raft River geothermal reservoir, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; GEOPHYSICAL SURVEYS; RAFT RIVER VALLEY; GEOTHERMAL EXPLORATION; BOREHOLES; EVALUATION; HOT-WATER SYSTEMS; IDAHO; MATHEMATICAL MODELS; WELL LOGGING; CAVITIES; EXPLORATION; GEOTHERMAL SYSTEMS; HYDROTHERMAL SYSTEMS; NORTH AMERICA; PACIFIC NORTHWEST REGION; USA Author(s): Applegate, J.K.; Donaldson, P.R.; Hinkley, D.L.; Wallace, T.L. Published: Geophysics, 2/1/1977 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article Geophysical Method At Raft River Geothermal Area (1977) Raft River Geothermal Area

90

The investigation of anomalous magnetization in the Raft River valley,  

Open Energy Info (EERE)

investigation of anomalous magnetization in the Raft River valley, investigation of anomalous magnetization in the Raft River valley, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: The investigation of anomalous magnetization in the Raft River valley, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Cassia County Idaho; clastic sediments; economic geology; exploration; geophysical methods; geophysical surveys; geothermal energy; gravel; ground methods; Idaho; isothermal remanent magnetization; magnetic anomalies; magnetic methods; magnetic properties; magnetic susceptibility; magnetization; paleomagnetism; Raft River basin; remanent magnetization; sediments; surveys; United States Author(s): Anderson, L.A.; Mabey, D.R. Published: Abstracts - Society of Exploration Geophysicists International

91

Petrography of late cenozoic sediments, Raft River geothermal field, Idaho  

Open Energy Info (EERE)

of late cenozoic sediments, Raft River geothermal field, Idaho of late cenozoic sediments, Raft River geothermal field, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Petrography of late cenozoic sediments, Raft River geothermal field, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; RAFT RIVER VALLEY; GEOTHERMAL FIELDS; PETROGRAPHY; BIOTITE; CALCITE; CLAYS; LIMESTONE; PYRITE; SANDSTONES; SEDIMENTS; SHALES; VOLCANIC ROCKS; ZEOLITES; ALKALINE EARTH METAL COMPOUNDS; CALCIUM CARBONATES; CALCIUM COMPOUNDS; CARBON COMPOUNDS; CARBONATE ROCKS; CARBONATES; CHALCOGENIDES; IDAHO; IGNEOUS ROCKS; INORGANIC ION EXCHANGERS; ION EXCHANGE MATERIALS; IRON COMPOUNDS; IRON SULFIDES; MICA; MINERALS; NORTH AMERICA; ORES; OXYGEN COMPOUNDS; PACIFIC NORTHWEST REGION; PYRITES; ROCKS; SEDIMENTARY ROCKS; SULFIDES; SULFUR COMPOUNDS;

92

Raft River geoscience case study- appendixes | Open Energy Information  

Open Energy Info (EERE)

geoscience case study- appendixes geoscience case study- appendixes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Raft River geoscience case study- appendixes Details Activities (1) Areas (1) Regions (0) Abstract: The following are included in these appendices: lithology, x-ray analysis, and cores; well construction data; borehole geophysical logs; chemical analyses from wells at the Raft River geothermal site; and bibliography. Author(s): Dolenc, M. R.; Hull, L. C.; Mizell, S. A.; Russell, B. F.; Skiba, P. A.; Strawn, J. A.; Tullis, J. A. Published: DOE Information Bridge, 11/1/1981 Document Number: Unavailable DOI: 10.2172/5988071 Source: View Original Report Conceptual Model At Raft River Geothermal Area (1981) Raft River Geothermal Area Retrieved from "http://en.openei.org/w/index.php?title=Raft_River_geoscience_case_study-_appendixes&oldid=473481

93

GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM,  

Open Energy Info (EERE)

GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, IDAHO Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, IDAHO Details Activities (3) Areas (1) Regions (0) Abstract: The Raft River geothermal system is located in southern Idaho, near the Utah-Idaho state boarder in the Raft River Valley. The field, which is owned and operated by U.S. Geothermal, has been selected as an EGS demonstration site by the U. S. Department of Energy. This paper summarizes ongoing geologic and petrologic investigations being conducted in support of this project. The reservoir is developed in fractured Proterozoic schist and quartzite, and Archean quartz monzonite cut by younger diabase

94

Hydrochemistry of selected parameters at the Raft River KGRA, Cassia  

Open Energy Info (EERE)

Hydrochemistry of selected parameters at the Raft River KGRA, Cassia Hydrochemistry of selected parameters at the Raft River KGRA, Cassia County, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Hydrochemistry of selected parameters at the Raft River KGRA, Cassia County, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Low to moderate temperature (< 150 0C) geothermal fluids are being developed in the southern Raft River Valley of Idaho. Five deep geothermal wells ranging in depth from 4911 feet to 6543 feet (1490 to 1980 meters) and two intermediate depth (3858 feet or 1170 meters) injection wells have been drilled within the Raft River KGRA. Several shallower (1423-500 feet or 430-150 meters) wells have also been constructed to monitor the environmental effects of geothermal development of the

95

Schlumberger soundings in the Upper Raft River and Raft River Valleys, Idaho and Utah  

DOE Green Energy (OSTI)

In 1975, the U.S. Geological Survey made seventy Schlumberger resistivity soundings in the Upper Raft River Valley and in parts of the Raft River Valley. These soundings complement the seventy-nine soundings made previously in the Raft River Valley (Zohdy and others, 1975) and bring the total number of soundings to 149. This work was done as part of a hydrogeologic study of the area. The location, number, and azimuth of all 149 Schlumberger sounding stations are presented. The location of the new stations is shown with solid circles, whereas the location of the previous stations is shown with open circles. The new stations are numbered from 201 to 270. The data and interpretation of the new soundings are presented.

Zohdy, A.A.R.; Bisdorf, R.J.

1976-01-01T23:59:59.000Z

96

Reconnaissance geothermal exploration at Raft River, Idaho from thermal  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Reconnaissance geothermal exploration at Raft River, Idaho from thermal infrared scanning Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Reconnaissance geothermal exploration at Raft River, Idaho from thermal infrared scanning Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; INFRARED SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER VALLEY; TEMPERATURE DISTRIBUTION; EXPLORATION; GEOPHYSICAL SURVEYS; NORTH AMERICA; PACIFIC NORTHWEST REGION; USA Author(s): Watson, K. Published: Geophysics, 4/1/1976

97

Interpretation of electromagnetic soundings in the Raft River geothermal  

Open Energy Info (EERE)

Interpretation of electromagnetic soundings in the Raft River geothermal Interpretation of electromagnetic soundings in the Raft River geothermal area, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Interpretation of electromagnetic soundings in the Raft River geothermal area, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: An electromagnetic (EM) controlled source survey was conducted in the Raft River Valley, near Malta, Idaho. The purpose of the survey was: to field test U.S. Geological Survey extra-low-frequency (ELF) equipment using a grounded wire source and receiver loop configuration (which is designed to measure the vertical magnetic field (Hz) at the loop center for various frequencies); to present an example of the EM sounding data and interpretations using a previously developed inversion program; and (3) to

98

Completion report: Raft River Geothermal Production Well Five (RRGP-5)  

DOE Green Energy (OSTI)

The Raft River Geothermal Production Well Five (RRGP-5) is a production well in the Raft River KGRA (Known Geothermal Resource Area). The plan for this well included three barefoot legs. Due to technical and funding problems, two legs were drilled; only one leg is a producing leg. This report describes the entire drilling operation and includes daily drilling reports, drill bit records, casing records, and descriptions of cementing, logging, coring, and containment techniques.

Miller, L.G.; Prestwich, S.M.

1979-02-01T23:59:59.000Z

99

Geothermal Modeling of the Raft River Geothermal Field | Open Energy  

Open Energy Info (EERE)

Geothermal Modeling of the Raft River Geothermal Field Geothermal Modeling of the Raft River Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geothermal Modeling of the Raft River Geothermal Field Details Activities (1) Areas (1) Regions (0) Abstract: This interim report presents the results to date of chemical modeling of the Raft River KGRA. Earlier work indicated a northwest-southeast anomaly in the contours. Modeling techniques applied to more complete data allowed further definition of the anomaly. Models described in this report show the source of various minerals in the geothermal water. There appears to be a regional heat source that gives rise to uniform conductive heat flow in the region, but convective flow is concentrated near the upwelling in the Crook well vicinity. Recommendations

100

Geoscience interpretations of the Raft River Resource | Open Energy  

Open Energy Info (EERE)

Geoscience interpretations of the Raft River Resource Geoscience interpretations of the Raft River Resource Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geoscience interpretations of the Raft River Resource Details Activities (1) Areas (1) Regions (0) Abstract: A discussion of the geology and the wellfield development at Raft River is presented. The geothermal resource is located in a downdropped and downwarped basin bordered on east, west, and south by mountain ranges that vary in both stratigraphy and structure. It is inferred that the geothermal resource occurs where hydrothermal water rises at the intersection of and along the Narrows Zone and the Bridge Fault. Three exploration wells, two development wells, and two injection wells were drilled. The basic strategy of field development was to drill deep production wells on the faulted

Note: This page contains sample records for the topic "area raft river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

FLOWMETER ANALYSIS AT RAFT RIVER, IDAHO | Open Energy Information  

Open Energy Info (EERE)

FLOWMETER ANALYSIS AT RAFT RIVER, IDAHO FLOWMETER ANALYSIS AT RAFT RIVER, IDAHO Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: FLOWMETER ANALYSIS AT RAFT RIVER, IDAHO Details Activities (1) Areas (1) Regions (0) Abstract: A quantitative evaluation of borehole-impeller flowmeter data leads to estimated field hydraulic conductivity. Data were obtained during an injection test of a geothermal well at the Raft River geothermal test site in Idaho. Both stationary and trolling calibrations of the flowmeter were made in the well. Methods were developed to adjust for variations in hole diameter, impeller speed, and trolling speed. These methods were applied to evaluate water losses into the formation as a function of depth. Application of the techniques is restricted to aquifers below the water

102

Raft River Geothermal Aquaculture Experiment. Phase II  

DOE Green Energy (OSTI)

Channel catfish, tilapia and Malaysian prawns were cultured directly in geothermal water for approximately seven months at the Department of Energy, Raft River Geothermal Site, to evaluate the organisms throughout a grow-out cycle. Parameters evaluated included survival, growth, bioaccumulation of metals and fluoride, collagen synthesis, and bone calcium levels. Growth at Raft River was slightly lower than at a companion commercial facility at Buhl, Idaho, but was attributed to facility differences rather than an adverse impact of geothermal water. No significant differences were recorded between Raft River and Buhl fish for bone calcium or collagen concentrations. No significant accumulation of heavy metals by fish or prawns was recorded.

Campbell, D.K.; Rose, F.L.; Kent, J.C.; Watson, L.R.; Sullivan, J.F.

1979-08-01T23:59:59.000Z

103

Geology and alteration of the Raft River geothermal system, Idaho | Open  

Open Energy Info (EERE)

alteration of the Raft River geothermal system, Idaho alteration of the Raft River geothermal system, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Geology and alteration of the Raft River geothermal system, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: analcime; Cassia County Idaho; Cenozoic; chlorite; chlorite group; clay minerals; economic geology; exploration; framework silicates; geothermal energy; Idaho; illite; kaolinite; laumontite; montmorillonite; Neogene; Precambrian; Raft Formation; Raft River KGRA; Salt Lake Formation; sheet silicates; silicates; Tertiary; United States; wairakite; wells; zeolite group Author(s): Blackett, R.E.; Kolesar, P.T. Published: Geothermal Resource Council Transactions 1983, 1/1/1983 Document Number: Unavailable DOI: Unavailable

104

Raft River geoscience case study: appendixes  

DOE Green Energy (OSTI)

The following are included in these appendices: lithology, x-ray analysis, and cores; well construction data; borehole geophysical logs; chemical analyses from wells at the Raft River geothermal site; and bibliography. (MHR)

Dolenc, M.R.; Hull, L.C.; Mizell, S.A.; Russell, B.F.; Skiba, P.A.; Strawn, J.A.; Tullis, J.A.

1981-11-01T23:59:59.000Z

105

Total field aeromagnetic map of the Raft River known Geothermal Resource  

Open Energy Info (EERE)

field aeromagnetic map of the Raft River known Geothermal Resource field aeromagnetic map of the Raft River known Geothermal Resource Area, Idaho by the US Geological Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Total field aeromagnetic map of the Raft River known Geothermal Resource Area, Idaho by the US Geological Survey Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; MAGNETIC SURVEYS; MAPS; RAFT RIVER VALLEY; AERIAL SURVEYING; GEOTHERMAL RESOURCES; IDAHO; KGRA; FEDERAL REGION X; GEOPHYSICAL SURVEYS; NORTH AMERICA; RESOURCES; SURVEYS; USA Author(s): Geological Survey, Denver, CO (USA) Published: DOE Information Bridge, 1/1/1981 Document Number: Unavailable DOI: 10.2172/5456508 Source: View Original Report Aeromagnetic Survey At Raft River Geothermal Area (1981) Raft River Geothermal Area

106

Temperature, thermal-conductivity, and heat-flux data,Raft River...  

Open Energy Info (EERE)

Temperature, thermal-conductivity, and heat-flux data,Raft River area, Cassia County, Idaho (1974-1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report:...

107

Geochemical modeling at Raft River  

DOE Green Energy (OSTI)

Chemical analysis of water from three depth regimes at the Raft River KGRA indicate the presence of at least two distinct hydrothermal fluids. One fluid predominates in the fracture system on the west side of the valley, known as the Bridge Fault. This fluid is characterized by low conductivity (2,000 to 3,000 ..mu..s) and 6 to 9 ..mu..g/ml F/sup -/. The second fluid, encountered in the center of the valley, appears to be associated with the Narrows Structure and is characterized by a conductivity of 6,000 to 11,000 ..mu..s and F/sup -/ of 3 to 6 ..mu..g/ml. Contour mapping of conductivity and Cl/sup -//F/sup -/ ratios indicates upwelling of both deep geothermal fluids into the shallow system. This recharge into the intermediate and shallow zones produces high-conductivity water which is used for irrigation. Application of a simple mixing model shows that all the water sampled in intermediate and deep zones can be described by mixtures of two nearly pure fluids. One mechanism, consistent with the known data, is deep upwelling of a highly mineralized fluid which is heated by the basement rock and then penetrates sediment layers through fractures. The second fluid is relatively recent meteoric water conductively heated by the basement rock.

Allen, C.A.; Chaney, R.E.; McAtee, R.E.

1979-01-01T23:59:59.000Z

108

Reconnaissance geothermal exploration at Raft River, Idaho from...  

Open Energy Info (EERE)

Reconnaissance geothermal exploration at Raft River, Idaho from thermal infrared scanning Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article:...

109

Raft River Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

GEOTHERMAL ENERGYGeothermal Home GEOTHERMAL ENERGYGeothermal Home Raft River Geothermal Facility General Information Name Raft River Geothermal Facility Facility Raft River Sector Geothermal energy Location Information Location Cassia County, Idaho Coordinates 42.358036°, -113.5728501° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.358036,"lon":-113.5728501,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

110

Raft River Geothermal Exploratory Hole No. 3  

DOE Green Energy (OSTI)

Raft River Geothermal Exploratory Hole No. 3 (RRGE-3) is an exploratory hole with three directional legs, drilled to depths ranging from approximately 5,500 to 6,000 feet into intruded quartz monzonite basement rock of the Raft River valley of southeastern Idaho. The goal of the Raft River Geothermal R and D program is to determine the feasibility of developing and utilizing medium temperature (300/sup 0/F) geothermal resources for power generation and nonelectrical applications. This well was drilled to provide data to further investigate and evaluate the geothermal reservoir, as well as to optimize the location of possible future resource and/or injection wells and to develop methods to reduce the cost of geothermal wells. The drilling and completion of RRGE-3 is described and the daily drilling reports, drill bit records, descriptions of the casing, cementing, logging and coring programs, and the containment techniques employed on RRGE-3 are included.

Shoopman, H.H. (comp.)

1977-06-01T23:59:59.000Z

111

Raft River geoscience case study | Open Energy Information  

Open Energy Info (EERE)

study study Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Raft River geoscience case study Details Activities (1) Areas (1) Regions (0) Abstract: The Raft River Geothermal Site has been evaluated over the past eight years by the United States Geological Survey and the Idaho National Engineering Laboratory as a moderate-temperature geothermal resource. The geoscience data gathered in the drilling and testing of seven geothermal wells suggest that the Raft River thermal reservoir is: (a) produced from fractures found at the contact metamorphic zone, apparently the base of detached normal faulting from the Bridge and Horse Well Fault zones of the Jim Sage Mountains; (b) anisotropic, with the major axis of hydraulic conductivity coincident to the Bridge Fault Zone; (c) hydraulically

112

Geochemical modeling of the Raft River geothermal field | Open Energy  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Geochemical modeling of the Raft River geothermal field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geochemical modeling of the Raft River geothermal field Details Activities (1) Areas (1) Regions (0) Abstract: The results to date of chemical modeling of the Raft River KGRA are presented. Earlier work indicated a northwest-southeast anomaly in the contours. Modeling techniques applied to more complete data allowed further definition of the anomaly. Models described in this report show the source of various minerals in the geothermal water. There appears to be a regional heat source that gives rise to uniform conductive heat flow in the region, but convective flow is concentrated near the upwelling in the Crook well

113

Update on the Raft River Geothermal Reservoir | Open Energy Information  

Open Energy Info (EERE)

on the Raft River Geothermal Reservoir on the Raft River Geothermal Reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Update on the Raft River Geothermal Reservoir Details Activities (1) Areas (1) Regions (0) Abstract: Since the last conference, a fourth well has been drilled to an intermediate depth and tested as a production well, with plans to use this well in the long term for injection of fluids into the strata above the production strata. The third, triple legged well has been fully pump tested, and the recovery of the second well from an injection well back to production status has revealed very interesting data on the reservoir conditions around that well. Both interference testing and geochemistry analysis shows that the third well is producing from a different aquifer

114

Raft River condenser-tube examination  

DOE Green Energy (OSTI)

In the program of development of a water treatment for the 5 MW Raft River power plants' carbon steel heat rejection system, four carbon steel tubes were analyzed in this batch. The results of visual and scanning electron microscope examination of the tubes are presented. (MHR)

Suciu, D.F.

1981-04-03T23:59:59.000Z

115

Rheological control on the initial geometry of the Raft River detachment  

Open Energy Info (EERE)

Rheological control on the initial geometry of the Raft River detachment Rheological control on the initial geometry of the Raft River detachment fault and shear zone, western United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Rheological control on the initial geometry of the Raft River detachment fault and shear zone, western United States Details Activities (1) Areas (1) Regions (0) Abstract: The strain, exhumation history, and field orientation of a well-exposed shear zone and detachment fault in the Raft River Mountains of northwestern Utah, a Cordilleran metamorphic core complex, have been studied to determine the kinematics of ductile shearing and initial orientations of the shear zone and detachment fault. Mapping and strain and kinematic analysis indicate that the top-to-the-east Raft River shear zone

116

Two-dimensional simulation of the Raft River geothermal reservoir and  

Open Energy Info (EERE)

dimensional simulation of the Raft River geothermal reservoir and dimensional simulation of the Raft River geothermal reservoir and wells. (SINDA-3G program) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Two-dimensional simulation of the Raft River geothermal reservoir and wells. (SINDA-3G program) Details Activities (1) Areas (1) Regions (0) Abstract: Computer models describing both the transient reservoir pressure behavior and the time dependent temperature response of the wells at the Raft River, Idaho, Geothermal Resource were developed. A horizontal, two-dimensional, finite-difference model for calculating pressure effects was constructed to simulate reservoir performance. Vertical, two-dimensional, finite-difference, axisymmetric models for each of the three existing wells at Raft River were also constructed to describe the

117

Raft River 5MW Geothermal Pilot Plant  

SciTech Connect

Elements of design of the 5 MW(e) binary cycle plant to be built in the Raft River Valley in Idaho are discussed. Advantages of the dual boiling cycle for use with moderate temperature (250 to 350/sup 0/F) resources are discussed. A breakdown of the heat loads and power requirements is presented. Various components, including pumps, heat exchangers, cooling tower, turbine-generators, and production and injection systems, are described. (JGB)

Whitbeck, J.F.; Piscitella, R.R.

1978-01-01T23:59:59.000Z

118

GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL...  

Open Energy Info (EERE)

GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, IDAHO Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: GEOLOGY AND...

119

FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO...  

Open Energy Info (EERE)

FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO- NEW DATA AND HYDROGEOLOGICAL IMPLICATIONS Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference...

120

Hydrochemistry of selected parameters at the Raft River KGRA...  

Open Energy Info (EERE)

Hydrochemistry of selected parameters at the Raft River KGRA, Cassia County, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Hydrochemistry of selected...

Note: This page contains sample records for the topic "area raft river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Final Technical Resource Confirmation Testing at the Raft River...  

Open Energy Info (EERE)

Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Final Technical...

122

The investigation of anomalous magnetization in the Raft River...  

Open Energy Info (EERE)

anomalous magnetization in the Raft River valley, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: The investigation of anomalous...

123

Borehole geophysics evaluation of the Raft River geothermal reservoir...  

Open Energy Info (EERE)

reservoir, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Borehole geophysics evaluation of the Raft River geothermal reservoir, Idaho Details...

124

Rheological control on the initial geometry of the Raft River...  

Open Energy Info (EERE)

Rheological control on the initial geometry of the Raft River detachment fault and shear zone, western United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

125

Preservation of an extreme transient geotherm in the Raft River...  

Open Energy Info (EERE)

transient geotherm in the Raft River detachment shear zone Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Preservation of an extreme transient...

126

Raft River 5-MW(e) geothermal pilot plant project  

SciTech Connect

The Raft River 5-MW(e) Pilot Plant Project was started in 1976. Construction is scheduled for completion in July 1980, with three years of engineering and operational testing to follow. The plant utilized a 280/sup 0/F geothermal fluid energy source and a dual boiling isobutane cycle. Developmental efforts are in progress in the areas of down hole pumps and chemical treatment of geothermal fluid for cooling tower makeup.

Rasmussen, T.L.; Whitbeck, J.F.

1980-01-01T23:59:59.000Z

127

Borehole geophysics evaluation of the Raft River geothermal reservoir |  

Open Energy Info (EERE)

reservoir reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Borehole geophysics evaluation of the Raft River geothermal reservoir Details Activities (1) Areas (1) Regions (0) Abstract: Borehole geophysics techniques were used in evaluating the Raft River geothermal reservoir to establish a viable model for the system. The assumed model for the hot water (145/sup 0/C) reservoir was a zone of higher conductivity, increased porosity, decreased density, and lower sonic velocity. It was believed that the long term contact with the hot water would cause alteration producing these effects. With this model in mind, cross-plots of the above parameters were made to attempt to delineate the reservoir. It appears that the most meaningful data include smoothed and

128

Raft River Rural Elec Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Rural Elec Coop Inc Rural Elec Coop Inc Place Idaho Website www.rrelectric.com/index- Utility Id 22814 Utility Location Yes Ownership Cooperative NERC Location WECC NERC WECC Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png RAFT RIVER DIV: Small General, 60 AMPS and over, Single Phase Commercial RAFT RIVER DIV: Small General, 60 AMPS and over, Three Phase Commercial RAFT RIVER DIV: Large General 50KVA or greater, 60 AMPS or over Commercial RAFT RIVER DIV: Small General, Less than 60 AMPS, Single Phase Commercial RAFT RIVER DIV: Small General, Less than 60 AMPS, Three Phase Commercial

129

FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO- NEW DATA AND  

Open Energy Info (EERE)

FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO- NEW DATA AND FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO- NEW DATA AND HYDROGEOLOGICAL IMPLICATIONS Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO- NEW DATA AND HYDROGEOLOGICAL IMPLICATIONS Details Activities (1) Areas (1) Regions (0) Abstract: Following a period of exploration and development in the mid-late 1970's, there was little activity at the Raft River geothermal field for the next ~20 years. US Geothermal Inc. acquired the project in 2002, and began commercial power generation in January 2008. From mid-2004 to present, US Geothermal Inc. has collected geochemical data from geothermal and monitoring wells in the field, as well as other shallow wells in the

130

Preservation of an extreme transient geotherm in the Raft River detachment  

Open Energy Info (EERE)

Preservation of an extreme transient geotherm in the Raft River detachment Preservation of an extreme transient geotherm in the Raft River detachment shear zone Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Preservation of an extreme transient geotherm in the Raft River detachment shear zone Details Activities (1) Areas (1) Regions (0) Abstract: Extensional detachment systems separate hot footwalls from cool hanging walls, but the degree to which this thermal gradient is the product of ductile or brittle deformation or a preserved original transient geotherm is unclear. Oxygen isotope thermometry using recrystallized quartz-muscovite pairs indicates a smooth thermal gradient (140 °C/100 m) across the gently dipping, quartzite-dominated detachment zone that bounds the Raft River core complex in northwest Utah (United States). Hydrogen

131

Reservoir evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal  

Open Energy Info (EERE)

evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal Project, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Reservoir evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal Project, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Results of the production and interference tests conducted on the geothermal wells RRGE 1 and RRGE 2 in Raft River Valley, Idaho during September--November, 1975 are presented. In all, three tests were conducted, two of them being short-duration production tests and one, a long duration interference test. In addition to providing estimates on the permeability and storage parameters of the geothermal reservoir, the tests also indicated the possible existence of barrier boundaries. The data

132

An early history of pure shear in the upper plate of the raft river  

Open Energy Info (EERE)

early history of pure shear in the upper plate of the raft river early history of pure shear in the upper plate of the raft river metamorphic core complex- black pine mountains, southern Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An early history of pure shear in the upper plate of the raft river metamorphic core complex- black pine mountains, southern Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Although commonly obscured by simple shear, pure shear fabrics occur locally within many metamorphic core complexes. The cover rocks to the Raft River metamorphic core complex exposed within the Black Pine Mountains display an early coaxial strain history which developed prior to the formation of low-angle fault-bounded allochthons. At higher structural levels this is documented by pressure shadows with straight sutures, and

133

Resistivity measurements before and after injection Test 5 at Raft River  

Open Energy Info (EERE)

measurements before and after injection Test 5 at Raft River measurements before and after injection Test 5 at Raft River KGRA, Idaho. Final report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Resistivity measurements before and after injection Test 5 at Raft River KGRA, Idaho. Final report Details Activities (2) Areas (1) Regions (0) Abstract: Resistivity measurements were made prior to, and after an injection test at Raft River KGRA, Idaho. The objectives of the resistivity measurements were to determine if measureable changes could be observed and whether they could be used to infer the direction of fluid flow. Most of the apparent resistivity changes observed after the injection phase of Test 5 are smaller than the estimated standard deviation of the measurements. However, the contour map of the changes suggest an anomalous trend to the

134

Geophysical logging case history of the Raft River geothermal system, Idaho  

Open Energy Info (EERE)

Geophysical logging case history of the Raft River geothermal system, Idaho Geophysical logging case history of the Raft River geothermal system, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geophysical logging case history of the Raft River geothermal system, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Drilling to evaluate the geothermal resource in the Raft River Valley began in 1974 and resulted in the discovery of a geothermal reservoir at a depth of approximately 1523 m (500 ft). Several organizations and companies have been involved in the geophysical logging program. There is no comprehensive report on the geophysical logging, nor has there been a complete interpretation. The objectives of this study are to make an integrated interpretation of the available data and compile a case history. Emphasis has been on developing a simple interpretation

135

Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and  

Open Energy Info (EERE)

Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and Steamboat Springs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and Steamboat Springs Details Activities (3) Areas (3) Regions (0) Abstract: Helium isotope ratios have been measured in geothermal fluids from Iceland, The Geysers, Raft River, Steamboat Springs and Hawaii. These ratios have been interpreted in terms of the processes which supply He in distinct isotopic ratios (i.e. magmatic He, ~10 Ra; atmospheric He, R,sub>a; and crustal He, ~0.1 Ra) and in terms of the processes which can alter the isotopic ratio (hydrologic mixing, U-Th series alpha production and weathering release of crustal He, magma aging and

136

Raft River Rural Elec Coop Inc (Nevada) | Open Energy Information  

Open Energy Info (EERE)

Inc (Nevada) Jump to: navigation, search Name Raft River Rural Elec Coop Inc Place Nevada Utility Id 22814 References EIA Form EIA-861 Final Data File for 2010 - File220101...

137

Raft River Geothermal Exploratory Hole No. 1 (RRGE-1). Completion report |  

Open Energy Info (EERE)

Exploratory Hole No. 1 (RRGE-1). Completion report Exploratory Hole No. 1 (RRGE-1). Completion report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Raft River Geothermal Exploratory Hole No. 1 (RRGE-1). Completion report Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; BOREHOLES; WELL DRILLING; GEOTHERMAL EXPLORATION; GEOTHERMAL WELLS; IDAHO; EQUIPMENT; GEOLOGICAL SURVEYS; WELL CASINGS; WELL LOGGING; CAVITIES; DRILLING; EXPLORATION; NORTH AMERICA; PACIFIC NORTHWEST REGION; USA; WELLS Author(s): Reynolds Electrical and Engineering Co., Inc., Las Vegas, Nev. (USA) Published: DOE Information Bridge, 10/1/1975 Document Number: Unavailable DOI: 10.2172/5091938 Source: View Original Report Exploratory Well At Raft River Geothermal Area (1975) Raft River Geothermal Area Retrieved from

138

Raft River monitor well potentiometric head responses and water quality as  

Open Energy Info (EERE)

monitor well potentiometric head responses and water quality as monitor well potentiometric head responses and water quality as related to the conceptual ground-water flow system Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Raft River monitor well potentiometric head responses and water quality as related to the conceptual ground-water flow system Details Activities (1) Areas (1) Regions (0) Abstract: Ground-water monitoring near the Raft River site was initiated in 1974 by the IDWR. This effort consisted of semiannual chemical sampling of 22 irrigation wells near the Raft River geothermal development area. This program yielded useful baseline chemical data; however, several problems were inherent. For example, access to water pumped from the wells is limited to the irrigation season (April through September). All the wells

139

Raft River Geothermal Exploratory Hole No. 2, RRGE-2. Completion report |  

Open Energy Info (EERE)

Hole No. 2, RRGE-2. Completion report Hole No. 2, RRGE-2. Completion report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Raft River Geothermal Exploratory Hole No. 2, RRGE-2. Completion report Details Activities (1) Areas (1) Regions (0) Abstract: The Raft River Geothermal Exploratory Hole No. 2 (RRGE-2) is the second exploratory hole drilled in the Raft River Valley location of the Idaho Geothermal R and D Project for the purpose of determining the existence of hot water in quantities suitable for commercial power generation and nonelectric applications. This well was drilled to a depth of 6,543 feet below ground level to obtain additional geological information for evaluation of the deep geothermal reservoir system. The drilling and completion of RRGE-2 are described. The daily drilling

140

Raft River well stimulation experiments: geothermal reservoir well stimulation program  

DOE Green Energy (OSTI)

The Geothermal Reservoir Well Stimulation Program (GRWSP) performed two field experiments at the Raft River KGRA in 1979. Wells RRGP-4 and RRGP-5 were selected for the hydraulic fracture stimulation treatments. The well selection process, fracture treatment design, field execution, stimulation results, and pre- and post-job evaluations are presented.

Not Available

1980-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "area raft river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Summary and results of the comprehensive environmental monitoring program at the INEL's Raft River geothermal site  

DOE Green Energy (OSTI)

The Raft River Geothermal Program was designed to demonstrate that moderate temperature (approx. 150/sup 0/C) geothermal fluids could be used to generate electricity and provide an alternate energy source for direct-use applications. The environmental program was initiated soon after drilling began. The major elements of the monitoring program were continued during the construction and experimental testing of the 5-MW(e) power plant. The monitoring studies established pre-development baseline conditions of and assessed changes in the physical, biological, and human environment. The Physical Environmental Monitoring Program collected baseline data on geology, subsidence, seismicity, meteorology and air quality. The Biological Environmental Monitoring Program collected baseline data on the flora and fauna of the terrestrial ecosystem, studied raptor disturbances, and surveyed the aquatic communities of the Raft River. The Human Environmental Monitoring Program surveyed historic and archaeological sites, considered the socioeconomic environment, and documented incidences of fluorosis in the Raft River Valley. In addition to the environmental monitoring programs, research on biological direct applications using geothermal water was conducted at Raft River. Areas of research included biomass production of wetland and tree species, aquaculture, agricultural irrigation, and the use of wetlands as a treatment or pretreatment system for geothermal effluents.

Mayes, R.A.; Thurow, T.L.; Cahn, L.S.

1982-01-01T23:59:59.000Z

142

Raft River II Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Raft River II Geothermal Project Raft River II Geothermal Project Project Location Information Coordinates 42.605555555556°, -113.24055555556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.605555555556,"lon":-113.24055555556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

143

Raft River Rural Elec Coop Inc (Utah) | Open Energy Information  

Open Energy Info (EERE)

Inc (Utah) Inc (Utah) Jump to: navigation, search Name Raft River Rural Elec Coop Inc Place Utah Utility Id 22814 References EIA Form EIA-861 Final Data File for 2010 - File2_2010[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0830/kWh Commercial: $0.0629/kWh Industrial: $0.0474/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File2_2010" Retrieved from "http://en.openei.org/w/index.php?title=Raft_River_Rural_Elec_Coop_Inc_(Utah)&oldid=412776" Categories: EIA Utility Companies and Aliases Utility Companies Organizations Stubs What links here

144

Reservoir evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal...  

Open Energy Info (EERE)

evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal Project, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Reservoir evaluation tests on RRGE...

145

Completion report: Raft River Geothermal Production Well Four (RRGP-4)  

DOE Green Energy (OSTI)

The fourth Raft River well was originally drilled to 866 m (2840 ft), for use as a test injection well. This well allowed the injection of geothermal fluids into the intermediate zone--above the geothermal production zone and below the shallow groundwater aquifers. After this testing, the well was deepened and cased for use as a production well. The well's designation was changed from RRGI-4 to RRGP-4. This report describes the drilling and completion of both drilling projects. Results of well tests are also included.

Miller, L.G.; Prestwich, S.M.

1979-02-01T23:59:59.000Z

146

Completion report: Raft River Geothermal Injection Well Six (RRGI-6)  

DOE Green Energy (OSTI)

Raft River Geothermal Injection Well Six (RRGI-6) is an intermediate-depth injection well designed to accept injection water in the 600 to 1000 m (2000 to 3500 ft) depth range. It has one barefoot leg, and it was drilled so that additional legs can be added later; if there are problems with intermediate-depth injection, one or more additional legs could be directionally drilled from the current well bore. Included are the reports of daily drilling records of drill bits, casings, and loggings, and descriptions of cementing, coring, and containment.

Miller, L.G.; Prestwich, S.M.

1979-02-01T23:59:59.000Z

147

Raft River III Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Geothermal Project Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Raft River III Geothermal Project Project Location Information Coordinates 42.099444444444°, -113.38222222222° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.099444444444,"lon":-113.38222222222,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

148

Internal Technical Report, Raft River Pump Selection Analysis  

DOE Green Energy (OSTI)

The following is an analysis investigating the relation between well pumping rates and overall plant power at the 5 MW Raft River geothermal plant No.1. Information is generated to allow selection of well pumping rates, pump setting depths, and required characteristics of supply and injection pumps. The analysis proceeds with a simple analysis of plant power--flow split relationships from which the conclusion is drawn that the plant power, within certain limits, is insensitive to the flow split between wells. A more complex analysis is then performed which examines flow split sensitivity with all four wells operating and sensitivity of plant power to supply flow increases. This analysis is summarized by tentative field flow rate selections and a data table. Tentative supply and injection pump selections are made and contingency pumps are discussed.

Jacoby, J.K.; Bliem, C.J.

1979-06-01T23:59:59.000Z

149

Monitor well responses at the Raft River, Idaho, Geothermal Site  

DOE Green Energy (OSTI)

Effects of geothermal fluid production and injection on overlying ground-water aquifers have been studied at the Raft River Geothermal Site in southcentral Idaho. Data collected from 13 monitor wells indicate a complex fractured and porous media controlled ground-water flow system affected by natural recharge and discharge, irrigation withdrawal, and geothermal withdrawal and injection. The monitor wells are completed in aquifers and aquitards overlying the principal geothermal aquifers. Potentiometric heads and water quality are significantly affected by natural upward geothermal leakage via faults and matrix seepage. No significant change in water quality data has been observed, but potentiometric head changes resulted due to geothermal resource testing and utilization. Long-term hydrographs for the wells exhibit three distinct patterns, with superimposed responses due to geothermal pumping and injection. Well hydrographs typical of the Shallow aquifer exhibit effects of natural recharge and irrigation withdrawals. For selected wells, pressure declines due to injection and pressure buildup associated with pumping are observed. The latter effect is presumably due to the elastic deformation of geologic material overlying the stressed aquifers. A second distinct pattern occurs in two wells believed to be hydraulically connected to the underlying Intermediate aquifer via faults. These wells exhibit marked buildup effects due to injection as well as responses typical of the Shallow aquifer. The third pattern is demonstrated by three monitor wells near the principal production wells. This group of wells exhibits no seasonal potentiometric head fluctuations. Fluctuations which do occur are due to injection and pumpage. The three distinct hydrograph patterns are composites of the potentiometric head responses occurring in the various aquifers underlying the Raft River Site.

Skiba, P.A.; Allman, D.W.

1984-05-01T23:59:59.000Z

150

Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho  

Science Conference Proceedings (OSTI)

Incorporates the results of flow tests for geothermal production and injection wells in the Raft River geothermal field in southern Idaho. Interference testing was also accomplished across the wellfield.

Glaspey, Douglas J.

2008-01-30T23:59:59.000Z

151

Raft River monitor well potentiometric head responses and water quality as related to the conceptual ground-water flow system  

DOE Green Energy (OSTI)

Ground-water monitoring near the Raft River site was initiated in 1974 by the IDWR. This effort consisted of semiannual chemical sampling of 22 irrigation wells near the Raft River geothermal development area. This program yielded useful baseline chemical data; however, several problems were inherent. For example, access to water pumped from the wells is limited to the irrigation season (April through September). All the wells are not continuously pumped; thus, some wells that are sampled one season cannot be sampled the next. In addition, information on well construction, completion, and production is often unreliable or not available. These data are to be supplemented by establishing a series of monitor wells in the proposed geothermal withdrawal and injection area. These wells were to be located and designed to provide data necessary for evaluating and predicting the impact of geothermal development on the Shallow Aquifer system.

Allman, D.W.; Tullis, J.A.; Dolenc, M.R.; Thurow, T.L.; Skiba, P.A.

1982-09-01T23:59:59.000Z

152

Heating and cooling the Raft River geothermal transite pipe line  

SciTech Connect

A preliminary transient heat transfer analysis to aid in defining operating limits for the 4000-foot-long transite pipe line at the Raft River geothermal test site was completed. The heat transfer problem was to determine the time required to cool down the line from a 285/sup 0/F operating temperature to 50/sup 0/F and the time to heat up the line from 50/sup 0/F to 285/sup 0/F such that the temperature differential across the pipe wall will not exceed 25/sup 0/F. The pipe and the surrounding soil was modeled with a two-dimensional heat transfer computer code assuming constant convective heat transfer at the soil-atmosphere interface. The results are sensitive to the soil thermal conductivity used in the calculation and imply that measurement of soil thermal conductivity used in the calculation and imply that measurement of soil thermal properties should be made in order to refine the calculations. Also, the effect of variable convective heat transfer at the soil surface should be investigated. However, the results reported here indicate the order of magnitude to be expected for cool-down and heat-up times when operating the transite pipe at the stated condition.

Shaffer, C.J.

1977-06-01T23:59:59.000Z

153

Raft River Geothermal Exploratory Hole No. 2, RRGE-2. Completion report  

DOE Green Energy (OSTI)

The Raft River Geothermal Exploratory Hole No. 2 (RRGE-2) is the second exploratory hole drilled in the Raft River Valley location of the Idaho Geothermal R and D Project for the purpose of determining the existence of hot water in quantities suitable for commercial power generation and nonelectric applications. This well was drilled to a depth of 6,543 feet below ground level to obtain additional geological information for evaluation of the deep geothermal reservoir system. The drilling and completion of RRGE-2 are described. The daily drilling reports, drill bit records, casing records, and descriptions of the cementing, logging, coring and containment techniques employed during the drilling operation are included.

Speake, J.L. (comp.)

1976-08-01T23:59:59.000Z

154

Results of short-term corrosion evaluation tests at Raft River  

DOE Green Energy (OSTI)

Four categories of short-term materials evaluation tests were conducted in geothermal fluid from Raft River Geothermal Experiment, Well No. 1, to obtain corrosion data relevant to the design of the Raft River Thermal Loop Facility. Test programs are described and the testing philosophies are discussed. All materials and configurations which were tested are identified and details of posttest visual examinations are presented. The materials are then assigned to appropriate performance categories on the basis of test behavior, and the possible service limitations are appraised.

Miller, R.L.

1977-10-01T23:59:59.000Z

155

Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Research and Development Plant  

DOE Green Energy (OSTI)

The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

Brown, E.S.; Homer, G.B.; Shaber, C.R.; Thurow, T.L.

1981-11-17T23:59:59.000Z

156

Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Pilot Plant  

DOE Green Energy (OSTI)

The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

Brown, E.S.; Homer, G.B.; Spencer, S.G.; Shaber, C.R.

1980-05-30T23:59:59.000Z

157

Effects of irrigation on crops and soils with Raft River geothermal water  

DOE Green Energy (OSTI)

The Raft River Irrigation Experiment investigated the suitability of using energy-expended geothermal water for irrigation of selected field-grown crops. Crop and soil behavior on plots sprinkled or surface irrigated with geothermal water was compared to crop and soil behavior on plots receiving water from shallow irrigation wells and the Raft River. In addition, selected crops were produced, using both geothermal irrigation water and special management techniques. Crops irrigated with geothermal water exhibited growth rates, yields, and nutritional values similar to comparison crops. Cereal grains and surface-irrigated forage crops did not exhibit elevated fluoride levels or accumulations of heavy metals. However, forage crops sprinkled with geothermal water did accumulate fluorides, and leaching experiments indicate that new soils receiving geothermal water may experience increased salinity, exchangeable sodium, and decreased permeability. Soil productivity may be maintained by leaching irrigations.

Stanley, N.E.; Schmitt, R.C.

1980-01-01T23:59:59.000Z

158

Two-dimensional simulation of the Raft River geothermal reservoir and wells. [SINDA-3G program  

DOE Green Energy (OSTI)

Computer models describing both the transient reservoir pressure behavior and the time dependent temperature response of the wells at the Raft River, Idaho, Geothermal Resource were developed. A horizontal, two-dimensional, finite-difference model for calculating pressure effects was constructed to simulate reservoir performance. Vertical, two-dimensional, finite-difference, axisymmetric models for each of the three existing wells at Raft River were also constructed to describe the transient temperature and hydraulic behavior in the vicinity of the wells. All modeling was done with the use of the thermal hydraulics computer program SINDA-3G. The models are solved simultaneously with one input deck so that reservoir-well interaction may occur. The model predicted results agree favorably with the test data.

Kettenacker, W.C.

1977-03-01T23:59:59.000Z

159

Reservoir evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal Project, Idaho  

DOE Green Energy (OSTI)

Results of the production and interference tests conducted on the geothermal wells RRGE 1 and RRGE 2 in Raft River Valley, Idaho during September--November, 1975 are presented. In all, three tests were conducted, two of them being short-duration production tests and one, a long duration interference test. In addition to providing estimates on the permeability and storage parameters of the geothermal reservoir, the tests also indicated the possible existence of barrier boundaries. The data collected during the tests also indicated that the reservoir pressure varies systematically in response to the changes in the Earth's gravitational field caused by the passage of the sun and the moon. Overall, the results of the tests indicate that the geothermal reservoir in southern Raft River valley is fairly extensive and significantly permeable and merits further exploration.

Narasimhan, T.N.; Witherspoon, P.A.

1977-05-01T23:59:59.000Z

160

Corrosion engineering in the utilization of the Raft River geothermal resource  

DOE Green Energy (OSTI)

The economic impact of corrosion and the particular problems of corrosion in the utilization of geothermal energy resources are noted. Corrosion is defined and the parameters that control corrosion in geothermal systems are discussed. A general background of corrosion is presented in the context of the various forms of corrosion, in relation to the Raft River geothermal system. A basic reference for mechanical design engineers involved in the design of geothermal energy recovery systems is provided.

Miller, R.L.

1976-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "area raft river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Injection in basin and range-type reservoirs: the Raft River experience  

DOE Green Energy (OSTI)

Injection testing at the Raft River KGRA has yielded some interesting results which can be useful in planning injection systems in Basin and Range type reservoirs. Because of inhomogeneities and possible fracturing in basin fill sediment, rapid pressure response to injection has been observed in one shallow monitor well, but not others. In some monitor wells in the injection field, pressure drops are observed during injection suggesting plastic deformation of the sediments. Seismicity, however, has not accompanied these observed water level changes.

Petty, S.; Spencer, S.

1981-01-01T23:59:59.000Z

162

Two-dimensional simulation of the Raft River geothermal reservoir...  

Open Energy Info (EERE)

and wells. (SINDA-3G program) Details Activities (1) Areas (1) Regions (0) Abstract: Computer models describing both the transient reservoir pressure behavior and the time...

163

Asbestos--cement pipeline experience at the Raft River Geothermal Project  

DOE Green Energy (OSTI)

The first buried asbestos-cement (Transite) pipeline used in high temperature (approximately 300/sup 0/F) service for transport of geothermal fluids was installed in the fall of 1975, and has seen 1/sup 1///sub 2/ years of service. The line is 4000 ft long, between the deep geothermal wells No. 1 and No. 2, in the Raft River Valley of Idaho. The experience in using this pipeline has been satisfactory, and methods have been developed for minimizing the thermal expansion/thermal shock breakage problems. Recommendations on improved design and construction practices for future pipelines are given. The substantially reduced cost (factor of 2) of an asbestos-cement pipeline compared to the conventional steel pipeline, plus the esthetically desirable effect of a buried pipeline dictate adoption of this type as standard practice for moderate temperature geothermal developments. The Raft River Geothermal Project intends to connect all future wells with pipelines of asbestos-cement, insulated with 1 to 2-inches of urethane, and buried between 2 and 3 ft. Total cost will be approximately $110,000/mile for 10-inch diameter pipe, $125,000/mile for 12-inch diameter.

Miller, L.G.; Kunze, J.F.; Sanders, R.D.

1977-04-01T23:59:59.000Z

164

Beneficial uses of geothermal energy description and preliminary results for phase 1 of the Raft River irrigation experiment  

DOE Green Energy (OSTI)

The first phase of an experiment using geothermal water for irrigation is described and preliminary results are discussed. The water was from a moderate temperature well, having salinity of about 2000 ppM, and is considered characteristic of the types of geothermal fluids that will be obtained from the young volcanic/young sediment formations of the northern intermountain west. The activity was completed at a location adjacent to ERDA's Raft River Geothermal Project in southern Idaho. About 12.5 acres, of which part had no previous cultivation, were subdivided by crops and irrigation practices for investigation with the geothermal water and a control comparison water from the relatively pure Raft River. Flood and sprinkler application techniques were used and wheat, barley, oats, grasses, alfalfa, potatoes, and garden vegetables were successfully grown. An accompanying experiment evaluated the behavior of an established alfalfa crop located nearby, when most of the irrigation water was geothermal. The experiment addressed heavy metal uptake in plants, plant fluoride retention and damage, plant tolerances to salts, soil alterations and other behavior as a result of the geothermal fluids, all of which were largely believed to eliminate geothermal water from contention for crop growing utilization. Not all analyses and results are complete in this reporting, but first results indicate no apparent difference between the geothermal watered crops and those obtained using the fresh water control. Extensive chemical analyses, neutron activation analyses, and other evaluations of crop samples are discussed, and some of the findings are presented. Although evaluation of crop yields was not an objective, extrapolations from samples indicate that yield results were comparable to those commonly found in the area, and the yield varied little between water sources. (JGB)

Schmitt, R.C.; Spencer, S.G.

1977-01-01T23:59:59.000Z

165

Fluidized-bed potato waste drying experiments at the Raft River Geothermal Test Site  

SciTech Connect

A fluidized-bed dryer was built and operated at the Raft River Geothermal Test Site in south central Idaho to test the feasibility of using low-temperature (145/sup 0/C or lower) geothermal fluids as an energy source for drying operations. The dryer performed successfully on two potato industry waste products that had a solid content of 5 to 13%. The dried product was removed as a sand-like granular material or as fines with a flour-like texture. Test results, observations, and design recommendations are presented. Also presented is an economic evaluation for commercial-scale drying plants using either geothermal low-temperature water or oil as a heat source.

Cole, L.T.; Schmitt, R.C.

1980-06-01T23:59:59.000Z

166

Economic evaluation of four types of dry/wet cooling applied to the 5-MWe Raft River geothermal power plant  

DOE Green Energy (OSTI)

A cost study is described which compared the economics of four dry/wet cooling systems to use at the existing Raft River Geothermal Plant. The results apply only at this site and should not be generalized without due consideration of the complete geothermal cycle. These systems are: the Binary Cooling Tower, evaporative condenser, Combin-aire, and a metal fin-tube dry cooling tower with deluge augmentation. The systems were evaluated using cooled, treated geothermal fluid instead of ground or surface water in the cooling loops. All comparisons were performed on the basis of a common plant site - the Raft River 5 MWe geothermal plant in Idaho. The Binary Cooling Tower and the Combin-aire cooling system were designed assuming the use of the isobutane/water surface condenser currently installed at the Raft River Plant. The other two systems had the isobutane ducted to the evaporative condensers. Capital credit was not given to the system employing the direct condensing process. The cost of the systems were estimated from designs provided by the vendors. The levelized energy cost range for each cooling system is listed below. The levelized energy cost reflects the incremental cost of the cooling system for the life of the plant. The estimates are presented in 1981 dollars.

Bamberger, J.A.; Allemann, R.T.

1982-07-01T23:59:59.000Z

167

Evaluation of testing and reservoir parameters in geothermal wells at Raft River and Boise, Idaho  

DOE Green Energy (OSTI)

Evaluating the Raft River and Boise, Idaho, resources by pump and injection tests require information on the geology, geochemistry, surficial and borehole geophysics, and well construction and development methods. Nonideal test conditions and a complex hydrogeologic system prevent the use of idealized mathematical models for data evaluation in a one-phase fluid system. An empirical approach is successfully used since it was observed that all valid pump and injection well pressure data for constant discharge tests plotted as linear trends on semilogarithmic plots of borehole pressure versus time since pumping or injection began. Quantification of the pressure response prior to 600 minutes is not always possible. Short-duration (< 24-hour) injection or pump tests are conducted with the drilling rig equipment, and long-duration (21-day) injection and pump tests are then conducted with the permanent pumping facilities. Replicate instrumentation for pressure, temperature, and flow rates is necessary to ensure quality data. Water quality and monitor well data are also collected.

Allman, D.W.; Goldman, D.; Niemi, W.L.

1979-01-01T23:59:59.000Z

168

Evaluation of testing and reservoir parameters in geothermal wells at Raft River and Boise, Idaho  

DOE Green Energy (OSTI)

Evaluating the Raft River and Boise, Idaho, resources by pump and injection tests requires information on the geology, geochemistry, surficial and borehole geophysics, and well construction and development methods. Nonideal test conditions and a complex hydrogeologic system prevent the use of idealized mathematical models for data evaluation in a one-phase fluid system. An empirical approach is successfully used since it was observed that all valid pump and injection well pressure data for constant discharge tests plotted as linear trends on semilogarithmic plots of borehole pressure versus time since pumping or injection began. Quantification of the pressure response prior to 600 minutes is not always possible. Short-duration (< 24-hour) injection or pump tests are conducted with the drilling rig equipment, and long-duration (21-day) injection and pump tests are then conducted with the permanent pumping facilities. Replicate instrumentation for pressure, temperature, and flow rates are necessary to ensure quality data. Water quality and monitor well data are also collected.

Allman, D.W.; Goldman, D.; Niemi, W.L.

1979-01-01T23:59:59.000Z

169

Tracer Testing At Raft River Geothermal Area (1984) | Open Energy...  

Open Energy Info (EERE)

L.; Yorgason, K. R.; Moore, J. N. (1 December 1984) Preferred methods of analysis for chemical tracers in moderate- and high-temperature geothermal environments Retrieved from...

170

Environmental assessment: Raft River geothermal project pilot plant, Cassia County, Idaho  

DOE Green Energy (OSTI)

The action assessed here is the construction and operation of a 5- to 6-MW(e) (gross) geothermal pilot plant in the Raft River Valley of southern Idaho. This project was originally planned as a thermal test loop using a turbine simulator valve. The test loop facility (without the simulator valve) is now under construction. The current environmental assessment addresses the complete system including the addition of a turbine-generator and its associated switching gear in place of the simulator valve. The addition of the turbine-generator will result in a net production of 2.5 to 3.5 MW(e) with a commensurate reduction in waste heat to the cooling tower and will require the upgrading of existing transmission lines for offsite delivery of generated power. Construction of the facility will require disturbance of approximately 20 ha (50 acres) for the facility itself and approximately 22.5 ha (57 acres) for construction of drilling pads and ponds, pipelines, and roads. Existing transmission lines will be upgraded for the utility system interface. Interference with alternate land uses will be minimal. Loss of wildlife habitat will be acceptable, and US Fish and Wildlife Service recommendations for protection of raptor nesting sites, riparian vegetation, and other important habitats will be observed. During construction, noise levels may reach 100 dBA at 15 m (50 ft) from well sites, but wildlife and local residents should not be significantly affected if extended construction is not carried out within 0.5 km (0.3 miles) of residences or sensitive wildlife habitat. Water use during construction will not be large and impacts on competing uses are unlikely.

Not Available

1979-09-01T23:59:59.000Z

171

COMPARISON OF THREE TRACER TESTS AT THE RAFT RIVER GEOTHERMAL SITE  

DOE Green Energy (OSTI)

Three conservative tracer tests have been conducted through the Bridge Fault fracture zone at the Raft River Geothermal (RRG) site. All three tests were conducted between injection well RRG-5 and production wells RRG-1 (790 m distance) and RRG-4 (740 m distance). The injection well is used during the summer months to provide pressure support to the production wells. The first test was conducted in 2008 using 136 kg of fluorescein tracer. Two additional tracers were injected in 2010. The first 2010 tracer injected was 100 kg fluorescein disodium hydrate salt on June, 21. The second tracer (100 kg 2,6-naphthalene disulfonic acid sodium salt) was injected one month later on July 21. Sampling of the two productions wells is still being performed to obtain the tail end of the second 2010 tracer test. Tracer concentrations were measured using HPLC with a fluorescence detector. Results for the 2008 test, suggest 80% tracer recover at the two production wells. Of the tracer recovered, 85% of tracer mass was recovered in well RRG-4 indicating a greater flow pathway connection between injection well and RRG-4 than RRG-1. Fluorescein tracer results appear to be similar between the 2008 and 2010 tests for well RRG-4 with peak concentrations arriving approximately 20 days after injection despite the differences between the injection rates for the two tests (~950 gpm to 475 gpm) between the 2008 and 2010. The two 2010 tracer tests will be compared to determine if the results support the hypothesis that rock contraction along the flow pathway due to the 55 oC cooler water injection alters the flow through the ~140 oC reservoir.

Earl D Mattson; Mitchell Plummer; Carl Palmer; Larry Hull; Samantha Miller; Randy Nye

2011-02-01T23:59:59.000Z

172

Internal Technical Report, 1981 Annual Report, An Analysis of the Response of the Raft River Geothermal Site Monitor Wells  

Science Conference Proceedings (OSTI)

A groundwater monitoring program has been established on the Raft River Geothermal Site since 1978. The objective of this program is to document possible impacts that may be caused by geothermal production and injection on the shallow aquifers used for culinary and irrigation purposes. This annual progress report summarizes data from 12 monitor wells during 1981. These data are compared with long-term trends and are correlated with seasonal patterns, irrigation water use and geothermal production and testing. These results provide a basis for predicting long-term impacts of sustained geothermal production and testing. To date, there has been no effect on the water quality of the shallow aquifers.

Thurow, T.L.; Large, R.M.; Allman, D.W.; Tullis, J.A.; Skiba, P.A.

1982-04-01T23:59:59.000Z

173

Chemical and light-stable isotope characteristics of waters from the raft  

Open Energy Info (EERE)

light-stable isotope characteristics of waters from the raft light-stable isotope characteristics of waters from the raft river geothermal area and environs, Cassia County, Idaho, Box Elder county, Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Chemical and light-stable isotope characteristics of waters from the raft river geothermal area and environs, Cassia County, Idaho, Box Elder county, Utah Details Activities (1) Areas (1) Regions (0) Abstract: Chemical and light-stable isotope data are presented for water samples from the Raft River geothermal area and environs. On the basis of chemical character, as defined by a trilinear plot of per cent milliequivalents, and light-stable isotope data, the waters in the geothermal area can be divided into waters that have and have not mixed

174

Temperatures, heat flow, and water chemistry from drill holes in the Raft  

Open Energy Info (EERE)

Temperatures, heat flow, and water chemistry from drill holes in the Raft Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: The Raft River area of Idaho contains a geothermal system of intermediate temperatures (approx. = 150 0C) at depths of about 1.5 km. Outside of the geothermal area, temperature measurements in three intermediate-depth drill holes (200 to 400 m) and one deep well (1500 m) indicate that the regional conductive heat flow is about 2.5 mucal/cm 2 sec or slightly higher and that temperature gradients range from 50 0 to 60

175

Internal Technical Report, Management Plan for Fluid Supply and Injection System for the Raft River 5 MW(e) Pilot Power Plant  

DOE Green Energy (OSTI)

This report details a plan for developing a fluid supply system for the First 5 MW(e) Pilot Power Plant at Raft River. The pilot plant has been specifically designed to use the medium-temperature geothermal water so common throughout the West. EG and G Idaho, Inc., the Department of Energy Raft River Rural Electric Co-op, the US Geological Survey (USGS) and the State of Idaho have worked together to develop a facility that will use an organic liquid as the working fluid. Four wells have been drilled in the Raft River Valley, about ten miles South of Malta, in southern Idaho. The completed well system will consist of seven wells: two conventional injection wells, three production wells, and a standby reserve well of each type. The additional three wells are to be drilled in FY-1978, in order to complete a coordinated test program before the First Pilot Power Plant is ready for operation. The system has been designed to meet the test-loop pilot plant's basic requirement: a 2450 gpm supply of geothermal fluid, at a nominal temperature of 290 F and with salinity of less than 5000 ppm. Injection of cooled geothermal fluid into the Raft River reservoir will also require a network of monitor wells. The Idaho Department of Water Resources (IDWR), USGS, EG and G Idaho, and the Department of Energy will jointly select sites for two 1500-foot and five 500-foot monitoring wells. This plan considers the work required to complete construction of the fluid supply system and obtain a preliminary check of its performance capability; the plan will discuss project management, costs, schedules, drilling, testing, environmental monitoring, and safety.

None

1978-01-09T23:59:59.000Z

176

Evaluation of testing and reservoir parameters in geothermal wells at Raft  

Open Energy Info (EERE)

testing and reservoir parameters in geothermal wells at Raft testing and reservoir parameters in geothermal wells at Raft River and Boise, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Evaluation of testing and reservoir parameters in geothermal wells at Raft River and Boise, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Evaluating the Raft River and Boise, Idaho, resources by pump and injection tests require information on the geology, geochemistry, surficial and borehole geophysics, and well construction and development methods. Nonideal test conditions and a complex hydrogeologic system prevent the use of idealized mathematical models for data evaluation in a one-phase fluid system. An empirical approach is successfully used since it was observed that all valid pump and injection well pressure data for constant discharge

177

New River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

New River Geothermal Area New River Geothermal Area (Redirected from New River Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: New River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

178

New River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

New River Geothermal Area New River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: New River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

179

Magnetotellurics At New River Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Magnetotellurics At New River Area (DOE GTP) Exploration Activity Details Location New River Area Exploration Technique Magnetotellurics Activity Date Usefulness not indicated...

180

Geothermometry At New River Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Geothermometry At New River Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At New River Area (DOE GTP) Exploration...

Note: This page contains sample records for the topic "area raft river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Milky River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Milky River Geothermal Area Milky River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Milky River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":52.32,"lon":-174.1472,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

182

Reese River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Reese River Geothermal Area Reese River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Reese River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (3) 9 Exploration Activities (10) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.89,"lon":-117.14,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

183

Carson River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

River Geothermal Area River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Carson River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.77,"lon":-119.715,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

184

Reese River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Reese River Geothermal Area Reese River Geothermal Area (Redirected from Reese River Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Reese River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (3) 9 Exploration Activities (10) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.89,"lon":-117.14,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

185

Serious pitting hazard in the raft river 5MW(e) Geothermal Power Plant isobutane cooling loop  

DOE Green Energy (OSTI)

The 5MW(e) Dual Boiling Cycle Geothermal Power Plant, hence referred to as the Raft River plant, is being developed for DOE by EG and G, Inc., Idaho Falls, Idaho. This pilot power plant is of the binary concept and utilizes isobutane as the working second fluid. The plant will demonstrate the feasibility of power generation from an intermediate temperature ({approx} 290 F) resource. The plant is schematically diagrammed in Figure 1. During the final design phase and after the major components were specified to be made of carbon steel, and ordered, various conditions forced the power plant design to switch from surface water to geothermal fluid for the condenser cooling loop make-up water. Because the geothermal fluid contains significant concentrations of chlorides and sulfates, about 1000 ppm and 65 ppm respectively, aeration in the cooling tower causes this water to become extremely aggressive, especially in the pitting of carbon steel components. Although essentially all of the condenser cooling loop materials are carbon steel, the isobutane condenser and turbine lube oil cooler are the most vulnerable. These components are tubed with carbon steel tubes of 0.085 and 0.075 inch wall thickness. These two components are extremely leak critical heat exchangers. For example, even a single pit perforation in the isobutane condenser can cause plant shutdown through loss of isobutane. Such a leak also poses an explosion or fire hazard. As isobutane pressure falls, the incursion of cooling water into the isobutane loop could occur, causing damage to anhydrous service seals. Under a DOE contract for geothermal failure analysis, Radian Corporation has made a preliminary investigation of the pitting hazard presented by the aggressive cooling fluid and the corrosion inhibition treatment that has thus far been proposed. This report documents Radian's understanding of the present situation and the results of its investigation on possible mitigation of this hazard. Finally, various conclusions and recommendations are made that may, if pursued, lead to a satisfactory solution that will avert a certain early prolonged plant shutdown due to failure of the thin walled isobutane and turbine lube oil cooler tubes.

Ellis, Peter F.

1980-02-25T23:59:59.000Z

186

Determination of the 5 MW gross nominal design case binary cycle for power generation at Raft River, Idaho. [Using GEOSYS program  

DOE Green Energy (OSTI)

A series of Rankine cycle studies for power generation utilizing geothermal fluid as the heat source and isobutane as the working fluid are reported. To find the plant configuration which would most effectively utilize the available energy, a parametric study was performed. The desirability of supercritical, single boiler or double boiler cycles, and the relative boiler temperatures and percentage isobutane flow split between the boilers in the double cycles for geothermal fluid temperatures of 260/sup 0/F to 360/sup 0/F were considered. This study was designed to discover thermodynamic trends which would point to an optimum isobutane cycle for geothermal fluid temperatures in this temperature range. The results of the parametric study were applied to derive a Nominal Design Case for a demonstration plant at Raft River, with a geothermal fluid resource at 290/sup 0/F. In addition, plant variations due to tolerances applied to thermodynamic properties and other key factors are included.

Ingvarsson, I.J.; Madsen, W.W. (eds.)

1976-12-01T23:59:59.000Z

187

Field tests of a vertical-fluted-tube condenser in the prototype power plant at the Raft River Geothermal Test Site  

DOE Green Energy (OSTI)

A vertical-fluted-tube condenser was designed, fabricated, and tested with isobutane as the shell-side working fluid in a binary prototype power plant at the Raft River Geothermal Test Site. After shakedown and contamination removal operations were completed, the four-pass water-cooled unit (with 102 outside-fluted Admiralty tubes) achieved performance predictions while operating with the plant surface evaporator on-line. A sample comparison shows that use of this enhanced condenser concept offers the potential for a reduction of about 65% from the size suggested by corresponding designs using conventional horizontal-smooth-tube concepts. Subsequent substitution of a direct-contact evaporator for the surface evaporator brought drastic reductions in system performance, the apparent consequence of high concentrations of noncondensible gases introduced by the brine/working-fluid interaction.

Murphy, R.W.

1983-04-01T23:59:59.000Z

188

Ray River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Ray River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Ray River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65.96202521,"lon":-150.9200119,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

189

Geological and geophysical studies of a geothermal area in the southern  

Open Energy Info (EERE)

Geological and geophysical studies of a geothermal area in the southern Geological and geophysical studies of a geothermal area in the southern Raft river valley, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Geological and geophysical studies of a geothermal area in the southern Raft river valley, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: areal geology; Cassia County Idaho; Cenozoic; clastic rocks; clasts; composition; conglomerate; economic geology; electrical methods; evolution; exploration; faults; folds; geophysical methods; geophysical surveys; geothermal energy; gravity methods; Idaho; igneous rocks; lithostratigraphy; magnetic methods; pyroclastics; Raft River Valley; resources; sedimentary rocks; seismic methods; stratigraphy; structural geology; structure; surveys; tectonics; United States; volcanic rocks

190

Teleseismic-Seismic Monitoring At New River Area (DOE GTP) |...  

Open Energy Info (EERE)

Teleseismic-Seismic Monitoring At New River Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At New...

191

An early history of pure shear in the upper plate of the raft...  

Open Energy Info (EERE)

early history of pure shear in the upper plate of the raft river metamorphic core complex- black pine mountains, southern Idaho Jump to: navigation, search GEOTHERMAL...

192

Prescribed Burning in the Kings River Ecosystems Project Area: Lessons  

E-Print Network (OSTI)

Prescribed Burning in the Kings River Ecosystems Project Area: Lessons Learned1 David S. Mc burning was initiated in 1994 in two 32,000-acre watersheds in the Kings River District of the Sierra various effects of these fires. Approximately 11,900 acres of prescription burns were completed by the end

Standiford, Richard B.

193

Water Sampling At Reese River Area (Henkle, Et Al., 2005) | Open...  

Open Energy Info (EERE)

Water Sampling At Reese River Area (Henkle, Et Al., 2005) Exploration Activity Details Location Reese River Area Exploration Technique Water Sampling Activity Date Usefulness...

194

Flow Test At New River Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At New River Area (DOE GTP) Exploration Activity Details Location New River Area...

195

FMI Log At New River Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

New River Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Single-Well and Cross-Well Resistivity At New River Area (DOE GTP)...

196

Development Wells At New River Area (DOE GTP) | Open Energy Informatio...  

Open Energy Info (EERE)

New River Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At New River Area (DOE GTP) Exploration Activity...

197

Refraction Survey At New River Area (DOE GTP) | Open Energy Informatio...  

Open Energy Info (EERE)

Refraction Survey At New River Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Refraction Survey At New River Area (DOE GTP)...

198

Reflection Survey At New River Area (DOE GTP) | Open Energy Informatio...  

Open Energy Info (EERE)

Reflection Survey At New River Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At New River Area (DOE GTP)...

199

Cuttings Analysis At New River Area (DOE GTP) | Open Energy Informatio...  

Open Energy Info (EERE)

New River Area (DOE GTP) Exploration Activity Details Location New River Area Exploration Technique Cuttings Analysis Activity Date Usefulness not indicated DOE-funding Unknown...

200

Micro-Earthquake At New River Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

New River Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At New River Area (DOE GTP) Exploration Activity...

Note: This page contains sample records for the topic "area raft river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

100 Area Columbia River sediment sampling  

SciTech Connect

Forty-four sediment samples were collected from 28 locations in the Hanford Reach of the Columbia River to assess the presence of metals and man-made radionuclides in the near shore and shoreline settings of the Hanford Site. Three locations were sampled upriver of the Hanford Site plutonium production reactors. Twenty-two locations were sampled near the reactors. Three locations were sampled downstream of the reactors near the Hanford Townsite. Sediment was collected from depths of 0 to 6 in. and between 12 to 24 in. below the surface. Samples containing concentrations of metals exceeding the 95 % upper threshold limit values (DOE-RL 1993b) are considered contaminated. Contamination by arsenic, chromium, copper, lead, and zinc was found. Man-made radionuclides occur in all samples except four collected opposite the Hanford Townsite. Man-made radionuclide concentrations were generally less than 1 pCi/g.

Weiss, S.G. [Westinghouse Hanford Co., Richland, WA (United States)

1993-09-08T23:59:59.000Z

202

Responsible Asia Forest Trade (RAFT) Program | Open Energy Information  

Open Energy Info (EERE)

Responsible Asia Forest Trade (RAFT) Program Responsible Asia Forest Trade (RAFT) Program Jump to: navigation, search Name Responsible Asia Forest Trade (RAFT) Program Agency/Company /Organization U.S. Agency for International Development Sector Land Focus Area Forestry Topics Policies/deployment programs Resource Type Lessons learned/best practices Website http://www.responsibleasia.org Country Cambodia, China, Indonesia, Laos, Malaysia, Papua New Guinea, Thailand, Vietnam UN Region Central Asia, Eastern Asia, South-Eastern Asia References Responsible Asia Forest Trade (RAFT) Program[1] "The Responsible Asia Forestry and Trade (RAFT) is a five-year program funded by the U.S. Agency for International Development Regional Development Mission for Asia (USAID RDMA) in Bangkok. RAFT is managed by

203

Lower Ray River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lower Ray River Geothermal Area Lower Ray River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lower Ray River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65.9839,"lon":-150.5797,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

204

Red River Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Red River Hot Springs Geothermal Area Red River Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Red River Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.7878,"lon":-115.1978,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

205

Safety analysis, 200 Area, Savannah River Plant: Separations area operations  

Science Conference Proceedings (OSTI)

The nev HB-Line, located on the fifth and sixth levels of Building 221-H, is designed to replace the aging existing HB-Line production facility. The nev HB-Line consists of three separate facilities: the Scrap Recovery Facility, the Neptunium Oxide Facility, and the Plutonium Oxide Facility. There are three separate safety analyses for the nev HB-Line, one for each of the three facilities. These are issued as supplements to the 200-Area Safety Analysis (DPSTSA-200-10). These supplements are numbered as Sup 2A, Scrap Recovery Facility, Sup 2B, Neptunium Oxide Facility, Sup 2C, Plutonium Oxide Facility. The subject of this safety analysis, the, Plutonium Oxide Facility, will convert nitrate solutions of {sup 238}Pu to plutonium oxide (PuO{sub 2}) powder. All these new facilities incorporate improvements in: (1) engineered barriers to contain contamination, (2) barriers to minimize personnel exposure to airborne contamination, (3) shielding and remote operations to decrease radiation exposure, and (4) equipment and ventilation design to provide flexibility and improved process performance.

Perkins, W.C.; Lee, R.; Allen, P.M.; Gouge, A.P.

1991-07-01T23:59:59.000Z

206

Information summary, Area of Concern: Ashtabula River, Ohio. Final report  

SciTech Connect

The Water Quality Act of 1987, Section 118, authorizes the Great Lakes National Program Office (GLNPO) to carry out a 5-year study and demonstration project, Assessment and Remediation of Contaminated Sediments (ARCS), with emphasis on the removal of toxic pollutants from bottom sediments. Information from the ARCS program is to be used to guide the development of Remedial Action Plans (RAPs) for 42 identified Great Lakes Areas of Concern (AOCs) as well as Lake-wide Management Plans. The AOCs are areas where serious impairment of beneficial uses of water or biota (drinking, swimming, fishing, navigation, etc.) is known to exist, or where environmental quality criteria are exceeded to the point that such impairment is likely. Priority consideration was given to the following AOCs: Saginaw Bay, Michigan; Sheboygan Harbor, Wisconsin; Grand Calumet River, Indiana; Ashtabula River, Ohio; and Buffalo River, New York. This report summarizes the information obtained for the Ashtabula River AOC. (GLNPO Subject-Reference Matrix). Data and information from numerous reports have been included as figures and tables; wherever possible, the reference sources are identified.

Tatem, H.E.; Brandon, D.L.; Lee, C.R.; Simmers, J.W.; Skogerboe, J.G.

1990-12-01T23:59:59.000Z

207

Reed River Hot Spring Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Reed River Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Reed River Hot Spring Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":67.26650701,"lon":-155.0521524,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

208

Microearthquake surveys of Snake River plain and Northwest Basin and Range  

Open Energy Info (EERE)

surveys of Snake River plain and Northwest Basin and Range surveys of Snake River plain and Northwest Basin and Range geothermal areas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Microearthquake surveys of Snake River plain and Northwest Basin and Range geothermal areas Details Activities (2) Areas (2) Regions (0) Abstract: applications; Basin and Range Province; Black Rock Desert; Cassia County Idaho; earthquakes; economic geology; exploration; fracture zones; geophysical methods; geophysical surveys; geothermal energy; Humboldt County Nevada; Idaho; microearthquakes; Nevada; North America; passive systems; Pershing County Nevada; Raft River; reservoir rocks; seismic methods; seismicity; seismology; Snake River plain; surveys; United States; Western U.S. Author(s): Kumamoto, L.H.

209

Environmental Assessment for the Replacement Source of Steam for A Area at the Savannah River Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 OCTOBER 2006 U. S. DEPARTMENT OF ENERGY SAVANNAH RIVER OPERATIONS OFFICE SAVANNAH RIVER SITE ENVIRONMENTAL ASSESSMENT FOR THE REPLACEMENT SOURCE OF STEAM FOR A AREA AT THE SAVANNAH RIVER SITE DOE/EA-1568 ENVIRONMENTAL ASSESSMENT FOR THE REPLACEMENT SOURCE OF STEAM FOR A AREA AT THE SAVANNAH RIVER SITE OCTOBER 2006 U. S. DEPARTMENT OF ENERGY SAVANNAH RIVER OPERATIONS OFFICE SAVANNAH RIVER SITE ii TABLE OF CONTENTS Page 1.0 INTRODUCTION ...............................................................................................1 1.1 Background ..............................................................................................1 1.2 Purpose and Need for Proposed Action.....................................................1 2.0 PROPOSED ACTION AND ALTERNATIVES

210

Ground Gravity Survey At New River Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

GTP) Exploration Activity Details Location New River Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown References (1...

211

Static Temperature Survey At Reese River Area (Henkle & Ronne, 2008) | Open  

Open Energy Info (EERE)

Reese River Area (Henkle & Ronne, 2008) Reese River Area (Henkle & Ronne, 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Reese River Area (Henkle & Ronne, 2008) Exploration Activity Details Location Reese River Area Exploration Technique Static Temperature Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Temperature logs were run on well 56-4 on March 22, April 28 and Nov. 9, 2007. The respective maximum bottom hole temperatures of 121.9°C, 121.2°C and 124.5°C were recorded for each of the three logging runs. References William R. Henkle, Joel Ronne (2008) Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing Retrieved from "http://en.openei.org/w/index.php?title=Static_Temperature_Survey_At_Reese_River_Area_(Henkle_%26_Ronne,_2008)&oldid=511159"

212

Community-Minded Interns at Savannah River Site Help Area Residents in Need  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community-Minded Interns at Savannah River Site Help Area Residents Community-Minded Interns at Savannah River Site Help Area Residents in Need with Home Repairs Community-Minded Interns at Savannah River Site Help Area Residents in Need with Home Repairs August 1, 2012 - 12:00pm Addthis James Cunningham, right, nails a board to the framework for a deck project in Jackson. Ashley Flowers, Savannah River Remediation project controls intern, assists by holding the board in place. James Cunningham, right, nails a board to the framework for a deck project in Jackson. Ashley Flowers, Savannah River Remediation project controls intern, assists by holding the board in place. AIKEN, S.C. - More than two dozen college interns who worked at the Savannah River Site (SRS) this summer joined other volunteers and headed into area neighborhoods to help people in need with home repairs.

213

Community-Minded Interns at Savannah River Site Help Area Residents in Need  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community-Minded Interns at Savannah River Site Help Area Residents Community-Minded Interns at Savannah River Site Help Area Residents in Need with Home Repairs Community-Minded Interns at Savannah River Site Help Area Residents in Need with Home Repairs August 1, 2012 - 12:00pm Addthis James Cunningham, right, nails a board to the framework for a deck project in Jackson. Ashley Flowers, Savannah River Remediation project controls intern, assists by holding the board in place. James Cunningham, right, nails a board to the framework for a deck project in Jackson. Ashley Flowers, Savannah River Remediation project controls intern, assists by holding the board in place. AIKEN, S.C. - More than two dozen college interns who worked at the Savannah River Site (SRS) this summer joined other volunteers and headed into area neighborhoods to help people in need with home repairs.

214

Compound and Elemental Analysis At Reese River Area (Henkle & Ronne, 2008)  

Open Energy Info (EERE)

Reese River Area Reese River Area (Henkle & Ronne, 2008) Exploration Activity Details Location Reese River Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Four formation water samples were collected from well 56-4, during an airlift test which took place between November 11 and November 14, 2007. One sample was taken from the Steiner Well which was the source for drilling water for the drilling of 56-4 and for the short injection test. The samples were analyzed by Thermochem for chemical constituents and by Rafter Lab at GNS for isotope analysis. References William R. Henkle, Joel Ronne (2008) Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing Retrieved from "http://en.openei.org/w/index.php?title=Compound_and_Elemental_Analysis_At_Reese_River_Area_(Henkle_%26_Ronne,_2008)&oldid=51045

215

Areas of ground subsidence due to geofluid withdrawal  

DOE Green Energy (OSTI)

Detailed information is provided on four geothermal areas with histories of subsidence. These were selected on the basis of: physical relevance of subsidence areas to high priority US geothermal sites in terms of withdrawn geofluid type, reservoir depth, reservoir geology and rock characteristics, and overburden characteristics; and data completeness, quality, and availability. The four areas are: Chocolate Bayou, Raft River Valley, Wairakei, and the Geysers. (MHR)

Grimsrud, G.P.; Turner, B.L.; Frame, P.A.

1978-08-01T23:59:59.000Z

216

Field Mapping At Reese River Area (Henkle, Et Al., 2005) | Open Energy  

Open Energy Info (EERE)

Field Mapping At Reese River Area (Henkle, Et Al., Field Mapping At Reese River Area (Henkle, Et Al., 2005) Exploration Activity Details Location Reese River Area Exploration Technique Field Mapping Activity Date Usefulness useful DOE-funding Unknown References William R. Henkle Jr., Wayne C. Gundersen, Thomas D. Gundersen (2005) Mercury Geochemical, Groundwater Geochemical, And Radiometric Geophysical Signatures At Three Geothermal Prospects In Northern Nevada Retrieved from "http://en.openei.org/w/index.php?title=Field_Mapping_At_Reese_River_Area_(Henkle,_Et_Al.,_2005)&oldid=510756" Categories: Exploration Activities DOE Funded Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

217

Geothermometry At Reese River Area (Henkle & Ronne, 2008) | Open Energy  

Open Energy Info (EERE)

Geothermometry At Reese River Area (Henkle & Ronne, 2008) Geothermometry At Reese River Area (Henkle & Ronne, 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Reese River Area (Henkle & Ronne, 2008) Exploration Activity Details Location Reese River Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Four formation water samples were collected from well 56-4, during an airlift test which took place between November 11 and November 14, 2007. One sample was taken from the Steiner Well which was the source for drilling water for the drilling of 56-4 and for the short injection test. The samples were analyzed by Thermochem for chemical constituents and by Rafter Lab at GNS for isotope analysis. References

218

Slim Holes At Reese River Area (Henkle & Ronne, 2008) | Open Energy  

Open Energy Info (EERE)

Reese River Area (Henkle & Ronne, 2008) Reese River Area (Henkle & Ronne, 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Reese River Area (Henkle & Ronne, 2008) Exploration Activity Details Location Reese River Area Exploration Technique Slim Holes Activity Date Usefulness useful DOE-funding Unknown Notes Well RR 56-4, was not successful in intersecting an exploitable geothermal resource. However, the lack of temperature reversal in the well and the geochemistry information obtained from fluid sampling point towards a large resource of moderate temperature. The encouraging results from 56-4 have lead to continued exploration on the project. The geologic and hydrologic information collected from 56-4 has proved an invaluable aid when combined

219

Property:AreaGeology | Open Energy Information  

Open Energy Info (EERE)

AreaGeology AreaGeology Jump to: navigation, search Property Name AreaGeology Property Type String Description A description of the area geology This is a property of type String. Subproperties This property has the following 22 subproperties: A Amedee Geothermal Area B Beowawe Hot Springs Geothermal Area Blue Mountain Geothermal Area Brady Hot Springs Geothermal Area C Chena Geothermal Area Coso Geothermal Area D Desert Peak Geothermal Area D cont. Dixie Valley Geothermal Area E East Mesa Geothermal Area G Geysers Geothermal Area K Kilauea East Rift Geothermal Area L Lightning Dock Geothermal Area Long Valley Caldera Geothermal Area R Raft River Geothermal Area Roosevelt Hot Springs Geothermal Area S Salt Wells Geothermal Area Salton Sea Geothermal Area San Emidio Desert Geothermal Area

220

Tracer Testing At East Mesa Geothermal Area (1983) | Open Energy  

Open Energy Info (EERE)

Tracer Testing At East Mesa Geothermal Area (1983) Tracer Testing At East Mesa Geothermal Area (1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Tracer Testing At East Mesa Geothermal Area (1983) Exploration Activity Details Location East Mesa Geothermal Area Exploration Technique Tracer Testing Activity Date 1983 Usefulness not indicated DOE-funding Unknown Notes Two field experiments were conducted to develop chemical tracer procedures for use with injection-backflow testing, one on the fracture-permeability Raft River reservoir and the other on the matrix-permeability East Mesa reservoir. Results from tests conducted with incremental increases in the injection volume at both East Mesa and Raft River suggests that, for both reservoirs, permeability remained uniform with increasing distance from the

Note: This page contains sample records for the topic "area raft river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Savannah River Site Retires Coal-Fired D-Area Powerhouse after Nearly 60  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Retires Coal-Fired D-Area Powerhouse after Savannah River Site Retires Coal-Fired D-Area Powerhouse after Nearly 60 Years of Service Savannah River Site Retires Coal-Fired D-Area Powerhouse after Nearly 60 Years of Service May 1, 2012 - 12:00pm Addthis SRNS Maintenance Supervisor Steve Cooper, left to right, Control Room Operator Robert Dicks, and Deputy Operations Manager Ren Hatfield stand near a boiler unit of the DArea powerhouse. The three workers have a combined experience of 83 years at the facility. SRNS Maintenance Supervisor Steve Cooper, left to right, Control Room Operator Robert Dicks, and Deputy Operations Manager Ren Hatfield stand near a boiler unit of the DArea powerhouse. The three workers have a combined experience of 83 years at the facility. AIKEN, S.C. - The Savannah River Site (SRS) has shut down the massive,

222

Injectivity Test At Reese River Area (Henkle & Ronne, 2008) | Open Energy  

Open Energy Info (EERE)

Reese River Area (Henkle & Ronne, Reese River Area (Henkle & Ronne, 2008) Exploration Activity Details Location Reese River Area Exploration Technique Injectivity Test Activity Date Usefulness not indicated DOE-funding Unknown Notes On March 22, 2007 a brief injectivity test was preformed after the slotted liner had been installed. Water was injected at flow rates of 6.3 l/s, 13 l/s and 19 l/s and the pressure and temperature was recorded down hole at a depth of 926 m. At the higher flow rate, the test was interrupted several times to repair leaks at the surface. From the recorded pressure an approximate injectivity index of 10 l/s/MPa was calculated. References William R. Henkle, Joel Ronne (2008) Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing Retrieved from

223

Savannah River Plant construction [100 Area History]: Volume 3  

SciTech Connect

This report discusses five Reactor (100) Areas constructed at SRP. They were designated as 100-C, K, L, P and R. A minimum distance of two miles separated any two of the areas which were laid out in the form of a semi-circle, Each area contained approximately 40 permanent buildings and facilities for a total of 200 buildings for all of the 100 Areas. Construction was started on the R Area first and this was the first area to be completed and accepted by Operations. Construction of the other areas was started and completed in the following sequence: P, L, K and C. The difference in the design and construction of the various facilities in these areas is noted under the individual building discussion on the following pages of this section of the Construction History and also in the du Pont Engineering and Design History. In the series of manufacturing operations the separation of fissionable materials produced in the 100 Areas is accomplished by chemical and physical means in the 200 Areas These are the 200-F and 200-H Areas which have duplicate facilities in the process phase. However, a central laboratory, area shops, laundry, metallurgical and storage magazine buildings were constructed in the 200-F Area only and serve both areas. These activities are also presented in this report.

1957-01-01T23:59:59.000Z

224

Isotopic Tracking of Hanford 300 Area Derived Uranium in the Columbia River  

SciTech Connect

Our objectives in this study are to quantify the discharge rate of uranium (U) to the Columbia River from the Hanford Site's 300 Area, and to follow that U down river to constrain its fate. Uranium from the Hanford Site has variable isotopic composition due to nuclear industrial processes carried out at the site. This characteristic makes it possible to use high-precision isotopic measurements of U in environmental samples to identify even trace levels of contaminant U, determine its sources, and estimate discharge rates. Our data on river water samples indicate that as much as 3.2 kg/day can enter the Columbia River from the 300 Area, which is only a small fraction of the total load of dissolved natural background U carried by the Columbia River. This very low-level of Hanford derived U can be discerned, despite dilution to < 1 percent of natural background U, 350 km downstream from the Hanford Site. These results indicate that isotopic methods can allow the amounts of U from the 300 Area of the Hanford Site entering the Columbia River to be measured accurately to ascertain whether they are an environmental concern, or are insignificant relative to natural uranium background in the Columbia River.

Christensen, John N.; Dresel, P. Evan; Conrad, Mark E.; Patton, Gregory W.; DePaolo, Donald J.

2010-10-31T23:59:59.000Z

225

An aerial radiological survey of the southwest drainage basin area of the Savannah River Site  

SciTech Connect

An aerial radiological survey was conducted over a 106-square-mile area of the Savannah River Site (SRS), formerly the Savannah River Plant. The survey was conducted from August 24 through September 8, 1988, to collect baseline radiological data over the area. Both natural and man-made gamma emitting radionuclides were detected in the area. The detected man-made sources were confined to creeks, branches, and SRS facilities in the surveyed area and were a result of SRS operations. Naturally-occurring radiation levels were consistent with those levels detected in adjacent areas during previous surveys. The annual dose levels were within the range of levels found throughout the United States.

Feimster, E.L.

1994-04-01T23:59:59.000Z

226

F-Area Tank Farm, Savannah River Site Available for Public Comment  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 February 20, 2013 Industrial Wastewater Closure Module for Liquid Waste Tanks 5F and 6F F-Area Tank Farm, Savannah River Site Available for Public Comment Background: The U.S. Department of Energy (DOE) Savannah River Operations Office has requested approval from the South Carolina De- partment of Health and Environmental Control (SCDHEC) of the Industrial Wastewater Closure Module for Waste Tanks 5F and 6F to support removal from service of these subject tanks located in the F-Area Tank Farm (FTF) at the Savannah River Site (SRS). The FTF General Closure Plan, approved on January 24, 2011, established the protocols by which DOE would: (1) close SRS FTF waste tank systems in accordance with South Carolina Regulations R.61-82, "Proper Closeout of Wastewater

227

Hydrologic budget for A/M Area, Savannah River Site  

SciTech Connect

In this investigation different components of the hydrologic budget for the groundwater flow system beneath the A/M Area were quantified. To accomplish this a regional groundwater flow mode, previously calibrated to the groundwater flow system beneath the A/M Area, was used to generate flux terms which could then be used to quantify specific components of the hydrologic budget. Sub-zones within the constructed model were defined in terms of groups of model nodes using the US Geological Survey code ZONEBUDGET. Cell-by-cell flux terms generated by the groundwater model for each node were used as input to calculate the hydrologic budgets for each of the defined sub-zones. Results were tabulated both as actual groundwater fluxes and as normalized quantities to allow easy comparison of flux magnitudes for different sub-zones. In the process of defining sub-zones and calculating the flux magnitude for different components of the hydrologic flow system, the adequacy of the groundwater flow model in describing the actual flow system was better determined. In effect, quantification of flux terms from the groundwater model functioned as a ``calibration tool`` in that specific changes to the groundwater model which would enhance its calibration were identified and are described in this report.

Hiergesell, R.A.; Haselow, J.S.; Jackson, D.G.; Ehrke, L.

1994-09-01T23:59:59.000Z

228

DEPARTMENT OF ENERGY Western Area Power Administration Provo River Project Rate Order No. WAPA-149  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DEPARTMENT OF ENERGY Western Area Power Administration Provo River Project Rate Order No. WAPA-149 AGENCY: Western Area Power Administration, DOE. ACTION: Notice of Rate Order Concerning a Power Rate Formula. SUMMARY: The Deputy Secretary of Energy confinned and approved Rate Order No. W AP A-149, placing a power rate fOlIDula for the Provo River Project (PRP) of Western Area Power Administration (Western) into effect on an interim basis. The provisional power rate formula will remain in effect on an interim basis until the Federal Energy Regulatory Commission (FERC) COnfilIDs, approves, and places it into effect on a final basis, or until the power rate formula is replaced by another power rate fOlIDula. DATES: The provisional power rate fonnula will be placed into effect on an interim basis on

229

DOE Research Set-Aside Areas of the Savannah River Site  

Science Conference Proceedings (OSTI)

Designated as the first of seven National Environmental Research Parks (NERPs) by the Atomic Energy Commission (now the Department of Energy), the Savannah River Site (SRS) is an important ecological component of the Southeastern Mixed Forest Ecoregion located along the Savannah River south of Aiken, South Carolina. Integral to the Savannah River Site NERP are the DOE Research Set-Aside Areas. Scattered across the SRS, these thirty tracts of land have been set aside for ecological research and are protected from public access and most routine Site maintenance and forest management activities. Ranging in size from 8.5 acres (3.44 ha) to 7,364 acres (2,980 ha), the thirty Set-Aside Areas total 14,005 acres (5,668 ha) and comprise approximately 7% of the Site`s total area. This system of Set-Aside Areas originally was established to represent the major plant communities and habitat types indigenous to the SRS (old-fields, sandhills, upland hardwood, mixed pine/hardwood, bottomland forests, swamp forests, Carolina bays, and fresh water streams and impoundments), as well as to preserve habitats for endangered, threatened, or rare plant and animal populations. Many long-term ecological studies are conducted in the Set-Asides, which also serve as control areas in evaluations of the potential impacts of SRS operations on other regions of the Site. The purpose of this document is to give an historical account of the SRS Set-Aside Program and to provide a descriptive profile of each of the Set-Aside Areas. These descriptions include a narrative for each Area, information on the plant communities and soil types found there, lists of sensitive plants and animals documented from each Area, an account of the ecological research conducted in each Area, locator and resource composition maps, and a list of Site-Use permits and publications associated with each Set-Aside.

Davis, C.E.; Janecek, L.L.

1997-08-31T23:59:59.000Z

230

Isotopic Analysis At Reese River Area (Henkle & Ronne, 2008) | Open Energy  

Open Energy Info (EERE)

Henkle & Ronne, 2008) Henkle & Ronne, 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Reese River Area (Henkle & Ronne, 2008) Exploration Activity Details Location Reese River Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Four formation water samples were collected from well 56-4, during an airlift test which took place between November 11 and November 14, 2007. One sample was taken from the Steiner Well which was the source for drilling water for the drilling of 56-4 and for the short injection test. The samples were analyzed by Thermochem for chemical constituents and by Rafter Lab at GNS for isotope analysis. References

231

Columbia River : Select Area Fishery Evaluation project : 1995-96 Annual Reports.  

SciTech Connect

Water quality monitoring was conducted from November 1994 through October 1996 at five Oregon and three Washington select area study sites in the lower Columbia River. Physicochemical monitoring and aquatic biomonitoring programs were established to profile baseline parameters at each study site and document differences between study sites. Data collected at study sites where fish rearing operations were initiated indicate a potential negative impact on the surrounding benthic invertebrate communities.

Hirose, Paul; Miller, Marc; Hill, Jim

1998-06-01T23:59:59.000Z

232

Microfractures in rocks from two geothermal areas | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Microfractures in rocks from two geothermal areas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Microfractures in rocks from two geothermal areas Details Activities (2) Areas (2) Regions (0) Abstract: Core samples from the Dunes, California, and Raft River, Idaho, geothermal areas show diagenesis superimposed on episodic fracturing and fracture sealing. The minerals that fill fractures show significant temporal variations. Sealed fractures can act as barriers to fluid flow. Sealed fractures often mark boundaries between regions of significantly

233

Relationships between Cloud Type and Amount, Precipitation, and Surface Temperature in the Mackenzie River Valley-Beaufort Sea Area  

Science Conference Proceedings (OSTI)

Hourly data from climatological stations in the Mackenzie River valley-Beaufort Sea area of northern Canada have been examined to determine the relationships between cloud type and amount, precipitation, and surface temperatures. During all ...

G. A. Isaac; R. A. Stuart

1996-08-01T23:59:59.000Z

234

Savannah River Site Retires Coal-Fired D-Area Powerhouse after Nearly 60 Years of Service  

Energy.gov (U.S. Department of Energy (DOE))

AIKEN, S.C. The Savannah River Site (SRS) has shut down the massive, coal-powered D-Area powerhouse as the site turns to new, clean and highly efficient power generation technology.

235

First Draft Performance Assessment for the H-Area Tank Farm at the Savannah River Site - Part 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SRR-CWDA-2010-00128 SRR-CWDA-2010-00128 Revision 0 PERFORMANCE ASSESSMENT for the H-AREA TANK FARM at the SAVANNAH RIVER SITE March 2011 Prepared by: Savannah River Remediation LLC Closure & Waste Disposal Authority Aiken, SC 29808 Prepared for U.S. Department of Energy Under Contract No. DE-AC09-09SR22505 Performance Assessment for the SRR-CWDA-2010-00128 H-Area Tank Farm at the Revision 0 Savannah River Site March 2011 Page ii of 864 REVISION SUMMARY REV. # DESCRIPTION DATE OF ISSUE 0a Initial issue to DOE-SR 09/17/2010

236

Literature and data review for the surface-water pathway: Columbia River and adjacent coastal areas  

SciTech Connect

As part of the Hanford Environmental Dose Reconstruction Project, Pacific Northwest Laboratory reviewed literature and data on radionuclide concentrations and distribution in the water, sediment, and biota of the Columbia River and adjacent coastal areas. Over 600 documents were reviewed including Hanford reports, reports by offsite agencies, journal articles, and graduate theses. Certain radionuclide concentration data were used in preliminary estimates of individual dose for the 1964--1966 time period. This report summarizes the literature and database review and the results of the preliminary dose estimates.

Walters, W.H.; Dirkes, R.L.; Napier, B.A.

1992-04-01T23:59:59.000Z

237

Literature and data review for the surface-water pathway: Columbia River and adjacent coastal areas  

Science Conference Proceedings (OSTI)

As part of the Hanford Environmental Dose Reconstruction (HEDR) Project, Battelle, Pacific Northwest Laboratories reviewed literature and data on radionuclide concentrations and distribution in the water, sediment, and biota of the Columbia River and adjacent coastal areas. Over 600 documents were reviewed including Hanford reports, reports by offsite agencies, journal articles, and graduate theses. Radionuclide concentration data were used in preliminary estimates of individual dose for the period 1964 through 1966. This report summarizes the literature and database reviews and the results of the preliminary dose estimates.

Walters, W.H.; Dirkes, R.L.; Napier, B.A.

1992-11-01T23:59:59.000Z

238

Information summary, Area of Concern: Buffalo River, New York. Final report  

SciTech Connect

The Great Lakes National Program Office (GLNPO) is carrying out a 5-year study and demonstration project, Assessment and Remediation of Contaminated Sediments (ARCS), with emphasis on removal of toxic pollutants from bottom sediments. Information from the ARCS program is to be used to guide development of Remedial Action Plans for 42 identified Great Lakes Areas of Concern (AOCs). The AOCs are areas where serious impairment of beneficial uses of water or biota (drinking, swimming, fishing, navigation, etc.) is known to exist, or where environmental quality criteria are exceeded to the point that such impairment is likely. Priority consideration was given to five AOCs, including Buffalo River, N.Y. The WES Environmental Lab. reviewed existing data and information for each of these five AOCs. The approach used was to bring together WES scientists who have been conducting research on aspects of contaminant mobility in the aquatic environment to develop a list of information required to evaluate the potential for contaminant mobility. This report summarizes the information obtained for the Buffalo River. Topics include: Fish tissue concentrations, Groundwater, Land use, Metal contamination, Pesticides, Point and nonpoint source discharges, Risk assessment, Spills, Toxicity bioassay, and Water quality.

Lee, C.R.; Brandon, D.L.; Simmers, J.W.; Tatem, H.E.; Skogerbee, J.G.

1991-03-01T23:59:59.000Z

239

Information summary, Area of Concern: Grand Calumet River, Indiana. Final report  

Science Conference Proceedings (OSTI)

A 5-year study and demonstration project, Assessment and Remediation of Contaminated Sediment (ARCS), emphasizes the removal of toxic pollutants from bottom sediments. Information from the ARCS program is to be used to guide the development of Remedial Action Plans (RAPs) for 42 identified Great Lakes Areas of Concern (AOCs) as well as resource management plans. The AOCs are areas where serious impairment of beneficial uses of water or biota (drinking, swimming, fishing, navigation, etc) is known to exist, or where environmental quality criteria are exceeded to the point that such impairment is likely. Among the hazardous materials detected from sampling of sediments are heavy metals, pesticides, various chemicals and industrial wastes. Industrial land use, runoff from watersheds, landfills, waste disposal practices and ground water flow contributed to pollutants found in bottom sediments of rivers and waterways channels.

Simmers, J.W.; Lee, C.R.; Brandon, D.L.; Tatem, H.E.; Skogerboe, J.G.

1991-03-01T23:59:59.000Z

240

Tucannon River Temperature Study, Prepared for : Watershed Resource Inventory Area (WRIA) 35.  

DOE Green Energy (OSTI)

This report presents the results of a temperature analysis of the Tucannon River completed for the WRIA 35 Planning Unit. The Tucannon River is located in southeastern Washington and flows approximately 100 kilometers (km) (62 miles) from the Blue Mountains to the Snake River. High water temperature in the Tucannon River has been identified as a limiting factor for salmonid fish habitat (Columbia Conservation District, 2004). Several segments of the Tucannon River are included on Washington State Department of Ecology (Ecology) 303(d) list of impaired waterbodies due to temperature. Ecology is currently conducting scoping for a temperature Total Maximum Daily Load (TMDL) study of the Tucannon River. The WRIA 35 Planning Unit retained HDR Engineering to evaluate water temperature in the Tucannon River. The project objectives are: (1) Review recent and historic data and studies to characterize temperature conditions in the river; (2) Perform field studies and analyses to identify and quantify heating and cooling processes in the river; (3) Develop and calibrate a computer temperature model to determine the sources of heat to the Tucannon River and to predict the temperature of the river that would occur with increased natural riparian shading assuming the current river morphology; (4) Evaluate differences in river temperatures between current and improved riparian shading during the 'critical' period - low river flows and high temperatures; and (5) Determine the potential benefits of riparian shading as a mechanism to decrease river temperature.

HDR Engineering.

2006-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "area raft river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Oxbow Conservation Area; Middle Fork John Day River, Annual Report 2003-2004.  

DOE Green Energy (OSTI)

In early 2001, the Confederated Tribes of Warm Springs, through their John Day Basin Office, concluded the acquisition of the Oxbow Ranch, now know as the Oxbow Conservation Area (OCA). Under a memorandum of agreement with the Bonneville Power Administration (BPA), the Tribes are required to provided BPA an 'annual written report generally describing the real property interests in the Project, HEP analyses undertaken or in progress, and management activities undertaken or in progress'. The project during 2003 was crippled due to the aftermath of the BPA budget crisis. Some objectives were not completed during the first half of this contract because of limited funds in the 2003 fiscal year. The success of this property purchase can be seen on a daily basis. Water rights were utilized only in the early, high water season and only from diversion points with functional fish screens. After July 1, all of the OCA water rights were put instream. Riparian fences on the river, Ruby and Granite Boulder creeks continued to promote important vegetation to provide shade and bank stabilization. Hundreds of willow, dogwood, Douglas-fir, and cottonwood were planted along the Middle Fork John Day River. Livestock grazing on the property was carefully managed to ensure the protection of fish and wildlife habitat, while promoting meadow vigor and producing revenue for property taxes. Monitoring of property populations, resources, and management activities continued in 2003 to build a database for future management of this and other properties in the region.

Cochran, Brian

2004-02-01T23:59:59.000Z

242

from Savannah River Nuclear Solutions, LLC NEWS Area High School Teams Compete during DOE's National Science  

NLE Websites -- All DOE Office Websites (Extended Search)

High School Teams Compete during DOE's National Science High School Teams Compete during DOE's National Science Bowl® Regional Championship: Lakeside and Evans High School Finish Second and Third - Dorman Wins AIKEN, S.C. - Feb. 25, 2013 - Using a format similar to the television show "Jeopardy," America's next generation of scientists and engineers put their knowledge to the test at the University of South Carolina Aiken during the DOE National Science Bowl regional compe- tition this past weekend. High School teams from across South Carolina and the greater Augusta, Ga. area relied on their collective knowledge as they participated in one of the coun- try's largest science tournaments. This regional competition, managed by Savannah River Nuclear Solutions, LLC (SRNS), hosted 120 high school students from 12 high schools. It is the only educational event

243

Natural gas hydrates of the Prudhoe Bay and Kuparuk River area, North Slope, Alaska  

SciTech Connect

Gas hydrates are crystalline substances composed of water and gas, mainly methane, in which a solid-water lattice accommodates gas molecules in a cage-like structure, or clathrate. These substances commonly have been regarded as a potential unconventional source of natural gas because of their enormous gas-storage capacity. Significant quantities of naturally occurring gas hydrates have been detected in many regions of the Arctic, including Siberia, the Mackenzie River Delta, and the North Slope of Alaska. On the North Slope, the methane-hydrate stability zone is a really extensive beneath most of the coastal plain province and has thicknesses greater than 1000 m in the Prudhoe Bay area. Gas hydrates have been inferred to occur in 50 North Slope exploratory and production wells on the basis of well-log responses calibrated to the response of an interval in a well where gas hydrates were recovered in a core by ARCO and Exxon. Most North Slope gas hydrates occur in six laterally continuous lower Tertiary sandstones and conglomerates; all these gas hydrates are geographically restricted to the area overlying the eastern part of the Kuparuk River oil field and the western part of the Prudhoe Bay oil field. The volume of gas within these gas hydrates is estimated to be about 1.0 [times] 10[sup 12] to 1.2 [times] 10[sup 12] m[sup 3] (37 to 44 tcf), or about twice the volume of conventional gas in the Prudhoe Bay field. 52 refs., 13 figs., 2 tabs.

Collett, T.S. (Geological Survey, Denver, CO (United States))

1993-05-01T23:59:59.000Z

244

Information summary, Area of Concern: Saginaw River and Saginaw Bay. Final report, Aug-Dec 88  

SciTech Connect

A 5-year study and demonstration project, Assessment and Remediation of Contaminated Sediments (ARCS) was authorized, with emphasis on the removal of toxic pollutants from bottom sediments. Information from the ARCS program is to be used to guide the development of Remedial Action Plans (RAPs) for 42 identified great Lakes Areas of Concern (AOC) as well as Lake-wide Management Plans. The AOCs are areas where serious impairment of beneficial uses of water or biota (drinking, swimming, fishing, navigation, etc.) is known to exist, or where environmental quality criteria are exceeded to the point that such impairment is likely. Research was conducted on the various aspects of contaminant mobility in the aquatic environment. A list of information was developed to evaluate the potential for contaminant mobility. This report summarizes the information obtained for the Saginaw River and Saginaw Bay AOC in Michigan. Data tables include information on discharge, volume and migration of contaminants, sediment transport, oil spills, hazardous materials, superfund sites, bioassay data and biological data (i.e. fish, wildlife habitats, plankton, fish and endangered species).

Brandon, D.L.; Lee, C.R.; Simmers, J.W.; Tatem, H.E.; Skogerboe, J.G.

1991-03-01T23:59:59.000Z

245

AREA COMPLETION STRATEGIES AT SAVANNAH RIVER SITE: CHARACTERIZATION FOR CLOSURE AND BEYOND  

SciTech Connect

During the first four decades of its 56 year existence, the Savannah River Site (SRS) was a key supplier of nuclear material for national defense. During the 1990s, the site's primary missions became waste site closure, environmental restoration, and deactivation and decommissioning (D&D) of remnant cold war apparatus. Since 1989, with the approval of State and Federal regulatory agencies and with the participation of interested stakeholders, SRS has implemented a final remedy for a majority of the more than 500 individual waste sites at the former nuclear materials complex. These waste sites range from small, inert rubble pits to large, heavy industrial areas and radioactive waste disposal grounds. The closure and final remediation of these waste sites mark significant progress toward achieving SRS's overarching goal of reducing or eliminating future environmental damage and human health threats. However, larger challenges remain. For example, what are appropriate and achievable end-states for decommissioned nuclear facilities? What environmental and human health risks are associated with these end-states? To answer these questions within the strictures of smaller budgets and accelerated schedules, SRS is implementing an ''area completion'' strategy that: (1) unites several discrete waste units into one conceptual model, (2) integrates historically disparate environmental characterization and D&D activities, (3) reduces the number of required regulatory documents, and (4) in some cases, compresses schedules for achieving a stakeholder-approved end-state.

Bagwell, L; Mark Amidon, M; Sadika Baladi, S

2007-06-11T23:59:59.000Z

246

Influence of river level on temperature and hydraulic gradients in chum and fall Chinook salmon spawning areas downstream of Bonneville Dam, Columbia River  

SciTech Connect

Chum (Oncorhynchus keta) and fall Chinook (O. tshawytscha) salmon segregate spatially during spawning in the Ives Island side channel of the lower Columbia River downstream from Bonneville Dam. Previous research during one spawning season (2000) suggested that these species selected spawning habitats based on differences in hyporheic temperature and vertical hydraulic gradient (VHG) with the river. In this study, we confirmed the spatial segregation of spawning based on hyporheic characteristics over four years (20012004) and examined the effects of load-following operations (power generation to meet short-term electrical demand) at Bonneville Dam on hyporheic function and characteristics. We found that during the study period, hyporheic temperature and VHG in chum salmon spawning areas were highly variable during periods of load-following operation when river levels fluctuated. In contrast, hyporheic water temperature and VHG within chum spawning areas fluctuated less when river levels were not changing due to load-following operation. Variable temperature and VHG could affect chum and fall Chinook salmon spawning segregation and incubation success by altering the cues each species uses to select redd sites. Alterations in site selection would result in a breakdown in the spatial segregation of spawning between chum and fall Chinook salmon, which would expose earlier spawning fall Chinook eggs to a greater risk of dislodgement from later spawning chum salmon. Additional research will be required to fully assess the effects of load-following operations on the hyporheic environment and spawning and incubation success of chum and fall Chinook salmon downstream from Bonneville Dam.

Geist, David R.; Arntzen, Evan V.; Murray, Christopher J.; McGrath, Kathy; Bott, Yi-Ju; Hanrahan, Timothy P.

2008-02-01T23:59:59.000Z

247

Savannah River Site/K Area Complex getter life extension report.  

DOE Green Energy (OSTI)

The K Area Complex (KAC) at the Savannah River Site (SRS) has been utilizing HiTop hydrogen getter material in 9975 Shipping Containers to prevent the development of flammable environments during storage of moisture-containing plutonium oxides. Previous testing and subsequent reports have been performed and produced by Sandia National Laboratories (SNL) to demonstrate the suitability and longevity of the getter during storage at bounding thermal conditions. To date, results have shown that after 18 months of continuous storage at 70 C, the getter is able to both recombine gaseous hydrogen and oxygen into water when oxygen is available, and irreversibly getter (i.e. scavenge) hydrogen from the vapor space when oxygen is not available, both under a CO{sub 2} environment. [Refs. 1-5] Both of these reactions are catalytically enhanced and thermodynamically favorable. The purpose of this paper is to establish the justification that maintaining the current efforts of biannual testing is no longer necessary due to the robust performance of the getter material, the very unlikely potential that the recombination reaction will fail during storage conditions in KAC, and the insignificant aging effects that have been seen in the testing to date.

Shepodd, Timothy J.; Woodsmall, Todd (Savannah River Site, Aiken, SC); Nissen, April

2008-08-01T23:59:59.000Z

248

Red River Wildlife Management Area HEP Report, Habitat Evaluation Procedures, Technical Report 2004.  

DOE Green Energy (OSTI)

A habitat evaluation procedures (HEP) analysis conducted on the 314-acre Red River Wildlife Management Area (RRWMA) managed by the Idaho Department of Fish and Game resulted in 401.38 habitat units (HUs). Habitat variables from six habitat suitability index (HSI) models, comprised of mink (Mustela vison), mallard (Anas platyrhynchos), common snipe (Capella gallinago), black-capped chickadee (Parus altricapillus), yellow warbler (Dendroica petechia), and white-tailed deer (Odocoileus virginianus), were measured by Regional HEP Team (RHT) members in August 2004. Cover types included wet meadow, riverine, riparian shrub, conifer forest, conifer forest wetland, and urban. HSI model outputs indicate that the shrub component is lacking in riparian shrub and conifer forest cover types and that snag density should be increased in conifer stands. The quality of wet meadow habitat, comprised primarily of introduced grass species and sedges, could be improved through development of ephemeral open water ponds and increasing the amount of persistent wetland herbaceous vegetation e.g. cattails (Typha spp.) and bulrushes (Scirpus spp.).

Ashley, Paul

2004-11-01T23:59:59.000Z

249

from Savannah River Nuclear Solutions, LLC NEWS D Area Powerhouse Retired after Nearly 60 Years of Service  

NLE Websites -- All DOE Office Websites (Extended Search)

D Area Powerhouse Retired after Nearly 60 Years of Service D Area Powerhouse Retired after Nearly 60 Years of Service Huge, 1950s era, power and steam generating plant nearing end of mission AIKEN, S.C. - (May 22, 2012) - As Savannah River Nuclear Solutions, LLC (SRNS) em- braces new, clean and highly efficient power generation technology, the massive 1950s era powerhouse in D Area has been shut down after decades of service at the Savannah River Site (SRS). At one time, this coal-powered facility was capable of generating 75 million watts of power, enough electricity to support the entire city of Aiken, S.C. However, those days have passed and the 280,000 square-foot, five story building is being prepared for deactivation. "Recent startup of three new wood-chip burning (biomass) steam plants at SRS means we

250

Oxbow Conservation Area; Middle Fork John Day River, Annual Report 2002-2003.  

DOE Green Energy (OSTI)

In early 2001, the Confederated Tribes of Warm Springs, through their John Day Basin Office, concluded the acquisition of the Oxbow Ranch, now know as the Oxbow Conservation Area (OCA). Under a memorandum of agreement with the Bonneville Power Administration (BPA), the Tribes are required to provided BPA an 'annual written report generally describing the real property interests in the Project, HEP analyses undertaken or in progress, and management activities undertaken or in progress'. The 2002 contract period was well funded and the second year of the project. A new manager started in April, allowing the previous manager to focus his efforts on the Forrest Ranch acquisition. However, the Oxbow Habitat manager's position was vacant from October through mid February of 2003. During this time, much progress, mainly O&M, was at a minimum level. Many of the objectives were not completed during this contract due to both the size and duration needed to complete such activities (example: dredge mine tailings restoration project) or because budget crisis issues with BPA ending accrual carryover on the fiscal calendar. Although the property had been acquired a year earlier, there were numerous repairs and discoveries, which on a daily basis could pull personnel from making progress on objectives for the SOW, aside from O&M objectives. A lack of fencing on a portion of the property's boundary and deteriorating fences in other areas are some reasons much time was spent chasing trespassing cattle off of the property. The success of this property purchase can be seen on a daily basis. Water rights were used seldom in the summer of 2002, with minor irrigation water diverted from only Granite Boulder Creek. Riparian fences on the river, Ruby and Granite Boulder creeks help promote important vegetation to provide shade and bank stabilization. Trees planted in this and past years are growing and will someday provide cover fish and wildlife. Even grazing on the property was carefully managed to ensure the protection of fish and wildlife habitat. Monitoring of property populations, resources, and management activities continued in 2002 to build a database for future management of this and other properties in the region.

Cochran, Brian; Smith, Brent

2003-07-01T23:59:59.000Z

251

Geophysical logging case history of the Raft River geothermal...  

Open Energy Info (EERE)

variety of rock types, the presence of alteration products, and the variability of fracturing make reliable interpretations difficult. However, the cross plotting of various...

252

Interpretation of electromagnetic soundings in the Raft River...  

Open Energy Info (EERE)

superimposed over the nearest DC layer solution. Author(s): Anderson, W. L. Published: DOE Information Bridge, 111977 Document Number: Unavailable DOI: 10.21726804958 Source:...

253

Effects of Hyporheic Exchange Flows on Egg Pocket Water Temperature in Snake River Fall Chinook Salmon Spawning Areas  

DOE Green Energy (OSTI)

The development of the Snake River hydroelectric system has affected fall chinook salmon smolts by shifting their migration timing to a period when downstream reservoir conditions are unfavorable for survival. Subsequent to the Snake River chinook salmon fall-run Evolutionary Significant Unit being listed as Threatened under the Endangered Species Act, recovery planning has included changes in hydrosystem operations to improve water temperature and flow conditions during the juvenile chinook salmon summer migration period. In light of the limited water supplies from the Dworshak reservoir for summer flow augmentation, and the associated uncertainties regarding benefits to migrating fall chinook salmon smolts, additional approaches for improved smolt survival need to be evaluated. This report describes research conducted by PNNL that evaluated relationships among river discharge, hyporheic zone characteristics, and egg pocket water temperature in Snake River fall chinook salmon spawning areas. The potential for improved survival would be gained by increasing the rate at which early life history events proceed (i.e., incubation and emergence), thereby allowing smolts to migrate through downstream reservoirs during early- to mid-summer when river conditions are more favorable for survival. PNNL implemented this research project throughout 160 km of the Hells Canyon Reach (HCR) of the Snake River. The hydrologic regime during the 2002?2003 sampling period exhibited one of the lowest, most stable daily discharge patterns of any of the previous 12 water years. The vertical hydraulic gradients (VHG) between the river and the riverbed suggested the potential for predominantly small magnitude vertical exchange. The VHG also showed little relationship to changes in river discharge at most sites. Despite the relatively small vertical hydraulic gradients at most sites, the results from the numerical modeling of riverbed pore water velocity and hyporheic zone temperatures suggested that there was significant vertical hydrologic exchange during all time periods. The combined results of temperature monitoring and numerical modeling indicate that only two sites were significantly affected by short-term (hourly to daily) large magnitude changes in discharge. Although the two sites exhibited acute flux reversals between river water and hyporheic water resulting from short-term large magnitude changes in discharge, these flux reversals had minimal effect on emergence timing estimates. Indeed, the emergence timing estimates at all sites was largely unaffected by the changes in river stage resulting from hydropower operations at Hells Canyon Dam. Our results indicate that the range of emergence timing estimates due to differences among the eggs from different females can be as large as or larger than the emergence timing estimates due to site differences (i.e., bed temperatures within and among sites). We conclude that during the 2002-2003 fall chinook salmon incubation period, hydropower operations of Hells Canyon Dam had an insignificant effect on fry emergence timing at the study sites. It appears that short-term (i.e., hourly to daily) manipulations of discharge from the Hells Canyon Complex during the incubation period would not substantially alter egg pocket incubation temperatures, and thus would not affect fry emergence timing at the study sites. However, the use of hydropower operational manipulations at the Hells Canyon Complex to accelerate egg incubation and fry emergence should not be ruled out on the basis of only one water year's worth of study. Further investigation of the incubation environment of Snake River fall chinook salmon is warranted based on the complexity of hyporheic zone characteristics and the variability of surface/subsurface interactions among dry, normal, and wet water years.

Hanrahan, Timothy P.; Geist, David R.; Arntzen, Evan V.; Abernethy, Cary S.

2004-09-24T23:59:59.000Z

254

Geothermal assessment of the lower Bear River drainage and northern East Shore ground-water areas, Box Elder County, Utah  

DOE Green Energy (OSTI)

The Utah Geological and Mineral Survey (UGMS) has been researching the low-temperature geothermal resource potential in Utah. This report, part of an area-wide geothermal research program along the Wasatch Front, concerns the study conducted in the lower Bear River drainage and northern East Shore ground-water areas in Box Elder County, Utah. The primary purpose of the study is to identify new areas of geothermal resource potential. There are seven known low-temperature geothermal areas in this part of Box Elder County. Geothermal reconnaissance techniques used in the study include a temperature survey, chemical analysis of well and spring waters, and temperature-depth measurements in accessible wells. The geothermal reconnaissance techniques identified three areas which need further evaluation of their low-temperature geothermal resource potential. Area 1 is located in the area surrounding Little Mountain, area 2 is west and southwest of Plymouth, and area 3 is west and south of the Cutler Dam. 5 figures, 4 tables.

Klauk, R.H.; Budding, K.E.

1984-07-01T23:59:59.000Z

255

Core Analysis At Coso Geothermal Area (1979) | Open Energy Information  

Open Energy Info (EERE)

Coso Geothermal Area (1979) Coso Geothermal Area (1979) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Core Analysis Activity Date 1979 Usefulness useful DOE-funding Unknown Exploration Basis Compare microcracks between Coso and Raft River geothermal areas Notes Microcracks were observed in core samples from Coso. Both permeability and electrical conductivity were measured for a suite of samples with a range of microcracks characteristics. A partial set of samples were collected to study migration of radioactive elements. References Simmons, G.; Batzle, M. L.; Shirey, S. (1 April 1979) Microcrack technology. Progress report, 1 October 1978--31 March 1979 Retrieved from "http://en.openei.org/w/index.php?title=Core_Analysis_At_Coso_Geothermal_Area_(1979)&oldid=473689

256

Safety analysis--200 Area Savannah River Site: Separations Area operations Building 211-H Outside Facilities. Supplement 11, Revision 1  

Science Conference Proceedings (OSTI)

The H-Area Outside Facilities are located in the 200-H Separations Area and are comprised of a number of processes, utilities, and services that support the separations function. Included are enriched uranium loadout, bulk chemical storage, water handling, acid recovery, general purpose evaporation, and segregated solvent facilities. In addition, services for water, electricity, and steam are provided. This Safety Analysis Report (SAR) documents an analysis of the H-Area Outside Facilities and is one of a series of documents for the Separations Area as specified in the SR Implementation Plan for DOE order 5481.1A. The primary purpose of the analysis was to demonstrate that the facility can be operated without undue risk to onsite or offsite populations, to the environment, and to operating personnel. In this report, risks are defined as the expected frequencies of accidents, multiplied by the resulting radiological consequences in person-rem. Following the summary description of facility and operations is the site evaluation including the unique features of the H-Area Outside Facilities. The facility and process design are described in Chapter 3.0 and a description of operations and their impact is given in Chapter 4.0. The accident analysis in Chapter 5.0 is followed by a list of safety related structures and systems (Chapter 6.0) and a description of the Quality Assurance program (Chapter 7.0). The accident analysis in this report focuses on estimating the risk from accidents as a result of operation of the facilities. The operations were evaluated on the basis of three considerations: potential radiological hazards, potential chemical toxicity hazards, and potential conditions uniquely different from normal industrial practice.

Not Available

1993-01-01T23:59:59.000Z

257

Isotopic Tracking of Hanford 300 Area Derived Uranium in the Columbia River  

E-Print Network (OSTI)

for Fiscal Year 2004. PNNL-15070, Pacific Northwest Nationalthe 300 Area Uranium Plume. PNNL-15121, Pacific Northwestat the Hanford Site. PNNL-17031. 2007. (13) Stirling, C.

Christensen, John N.

2012-01-01T23:59:59.000Z

258

Potential use of geothermal resources in the Snake River Basin: an environmental overview. Volume I  

DOE Green Energy (OSTI)

Environmental baseline data for the Snake River Plain known geothermal resource areas (KGRAs) are evaluated for geothermal development. The objective is to achieve a sound data base prior to geothermal development. These KGRAs are: Vulcan Hot Springs, Crane Creek, Castle Creek, Bruneau, Mountain Home, Raft River, Island Park, and Yellowstone. Air quality, meteorology, hydrology, water quality, soils, land use, geology, subsidence, seismicity, terrestrial and aquatic ecology, demography, socioeconomics, and heritage resources are analyzed. This program includes a summary of environmental concerns related to geothermal development in each of the KGRAs, an annotated bibliography of reference materials (Volume II), detailed reports on the various program elements for each of the KGRAs, a program plan identifying future research needs, and a comprehensive data file.

Spencer, S.G.; Russell, B.F.; Sullivan, J.F. (eds.)

1979-09-01T23:59:59.000Z

259

First Draft Performance Assessment for the H-Area Tank Farm at the Savannah River Site - Part 2  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 of 864 8 of 864 1.0 EXECUTIVE SUMMARY This Performance Assessment (PA) for the Savannah River Site (SRS) was prepared to support the eventual removal from service of the H-Area Tank Farm (HTF) underground radioactive waste tanks and ancillary equipment. This PA provides the technical basis and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements identified below for removal from service and eventual final closure of the HTF.  U.S. Department of Energy (DOE) Order 435.1 Change 1  Title 10 Code of Federal Regulations (CFR) Part 61 Subpart C as identified in "Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005," Section 3116  South Carolina Department of Health and Environmental Control (SCDHEC)

260

Capturing the Green River -- Multispectral airborne videography to evaluate the environmental impacts of hydropower operations  

DOE Green Energy (OSTI)

The 500-mile long Green River is the largest tributary of the Colorado River. From its origin in the Wind River Range mountains of western Wyoming to its confluence with the Colorado River in southeastern Utah, the Green River is vital to the arid region through which it flows. Large portions of the area remain near-wilderness with the river providing a source of recreation in the form of fishing and rafting, irrigation for farming and ranching, and hydroelectric power. In the late 1950`s and early 1960`s hydroelectric facilities were built on the river. One of these, Flaming Gorge Dam, is located just south of the Utah-Wyoming border near the town of Dutch John, Utah. Hydropower operations result in hourly and daily fluctuations in the releases of water from the dam that alter the natural stream flow below the dam and affect natural resources in and along the river corridor. In the present study, the authors were interested in evaluating the potential impacts of hydropower operations at Flaming Gorge Dam on the downstream natural resources. Considering the size of the area affected by the daily pattern of water release at the dam as well as the difficult terrain and limited accessibility of many reaches of the river, evaluating these impacts using standard field study methods was virtually impossible. Instead an approach was developed that used multispectral aerial videography to determine changes in the affected parameters at different flows, hydrologic modeling to predict flow conditions for various hydropower operating scenarios, and ecological information on the biological resources of concern to assign impacts.

Snider, M.A.; Hayse, J.W.; Hlohowskyj, I.; LaGory, K.E.

1996-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "area raft river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Micro-Earthquake At Roosevelt Hot Springs Geothermal Area (1982) | Open  

Open Energy Info (EERE)

Geothermal Area (1982) Geothermal Area (1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Roosevelt Hot Springs Geothermal Area (1982) Exploration Activity Details Location Roosevelt Hot Springs Geothermal Area Exploration Technique Micro-Earthquake Activity Date 1982 Usefulness not indicated DOE-funding Unknown Exploration Basis Develop a background seismicity before power production begins Notes Local seismic networks were established to monitor the background seismicity prior to initiation of geothermal power production. The Raft River study area is currently seismically quiet down to the level of approximately magnitude one. References Zandt, G.; Mcpherson, L.; Schaff, S.; Olsen, S. (1 May 1982) Seismic baseline and induction studies- Roosevelt Hot Springs, Utah and

262

Preliminary characterization of the F-Area Railroad Crosstie Pile at the Savannah River Site  

SciTech Connect

Historical information about the F-Area Railroad Crosstie Pile is limited. The unit is believed to have been a borrow area for earth fill that began receiving railroad crossties during the 1960s. The number of crossties at the unit began to increase significantly in 1984 when major repair of the SRS rail system was initiated. An estimated 100,000 used railroad crossties have accumulated at the unit since 1984. In an effort to determine the impact of the railroad crossties on the environment a total of 28 soil samples were collected from four test borings in March of 1991. Sample depths ranged from ground surface to 21.5 feet. Three of the borings were extended to the water table and groundwater samples were collected, one in an upgradient background'' area, and two downgradient from the unit. Few analytes were reported above detection limits. Test results are summarized in Section 4.0 and analytes not detected are summarized in Appendix A to this report. In three soil samples collected from depths between 10 and 21.5 feet, copper occurred at levels slightly above background. These copper values were detected in the sidegradient test boring and in the two downgradient test borings. Three organic analytes, acetone, pyridine, and Toluene, were reported above detection limits but well below drinking water standards (DWS) in all test borings, including the upgradient boring. Radionuclide activities were reported above background in both soil and water samples from all test borings. There do not appear to be any statistically significant trends in radionuclide activities with depth, or between upgradient or downgradient borings. The analytes detected in the test borings downgradient from the unit cannot be attributed to the railroad crosstie pile as they are not significantly different than the values reported for the upgradient, background test boring.

Not Available

1991-10-01T23:59:59.000Z

263

Savannah River Site H-Area Tank Farm Performance Assessment Scoping Meeting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

H-Area Tank Farm Performance Assessment Scoping Meeting April 20-22, 2010 230 Green Blvd. Aiken Design Center Building Village at Woodside Aiken, SC DRAFT MEETING NOTES Tuesday, April 20, 2010 (8:30 a.m. - 5:00 p.m.) Welcome and introductions made by Tom Gutmann, DOE-SR and Ginger Dickert, SRR. The meeting proceeded with discussion of the topics as identified in the Agenda. Review of General Information Package Consider development of functional requirements/key assumptions tracking process. Evaluate use of Hanford tool for tracking assumptions. Evaluate TRS IAEA-364 for potential updates to some factors (recently published). NRC will provide to DOE and SRR. Consider Features Events Processes (FEPs) style analysis to provide additional

264

Baseline mapping study of the Steed Pond aquifer and vadose zone beneath A/M Area, Savannah River Site, Aiken, South Carolina  

SciTech Connect

This report presents the second phase of a baseline mapping project conducted for the Environmental Restoration Department (ERD) at Savannah River Site. The purpose of this second phase is to map the structure and distribution of mud (clay and silt-sized sediment) within the vadose zone beneath A/M Area. The results presented in this report will assist future characterization and remediation activities in the vadose zone and upper aquifer zones in A/M Area.

Jackson, D.G. Jr.

2000-01-27T23:59:59.000Z

265

Effects of Hyporheic Exchange Flows on Egg Pocket Water Temperature in Snake River Fall Chinook Salmon Spawning Areas, 2002-2003 Final Report.  

DOE Green Energy (OSTI)

The development of the Snake River hydroelectric system has affected fall Chinook salmon smolts by shifting their migration timing to a period (mid- to late-summer) when downstream reservoir conditions are unfavorable for survival. Subsequent to the Snake River Chinook salmon fall-run Evolutionary Significant Unit being listed as Threatened under the Endangered Species Act, recovery planning has included changes in hydrosystem operations (e.g., summer flow augmentation) to improve water temperature and flow conditions during the juvenile Chinook salmon summer migration period. In light of the limited water supplies from the Dworshak reservoir for summer flow augmentation, and the associated uncertainties regarding benefits to migrating fall Chinook salmon smolts, additional approaches for improved smolt survival need to be evaluated. This report describes research conducted by the Pacific Northwest National Laboratory (PNNL) that evaluated relationships among river discharge, hyporheic zone characteristics, and egg pocket water temperature in Snake River fall Chinook salmon spawning areas. This was a pilot-scale study to evaluate these relationships under existing operations of Hells Canyon Dam (i.e., without any prescribed manipulations of river discharge) during the 2002-2003 water year. The project was initiated in the context of examining the potential for improving juvenile Snake River fall Chinook salmon survival by modifying the discharge operations of Hells Canyon Dam. The potential for improved survival would be gained by increasing the rate at which early life history events proceed (i.e., incubation and emergence), thereby allowing smolts to migrate through downstream reservoirs during early- to mid-summer when river conditions are more favorable for survival. PNNL implemented this research project at index sites throughout 160 km of the Hells Canyon Reach (HCR) of the Snake River. The HCR extends from Hells Canyon Dam (river kilometer [rkm] 399) downstream to the upper end of Lower Granite Reservoir near rkm 240. We randomly selected 14 fall Chinook salmon spawning locations as study sites, which represents 25% of the most used spawning areas throughout the HCR. Interactions between river water and pore water within the riverbed (i.e., hyporheic zone) at each site were quantified through the use of self-contained temperature and water level data loggers suspended inside of piezometers. Surrounding the piezometer cluster at each site were 3 artificial egg pockets. In mid-November 2002, early-eyed stage fall Chinook salmon eggs were placed inside of perforated polyvinyl chloride (PVC) tubes, along with a temperature data logger, and buried within the egg pockets. Fall Chinook salmon eggs were also incubated in the laboratory for the purpose of developing growth curves that could be used as indicators of emergence timing. The effects of discharge on vertical hydrologic exchange between the river and riverbed were inferred from measured temperature gradients between the river and riverbed, and the application of a numerical model. The hydrologic regime during the 2002-2003 sampling period exhibited one of the lowest, most stable daily discharge patterns of any of the previous 12 water years. The vertical hydraulic gradients (VHG) between the river and the riverbed suggested the potential for predominantly small magnitude vertical exchange. The VHG also showed little relationship to changes in river discharge at most sites. Despite the relatively small vertical hydraulic gradients at most sites, results from the numerical modeling of riverbed pore water velocity and hyporheic zone temperatures suggested that there was significant vertical hydrologic exchange during all time periods. The combined results of temperature monitoring and numerical modeling indicate that only 2 of 14 sites were significantly affected by short-term (hourly to daily) large magnitude changes in discharge. Although the two sites exhibited acute flux reversals between river water and hyporheic water resulting from short-term large magnitude

Hanrahan, T.; Geist, D.; Arntzen, C. (Pacific Northwest National Laboratory)

2004-09-01T23:59:59.000Z

266

2012 Annual Report: Simulate and Evaluate the Cesium Transport and Accumulation in Fukushima-Area Rivers by the TODAM Code  

SciTech Connect

Pacific Northwest National Laboratory initiated the application of the time-varying, one-dimensional sediment-contaminant transport code, TODAM (Time-dependent, One-dimensional, Degradation, And Migration) to simulate the cesium migration and accumulation in the Ukedo River in Fukushima. This report describes the preliminary TODAM simulation results of the Ukedo River model from the location below the Ougaki Dam to the river mouth at the Pacific Ocean. The major findings of the 100-hour TODAM simulation of the preliminary Ukedo River modeling are summarized as follows:

Onishi, Yasuo; Yokuda, Satoru T.

2013-03-28T23:59:59.000Z

267

Isotopic Analysis-Fluid At Long Valley Caldera Geothermal Area (1977) |  

Open Energy Info (EERE)

Fluid At Long Valley Caldera Geothermal Area (1977) Fluid At Long Valley Caldera Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Long Valley Caldera Geothermal Area (1977) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Isotopic Analysis-Fluid Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Estimate deep reservoir temperature Notes The oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes have been tested. Methods are described to calculate the effects of boiling and dilution. The geothermometer, is applied to thermal systems of Yellowstone Park, Wyoming, Long Valley, California, and Raft River, Idaho to estimate deep reservoir temperatures

268

from Savannah River National Laboratory  

operated by Savannah River Nuclear Solutions. SRNL offers innovative solutions ... The decommissioning of F Area at the Savannah River Site involves long-term management

269

Estimating the Surface Area of Small Rivers in the Southwestern Amazon and Their Role in CO2 Outgassing  

Science Conference Proceedings (OSTI)

A recent estimate of CO2 outgassing from Amazonian wetlands suggests that an order of magnitude more CO2 leaves rivers through gas exchange with the atmosphere than is exported to the ocean as organic plus inorganic carbon. However, the ...

Maria de Ftima F. L. Rasera; Maria Victoria R. Ballester; Alex V. Krusche; Cleber Salimon; Letcia A. Montebelo; Simone R. Alin; Reynaldo L. Victoria; Jeffrey E. Richey

2008-06-01T23:59:59.000Z

270

DOE/EA-1528: Environmental Assessment for the Storage of Tritium-Producing Burnable Absorber RODs in K-Area Transfer Bay at the Savannah River Site (6/2/05)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

28 28 JUNE 2005 U. S. DEPARTMENT OF ENERGY SAVANNAH RIVER OPERATIONS OFFICE SAVANNAH RIVER SITE ENVIRONMENTAL ASSESSMENT FOR THE STORAGE OF TRITIUM-PRODUCING BURNABLE ABSORBER RODS IN K-AREA TRANSFER BAY AT THE SAVANNAH RIVER SITE DOE/EA-1528 ENVIRONMENTAL ASSESSMENT FOR THE STORAGE OF TRITIUM-PRODUCING BURNABLE ABSORBER RODS IN K-AREA TRANSFER BAY AT THE SAVANNAH RIVER SITE June 2005 U. S. DEPARTMENT OF ENERGY SAVANNAH RIVER OPERATIONS OFFICE SAVANNAH RIVER SITE This page is intentionally left blank ii TABLE OF CONTENTS Page 1.0 INTRODUCTION 1 1.1 Background 1 1.2 Purpose and Need for Action 2 2.0 PROPOSED ACTION AND ALTERNATIVES 2 2.1 Proposed Action 2 2.2 Alternatives to the Proposed Action 3

271

TREATABILITY STUDY FOR EDIBLE OIL DEPLOYMENT FOR ENHANCED CVOC ATTENUATION FOR T-AREA, SAVANNAH RIVER SITE  

SciTech Connect

Groundwater beneath T-Area, a former laboratory and semiworks operation at the Department of Energy (DOE) Savannah River Site (SRS), is contaminated by chlorinated solvents (cVOCs). Since the contamination was detected in the 1980s, the cVOCs at T-Area have been treated by a combination of soil vapor extraction and groundwater pump and treat. The site received approval to temporarily discontinue the active groundwater treatment and implement a treatability study of enhanced attenuation - an engineering and regulatory strategy that has recently been developed by DOE and the Interstate Technology and Regulatory Council (ITRC 2007). Enhanced attenuation uses active engineering solutions to alter the target site in such a way that the contaminant plume will passively stabilize and shrink and to document that the action will be effective, timely, and sustainable. The paradigm recognizes that attenuation remedies are fundamentally based on a mass balance. Thus, long-term plume dynamics can be altered either by reducing the contaminant loading from the source or by increasing the rate of natural attenuation processes within all, or part of, the plume volume. The combination of technologies that emerged for T-Area included: (1) neat (pure) vegetable oil deployment in the deep vadose zone in the former source area, (2) emulsified vegetable oil deployment within the footprint of the groundwater plume, and (3) identification of attenuation mechanisms and rates for the distal portion of the plume. In the first part, neat oil spreads laterally forming a thin layer on the water table to intercept and reduce future cVOC loading (via partitioning) and reduce oxygen inputs (via biostimulation). In the second and third parts, emulsified oil forms active bioremediation reactor zones within the plume footprint to degrade existing groundwater contamination (via reductive dechlorination and/or cometabolism) and stimulates long-term attenuation capacity in the distal plume (via cometabolism). For TArea, the enhanced attenuation development process proved to be a powerful tool in developing a strategy that provides a high degree of performance while minimizing adverse collateral impacts of the remediation (e.g., energy use and wetland damage) and minimizing life-cycle costs. As depicted in Figure 1, Edible oil deployment results in the development of structured geochemical zones and serves to decrease chlorinated compound concentrations in two ways: (1) physical sequestration, which reduces effective aqueous concentration and mobility; and (2) stimulation of anaerobic, abiotic and cometabolic degradation processes. In the central deployment area, contaminant initially partitions into the added oil phase. Biodegradation of the added organic substrate depletes the aquifer of oxygen and other terminal electron acceptors and creates conditions conducive to anaerobic degradation processes. The organic substrate is fermented to produce hydrogen, which is used as an electron donor for anaerobic dechlorination by organisms such as Dehalococcoides. Daughter products leaving the central treatment zone are amenable to aerobic oxidation. Further, the organic compounds leaving the central deployment zone (e.g., methane and propane) stimulate and enhance down gradient aerobic cometabolism which degrades both daughter compounds and several parent cVOCs. Figure 1 depicts TCE concentration reduction processes (labeled in green) along with their corresponding breakdown products in a structured geochemical zone scenario. A consortium of bacteria with the same net effect of Dehalococcoides may be present in the structured geochemical zones leading to the degradation of TCE and daughter products. Figure 2 shows a schematic of the documented cVOC degradation processes in both the anaerobic and aerobic structured geochemical zones. Specific aerobic and anaerobic bacteria and their degradation pathways are also listed in the diagram and have either been confirmed in the field or the laboratory. See references in the bibliography in Section 11.

Riha, B.; Looney, B.; Noonkester, J.; Hyde, W.; Walker, R.

2012-05-15T23:59:59.000Z

272

Water information bulletin No. 30, part 13: geothermal investigations in Idaho. Preliminary geologic reconnaissance of the geothermal occurrences of the Wood River Drainage Area  

DOE Green Energy (OSTI)

Pre-tertiary sediments of the Milligen and Wood River Formations consisting primarily of argillite, quartzite, shale and dolomite are, for the most part, exposed throughout the area and are cut locally by outliers of the Idaho Batholith. At some locations, Tertiary-age Challis Volcanics overlay these formations. Structurally the area is complex with major folding and faulting visible in many exposures. Many of the stream drainages appear to be fault controlled. Hydrologic studies indicate hot spring occurrences are related to major structural trends, as rock permeabilities are generally low. Geochemical studies using stable isotopes of hydrogen and oxygen indicate the thermal water in the Wood River region to be depleted by about 10 0/00 in D and by 1 to 2 0/00 in /sup 18/0 relative to cold water. This suggests the water could be meteoric water that fell during the late Pleistocene. The geological data, as well as the chemical data, indicate the geothermal waters are heated at depth, and subsequently migrate along permeable structural zones. In almost all cases the chemical data suggest slightly different thermal histories and recharge areas for the water issuing from the hot springs. Sustained use of the thermal water at any of the identified springs is probably limited to flow rates approximating the existing spring discharge. 28 refs., 16 figs., 3 tabs.

Anderson, J.E.; Bideganeta, K.; Mitchell, J.C.

1985-04-01T23:59:59.000Z

273

Data Management Plan and Functional System Design for the Information Management System of the Clinch River Remedial Investigation and Waste Area Grouping 6  

Science Conference Proceedings (OSTI)

The Data Management Plan and Functional System Design supports the Clinch River Remedial Investigation (CRRI) and Waste Area Grouping (WAG) 6 Environmental Monitoring Program. The objective of the Data Management Plan and Functional System Design is to provide organization, integrity, security, traceability, and consistency of the data generated during the CRRI and WAG 6 projects. Proper organization will ensure that the data are consistent with the procedures and requirements of the projects. The Information Management Groups (IMGs) for these two programs face similar challenges and share many common objectives. By teaming together, the IMGs have expedited the development and implementation of a common information management strategy that benefits each program.

Ball, T.; Brandt, C.; Calfee, J.; Garland, M.; Holladay, S.; Nickle, B.; Schmoyer, D.; Serbin, C.; Ward, M. [Oak Ridge National Lab., TN (United States)

1994-03-01T23:59:59.000Z

274

Literature and data review for the surface-water pathway: Columbia River and adjacent coastal areas. Hanford Environmental Dose Reconstruction Project  

SciTech Connect

As part of the Hanford Environmental Dose Reconstruction Project, Pacific Northwest Laboratory reviewed literature and data on radionuclide concentrations and distribution in the water, sediment, and biota of the Columbia River and adjacent coastal areas. Over 600 documents were reviewed including Hanford reports, reports by offsite agencies, journal articles, and graduate theses. Certain radionuclide concentration data were used in preliminary estimates of individual dose for the 1964--1966 time period. This report summarizes the literature and database review and the results of the preliminary dose estimates.

Walters, W.H.; Dirkes, R.L.; Napier, B.A.

1992-04-01T23:59:59.000Z

275

Literature and data review for the surface-water pathway: Columbia River and adjacent coastal areas. Hanford Environmental Dose Reconstruction Project  

SciTech Connect

As part of the Hanford Environmental Dose Reconstruction (HEDR) Project, Battelle, Pacific Northwest Laboratories reviewed literature and data on radionuclide concentrations and distribution in the water, sediment, and biota of the Columbia River and adjacent coastal areas. Over 600 documents were reviewed including Hanford reports, reports by offsite agencies, journal articles, and graduate theses. Radionuclide concentration data were used in preliminary estimates of individual dose for the period 1964 through 1966. This report summarizes the literature and database reviews and the results of the preliminary dose estimates.

Walters, W.H.; Dirkes, R.L.; Napier, B.A.

1992-11-01T23:59:59.000Z

276

AREA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AREA AREA FAQ # Question Response 316 vs DCAA FAQ 1 An inquiry from CH about an SBIR recipient asking if a DCAA audit is sufficient to comply with the regulation or if they need to add this to their audit they have performed yearly by a public accounting firm. 316 audits are essentially A-133 audits for for-profit entities. They DO NOT replace DCAA or other audits requested by DOE to look at indirect rates or incurred costs or closeouts. DCAA would never agree to perform A-133 or our 316 audits. They don't do A-133 audits for DOD awardees. The purpose of the audits are different, look at different things and in the few instances of overlap, from different perspectives. 316

277

Multiscale Genetic Structure of Yellowstone Cutthroat Trout in the Upper Snake River Basin.  

DOE Green Energy (OSTI)

Populations of Yellowstone cutthroat trout Oncorhynchus clarkii bouvierii have declined throughout their native range as a result of habitat fragmentation, overharvest, and introductions of nonnative trout that have hybridized with or displaced native populations. The degree to which these factors have impacted the current genetic population structure of Yellowstone cutthroat trout populations is of primary interest for their conservation. In this study, we examined the genetic diversity and genetic population structure of Yellowstone cutthroat trout in Idaho and Nevada with data from six polymorphic microsatellite loci. A total of 1,392 samples were analyzed from 45 sample locations throughout 11 major river drainages. We found that levels of genetic diversity and genetic differentiation varied extensively. The Salt River drainage, which is representative of the least impacted migration corridors in Idaho, had the highest levels of genetic diversity and low levels of genetic differentiation. High levels of genetic differentiation were observed at similar or smaller geographic scales in the Portneuf River, Raft River, and Teton River drainages, which are more altered by anthropogenic disturbances. Results suggested that Yellowstone cutthroat trout are naturally structured at the major river drainage level but that habitat fragmentation has altered this structuring. Connectivity should be restored via habitat restoration whenever possible to minimize losses in genetic diversity and to preserve historical processes of gene flow, life history variation, and metapopulation dynamics. However, alternative strategies for management and conservation should also be considered in areas where there is a strong likelihood of nonnative invasions or extensive habitat fragmentation that cannot be easily ameliorated.

Cegelski, Christine C.; Campbell, Matthew R.

2006-05-30T23:59:59.000Z

278

Task 5: TVA sediment-disturbing activities within the Watts Bar Reservoir and Melton Hill Reservoir areas of the Clinch River  

DOE Green Energy (OSTI)

The objectives of Task 5 of the Interagency Agreement No. DE-AI05-91OR22007 were to review: (1) the extent of dredging, construction, and other sediment-disturbing activities conducted by the Tennessee Valley Authority (TVA) in potentially contaminated areas of Watts Bar Reservoir, and (2) the disposition of the materials from these activities. This memorandum is the final report for Task 5. This memorandum describes major activities in the Watts Bar Reservoir and Melton Hill Reservoir areas of the Clinch River that possibly resulted in significant disturbance of potentially contaminated sediments. TVA records from the construction of Watts Bar Dam, Kingston Fossil Plant, and Melton Hill Dam were reviewed to facilitate qualitative description of the effect of these activities in disturbing potentially contaminated sediments. The critical period for these activities in disturbing contaminated sediments was during or after 1956 when the peak releases of radioactive contaminants occurred from the Oak Ridge Reservation.

NONE

1997-06-01T23:59:59.000Z

279

Finding of No Significant Impact for the Storage of Tritium-Producing Burnable Absorber Rods in K-Area Transfer Bay at the Savannah River Site (DOE/EA-1528) (06/01/05)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the the Storage of Tritium-Producing Burnable Absorber Rods in K-Area Transfer Bay at the Savannah River Site Agency: U.S. Department of Energy (DOE) Action: Finding of No Significant Impact Summary: The DOE Savannah River Operations Office (SR) and the National Nuclear Security Administration (NNSA) Savannah River Site Office (SRSO) have prepared an environmental assessment (EA), DOE/EA-1528, to evaluate the potential environmental impacts of the temporary dry storage of a cask containing Tritium- Producing Burnable Absorber Rods (TPBARs) in the Transfer Bay in K Area at the Savannah River Site (SRS). Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the

280

River Thames River Thames  

E-Print Network (OSTI)

C BD A River Thames River Thames Waterloo & City Southwark Northwood Northwood Hills North Harrow Oaks South Croydon East Croydon Streatham Common West Norwood Gipsy Hill Crystal Palace Birkbeck Penge

Delmotte, Nausicaa

Note: This page contains sample records for the topic "area raft river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Savannah River Plant engineering and design history. Volume 4: 300/700 Areas & general services and facilities  

SciTech Connect

The primary function of the 300 Area is the production and preparation of the fuel and target elements required for the 100 Area production reactors. Uranium slugs and lithium-aluminium alloy control and blanket rods are prepared in separate structures. Other facilities include a test pile, a physics assembly laboratory, an office and change house, an electrical substation, and various service facilities such as rail lines, roads, sewers, steam and water distribution lines, etc. The 700 Area contains housing and facilities for plant management, general plant services, and certain technical activities. The technical buildings include the Main Technical Laboratory, the Waste Concentration Building, the Health Physics Headquarters, and the Health Physics Calibration building. Sections of this report describe the following: development of the 300-M Area; selection and description of process; design of main facilities of the 300 Area; development of the 700-A Area; design of the main facilities of the 700 Area; and general services and facilities, including transportation, plant protection, waste disposal and drainage, site work, pilot plants, storage, and furniture and fixtures.

1957-01-01T23:59:59.000Z

282

Assessment of tree toxicity near the F- and H-Area seepage basins of the Savannah River Site  

SciTech Connect

Areas of tree mortality, originating in 1979, have been documented downslope of the F- and H-Area Seepage Basins. The basins were used as discharge areas for low-level radioactive and nonradioactive waste. Preliminary studies indicated that there are three possible causes of stress: altered hydrology; hazardous chemicals; and nonhazardous chemicals. It was originally hypothesized that the most likely hydrological stressors to Nyssa sylvatica var. biflora were flooding where water levels cover the lenticels for more than 26 percent of the growing season, resulting in low oxygen availability, and toxins produced under anaerobic conditions. In fact, trees began to show stress only flowing a drought year (1977) rather than a wet year. Dry conditions could exacerbate stress by concentrating contaminants, particularly salt. Study of the soil and water chemical parameters in the impacted sites indicated that salt concentrations in the affected areas have produced abnormally high exchangeable sodium percentages. Furthermore, significantly elevated concentrations of heavy metals were found in each impacted site, although no one metal was consistently elevated. Evaluation of the concentrations of various chemicals toxic to Nyssa sylvatica var. biflora revealed that aluminum was probably the most toxic in the F-Area. Manganese, cadmium, and zinc had concentrations great enough to be considered possible causes of tree mortality in the F-Area. Aluminum was the most likely cause of mortality in the H-Area. Controlled experiments testing metal and salt concentration effects on Nyssa sylvatica would be needed to specifically assign cause and effect mortality relationships.

Loehle, C. (ed.) (Westinghouse Savannah River Co., Aiken, SC (USA)); Richardson, C.J. (ed.); Greenwood, K.P.; Hane, M.E.; Lander, A.J. (Duke Univ., Durham, NC (USA))

1990-12-01T23:59:59.000Z

283

Intensive archaeological survey of the F/H Surface Enhancement Project Area, Savannah River Site, Aiken and Barnwell Counties, South Carolina  

Science Conference Proceedings (OSTI)

Twelve archaeological sites and four artifact occurrences were located by intensive survey of two tracts of land for the F and H Surface Enhancement Project on the Savannah River Site, Aiken and Barnwell Counties, South Carolina. Fieldwork in the 480-acre project area included surface reconnaissance of 3.6 linear kilometers of transects, 140 shovel tests along 4.2 linear kilometers of transects, an additional 162 shovel tests at sites and occurrences, and the excavation of six l {times} 2 m test units. All but one of the sites contained artifacts of the prehistoric era; the twelfth site consists of the remains of a twentieth-century home place. The historic site and six of the prehistoric sites consist of limited and/or disturbed contexts of archaeological deposits that have little research potential and are therefore considered ineligible for nomination to the National Register of Historic Places (NRHP). The remaining five sites have sufficient content and integrity to yield information important to ongoing investigations into upland site use. These sites (38AK146, 38AK535, 38AK539, 38AK541, and 38AK543) are thus deemed eligible for nomination to the NRHP and the Savannah River Archaeological Research Program (SRARP) recommends that they be preserved through avoidance or data recovery.

Sassaman, K.E.; Gillam, J.C.

1993-08-01T23:59:59.000Z

284

Use of Synthetic Aperture Radar (SAR) to Identify and Characterize Overwintering Areas of Fish in Ice-Covered Arctic RIvers: A Demonstration with Broad Whitefish and their Habitats in the Sagavanirktok River, Alaska  

Science Conference Proceedings (OSTI)

In northern climates, locating overwintering fish can be very challenging due to thick ice cover. Areas near the coast of the Beaufort Sea provide valuable overwintering habitat for both resident and anadromous fish species; identifying and understanding their use of overwintering areas is of special interest. Synthetic aperture radar (SAR) imagery from two spaceborne satellites was examined as an alternative to radiotelemetry for identifying anadromous fish overwintering. The presence of water and ice were sampled at 162 sites and fish were sampled at 16 of these sites. From SAR imagery alone, we successfully identified large pools inhabited by overwintering fish in the ice-covered Sagavanirktok River. In addition, the imagery was able to identify all of the larger pools (mean minimum length of 138m (range 15-470 m; SD=131)) of water located by field sampling. The effectiveness of SAR to identify these pools varied from 31% to 100%, depending on imagery polarization, the incidence angle range, and the orbit. Horizontal transmitvertical receive (HV) polarization appeared best. The accuracy of SAR was also assessed at a finer pixel-by-pixel (30-m x30-m) scale. The best correspondence at this finer scale was obtained with an image having HV polarization. The levels of agreement ranged from 54% to 69%. The presence of broad whitefish (the only anadromous species present) was associated with salinity and pool size (estimated with SAR imagery); fish were more likely to be found in larger pools with low salinity. This research illustrates that SAR imaging has great potential for identifying under-ice overwintering areas of riverine fish. These techniques should allow managers to identify critical overwintering areas with relatively more ease and lower cost than traditional techniques.

Brown, Richard S.; Duguay, Claude R.; Mueller, Robert P.; Moulton, Larry; Doucette, Peter J.; Tagestad, Jerry D.

2010-12-01T23:59:59.000Z

285

Raft Rural Elec Coop Inc (Utah) | Open Energy Information  

Open Energy Info (EERE)

Utah Utah Utility Id 22814 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available The following table contains monthly sales and revenue data for Raft Rural Elec Coop Inc (Utah). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 26 442 337 7 139 40 101 5 254 134 586 631 2009-02 26 447 337 7 148 43 15 5 254 48 600 634

286

Geothermal investigations in Idaho. Part 12. Stable isotopic evaluation of thermal water occurrences in the Weiser and Little Salmon River drainage basins and adjacent areas, west-central Idaho with attendant gravity and magnetic data on the Weiser area  

DOE Green Energy (OSTI)

Fifteen thermal springs, two thermal wells, and eight cold springs in the Weiser and Little Salmon river drainages were sampled for deuterium and oxygen-18 analysis during the fall of 1981. The straight-line fit of delta D and delta /sup 18/O versus latitude and longitude observed in the data is what would be expected if the recharge areas for the thermal and non-thermal waters were in close proximity to their respective discharge points. The discrete values of delta D and delta /sup 18/O for each thermal discharge suggest that none of the sampled thermal systems have common sources. The depleted deuterium and oxygen-18 contents of most thermal relative to non-thermal waters sampled suggests that the thermal waters might be Pleistocene age precipitation. The isotopic data suggest little or no evidence for mixing of thermal and non-thermal water for the sampled discharges. Thermal waters from Weiser, Crane Creek, Cove Creek, and White Licks hot springs show enrichment in oxygen-18 suggesting that these waters have been at elevated temperatures relative to other sampled thermal discharges in the area. Gravity and magnetic data gathered by the Idaho State University Geology Department in the Weiser Hot Springs area suggest that southeastward plunging synclinal-anticlinal couples, which underlie the hot springs, are cut south of the springs by a northeast trending boundary fault.

Mitchell, J.C.; Bideganeta, K.; Palmer, M.A.

1984-12-01T23:59:59.000Z

287

Categorical Exclusion Determinations: Western Area PowerAdministratio...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Colorado River Storage Project Management Center Categorical Exclusion Determinations: Western Area Power Administration-Colorado River Storage Project Management Center...

288

Preliminary characterization of the F-Area Railroad Crosstie Pile at the Savannah River Site. Revision 1  

SciTech Connect

Historical information about the F-Area Railroad Crosstie Pile is limited. The unit is believed to have been a borrow area for earth fill that began receiving railroad crossties during the 1960s. The number of crossties at the unit began to increase significantly in 1984 when major repair of the SRS rail system was initiated. An estimated 100,000 used railroad crossties have accumulated at the unit since 1984. In an effort to determine the impact of the railroad crossties on the environment a total of 28 soil samples were collected from four test borings in March of 1991. Sample depths ranged from ground surface to 21.5 feet. Three of the borings were extended to the water table and groundwater samples were collected, one in an upgradient ``background`` area, and two downgradient from the unit. Few analytes were reported above detection limits. Test results are summarized in Section 4.0 and analytes not detected are summarized in Appendix A to this report. In three soil samples collected from depths between 10 and 21.5 feet, copper occurred at levels slightly above background. These copper values were detected in the sidegradient test boring and in the two downgradient test borings. Three organic analytes, acetone, pyridine, and Toluene, were reported above detection limits but well below drinking water standards (DWS) in all test borings, including the upgradient boring. Radionuclide activities were reported above background in both soil and water samples from all test borings. There do not appear to be any statistically significant trends in radionuclide activities with depth, or between upgradient or downgradient borings. The analytes detected in the test borings downgradient from the unit cannot be attributed to the railroad crosstie pile as they are not significantly different than the values reported for the upgradient, background test boring.

Not Available

1991-10-01T23:59:59.000Z

289

An aerial radiological survey of the Oyster Creek Nuclear Power Plant and surrounding area, Forked River, New Jersey. Date of survey: September 18--25, 1992  

SciTech Connect

An aerial radiological survey was conducted over the Oyster Creek Nuclear Power Plant in Forked River, New Jersey, during the period September 18 through September 24, 1992. The survey was conducted at an altitude of 150 feet (46 meters) over a 26-square-mile (67-square-kilometer) area centered on the power station. The purpose of the survey was to document the terrestrial gamma radiation environment of the Oyster Creek Nuclear Power plant and surrounding area. The results of the aerial survey are reported as inferred gamma radiation exposure rates at 1 meter above ground level in the form of a contour map. Outside the plant boundary, exposure rates were found to vary between 4 and 10 microroentgens per hour and were attributed to naturally-occurring uranium, thorium, and radioactive potassium gamma emitters. The aerial data were compared to ground-based benchmark exposure rate measurements and radionuclide assays of soil samples obtained within the survey boundary. The ground-based measurements were found to be in good agreement with those inferred from the aerial measuring system. A previous survey of the power plant was conducted in August 1969 during its initial startup phase. Exposure rates and radioactive isotopes revealed in both surveys were consistent and within normal terrestrial background levels.

Hopkins, H.A.; McCall, K.A.

1994-05-01T23:59:59.000Z

290

Columbia River Wildlife Mitigation Habitat Evaluation Procedures Report / Scotch Creek Wildlife Area, Berg Brothers, and Douglas County Pygmy Rabbit Projects.  

DOE Green Energy (OSTI)

This Habitat Evaluation Procedure study was conducted to determine baseline habitat units (HUs) on the Scotch Creek, Mineral Hill, Pogue Mountain, Chesaw and Tunk Valley Habitat Areas (collectively known as the Scotch Creek Wildlife Area) in Okanogan County, Sagebrush Flat and the Dormaler property in Douglas County, and the Berg Brothers ranch located in Okanogan County within the Colville Reservation. A HEP team comprised of individuals from the Washington Department of Fish and Wildlife, the Confederated Tribes of the Colville Reservation, and the Natural Resources Conservation Service (Appendix A) conducted baseline habitat surveys using the following HEP evaluation species: mule deer (Odocoileus hemionus), sharp-tailed grouse (Tympanuchus phasianellus), pygmy rabbit (Brachylagus idahoensis), white-tailed deer (Odocoileus virginiana), mink (Mustela vison), Canada goose (Branta canadensis), downy woodpecker (Picoides pubescens), Lewis woodpecker (Melanerpes lewis), and Yellow warbler (Dendroica petechia). Results of the HEP analysis are listed below. General ratings (poor, marginal, fair, etc.,) are described in Appendix B. Mule deer habitat was marginal lacking diversity and quantify of suitable browse species. Sharp-tailed grouse habitat was marginal lacking residual nesting cover and suitable winter habitat Pygmy rabbit habitat was in fair condition except for the Dormaier property which was rated marginal due to excessive shrub canopy closure at some sites. This report is an analysis of baseline habitat conditions on mitigation project lands and provides estimated habitat units for mitigation crediting purposes. In addition, information from this document could be used by wildlife habitat managers to develop management strategies for specific project sites.

Ashley, Paul R.

1997-01-01T23:59:59.000Z

291

First Draft Performance Assessment for the H-Area Tank Farm at the Savannah River Site - Part 3  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

66 of 864 66 of 864 3.0 DISPOSAL FACILITY CHARACTERISTICS Section 3.1 provides information regarding site characteristics including detailed information furnished for those characteristics that influence the contaminant transport modeling assumptions provided in Chapter 4.  Section 3.1.1 provides a general description and layout of the site and the HTF to orient the reader and includes the current (as of 2009) estimated population distribution of the surrounding area as well as future land use planning for information purposes.  Section 3.1.2 describes meteorological and climatological data collection at SRS. This data collection determines appropriate modeling assumptions related to rainfall and temperature to assess the performance of the HTF closure cap presented in SRNL-ESB-

292

PRELIMINARY DATA REPORT: HUMATE INJECTION AS AN ENHANCED ATTENUATION METHOD AT THE F-AREA SEEPAGE BASINS, SAVANNAH RIVER SITE  

SciTech Connect

A field test of a humate technology for uranium and I-129 remediation was conducted at the F-Area Field Research Site as part of the Attenuation-Based Remedies for the Subsurface Applied Field Research Initiative (ABRS AFRI) funded by the DOE Office of Soil and Groundwater Remediation. Previous studies have shown that humic acid sorbed to sediments strongly binds uranium at mildly acidic pH and potentially binds iodine-129 (I-129). Use of humate could be applicable for contaminant stabilization at a wide variety of DOE sites however pilot field-scale tests and optimization of this technology are required to move this technical approach from basic science to actual field deployment and regulatory acceptance. The groundwater plume at the F-Area Field Research Site contains a large number of contaminants, the most important from a risk perspective being strontium-90 (Sr-90), uranium isotopes, I-129, tritium, and nitrate. Groundwater remains acidic, with pH as low as 3.2 near the basins and increasing to the background pH of approximately 5at the plume fringes. The field test was conducted in monitoring well FOB 16D, which historically has shown low pH and elevated concentrations of Sr-90, uranium, I-129 and tritium. The field test included three months of baseline monitoring followed by injection of a potassium humate solution and approximately four and half months of post monitoring. Samples were collected and analyzed for numerous constituents but the focus was on attenuation of uranium, Sr-90, and I-129. This report provides background information, methodology, and preliminary field results for a humate field test. Results from the field monitoring show that most of the excess humate (i.e., humate that did not sorb to the sediments) has flushed through the surrounding formation. Furthermore, the data indicate that the test was successful in loading a band of sediment surrounding the injection point to a point where pH could return to near normal during the study timeframe. Future work will involve a final report, which will include data trends, correlations and interpretations of laboratory data.

Millings, M.

2013-09-16T23:59:59.000Z

293

about Savannah River National Laboratory  

Savannah River Nuclear Solutions ... Office of Environmental Management Applied research ... in the areas of national security, clean energy and environmental stewardship

294

Raft Rural Elec Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Inc Place Idaho Utility Id 22814 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available The following table contains monthly sales and revenue data for Raft Rural Elec Coop Inc (Idaho). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 142 2,285 1,240 126 3,114 290 313 75 879 581 5,474 2,409 2009-02 136 2,201 1,240 135 3,097 290 104 47 878 375 5,345 2,408

295

Raft Rural Elec Coop Inc (Nevada) | Open Energy Information  

Open Energy Info (EERE)

Nevada Nevada Utility Id 22814 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available The following table contains monthly sales and revenue data for Raft Rural Elec Coop Inc (Nevada). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 131 1,650 1,442 176 2,833 248 17 49 45 324 4,532 1,735 2009-02 151 1,899 1,441 201 3,370 248 2 5 45 354 5,274 1,734

296

Shock driven jamming and periodic fracture of particulate rafts  

E-Print Network (OSTI)

A tenuous monolayer of hydrophobic particles at the air-water interface often forms a scum or raft. When such a monolayer is disturbed by the localized introduction of a surfactant droplet, a radially divergent surfactant shock front emanates from the surfactant origin and packs the particles into a jammed, compact, annular band with a packing fraction that saturates at a peak packing fraction $\\phi^*$. As the resulting two-dimensional, disordered elastic band grows with time and is driven radially outwards by the surfactant, it fractures to form periodic triangular cracks with robust geometrical features. We find the number of cracks $N$ and the compaction band radius $R^*$ at fracture onset vary monotonically with the initial packing fraction ($\\phi_{init}$). However, its width $W^*$ is constant for all $\\phi_{init}$. A simple geometric theory that treats the compaction band as an elastic annulus, and accounts for mass conservation allows us to deduce that $N \\simeq 2\\pi R^*/W^* \\simeq 4\\pi \\phi_{RCP}/\\phi_{init}$, a result we verify both experimentally and numerically. We show the essential ingredients for this phenomenon are an initially low enough particulate packing fraction that allows surfactant driven advection to cause passive jamming and eventual fracture of the hydrophobic particulate interface.

M. M. Bandi; T. Tallinen; L. Mahadevan

2010-10-29T23:59:59.000Z

297

Raft River binary-cycle geothermal pilot power plant final report  

DOE Green Energy (OSTI)

The design and performance of a 5-MW(e) binary-cycle pilot power plant that used a moderate-temperature hydrothermal resource, with isobutane as a working fluid, are examined. Operating problems experienced and solutions found are discussed and recommendations are made for improvements to future power plant designs. The plant and individual systems are analyzed for design specification versus actual performance figures.

Bliem, C.J.; Walrath, L.F.

1983-04-01T23:59:59.000Z

298

Study of private enterprise development on the Raft River KGRA. Final progress report  

DOE Green Energy (OSTI)

Information, analysis, and conclusions based on the small for-profit venture business model are presented. The necessary tasks are described and progress is reviewed. Water availability and business analysis problems are described. Included in the appendix are materials on land availability, characterization of geothermal resources under Idaho law, and greenhouse analysis and geothermal applications. (MHR)

Green, S.J.; Brown, W.S.; Meldrum, P.D.

1977-07-01T23:59:59.000Z

299

Principal Media Contact: DT Townsend Savannah River Nuclear Solutions...  

NLE Websites -- All DOE Office Websites (Extended Search)

Central Savannah River Area that have previously participated in the DOE Savannah River Science Bowl academic competition. These students have a demonstrated interest and...

300

Non-equilibrium raft-like membrane domains under continuous recycling  

E-Print Network (OSTI)

We present a model for the kinetics of spontaneous membrane domain (raft) assembly that includes the effect of membrane recycling ubiquitous in living cells. We show that the domains have a broad power-law distribution with an average radius that scales with the 1/4 power of the domain lifetime when the line tension at the domain edges is large. For biologically reasonable recycling and diffusion rates the average domain radius is in the tens of nm range, consistent with observations. This represents one possible link between signaling (involving rafts) and traffic (recycling) in cells. Finally, we present evidence that suggests that the average raft size may be the same for all scale-free recycling schemes.

Matthew S. Turner; Pierre Sens; Nicholas D. Socci

2005-03-30T23:59:59.000Z

Note: This page contains sample records for the topic "area raft river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

RESOURCE CHARACTERIZATION AND QUANTIFICATION OF NATURAL GAS-HYDRATE AND ASSOCIATED FREE-GAS ACCUMULATIONS IN THE PRUDHOE BAY - KUPARUK RIVER AREA ON THE NORTH SLOPE OF ALASKA  

SciTech Connect

Interim results are presented from the project designed to characterize, quantify, and determine the commercial feasibility of Alaska North Slope (ANS) gas-hydrate and associated free-gas resources in the Prudhoe Bay Unit (PBU), Kuparuk River Unit (KRU), and Milne Point Unit (MPU) areas. This collaborative research will provide practical input to reservoir and economic models, determine the technical feasibility of gas hydrate production, and influence future exploration and field extension of this potential ANS resource. The large magnitude of unconventional in-place gas (40-100 TCF) and conventional ANS gas commercialization evaluation creates industry-DOE alignment to assess this potential resource. This region uniquely combines known gas hydrate presence and existing production infrastructure. Many technical, economical, environmental, and safety issues require resolution before enabling gas hydrate commercial production. Gas hydrate energy resource potential has been studied for nearly three decades. However, this knowledge has not been applied to practical ANS gas hydrate resource development. ANS gas hydrate and associated free gas reservoirs are being studied to determine reservoir extent, stratigraphy, structure, continuity, quality, variability, and geophysical and petrophysical property distribution. Phase 1 will characterize reservoirs, lead to recoverable reserve and commercial potential estimates, and define procedures for gas hydrate drilling, data acquisition, completion, and production. Phases 2 and 3 will integrate well, core, log, and long-term production test data from additional wells, if justified by results from prior phases. The project could lead to future ANS gas hydrate pilot development. This project will help solve technical and economic issues to enable government and industry to make informed decisions regarding future commercialization of unconventional gas-hydrate resources.

Robert Hunter; Shirish Patil; Robert Casavant; Tim Collett

2003-06-02T23:59:59.000Z

302

Environmental Assessment for the Closure of the High-Level Waste Tanks in F- & H-Areas at the Savannah River Site  

SciTech Connect

This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the closure of 51 high-level radioactive waste tanks and tank farm ancillary equipment (including transfer lines, evaporators, filters, pumps, etc) at the Savannah River Site (SRS) located near Aiken, South Carolina. The waste tanks are located in the F- and H-Areas of SRS and vary in capacity from 2,839,059 liters (750,000 gallons) to 4,921,035 liters (1,300,000 gallons). These in-ground tanks are surrounded by soil to provide shielding. The F- and H-Area High-Level Waste Tanks are operated under the authority of Industrial Wastewater Permits No.17,424-IW; No.14520, and No.14338 issued by the South Carolina Department of Health and Environmental Control (SCDHEC). In accordance with the Permit requirements, DOE has prepared a Closure Plan (DOE, 1996) and submitted it to SCDHEC for approval. The Closure Plan identifies all applicable or relevant and appropriate regulations, statutes, and DOE Orders for closing systems operated under the Industrial Wastewater Permits. When approved by SCDHEC, the Closure Plan will present the regulatory process for closing all of the F- and H-Area High Level Waste Tanks. The Closure Plan establishes performance objectives or criteria to be met prior to closing any tank, group of tanks, or ancillary tank farm equipment. The proposed action is to remove the residual wastes from the tanks and to fill the tanks with a material to prevent future collapse and bind up residual waste, to lower human health risks, and to increase safety in and around the tanks. If required, an engineered cap consisting of clay, backfill (soil), and vegetation as the final layer to prevent erosion would be applied over the tanks. The selection of tank system closure method will be evaluated against the following Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) criteria described in 40 CFR 300.430(e)(9): ( 1) overall protection of human health and the environment; (2) compliance with applicable or relevant and appropriated requirement: (ARARs); (3) long-term effectiveness and permanence; (4) reduction of toxicity, mobility, or volume through treatment; (5) short-term effectiveness; (6) implementability; (7) cost; (8) state acceptable; and (9) community acceptance. Closure of each tank involves two separate operations after bulk waste removal has been accomplished: (1) cleaning of the tank (i.e., removing the residual contaminants), and (2) the actual closure or filling of the tank with an inert material, (e.g., grout). This process would continue until all the tanks and ancillary equipment and systems have been closed. This is expected to be about year 2028 for Type I, II, and IV tanks and associated systems. Subsequent to that, Type III tanks and systems will be closed.

N /A

1996-07-31T23:59:59.000Z

303

Youghiogheny Wild and Scenic River (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

Portions of the Youghiogheny River are protected under the Scenic and Wild Rivers Act, and development on or near these areas is restricted. COMAR section 08.15.02 addresses permitted uses and...

304

Chemical and light-stable isotope characteristics of waters from...  

Open Energy Info (EERE)

of waters from the raft river geothermal area and environs, Cassia County, Idaho, Box Elder county, Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

305

Modeling of the sub-surface reducing environment of the Z-Area Saltstone disposal facility at the Savannah River Site  

Science Conference Proceedings (OSTI)

Low-level radioactive liquid wastes at the U.S. Department of Energy Savannah River Site are treated by mixing the wastes with Saltstone grout to generate the Saltstone waste form that is poured into the concrete vaults for long-term disposal. The formula ... Keywords: contaminant transport, environmental science, radioactive waste, radionuclides

Thong Hang; Daniel I. Kaplan

2007-03-01T23:59:59.000Z

306

Rainfall Variability over Mountainous and Adjacent Lake Areas: The Case of Lake Tana Basin at the Source of the Blue Nile River  

Science Conference Proceedings (OSTI)

The water resource of the Blue Nile River is of key regional importance to the northeastern African countries. However, little is known about the characteristics of the rainfall in the basin. In this paper, the authors presented the spacetime ...

Alemseged T. Haile; Tom Rientjes; Ambro Gieske; Mekonnen Gebremichael

2009-08-01T23:59:59.000Z

307

Idaho/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Idaho/Geothermal Idaho/Geothermal < Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Idaho Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Idaho Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Raft River II Geothermal Project U.S. Geothermal Raft River, AK 114 MW114,000 kW 114,000,000 W 114,000,000,000 mW 0.114 GW 1.14e-4 TW Phase III - Permitting and Initial Development Raft River Geothermal Area Northern Basin and Range Geothermal Region Raft River III Geothermal Project U.S. Geothermal Raft River, ID 114 MW114,000 kW 114,000,000 W 114,000,000,000 mW 0.114 GW 1.14e-4 TW Phase I - Resource Procurement and Identification Raft River Geothermal Area Northern Basin and Range Geothermal Region

308

Preliminary study of the oil shales of the Green River formation in the tri-state area of Colorado, Utah, and Wyoming to investigate their utility for disposal of radioactive waste  

SciTech Connect

Results are presented of a preliminary study of the oil shales of the Green River formation in the tri-state area of Colorado, Utah, and Wyoming to investigate their utility for possible disposal of radioactive waste material. The objective of this study was to make a preliminary investigation and to obtain a broad overview of the physical and economic factors which would have an effect on the suitability of the oil shale formations for possible disposal of radioactive waste material. These physical and economic factors are discussed in sections on magnitude of the oil shales, waste disposal relations with oil mining, cavities requirements, hydrological aspects, and study requirements. (JRD)

1975-05-01T23:59:59.000Z

309

Our River  

NLE Websites -- All DOE Office Websites (Extended Search)

River River Nature Bulletin No. 22 July 7, 1945 Forest Preserve District of Cook County Clayton F. Smith, President Roberts Mann, Superintendent of Conservation OUR RIVER The people of Cook County are missing a bet. They are not using their DesPlaines River. The other day we took a boat trip down that river from Lake County to Lawndale Avenue in Summit. It being a week day, we saw few people other than an occasional fisherman or pairs of strolling boys. Except for a bridge now and then, there were no signs or sounds of civilization. Chicago might have been a thousand miles away. We rested. There was isolation. There was peace. Once in a while a heron flew ahead of us; or a squirrel scampered up a tree; once we saw a family of young muskrats playing around the entrance to their den in the bank; twice we saw and heard a wood duck; again and again big fish plowed ripples surging ahead of us. It was shady and cool and still beneath the arching trees. We thought of the centuries this river had traveled. We were babes nuzzling again at the breast of Mother Nature.

310

Independent Activity Report, Washington River Protection Solutions -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Washington River Protection Solutions Washington River Protection Solutions - September 2010 Independent Activity Report, Washington River Protection Solutions - September 2010 September 2010 Participation in the Washington River Protection Solutions, LLC Integrated Safety Management System Annual Review The U.S. Department of Energy, Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), participated in the review of the Washington River Protection Solutions, LLC Integrated Safety Management System Annual Review for 2010. The review was conducted during the period of August 23 to September 2, 2010, and focused on six functional areas: corrective action management, work planning and control, radiological protection, environmental protection, emergency preparedness, and

311

Savannah River Site  

NLE Websites -- All DOE Office Websites (Extended Search)

River Site Savannah River Site Savannah River Site (SRS) has mission responsibilities in nuclear weapons stockpile stewardship by ensuring the safe and reliable management of...

312

Surface-to-Atmosphere Exchange in a River Valley Environment  

Science Conference Proceedings (OSTI)

Observations of the turbulent exchange between a river surface and the atmosphere in a mountainous area in southern Brazil are presented and discussed. A micrometeorological tower was installed directly above the surface of a 60-m-wide river. ...

Otvio C. Acevedo; Osvaldo L. L. Moraes; Rodrigo da Silva; Vagner Anabor; Daniel P. Bittencourt; Hans R. Zimmermann; Roberto O. Magnago; Gervsio A. Degrazia

2007-08-01T23:59:59.000Z

313

Lower Colorado River Peoples: Hostilities and Hunger, 1850-1857  

E-Print Network (OSTI)

Office. White, C 1974 Lower Colorado River Area AboriginalJ. 1965 Warriors of the Colorado: The Yumans of the QuechanJ. C 1861 Report Upon the Colorado River of the West . . .

Kroeber, Clifton B

1980-01-01T23:59:59.000Z

314

River Steamboats  

NLE Websites -- All DOE Office Websites (Extended Search)

River Steamboats River Steamboats Nature Bulletin No. 628-A February 12, 1977 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation RIVER STEAMBOATS The westward migration of the pioneer settlers and the rapid growth of agriculture, commerce and industry in the Middle West is in large part the story of water transportation on our inland waterways. The two main water routes were the chain of Great Lakes on the north and the Ohio River on the south. Sailing vessels carrying hundreds of tons were able to navigate on the Great Lakes almost as freely as on the ocean. Also, on the Ohio and Mississippi rivers heavy loads could be floated downstream from Pittsburgh to New Orleans -- almost 2000 miles. But boats had to be hauled back upstream by manpower -- grueling labor, stretching over weeks or months to move a few tons a few hundred miles. The coming of the steamboat a century and a half ago changed all this.

315

Independent Oversight Follow-up Review, Savannah River National Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River National Savannah River National Laboratory - January 2012 Independent Oversight Follow-up Review, Savannah River National Laboratory - January 2012 January 2012 Follow-up Review of Implementation Verification Reviews at the Savannah River National Laboratory Savannah River Site The Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), conducted an independent review of the identification and implementation of safety basis hazard controls associated with "flashing spray release" and supporting information documented in the Savannah River National Laboratory (SRNL) WSRC-SA-2, SRNL Technical Area Documented Safety Analysis, Revision 10; WSRC-TS-97-00014, SRNL Technical Area Technical Safety Requirements,

316

A Milestone for Savannah River Site | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Milestone for Savannah River Site A Milestone for Savannah River Site A Milestone for Savannah River Site October 21, 2010 - 4:38pm Addthis Employees of the Savannah River Site's M Area Operable Unit (MAOU) gather at the completed site. Employees of the Savannah River Site's M Area Operable Unit (MAOU) gather at the completed site. Dr. Ines Triay I had the privilege yesterday to celebrate history and embrace the future at the first Savannah River Site (SRS) Area Completion under the American Recovery and Reinvestment Act. I was one of about 250 people gathered at the M Area Operable Unit (MAOU) area completion event that marked the end of an era at SRS. During the Cold War, M Area was the site of three support buildings used to fabricate fuel targets for the Site's reactors; home to the Liquid Effluent Treatment

317

A Milestone for Savannah River Site | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Milestone for Savannah River Site A Milestone for Savannah River Site A Milestone for Savannah River Site October 21, 2010 - 4:38pm Addthis Employees of the Savannah River Site's M Area Operable Unit (MAOU) gather at the completed site. Employees of the Savannah River Site's M Area Operable Unit (MAOU) gather at the completed site. Dr. Ines Triay I had the privilege yesterday to celebrate history and embrace the future at the first Savannah River Site (SRS) Area Completion under the American Recovery and Reinvestment Act. I was one of about 250 people gathered at the M Area Operable Unit (MAOU) area completion event that marked the end of an era at SRS. During the Cold War, M Area was the site of three support buildings used to fabricate fuel targets for the Site's reactors; home to the Liquid Effluent Treatment

318

Introduction Study Area U.S. Department of the Interior  

E-Print Network (OSTI)

to climate change for the Flint River Basin at Montezuma in Georgia (U.S. Geological Survey streamflow) and a journal article (Hay and others, 2011). Study Area The upper portion of the Flint River flows unimpeded. River shoal habitat in the upper Flint River supports a variety of native fishes, mussels, and aquatic

319

Savannah River Technology Center monthly report, January 1994  

SciTech Connect

This is the monthly progress report for the Savannah River Technology Center, which covers the following areas of interest, Tritium, Separation processes, Environmental Issues, and Waste Management.

Not Available

1994-01-01T23:59:59.000Z

320

Lance Lab Research | Savannah River Ecology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

from a Cu study On the Savannah River Site we have access to several areas with coal fly ash contamination. We also are looking at the effects of coal combustion wastes on...

Note: This page contains sample records for the topic "area raft river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Red River Compact (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

The Red River Compact Commission administers the Red River Compact to ensure that Texas receives its equitable share of quality water from the Red River and its tributaries as apportioned by the...

322

Categorical Exclusion Determinations: Western Area Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Colorado River Storage Project Management Center Colorado River Storage Project Management Center Categorical Exclusion Determinations: Western Area Power Administration-Colorado River Storage Project Management Center Categorical Exclusion Determinations issued by Western Area Power Administration-Colorado River Storage Project Management Center. DOCUMENTS AVAILABLE FOR DOWNLOAD January 25, 2011 CX-005545: Categorical Exclusion Determination Installation of Metering and Circuit Breaker at Powell 69-Kilovolt Substation CX(s) Applied: B4.11 Date: 01/25/2011 Location(s): Page, Arizona Office(s): Western Area Power Administration-Colorado River Storage Project Management Center October 26, 2009 CX-005544: Categorical Exclusion Determination Power Rate Formula for the Provo River Project of the Western Area Power

323

River Basin Commissions (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation establishes river basin commissions, for the Kankakee, Maumee, St. Joseph, and Upper Wabash Rivers. The commissions facilitate and foster cooperative planning and coordinated...

324

Maine Rivers Policy (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

The Maine Rivers Policy accompanies the Maine Waterway Development and Conservation Act and provides additional protection for some river and stream segments, which are designated as outstanding...

325

A Family By Yellow River  

E-Print Network (OSTI)

River, opposite to Shenxi Province across the River, is within the central zone of Huangtu Plateau Culture in midland China. In history Qikou was a transport hinge connecting Sichuan to the west and Baotou (Inner Mongolia) to the northwest. Still seen... . They own seven mu (a mu is one fifteenth of a hectare) of jujube trees, which is an area expanded on a basis of one mu last year. The labour is tough with a typical droughty climate of Loess Plateau. Shouldering a pole with two buckets at either end...

China Central Television (CCTV)

2005-04-06T23:59:59.000Z

326

Independent Activity Report, Savannah River Site - March 2013 | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site - March 2013 Savannah River Site - March 2013 Independent Activity Report, Savannah River Site - March 2013 March 2013 Oversight Scheduling an Operational Awareness at the Savannah River Site [HIAR-SRS-2013-03-25] Activity Description/Purpose: The Independent Oversight Site Lead for the Savannah River Site traveled to the site to work with functional area managers to schedule nuclear safety oversight activities. The Site Lead reviewed the differing professional opinion (DPO) program at the Savannah River Operations Office (Department of Energy (DOE)-SR). Independent Activity Report, Savannah River Site - March 2013 More Documents & Publications Independent Oversight Review, Savannah River Operations Office - July 2013 Policy Flash 2013-74 Quarterly Notification of the DOE's Differing

327

2010sr29[M Area].doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Wednesday, October 20, 2010 Wednesday, October 20, 2010 Paivi Nettamo, SRNS, (803) 952-6938 Savannah River Site Marks Recovery Act Cleanup Milestone M Area cleanup work was finished nearly two years ahead of schedule AIKEN, S.C. (October 20) - Department of Energy, contractor and regulatory representatives gathered today to celebrate the completion of cleanup work at Savannah River Site's M Area, nearly two years ahead of schedule. This area

328

Pecos River Compact (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation authorizes the state's entrance into the Pecos River Compact, a joint agreement between the states of New Mexico and Texas. The compact is administered by the Pecos River Compact...

329

An Inside Look at River Corridor | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

An Inside Look at River Corridor An Inside Look at River Corridor An Inside Look at River Corridor July 16, 2012 - 1:04pm Addthis "River Corridor" provides viewers with a look at the cleanup of hundreds of contaminated buildings and more than one thousand areas where soil was contaminated along the 50-mile stretch of the Columbia River that flows through the Hanford Site in southeast Washington State. Amanda Scott Amanda Scott Former Managing Editor, Energy.gov In the seventh chapter of The Handford Story, the Energy Department takes a look at the River Corridor -- a 50-mile stretch of the Columbia River that flows through the Hanford site in southeast Washington State. This video provides you with an insiders look at the cleanup of contaminated buildings and soil. Watch the video above to get a look inside the Energy

330

Savannah River National Laboratory  

At a glance Remote Electrical Throw Device Engineers at the Savannah River National Laboratory ... sufficient manufacturing capacity, established dist ...

331

Preliminary Notice of Violation, Savannah River Nuclear Solutions, LLC -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Preliminary Notice of Violation, Savannah River Nuclear Solutions, Preliminary Notice of Violation, Savannah River Nuclear Solutions, LLC - WEA-2010-05 Preliminary Notice of Violation, Savannah River Nuclear Solutions, LLC - WEA-2010-05 October 7, 2010 Preliminary Notice of Violation issued to Savannah River Nuclear Solutions, LLC related to a Nitric Acid Spill Event and an Electrical Arc Flash Injury Event at the Savannah River Site This letter refers to the Office of Health, Safety and Security's Office of Enforcement investigation into the facts and circumstances surrounding the nitric acid spill event that occurred in F Area on August 18, 2009, and the electrical arc flash injury that occurred in the D Area powerhouse on September 23, 2009, at the Savannah River Site. Based on an evaluation of the evidence in this matter, the U.S. Department of Energy (DOE) has

332

Seismic baseline and induction studies- Roosevelt Hot Springs, Utah and  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Seismic baseline and induction studies- Roosevelt Hot Springs, Utah and Raft River, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Seismic baseline and induction studies- Roosevelt Hot Springs, Utah and Raft River, Idaho Details Activities (2) Areas (2) Regions (0) Abstract: Local seismic networks were established at the Roosevelt Hot Springs geothermal area, utah and at Raft River geothermal area, Idaho to monitor the background seismicity prior to initiation of geothermal power production. The Raft River study area is currently seismically quiet down

333

Categorical Exclusion Determinations: Savannah River Operations Office |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 20, 2012 July 20, 2012 CX-009070: Categorical Exclusion Determination A-Area Alternate Fire Water Supply CX(s) Applied: B1.3 Date: 07/20/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office July 20, 2012 CX-009069: Categorical Exclusion Determination Remove and Dispose of 107 A & B Tanks and Support Structure CX(s) Applied: B6.1 Date: 07/20/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office July 20, 2012 CX-009068: Categorical Exclusion Determination Hydrogen Charging Tritium Contaminated Metals CX(s) Applied: B3.6 Date: 07/20/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office July 16, 2012 CX-009077: Categorical Exclusion Determination F-Area Infrasturcture Improvement CX(s) Applied: B1.23 Date: 07/16/2012

334

Categorical Exclusion Determinations: Savannah River Operations Office |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 20, 2010 July 20, 2010 CX-003668: Categorical Exclusion Determination Subsurface Soils Exploration for Potential Pit Disassembly and Conversion Project Sandfilter Footprint CX(s) Applied: B3.1 Date: 07/20/2010 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office July 7, 2010 CX-003670: Categorical Exclusion Determination Improvements to L Area Sidewalks CX(s) Applied: B1.3 Date: 07/07/2010 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office July 7, 2010 CX-002984: Categorical Exclusion Determination Improvements to L Area Sidewalks CX(s) Applied: B1.3 Date: 07/07/2010 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office June 25, 2010 CX-003671: Categorical Exclusion Determination

335

Categorical Exclusion Determinations: Savannah River Operations Office |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 23, 2009 June 23, 2009 CX-000497: Categorical Exclusion Determination F-Canyon Complex Deactivation CX(s) Applied: B1.28 Date: 06/23/2009 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office June 15, 2009 CX-000495: Categorical Exclusion Determination M-Area Chemical Oxidation (MACO) - Installation of Southern Sector Coreholes and Monitoring Wells Date: 06/15/2009 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office June 15, 2009 CX-000496: Categorical Exclusion Determination F Area Hazardous Waste Management Facility Silver Chloride Solution Injection Wells CX(s) Applied: B6.2 Date: 06/15/2009 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office

336

Categorical Exclusion Determinations: Savannah River Operations Office |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 11, 2009 August 11, 2009 CX-000513: Categorical Exclusion Determination Cone Penetration Test sampling at ECODS (Early Construction and Operational Disposal Sites) B3 and B5 CX(s) Applied: B3.1 Date: 08/11/2009 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office August 5, 2009 CX-000511: Categorical Exclusion Determination Isolation of Domestic Water Line, 782-4G CX(s) Applied: B1.3 Date: 08/05/2009 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office August 5, 2009 CX-000512: Categorical Exclusion Determination Tree Removal and Chipping at P-Area Ash Basin and R-Area Ash Basin and P-007 Outfall Date: 08/05/2009 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office

337

Categorical Exclusion Determinations: Savannah River Operations Office |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 10, 2010 December 10, 2010 CX-004837: Categorical Exclusion Determination Measurement of Compressive Strength CX(s) Applied: B3.6 Date: 12/10/2010 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office December 7, 2010 CX-004826: Categorical Exclusion Determination Piezometer Well Installation for 1,4-Dioxane Monitoring CX(s) Applied: B3.1 Date: 12/07/2010 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office December 7, 2010 CX-004824: Categorical Exclusion Determination Dismantle and Remove Tank 6 Riser 7 for Waste Determination (WD) Sampling CX(s) Applied: B1.3 Date: 12/07/2010 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office December 7, 2010 CX-004823: Categorical Exclusion Determination Consolidation of K- and L-Area Heavy Water in C-Area

338

Savannah River Site - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports Reports Savannah River Site Review Reports 2013 Independent Oversight Review of the Savannah River Field Office Tritium Facilities Radiological Controls Activity-Level Implementation, November 2013 Independent Oversight Review of the Savannah River Site Salt Waste Processing Facility Safety Basis and Design Development, August 2013 Independent Oversight Review of the Employee Concerns Program at the Savannah River Operations Office, July 2013 Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project, January 2013 Review of the Savannah River Site, Waste Solidification Building, Construction Quality of Mechanical Systems Installation and Selected Aspects of Fire Protection System Design, January 2013 Activity Reports 2013 Savannah River Site Waste Solidification Building Corrective Actions from the January 2013 Report on Construction Quality of Mechanical Systems Installation and Fire Protection Design, May 2013

339

Office of River Protection (ORP) and Washingotn River Protection Solutions,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of River Protection (ORP) and Washingotn River Protection Office of River Protection (ORP) and Washingotn River Protection Solutions, LLC (WRPS) Partnering Agreement for the DOE-EM Tank Operations Project Office of River Protection (ORP) and Washingotn River Protection Solutions, LLC (WRPS) Partnering Agreement for the DOE-EM Tank Operations Project The Mission of the Office of River Protection is to safely retrieve and treat Hanford's tank waste and close the Tank Farms to protect the Columbia River. Office of River Protection (ORP) and Washingotn River Protection Solutions, LLC (WRPS) Partnering Agreement for the DOE-EM Tank Operations Project More Documents & Publications 2011 Annual Workforce Analysis and Staffing Plan Report - Office of River Protection Consent Order, Washington River Protection Solutions, LLC - NCO-2011-01

340

Snake River Plain Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Snake River Plain Geothermal Region Snake River Plain Geothermal Region (Redirected from Snake River Plain) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Snake River Plain Geothermal Region Details Areas (8) Power Plants (1) Projects (2) Techniques (11) Map: {{{Name}}} "The Snake River Plain is a large arcuate structural trough that characterizes the topography of southern Idaho that can be divided into three sections: western, central, and eastern. The western Snake River Plain is a large tectonic graben or rift valley filled with several km of lacustrine (lake) sediments; the sediments are underlain by rhyolite and basalt, and overlain by basalt. The western plain began to form around 11-12 Ma with the eruption of rhyolite lavas and ignimbrites. The western plain is not parallel to North American Plate motion, and lies at a high

Note: This page contains sample records for the topic "area raft river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Savannah River National Laboratory  

located in every town and city have the potential to be used as environmental ... Savannah River Nuclear Solutions, LLC. SRNS is responsible for

342

Savannah River Remediation Procurement  

NLE Websites -- All DOE Office Websites (Extended Search)

and procedures, rules and regulations, terms and conditions and the orders and directives under which Savannah River Remediation LLC (SRR) develops, issues, administers and...

343

Savannah River Ecology Laboratory  

NLE Websites -- All DOE Office Websites

Field Sites SREL is supported largely by external funding. Major sources include DOE Environmental Management, Savannah River Nuclear Solutions, USGS, US Department of the...

344

Savannah River National Laboratory  

The coupling also provided excellent response to impact. ... used as a means of remote camera and equipment, ... Savannah River Nuclear Solutions, ...

345

Savannah River National Laboratory  

Savannah River Nuclear Solutions, LLC. SRNS is responsible for transferring its technologies to the private sector so that these technologies may have ...

346

Young Professionals in Nuclear Industry Group Forms at Savannah River Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Young Professionals in Nuclear Industry Group Forms at Savannah Young Professionals in Nuclear Industry Group Forms at Savannah River Site Young Professionals in Nuclear Industry Group Forms at Savannah River Site January 1, 2012 - 12:00pm Addthis The Savannah River Chapter of North American – Young Generation in Nuclear is a new group forming at the Savannah River Site. The Savannah River Chapter of North American - Young Generation in Nuclear is a new group forming at the Savannah River Site. AIKEN, S.C. - Supporting the development of young nuclear professionals in the Central Savannah River Area (CSRA) is the purpose behind a new group forming at the Savannah River Site (SRS). The Savannah River Chapter of North American - Young Generation in Nuclear (SR-YGN) will hold a kick-off meeting Jan. 26 in Aiken and all

347

Rediscovering the river : infill and adaptive reuse in Brattleboro, Vermont  

E-Print Network (OSTI)

This thesis develops several ideas voiced by the citizens of Brattleboro. The first, the River Walk, is a pedestrian path at the rear of the downtown commercial area of town. Projections are made about the possible route ...

Bannister, Phillip A

1984-01-01T23:59:59.000Z

348

An integral approach to bedrock river profile analysis  

E-Print Network (OSTI)

Bedrock river profiles are often interpreted with the aid of slopearea analysis, but noisy topographic data make such interpretations challenging. We present an alternative approach based on an integration of the steady-state ...

Perron, J. Taylor

349

Efficient calculation of dewatered and entrapped areas using hydrodynamic modeling and GIS  

Science Conference Proceedings (OSTI)

River waters downstream of a hydroelectric project are often subject to rapidly changing discharge. Abrupt decreases in discharge can quickly dewater and expose some areas and isolate other areas from the main river channel, potentially stranding or ... Keywords: Columbia River, Dewatering, Entrapment, Fish, GIS, Hydrodynamic model, Power peaking

Marshall C. Richmond; William A. Perkins

2009-12-01T23:59:59.000Z

350

Genetic and otolith isotopic markers identify salmon populations in the Columbia River at broad and fine geographic scales  

E-Print Network (OSTI)

Priest Rapids Hatchery (PRH) 12. Hanford Reach (HAN) MethowColumbia River in the Hanford Reach area (Waknitz et al.except for adults sampled at Hanford Reach River drain the

Barnett-Johnson, Rachel; Teel, David J; Casillas, Edmundo

2010-01-01T23:59:59.000Z

351

Land Use Baseline Report Savannah River Site  

Science Conference Proceedings (OSTI)

This document is to serve as a resource for Savannah River Site managers, planners, and SRS stakeholders by providing a general description of the site and land-use factors important to future use decisions and plans. The intent of this document is to be comprehensive in its review of SRS and the surrounding area.

Noah, J.C.

1995-06-29T23:59:59.000Z

352

Savannah River Technology Center. Monthly report  

SciTech Connect

This is a monthly progress report from the Savannah River Laboratory for the month of January 1993. It has sections with work in the areas of reactor safety, tritium processes and absorption, separations programs and wastes, environmental concerns and responses, waste management practices, and general concerns.

Not Available

1993-01-01T23:59:59.000Z

353

Preliminary Notice of Violation, Savannah River Nuclear Solutions, LLC -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2-04 2-04 Preliminary Notice of Violation, Savannah River Nuclear Solutions, LLC - WEA-2012-04 November 9, 2012 Issued to Savannah River Nuclear Solutions (SRNS), LLC, related to a Worker Fall from a Scaffold in the K-Area Complex at the Savannah River Site This letter refers to the U.S. Department of Energy (DOE) Office of Health, Safety and Security's Office of Enforcement and Oversight investigation into the facts and circumstances associated with a worker fall from a Tele-Tower® Adjustable Work Platform in the K-Area Complex at the Savannah River Site on July 1, 2011. The results of DOE's investigation were provided to Savannah River Nuclear Solutions, LLC (SRNS) in an investigation report dated May 8, 2012. An enforcement conference was held on June 27, 2012, with you and members of your staff to discuss the

354

Savannah River | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

River River Savannah River Following are compliance agreements for the Savannah River Site. Also included are short summaries of the agreements. Natural Resources Defense Council Consent Decree, May 26, 1988 Natural Resources Defense Council Consent Decree, May 26, 1988 Summary Savannah River Site Consent Order 99-155-W, October 11, 1999 Savannah River Site Consent Order 99-155-W, October 11, 1999 Summary Savannah River Site Consent Order 85-70-SW, November 7, 1985 Savannah River Site Consent Order 85-70-SW, November 7, 1985 Summary Savannah River Site Consent Order 95-22-HW, September 29, 1995 Savannah River Site Consent Order 95-22-HW, September 29, 1995 Summary Savannah River Site Consent Order 99-21-HW, July 13, 1999 Savannah River Site Consent Order 99-21-HW, July 13, 1999 Summary

355

Savannah River | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Savannah River Savannah River Following are compliance agreements for the Savannah River Site. Also included are short summaries of the agreements. Natural Resources Defense Council Consent Decree, May 26, 1988 Natural Resources Defense Council Consent Decree, May 26, 1988 Summary Savannah River Site Consent Order 99-155-W, October 11, 1999 Savannah River Site Consent Order 99-155-W, October 11, 1999 Summary Savannah River Site Consent Order 85-70-SW, November 7, 1985 Savannah River Site Consent Order 85-70-SW, November 7, 1985 Summary Savannah River Site Consent Order 95-22-HW, September 29, 1995 Savannah River Site Consent Order 95-22-HW, September 29, 1995 Summary Savannah River Site Consent Order 99-21-HW, July 13, 1999 Savannah River Site Consent Order 99-21-HW, July 13, 1999 Summary

356

about Savannah River National Laboratory  

S R N The Savannah River Site and the Savannah River National Laboratory are owned by the U.S. Department of Energy, and are managed and operated by Savannah River ...

357

Survey of Columbia River Basin streams for Columbia pebblesnail Fluminicola columbiana and shortface lanx Fisherola nuttalli  

DOE Green Energy (OSTI)

At present, there are only two remaining sizable populations of Columbia pebblesnails Fluminicola columbiana; those in the Methow and Okanogan rivers, Washington. Smaller populations survive in the Hanford Reach of the Columbia River, Washington, and the lower Salmon River, Idaho, and possibly in the middle Snake River, Idaho; Hells Canyon of the Snake River, Idaho, Washington, and Oregon, and the Grande Ronde River, Oregon and Washington. Neither large population is at present protected, and there has been a substantial documented reduction in the species` historic range. Large populations of the shortface lanx Fisherolla nuttalli persist in four streams: the Deschutes River, Oregon; the Hanford Reach and Bonneville Dam area of the Columbia River, Washington and Oregon; Hens Canyon of the Snake River, Idaho and Oregon; and the Okanogan River, Washington. Smaller populations, or ones of uncertain size, are known from the lower Salmon and middle Snake rivers, Idaho; the Grande Ronde Washington and Oregon; Imnaha, and John Day rivers, Oregon; and the Methow River, Washington. While substantial range reduction has occurred in this species, and the large populations are not well protected, the problem is not as severe as in the case of the Columbia pebblesnail. Both species appear to have been widespread historically in the mainstem Columbia River and the Columbia River Basin prior to the installation of the current dam system. Both are now apparently reduced within the Columbia River to populations in the Hanford Reach and possibly other sites that are now separated by large areas of unsuitable habitat from those in the river`s major tributaries.

Neitzel, D.A. [Pacific Northwest Lab., Richland, WA (United States); Frest, T.J. [Deixis Consultants, Seattle, WA (United States)

1992-08-01T23:59:59.000Z

358

River Edge Redevelopment Zone (Illinois)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of the River Edge Redevelopment Program is to revive and redevelop environmentally challenged properties adjacent to rivers in Illinois.

359

INEL geothermal environmental program. 1980 annual report  

DOE Green Energy (OSTI)

An overview of continuing environmental research and monitoring programs conducted at the Raft River Geothermal Site is provided. The monitoring programs are designed to collect data on the physical, biological and human environments of the development area. Primary research during 1980 emphasized completing baseline studies on terrestrial fauna, establishing an air quality monitoring network, investigating potential sources of fluoride in the Raft River Valley, and studying water level changes in the shallow monitor wells in response to development of the geothermal resource.

Cahn, L.S.; Thurow, T.L.; Martinez, J.A.

1981-04-01T23:59:59.000Z

360

Ecology of the river dolphin, Inia geoffrensis, in the Cinaruco River, Venezuela  

E-Print Network (OSTI)

The Cinaruco River is a tributary of the Orinoco River, and forms the southern boundary of Venezuela's newest national park, Santos Luzardo. Like other rivers of this region, the Cinaruco River undergoes an extreme seasonal flood cycle. River dolphins were studied from November 1993 to June 1994 to gather baseline data regarding their ecology, including distribution, habitat affinity, group size, population composition, and prey availability. Transects from watercraft were used to count river dolphins, and observation effort was recorded. River dolphin habitat was characterized by broad hydrologic features (i.e., river, lagoon, side channel or confluence), structural composition (i.e., beach, rocks, cutbank, submerged vegetation) and complexity. Population composition by age class was determined according to size. Photo-identification was used to recognize individual dolphins. Potential preyfish availability within habitats was determined by using seine nets and gillnets. Dolphin diet was inferred from one stomach sample and the literature. Dolphins were seen most often during falling water, and least often during rising water. Dolphins were most often seen in confluence areas, and were seldom seen in side channels. The presence of rocks or beaches was associated with a greater frequency of dolphin sightings, and sightings increased with habitat complexity. Average group size for the 8-mo study was 2.0 (O?.05) dolphins, and was greatest during rising water. Greatest densities occurred during failing water, at 3.8 (+O.54) dolphins/km. Calves were first sighted at the end of the dry season and became more common as the waters rose. Six individuals were recognized and resighted by photo-identification; one of these was sighted 8 times over a period of 186 days. The fish diversity of the study area was high, and comprised at least 161 species. The stomach of one Inia contained 15 fish, representing at least 4 species.

McGuire, Tamara Lee

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "area raft river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Survey of Columbia River Basin streams for Columbia pebblesnail Fluminicola columbiana and shortface lanx Fisherola nuttalli  

DOE Green Energy (OSTI)

At present, there are only two remaining sizable populations of Columbia pebblesnails Fluminicola columbiana; those in the Methow and Okanogan rivers, Washington. Smaller populations survive in the Hanford Reach of the Columbia River, Washington, and the lower Salmon River, Idaho, and possibly in the middle Snake River, Idaho; Hells Canyon of the Snake River, Idaho, Washington, and Oregon, and the Grande Ronde River, Oregon and Washington. Neither large population is at present protected, and there has been a substantial documented reduction in the species' historic range. Large populations of the shortface lanx Fisherolla nuttalli persist in four streams: the Deschutes River, Oregon; the Hanford Reach and Bonneville Dam area of the Columbia River, Washington and Oregon; Hens Canyon of the Snake River, Idaho and Oregon; and the Okanogan River, Washington. Smaller populations, or ones of uncertain size, are known from the lower Salmon and middle Snake rivers, Idaho; the Grande Ronde Washington and Oregon; Imnaha, and John Day rivers, Oregon; and the Methow River, Washington. While substantial range reduction has occurred in this species, and the large populations are not well protected, the problem is not as severe as in the case of the Columbia pebblesnail. Both species appear to have been widespread historically in the mainstem Columbia River and the Columbia River Basin prior to the installation of the current dam system. Both are now apparently reduced within the Columbia River to populations in the Hanford Reach and possibly other sites that are now separated by large areas of unsuitable habitat from those in the river's major tributaries.

Neitzel, D.A. (Pacific Northwest Lab., Richland, WA (United States)); Frest, T.J. (Deixis Consultants, Seattle, WA (United States))

1992-08-01T23:59:59.000Z

362

Collection and Analysis of Reservoir Data from Testing and Operation of the  

Open Energy Info (EERE)

Collection and Analysis of Reservoir Data from Testing and Operation of the Collection and Analysis of Reservoir Data from Testing and Operation of the Raft River 5 MW Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Collection and Analysis of Reservoir Data from Testing and Operation of the Raft River 5 MW Power Plant Details Activities (1) Areas (1) Regions (0) Abstract: The Raft River 5 MW power plant will be on-line some time this spring. During testing of the supply and injection system prior to plant start-up and during testing of the plant itself, data can be collected and used to calibrate computer models, refine predicted drawdowns and interference effects, monitor changing temperatures, and recalculate reservoir parameters. Analytic methods have been used during reservoir testing at Raft River to calculate reservoir coefficients. However,

363

Categorical Exclusion Determinations: Savannah River Operations Office |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 20, 2013 June 20, 2013 CX-010655: Categorical Exclusion Determination Roof Repair on Crane Maintenance Area Roof CX(s) Applied: B1.3 Date: 06/20/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office June 18, 2013 CX-010657: Categorical Exclusion Determination Western Sector Treatment System Soil Vapor Extraction Wells CX(s) Applied: B3.1 Date: 06/18/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office June 18, 2013 CX-010656: Categorical Exclusion Determination Stormwater Drainage Repair CX(s) Applied: B1.3 Date: 06/18/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office June 17, 2013 CX-010662: Categorical Exclusion Determination Reroute Diesel Water Cooling Line at 241-125H CX(s) Applied: B1.3 Date: 06/17/2013

364

Categorical Exclusion Determinations: Savannah River Operations Office |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 20, 2011 July 20, 2011 CX-006620: Categorical Exclusion Determination Relocate Hydroburst System from 238-H to 234-7H CX(s) Applied: B1.31 Date: 07/20/2011 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office July 18, 2011 CX-006619: Categorical Exclusion Determination Install Seventeen Monitoring Wells Around 715-D CX(s) Applied: B3.1 Date: 07/18/2011 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office July 18, 2011 CX-006618: Categorical Exclusion Determination Disable F-Tank Farm (FTF) Air Compressor Sequencer CX(s) Applied: B1.3 Date: 07/18/2011 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office July 18, 2011 CX-006617: Categorical Exclusion Determination E Area Fire Water Extension CX(s) Applied: B1.15

365

Categorical Exclusion Determinations: Savannah River Operations Office |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 20, 2011 June 20, 2011 CX-006372: Categorical Exclusion Determination Well Installations at R-Area Operable Unit CX(s) Applied: B3.1 Date: 06/20/2011 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office June 15, 2011 CX-006373: Categorical Exclusion Determination Connect 735-11A to the Central Plant Chilled Water System CX(s) Applied: B1.3 Date: 06/15/2011 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office June 14, 2011 CX-006375: Categorical Exclusion Determination Replace Transfer Lines with Spare Lines CX(s) Applied: B1.3 Date: 06/14/2011 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office June 14, 2011 CX-006374: Categorical Exclusion Determination

366

Categorical Exclusion Determinations: Savannah River Operations Office |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 2, 2009 September 2, 2009 CX-000521: Categorical Exclusion Determination Cut and Cap #325 Steam Supply Header, 261-H Consolidated Incineration Facility CX(s) Applied: B1.27 Date: 09/02/2009 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office September 2, 2009 CX-000520: Categorical Exclusion Determination 690-N (Ford Building) Fire System Isolation and Sanitary Sewer Grouting CX(s) Applied: B1.27 Date: 09/02/2009 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office September 1, 2009 CX-000519: Categorical Exclusion Determination E-Area Box Remediation Project CX(s) Applied: B6.6 Date: 09/01/2009 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office

367

Categorical Exclusion Determinations: Savannah River Operations Office |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 9, 2010 August 9, 2010 CX-003633: Categorical Exclusion Determination Install Platform and Stairs at F-10 Outfall CX(s) Applied: B2.3 Date: 08/09/2010 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office August 4, 2010 CX-003635: Categorical Exclusion Determination D-Area Chemical Truck Unloading Station CX(s) Applied: B2.5 Date: 08/04/2010 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office August 4, 2010 CX-003636: Categorical Exclusion Determination 484-D Sump Discharge Line Installation CX(s) Applied: B1.3 Date: 08/04/2010 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office July 30, 2010 CX-003640: Categorical Exclusion Determination Howard T. Ricketts Laboratory (HTRL) Lab 134 CX(s) Applied: B3.6

368

Categorical Exclusion Determinations: Savannah River Operations Office |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 24, 2012 July 24, 2012 CX-009067: Categorical Exclusion Determination Deactivation and Decommissioning of the D-Area Detritiation Cells and Relocation of Associated Handi-Houses CX(s) Applied: B1.23 Date: 07/24/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office July 24, 2012 CX-009066: Categorical Exclusion Determination Characterization of Downgradient Volatile Organic Compounds Plume and Installation of Monitoring Well CX(s) Applied: B3.1 Date: 07/24/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office July 24, 2012 CX-009065: Categorical Exclusion Determination Installation of Sentinel Wells ASB011B/011C for A-2 Air Stripper Shutdown CX(s) Applied: B3.1 Date: 07/24/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

369

River Hydrokinetic Resource Atlas | Open Energy Information  

Open Energy Info (EERE)

River Hydrokinetic Resource Atlas River Hydrokinetic Resource Atlas Jump to: navigation, search Tool Summary LAUNCH TOOL Name: River Hydrokinetic Resource Atlas Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Water Power Resource Type: Maps, Software/modeling tools User Interface: Website Website: maps.nrel.gov/river_atlas Country: United States Web Application Link: maps.nrel.gov/river_atlas Cost: Free UN Region: Northern America Coordinates: 39.7412019515°, -105.172290802° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7412019515,"lon":-105.172290802,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

370

Savannah River National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Savannah River National Laboratory Savannah River National Laboratory srnl.doe.gov SRNL is a DOE National Laboratory operated by Savannah River Nuclear Solutions. At a glance Additive Manufacturing (3D Printing): Selectively Printed Conductive Pathways Researchers at the Savannah River National Laboratory (SRNL) have developed a rapid prototype conductive material that can be used for electrical shielding or circuit fabrication. Background Several rapid prototype technologies currently exist. A few of the technologies produce metallic parts, but the majority produce nonconductive parts made from various grades of plastic. In all of these technologies however, only conductive material or nonconductive material can be used within one part created. There is no known option for 3D printing conductive material for

371

SAVANNAH RIVER SITE COLD WAR HISTORIC PROPERTY DOCUMENTATION  

NLE Websites -- All DOE Office Websites (Extended Search)

WAR HISTORIC PROPERTY DOCUMENTATION WAR HISTORIC PROPERTY DOCUMENTATION NARRATIVE AND PHOTOGRAPHY CMX AND TNX SAVANNAH RIVER'S PILOT PLANTS Aiken County, South Carolina SAVANNAH RIVER SITE COLD WAR HISTORIC PROPERTY DOCUMENTATION CMX AND TNX CMX AND TNX SA SA V V ANNAH RIVER'S ANNAH RIVER'S PILOT PLANTS PILOT PLANTS Aiken County, South Carolina NARRATIVE AND PHOTOGRAPHY ii ABSTRACT This documentation was prepared in accordance with a Memorandum of Agreement (MOA) signed by the Department of Energy-Savannah River (DOE-SR) and the South Carolina Historic Preservation Office (SHPO) dated February 27, 2003, as well as the Consolidated MOA of August 2004. The MOA stipulated a thematic study and photographic documentation of 679-T and 678-T, known respectively as the CMX and TNX buildings. Initially, this area was called the CMX-TNX

372

Sioux River Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

River Ethanol LLC Jump to: navigation, search Name Sioux River Ethanol LLC Place Hudson, South Dakota Zip 57034 Product Farmer owned ethanol producer, Sioux River Ethanol is...

373

Scenic River Protection Policy, Minnesota Wild and Scenic Rivers Act  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Scenic River Protection Policy, Minnesota Wild and Scenic Rivers Scenic River Protection Policy, Minnesota Wild and Scenic Rivers Act (Minnesota) Scenic River Protection Policy, Minnesota Wild and Scenic Rivers Act (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Siting and Permitting

374

Tank Farms at the Savannah River Site | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tank Farms at the Savannah River Site Tank Farms at the Savannah River Site Tank Farms at the Savannah River Site Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 authorizes the Secretary of Energy, in consultation with the Nuclear Regulatory Commission, to reclassify certain waste from reprocessing spent nuclear fuel from high-level waste to low-level waste if it meets the criteria set forth in Section 3116. A Waste Determination Basis (WD Basis) provides the analysis to document the Secretary's determination to manage the residuals as low-level radioactive waste. The Savannah River Site has several facilities managed under Section 3116. The F-Area Tank Farm (FTF) WD Basis covers 20 tanks remaining to be closed in the FTF and the H-Area Tank Farm (HTF) WD Basis will cover all 29 HTF

375

Sandy River Delta Habitat Restoration Project, Annual Report 2001.  

SciTech Connect

The Sandy River Delta is located at the confluence of the Sandy and Columbia Rivers, just east of Troutdale, Oregon. It comprises about 1,400 land acres north of Interstate 84, managed by the USDA Forest Service, and associated river banks managed by the Oregon Division of State Lands. Three islands, Gary, Flag and Catham, managed by Metro Greenspaces and the State of Oregon lie to the east, the Columbia River lies to the north and east, and the urbanized Portland metropolitan area lies to the west across the Sandy River. Sandy River Delta was historically a wooded, riparian wetland with components of ponds, sloughs, bottomland woodland, oak woodland, prairie, and low and high elevation floodplain. It has been greatly altered by past agricultural practices and the Columbia River hydropower system. Restoration of historic landscape components is a primary goal for this land. The Forest Service is currently focusing on restoration of riparian forest and wetlands. Restoration of open upland areas (meadow/prairie) would follow substantial completion of the riparian and wetland restoration. The Sandy River Delta is a former pasture infested with reed canary grass, blackberry and thistle. The limited over story is native riparian species such as cottonwood and ash. The shrub and herbaceous layers are almost entirely non-native, invasive species. Native species have a difficult time naturally regenerating in the thick, competing reed canary grass, Himalayan blackberry and thistle. A system of drainage ditches installed by past owners drains water from historic wetlands. The original channel of the Sandy River was diked in the 1930's, and the river diverted into the ''Little Sandy River''. The original Sandy River channel has subsequently filled in and largely become a slough. The FS acquired approximately 1,400 acres Sandy River Delta (SRD) in 1991 from Reynolds Aluminum (via the Trust for Public Lands). The Delta had been grazed for many years but shortly after FS acquisition grazing was terminated while a master plan and Environmental Impact Statement (EIS) were developed for the site. During the following three years, the vegetation changed dramatically as a result of cessation of grazing. The dramatic changes included the explosive increases of reed canary grass monocultures in wet areas and the expansion of Himalayan blackberries throughout the site.

Kelly, Virginia; Dobson, Robin L.

2002-11-01T23:59:59.000Z

376

Loup River Public Power Dist | Open Energy Information  

Open Energy Info (EERE)

River Public Power Dist River Public Power Dist Jump to: navigation, search Name Loup River Public Power Dist Place Nebraska Utility Id 11251 Utility Location Yes Ownership P NERC Location MRO NERC SPP Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lighting Customer Lease 100W HPS Commercial Area Lighting Customer Lease 175W MV Commercial Area Lighting Customer Lease 250W HPS Commercial Area Lighting Customer Lease 250W MV Commercial

377

Massachusetts Rivers Protection Act (Massachusetts) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rivers Protection Act (Massachusetts) Rivers Protection Act (Massachusetts) Massachusetts Rivers Protection Act (Massachusetts) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Massachusetts Program Type Environmental Regulations Provider Department of Environmental Protection The law creates a 200-foot riverfront area that extends on both sides of

378

Categorical Exclusion Determinations: Savannah River Operations Office |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 16, 2011 May 16, 2011 CX-006405: Categorical Exclusion Determination 707-C Storm Drain Repairs CX(s) Applied: B1.3 Date: 05/16/2011 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office May 13, 2011 CX-006406: Categorical Exclusion Determination Silver Chloride Injection at the F Area Hazardous Waste Management Facilities Barrier Wall CX(s) Applied: B6.9 Date: 05/13/2011 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office May 12, 2011 CX-006407: Categorical Exclusion Determination Removal of Inactive Chromate Water Isolation Valves CRW-V-170 and CRW-V-175 and Installation of 3 Inch Blind Flanges for F-area New Hill CX(s) Applied: B1.3 Date: 05/12/2011 Location(s): Aiken, South Carolina

379

Snake River Fall Chinook Salmon Life History Investigations, Annual Report 2008.  

DOE Green Energy (OSTI)

This study was initiated to provide empirical data and analyses on the dam passage timing, travel rate, survival, and life history variation of fall Chinook salmon that are produced in the Clearwater River. The area of interest for this study focuses on the lower four miles of the Clearwater River and its confluence with the Snake River because this is an area where many fish delay their seaward migration. The goal of the project is to increase our understanding of the environmental and biological factors that affect juvenile life history of fall Chinook salmon in the Clearwater River. The following summaries are provided for each of the individual chapters in this report.

Tiffan, Kenneth F. [U.S. Geological Survey; Connor, William P. [U.S. Fish and Wildlife Service; Bellgraph, Brian J. [Pacific Northwest National Laboratory

2009-09-15T23:59:59.000Z

380

River Protection.PDF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

cc: cc: DOE/IG-0506 I N S P E C T I O N R E P O R T U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF INSPECTIONS I N S P E C T I O N O F SELECTED ASPECTS OF THE OFFICE OF RIVER PROTECTION PERFORMANCE-BASED INCENTIVE PROGRAM JUNE 2001 U.S. DEPARTMENT OF ENERGY Washington, DC 20585 June 14, 2001 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman /s/ Inspector General SUBJECT: INFORMATION: Report on "Inspection of Selected Aspects of the Office of River Protection Performance-Based Incentive Program" BACKGROUND The Office of River Protection (ORP), which reports to the Office of Environmental Management, is responsible for remediation of the radioactive waste stored in tanks at the Hanford Site in the State of Washington. For Fiscal Year (FY) 2000, ORP established 26 performance-based contract

Note: This page contains sample records for the topic "area raft river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Rivanna River Basin Commission (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

The Rivanna River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the Rivanna River...

382

from Savannah River National Laboratory  

Operated by Savannah River Nuclear Solutions for the U.S. Department of Energy near Aiken, S.C. E from Savannah River National Laboratory PAGE 2 OF 2 ...

383

Snake River Basin environmental program  

DOE Green Energy (OSTI)

The Snake River Basin Environmental Program was designed to evaluate existing environmental data with respect to potential geothermal development in eight Known Geothermal Resource Areas (KGRAs) in Idaho. State and federal agencies, public interest groups, consulting groups, and universities participated in the DOE program. Final reports for the program are intended to be utilized as reference documents and planning tools for future environmental studies. Evaluation of the data indicated that the majority of the existing data base is adequate for small-scale direct-use developments. The potential impacts of development on water quality and water supply are the primary environmental concern. Preliminary data suggest that subsidence and induced seismicity may be a problem in several of the KGRAs. Sensitive animal species and habitats have been identified in each area; development in the Castle Creek KGRA may be restricted due to the Birds of Prey Natural Area. Two workshops provided public input on concerns and land use planning for geothermal development in Idaho. Based on the data evaluation and public input, a plan for supplementing the existing environmental data base was prepared.

Spencer, S.G.; Sullivan, J.F.

1979-09-01T23:59:59.000Z

384

Savannah River Nuclear Solutions LLC  

Savannah River Nuclear Solutions LLC Permission to Publish KNOW ALL MEN BY THESE PRESENTS, that the undersigned (hereinafter referred to

385

Aquatic Supplement Hood River Subbasin  

E-Print Network (OSTI)

crystal springs 4 Crystal Sp WD bypass reach to overflow? ? 4 dog river 3 City of TD none 3 no infoAppendix B Aquatic Supplement Contents Hood River Subbasin Tables and Figures: Table 1. Current estimated peak summer withdrawals from the Hood River Table 2. Historic lake stocking and fish introductions

386

Property:DOEFunding | Open Energy Information  

Open Energy Info (EERE)

DOEFunding DOEFunding Jump to: navigation, search Property Name DOEFunding Property Type String Description DOE Funding Pages using the property "DOEFunding" Showing 5 pages using this property. C Conceptual Model At Salt Wells Area (Faulds, Et Al., 2011) + ARRA (American Recovery and Reinvestment Act) + D Development Wells At Raft River Geothermal Area (2004) + GRED II + F Flow Test At Raft River Geothermal Area (2004) + GRED II + G Geothermal Literature Review At Salt Wells Area (Faulds, Et Al., 2011) + ARRA (American Recovery and Reinvestment Act) + S SWIR at Steamboat Springs Geothermal Area (Kruse 2012) + none + Retrieved from "http://en.openei.org/w/index.php?title=Property:DOEFunding&oldid=473811#SMWResults" Categories: Properties Exploration Activity

387

100 Area and 300 Area Component of the RCBRA Fall 2005 Data Compilation  

Science Conference Proceedings (OSTI)

The purpose of this report is to provide a brief description of the sampling approaches, a description of the samples collected, and the results for the Fall 2005 sampling event. This report presents the methods and results of the work to support the 100 Area and 300 Area Component of the River Corridor Baseline Risk Assessment.

J.M. Queen

2006-05-30T23:59:59.000Z

388

Deschutes River Spawning Gravel Study, Volume I, Final Report.  

DOE Green Energy (OSTI)

Spawning habitat in the Deschutes River was inventoried, gravel permeability and composition were sampled at selected gravel bars, historical flow records for the Deschutes were analyzed, salmon and trout utilization of spawning habitat was examined, and potential methods of enhancing spawning habitat in the river were explored. Some changes in river conditions since the mid-1960's were identified, including a reduction in spawning habitat immediately downstream from the hydroelectric complex. The 1964 flood was identified as a factor which profoundly affected spawning habitat in the river, and which greatly complicated efforts to identify recent changes which could be attributed to the hydrocomplex. A baseline on present gravel quality at both chinook and steelhead spawning areas in the river was established using a freeze-core methodology. Recommendations are made for enhancing spawning habitat in the Deschutes River, if it is independently determined that spawning habitat is presently limiting populations of summer steelhead or fall chinook in the river. 53 refs., 40 figs., 21 tabs.

Huntington, Charles W.

1985-09-01T23:59:59.000Z

389

Monitor and Protect Wigwam River Bull Trout for Koocanusa Reservoir; White River Bull Trout Enumeration Project Summary, Progress Report 2003.  

DOE Green Energy (OSTI)

This report summarizes the first year of a three-year bull trout (Salvelinus confluentus) enumeration project on the White River and is a co-operative initiative of the British Columbia Ministry of Water, Land, and Air Protection and Bonneville Power Administration. The White River has been identified as an important bull trout spawning tributary of the upper Kootenay River in southeastern British Columbia. The objective was to collect information on the returning adult spawning population to the White River through the use of a fish fence and traps, and to conduct redd surveys at the conclusion of spawning to provide an index of spawning escapement and distribution. The fence was installed on September 9th, 2003 and was operated continuously (i.e. no high-water or breaching events) until the fence was removed on October 9th, 2003. Estimation of the spawning population of White River bull trout was incomplete. This was due to a larger and more protracted out-migration than expected. As a result, the bull trout spawning population of the White River was estimated to be somewhere above 899 fish. In comparison, this represents approximately one third the population estimate of the 2003 Wigwam River bull trout spawning population. Based on redd index data, the number of bull trout per redd was over twice that of the Wigwam River or Skookumchuck Creek. This was expected as the index sites on the Wigwam River and Skookumchuck Creek cover the majority of the spawning area. This is not true on the White River. From previous redd counts, it is known that there are approximately twice as many redds in Blackfoot Creek as there are in the index site. Additionally, given the large size of the White River watershed and in particular, the large number of tributaries, there is a high likelihood that important bull trout spawning areas remain unidentified. Both floy tag and radio-telemetry data for the White River bull trout have identified extensive life history migrations. Similar data for the Wigwam River and Skookumchuck Creek populations illustrate there is considerable overlap and mixing among these three local populations within their over-wintering and feeding habitat. The upper Kootenay River, Lake Koocanusa and the lower Bull River provide overwintering and feeding habitat for the White River, Skookumchuck Creek and Wigwam River bull trout. Recommendations to improve escapement estimates and spawning distribution are provided. An accurate population estimate is especially important to provide baseline for any potential impacts due to wildfire and subsequent salvage logging that is currently underway immediately adjacent to and upstream of important spawning and rearing habitat in the Middlefork of the White River. Identification of important spawning habitat is important to meet management objectives for the White River.

Cope, R.

2004-02-01T23:59:59.000Z

390

Research Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

Areas Areas Research Areas Print Scientists from a wide variety of fields come to the ALS to perform experiements. Listed below are some of the most common research areas covered by ALS beamlines. Below each heading are a few examples of the specific types of topics included in that category. Click on a heading to learn more about that research area at the ALS. Energy Science Photovoltaics, photosynthesis, biofuels, energy storage, combustion, catalysis, carbon capture/sequestration. Bioscience General biology, structural biology. Materials/Condensed Matter Correlated materials, nanomaterials, magnetism, polymers, semiconductors, water, advanced materials. Physics Atomic, molecular, and optical (AMO) physics; accelerator physics. Chemistry Surfaces/interfaces, catalysts, chemical dynamics (gas-phase chemistry), crystallography, physical chemistry.

391

Salt River Project Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

Salt River Project Smart Grid Project Salt River Project Smart Grid Project Jump to: navigation, search Project Lead Salt River Project Country United States Headquarters Location Tempe, Arizona Recovery Act Funding $56,859,359.00 Total Project Value $114,003,719.00 Coverage Area Coverage Map: Salt River Project Smart Grid Project Coordinates 33.414768°, -111.9093095° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

392

Snake River Plain Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Region Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Snake River Plain Geothermal Region Details Areas (8) Power Plants (1) Projects (2) Techniques (11) Map: {{{Name}}} "The Snake River Plain is a large arcuate structural trough that characterizes the topography of southern Idaho that can be divided into three sections: western, central, and eastern. The western Snake River Plain is a large tectonic graben or rift valley filled with several km of lacustrine (lake) sediments; the sediments are underlain by rhyolite and basalt, and overlain by basalt. The western plain began to form around 11-12 Ma with the eruption of rhyolite lavas and ignimbrites. The western plain is not parallel to North American Plate motion, and lies at a high angle to the central and eastern Snake River Plains. Its morphology is

393

NADPH oxidase and lipid raft-associated redox signaling are required for PCB153-induced upregulation of cell adhesion molecules in human brain endothelial cells  

SciTech Connect

Exposure to persistent organic pollutants, such as polychlorinated biphenyls (PCBs), can lead to chronic inflammation and the development of vascular diseases. Because cell adhesion molecules (CAMs) of the cerebrovascular endothelium regulate infiltration of inflammatory cells into the brain, we have explored the molecular mechanisms by which ortho-substituted polychlorinated biphenyls (PCBs), such as PCB153, can upregulate CAMs in brain endothelial cells. Exposure to PCB153 increased expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), as well as elevated adhesion of leukocytes to brain endothelial cells. These effects were impeded by inhibitors of EGFR, JAKs, or Src activity. In addition, pharmacological inhibition of NADPH oxidase or disruption of lipid rafts by cholesterol depleting agents blocked PCB153-induced phosphorylation of JAK and Src kinases and upregulation of CAMs. In contrast, silencing of caveolin-1 by siRNA interference did not affect upregulation of ICAM-1 and VCAM-1 in brain endothelial cells stimulated by PCB153. Results of the present study indicate that lipid raft-dependent NADPH oxidase/JAK/EGFR signaling mechanisms regulate the expression of CAMs in brain endothelial cells and adhesion of leukocytes to endothelial monolayers. Due to its role in leukocyte infiltration, induction of CAMs may contribute to PCB-induced cerebrovascular disorders and neurotoxic effects in the CNS.

Eum, Sung Yong [Molecular Neuroscience and Vascular Biology Laboratory, Department of Neurosurgery, University of Kentucky, Lexington, KY 40536 (United States)], E-mail: sungyong.eum@uky.edu; Andras, Ibolya [Molecular Neuroscience and Vascular Biology Laboratory, Department of Neurosurgery, University of Kentucky, Lexington, KY 40536 (United States); Hennig, Bernhard [College of Agriculture, University of Kentucky, Lexington, KY 40536 (United States); Toborek, Michal [Molecular Neuroscience and Vascular Biology Laboratory, Department of Neurosurgery, University of Kentucky, Lexington, KY 40536 (United States)

2009-10-15T23:59:59.000Z

394

Research Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Print Research Areas Print Scientists from a wide variety of fields come to the ALS to perform experiements. Listed below are some of the most common research areas covered by ALS beamlines. Below each heading are a few examples of the specific types of topics included in that category. Click on a heading to learn more about that research area at the ALS. Energy Science Photovoltaics, photosynthesis, biofuels, energy storage, combustion, catalysis, carbon capture/sequestration. Bioscience General biology, structural biology. Materials/Condensed Matter Correlated materials, nanomaterials, magnetism, polymers, semiconductors, water, advanced materials. Physics Atomic, molecular, and optical (AMO) physics; accelerator physics. Chemistry Surfaces/interfaces, catalysts, chemical dynamics (gas-phase chemistry), crystallography, physical chemistry.

395

ROUGHNESS LENGTHS FOR THE SAVANNAH RIVER SITE  

SciTech Connect

Surface roughness values for the areas surrounding the H, D and N-Area meteorological towers were computed from archived 2010 meteorological data. These 15-minute-averaged data were measured with cup anemometers and bidirectional wind vanes (bivanes) 61 m above the surface. The results of the roughness calculation using the standard deviation of elevation angle {sigma}{sub E}, and applying the simple formula based on tree canopy height, gave consistent estimates for roughness around the H-Area tower in the range of 1.76 to 1.86 m (95% confidence interval) with a mean value of 1.81 m. Application of the {sigma}{sub E} method for the 61-m level at D and N-Areas gave mean values of 1.71 and 1.81 with confidence ranges of 1.62-1.81 and 1.73-1.88 meters, respectively. Roughness results are azimuth dependent, and thus are presented as averages over compass sectors spanning 22.5 degrees. Calculated values were compared to other methods of determining roughness, including the standard deviation of the azimuth direction, {sigma}{sub A}, and standard deviation of the wind speed, {sigma}{sub U}. Additional data was obtained from a sonic anemometer at 61-m on the H-Area tower during a period of a few weeks in 2010. Results from the sonic anemometer support our use of {sigma}{sub E} to calculate roughness. Based on the H-Area tower results, a surface roughness of 1.8 m using is recommended for use in dispersion modeling applications that consider the impacts of a contaminant release to individuals along the Site boundary. The canopy surrounding the H-Area tower is relatively uniform (i.e., little variance in roughness by upwind direction), and data supplied by the U.S. Forest Service at Savannah River show that the canopy height and composition surrounding the H-Area tower is reasonably representative of forested areas throughout the SRS reservation. For dispersion modeling analyses requiring assessments of a co-located worker within the respective operations area, recommended area-specific values range from 0.3 m for E Area to 0.7 m for A Area at the Savannah River National Laboratory. These area-specific values, summarized in Table 4-1, were determined using the Environmental Protection Agency's AERSURFACE computer algorithm.

Hunter, C.

2012-03-28T23:59:59.000Z

396

Hood River Passive House  

Science Conference Proceedings (OSTI)

The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project.

Hales, D.

2013-03-01T23:59:59.000Z

397

Radiometrics At Reese River Area (Henkle, Et Al., 2005) | Open...  

Open Energy Info (EERE)

References William R. Henkle Jr., Wayne C. Gundersen, Thomas D. Gundersen (2005) Mercury Geochemical, Groundwater Geochemical, And Radiometric Geophysical Signatures At Three...

398

Compound and Elemental Analysis At Reese River Area (Henkle ...  

Open Energy Info (EERE)

Notes Four formation water samples were collected from well 56-4, during an airlift test which took place between November 11 and November 14, 2007. One sample was taken from...

399

North Woods River: The St. Croix River in Upper Midwest History  

E-Print Network (OSTI)

Review: North Woods River: The St. Croix River in Upperand Karamanski, Theodore J. North Woods River: The St. Croixbeauty and splendor. In North Woods River, Eileen M. McMahon

Karalus, Daniel E

2011-01-01T23:59:59.000Z

400

White Sturgeon Mitigation & Restoration in the Columbia & Snake River Upstream from Bonneville Dam  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BONNEVILLE POWER ADMINISTRATION BONNEVILLE POWER ADMINISTRATION White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam Finding of No Significant Impact (FONSI) Summary: Bonneville Power Administration (BPA) is proposing to fund the White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam Project. The project proposes to continue to carry out harvest monitoring and stock status updates coordinated with fisheries management planning, annual young-of-the year recruitment indexing, research, experimental artificial propagation, and transport of white sturgeon to less densely populated areas of the river(s). Additionally, release of hatchery-reared juveniles is proposed to evaluate release

Note: This page contains sample records for the topic "area raft river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Savannah River Nuclear Solutions, LLC Preliminary Notice of Violation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CERTIFIED MAIL CERTIFIED MAIL RETURN RECEIPT REQUESTED Garry W. Flowers President and Chief Executive Officer Savannah River Nuclear Solutions, LLC 6160 Executive Woodside Court Aiken, South Carolina 29803 WEA-2010-05 Dear Mr. Flowers: This letter refers to the Office of Health, Safety and Security's Office of Enforcement investigation into the facts and circumstances surrounding the nitric acid spill event that occurred in F Area on August 18,2009, and the electrical arc flash injury that occurred in the D Area powerhouse on September 23,2009, at the Savannah River Site. Based on an evaluation of the evidence in this matter, the U.S. Department of Energy (DOE) has concluded that violations of 10 C.F.R Part 851, Worker Safety and Health Program, by Savannah River Nuclear Solutions,

402

Mutagenic potential of sediments from the Grand Calumet River  

Science Conference Proceedings (OSTI)

The Grand Calumet River/Indiana Harbor Canal is one of the International Joint Commission's Great Lakes Areas of Concern (AOC). Like many other AOCs, the Grand Calumet River is in a heavily industrialized area and has a history of chemical contamination. Many of the chemicals found in the industrial and municipal wastes that enter the waterway end up in sediment where they are concentrated to high levels. In order to assess the potential genotoxicity of sediments from the Grand Calumet River, the authors determined the mutagenic potential of organic extracts of sediments. The sediment extracts were assayed in the Salmonella/microsome mutagenicity test. In the Ames test, all ten sediment samples assayed were found to be mutagenic. In general, chemicals found in the sediments required metabolic activation before a positive mutagenic response was observed.

Maccubbin, A.E.; Ersing, N. (Roswell Park Cancer Inst., Buffalo, NY (United States))

1991-08-01T23:59:59.000Z

403

Savannah River Site - Enforcement Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Enforcement Documents Enforcement Documents Savannah River Site Preliminary Notice of Violation issued to Savannah River Nuclear Solutions, LLC related to a Puncture Wound Injury resulting in a Radiological Uptake at the Savannah River Site, July 22, 2011 (NEA-2011-02) Consent Order issued to Parsons Infrastructure & Technology Group, Inc., related to Nuclear Facility Construction Deficiencies and Subcontractor Oversight at the Salt Waste Processing Facility at the Savannah River Site, April 13, 2010 Enforcement Letter issued to Amer Industrial Technologies, Inc. related to Weld Deficiencies at the Salt Waste Processing Facility at the Savannah River Site, April 13, 2010 Enforcement Letter issued to Parsons Technology Development & Fabrication Complex related to Deficiencies in the Fabrication of Safety Significant Embed Plates at the Salt Waste Processing Facility at the Savannah River Site, April 13, 2010

404

Geothermal resource area 11, Clark County area development plan  

DOE Green Energy (OSTI)

Geothermal Resource Area 11 includes all of the land in Clark County, Nevada. Within this area are nine geothermal anomalies: Moapa Area, Las Vegas Valley, Black Canyon, Virgin River Narrows, Roger's Springs, Indian Springs, White Rock Springs, Brown's Spring, and Ash Creek Spring. All of the geothermal resources in Clark County have relatively low temperatures. The highest recorded temperature is 145{sup 0}F at Black Canyon. The temperatures of the other resources range from 70 to 90{sup 0}F. Because of the low temperature of the resources and, for the most part, the distance of the resources from any population base, the potential for the development of the resources are considered to be somewhat limited.

Pugsley, M.

1981-01-01T23:59:59.000Z

405

Florida Nuclear Profile - Crystal River  

U.S. Energy Information Administration (EIA) Indexed Site

Crystal River1" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

406

Louisiana Nuclear Profile - River Bend  

U.S. Energy Information Administration (EIA) Indexed Site

River Bend" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

407

Susquehanna River Basin Compact (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation enables the state's entrance into the Susquehanna River Basin Compact, which provides for the conservation, development, and administration of the water resources of the...

408

from Savannah River National Laoratory  

of Energys Savannah River Site near Aiken, South Carolina ... guidance for understanding natural complexity and heterogeneity in the environment. Impact

409

about Savannah River National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Tritium Effects on Materials In an effort to ensure the safety of the nation's nuclear weapons stockpile, the Savannah River National Laboratory (SRNL) maintains an active role in...

410

First Draft Performance Assessment for the H-Area Tank Farm at the Savannah  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First Draft Performance Assessment for the H-Area Tank Farm at the First Draft Performance Assessment for the H-Area Tank Farm at the Savannah River Site First Draft Performance Assessment for the H-Area Tank Farm at the Savannah River Site The PAs are used to assess the long-term fate and transport of residual contamination in the environment and provide the Department Of Energy with reasonable assurance that the removal from service of the Savannah River Site tank farm underground radioactive waste tanks and ancillary equipment will meet defined performance objectives for the protection of human health and the environment into the future. First Draft Performance Assessment for the H-Area Tank Farm at the Savannah River Site - Part 1 First Draft Performance Assessment for the H-Area Tank Farm at the Savannah River Site - Part 2

411

Quantitative Precipitation Forecasting for the Tennessee and Cumberland River Watersheds Using the NCEP Regional Spectral Model  

Science Conference Proceedings (OSTI)

A limited-area spectral modelthe Regional Spectral Modeldeveloped at the National Centers for Environmental Prediction is used to prepare daily quantitative precipitation forecasts out to 48 h for the Tennessee and Cumberland River basins in ...

Qi Mao; Stephen F. Mueller; Hann-Ming Henry Juang

2000-02-01T23:59:59.000Z

412

Ohio River Valley Winter Moisture Conditions Associated with the PacificNorth American Teleconnection Pattern  

Science Conference Proceedings (OSTI)

The relationship between the PacificNorth American (PNA) teleconnection pattern and Ohio River Valley (ORV) winter precipitation and hydrology is described. The PNA is significantly linked to moisture variability in an area extending from ...

Jill S. M. Coleman; Jeffrey C. Rogers

2003-03-01T23:59:59.000Z

413

Site Selection for Concrete Batch Plant to Support Plutonium Disposition Facilities at the Savannah River Site  

Science Conference Proceedings (OSTI)

WSRC conducted a site selection study to identify, assess, and rank candidate sites for an onsite concrete batch plant at the Savannah River Site in the vicinity of F-Area.

Wike, L.D.

2001-06-15T23:59:59.000Z

414

Screening model optimization for Panay River Basin planning in the Philippines  

E-Print Network (OSTI)

The state of the water resources of the Panay River Basin have motivated studies and initial basin planning to mitigate flood damages, to produce hydroelectricity, and to increase irrigated rice areas. The goal of this ...

Millspaugh, John Henry

2010-01-01T23:59:59.000Z

415

Salmon River Habitat Enhancement, Part 1, 1984 Annual Report.  

DOE Green Energy (OSTI)

This volume contains reports on subprojects involving the determining of alternatives to enhance salmonid habitat on patented land in Bear Valley Creek, Idaho, coordination activities for habitat projects occurring on streams within fishing areas of the Shoshone-Bannock Indian Tribes, and habitat and fish inventories in the Salmon River. Separate abstracts have been prepared for individual reports. (ACR)

Konopacky, Richard C.

1985-06-01T23:59:59.000Z

416

Plan for the management of radioactive waste, Savannah River Plant  

SciTech Connect

The following areas are covered in the Savannah River Plant's radioactive waste management plan: program administration; description of waste generating processes; waste management facilities; radioactive wastes stored; plans and budget projections; and description of decontamination and decommissioning . (LK)

1975-07-01T23:59:59.000Z

417

Savannah River Technology Center monthly report, September 1992  

Science Conference Proceedings (OSTI)

This is a monthly progress report from the Savannah River Laboratory for the month of September, 1992. It has sections dealing with work in the broad areas of reactor safety, tritium processes and absorption, separations programs and wastes, environmental concerns and responses, waste management practices, and general concerns.

Ferrell, J.M. [comp.

1992-09-01T23:59:59.000Z

418

Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing  

Open Energy Info (EERE)

Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing Details Activities (6) Areas (1) Regions (0) Abstract: This report covers the drilling and testing of the slim well 56-4 at the Reese River Geothermal Project in Lander County, Nevada. This well was partially funded through a GRED III Cooperative Funding Agreement # DE-FC36-04GO14344, from USDOE. Author(s): William R. Henkle, Joel Ronne Published: Geothermal Technologies Legacy Collection, 2008 Document Number: Unavailable DOI: Unavailable Source: View Original Report Compound and Elemental Analysis At Reese River Area (Henkle & Ronne, 2008)

419

DOI-BLM-ID-220-2009-EA-3709 | Open Energy Information  

Open Energy Info (EERE)

ID-220-2009-EA-3709 ID-220-2009-EA-3709 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-ID-220-2009-EA-3709 EA at Raft River Geothermal Area for Geothermal/Exploration Raft River Geothermal Drilling Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Agua Caliente, LLC Consultant EMPSi Geothermal Area Raft River Geothermal Area Project Location Idaho Project Phase Geothermal/Exploration Techniques Exploration Drilling Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office BLM Twin Falls District Office Managing Field Office Burley Field Office Funding Agencies none provided Surface Manager BLM Mineral Manager BLM

420

Fracture characteristics and their relationships to producing zones in deep  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Fracture characteristics and their relationships to producing zones in deep wells, Raft River geothermal area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Fracture characteristics and their relationships to producing zones in deep wells, Raft River geothermal area Details Activities (1) Areas (1) Regions (0) Abstract: Fracture characteristics in the sedimentary and metamorphic rocks in the Raft River KGRA of Idaho are analyzed using geological, hydrological and borehole geophysical data from five deep geothermal production wells. Particular emphasis is placed on fracture identification using borehole

Note: This page contains sample records for the topic "area raft river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Radiological Areas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revision to Clearance Policy Associated with Recycle of Scrap Metals Originating from Revision to Clearance Policy Associated with Recycle of Scrap Metals Originating from Radiological Areas On July 13, 2000, the Secretary of Energy imposed an agency-wide suspension on the unrestricted release of scrap metal originating from radiological areas at Department of Energy (DOE) facilities for the purpose of recycling. The suspension was imposed in response to concerns from the general public and industry groups about the potential effects of radioactivity in or on material released in accordance with requirements established in DOE Order 5400.5, Radiation Protection of the Public and Environment. The suspension was to remain in force until DOE developed and implemented improvements in, and better informed the public about, its release process. In addition, in 2001 the DOE announced its intention to prepare a

422

History of 100-B Area  

SciTech Connect

The initial three production reactors and their support facilities were designated as the 100-B, 100-D, and 100-F areas. In subsequent years, six additional plutonium-producing reactors were constructed and operated at the Hanford Site. Among them was one dual-purpose reactor (100-N) designed to supply steam for the production of electricity as a by-product. Figure 1 pinpoints the location of each of the nine Hanford Site reactors along the Columbia River. This report documents a brief description of the 105-B reactor, support facilities, and significant events that are considered to be of historical interest. 21 figs.

Wahlen, R.K.

1989-10-01T23:59:59.000Z

423

Pennsylvania Scenic Rivers Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pennsylvania Scenic Rivers Program Pennsylvania Scenic Rivers Program Pennsylvania Scenic Rivers Program < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Transportation Savings Category Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Pennsylvania Program Type Environmental Regulations Siting and Permitting Provider Pennsylvania Department of Conservation and Natural Resources Rivers included in the Scenic Rivers System will be classified, designated and administered as Wild, Scenic, Pastoral, Recreational and Modified Recreational Rivers (Sections 4; (a) (1) of the Pennsylvania Scenic Rivers Act). Low dams are permitted on Modified Recreational Rivers, but are not

424

Wisconsin River Power Company | Open Energy Information  

Open Energy Info (EERE)

River Power Company Jump to: navigation, search Name Wisconsin River Power Company Place Wisconsin Utility Id 20863 Utility Location Yes Ownership I NERC Location RFC NERC MRO Yes...

425

Canadian River Compact (Texas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Savings Canadian River Compact (Texas) Canadian River Compact (Texas) Eligibility Utility Fed. Government Commercial...

426

Hydrologic Variability of the Cosumnes River Floodplain  

E-Print Network (OSTI)

Preserve (CRP) floodplain, Michigan Bar streamflow gage,and mean monthly streamflow streamflow at River at Michiganat Michigan Bar. at Cosumnes Cosumnes River Bar. SAN

Booth, Eric; Mount, Jeff; Viers, Joshua H.

2006-01-01T23:59:59.000Z

427

Big River Resources LLC | Open Energy Information  

Open Energy Info (EERE)

Name Big River Resources LLC Place West Burlington, Iowa Zip 52655 Product Dry-mill bioethanol producer with a cooperative structure. References Big River Resources LLC1...

428

Ohio River Ecological Research Program  

Science Conference Proceedings (OSTI)

This report presents the results of the 2009 Ohio River Ecological Research Program (ORERP) fish community sampling near 14 Ohio River power plants. The sampling program consisted of adult/juvenile fish, habitat, and water quality field studies conducted upstream and downstream of the participating power plants.

2012-02-28T23:59:59.000Z

429

Isotopic Analysis-Fluid At Geysers Geothermal Area (1982) | Open Energy  

Open Energy Info (EERE)

82) 82) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Geysers Geothermal Area (1982) Exploration Activity Details Location Geysers Geothermal Area Exploration Technique Isotopic Analysis-Fluid Activity Date 1982 Usefulness not indicated DOE-funding Unknown Notes Helium isotope ratios have been measured in geothermal fluids. These ratios have been interpreted in terms of the processes which supply He in distinct isotopic ratios (i.e. magmatic He, ~10 Ra; atmospheric He, Ra; and crustal He, ~0.1 Ra) and in terms of the processes which can alter the isotopic ratio (hydrologic mixing, U-Th series alpha production and weathering release of crustal He, magma aging and tritiugenic addition of 3He). Raft

430

Savannah River Site Homepage  

NLE Websites -- All DOE Office Websites (Extended Search)

7/2014 7/2014 SEARCH GO News Releases Video Releases Upcoming Events 12.31.13 Dr. Sam Fink Earns Donald Orth Lifetime Achievement Award 12.31.13 Savannah River Remediation Issues Fiscal Year 2013 Annual Report 12.18.13 Prototype System Brings Advantages of Wireless Technology to Secure Environment CLICK HERE FOR ADDITIONAL NEWS RELEASES CLICK HERE for our email news service, govDELIVERY 2013 PMI Project of the Year Award - Click to play on YouTube 2013 PMI Project of the Year Award Finalist: SRS Recovery Act Project PLAY VIDEO CLICK HERE FOR ADDITIONAL VIDEO RELEASES Enterprise.SRS - Safety and Security begin with me! SRS Status & Emergency Information * Cold War Patriot's Resource Fair - Aiken, SC (04.25.13) * 3rd Annual Small Modular Reactor Conference - Columbia, SC (04.16-17.13)

431

Interpretation of self-potential measurements during injection tests at  

Open Energy Info (EERE)

self-potential measurements during injection tests at self-potential measurements during injection tests at Raft River, Idaho. Final report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Interpretation of self-potential measurements during injection tests at Raft River, Idaho. Final report Details Activities (1) Areas (1) Regions (0) Abstract: Self-potential measurements before and during injection tests at Raft River KGRA, Idaho indicate a small negative change. The magnitude of the change (5 to 10 mV) is near the noise level (5 mV) but they extend over a fairly broad area. The presence of a cathodic protection system clouds the issue of the validity of the changes, however the form of the observed changes cannot be explained by any simple change in the current strength of the protection system. Furthermore, similar changes are observed for two

432

Reconnaissance geophysical studies of the geothermal system in southern  

Open Energy Info (EERE)

geophysical studies of the geothermal system in southern geophysical studies of the geothermal system in southern Raft River Valley, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Reconnaissance geophysical studies of the geothermal system in southern Raft River Valley, Idaho Details Activities (4) Areas (1) Regions (0) Abstract: Gravity, aeromagnetic, and telluric current surveys in the southern Raft River have been used to infer the structure and the general lithology underlying the valley. The gravity data indicate the approximate thickness of the Cenozoic rocks and location of the larger normal faults, and the aeromagnetic data indicate the extent of the major Cenozoic volcanic units. The relative ellipse area contour map compiled from the telluric current survey generally conforms to the gravity map except for

433

Categorical Exclusion Determinations: Office of River Protection-Richland  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 1, 2011 March 1, 2011 CX-005367: Categorical Exclusion Determination Project T-222 Hazardous Materials Management Emergency Response (HAMMER) Training Facility Water Main Extension for Fire Protection CX(s) Applied: B1.3, B1.15 Date: 03/01/2011 Location(s): Richland, Washington Office(s): Office of River Protection-Richland Office March 1, 2011 CX-005366: Categorical Exclusion Determination Herbicide Applications Along Gravel and Paved Roads on the Hanford Site CX(s) Applied: B1.3 Date: 03/01/2011 Location(s): Richland, Washington Office(s): Office of River Protection-Richland Office January 31, 2011 CX-005190: Categorical Exclusion Determination Project L-691, 200 West Area Sanitary Sewage Lagoon CX(s) Applied: B1.26 Date: 01/31/2011 Location(s): Richland, Washington Office(s): Office of River Protection-Richland Office

434

Re: Potomac River Generating Station Department of Energy, Case No.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

No. EO-05-01. Order No. 202-07-02: Pursuant to the Department of No. EO-05-01. Order No. 202-07-02: Pursuant to the Department of Energy's Order No. 202-05-3 issued December 20, 2005 ("DOE Potomac River Order"), Pepco has filed notice of the planned outages, in sequence during January 2006, of each of the two 230 kV circuits serving the downtown area of the District of Columbia. Earlier scheduled maintenance on these lines was postponed because of the shutdown of Mirant's Potomac River Generating Plant, but a recent forced outage on one of the lines makes it imprudent to delay maintenance any longer. Department of Energy Order No. 202-05-03 Notice of Planned Outages, in Sequence During January 2006 More Documents & Publications Re: Potomac River Generating Station Department of Energy, Case No. EO-05-01: Potomac Electric Power Company (PEPCO) Concerning Planned Outages

435

Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Texas-Louisiana- Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin W. Gulf Coast Basin Appalachian Basin Wind River Basin Eastern Shelf NW Shelf Abo Sussex-Shannon Muddy J Mesaverde- Lance-Lewis Medina/Clinton-Tuscarora Bradford-Venango-Elk Berea-Murrysville Piceance Basin Bossier Williston Basin Ft Worth Basin Davis Bighorn Basin Judith River- Eagle Permian Basin Anadarko Basin Denver Basin San Juan Basin North-Central Montana Area Uinta Basin Austin Chalk Codell-Niobrara Penn-Perm Carbonate Niobrara Chalk Dakota Morrow Mesaverde Thirty- One Cleveland Ozona Canyon Wasatch- Mesaverde Red Fork Mesaverde Granite Wash Stuart City-Edwards Bowdoin- Greenhorn Travis Peak Olmos Cotton Valley Vicksburg Wilcox Lobo Pictured Cliffs Cretaceous Cretaceous-Lower Tertiary Mancos- Dakota Gilmer Lime Major Tight Gas Plays, Lower 48 States

436

Yakima River Spring Chinook Enhancement Study, 1985 Annual Report.  

DOE Green Energy (OSTI)

The purpose was to evaluate enhancement methodologies that can be used to rebuild runs of spring chinook salmon in the Yakima River basin. The objectives were to: (1) determine the abundance, distribution and survival of naturally produced fry and smolts in the Yakima River; (2) evaluate different methods of fry and smolt supplementation into the natural rearing environment while maintaining as much as possible the gentic integrity of naturally produced stocks; (3) locate and define areas in the watershed which may be used for the rearing of spring chinook; (4) define strategies for enhancing natural production of spring chinook in the Yakima River; and (5) determine physical and biological limitations for production within the system.

Fast, David E.

1986-02-01T23:59:59.000Z

437

Wind River Watershed Restoration, 2005-2006 Annual Report.  

DOE Green Energy (OSTI)

This report summarizes work completed by U.S. Geological Survey's Columbia River Research Laboratory (USGS-CRRL) in the Wind River subbasin during the period April 2005 through March 2006 under Bonneville Power Administration (BPA) contract 22095. During this period, we collected temperature, flow, and habitat data to characterize habitat condition and variation within and among tributaries and mainstem sections in the Wind River subbasin. We also conducted electrofishing and snorkeling surveys to determine juvenile salmonid populations within select study areas throughout the subbasin. Portions of this work were completed with additional funding from U.S. Fish and Wildlife Service (USFWS) and the Lower Columbia Fish Enhancement Group (LCFEG). A statement of work (SOW) was submitted to BPA in March 2005 that outlined work to be performed by USGS-CRRL. The SOW was organized by work elements, with each describing a research task. This report summarizes the progress completed under each work element.

Jezorek, Ian G.; Connolly, Patrick J.; Munz, Carrie [U.S. Geological Survey

2008-11-10T23:59:59.000Z

438

F Reactor Area Cleanup Complete | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

F Reactor Area Cleanup Complete F Reactor Area Cleanup Complete F Reactor Area Cleanup Complete September 19, 2012 - 12:00pm Addthis Media Contact Cameron Hardy, DOE Cameron.Hardy@rl.doe.gov 509-376-5365 RICHLAND, Wash. - U.S. Department of Energy (DOE) contractors have cleaned up the F Reactor Area, the first reactor area at the Hanford Site in southeastern Washington state to be fully remediated. While six of Hanford's nine plutonium production reactors have been sealed up, or cocooned, the F Reactor Area is the first to have all of its associated buildings and waste sites cleaned up in addition to having its reactor sealed up. "The cleanup of the F Reactor Area shows the tremendous progress workers are making along Hanford's River Corridor," said Dave Huizenga, Senior Advisor for the DOE Office of Environmental Management. "The River

439

NETL: Ambient Monitoring - Upper Ohio River Valley Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Upper Ohio River Valley Project Upper Ohio River Valley Project In cooperation with key stakeholders including EPA, local and state environmental agencies, industry, and academia, the U.S. Department of Energy (DOE) has established the Upper Ohio River Valley Project (UORVP), a network for monitoring and characterizing PM2.5 in the Upper Ohio River Valley. This region was chosen because it has a high density of coal-fired electric utilities, heavy industries (e.g. coke and steel making), light industry, and transportation emission sources. It is also ideally situated to serve as a platform for the study of interstate pollution transport issues. This region, with its unique topography (hills and river valleys) as well as a good mix of urban and rural areas, has a high population of elderly who are susceptible to health impacts of fine particulate as well as other related environmental issues (e.g., acid rain, Hg deposition, ozone). A world-class medical research/university system is also located in the region, which will facilitate the subsequent use of the air quality data in studies of PM2.5 health effects.

440

Area Guide - National Transportation Research Center (NTRC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Area Guide Area Guide Recreational & Cultural Opportunities Some Things To Do In and Around the NTRC Area Area Attractions Big South Fork The following links offer general information about parks, cultural events, and recreational opportunities available. All locations listed are within a few hours' drive. Big South Fork National River and Recreation Area of the U.S. National Park Service, located near Oak Ridge. Biltmore Estate- A 250-room historical chateau in located in Asheville, North Carolina (about 3 hours from Oak Ridge); open all year Knoxville, Tennessee Women's Basketball Hall of Fame, Knoxville Star of Knoxville Riverboat Ice Rinks Ice Chalet Icearium Korrnet - Website for area nonprofit organizations Big South Fork Park - Canoeing, fishing, camping, hiking; located near

Note: This page contains sample records for the topic "area raft river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Marble River | Open Energy Information  

Open Energy Info (EERE)

River River Jump to: navigation, search Name Marble River Facility Marble River Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EDP Renewables North America LLC Developer EDP Renewables North America LLC Energy Purchaser Merchant Location Churubusco NY Coordinates 44.9406848°, -73.9303307° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9406848,"lon":-73.9303307,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

442

Black Hawk Lake Fresno River  

E-Print Network (OSTI)

Black Hawk Lake Fresno River R D 4 0 0 RD 415 HWY41 RD 207 REVISRD YO SEM ITE SP RINGS P KY LILLEY County Rosedale Ranch Revis Mountain Daulton Spring Red Top Lookout Buford Mountain Black Hawk Lake

Wang, Zhi

443

Caney River | Open Energy Information  

Open Energy Info (EERE)

River River Jump to: navigation, search Name Caney River Facility Caney River Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Enel Green Power North America Inc. Developer Tradewind Energy LLC Energy Purchaser Tennessee Valley Authority Location Elk County KS Coordinates 37.448424°, -96.425027° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.448424,"lon":-96.425027,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

444

River-Forced Estuarine Plumes  

Science Conference Proceedings (OSTI)

The development, maintenance, and dissipation of river-forced estuarine plumes with and without seaward sloping bottom are studied by use of a three-dimensional, primitive-equation model. Inside the estuary, discussion is focused on how the ...

Shenn-Yu Chao

1988-01-01T23:59:59.000Z

445