National Library of Energy BETA

Sample records for area raft river

  1. Deep drilling data, Raft River geothermal area, Idaho-Raft River...

    Open Energy Info (EERE)

    Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well sidetrack-C Jump to: navigation, search OpenEI Reference LibraryAdd to library Report:...

  2. Raft River Geothermal Area Data Models - Conceptual, Logical...

    Open Energy Info (EERE)

    Tables, Figures and other Content in Reports from the Raft River Geothermal Project: "Technical Report on the Raft River Geothermal Resource, Cassia County, Idaho," GeothermEx,...

  3. Exploring the Raft River geothermal area, Idaho, with the dc...

    Open Energy Info (EERE)

    the dc resistivity method (Abstract) Abstract GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; ELECTRICAL SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER VALLEY; ELECTRIC CONDUCTIVITY;...

  4. Geophysical Method At Raft River Geothermal Area (1975) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: EnergyGateway1997) | OpenRaft riverArea,

  5. Geophysical Method At Raft River Geothermal Area (1977) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: EnergyGateway1997) | OpenRaft riverArea,Information 7)

  6. Thermochronometry At Raft River Geothermal Area (1993) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe2009) |Information Raft River Geothermal

  7. Raft River Geothermal Area Data Models - Conceptual, Logical and Fact Models

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cuyler, David

    2012-07-19

    Conceptual and Logical Data Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses at Raft River a. Logical Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 b. Fact Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 Derived from Tables, Figures and other Content in Reports from the Raft River Geothermal Project: "Technical Report on the Raft River Geothermal Resource, Cassia County, Idaho," GeothermEx, Inc., August 2002. "Results from the Short-Term Well Testing Program at the Raft River Geothermal Field, Cassia County, Idaho," GeothermEx, Inc., October 2004.

  8. Raft River Geothermal Area Data Models - Conceptual, Logical and Fact Models

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cuyler, David

    Conceptual and Logical Data Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses at Raft River a. Logical Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 b. Fact Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 Derived from Tables, Figures and other Content in Reports from the Raft River Geothermal Project: "Technical Report on the Raft River Geothermal Resource, Cassia County, Idaho," GeothermEx, Inc., August 2002. "Results from the Short-Term Well Testing Program at the Raft River Geothermal Field, Cassia County, Idaho," GeothermEx, Inc., October 2004.

  9. Development Wells At Raft River Geothermal Area (2004) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsArea (DOE GTP) Jump to: navigation, search

  10. DC Resistivity Survey (Schlumberger Array) At Raft River Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments Inc Jump to: navigation,(RECP) in DevelopingOilsArea

  11. Raft River geoscience case study

    SciTech Connect (OSTI)

    Dolenc, M.R.; Hull, L.C.; Mizell, S.A.; Russell, B.F.; Skiba, P.A.; Strawn, J.A.; Tullis, J.A.

    1981-11-01

    The Raft River Geothermal Site has been evaluated over the past eight years by the United States Geological Survey and the Idaho National Engineering Laboratory as a moderate-temperature geothermal resource. The geoscience data gathered in the drilling and testing of seven geothermal wells suggest that the Raft River thermal reservoir is: (a) produced from fractures found at the contact metamorphic zone, apparently the base of detached normal faulting from the Bridge and Horse Well Fault zones of the Jim Sage Mountains; (b) anisotropic, with the major axis of hydraulic conductivity coincident to the Bridge Fault Zone; (c) hydraulically connected to the shallow thermal fluid of the Crook and BLM wells based upon both geochemistry and pressure response; (d) controlled by a mixture of diluted meteoric water recharging from the northwest and a saline sodium chloride water entering from the southwest. Although the hydrogeologic environment of the Raft River geothermal area is very complex and unique, it is typical of many Basin and Range systems.

  12. Raft River Idaho Magnetotelluric Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gregory Nash

    2015-05-13

    Raw magnetotelluric (MT) data covering the geothermal system at Raft River, Idaho. The data was acquired by Quantec Geoscience. This is a zipped file containing .edi raw MT data files.

  13. Interpretation of electromagnetic soundings in the Raft River...

    Open Energy Info (EERE)

    Interpretation of electromagnetic soundings in the Raft River geothermal area, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Interpretation of...

  14. Simulation analysis of the unconfined aquifer, Raft River Geothermal...

    Open Energy Info (EERE)

    the southern Raft River Valley that includes the known Geothermal Resource Area near Bridge, Idaho, was modelled numerically to evaluate the hydrodynamics of the unconfined...

  15. DC Resistivity Survey (Schlumberger Array) At Raft River Geothermal...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: DC Resistivity Survey (Schlumberger Array) At Raft River Geothermal Area (1974-1975) Exploration...

  16. Fluid Inclusion Analysis At Raft River Geothermal Area (2011) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport JumpFlowood, Mississippi:Open EnergyInformation Raft

  17. Direct-Current Resistivity Survey At Raft River Geothermal Area (1983) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsArea (DOE GTP) JumpDillard(Kauahikaua &1986)2004) |

  18. Flow Test At Raft River Geothermal Area (1979) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flatsInformationFlint Geothermal AreaOpen|

  19. Flow Test At Raft River Geothermal Area (2004) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flatsInformationFlint Geothermal AreaOpen|4) Jump to:

  20. Flow Test At Raft River Geothermal Area (2006) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flatsInformationFlint Geothermal AreaOpen|4) Jump

  1. Flow Test At Raft River Geothermal Area (2008) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flatsInformationFlint Geothermal AreaOpen|4) Jump8)

  2. Direct-Current Resistivity Survey At Raft River Geothermal Area (1975) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9)ask queriesWind FarmArea (Thomas, 1986)Open

  3. Reconnaissance geothermal exploration at Raft River, Idaho from...

    Open Energy Info (EERE)

    library Journal Article: Reconnaissance geothermal exploration at Raft River, Idaho from thermal infrared scanning Abstract GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; INFRARED SURVEYS;...

  4. Geophysical logging case history of the Raft River geothermal...

    Open Energy Info (EERE)

    5490655 Citation Applegate, J. K.; Moens, T. A. . 411980. Geophysical logging case history of the Raft River geothermal system, Idaho. () : DOE Information Bridge. Related...

  5. Borehole geophysics evaluation of the Raft River geothermal reservoir...

    Open Energy Info (EERE)

    Borehole geophysics evaluation of the Raft River geothermal reservoir, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Borehole geophysics...

  6. Two-dimensional simulation of the Raft River geothermal reservoir...

    Open Energy Info (EERE)

    and the time dependent temperature response of the wells at the Raft River, Idaho, Geothermal Resource were developed. A horizontal, two-dimensional, finite-difference model...

  7. GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL...

    Open Energy Info (EERE)

    GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, IDAHO Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: GEOLOGY...

  8. Concept Testing and Development at the Raft River Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Development at the Raft River Geothermal Field, Idaho, for the Engineered Geothermal Systems Demonstration Projects and Low Temperature Exploration and Demonstrations Project...

  9. The investigation of anomalous magnetization in the Raft River...

    Open Energy Info (EERE)

    magnetization in the Raft River valley, Idaho Abstract Cassia County Idaho; clastic sediments; economic geology; exploration; geophysical methods; geophysical surveys; geothermal...

  10. Hydrochemistry of selected parameters at the Raft River KGRA...

    Open Energy Info (EERE)

    geothermal fluids are being developed in the southern Raft River Valley of Idaho. Five deep geothermal wells ranging in depth from 4911 feet to 6543 feet (1490 to 1980 meters)...

  11. Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho

    SciTech Connect (OSTI)

    Glaspey, Douglas J.

    2008-01-30

    Incorporates the results of flow tests for geothermal production and injection wells in the Raft River geothermal field in southern Idaho. Interference testing was also accomplished across the wellfield.

  12. Raft River monitor well potentiometric head responses and water...

    Open Energy Info (EERE)

    head responses and water quality as related to the conceptual ground-water flow system Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Raft...

  13. Raft River Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/NevadaaToolsRadioactiveRadiometrics JumpRadnor,form

  14. Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Research and Development Plant

    SciTech Connect (OSTI)

    Brown, E.S.; Homer, G.B.; Shaber, C.R.; Thurow, T.L.

    1981-11-17

    The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

  15. Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Pilot Plant

    SciTech Connect (OSTI)

    Brown, E.S.; Homer, G.B.; Spencer, S.G.; Shaber, C.R.

    1980-05-30

    The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

  16. Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments IncMississippi: EnergyS A Industrias de Base

  17. Electromagnetic Soundings At Raft River Geothermal Area (1977) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to:Providence,NewInformation atProject) |Flank Of|

  18. Exploratory Well At Raft River Geothermal Area (1950) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,PowerEvaporative CoolersExosun SasOpen|

  19. Exploratory Well At Raft River Geothermal Area (1976) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,PowerEvaporative CoolersExosun SasOpen|Information

  20. Exploratory Well At Raft River Geothermal Area (1977) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,PowerEvaporative CoolersExosun

  1. Numerical Modeling At Raft River Geothermal Area (1983) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt. Louis, Minnesota:Nulato, Alaska: Energy

  2. Petrography Analysis At Raft River Geothermal Area (1980) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio ProgramInformationMissouri:PartnershipPetroAsia1983)

  3. Petrography Analysis At Raft River Geothermal Area (2011) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio

  4. Self Potential Measurements At Raft River Geothermal Area (1983) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewableSMUDSectional Modelof the| Open EnergyEnergy

  5. Simulation analysis of the unconfined aquifer, Raft River Geothermal Area,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbH Jump to:Idaho-Utah | Open Energy Information

  6. Telluric Survey At Raft River Geothermal Area (1978) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ Automation Jump to:Information 8) JumpTellurian

  7. Tracer Testing At Raft River Geothermal Area (1983) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film SolarTown of Skiatook,1993) Jump

  8. Tracer Testing At Raft River Geothermal Area (1984) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film SolarTown of Skiatook,1993) JumpInformation 4) Jump

  9. Aeromagnetic Survey At Raft River Geothermal Area (1978) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar EnergyAerodyn Energiesysteme GmbHOpenAl., 1984)

  10. Conceptual Model At Raft River Geothermal Area (1988) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans, Et Al., 2002) ||Open EnergyOpenInformation

  11. Conceptual Model At Raft River Geothermal Area (1990) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans, Et Al., 2002) ||Open

  12. Conceptual Model At Raft River Geothermal Area (2011) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans, Et Al., 2002) ||OpenInformation Conceptual

  13. Core Analysis At Raft River Geothermal Area (1976) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans,Oregon: Energy

  14. Core Analysis At Raft River Geothermal Area (1981) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans,Oregon: EnergyInformation 81) Jump to:

  15. Chemical Logging At Raft River Geothermal Area (1979) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR JumpMaine: EnergyEnergy Information

  16. Exploratory Well At Raft River Geothermal Area (1975) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop,Erosion FlumeEvent PlanningBirds ||

  17. Fault Mapping At Raft River Geothermal Area (1993) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop,ErosionNewCoalFarmland Protection

  18. Field Mapping At Raft River Geothermal Area (1977) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto ElectricMonaster And Coolbaugh, 2007)MccoyEnergyInformation

  19. Field Mapping At Raft River Geothermal Area (1980) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto ElectricMonaster And Coolbaugh,

  20. Field Mapping At Raft River Geothermal Area (1990) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto ElectricMonaster And Coolbaugh,Information 0) Jump to:

  1. Field Mapping At Raft River Geothermal Area (1993) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto ElectricMonaster And Coolbaugh,Information 0) Jump

  2. Geothermometry At Raft River Geothermal Area (1980) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages RecentPlant < Geothermal(Redirected2008) | Open

  3. Ground Magnetics At Raft River Geothermal Area (1979) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New PagesInformationEnergy Information|Energy|2007) |

  4. Injectivity Test At Raft River Geothermal Area (1979) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on Openei |sourceAnd

  5. Magnetotellurics At Raft River Geothermal Area (1977) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump| Open Energy|Information

  6. Aeromagnetic Survey At Raft River Geothermal Area (1981) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: Energy Resources JumpAdelan1986) | Open

  7. Airborne Electromagnetic Survey At Raft River Geothermal Area (1979) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: Energy ResourcesAir Quality Jump to: navigation,

  8. Acoustic Logs At Raft River Geothermal Area (1979) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan)dataSuccessful SmartAcomita Lake, New

  9. Conceptual Model At Raft River Geothermal Area (1976) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercial Jump(Thompson, 1985)(Laney,Use90) Jump

  10. Conceptual Model At Raft River Geothermal Area (1977) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercial Jump(Thompson, 1985)(Laney,Use90)

  11. Conceptual Model At Raft River Geothermal Area (1979) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercial Jump(Thompson, 1985)(Laney,Use90)Information

  12. Conceptual Model At Raft River Geothermal Area (1980) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercial Jump(Thompson,

  13. Conceptual Model At Raft River Geothermal Area (1981) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercial Jump(Thompson,Information 1) Jump to:

  14. Conceptual Model At Raft River Geothermal Area (1983) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercial Jump(Thompson,Information 1) Jump

  15. Conceptual Model At Raft River Geothermal Area (1987) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercial Jump(Thompson,Information 1)

  16. Core Analysis At Raft River Geothermal Area (1979) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercialRenewableGlobal L PGabbs

  17. Core Analysis At Raft River Geothermal Area (2011) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercialRenewableGlobal L PGabbsInformation 2011)

  18. Cuttings Analysis At Raft River Geothermal Area (1976) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9) Wind Farm JumpAlum| Open Energy2005)New

  19. Deep drilling data Raft River geothermal area, Idaho | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9) WindGrid

  20. The effect of raft removal and dam construction on the lower Colorado River, Texas 

    E-Print Network [OSTI]

    Hartopo

    1991-01-01

    of these reservoirs were constructed for water conservation, flood control, municipal, industrial, irrigation, hydroelectric and recreational purposes (U. S. Army Corps of Fngineers, 1988). The development of water resources in the Colorado River Basin... and ranches in the Colorado River Basin. These ponds are used for farm and domestic water supplies, the proper management of grass lands, and also for the prevention of soil erosion. These minor reservoirs have total capacity of 203, 400 acre-ft (Board...

  1. Total field aeromagnetic map of the Raft River known Geothermal Resource

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film Solar TechnologiesCFRTopTen EnergyToray IndustriesArea,

  2. Preservation of an extreme transient geotherm in the Raft River detachment

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2, BluePoulsen Hybrid,Areas-

  3. Thermal And-Or Near Infrared At Raft River Geothermal Area (1997) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe2009) | Open Energy2008) | OpenEnergy

  4. Surface Water Sampling At Raft River Geothermal Area (1973) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model for theSunLanSuperDrive IncCity,Open EnergyOpen

  5. Ground Gravity Survey At Raft River Geothermal Area (1957-1961) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County,Solar Jump to:ResourcesGriggsOpen| OpenAl.,Energy

  6. Groundwater Sampling At Raft River Geothermal Area (2004-2011) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County,Solar JumpInformation Crump's HotClimate ChangeEnergy

  7. Earth Tidal Analysis At Raft River Geothermal Area (1980) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to: navigation, search Name:Earlsboro,Information 0) Jump to:

  8. Earth Tidal Analysis At Raft River Geothermal Area (1982) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to: navigation, search Name:Earlsboro,Information 0) Jump

  9. Earth Tidal Analysis At Raft River Geothermal Area (1984) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to: navigation, search Name:Earlsboro,Information 0)

  10. Seismic refraction study of the Raft River geothermal area, Idaho | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,SageScheucoSedco Hills, California: EnergySeeo,BelowEnergy

  11. Modeling-Computer Simulations At Raft River Geothermal Area (1983) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005MinnehahaElectricInformation2008)| Open

  12. Isotopic Analysis-Fluid At Raft River Geothermal Area (1977) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,Open Energy Information1996)Al.,

  13. Subsurface geology of the Raft River geothermal area, Idaho | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPageBeforeCreekSingle-Well

  14. Temperature, thermal-conductivity, and heat-flux data,Raft River area,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ Automation Jump to:Information 8)Cassia County, Idaho

  15. Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergy Information 1968-1971) Jump to:Open

  16. Well Log Techniques At Raft River Geothermal Area (1977) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland:EnergyWe Energy Wind

  17. Compound and Elemental Analysis At Raft River Geothermal Area (1981) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans, Et Al., 2002) | Open Energy(McKenzie

  18. Exploring the Raft River geothermal area, Idaho, with the dc resistivity

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop,Erosion FlumeEvent PlanningBirdsmethod (Abstract) |

  19. Fault and joint geometry at Raft River geothermal area, Idaho | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop,ErosionNewCoalFarmland ProtectionInformation and

  20. Ground Gravity Survey At Raft River Geothermal Area (1978) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New PagesInformationEnergy Information

  1. Groundwater Sampling At Raft River Geothermal Area (1974-1982) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New PagesInformationEnergyInformation radon survey ofEnergy

  2. Isotopic Analysis-Fluid At Raft River Geothermal Area (1982) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on OpeneiAlbanianStudy)savingsInformationRock

  3. Micro-Earthquake At Raft River Geothermal Area (1979) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenariosMarysville MtMedicalInformationInformation 79) Jump to:

  4. Micro-Earthquake At Raft River Geothermal Area (1982) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenariosMarysville MtMedicalInformationInformation 79) Jump

  5. Micro-Earthquake At Raft River Geothermal Area (2011) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenariosMarysville MtMedicalInformationInformation 79)

  6. Modeling-Computer Simulations At Raft River Geothermal Area (1977) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsource History View NewOpen

  7. Modeling-Computer Simulations At Raft River Geothermal Area (1979) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsource History View NewOpenEnergy Information 9)

  8. Modeling-Computer Simulations At Raft River Geothermal Area (1980) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsource History View NewOpenEnergy Information

  9. Audio-Magnetotellurics At Raft River Geothermal Area (1978) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYork Jump|Line

  10. Schlumberger soundings in the Upper Raft River and Raft River...

    Open Energy Info (EERE)

    are presented. Authors Zohdy, A. A.; Bisdorf and R. J. Published DOE Information Bridge, 111976 DOI 10.21727237798 Citation Zohdy, A. A.; Bisdorf, R. J. . 111976....

  11. Microearthquake surveys of Snake River plain and Northwest Basin...

    Open Energy Info (EERE)

    energy; Humboldt County Nevada; Idaho; microearthquakes; Nevada; North America; passive systems; Pershing County Nevada; Raft River; reservoir rocks; seismic methods;...

  12. New River Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures LtdNeville, Ohio:Archaeological PermitsMilford, NewPlanetNew River

  13. Reese River Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLCALLETEREFURecent content inForestryReese River

  14. Milky River Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenariosMarysvilleMicrogravity-HybridCredits LLC JumpClipper)Milky River

  15. 100 Area Columbia River sediment sampling

    SciTech Connect (OSTI)

    Weiss, S.G. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-09-08

    Forty-four sediment samples were collected from 28 locations in the Hanford Reach of the Columbia River to assess the presence of metals and man-made radionuclides in the near shore and shoreline settings of the Hanford Site. Three locations were sampled upriver of the Hanford Site plutonium production reactors. Twenty-two locations were sampled near the reactors. Three locations were sampled downstream of the reactors near the Hanford Townsite. Sediment was collected from depths of 0 to 6 in. and between 12 to 24 in. below the surface. Samples containing concentrations of metals exceeding the 95 % upper threshold limit values (DOE-RL 1993b) are considered contaminated. Contamination by arsenic, chromium, copper, lead, and zinc was found. Man-made radionuclides occur in all samples except four collected opposite the Hanford Townsite. Man-made radionuclide concentrations were generally less than 1 pCi/g.

  16. An early history of pure shear in the upper plate of the raft...

    Open Energy Info (EERE)

    early history of pure shear in the upper plate of the raft river metamorphic core complex- black pine mountains, southern Idaho Jump to: navigation, search OpenEI Reference...

  17. Geology of the South Mason-Llano River area, Texas 

    E-Print Network [OSTI]

    Duvall, Victor Martin

    1953-01-01

    ILLUSTRATIONS Plate Page I. Geologic Map of the South Mason-Llano River Area, Mason County, Texas. . . . . II. Structure secttons. pocket pocket III. Index map of the South Mason-Llano River Area, Mason County, Texas. following page iv IV. Fig. 1: Tufa... VIII. Fig. 1: Pebbles in basal Hickory sand- stone. Fig. 2: Intraformational conglomerate in upper Hickory. following page 23 IX. Fig. 1: Shale xone in middle Hickory. . . Fig. 2: Cross-bedding in Hickory sand- stone. following page 24 X. Fig. 1...

  18. Geological and geophysical studies of a geothermal area in the...

    Open Energy Info (EERE)

    pyroclastics; Raft River Valley; resources; sedimentary rocks; seismic methods; stratigraphy; structural geology; structure; surveys; tectonics; United States; volcanic rocks...

  19. RAFT Regional Algal Feedstock Testbed

    Office of Energy Efficiency and Renewable Energy (EERE)

    Breakout Session 3B—Integration of Supply Chains III: Algal Biofuels Strategy RAFT Regional Algal Feedstock Testbed Kimberly Ogden, Professor, University of Arizona, Engineering Technical Lead, National Alliance for Advanced Biofuels and Bioproducts

  20. A cleaning energy area conception on Fenhe river valley

    SciTech Connect (OSTI)

    Guan, C. [Shanxi Environmental Protection Bureau (China)

    1997-12-31

    Fenhe river valley has a dense population, abundant resources and coal mining, coke making, metallurgy industry concentration. Therefore, it is a seriously pollute area. The paper puts forward a concept of building up a clean energy area through process improvement and change of energy structure to realize ecological economy. The analysis shows that the indigenous method used for coking produces serious pollution, the resource cannot be used comprehensively, the regular machinery coke has a high investment in capital construction, but not much economic benefit. All are disadvantages for health and sustainable economic development. Also, this paper describes a LJ-95 machinery coke oven which has lower investment, higher product quality, less pollution, and higher economical benefit. LJ-95 coke oven will be the technical basis for construction of a clean energy area. The clean energy area concept for the Fenhe river valley consists of a coal gas pipeline network during the first phase and building electricity generation using steam turbines in the second phase.

  1. Rafts defined: a report on the Keystone symposium on lipid rafts and cell function

    E-Print Network [OSTI]

    Pike, Linda J.

    report Rafts defined: a report on the Keystone symposium on lipid rafts and cell function Linda J. Louis, MO 63110 Abstract The recent Keystone Symposium on Lipid Rafts and Cell Function (March 23 and sometimes ephemeral nature of its subject.-- Pike, L. J. Rafts defined: a report on the Keystone sympo- sium

  2. Raft River Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/NevadaaToolsRadioactiveRadiometrics

  3. EIS-0170: Columbia River System Operation Review, BPA Area

    Broader source: Energy.gov [DOE]

    The Columbia River System Operation Review Final Environmental Impact Statement (EIS) evaluates the potential impacts of four alternatives that represent the likely range of allocations between the Federal and non-Federal projects.

  4. Community-Minded Interns at Savannah River Site Help Area Residents in Need with Home Repairs

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – More than two dozen college interns who worked at the Savannah River Site (SRS) this summer joined other volunteers and headed into area neighborhoods to help people in need with home repairs.

  5. Isotopic Tracking of Hanford 300 Area Derived Uranium in the Columbia River

    SciTech Connect (OSTI)

    Christensen, John N.; Dresel, P. Evan; Conrad, Mark E.; Patton, Gregory W.; DePaolo, Donald J.

    2010-10-31

    Our objectives in this study are to quantify the discharge rate of uranium (U) to the Columbia River from the Hanford Site's 300 Area, and to follow that U down river to constrain its fate. Uranium from the Hanford Site has variable isotopic composition due to nuclear industrial processes carried out at the site. This characteristic makes it possible to use high-precision isotopic measurements of U in environmental samples to identify even trace levels of contaminant U, determine its sources, and estimate discharge rates. Our data on river water samples indicate that as much as 3.2 kg/day can enter the Columbia River from the 300 Area, which is only a small fraction of the total load of dissolved natural background U carried by the Columbia River. This very low-level of Hanford derived U can be discerned, despite dilution to < 1 percent of natural background U, 350 km downstream from the Hanford Site. These results indicate that isotopic methods can allow the amounts of U from the 300 Area of the Hanford Site entering the Columbia River to be measured accurately to ascertain whether they are an environmental concern, or are insignificant relative to natural uranium background in the Columbia River.

  6. Red River Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/WaterEnergy MarketingNewOpenRecycledMesa, Arizona:Red River

  7. Reed River Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎WindRecycleBank JumpReed River Hot Spring

  8. Schlumberger soundings in the Upper Raft River and Raft River Valleys,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewableSMUD WindISave Energy atScheringIdaho and Utah

  9. DOE Research Set-Aside Areas of the Savannah River Site

    SciTech Connect (OSTI)

    Davis, C.E.; Janecek, L.L.

    1997-08-31

    Designated as the first of seven National Environmental Research Parks (NERPs) by the Atomic Energy Commission (now the Department of Energy), the Savannah River Site (SRS) is an important ecological component of the Southeastern Mixed Forest Ecoregion located along the Savannah River south of Aiken, South Carolina. Integral to the Savannah River Site NERP are the DOE Research Set-Aside Areas. Scattered across the SRS, these thirty tracts of land have been set aside for ecological research and are protected from public access and most routine Site maintenance and forest management activities. Ranging in size from 8.5 acres (3.44 ha) to 7,364 acres (2,980 ha), the thirty Set-Aside Areas total 14,005 acres (5,668 ha) and comprise approximately 7% of the Site`s total area. This system of Set-Aside Areas originally was established to represent the major plant communities and habitat types indigenous to the SRS (old-fields, sandhills, upland hardwood, mixed pine/hardwood, bottomland forests, swamp forests, Carolina bays, and fresh water streams and impoundments), as well as to preserve habitats for endangered, threatened, or rare plant and animal populations. Many long-term ecological studies are conducted in the Set-Asides, which also serve as control areas in evaluations of the potential impacts of SRS operations on other regions of the Site. The purpose of this document is to give an historical account of the SRS Set-Aside Program and to provide a descriptive profile of each of the Set-Aside Areas. These descriptions include a narrative for each Area, information on the plant communities and soil types found there, lists of sensitive plants and animals documented from each Area, an account of the ecological research conducted in each Area, locator and resource composition maps, and a list of Site-Use permits and publications associated with each Set-Aside.

  10. Addressing Stakeholder Concerns: Pests and Pest Control in the Sacramento River Conservation Area

    E-Print Network [OSTI]

    Langridge, Suzanne

    2010-01-01

    scale restoration on the Sacramento River. Chapter 17 inriverside forests along the Sacramento River, the source ofand levee construction. The Sacramento River CONTACT Suzanne

  11. Increasing subsurface water storage in discontinuous permafrost areas of the Lena River basin, Eurasia, detected from GRACE

    E-Print Network [OSTI]

    Chen, Zhongping

    Increasing subsurface water storage in discontinuous permafrost areas of the Lena River basin in terrestrial water storage (TWS) in the Lena river basin, Eurasia, during the period April 2002 to September the observed TWS increase of 68 Æ 19 km3 to an increase in subsurface water storage. This large subsurface

  12. Savannah River Site Retires Coal-Fired D-Area Powerhouse after Nearly 60 Years of Service

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – The Savannah River Site (SRS) has shut down the massive, coal-powered D-Area powerhouse as the site turns to new, clean and highly efficient power generation technology.

  13. Literature and data review for the surface-water pathway: Columbia River and adjacent coastal areas

    SciTech Connect (OSTI)

    Walters, W.H.; Dirkes, R.L.; Napier, B.A.

    1992-04-01

    As part of the Hanford Environmental Dose Reconstruction Project, Pacific Northwest Laboratory reviewed literature and data on radionuclide concentrations and distribution in the water, sediment, and biota of the Columbia River and adjacent coastal areas. Over 600 documents were reviewed including Hanford reports, reports by offsite agencies, journal articles, and graduate theses. Certain radionuclide concentration data were used in preliminary estimates of individual dose for the 1964--1966 time period. This report summarizes the literature and database review and the results of the preliminary dose estimates.

  14. Micro-Earthquake At New River Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005 WindPRO isMickey Hot Springs5) Jump to:River Area (DOE

  15. Injectivity Test At Reese River Area (Henkle & Ronne, 2008) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on Openei |sourceAndInformation Reese River Area (Henkle

  16. Safety analysis -- 200 Area Savannah River Plant, F-Canyon Operations. Supplement 4

    SciTech Connect (OSTI)

    Beary, M.M.; Collier, C.D.; Fairobent, L.A.; Graham, R.F.; Mason, C.L.; McDuffee, W.T.; Owen, T.L.; Walker, D.H.

    1986-02-01

    The F-Canyon facility is located in the 200 Separations Area and uses the Purex process to recover plutonium from reactor-irradiated uranium. The irradiated uranium is normally in the form of solid or hollow cylinders called slugs. These slugs are encased in aluminum cladding and are sent to the F-Canyon from the Savannah River Plant (SRP) reactor areas or from the Receiving Basin for Offsite Fuels (RBOF). This Safety Analysis Report (SAR) documents an analysis of the F-Canyon operations and is an update to a section of a previous SAR. The previous SAR documented an analysis of the entire 200 Separations Area operations. This SAR documents an analysis of the F-Canyon and is one of a series of documents for the Separations Area as specified in the Savannah River Implementation Plans. A substantial amount of the information supporting the conclusions of this SAR is found in the Systems Analysis. Some F-Canyon equipment has been updated during the time between the Systems Analysis and this SAR and a complete description of this equipment is included in this report. The primary purpose of the analysis was to demonstrate that the F-Canyon can be operated without undue risk to onsite or offsite populations and to the environment. In this report, risk is defined as the expected frequency of an accident, multiplied by the resulting radiological consequence in person-rem. The units of risk for radiological dose are person-rem/year. Maximum individual exposure values have also been calculated and reported.

  17. Technical Assessment of DOE Savannah River Site-Sponsored Radionuclide Monitoring Efforts in the Central Savannah River Area

    E-Print Network [OSTI]

    Georgia, University of

    Technical Assessment of DOE Savannah River Site-Sponsored Radionuclide Monitoring Efforts............................................................................................................ 8 Standards........................................................................................................... 45 SREL CAB REC_317 Technical Review - 2 #12;Charge to SREL This document was prepared in response

  18. Memorandum Approval of a Permanent Variance Regarding Sprinklers and Fire Boundaries in Selected Areas of 22 1-H Canyon at the Savannah River Site

    Broader source: Energy.gov [DOE]

    Approval of a Permanent Variance Regarding Sprinklers and Fire Boundaries in Selected Areas of 22 1 -H Canyon at the Savannah River Site

  19. Memorandum, Approval of a Permanent Variance Regarding Sprinklers and Fire Boundaries in Selected Areas of 22 1-H Canyon at the Savannah River Site

    Broader source: Energy.gov [DOE]

    Approval of a Permanent Variance Regarding Fire Safety in Selected Areas of 221-H Canyon at the Savannah River Site UNDER SECRETARY OF ENERGY

  20. Structural Model of the Basement in the Central Savannah River Area, South Carolina and Georgia

    SciTech Connect (OSTI)

    Stephenson, D. [Westinghouse Savannah River Company, AIKEN, SC (United States); Stieve, A.

    1992-03-01

    Interpretation of several generations of seismic reflection data and potential field data suggests the presence of several crustal blocks within the basement beneath the Coastal Plain in the Central Savannah River Area (CSRA). The seismic reflection and refraction data include a grid of profiles that capture shallow and deep reflection events and traverse the Savannah River Site and vicinity. Potential field data includes aeromagnetic, ground magnetic surveys, reconnaissance and detailed gravity surveys. Subsurface data from recovered core are used to constrain the model.Interpretation of these data characteristically indicate a southeast dipping basement surface with some minor highs and lows suggesting an erosional pre-Cretaceous unconformity. This surface is interrupted by several basement faults, most of which offset only early Cretaceous sedimentary horizons overlying the erosional surface. The oldest fault is perhaps late Paleozoic because it is truncated at the basement/Coastal Plain interface. This fault is related in timing and mechanism to the underlying Augusta fault. The youngest faults deform Coastal Plain sediments of at least Priabonian age (40-36.6 Ma). One of these young faults is the Pen Branch faults, identified as the southeast dipping master fault for the Triassic Dunbarton basin. All the Cenozoic faults are probably related in time and mechanism to the nearby, well studied Belair fault.The study area thus contains a set of structures evolved from the Alleghanian orogeny through Mesozoic extension to Cenozoic readjustment of the crust. There is a metamorphosed crystalline terrane with several reflector/fault packages, a reactivated Triassic basin, a mafic terrane separating the Dunbarton basin from the large South Georgia basin to the southeast, and an overprint of reverse faults, some reactivated, and some newly formed.

  1. Treatment of M-area mixed wastes at the Savannah River Site

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The Department of Energy has prepared this environmental assessment, DOE/EA-0918, to assess the potential environmental impacts of the treatment of mixed wastes currently stored in the M-Area at the Savannah River Site, near Aiken, South Carolina. DOE is proposing to treat and stabilize approximately 700,000 gallons of mixed waste currently stored in the Interim Treatment/Storage Facility (IT/SF) and Mixed Waste Storage Shed (MWSS). This waste material is proposed to be stabilized using a vitrification process and temporarily stored until final disposal is available by the year 2005. This document has been prepared to assess the potential environmental impacts attributable to the treatment and stabilization of M-area mixed wastes, the closure of the interim storage area, and storage of the vitrified waste until disposal in onsite RCRA vaults. Based on the analyses in the environmental assessment, the Department of Energy has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required, and the Department of Energy is issuing this finding of no significant impact.

  2. Rheological control on the initial geometry of the Raft River...

    Open Energy Info (EERE)

    mylonite during progressive displacement and footwall unroofing may use an inherited mechanical anisotropy from the mylonite, and their orientations may not reflect the predicted...

  3. FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO...

    Open Energy Info (EERE)

    the fluid geochemistry in the field is spatially variable and complex, with two distinct deep geothermal fluid types (high vs. low K, Na, Cl, Ca, Li, F concentrations) and two...

  4. Concept Testing and Development at the Raft River Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Program Peer Review Report Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation; 2010 Geothermal Technology Program Peer Review Report...

  5. Total field aeromagnetic map of the Raft River known Geothermal...

    Open Energy Info (EERE)

    SURVEYS; USA Authors Geological Survey, Denver and CO (USA) Published DOE Information Bridge, 111981 DOI 10.21725456508 Citation Geological Survey, Denver, CO (USA). 111981....

  6. Final Technical Resource Confirmation Testing at the Raft River...

    Open Energy Info (EERE)

    across the wellfield. Authors Glaspey and Douglas J. Published DOE Information Bridge, 1302008 DOI 10.2172922630 Citation Glaspey, Douglas J. . 1302008. Final...

  7. Concept Testing and Development at the Raft River Geothermal...

    Office of Environmental Management (EM)

    Colorado. raftriverpeer2013.pdf More Documents & Publications track 4: enhanced geothermal systems (EGS) | geothermal 2015 peer review Concept Testing and Development at the...

  8. Final Technical Resource Confirmation Testing at the Raft River Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New Pages RecentTempCampApplicationWorksheetWind-turbine-economics-teacher.pdfbyProject,

  9. Raft River III Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/NevadaaToolsRadioactiveRadiometricsIII Geothermal

  10. Reconnaissance geothermal exploration at Raft River, Idaho from thermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/WaterEnergy MarketingNewOpen EnergyReclamation

  11. Raft River II Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎ |RENERCOEnergyRadium HotOpen EnergyII

  12. Raft River Rural Elec Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎ |RENERCOEnergyRadium HotOpen

  13. Raft River geoscience case study | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎ |RENERCOEnergyRadium HotOpengeoscience

  14. Raft River geoscience case study- appendixes | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎ |RENERCOEnergyRadium

  15. The investigation of anomalous magnetization in the Raft River valley,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/Wind ResourcesProgramSulFeroxOpenVote

  16. Update on the Raft River Geothermal Reservoir | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin FilmUnited States: Energy ResourcesPark--UnspecifiedMammoththe

  17. Borehole geophysics evaluation of the Raft River geothermal reservoir |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-GasIllinois:Energy

  18. Borehole geophysics evaluation of the Raft River geothermal reservoir,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-GasIllinois:EnergyIdaho | Open Energy Information

  19. FLOWMETER ANALYSIS AT RAFT RIVER, IDAHO | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop,Erosion FlumeEventFAOFB EcoSolutionsRequestFLOWMETER

  20. GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprint VenturesColorado:Georgia:FutureG2FOR EGSIDAHO |

  1. Geochemical modeling of the Raft River geothermal field | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprintGEXAGemini SolarMichigan:Region,

  2. Geothermal Modeling of the Raft River Geothermal Field | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages Recent Changes AllGunneryData | OpenMajer,

  3. Hydrochemistry of selected parameters at the Raft River KGRA, Cassia

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea,MagazineTechnologies Jump to: navigation,

  4. Interpretation of electromagnetic soundings in the Raft River geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on OpeneiAlbanian CentreHoldingsFundTruckarea, Idaho | Open

  5. Petrography of late cenozoic sediments, Raft River geothermal field, Idaho

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly Smart GridNorthInformationPersu Mobility| Open Energy

  6. Large-scale spatial variability of riverbed temperature gradients in Snake River fall Chinook salmon spawning areas

    SciTech Connect (OSTI)

    Hanrahan, Timothy P.

    2007-02-01

    In the Snake River basin of the Pacific northwestern United States, hydroelectric dam operations are often based on the predicted emergence timing of salmon fry from the riverbed. The spatial variability and complexity of surface water and riverbed temperature gradients results in emergence timing predictions that are likely to have large errors. The objectives of this study were to quantify the thermal heterogeneity between the river and riverbed in fall Chinook salmon spawning areas and to determine the effects of thermal heterogeneity on fall Chinook salmon emergence timing. This study quantified river and riverbed temperatures at 15 fall Chinook salmon spawning sites distributed in two reaches throughout 160 km of the Snake River in Hells Canyon, Idaho, USA, during three different water years. Temperatures were measured during the fall Chinook salmon incubation period with self-contained data loggers placed in the river and at three different depths below the riverbed surface. At all sites temperature increased with depth into the riverbed, including significant differences (p<0.05) in mean water temperature of up to 3.8°C between the river and the riverbed among all the sites. During each of the three water years studied, river and riverbed temperatures varied significantly among all the study sites, among the study sites within each reach, and between sites located in the two reaches. Considerable variability in riverbed temperatures among the sites resulted in fall Chinook salmon emergence timing estimates that varied by as much as 55 days, depending on the source of temperature data used for the estimate. Monitoring of riverbed temperature gradients at a range of spatial scales throughout the Snake River would provide better information for managing hydroelectric dam operations, and would aid in the design and interpretation of future empirical research into the ecological significance of physical riverine processes.

  7. Hierarchical organization of chiral rafts in colloidal membranes

    E-Print Network [OSTI]

    Prerna Sharma; Andrew Ward; T. Gibaud; Michael F. Hagan; Zvonimir Dogic

    2014-09-09

    Liquid-liquid phase separation is ubiquitous in suspensions of nanoparticles, proteins and colloids. With a few notable exceptions, surface-tension-minimizing liquid droplets in bulk suspensions continuously coalesce, increasing in size without bound until achieving macroscale phase separation. In comparison, the phase behavior of colloids, nanoparticles or proteins confined to interfaces, surfaces or membranes is significantly more complex. Inclusions distort the local interface structure leading to interactions that are fundamentally different from the well-studied interactions mediated by isotropic solvents. Here, we investigate liquid-liquid phase separation in monolayer membranes composed of dissimilar chiral colloidal rods. We demonstrate that colloidal rafts are a ubiquitous feature of binary colloidal membranes. We measure the raft free energy landscape by visualizing its assembly kinetics. Subsequently, we quantify repulsive raft-raft interactions and relate them to directly imaged raft-induced membrane distortions, demonstrating that particle chirality plays a key role in this microphase separation. At high densities, rafts assemble into cluster crystals which constantly exchange monomeric rods with the background reservoir to maintain a self-limited size. Lastly, we demonstrate that rafts can form bonds to assemble into higher-order supra-structures. Our work demonstrates that membrane-mediated liquid-liquid phase separation can be fundamentally different from the well-characterized behavior of bulk liquids. It outlines a robust membrane-based pathway for assembly of monodisperse liquid clusters which is complementary to existing methods which take place in bulk suspensions. Finally, it reveals that chiral inclusions in membranes acquire long-ranged repulsive interactions, which might play a role in stabilizing assemblages of finite size.

  8. Compliance of the Savannah River Site D-Area cooling system with environmental regulations

    SciTech Connect (OSTI)

    Specht, W.L.; Mackey, H.E.; Paller, M.H.; Wike, L.D.; Wilde, E.W. (eds.)

    1990-08-01

    This document presents information relating to a demonstration under Section 316(a) of the Clean Water Act for the 400-D Area cooling system at the Savannah River Site (SRS) near Aiken, South Carolina. The demonstration was mandated because the National Pollution Discharge Elimination System (NPDES) permit for SRS (SC0000175), granted on January 1, 1984, specified in-stream temperature limits in SRS streams of 32.2{degree}C and a {Delta}T limit of 2.8{degree}C above ambient. To achieve compliance with in-stream temperature limits, the Department of Energy (DOE) and the South Carolina Department of Health and Environmental Control (SCDHEC) entered into a Consent Order (84-4-W) which temporarily superseded the temperature requirements and identified a process for attaining compliance. The preferred option for achieving thermal compliance in Beaver Dam Creek consisted of increased flow, with mixing of the raw water basin overflow with the cooling water discharge during the summer months. Although this action can achieve instream temperatures of less than 32.2{degree}C, {Delta}T's still exceed 2.8{degree}C. Therefore, a 316 (a) Demonstration was initiated to determine whether a balanced indigenous biological community can be supported in the receiving stream with {Delta}T's in excess of 2.8{degree}C. A Biological Monitoring Program for Beaver Dam Creek was approved by SCDHEC in June 1988 and implemented in September 1988. The program monitored the water quality, habitat formers, zooplankton, macroinvertebrates, fish, other vertebrate wildlife and threatened and endangered species in Beaver Dam Creek for an 18-month period (September 1988-February 1990). This document summarizes information collected during the monitoring program and evaluates the data to determine whether Beaver Dam Creek presently supports a balanced indigenous biological community. 97 refs., 32 figs., 51 tabs.

  9. 100-N Area Strontium-90 Treatability Demonstration Project: Phytoextraction Along the 100-N Columbia River Riparian Zone – Field Treatability Study

    SciTech Connect (OSTI)

    Fellows, Robert J.; Fruchter, Jonathan S.; Driver, Crystal J.; Ainsworth, Calvin C.

    2010-01-11

    Strontium-90 (90Sr) is present both in the aquifer near the river and in the vadose and riparian zones of the river’s shore at 100-NR-2. Phytoextraction of 90Sr is being considered as a potential remediation system along the riparian zone of the Columbia River. Phytoextraction would employ coyote willow (Salix exigua). Past studies have shown that willow roots share uptake mechanisms for Sr with Ca, a plant macronutrient as well as no discrimination between Sr and 90Sr. Willow 90Sr concentration ratios [CR’s; (pCi 90Sr/g dry wt. of new growth tissue)/(pCi 90Sr/g soil porewater)] were consistently greater than 65 with three-quarters of the assimilated label partitioned into the above ground shoot. Insect herbivore experiments also demonstrated no significant potential for bioaccumulation or food chain transfer from their natural activities. The objectives of this field study were three-fold: (1) to demonstrate that a viable, “managed” plot of coyote willows can be established on the shoreline of the Columbia River that would survive the same microenvironment to be encountered at the 100-NR-2 shoreline; (2) to show through engineered barriers that large and small animal herbivores can be prevented from feeding on these plants; and (3) to show that once established, the plants will provide sufficient biomass annually to support the phytoextraction technology. A field treatability demonstration plot was established on the Columbia River shoreline alongside the 100-K West water intake at the end of January 2007. The plot was delimited by a 3.05 m high chain-link fence and was approximately 10 x 25 m in size. A layer of fine mesh metal small animal screening was placed around the plot at the base of the fencing to a depth of 45 cm. A total of sixty plants were placed in six slightly staggered rows with 1-m spacing between plants. The actual plot size was 0.00461 hectare (ha). At the time of planting (March 12, 2007), the plot was located about 10 m from the river’s edge. Less than two weeks later (March 21), the river began the spring rise. Periodic (daily) or continuous flooding occurred at the site over the next 3 to 4 months. River levels at times were over the top of the enclosure’s fence. This same pattern was repeated for the next 2 years. It was however evident that even submerged for part, or all of the day, that the plants continued to flourish. There were no indications of herbivory or animal tracks observed within the plot although animals were present in the area. Biomass production over the three years followed a typical growth curve with a yield of about 1 kg for the first year when the trees were establishing themselves, 4 kg for the second, and over 20 kg for the third when the trees were entering the exponential phase of growth. On a metric Ton per hectare (mT/ha) basis this would be 0.2 mT/ha in 2007, 0.87 mT/ha in 2008, and 4.3 mT/ha in 2009. Growth curve extrapolation predicts 13.2 mT/ha during a fourth year and potentially 29.5 mT/ha following a fifth year. Using the observed Ca and Sr concentrations found in the plant tissues, and Sr CR’s calculated from groundwater analysis, projected biomass yields suggest the trees could prove effective in removing the contaminant from the 100-NR-2 riparian zone.

  10. Safety analysis--200 Area Savannah River Site: Separations Area operations Building 211-H Outside Facilities. Supplement 11, Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The H-Area Outside Facilities are located in the 200-H Separations Area and are comprised of a number of processes, utilities, and services that support the separations function. Included are enriched uranium loadout, bulk chemical storage, water handling, acid recovery, general purpose evaporation, and segregated solvent facilities. In addition, services for water, electricity, and steam are provided. This Safety Analysis Report (SAR) documents an analysis of the H-Area Outside Facilities and is one of a series of documents for the Separations Area as specified in the SR Implementation Plan for DOE order 5481.1A. The primary purpose of the analysis was to demonstrate that the facility can be operated without undue risk to onsite or offsite populations, to the environment, and to operating personnel. In this report, risks are defined as the expected frequencies of accidents, multiplied by the resulting radiological consequences in person-rem. Following the summary description of facility and operations is the site evaluation including the unique features of the H-Area Outside Facilities. The facility and process design are described in Chapter 3.0 and a description of operations and their impact is given in Chapter 4.0. The accident analysis in Chapter 5.0 is followed by a list of safety related structures and systems (Chapter 6.0) and a description of the Quality Assurance program (Chapter 7.0). The accident analysis in this report focuses on estimating the risk from accidents as a result of operation of the facilities. The operations were evaluated on the basis of three considerations: potential radiological hazards, potential chemical toxicity hazards, and potential conditions uniquely different from normal industrial practice.

  11. Cuttings Analysis At New River Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9) Wind Farm JumpAlum| Open Energy2005)New River

  12. Savannah River Site H-Area Tank Farm Performance Assessment Scoping...

    Office of Environmental Management (EM)

    H-Area Tank Farm Performance Assessment Scoping Meeting April 20-22, 2010 230 Green Blvd. Aiken Design Center Building Village at Woodside Aiken, SC DRAFT MEETING NOTES Tuesday,...

  13. Investigation of the Strontium-90 Contaminant Plume along the Shoreline of the Columbia River at the 100-N Area of the Hanford Site

    SciTech Connect (OSTI)

    Mendoza, Donaldo P.; Patton, Gregory W.; Hartman, Mary J.; Spane, Frank A.; Sweeney, Mark D.; Fritz, Brad G.; Gilmore, Tyler J.; Mackley, Rob D.; Bjornstad, Bruce N.; Clayton, Ray E.

    2007-10-01

    Efforts are underway to remediate strontium-laden groundwater to the Columbia River at the 100-N Area of the Hanford Site. Past practices of the 100-N reactor liquid waste disposal sites has left strontium-90 sorbed onto sediments which is a continuing source of contaminant discharge to the river. The Remediation Task of the Science and Technology Project assessed the interaction of groundwater and river water at the hyporheic zone. Limited data have been obtained at this interface of contaminant concentrations, geology, groundwater chemistry, affects of river stage and other variables that may affect strontium-90 release. Efforts were also undertaken to determine the extent, both laterally and horizontally, of the strontium-90 plume along the shoreline and to potentially find an alternative constituent to monitor strontium-90 that would be more cost effective and could possibly be done under real time conditions. A baseline of strontium-90 concentrations along the shoreline was developed to help assess remediation technologies.

  14. Determination of transport parameters of coincident inorganic and organic plumes in the Savannah River Plant M-Area, Aiken, South Carolina 

    E-Print Network [OSTI]

    Cauffman, Toya Lyn

    1987-01-01

    River Plant (SRP) M-Area house the facilities for fabricating fuel and target elements to be irradiated in SRP reactors. Waste effluents from M-Area operations contain metal degreasers, nitric acid, sodium hydroxide, phosphoric acid and metals...-Area are (1) the A-14 sewer outfall, which drains to a small tributary of the Time Branch, (2) the M-Area settling basin, (3) the seepage area and Lost Lake, which receive overflow from the basin, and (4) the two main sewer lines which transport waste water...

  15. DRAFT June 12, 2008 Walleye adults reproduce on cobble/gravel river substrates within a 1-mile area below Croton

    E-Print Network [OSTI]

    in Muskegon River forage in pools and run habitats with slower flows. After spawning, most adult walleye,000 adults in the spring spawning run. Successful reproduction by walleye is limited in the Muskegon River spawn in the Muskegon River in late March or early April, with an estimated spawning run of 38,000 to 50

  16. Savannah River Site - C Area Burning/Rubble Pits | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummaryDIST OFMEAG, Dalton2Program SanEnergy1998 ThisArea

  17. Savannah River Site - C-Area Groundwater Operable Unit | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummaryDIST OFMEAG, Dalton2Program SanEnergy1998 ThisAreaEnergy

  18. Savannah River Site - L-Area Burning/Rubble Pit | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummaryDIST OFMEAG, Dalton2ProgramArea Burning/Rubble Pit Remediation

  19. Savannah River Site - R-Area Groundwater Operable Unit | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummaryDIST OFMEAG, Dalton2ProgramArea Burning/Rubble Pit

  20. Savannah River Site - F-Area Seepage Basins | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 -RobSSL INDepartment of EnergyD-Area Oil Seepage

  1. Savannah River Site - H-Area Seepage Basins | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 -RobSSL INDepartment of EnergyD-Area Oil SeepageGSA

  2. Slim Holes At New River Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbH Jump to:Idaho-UtahSkylineJemez Pueblo Area

  3. Flow Test At New River Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flatsInformationFlint Geothermal AreaOpen| Open

  4. Savannah River Site - D-Area Oil Seepage Basin | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-AA-1 SECTION JSTEM-ing theSummary ofEnergyD-Area Oil Seepage

  5. Savannah River Site - K Area Burning/Rubble Pit | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-AA-1 SECTION JSTEM-ing theSummary ofEnergyD-Area Oil SeepageK

  6. Savannah River Site - P-Area Groundwater Operable Unit | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-AA-1 SECTION JSTEM-ing theSummary ofEnergyD-Area Oil

  7. Impact of boundaries on velocity profiles in bubble rafts Yuhong Wang, Kapilanjan Krishan, and Michael Dennin

    E-Print Network [OSTI]

    Dennin, Michael

    ); and confined bubble rafts (bubbles confined between the surface of water below and a glass plate on top). Often two solid plates); bubble rafts (a single layer of bubbles freely floating on a surface of water . This corresponds to the quoted quasi-static limit in a number of previous experiments. It is found that the top

  8. The Virtual Raft Project: A Mobile Interface for Interacting with Communities of Autonomous Characters

    E-Print Network [OSTI]

    Tomlinson, Bill

    Dimensional Graphics and Realism: Animation INTRODUCTION The Virtual Raft Project is a multidisciplinary a virtual environment inhabited by a small community of animated characters. These characters exhibit simple this by means of a virtual "raft" ­ a Tablet PC that can be moved in physical space by a human interactor. When

  9. 2012 Annual Report: Simulate and Evaluate the Cesium Transport and Accumulation in Fukushima-Area Rivers by the TODAM Code

    SciTech Connect (OSTI)

    Onishi, Yasuo; Yokuda, Satoru T.

    2013-03-28

    Pacific Northwest National Laboratory initiated the application of the time-varying, one-dimensional sediment-contaminant transport code, TODAM (Time-dependent, One-dimensional, Degradation, And Migration) to simulate the cesium migration and accumulation in the Ukedo River in Fukushima. This report describes the preliminary TODAM simulation results of the Ukedo River model from the location below the Ougaki Dam to the river mouth at the Pacific Ocean. The major findings of the 100-hour TODAM simulation of the preliminary Ukedo River modeling are summarized as follows:

  10. Interpretation of Geological Correlation Borings 1, 2, 3 in the A/M Area of the Savannah River Site, South Carolina

    SciTech Connect (OSTI)

    Wyatt, D.E. [Westinghouse Savannah River Company, AIKEN, SC (United States); Cumbest, R.J.; Aadland, R.K.; Syms, F.H.; Stephenson, D.E.; Sherrill, J.C.

    1997-06-01

    The Geophysical Correlation Boring (GCB) Program was organized to provide a comprehensive correlation capability between geological core and advanced borehole geophysical data, surface high resolution reflection seismic information and, when available, borehole geochemical and cone penetrometer data. This report provides results and initial geological interpretations of borings one, two, and three (GCB-1, GCB-2, GCB-3) located within the Upper Three Runs Watershed (A/M Area) of the Savannah River Site.

  11. TVA's Integrated River System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and controlling floods. So far as may be consistent with such purposes, ...for the generation of electric energy... TVA Power Service Area TVA'S INTEGRATED RIVER SYSTEM | 3...

  12. Literature and data review for the surface-water pathway: Columbia River and adjacent coastal areas. Hanford Environmental Dose Reconstruction Project

    SciTech Connect (OSTI)

    Walters, W.H.; Dirkes, R.L.; Napier, B.A.

    1992-04-01

    As part of the Hanford Environmental Dose Reconstruction Project, Pacific Northwest Laboratory reviewed literature and data on radionuclide concentrations and distribution in the water, sediment, and biota of the Columbia River and adjacent coastal areas. Over 600 documents were reviewed including Hanford reports, reports by offsite agencies, journal articles, and graduate theses. Certain radionuclide concentration data were used in preliminary estimates of individual dose for the 1964--1966 time period. This report summarizes the literature and database review and the results of the preliminary dose estimates.

  13. Two-dimensional simulation of the Raft River geothermal reservoir and

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York: Energy ResourcesLake,Fallon | Open Energywells.

  14. Temperature, thermal-conductivity, and heat-flux data,Raft River...

    Open Energy Info (EERE)

    conductivity; United States; USGS Authors Urban, T.C.; Diment, W.H.; Nathenson, M.; Smith, E.P.; Ziagos, J.P.; Shaeffer and M.H. Published Open-File Report - U. S. Geological...

  15. Reservoir evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal...

    Open Energy Info (EERE)

    response to the changes in the Earth's gravitational field caused by the passage of the sun and the moon. Overall, the results of the tests indicate that the geothermal reservoir...

  16. Raft River monitor well potentiometric head responses and water quality as

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/NevadaaToolsRadioactiveRadiometricsIII

  17. Concept Testing and Development at the Raft River Geothermal Field, Idaho |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About UsEnergyof Energy| Department ofComplianceComputational Advances

  18. Raft River Geothermal Exploratory Hole No. 1 (RRGE-1). Completion report |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎ |RENERCOEnergyRadium Hot

  19. Raft River Geothermal Exploratory Hole No. 2, RRGE-2. Completion report |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎ |RENERCOEnergyRadium HotOpen Energy

  20. Reservoir evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewable Energy RFPsLtdEnergy PlcWorld

  1. Resistivity measurements before and after injection Test 5 at Raft River

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewable Energy RFPsLtdEnergyResidentialAlumDOE

  2. Rheological control on the initial geometry of the Raft River detachment

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewable Energy| Open Energyfault and shear zone,

  3. 10 Million U.S. Department of Energy Grant Program Begins at Raft River |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton Jump to:Wylie, Texas:V.S.A. Chapter 5 Common Law;Open Energy

  4. FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO- NEW DATA AND

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop,Erosion FlumeEventFAOFB

  5. Geology and alteration of the Raft River geothermal system, Idaho | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprintGEXAGeminiEnergyHawaii | OpenEnergy Information

  6. Geophysical logging case history of the Raft River geothermal system, Idaho

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprintGEXAGeminiEnergyHawaii |Methods JumpTechniques

  7. Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea, California | OpenHeliotronics Jump to:Steamboat

  8. An early history of pure shear in the upper plate of the raft river

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYork Jump to:Hempstead BiomassAmes,Operations

  9. COMPARISON OF THREE TRACER TESTS AT THE RAFT RIVER GEOTHERMAL SITE

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing Bacteria (TechnicalTransmission, Distribution and--HUBBLE CONSTANTReport)26}Al

  10. COMPARISON OF THREE TRACER TESTS AT THE RAFT RIVER GEOTHERMAL SITE

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing Bacteria (TechnicalTransmission, Distribution and--HUBBLE

  11. Concept Testing and Development at the Raft River Geothermal Field, Idaho

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartment ofCommercialEnergy Computers,dish/enginepower

  12. Concept Testing and Development at the Raft River Geothermal Field, Idaho |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartment ofCommercialEnergy

  13. Concept Testing and Development at the Raft River Geothermal Field, Idaho |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartment ofCommercialEnergyDepartment of Energy Concept

  14. Microbial risk assessment for recreational use of the Malden River

    E-Print Network [OSTI]

    Jacques, Margaret (Margaret Rose)

    2015-01-01

    The Malden River is located in the Greater Boston area of Massachusetts. The River has a long history of abuse and neglect stemming from urbanization and industrial activity along the River and in the surrounding areas. ...

  15. Cholesterol accumulation in Niemann Pick type C (NPC) model cells causes a shift in APP localization to lipid rafts

    SciTech Connect (OSTI)

    Kosicek, Marko; Malnar, Martina; Goate, Alison; Hecimovic, Silva

    2010-03-12

    It has been suggested that cholesterol may modulate amyloid-{beta} (A{beta}) formation, a causative factor of Alzheimer's disease (AD), by regulating distribution of the three key proteins in the pathogenesis of AD ({beta}-amyloid precursor protein (APP), {beta}-secretase (BACE1) and/or presenilin 1 (PS1)) within lipid rafts. In this work we tested whether cholesterol accumulation upon NPC1 dysfunction, which causes Niemann Pick type C disease (NPC), causes increased partitioning of APP into lipid rafts leading to increased CTF/A{beta} formation in these cholesterol-rich membrane microdomains. To test this we used CHO NPC1{sup -/-} cells (NPC cells) and parental CHOwt cells. By sucrose density gradient centrifugation we observed a shift in fl-APP/CTF compartmentalization into lipid raft fractions upon cholesterol accumulation in NPC vs. wt cells. Furthermore, {gamma}-secretase inhibitor treatment significantly increased fl-APP/CTF distribution in raft fractions in NPC vs. wt cells, suggesting that upon cholesterol accumulation in NPC1-null cells increased formation of APP-CTF and its increased processing towards A{beta} occurs in lipid rafts. Our results support that cholesterol overload, such as in NPC disease, leads to increased partitioning of APP/CTF into lipid rafts resulting in increased amyloidogenic processing of APP in these cholesterol-rich membranes. This work adds to the mechanism of the cholesterol-effect on APP processing and the pathogenesis of Alzheimer's disease and supports the role of lipid rafts in these processes.

  16. BRIEF COMMUNICATION Protein-Polymer Grafts via a Soy Protein Derived Macro-RAFT

    E-Print Network [OSTI]

    Bong, Dennis

    BRIEF COMMUNICATION Protein-Polymer Grafts via a Soy Protein Derived Macro-RAFT Chain Transfer Methodology to produce materials derived from renewable resources is of great importance in decreasing both of renewable resource derived materials are enabling from economic, environmental, industrial and basic science

  17. System-Scale Model of Aquifer, Vadose Zone, and River Interactions for the Hanford 300 Area - Application to Uranium Reactive Transport

    SciTech Connect (OSTI)

    Rockhold, Mark L.; Bacon, Diana H.; Freedman, Vicky L.; Parker, Kyle R.; Waichler, Scott R.; Williams, Mark D.

    2013-10-01

    This report represents a synthesis and integration of basic and applied research into a system-scale model of the Hanford 300 Area groundwater uranium plume, supported by the U.S. Department of Energy’s Richland Operations (DOE-RL) office. The report integrates research findings and data from DOE Office of Science (DOE-SC), Office of Environmental Management (DOE-EM), and DOE-RL projects, and from the site remediation and closure contractor, Washington Closure Hanford, LLC (WCH). The three-dimensional, system-scale model addresses water flow and reactive transport of uranium for the coupled vadose zone, unconfined aquifer, and Columbia River shoreline of the Hanford 300 Area. The system-scale model of the 300 Area was developed to be a decision-support tool to evaluate processes of the total system affecting the groundwater uranium plume. The model can also be used to address “what if” questions regarding different remediation endpoints, and to assist in design and evaluation of field remediation efforts. For example, the proposed cleanup plan for the Hanford 300 Area includes removal, treatment, and disposal of contaminated sediments from known waste sites, enhanced attenuation of uranium hot spots in the vadose and periodically rewetted zone, and continued monitoring of groundwater with institutional controls. Illustrative simulations of polyphosphate infiltration were performed to demonstrate the ability of the system-scale model to address these types of questions. The use of this model in conjunction with continued field monitoring is expected to provide a rigorous basis for developing operational strategies for field remediation and for defining defensible remediation endpoints.

  18. Chemical and light-stable isotope characteristics of waters from...

    Open Energy Info (EERE)

    Chemical and light-stable isotope characteristics of waters from the raft river geothermal area and environs, Cassia County, Idaho, Box Elder county, Utah Jump to: navigation,...

  19. PRELIMINARY DATA REPORT: HUMATE INJECTION AS AN ENHANCED ATTENUATION METHOD AT THE F-AREA SEEPAGE BASINS, SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Millings, M.

    2013-09-16

    A field test of a humate technology for uranium and I-129 remediation was conducted at the F-Area Field Research Site as part of the Attenuation-Based Remedies for the Subsurface Applied Field Research Initiative (ABRS AFRI) funded by the DOE Office of Soil and Groundwater Remediation. Previous studies have shown that humic acid sorbed to sediments strongly binds uranium at mildly acidic pH and potentially binds iodine-129 (I-129). Use of humate could be applicable for contaminant stabilization at a wide variety of DOE sites however pilot field-scale tests and optimization of this technology are required to move this technical approach from basic science to actual field deployment and regulatory acceptance. The groundwater plume at the F-Area Field Research Site contains a large number of contaminants, the most important from a risk perspective being strontium-90 (Sr-90), uranium isotopes, I-129, tritium, and nitrate. Groundwater remains acidic, with pH as low as 3.2 near the basins and increasing to the background pH of approximately 5at the plume fringes. The field test was conducted in monitoring well FOB 16D, which historically has shown low pH and elevated concentrations of Sr-90, uranium, I-129 and tritium. The field test included three months of baseline monitoring followed by injection of a potassium humate solution and approximately four and half months of post monitoring. Samples were collected and analyzed for numerous constituents but the focus was on attenuation of uranium, Sr-90, and I-129. This report provides background information, methodology, and preliminary field results for a humate field test. Results from the field monitoring show that most of the excess humate (i.e., humate that did not sorb to the sediments) has flushed through the surrounding formation. Furthermore, the data indicate that the test was successful in loading a band of sediment surrounding the injection point to a point where pH could return to near normal during the study timeframe. Future work will involve a final report, which will include data trends, correlations and interpretations of laboratory data.

  20. Marine carbonate embayment system in an Eolian dune terrain, Permian Upper Minnelusa Formation, Rozet Area, Powder River Basin, Wyoming

    SciTech Connect (OSTI)

    Achauer, C.W.

    1987-05-01

    The eolian origin for Minnelusa sandstones has been stressed in numerous published articles. However, the dolomites that are interbedded with the eolian sandstones have received little attention. Isopach mapping of one of the dolomite units (Dolomite I) reflects a marine embayment system whose individual embayments range from 1/2 to 1 mi in width and trend primarily in a northwest direction. Consistently the embayment dolomites pinch out against the flanks of reworked, low relief, broad, eolian dune ridges. So far, 108 mi/sup 2/ of the Dolomite I marine embayment system have been mapped, but the overall extent of the system is undoubtedly much greater. Dolomite I is rarely cored, but cores from stratigraphically higher embayment dolomites in the upper Minnelusa show that these dolomites display the following, shoaling-upward sequence: (1) subtidal, sparingly fossiliferous dolomite; (2) intertidal, algal-laminated or brecciated or mud-cracked dolomite; and (3) very thin, supratidal, nodular anhydrite. The embayments, therefore, became the sites of marine sabkhas located between eolian dunes. Two main conclusions emerge from this study: (1) the juxtaposition of eolian sandstones and marine dolomites in a tectonically stable area suggests that eustatic sea level changes and a very arid climate were responsible for the marked environmental and lithologic changes observed in the upper Minnelusa, and (2) arid, coastal, evaporitic sabkhas bordered by eolian dunes are known from a number of modern and ancient cases, but marine carbonate embayments and associated evaporitic sabkhas that penetrate deeply into eolian sandstone terrains are rare.

  1. 100-N Area Strontium-90 Treatability Demonstration Project: Food Chain Transfer Studies for Phytoremediation Along the 100-N Columbia River Riparian Zone

    SciTech Connect (OSTI)

    Fellows, Robert J.; Fruchter, Jonathan S.; Driver, Crystal J.

    2009-04-01

    Strontium-90 (90Sr) exceeds the U.S. Environmental Protection Agency’s drinking water standards for groundwater (8 picocuries/L) by as much as a factor of 1000 at several locations within the Hanford 100-N Area and along the 100-N Area Columbia River shoreline). Phytoextraction, a managed remediation technology in which plants or integrated plant/rhizosphere systems are employed to phytoextract and/or sequester 90Sr, is being considered as a potential remediation system along the riparian zone of the Columbia River as part of a treatment train that includes an apatite barrier to immobilize groundwater transport of 90Sr. Phytoextraction would employ coyote willow (Salix exigua) to extract 90Sr from the vadose zone soil and aquifer sediments (phytoextraction) and filter 90Sr (rhizofiltration) from the shallow groundwater along the riparian zone of the Columbia River. The stem and foliage of coyote willows accumulating 90Sr may present not only a mechanism to remove the contaminant but also can be viewed as a source of nutrition for natural herbivores, therefore becoming a potential pathway for the isotope to enter the riparian food chain. Engineered barriers such as large and small animal fencing constructed around the field plot will control the intrusion of deer, rodents, birds, and humans. These efforts, however, will have limited effect on mobile phytophagous insects. Therefore, this study was undertaken to determine the potential for food chain transfer by insects prior to placement of the remediation technology at 100-N. Insect types include direct consumers of the sap or liquid content of the plants vascular system (xylem and phloem) by aphids as well as those that would directly consume the plant foliage such as the larvae (caterpillars) of Lepidoptera species. Heavy infestations of aphids feeding on the stems and leaves of willows growing in 90Sr-contaminated soil can accumulate a small amount (~0.15 ± 0.06%) of the total label removed from the soil by the plant over a 17-day exposure period. The 90Sr in the exuded honeydew during this period amounted to 1.17 ± 0.28% of this total label. The honeydew would eventually be deposited into the soil at the base of the plant, but the activity would be so dispersed as to be undetectable. Moth larvae will consume 90Sr contaminated leaves but retain very little of the label (~0.02%) and only that contained in their digestive tracts. As the moths pupated and became adults, they contained no detectable amounts of 90Sr. Over the 10-day exposure period, ~4% of the phytoextracted 90Sr was lost from the plant as moth feces. However, like the honeydew, feces dispersed into the soil were undetectable. As the plant diminishes the content of 90Sr in the soil, the activity of the label in the leaves and new stems would also diminish. The results of these studies indicate that the risk for detectable transfer of 90Sr from willow trees growing in the contaminated soil along the 100-N shoreline through the food chain of herbivorous insects would be very slight to non-existent

  2. Savannah River Site - Mixed Waste Management Facility Northwest...

    Energy Savers [EERE]

    state determination for entire site. Addthis Related Articles Savannah River Site - Mixed Waste Management Facility Northeast Plume Savannah River Site - D-Area Oil Seepage Basin...

  3. Savannah River Site - Mixed Waste Management Facility Northeast...

    Energy Savers [EERE]

    state determination for entire site. Addthis Related Articles Savannah River Site - Mixed Waste Management Facility Northwest Plume Savannah River Site - D-Area Oil Seepage Basin...

  4. Numerical simulation of groundwater flow and contaminant transport at the K, L, and P areas of the Savannah River Site, Aiken, South Carolina

    SciTech Connect (OSTI)

    Not Available

    1989-11-01

    The Department of Energy (DOE) is preparing an Environmental Impact Statement (EIS) as part of the process for continuing operation of three reactors at the Savannah River Site (SRS). As required by the National Environmental Policy Act (NEPA), the EIS must address the potential environmental consequences to human health and the environment of this major federal action.'' Some of the possible consequences are related to subsurface transport of radionuclides released to seepage basins during normal reactor operation. To assist in the evaluation of the potential subsurface environmental impacts of these releases, Camp Dresser McKee Inc. (CDM) was contracted in June of 1989 to develop a three-dimensional groundwater flow and contaminant transport model which will simulate the movement of radionuclides at each of the reactor areas after they enter the groundwater system through the seepage basins. This report describes the development, calibration, and simulation results of the groundwater flow and contaminant transport model developed for this task. 10 refs., 63 figs., 11 tabs.

  5. Preparation of transition metal nanoparticles and surfaces modified with (CO) polymers synthesized by RAFT

    DOE Patents [OSTI]

    McCormick, III, Charles L. (Hattiesburg, MS); Lowe, Andrew B. (Hattiesburg, MS); Sumerlin, Brent S. (Pittsburgh, PA)

    2006-10-25

    A new, facile, general one-phase method of generating thiol-functionalized transition metal nanoparticles and surface modified by (co)polymers synthesized by the RAFT method is described. The method includes the steps of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a collidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as fuctionalization with a variety of different chemical groups, expanding their utility and application.

  6. Preparation of transition metal nanoparticles and surfaces modified with (CO)polymers synthesized by RAFT

    DOE Patents [OSTI]

    McCormick, III., Charles L.; Lowe, Andrew B.; Sumerlin, Brent S.

    2006-11-21

    A new, facile, general one-phase method of generating thio-functionalized transition metal nanoparticles and surfaces modified by (co)polymers synthesized by the RAFT method is described. The method includes the stops of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a colloidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as functionalization with a variety of different chemical groups, expanding their utility and application.

  7. Preparation of transition metal nanoparticles and surfaces modified with (co)polymers synthesized by RAFT

    DOE Patents [OSTI]

    McCormick, III, Charles L. (Hattiesburg, MS); Lowe, Andrew B. (Hattiesburg, MS); Sumerlin, Brent S. (Pittsburgh, PA)

    2011-12-27

    A new, facile, general one-phase method of generating thiol-functionalized transition metal nanoparticles and surfaces modified by (co)polymers synthesized by the RAFT method is described. The method includes the steps of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a colloidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as functionalization with a variety of different chemical groups, expanding their utility and application.

  8. Tumor exosomes induce tunneling nanotubes in lipid raft-enriched regions of human mesothelioma cells

    SciTech Connect (OSTI)

    Thayanithy, Venugopal; Babatunde, Victor; Dickson, Elizabeth L.; Wong, Phillip; Oh, Sanghoon; Ke, Xu; Barlas, Afsar; Fujisawa, Sho; Romin, Yevgeniy; Moreira, André L.; Downey, Robert J.; Steer, Clifford J.; Subramanian, Subbaya; Manova-Todorova, Katia; Moore, Malcolm A.S.; Lou, Emil

    2014-04-15

    Tunneling nanotubes (TnTs) are long, non-adherent, actin-based cellular extensions that act as conduits for transport of cellular cargo between connected cells. The mechanisms of nanotube formation and the effects of the tumor microenvironment and cellular signals on TnT formation are unknown. In the present study, we explored exosomes as potential mediators of TnT formation in mesothelioma and the potential relationship of lipid rafts to TnT formation. Mesothelioma cells co-cultured with exogenous mesothelioma-derived exosomes formed more TnTs than cells cultured without exosomes within 24–48 h; and this effect was most prominent in media conditions (low-serum, hyperglycemic medium) that support TnT formation (1.3–1.9-fold difference). Fluorescence and electron microscopy confirmed the purity of isolated exosomes and revealed that they localized predominantly at the base of and within TnTs, in addition to the extracellular environment. Time-lapse microscopic imaging demonstrated uptake of tumor exosomes by TnTs, which facilitated intercellular transfer of these exosomes between connected cells. Mesothelioma cells connected via TnTs were also significantly enriched for lipid rafts at nearly a 2-fold higher number compared with cells not connected by TnTs. Our findings provide supportive evidence of exosomes as potential chemotactic stimuli for TnT formation, and also lipid raft formation as a potential biomarker for TnT-forming cells. - Highlights: • Exosomes derived from malignant cells can stimulate an increased rate in the formation of tunneling nanotubes. • Tunneling nanotubes can serve as conduits for intercellular transfer of these exosomes. • Most notably, exosomes derived from benign mesothelial cells had no effect on nanotube formation. • Cells forming nanotubes were enriched in lipid rafts at a greater number compared with cells not forming nanotubes. • Our findings suggest causal and potentially synergistic association of exosomes and tunneling nanotubes in cancer.

  9. RESOURCE CHARACTERIZATION AND QUANTIFICATION OF NATURAL GAS-HYDRATE AND ASSOCIATED FREE-GAS ACCUMULATIONS IN THE PRUDHOE BAY - KUPARUK RIVER AREA ON THE NORTH SLOPE OF ALASKA

    SciTech Connect (OSTI)

    Robert Hunter; Shirish Patil; Robert Casavant; Tim Collett

    2003-06-02

    Interim results are presented from the project designed to characterize, quantify, and determine the commercial feasibility of Alaska North Slope (ANS) gas-hydrate and associated free-gas resources in the Prudhoe Bay Unit (PBU), Kuparuk River Unit (KRU), and Milne Point Unit (MPU) areas. This collaborative research will provide practical input to reservoir and economic models, determine the technical feasibility of gas hydrate production, and influence future exploration and field extension of this potential ANS resource. The large magnitude of unconventional in-place gas (40-100 TCF) and conventional ANS gas commercialization evaluation creates industry-DOE alignment to assess this potential resource. This region uniquely combines known gas hydrate presence and existing production infrastructure. Many technical, economical, environmental, and safety issues require resolution before enabling gas hydrate commercial production. Gas hydrate energy resource potential has been studied for nearly three decades. However, this knowledge has not been applied to practical ANS gas hydrate resource development. ANS gas hydrate and associated free gas reservoirs are being studied to determine reservoir extent, stratigraphy, structure, continuity, quality, variability, and geophysical and petrophysical property distribution. Phase 1 will characterize reservoirs, lead to recoverable reserve and commercial potential estimates, and define procedures for gas hydrate drilling, data acquisition, completion, and production. Phases 2 and 3 will integrate well, core, log, and long-term production test data from additional wells, if justified by results from prior phases. The project could lead to future ANS gas hydrate pilot development. This project will help solve technical and economic issues to enable government and industry to make informed decisions regarding future commercialization of unconventional gas-hydrate resources.

  10. Environmental Assessment for the Closure of the High-Level Waste Tanks in F- & H-Areas at the Savannah River Site

    SciTech Connect (OSTI)

    N /A

    1996-07-31

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the closure of 51 high-level radioactive waste tanks and tank farm ancillary equipment (including transfer lines, evaporators, filters, pumps, etc) at the Savannah River Site (SRS) located near Aiken, South Carolina. The waste tanks are located in the F- and H-Areas of SRS and vary in capacity from 2,839,059 liters (750,000 gallons) to 4,921,035 liters (1,300,000 gallons). These in-ground tanks are surrounded by soil to provide shielding. The F- and H-Area High-Level Waste Tanks are operated under the authority of Industrial Wastewater Permits No.17,424-IW; No.14520, and No.14338 issued by the South Carolina Department of Health and Environmental Control (SCDHEC). In accordance with the Permit requirements, DOE has prepared a Closure Plan (DOE, 1996) and submitted it to SCDHEC for approval. The Closure Plan identifies all applicable or relevant and appropriate regulations, statutes, and DOE Orders for closing systems operated under the Industrial Wastewater Permits. When approved by SCDHEC, the Closure Plan will present the regulatory process for closing all of the F- and H-Area High Level Waste Tanks. The Closure Plan establishes performance objectives or criteria to be met prior to closing any tank, group of tanks, or ancillary tank farm equipment. The proposed action is to remove the residual wastes from the tanks and to fill the tanks with a material to prevent future collapse and bind up residual waste, to lower human health risks, and to increase safety in and around the tanks. If required, an engineered cap consisting of clay, backfill (soil), and vegetation as the final layer to prevent erosion would be applied over the tanks. The selection of tank system closure method will be evaluated against the following Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) criteria described in 40 CFR 300.430(e)(9): ( 1) overall protection of human health and the environment; (2) compliance with applicable or relevant and appropriated requirement: (ARARs); (3) long-term effectiveness and permanence; (4) reduction of toxicity, mobility, or volume through treatment; (5) short-term effectiveness; (6) implementability; (7) cost; (8) state acceptable; and (9) community acceptance. Closure of each tank involves two separate operations after bulk waste removal has been accomplished: (1) cleaning of the tank (i.e., removing the residual contaminants), and (2) the actual closure or filling of the tank with an inert material, (e.g., grout). This process would continue until all the tanks and ancillary equipment and systems have been closed. This is expected to be about year 2028 for Type I, II, and IV tanks and associated systems. Subsequent to that, Type III tanks and systems will be closed.

  11. Synthesis of Conducting Polymer-Metal Nanoparticle Hybrids Exploiting RAFT Polymerization

    E-Print Network [OSTI]

    Williams, Paul E.; Jones, Samuel T.; Walsh, Zarah; Appel, Eric A.; Abo-Hamed, Enass K.; Scherman, Oren A.

    2015-02-03

    Synthesis of Conducting Polymer-Metal Nanoparticle Hybrids Exploiting RAFT Polymerization Paul E. Williams†, Samuel T. Jones†, Zarah Walsh, Eric A. Appel, Enass K. Abo-Hamed, and Oren A. Scherman? Melville Laboratory for Polymer Synthesis, Department... ) Odoi, M. Y.; Hammer, N. I.; Sill, K.; Emrick, T.; Barnes, M. D. J. Am. Chem. Soc. 2006, 128, 3506–3507. (10) Milliron, D. J.; Alivisatos, A. P.; Pitois, C.; Edder, C.; Fréchet, J. M. J. Adv. Mater. 2003, 15, 58–61. (11) Milliron, D. J.; Gur, I...

  12. Biological monitoring of Upper Three Runs Creek, Savannah River Plant, Aiken County, South Carolina. Final report on macroinvertebrate stream assessments for F/H area ETF effluent discharge, July 1987--February 1990

    SciTech Connect (OSTI)

    Specht, W.L.

    1991-10-01

    In anticipation of the fall 1988 start up of effluent discharges into Upper Three Creek by the F/H Area Effluent Treatment Facility of the Savannah River Site, Aiken, SC, a two and one half year biological study was initiated in June 1987. Upper Three Runs Creek is an intensively studied fourth order stream known for its high species richness. Designed to assess the potential impact of F?H area effluent on the creek, the study includes qualitative and quantitative macroinvertebrate stream surveys at five sites, chronic toxicity testing of the effluent, water chemistry and bioaccumulation analysis. This final report presents the results of both pre-operational and post-operational qualitative and quantitative (artificial substrate) macroinvertebrate studies. Six quantitative and three qualitative studies were conducted prior to the initial release of the F/H ETF effluent and five quantitative and two qualitative studies were conducted post-operationally.

  13. Neuse River Basin, North Carolina Ecosystem Restoration Project

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Neuse River Basin, North Carolina Ecosystem Restoration Project 5 October 2012 ABSTRACT: The study area encompasses the Neuse River Basin, the third-largest river basin in North Carolina. The Basin, upstream of the city of New Bern, North Carolina. At New Bern the river broadens dramatically and changes

  14. Waste treatment capacity of raft hydroponic lettuce production in an integrated fish culture system and the contribution of lettuce to treatment capacity 

    E-Print Network [OSTI]

    Gloger, Kelly C

    1995-01-01

    Two experiments were conducted to determine: 1.) the waste treatment capacity of raft hydroponic lettuce production in an integrated fish culture system and 2.) the contribution of lettuce plants, Lactuca saliva, cv. Paris ...

  15. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Noosa FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    is information about: (Last updated June 2015) · Flood Risk · Previous Flooding · Flood Forecasting · Local Height Bulletins · Flood Classifications · Other Links Flood Risk The Noosa River has a catchment areaBureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Noosa FLOOD

  16. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Burrum and Cherwell

    E-Print Network [OSTI]

    Greenslade, Diana

    River at Howard Contained in this document is information about: (Last updated June 2015) · Flood Risk · Other Links Flood Risk The Burrum River catchment covers an area of about 935 square kilometres which and Cherwell FLOOD WARNING SYSTEM for the BURRUM AND CHERWELL RIVERS This brochure describes the flood warning

  17. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Lower FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    2015) · Flood Risk · Previous Flooding · Flood Forecasting · Local Information · Brisbane River ALERT Classifications · Other Links Flood Risk The Brisbane River catchment covers an area of approximately 15 Brisbane FLOOD WARNING SYSTEM for the BRISBANE RIVER BELOW WIVENHOE DAM TO BRISBANE CITY This brochure

  18. Economic and Technical Feasibility Study of Utility-Scale Wind Generation for the New York Buffalo River and South Buffalo Brownfield Opportunity Areas

    SciTech Connect (OSTI)

    Roberts, J. O.; Mosey, G.

    2014-04-01

    Through the RE-Powering America's Land initiative, the economic and technical feasibility of utilizing contaminated lands in the Buffalo, New York, area for utility-scale wind development is explored. The study found that there is available land, electrical infrastructure, wind resource, and local interest to support a commercial wind project; however, economies of scale and local electrical markets may need further investigation before significant investment is made into developing a wind project at the Buffalo Reuse Authority site.

  19. THE EEL (ANGUILLA ANGUILLA) POPULATIONS OF THE RIVER LEE SYSTEM T. K. McCarthy1*, J. Grennan1, M. Murray1 and D. Doherty1,2

    E-Print Network [OSTI]

    McCarthy, T.K.

    populations of the catchment area. The river was harnessed for hydroelectricity generation between 1953

  20. Hanford Site Waste Management Area C Performance Assessment ...

    Office of Environmental Management (EM)

    Waste Management Area C Performance Assessment (PA) Current Status Hanford Site Waste Management Area C Performance Assessment (PA) Current Status Marcel Bergeron Washignton River...

  1. FLOOD RESPONSE PLAN River Flood Guide

    E-Print Network [OSTI]

    Lennard, William N.

    1 FLOOD RESPONSE PLAN River Flood Guide Effective Date: January 2013 Updated: February 2014 #12 Thames River basin have the potential to cause flooding on Western properties. PURPOSE To establish areas) closing of parking lots and clearing of parked vehicles and other Western property in flood

  2. The insecticide 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (DDT) alters the membrane raft location of the TSH receptor stably expressed in Chinese hamster ovary cells

    SciTech Connect (OSTI)

    De Gregorio, Francesca; Pellegrino, Mario; Picchietti, Simona; Belardinelli, Maria C.; Taddei, Anna Rita; Fausto, Anna Maria; Rossi, Mario; Maggio, Roberto; Giorgi, Franco

    2011-06-01

    DDT is a highly lipophilic molecule known to deplete membrane rafts of their phosphoglycolipid and cholesterol contents. However, we have recently shown that DDT can also alter the thyroid homeostasis by inhibiting TSH receptor (TSHr) internalization. The present study was undertaken to verify whether DDT goitrogenic effects are due to the insecticide acting directly on TSHr or via alteration of the membrane rafts hosting the receptor itself. Our results demonstrate that, in CHO-TSHr transfected cells, TSHr is activated in the presence of TSH, while it is inhibited following DDT exposure. DDT can also reduce the endocytic vesicular traffic, alter the extension of multi-branched microvilli along their plasma membranes and induce TSHr shedding in vesicular forms. To verify whether TSHr displacement might depend on DDT altering the raft constitution of CHO-TSHr cell membranes the extent of TSHr and lipid raft co-localization was examined by confocal microscopy. Evidence shows that receptor/raft co-localization increased significantly upon exposure to TSH, while receptors and lipid rafts become dislodged on opposite cell poles in DDT-exposed CHO-TSHr cells. As a control, under similar culturing conditions, diphenylethylene, which is known to be a lipophilic substance that is structurally related to DDT, did not affect the extent of TSHr and lipid raft co-localization in CHO-TSHr cells treated with TSH. These findings corroborate and extend our view that, in CHO cells, the DDT disrupting action on TSHr is primarily due to the insecticide acting on membranes to deplete their raft cholesterol content, and that the resulting inhibition on TSHr internalization is due to receptor dislodgement from altered raft microdomains of the plasma membrane. - Highlights: >DDT is a pesticide with a severe environmental impact >Epidemiologic correlation exists between exposition to DDT and thyroid dysfunction >DDT is a lipophilic molecule that has been shown to inhibit TSH receptor function >DDT depletes membrane raft cholesterol content and by this way inhibits TSH receptor

  3. Savannah River Technology Center monthly report, January 1994

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    This is the monthly progress report for the Savannah River Technology Center, which covers the following areas of interest, Tritium, Separation processes, Environmental Issues, and Waste Management.

  4. Geological and geophysical studies of a geothermal area in the southern

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: EnergyGateway1997) | OpenRaft river valley, Idaho | Open

  5. Geology and Geothermal Potential of the Roosevelt Hot Springs Area, Beaver

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: EnergyGateway1997) | OpenRaft river valley, IdahoCounty,

  6. Progress Update: M Area Closure

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14

    A progress update of the Recovery Act at work at the Savannah River Site. The celebration of the first area cleanup completion with the help of the Recovery Act.

  7. Evaluation of testing and reservoir parameters in geothermal...

    Open Energy Info (EERE)

    to library Conference Proceedings: Evaluation of testing and reservoir parameters in geothermal wells at Raft River and Boise, Idaho Abstract Evaluating the Raft River and...

  8. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    in this document is information about: (Last updated June 2015) · Flood Risk · Previous Flooding · Flood Bulletins · Flood Classifications · Other Links Flood Risk The Proserpine River has a total catchment area FLOOD WARNING SYSTEM for the PROSERPINE RIVER This brochure describes the flood warning system operated

  9. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Don FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    in this document is information about: (Last updated June 2015) · Flood Risk · Previous Flooding · Flood Warnings and River Height Bulletins · Flood Classifications · Other Links Flood Risk The Don River drains occurs in the Queens Beach and Bowen delta areas and dwellings are at risk. Previous Flooding Since

  10. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Herbert FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    Risk · Previous Flooding · Flood Forecasting · Local Information · Flood ALERT System · Flood Warnings Flood Risk The Ross, Bohle and Black River catchments covers an area of 750 square kilometres. Two main FLOOD WARNING SYSTEM for the ROSS, BOHLE & BLACK RIVERS This brochure describes the flood warning system

  11. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Logan and Albert FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    June 2015) · Flood Risk · Previous Flooding · Flood Forecasting · Local Information · Flood Warnings Flood Risk The Logan River has a catchment area of about 3850 square kilometres and lies in the south and Albert FLOOD WARNING SYSTEM for the LOGAN & ALBERT RIVERS This brochure describes the flood warning

  12. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Condamine to Warwick

    E-Print Network [OSTI]

    Greenslade, Diana

    ) · Flood Risk · Previous Flooding · Flood Forecasting · Local Information · Warwick ALERT System · Flood · Other Links Flood Risk The Condamine River catchment to Warwick covers an area of approximately 1300 to Warwick FLOOD WARNING SYSTEM for the CONDAMINE RIVER TO WARWICK This brochure describes the flood warning

  13. Trouble along the Lower Colorado River Amy Chappelle, September 18, 2014 Beneath the surface of the Lower Colorado River lives a

    E-Print Network [OSTI]

    Rock, Chris

    of the Lower Colorado River lives a bottom feeder fish species that is currently listed as threatened in Texas-made dams, basins, and bridge abutments. This and the naturally shallow areas within the river

  14. Potomac River Fish Kills Study Areas

    E-Print Network [OSTI]

    Kane, Andrew S.

    /oomycete Raised clear, mucoid Fish Kills Potomac Drainage #12;4 Bacteria No consistent findings - LMBV and A lamellar fusion and inflammation Epithelial lifting, hypertrophy and Hyperplasia leading to fusion, mucous

  15. Navasota river crossings in a selected area 

    E-Print Network [OSTI]

    Andrews, George Thomas

    1994-01-01

    crossings at Bundrick Bridge, McRee's Bridge, Mesa Crossing, Davis Bridge and Fuqua Crossing, which are not in use today. We have located four other crossings that at this time remain nameless. The location of crossings must be determined through the use...

  16. Reese River Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/WaterEnergyRedfield CampusReedsville, Wisconsin: EnergyReese

  17. Ray River Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎Wind Farm JumpCity,Technology JumpRay

  18. Carson River Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla, Georgia: Energy014771°, -77.1888704° ShowWind

  19. New River Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation,NationalJersey/Incentives <EnergyOrleans

  20. River Basin Commissions (Indiana)

    Broader source: Energy.gov [DOE]

    This legislation establishes river basin commissions, for the Kankakee, Maumee, St. Joseph, and Upper Wabash Rivers. The commissions facilitate and foster cooperative planning and coordinated...

  1. Temperatures, heat flow, and water chemistry from drill holes in the Raft

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) | Open Energy InformationEnergy InformationRiver

  2. AREAS OF GROUND SUBSIDENCE DUE TO GEO-FLUID WITHDRAWAL

    E-Print Network [OSTI]

    Grimsrud, G. Paul

    2011-01-01

    constitute the main water-bearing units in the Raft Riverdescription of the main water- bearing units is from the

  3. Young Professionals in Nuclear Industry Group Forms at Savannah River Site

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – Supporting the development of young nuclear professionals in the Central Savannah River Area (CSRA) is the purpose behind a new group forming at the Savannah River Site (SRS).

  4. Categorical Exclusion Determinations: Western Area PowerAdministratio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center October 26, 2009 CX-005544: Categorical Exclusion Determination Power Rate Formula for the Provo River Project of the Western Area Power Administration CX(s) Applied:...

  5. Statistical and Realistic Numerical Model Investigations of Anthropogenic and Climatic Factors that Influence Hypoxic Area Variability in the Gulf of Mexico 

    E-Print Network [OSTI]

    Feng, Yang

    2012-07-16

    was caused by the increased anthropogenic nitrogen loading of the Mississippi River; however, the nitrogen-area relationship is complicated by many other factors, such as wind, river discharge, and the ratio of Mississippi to Atchafalaya River flow...

  6. River Corridor Achievements

    Broader source: Energy.gov [DOE]

    Washington Closure Hanford and previous contractors have completed much of the cleanup work in the River Corridor, shown here.

  7. Power Plant Power Plant

    E-Print Network [OSTI]

    Stillwater Power Plant Wabuska Power Plant Casa Diablo Power Plant Glass Mountain Geothermal Area Lassen Geothermal Area Coso Hot Springs Power Plants Lake City Geothermal Area Thermo Geothermal Area Lakeview Geothermal Area Raft River Geothermal Area Cove Fort Power Plant Roosevelt Power Plant Borax Lake

  8. New River Geothermal Exploration (Ram Power Inc.)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Miller, Clay

    2013-11-15

    The New River Geothermal Exploration (DOE Award No. EE0002843) is located approximately 25km south of the Salton Sea, near town of Brawley in Imperial County and approximately 150km east of San Diego, California. A total of 182 MT Logger sites were completed covering the two separate Mesquite and New River grids. The data was collected over a frequency range of 320Hz to 0.001Hz with variable site spacing. A number of different inversion algorithms in 1D, 2D and 3D were used to produce resistivity-depth profiles and maps of subsurface resistivity variations over the survey area. For 2D inversions, a total of eighteen lines were constructed in east-west and north-south orientations crossing the entire survey area. For MT 3D inversion, the New River property was divided in two sub-grids, Mesquite and New River areas. The report comprises of two parts. For the first part, inversions and geophysical interpretation results are presented with some recommendations of the potential targets for future follow up on the property. The second part of the report describes logistics of the survey, survey parameters, methodology and the survey results (data) in digital documents. The report reviews a Spartan MT survey carried out by Quantec Geoscience Limited over the New River Project in California, USA on behalf of Ram Power Inc. Data was acquired over a period of 29 days from 2010/06/26 to 2010/07/24.

  9. New River Geothermal Exploration (Ram Power Inc.)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Miller, Clay

    The New River Geothermal Exploration (DOE Award No. EE0002843) is located approximately 25km south of the Salton Sea, near town of Brawley in Imperial County and approximately 150km east of San Diego, California. A total of 182 MT Logger sites were completed covering the two separate Mesquite and New River grids. The data was collected over a frequency range of 320Hz to 0.001Hz with variable site spacing. A number of different inversion algorithms in 1D, 2D and 3D were used to produce resistivity-depth profiles and maps of subsurface resistivity variations over the survey area. For 2D inversions, a total of eighteen lines were constructed in east-west and north-south orientations crossing the entire survey area. For MT 3D inversion, the New River property was divided in two sub-grids, Mesquite and New River areas. The report comprises of two parts. For the first part, inversions and geophysical interpretation results are presented with some recommendations of the potential targets for future follow up on the property. The second part of the report describes logistics of the survey, survey parameters, methodology and the survey results (data) in digital documents. The report reviews a Spartan MT survey carried out by Quantec Geoscience Limited over the New River Project in California, USA on behalf of Ram Power Inc. Data was acquired over a period of 29 days from 2010/06/26 to 2010/07/24.

  10. Watershed modelling of hydrology and water quality in the Sacramento River watershed, California

    E-Print Network [OSTI]

    Zhang, Minghua

    Watershed modelling of hydrology and water quality in the Sacramento River watershed, California contamination in California's Sacramento River watershed where 8500 km2 of agricultural land influences water components were assessed for the Sacramento River watershed. To represent flood conveyance in the area

  11. Data banks for risk assessment at the Savannah River Site

    SciTech Connect (OSTI)

    Durant, W.S.; Lux, C.R.; Baughman, D.F.

    1990-01-01

    The Savannah River Site maintains a compilation of operating problems and equipment failures that have occurred in the fuel reprocessing and other areas in the form of computerized data banks. 14 refs., 25 figs.

  12. Preliminary Notice of Violation, Savannah River Nuclear Solutions...

    Energy Savers [EERE]

    Nuclear Solutions, LLC - WEA-2012-04 November 9, 2012 Issued to Savannah River Nuclear Solutions (SRNS), LLC, related to a Worker Fall from a Scaffold in the K-Area Complex at...

  13. Rediscovering the river : infill and adaptive reuse in Brattleboro, Vermont

    E-Print Network [OSTI]

    Bannister, Phillip A

    1984-01-01

    This thesis develops several ideas voiced by the citizens of Brattleboro. The first, the River Walk, is a pedestrian path at the rear of the downtown commercial area of town. Projections are made about the possible route ...

  14. Net Benefits to Agriculture from the Trinity River Project, Texas 

    E-Print Network [OSTI]

    Fish, B.; Williford, G.; Elling, H.; Lacewell, R. D.; Hosch, P.; Griffin, W.; Reddell, D. L.; Hiler, E. A.; Bausch, W.

    1976-01-01

    The purpose of this study was to estimate the agricultural benefits due to flood protection provided by the proposed Trinity River Project. The area examined was the land located between the 100-year flood plain with the project and without...

  15. Mercury in shallow Savannah River Plant soil

    SciTech Connect (OSTI)

    Carlton, W.H.; Price, V.; Cook, J.R.

    1988-10-01

    Soil concentrations of adsorbed mercury at 999 sites at the Savannah River Plant (SRP) were determined by Microseeps Limited of Indianola, PA. The sites were in and around the 643-C Burial Ground, at the Savannah River Swamp adjacent to TNX Area, and at a background area. The Burial Ground was chosen as a test site because of a history of disposal of radioactive mercury there prior to 1968. Extremely low traces of mercury have been detected in the water table beneath the Burial Ground. Although the mercury concentrations at the majority of these sites are at background levels, several areas appear to be anomalously high. In particular, an area of large magnitude anomaly was found in the northwest part of the Burial Ground. Three other single point anomalies and several other areas of more subtle but consistently high values were also found. Several sites with anomalous mercury levels were found in an area of the Savannah River flood plain adjacent to TNX Area.

  16. Savannah River Technology Center. Monthly report

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    This is a monthly progress report from the Savannah River Laboratory for the month of January 1993. It has sections with work in the areas of reactor safety, tritium processes and absorption, separations programs and wastes, environmental concerns and responses, waste management practices, and general concerns.

  17. Land Use Baseline Report Savannah River Site

    SciTech Connect (OSTI)

    Noah, J.C.

    1995-06-29

    This document is to serve as a resource for Savannah River Site managers, planners, and SRS stakeholders by providing a general description of the site and land-use factors important to future use decisions and plans. The intent of this document is to be comprehensive in its review of SRS and the surrounding area.

  18. d Onion River Review d river run by

    E-Print Network [OSTI]

    Weaver, Adam Lee

    d Onion River Review d 2009 d river run by Eireann Aspell Jamie Gorton Heidi Lynch Matt Serron #12 lives. #12;BLANK Editors' Note There were portents hinting at the Onion River Review's future as early

  19. Large River Floodplains

    E-Print Network [OSTI]

    Dunne, T; Aalto, RE

    2013-01-01

    River, California. Sedimentology 57, 389–407. http://J. (Eds. ), Fluvial Sedimentology VI. Special PublicationsAnatomy of an avulsion. Sedimentology 36, 1–24. Stallard,

  20. Equilibrium and transient morphologies of river networks : discriminating among fluvial erosion

    E-Print Network [OSTI]

    Gasparini, Nicole Marie, 1972-

    2003-01-01

    We examine the equilibrium and transient morphology of alluvial and bedrock river networks. We apply analytical methods and an iterative model to solve for equilibrium slope-area and texture- area (in alluvial networks) ...

  1. Snake and Columbia Rivers Sediment Sampling Project

    SciTech Connect (OSTI)

    Pinza, M.R.; Word, J.Q; Barrows, E.S.; Mayhew, H.L.; Clark, D.R. (Battelle/Marine Sciences Lab., Sequim, WA (United States))

    1992-12-01

    The disposal of dredged material in water is defined as a discharge under Section 404 of the Clean Water Act and must be evaluated in accordance with US Environmental Protection Agency regulation 40 CFR 230. Because contaminant loads in the dredged sediment or resuspended sediment may affect water quality or contaminant loading, the US Army Corps of Engineers (USACE), Walla Walla District, has requested Battelle/Marine Sciences Laboratory to collect and chemically analyze sediment samples from areas that may be dredged near the Port Authority piers on the Snake and Columbia rivers. Sediment samples were also collected at River Mile (RM) stations along the Snake River that may undergo resuspension of sediment as a result of the drawdown. Chemical analysis included grain size, total organic carbon, total volatile solids, ammonia, phosphorus, sulfides, oil and grease, total petroleum hydrocarbons, metals, polynuclear aromatic hydrocarbons, pesticides, polychlorinated biphenyls, and 21 congeners of polychlorinated dibenzodioxins and dibenzofurans.

  2. Onion River OnionRiverReview2011dd

    E-Print Network [OSTI]

    Weaver, Adam Lee

    2011 d river run by Lauren Fish Heather Lessard Jenna McCarthy Philip Noonan Erica Sabelawski #12;TheOnion River Review OnionRiverReview2011dd 2011 Our Lives in Dance Alex Dugas We were born with bare. Then we tap-danced on our graves, and back through the womb again, shoeless. #12;d Onion River Review d

  3. d Onion River Review d river run by

    E-Print Network [OSTI]

    Weaver, Adam Lee

    d Onion River Review d 2013 d river run by Alex Dugas Sarah Fraser Bryan Hickey Nick Lemon Diana Marchessault Mickey O'Neill Amy Wilson #12;#12;Editors' Note For this edition of the Onion River Review, we are finally able to present to you this year's edition of the Onion River Review: our love child, our shining

  4. Savannah River Site (SRS) environmental overview

    SciTech Connect (OSTI)

    O'Rear, M.G. ); Steele, J.L.; Kitchen, B.G. )

    1990-01-01

    The environmental surveillance activities at and in the vicinity of the Savannah River Site (SRS) (formerly the Savannah River Plant (SRP)) comprise one of the most comprehensive and extensive environmental monitoring programs in the United States. This overview contains monitoring data from routine and nonroutine radiological and nonradiological environmental surveillance activities, summaries of environmental protection programs in progress, a summary of National Environmental Policy Act (NEPA) activities, and a listing of environmental permits (Appendix A) issued by regulatory agencies. This overview provides information about the impact of SRS operations on the public and the environment. The SRS occupies a large area of approximately 300 square miles along the Savannah River, principally in Aiken and Barnwell counties of South Carolina. SRS's primary function is the production of tritium, plutonium, and other special nuclear materials for national defense, for other governmental uses, and for some civilian purposes. From August 1950 to March 31, 1989, SRS was operated for the Department of Energy (DOE) by E. I. du Pont de Nemours Co. On April 1, 1989 the Westinghouse Savannah River Company assumed responsibility as the prime contractor for the Savannah River Site.

  5. Rules of the River

    E-Print Network [OSTI]

    Anonymous,

    1980-01-01

    't overexert. Be careful of sunburn, heat exhaustion and heat stroke. ? Leave car keys hidden at launch point or take-out (with shuttle cars), or firmly attach them to an article of clothing on your person with a strong safety pin. Don't leave valuables... are organized into four parts: ? Planning Your River Trip ? Selecting Your Equipment ? Rules of Safety ? Rules of Conduct When put into practice, these "Rules of the River" may turn an uncomfortable river trip into a lasting and special experience. Read...

  6. On tropospheric rivers

    E-Print Network [OSTI]

    Hu, Yuanlong, 1964-

    2002-01-01

    In this thesis, we investigate atmospheric water vapor transport through a distinct synoptic phenomenon, namely, the Tropospheric River (TR), which is a local filamentary structure on a daily map of vertically integrated ...

  7. Floodplain River Foodwebs in the Lower Mekong Basin 

    E-Print Network [OSTI]

    Ou, Chouly

    2013-11-15

    Asia: China (Tibet), Myanmar, Laos, Thailand, Cambodia and Vietnam (the Mekong delta). The Mekong River Basin is divided into two main sections: the Upper Mekong, which spans from Jifu Mountains of Tibet Autonomous prefecture of China to the border... of Burma and Laos, and the Lower Mekong, which covers the area from the Burma-Laos border to the Mekong Delta in Vietnam. The Mekong River plays a crucial role in the economy of many of these countries. China benefits from the river primarily through...

  8. Savannah River Site Waste Disposition Project

    Office of Environmental Management (EM)

    Terrel J. Spears Assistant Manager Waste Disposition Project DOE Savannah River Operations Office Savannah River Site Savannah River Site Waste Disposition Project Waste...

  9. 300 Area Disturbance Report

    SciTech Connect (OSTI)

    LL Hale; MK Wright; NA Cadoret

    1999-01-07

    The objective of this study was to define areas of previous disturbance in the 300 Area of the U.S. Department of Energy (DOE) Hanford Site to eliminate these areas from the cultural resource review process, reduce cultural resource monitoring costs, and allow cultural resource specialists to focus on areas where subsurface disturbance is minimal or nonexistent. Research into available sources suggests that impacts from excavations have been significant wherever the following construction activities have occurred: building basements and pits, waste ponds, burial grounds, trenches, installation of subsurface pipelines, power poles, water hydrants, and well construction. Beyond the areas just mentioned, substrates in the' 300 Area consist of a complex, multidimen- sional mosaic composed of undisturbed stratigraphy, backfill, and disturbed sediments; Four Geographic Information System (GIS) maps were created to display known areas of disturbance in the 300 Area. These maps contain information gleaned from a variety of sources, but the primary sources include the Hanford GIS database system, engineer drawings, and historic maps. In addition to these maps, several assumptions can be made about areas of disturbance in the 300 Area as a result of this study: o o Buried pipelines are not always located where they are mapped. As a result, cultural resource monitors or specialists should not depend on maps depicting subsurface pipelines for accurate locations of previous disturbance. Temporary roads built in the early 1940s were placed on layers of sand and gravel 8 to 12 in. thick. Given this information, it is likely that substrates beneath these early roads are only minimally disturbed. Building foundations ranged from concrete slabs no more than 6 to 8 in. thick to deeply excavated pits and basements. Buildings constructed with slab foundations are more numerous than may be expected, and minimally disturbed substrates may be expected in these locations. Historic black and white photographs provide a partial record of some excavations, including trenches, building basements, and material lay-down yards. Estimates of excavation depth and width can be made, but these estimates are not accurate enough to pinpoint the exact location where the disturbedhmdisturbed interface is located (e.g., camera angles were such that depths and/or widths of excavations could not be accurately determined or estimated). In spite of these limitations, these photographs provide essential information. Aerial and historic low-level photographs have captured what appears to be backfill throughout much of the eastern portion of the 300 Area-near the Columbia River shoreline. This layer of fill has likely afforded some protection for the natural landscape buried beneath the fill. This assumption fits nicely with the intermittent and inadvertent discoveries of hearths and stone tools documented through the years in this part of the 300 Area. Conversely, leveling of sand dunes appears to be substantial in the northwestern portion of the 300 Area during the early stages of development. o Project files and engineer drawings do not contain information on any impromptu but necessary adjustments made on the ground during project implementation-after the design phase. Further, many projects are planned and mapped but never implemented-this information is also not often placed in project files. Specific recommendations for a 300 Area cultural resource monitoring strategy are contained in the final section of this document. In general, it is recommended that monitoring continue for all projects located within 400 m of the Columbia River. The 400-m zone is culturally sensitive and likely retains some of the most intact buried substrates in the 300 Area.

  10. Ecology of the river dolphin, Inia geoffrensis, in the Cinaruco River, Venezuela 

    E-Print Network [OSTI]

    McGuire, Tamara Lee

    1995-01-01

    The Cinaruco River is a tributary of the Orinoco River, and forms the southern boundary of Venezuela's newest national park, Santos Luzardo. Like other rivers of this region, the Cinaruco River undergoes an extreme seasonal flood cycle. River...

  11. Linking ecosystem services, rehabilitation, and river hydrogeomorphology

    E-Print Network [OSTI]

    Thorp, James H.

    2010-01-01

    to the evaluation of ecosystem services, re - habilitation, and fair asset trading (mitigation and offsets) because (a) appropriate river classification systems were unavailable or inadequately exploited, (b) techniques for evaluating services were underdeveloped... basements or loss of land or house. Asset trading (mitigation and offsets) Environmental mitigation involves minimization of dam- age to sensitive areas and improvement in the quality of other sites through environmental offsets—an approach not yet...

  12. 108 CHIH-KAI YANG AND CHUNG-KEE YEHInternational Agricultural Engineering Journal 2009, 18(1-2):1-13 HYDROLOGIC EVALUATION OF THE LOWER MEKONG RIVER BASIN WITH

    E-Print Network [OSTI]

    ) is the land area that includes the streams and rivers that run into the Mekong River. The headwaters commence(1-2):1-13 HYDROLOGIC EVALUATION OF THE LOWER MEKONG RIVER BASIN WITH THE SOIL AND WATER ASSESSMENT TOOL MODEL C. G, Texas A&M University, 77843-2120, USA 3 Mekong River Commission Secretariat, Vientiane, Lao PDR 4

  13. 100 Area and 300 Area Component of the RCBRA Fall 2005 Data Compilation

    SciTech Connect (OSTI)

    J.M. Queen

    2006-05-30

    The purpose of this report is to provide a brief description of the sampling approaches, a description of the samples collected, and the results for the Fall 2005 sampling event. This report presents the methods and results of the work to support the 100 Area and 300 Area Component of the River Corridor Baseline Risk Assessment.

  14. Engineering assessment of inactive uranium mill tailings, Green River Site, Green River, Utah

    SciTech Connect (OSTI)

    none,

    1981-08-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Green River site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Green River, Utah. This evaluation has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative remedial actions. Radon gas released from the 123,000 tons of tailings at the Green River site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors.

  15. Impact of water resource development on the hydrology and sedimentology of the Brazos River system 

    E-Print Network [OSTI]

    Minter, Larry Lane

    1976-01-01

    . Christopher C. Mathewson Major dam and reservoir development within the Brazos River Basin is correlative with a significant decrease in the suspended sediment load of the river and with increased coastal erosion rates near the delta. A hydrologic analysis... to account for the entire increase in the coastal erosion rates in the study area since at least 1937 Future sand losses brought about by the construction oi' new reservoirs downstream of those presently on the Brazos River, or one of its major tribu...

  16. Geothermal features of Snake River plain, Idaho

    SciTech Connect (OSTI)

    Blackwell, D.D.

    1987-08-01

    The Snake River plain is the track of a hot spot beneath the continental lithosphere. The track has passed through southern Idaho as the continental plate has moved over the hot spot at a rate of about 3.5 cm/yr. The present site of the hot spot is Yellowstone Park. As a consequence of the passage, a systematic sequence of geologic and tectonic events illustrates the response of the continental lithosphere to this hotspot event. The three areas that represent various time slices in the evolution are the Yellowstone Plateau, the Eastern Snake River plain downwarp, and the Western Snake River plain basin/Owhyee Plateau. In addition to the age of silicic volcanic activity, the topographic profile of the Snake River plain shows a systematic variation from the high elevations in the east to lowest elevations on the west. The change in elevation follows the form of an oceanic lithosphere cooling curve, suggesting that temperature change is the dominant effect on the elevation.

  17. d Onion River Review d river run by

    E-Print Network [OSTI]

    Weaver, Adam Lee

    d Onion River Review d 2012 d river run by Alex Dugas Lauren Fish Heather Lessard Jenna Mc jokes. Together these things helped shape the 2012 edition of the Onion River Review. A worthwhile departing on an adventure, you simply have no idea what will happen or who you will meet. You may run

  18. Rivanna River Basin Commission (Virginia)

    Broader source: Energy.gov [DOE]

    The Rivanna River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the Rivanna River...

  19. Deschutes River Spawning Gravel Study, Volume I, Final Report.

    SciTech Connect (OSTI)

    Huntington, Charles W.

    1985-09-01

    Spawning habitat in the Deschutes River was inventoried, gravel permeability and composition were sampled at selected gravel bars, historical flow records for the Deschutes were analyzed, salmon and trout utilization of spawning habitat was examined, and potential methods of enhancing spawning habitat in the river were explored. Some changes in river conditions since the mid-1960's were identified, including a reduction in spawning habitat immediately downstream from the hydroelectric complex. The 1964 flood was identified as a factor which profoundly affected spawning habitat in the river, and which greatly complicated efforts to identify recent changes which could be attributed to the hydrocomplex. A baseline on present gravel quality at both chinook and steelhead spawning areas in the river was established using a freeze-core methodology. Recommendations are made for enhancing spawning habitat in the Deschutes River, if it is independently determined that spawning habitat is presently limiting populations of summer steelhead or fall chinook in the river. 53 refs., 40 figs., 21 tabs.

  20. Rio Grande River

    E-Print Network [OSTI]

    Hills Photo Shop

    2011-09-05

    FORKS BIRDBEAR-NISKU JEFFERSON GROUP DUPEROW O (IJ o BEAVER HILL LAKE GR UP ELK POINT GROUP SOURIS RIVER Ist. RED BED DAWSON BAY 2ll(IRED BED PRAIRIE EVAP WI NI ASHERN INTERLAKE STONY MOUNTAIN RED RIVER WINN IP EG Figure 3... and is bounded by the Sioux Arch, the Black Hills Uplift, the Miles City Arch, and the Bowdoin Dome. The structural trends within the basin parallel the major structural trends of the Rocky Mountain Belt. The Williston Basin is characterized by gently...

  1. VOLUNTEER-BASED SALMON RIVER

    E-Print Network [OSTI]

    Institute Environment Canada VOLUNTEER-BASED MONITORING PROGRAM FOR THE SALMON RIVER BASIN: USING BENTHICVOLUNTEER-BASED MONITORING PROGRAM FOR THE SALMON RIVER BASIN: USING BENTHIC INDICATORS TO ASSESS INDICATORS TO ASSESS STREAM ECOSYSTEM HEALTH #12;Volunteer-Based Monitoring Program for the Salmon River

  2. UPPER SACRAMENTO RIVER SPORT FISHERY

    E-Print Network [OSTI]

    UPPER SACRAMENTO RIVER SPORT FISHERY Marine Biological Laborato«y L I B R. A. R "ST OCT 2 31950 significant changes in the environmental conditions which affect fisheries in Sacramento River have resulted number of sportsmen who are turning to the Upper Sacramento River is indicative of the magnitude

  3. Mitigation measures for fish habitat improvement in Alpine rivers affected by hydropower operations

    E-Print Network [OSTI]

    Mitigation measures for fish habitat improvement in Alpine rivers affected by hydropower operations In mountainous areas, high-head-storage hydropower plants produce peak load energy. The resulting unsteady water habitat improvement. This method was applied to an Alpine river downstream of a complex storage hydropower

  4. Northwest Power and Conservation Council Protected Areas Designations, Fish and Wildlife Program

    E-Print Network [OSTI]

    of capacity from this study that falls into the protected areas designations, the Northwest Hydroelectric run-of-the-river hydroelectric projects may not be able to be developed within a protected areas

  5. Savannah River Site Robotics

    ScienceCinema (OSTI)

    None

    2012-06-14

    Meet Sandmantis and Frankie, two advanced robotic devices that are key to cleanup at Savannah River Site. Sandmantis cleans hard, residual waste off huge underground storage tanks. Frankie is equipped with unique satellite capabilities and sensing abilties that can determine what chemicals still reside in the tanks in a cost effective manner.

  6. An Analysis of Texas Waterways: A Report on the Physical Characteristics of Rivers, Streams, and Bayous in Texas. 

    E-Print Network [OSTI]

    Belisle, Harold J.; Josselet, Ron

    1977-01-01

    Cree k San Jacinto River, East Fork Spring Creek Taylor Bayou Turkey Creek V. CENTRAL TEXAS WATE RWAYS A. Major Waterways Blanco River Bosque River Brazos River Colorado River Concho River . Frio River Guadalupe River Lampasas River... MAJOR CENTRAL TEXAS WATERWAYS 13. Blanco River 14. Bosque River 15. Brazos River 16. Colorado River 17. Concho River 18. Frio River 19. Guadal upe River 20. Lampasas River 21. Lavaca River 22. Leon River 23. Little River 24. Llano River 25...

  7. AN EVALUATION OF THE FISHERY RESOURCE IN A PORTION OF THE JAMES RIVER, SOUTH DAKOTA

    E-Print Network [OSTI]

    The fish populations of a 193 km (120 mil section of the James River between Tacoma Park and Redfield Tacoma Park and Redfield, South Dakota. The fishes use the area primarily as a spawning ground

  8. Screening model optimization for Panay River Basin planning in the Philippines

    E-Print Network [OSTI]

    Millspaugh, John Henry

    2010-01-01

    The state of the water resources of the Panay River Basin have motivated studies and initial basin planning to mitigate flood damages, to produce hydroelectricity, and to increase irrigated rice areas. The goal of this ...

  9. Site Selection for Concrete Batch Plant to Support Plutonium Disposition Facilities at the Savannah River Site

    SciTech Connect (OSTI)

    Wike, L.D.

    2001-06-15

    WSRC conducted a site selection study to identify, assess, and rank candidate sites for an onsite concrete batch plant at the Savannah River Site in the vicinity of F-Area.

  10. CONFLICTS IN RIVER MANAGEMENT: A CONSERVATIONIST'S PERSPECTIVE ON SACRAMENTO RIVER RIPARIAN HABITATS--

    E-Print Network [OSTI]

    CONFLICTS IN RIVER MANAGEMENT: A CONSERVATIONIST'S PERSPECTIVE ON SACRAMENTO RIVER RIPARIAN, Defenders of Wildlife, Sacramento, California. Abstract: The Sacramento River's historic riparian habi- tats on this conference's plenary session panel, I will provide a conservationist perspective on Sacramento River riparian

  11. Hood River Passive House

    SciTech Connect (OSTI)

    Hales, D.

    2013-03-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project.

  12. Salmon River Habitat Enhancement, Part 1, 1984 Annual Report.

    SciTech Connect (OSTI)

    Konopacky, Richard C.

    1985-06-01

    This volume contains reports on subprojects involving the determining of alternatives to enhance salmonid habitat on patented land in Bear Valley Creek, Idaho, coordination activities for habitat projects occurring on streams within fishing areas of the Shoshone-Bannock Indian Tribes, and habitat and fish inventories in the Salmon River. Separate abstracts have been prepared for individual reports. (ACR)

  13. Savannah River Technology Center monthly report, September 1992

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1992-09-01

    This is a monthly progress report from the Savannah River Laboratory for the month of September, 1992. It has sections dealing with work in the broad areas of reactor safety, tritium processes and absorption, separations programs and wastes, environmental concerns and responses, waste management practices, and general concerns.

  14. Vermont Flood Hazard Area and River Corridor General Permit Application |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, NewArkansas: EnergyVentnor City,Act|DivisionFPR: Land andOpen

  15. Vermont Flood Hazard Area and River Corridor Individual Permit Application

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, NewArkansas: EnergyVentnor City,Act|DivisionFPR: Land andOpen|

  16. Vermont Flood Hazard Area and River Corridor Protection Procedure | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, NewArkansas: EnergyVentnor City,Act|DivisionFPR: Land

  17. Compound and Elemental Analysis At Reese River Area (Henkle ...

    Open Energy Info (EERE)

    place between November 11 and November 14, 2007. One sample was taken from the Steiner Well which was the source for drilling water for the drilling of 56-4 and for the short...

  18. Geology of the upper James River area Mason County, Texas 

    E-Print Network [OSTI]

    White, Dixon Nesbit

    1961-01-01

    of tbe Riley foraation ~ ~ ~ ~ . ~ ~ ~ i 19 XV. Weathered surfaoo of bish' exhibiting typioal eoabbago- bead stru001zo ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ a ~ ~ ~ ~ ~ ~ ~ ~ ~ V, Rfohera @bish ooours 1n ths. aiddlo of tho Poiat Peak shale aeabor, Tho biobera bas Man... froa the outcrop aad lies in an 0'1eFCRI$04 positions ~ ~ ~ i ~ ~ ~ ~ ~ ~ ~ VI, Point peak shale on the nest bask of Roy Crmk near the northern interseotion of Rey Creek and the Jaaes RiVsr Roadp ' ~ ~ ~ ~ ~ ~ i...

  19. Savannah River Site - D-Area Groundwater | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummaryDIST OFMEAG, Dalton2Program SanEnergy1998Groundwater

  20. Geothermometry At New River Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky:Bore TechnologiesAssessmentOpenFishOpen Energy1976)|

  1. Magnetotellurics At New River Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 <Kentucky:York: EnergyMagnet1988) | OpenNew

  2. Lower Ray River Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 Jump to: navigation, search ToolWells andLower Ray

  3. Regional Nuclear Workforce Development in the Central Savannah River Area

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-RichProtonAbout Us HanfordReferenceReframingEnergy

  4. d Onion River Review d OnionRiverReview2010dd

    E-Print Network [OSTI]

    Weaver, Adam Lee

    ://www.smcvt.edu/onionriver/. #12;d Onion River Review d 2010 d river run by Eireann Aspell Lauren Fish Jamie Gorton Heidi Lynchd Onion River Review d 2010 d OnionRiverReview2010dd #12;The Onion River Review is the literary Matt Serron #12;BLANK Editors' Note The only certainty of the Onion River Review is the editors' un

  5. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen Generation |Publications TheGashome /Areas Research Areas

  6. 2004 Savannah River Cooling Tower Collection (U)

    SciTech Connect (OSTI)

    Garrett, Alfred [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Parker, Matthew J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Villa-Aleman, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2005-05-01

    The Savannah River National Laboratory (SRNL) collected ground truth in and around the Savannah River Site (SRS) F-Area cooling tower during the spring and summer of 2004. The ground truth data consisted of air temperatures and humidity inside and around the cooling tower, wind speed and direction, cooling water temperatures entering; inside adn leaving the cooling tower, cooling tower fan exhaust velocities and thermal images taken from helicopters. The F-Area cooling tower had six cells, some of which were operated with fans off during long periods of the collection. The operating status (fan on or off) for each of the six cells was derived from operations logbooks and added to the collection database. SRNL collected the F-Area cooling tower data to produce a database suitable for validation of a cooling tower model used by one of SRNL's customer agencies. SRNL considers the data to be accurate enough for use in a model validation effort. Also, the thermal images of the cooling tower decks and throats combined with the temperature measurements inside the tower provide valuable information about the appearance of cooling towers as a function of fan operating status and time of day.

  7. RiverHeath Appleton, WI

    Broader source: Energy.gov [DOE]

    The goal of the project is to produce a closed loop neighborhood-wide geothermal exchange system using the river as the source of heat exchange.

  8. Florida Nuclear Profile - Crystal River

    U.S. Energy Information Administration (EIA) Indexed Site

    Crystal River1" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  9. Louisiana Nuclear Profile - River Bend

    U.S. Energy Information Administration (EIA) Indexed Site

    River Bend" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  10. Rappahannock River Basin Commission (Virginia)

    Broader source: Energy.gov [DOE]

    The Rappahannock River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the...

  11. Susquehanna River Basin Compact (Maryland)

    Broader source: Energy.gov [DOE]

    This legislation enables the state's entrance into the Susquehanna River Basin Compact, which provides for the conservation, development, and administration of the water resources of the...

  12. Spatial design principles for sustainable hydropower development in river basins

    E-Print Network [OSTI]

    Jager, Henriette I.

    : Freshwater reserve design Hydroelectric power Network theory Optimization Regulated rivers River portfolio

  13. Preliminary Notice of Violation, Westinghouse Savannah River...

    Broader source: Energy.gov (indexed) [DOE]

    March 6, 2000 Issued to Westinghouse Savannah River Company, related to Procurement Quality Assurance and Quality Improvement Deficiencies at the Savannah River Site. On March 6,...

  14. Preliminary Notice of Violation, Westinghouse Savannah River...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA 98-09 Preliminary Notice of Violation, Westinghouse Savannah River Company - EA 98-09 September 21, 1998 Preliminary Notice of Violation issued to Westinghouse Savannah River...

  15. PIA - Savannah River Nuclear Solutions Electronic Safeguards...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic Safeguards Security System (E3S) PIA - Savannah River Nuclear Solutions Electronic Safeguards Security System (E3S) PIA - Savannah River Nuclear Solutions Electronic...

  16. Project Management Institute Highlights Savannah River Nuclear...

    Office of Environmental Management (EM)

    Management Institute Highlights Savannah River Nuclear Solutions in Publication Project Management Institute Highlights Savannah River Nuclear Solutions in Publication February 6,...

  17. Independent Oversight Review, Savannah River Operations Office...

    Office of Environmental Management (EM)

    Savannah River Operations Office - July 2013 Independent Oversight Review, Savannah River Operations Office - July 2013 July 2013 Review of the Employee Concerns Program at the...

  18. Flambeau River Biofuels Demonstration-Scale Biorefinery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Wisconsin (NewPage Corporation in Wisconsin Rapids and Flambeau River Papers, LLC in Park Falls). NewPage and Flambeau River have demonstrated successful collaboration on...

  19. Removal of River-Stage Fluctuations from Well Response Using Multiple-Regression

    SciTech Connect (OSTI)

    Spane, Frank A.; Mackley, Rob D.

    2011-11-01

    Many contaminated unconfined aquifers are located in proximity to river systems. In groundwater studies, the physical presence of a river is commonly represented as a transient-head boundary that imposes hydrologic responses within the intersected unconfined aquifer. The periodic fluctuation of river-stage height at the boundary produces associated responses within the adjacent aquifer system, the magnitude of which is a function of the existing well, aquifer, boundary conditions, and river-stage fluctuation characteristics. The presence of well responses induced by the river stage can significantly limit characterization and monitoring of remedial activities within the stress-impacted area. This paper demonstrates the use of a time-domain, multiple-regression, convolution (superposition) method to develop well/aquifer river response function (RRF) relationships. Following RRF development, a multiple-regression deconvolution correction approach can be applied to remove river-stage effects from well water-level responses. Corrected well responses can then be analyzed to improve local aquifer characterization activities in support of optimizing remedial actions, assessing the area-of-influence of remediation activities, and determining mean groundwater flow and contaminant flux to the river system.

  20. River Corridor - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultiday ProductionDesigningResourcesfeed-image Digg:RisingRiver

  1. GOLF COURSES FRASER RIVER BASIN

    E-Print Network [OSTI]

    : Fraser Pollution Abatement Office Fraser River Action Plan Environment Canada North Vancouver, B judgement in light of the knowledge and information available to UMA at the time of preparation. UMA denies by Environment Canada under the Fraser River Action Plan through the Fraser Pollution Abatement Office. The views

  2. Aquatic Supplement Hood River Subbasin

    E-Print Network [OSTI]

    . Table 4. Out-of-subbasin production for three Hood River steelhead populations. Table 5. Life cycle river mile 6 13 Dee ID seepage 13 cold springs 2 city of HR overflow? riverside drive reservoir? 2 stone springs 4 city of HR riverside drive reservoir? 4 middle fork coe branch 15 MFID 15 clear branch 19 MFID

  3. Glycosyl-phosphatidylinositol (GPI)-anchored membrane association of the porcine reproductive and respiratory syndrome virus GP4 glycoprotein and its co-localization with CD163 in lipid rafts

    SciTech Connect (OSTI)

    Du, Yijun [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States) [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States); Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan (China); Pattnaik, Asit K. [School of Veterinary Medicine and Biomedical Sciences and the Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900 (United States)] [School of Veterinary Medicine and Biomedical Sciences and the Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900 (United States); Song, Cheng [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States)] [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States); Yoo, Dongwan, E-mail: dyoo@illinois.edu [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States)] [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States); Li, Gang, E-mail: dyoo@illinois.edu [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States) [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States); Institute of Animal Science and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Beijing (China)

    2012-03-01

    The porcine reproductive and respiratory syndrome virus (PRRSV) glycoprotein 4 (GP4) resembles a typical type I membrane protein in its structure but lacks a hydrophilic tail at the C-terminus, suggesting that GP4 may be a lipid-anchored membrane protein. Using the human decay-accelerating factor (DAF; CD55), a known glycosyl-phosphatidylinositol (GPI) lipid-anchored protein, chimeric constructs were made to substitute the GPI-anchor domain of DAF with the putative lipid-anchor domain of GP4, and their membrane association and lipase cleavage were determined in cells. The DAF-GP4 fusion protein was transported to the plasma membrane and was cleaved by phosphatidylinositol-specific phospholipase C (PI-PLC), indicating that the C-terminal domain of GP4 functions as a GPI anchor. Mutational studies for residues adjacent to the GPI modification site and characterization of respective mutant viruses generated from infectious cDNA clones show that the ability of GP4 for membrane association corresponded to virus viability and growth characteristics. The residues T158 ({omega} - 2, where {omega} is the GPI moiety at E160), P159 ({omega} - 1), and M162 ({omega} + 2) of GP4 were determined to be important for virus replication, with M162 being of particular importance for virus infectivity. The complete removal of the peptide-anchor domain in GP4 resulted in a complete loss of virus infectivity. The depletion of cholesterol from the plasma membrane of cells reduced the virus production, suggesting a role of lipid rafts in PRRSV infection. Remarkably, GP4 was found to co-localize with CD163 in the lipid rafts on the plasma membrane. Since CD163 has been reported as a cellular receptor for PRRSV and GP4 has been shown to interact with this receptor, our data implicates an important role of lipid rafts during entry of the virus.

  4. Hood River Passive House

    SciTech Connect (OSTI)

    Hales, D.

    2014-01-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  5. Hood River Passive House

    SciTech Connect (OSTI)

    Hales, David

    2014-01-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to "reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  6. RIVER CORRIDOR BUILDINGS 324 & 327 CLEANUP

    SciTech Connect (OSTI)

    BAZZELL, K.D.; SMITH, B.A.

    2006-02-09

    A major challenge in the recently awarded River Corridor Closure (RCC) Contract at the U.S. Department of Energy's (DOE) Hanford Site is decontaminating and demolishing (D&D) facilities in the 300 Area. Located along the banks of the Columbia River about one mile north of Richland, Washington, the 2.5 km{sup 2} (1 mi{sup 2})300 Area comprises only a small part of the 1517 km{sup 2} (586 mi{sup 2}) Hanford Site. However, with more than 300 facilities ranging from clean to highly contaminated, D&D of those facilities represents a major challenge for Washington Closure Hanford (WCH), which manages the new RCC Project for DOE's Richland Operations Office (RL). A complicating factor for this work is the continued use of nearly a dozen facilities by the DOE's Pacific Northwest National Laboratory (PNNL). Most of the buildings will not be released to WCH until at least 2009--four years into the seven-year, $1.9 billion RCC Contract. The challenge will be to deactivate, decommission, decontaminate and demolish (D4) highly contaminated buildings, such as 324 and 327, without interrupting PNNL's operations in adjacent facilities. This paper focuses on the challenges associated with the D4 of the 324 Building and the 327 Building.

  7. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix O: Economic and Social Impact.

    SciTech Connect (OSTI)

    Columbia River System Operation Review (U.S.)

    1995-11-01

    This Appendix O of the Final Environmental Impact Statement for the Columbia River System measures the economic and social effects of the alternative system operation strategies and includes both geographic and methodology components. Areas discussed in detail include the following: purpose, scope and process; an economic history of the Columbia River Basin and its use today including the Columbia River and Socio-economic development in the Northwest and Major uses of the River System; Analysis procedures and methodologies including national economic evaluation, the concepts, analysis of assumptions, analysis for specific river uses, water quality, Regional evaluation, analysis, and social impacts; alternatives and impacts including implementation costs, andromous fish, resident fish and wildlife, flood control, irrigation and municipal and industrial water supply, navigation impacts, power, recreation, annual costs, regional economic analysis. Extensive comparison of alternatives is included.

  8. The Tritium Under-flow Study at the Savannah River Site

    SciTech Connect (OSTI)

    Hiergesell, Robert A.

    2008-01-15

    An issue of concern at the Savannah River Site (SRS) over the past 20 years is whether tritiated groundwater originating at SRS might be the cause of low levels of tritium measured in certain domestic wells in Georgia. Tritium activity levels in several domestic wells have been observed to occur at levels comparable to what is measured in rainfall in areas surrounding SRS. Since 1988, there has been speculation that tritiated groundwater from SRS could flow under the river and find its way into Georgia wells. A considerable effort was directed at assessing the likelihood of trans-river flow, and 44 wells have been drilled by the USGS and the Georgia Department of Natural Resources. Also, as part of the data collection and analysis, the USGS developed a numerical model during 1997-98 to assess the possibility for such trans-river flow to occur. The model represented the regional groundwater flow system surrounding the Savannah River Site (SRS) in seven layers corresponding to the underlying hydrostratigraphic units, which was regarded as sufficiently detailed to evaluate whether groundwater originating at SRS could possibly flow beneath the Savannah River into Georgia. The model was calibrated against a large database of water-level measurements obtained from wells on both sides of the Savannah River and screened in each of the hydrostratigraphic units represented within the model. The model results verified that the groundwater movement in all hydrostratigraphic units proceeds laterally toward the Savannah River from both South Carolina and Georgia, and discharges into the river. Once the model was calibrated, a particle-track analysis was conducted to delineate areas of potential trans-river flow. Trans-river flow can occur in either an eastward or westward direction. The model indicated that all locations of trans-river flow are restricted to the Savannah River's flood plain, where groundwater passes immediately prior to discharging into the river. Whether the trans-river flow is eastward or westward depends primarily on the position of the Savannah River as it meanders back and forth within the flood plain and is limited to narrow sections of land adjacent to the river. With respect to the only location of westward trans-river flow that has a recharge area within the SRS, the new evaluations of hypothetical pumping scenarios indicated that only a very slight impact is incurred, even under the most extreme groundwater extraction scenario. The updated model did not result in a significant change in the location of the recharge areas at SRS and the only impact was measured in slight changes in the travel times associated with the travel path. The median groundwater travel times for particles released under each of the 4 groundwater extraction scenarios ranged from 366 to 507 years while. Under the most extreme scenario, that under which SRS groundwater extraction is discontinued, the shortest travel time was reduced from 90 to 79 years. It should be emphasized that the groundwater transit times do not include the time required for groundwater to migrate vertically downward across the uppermost aquifer (i.e. at the recharge area), thus the actual groundwater travel times could be up to several decades longer than what was calculated in the model. The exhaustive evaluations that have been conducted indicates that it is highly unlikely that tritiated groundwater originating at the SRS could migrate into Georgia and explain the low tritium activity levels that were originally observed in certain domestic water supply wells. Considering that those wells were located at some distance (several km) from the Savannah River, a far more likely explanation is that tritiated rainfall infiltrated the subsurface and recharged the shallow aquifer within which the well was finished.

  9. Savannah River Site Environmental Data for 1998

    SciTech Connect (OSTI)

    Arnett, M.

    1999-06-09

    This document presents data from Savannah River Site routine effluent monitoring and environmental surveillance programs.

  10. Wood River Levee Reconstruction, Madison County, IL

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Wood River Levee Reconstruction, Madison County, IL 25 October 2006 Abstract: The recommended plan provides for flood damage reduction and restores the original degree of protection of the Wood River Levee-federal sponsor is the Wood River Drainage and Levee District. The Wood River Levee System was authorized

  11. The Columbia River Estuary the Columbia River Basin

    E-Print Network [OSTI]

    " fish and wildlife in the Columbia River as affected by development and operation of the hydroelectric modified in terms of physical and biological processes. The development and operation of the hydroelectric

  12. Hydrological urbanism in China's Pearl River Delta : how water landscape shapes the urban form in a changing climate

    E-Print Network [OSTI]

    Ma, Wenji, S.M. Massachusetts Institute of Technology

    2015-01-01

    When standing among urban villages, residential towers and warehouses in an urbanizing city in the Pearl River delta (PRD), it is hard to imagine that just forty years ago this area was filled with streams, ponds and rice ...

  13. Dayao County Yupao River BasDayao County Yupao River Basin Hydro...

    Open Energy Info (EERE)

    Dayao County Yupao River BasDayao County Yupao River Basin Hydro electricity Development Co Ltd in Jump to: navigation, search Name: Dayao County Yupao River BasDayao County Yupao...

  14. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Mary FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    Risk · Previous Flooding · Flood Forecasting · Local Information · Flood Warnings and Bulletins · Interpreting Flood Warnings and River Height Bulletins · Flood Classifications · Other Links Flood RiskBureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Mary FLOOD

  15. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Nerang FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    is information about: (Last updated June 2015) · Flood Risk · Previous Flooding · Flood Forecasting · Local Height Bulletins · Flood Classifications · Other Links Flood Risk The Nerang River catchment is locatedBureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Nerang FLOOD

  16. The River Runs Dry: Examining Water Shortages in the Yellow River Basin

    E-Print Network [OSTI]

    Zusman, Eric

    2000-01-01

    in Transition Zusman/The River Runs Dry Wang Liurong.YRCC’sin Transition Zusman/The River Runs Dry not just importantin Transition Zusman/The River Runs Dry emerging market

  17. Geology of the central part of the James River Valley, Mason County, Texas 

    E-Print Network [OSTI]

    Dannemiller, George David

    1957-01-01

    ~ ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ P LATE I ~ II ' XIII' ILLUSTHATIOJJS GEOLOGIC J"A: AND CROSS SECTIONS GF THF CENTRAL PART OP THE JAMi'S RIVER VALLEY MASON COUNTY, IIJDr~ MAP OP THE CENTRAL PART OP HJ? JAMES RIVER VALLEY, MASON COUNTY, TEXAS ~ "WAGON TRACKS~ IN THE UPPER... VALLEY, RA~OR COURTY, TEXAS ABSTRACT The Central Part of the James River Valley is located ln south-central mason County, southwest of the town of' %aeon, Rock units of Uppex O'brien, Lower Ordovician, and Quaternary age sre found in the area, Ihe...

  18. Exhibit D: Mirant Potomac River Schedule of Unit Operations:...

    Broader source: Energy.gov (indexed) [DOE]

    Operating Plan of Mirant Potomac River, LLC Exhibit D: Mirant Potomac River Schedule of Unit Operations More Documents & Publications Exhibit D: Mirant Potomac River Schedule of...

  19. Sacramento River Steelhead: Hatchery vs. Natural Smolt Outmigration

    E-Print Network [OSTI]

    Sandstrom, Phil

    2012-01-01

    DELTA SCIENCE PROGRAM Sacramento River Steelhead: HatcheryUC Davis BACKGROUND The Sacramento River steelhead trout (a tributary of the upper Sacramento River. Smolts are young,

  20. EA-1692: Red River Environmental Products, LLC Activated Carbon...

    Office of Environmental Management (EM)

    2: Red River Environmental Products, LLC Activated Carbon Manufacturing Facility, Red River Parish, LA EA-1692: Red River Environmental Products, LLC Activated Carbon Manufacturing...

  1. 2011 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    SciTech Connect (OSTI)

    West, W. J.; Lucas, J. G.; Gano, K. A.

    2011-11-14

    This report documents the status of revegetation projects and natural resources mitigation efforts conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 cleanup of National Priorities List waste sites at Hanford. This report contains the vegetation monitoring data that was collected in the spring and summer of 2011 from the River Corridor Closure Contractor’s revegetation and mitigation areas on the Hanford Site.

  2. 2010 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    SciTech Connect (OSTI)

    C. T. Lindsey, A. L. Johnson

    2010-09-30

    This report documents eh status of revegetation projects and natural resources mitigation efforts conducted for remediated waste sites and other activities associated with CERLA cleanup of National Priorities List waste sites at Hanford. This report contains vegetation monitoring data that were collected in the spring and summer of 2010 from the River Corridor Closure Contract’s revegetation and mitigation areas on the Hanford Site.

  3. Salmon River Habitat Enhancement, 1984 Annual Report.

    SciTech Connect (OSTI)

    Konopacky, Richard C.

    1986-04-01

    This report has four volumes: a Tribal project annual report (Part 1) and three reports (Parts 2, 3, and 4) prepared for the Tribes by their engineering subcontractor. The Tribal project annual report contains reports for four subprojects within Project 83-359. Subproject I involved habitat and fish inventories in Bear Valley Creek, Valley County, Idaho that will be used to evaluate responses to ongoing habitat enhancement. Subproject II is the coordination/planning activities of the Project Leader in relation to other BPA-funded habitat enhancement projects that have or will occur within the traditional Treaty (Fort Bridger Treaty of 1868) fishing areas of the Shoshone-Bannock Tribes, Fort Hall Reservation, Idaho. Subproject III involved habitat and fish inventories (pretreatment) and habitat problem identification on the Yankee Fork of the Salmon River (including Jordan Creek). Subproject IV during 1985 involved habitat problem identification in the East Fork of the Salmon River and habitat and fish inventories (pretreatment) in Herd Creek, a tributary to the East Fork.

  4. Savannah River site environmental report for 1996

    SciTech Connect (OSTI)

    Arnett, M.; Mamatey, A.

    1998-12-31

    The mission at the Savannah River Site (SRS) has changed from the production of nuclear weapons materials for national defense to the management of site-generated waste, restoration of the surrounding environment, and the development of industry in and around the site. However, SRS-through its prime operating contractor, Westinghouse Savannah River Company (WSRC)-continues to maintain a comprehensive environmental monitoring program. In 1996, effluent monitoring and environmental surveillance were conducted within a 31,000-square-mile area in and around SRS that includes neighboring cities, towns, and counties in Georgia and South Carolina and extends up to 100 miles from the site. Though the environmental monitoring program was streamlined in 1996-to improve its cost-effectiveness without compromising data quality or reducing its overall ability to produce critical information-thousands of samples of air, surface water, groundwater, food products, drinking water, wildlife, rainwater, soil, sediment, and vegetation were collected and analyzed for radioactive and nonradioactive contaminants.

  5. Reintroduction of Lower Columbia River Chum Salmon into Duncan Creek, 2007 Annual Report.

    SciTech Connect (OSTI)

    Hillson, Todd D.

    2009-06-12

    The National Marine Fisheries Service (NMFS) listed Lower Columbia River (LCR) chum salmon as threatened under the Endangered Species Act (ESA) in March, 1999 (64 FR 14508, March 25, 1999). The listing was in response to the reduction in abundance from historical levels of more than one-half million returning adults to fewer than 10,000 present-day spawners. Harvest, habitat degradation, changes in flow regimes, riverbed movement and heavy siltation have been largely responsible for this decline. The timing of seasonal changes in river flow and water temperatures is perhaps the most critical factor in structuring the freshwater life history of this species. This is especially true of the population located directly below Bonneville Dam, where hydropower operations can block access to spawning sites, dewater redds, strand fry, cause scour or fill of redds and increase sedimentation of spawning gravels. Prior to 1997, only two chum salmon populations were recognized as genetically distinct in the Columbia River, although spawning had been documented in many Lower Columbia River tributaries. The first population was in the Grays River (RKm 34), a tributary of the Columbia River, and the second was a group of spawners utilizing the mainstem Columbia River just below Bonneville Dam (RKm 235) adjacent to Ives Island and in Hardy and Hamilton creeks. Using additional DNA samples, Small et al. (2006) grouped chum salmon spawning in the mainstem Columbia River and the Washington State tributaries into three groups: the Coastal, the Cascade and the Gorge. The Coastal group comprises those spawning in the Grays River, Skamokawa Creek and the broodstock used at the Sea Resources facility on the Chinook River. The Cascade group comprises those spawning in the Cowlitz (both summer and fall stocks), Kalama, Lewis, and East Fork Lewis rivers, with most supporting unique populations. The Gorge group comprises those spawning in the mainstem Columbia River from the I-205 Bridge up to Bonneville Dam and those spawning in Hamilton and Hardy creeks. Response to the federal ESA listing has been primarily through direct-recovery actions: reducing harvest, hatchery supplementation using local broodstock for populations at catastrophic risk, habitat restoration (including construction of spawning channels) and flow agreements to protect spawning and rearing areas. Both state and federal agencies have built controlled spawning areas. In 1998, the Washington Department of Fish and Wildlife (WDFW) began a chum salmon supplementation program using native stock on the Grays River. This program was expanded during 1999 - 2001 to include reintroduction into the Chinook River using eggs from the Grays River Supplementation Program. These eggs are incubated at the Grays River Hatchery, reared to release size at the Sea Resources Hatchery on the Chinook River, and the fry are released at the mouth of the Chinook River. Native steelhead, chum, and coho salmon are present in Duncan Creek, and are recognized as subpopulations of the Lower Gorge population, and are focal species in the Lower Columbia Fish Recovery Board (LCFRB) plan. Steelhead, chum and coho salmon that spawn in Duncan Creek are listed as Threatened under the ESA. Duncan Creek is classified by the LCFRB plan as a watershed for intensive monitoring (LCFRB 2004). This project was identified in the 2004 Federal Columbia River Power System (FCRPS) revised Biological Opinion (revised BiOp) to increase survival of chum salmon, 'BPA will continue to fund the program to re-introduce Columbia River chum salmon into Duncan Creek as long as NOAA Fisheries determines it to be an essential and effective contribution to reducing the risk of extinction for this ESU'. (USACE et al. 2004, page 85-86). The Governors Forum on Monitoring and Salmon Recovery and Watershed Health recommends one major population from each ESU have adult and juvenile monitoring. Duncan Creek chum salmon are identified in this plan to be intensively monitored. Planners recommended that a combination of natural and hatchery production

  6. Bonneville - Hood River Vegetation Management Environmental Assessment

    SciTech Connect (OSTI)

    N /A

    1998-08-01

    To maintain the reliability of its electrical system, BPA, in cooperation with the U.S. Forest Service, needs to expand the range of vegetation management options used to clear unwanted vegetation on about 20 miles of BPA transmission line right-of-way between Bonneville Dam and Hood River; Oregon, within the Columbia Gorge National Scenic Area (NSA). We propose to continue controlling undesirable vegetation using a program of Integrated Vegetation Management (IVM) which includes manual, biological and chemical treatment methods. BPA has prepared an Environmental Assessment (EA) (DOE/EA-1257) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and BPA is issuing this FONSI.

  7. Savannah River Site Environmental Report for 1994

    SciTech Connect (OSTI)

    Arnett, M.W.; Mamatey, A.; Spitzer, D.

    1994-12-16

    The mission at the Savannah River Site has changed from producing nuclear weapons materials for national defense to managing the waste it has generated, restoring the environment, and enhancing industrial development in and around the site. But no matter what the site`s mission is, it will continue to maintain its comprehensive environmental monitoring and surveillance program. In 1994, effluent monitoring and environmental surveillance were conducted within a 30,000-square-mile area in and around SRS that includes neighboring cities, towns, and counties in Georgia and South Carolina and extends up to 100 miles from the site. Thousands of samples of air, surface water, groundwater, foodstuffs, drinking water, wildlife, rainwater, soil, sediment, and vegetation were collected and analyzed for radioactive and nonradioactive contaminants.

  8. Preliminary Notice of Violation, Westinghouse Savannah River...

    Broader source: Energy.gov (indexed) [DOE]

    8, 2000 Issued to Westinghouse Savannah River Company, related to Unplanned Exposures and Radioactive Material Intakes at the Savannah River Site (EA-2000-08) On July 18, 2000, the...

  9. BITTERROOT RIVER SUBBASIN INVENTORY FOR FISH AND

    E-Print Network [OSTI]

    of the Columbia River hydropower system. Nothing in this Plan, or the participation in its development, or related to, the development and operation of the Columbia River hydropower system. Nothing in this Plan

  10. BITTERROOT RIVER SUBBASIN MANAGEMENT PLAN FOR FISH

    E-Print Network [OSTI]

    from the development and operation of the Columbia River hydropower system. Nothing in this Plan and exclusively resulting from, or related to, the development and operation of the Columbia River hydropower

  11. WAMweisman art museum 333 east river road

    E-Print Network [OSTI]

    Thomas, David D.

    WAMweisman art museum press release 333 east river road minneapolis, MN 55455 www government that allowed tax-supported institutions (like the University of Minnesota) to acquire these works: The Weisman is located at 333 E. River Road in

  12. INTEGRATED RIVER QUALITY MANAGEMENT USING INTERNET TECHNOLOGIES

    E-Print Network [OSTI]

    INTEGRATED RIVER QUALITY MANAGEMENT USING INTERNET TECHNOLOGIES P. Cianchi*, S. Marsili such a computing architecture can be implemented using current internet technologies. Based on the "intelligent a normal web browser. KEYWORDS River water quality, Environmental management, Internet computing, Systems

  13. Bureau Home > Australia> Queensland> Rainfall& River Conditions > River Brochures> Barron FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    in this document is information about: (Last updated June 2015) · Flood Risk · Previous Flooding · Flood Warning and River Height Bulletins · Flood Classifications · Other Links Flood Risk The Barron River has a catchmentBureau Home > Australia> Queensland> Rainfall& River Conditions > River Brochures> Barron FLOOD

  14. Effect of spill on adult salmon passage delay at Columbia River and Snake River dams

    E-Print Network [OSTI]

    Washington at Seattle, University of

    Effect of spill on adult salmon passage delay at Columbia River and Snake River dams W. Nicholas dams in the Columbia/Snake River hydrosystem may delay the upstream passage of the adults. To evaluate-to-day variations of spill and upstream fish passage at the eight dams of the Columbia/Snake river hydrosystem

  15. In-River Backwards Run Reconstruction of Fraser River Sockeye Fisheries from 2002 -2009 and

    E-Print Network [OSTI]

    In-River Backwards Run Reconstruction of Fraser River Sockeye Fisheries from 2002 - 2009: Master of Resource Management Title of Research Project: In-River Backwards Run Reconstruction of Fraser managers I develop an in-river backwards run reconstruction to provide Conservation Unit (CU) specific

  16. Hydropower production and river rehabilitation: A case study on an alpine river

    E-Print Network [OSTI]

    Introduction For centuries, man has modified running waters [51]. In alpine rivers, production of hydropower of power plants are commonly in use: (1) run-of-river power plants that continuously pro- cessHydropower production and river rehabilitation: A case study on an alpine river M. Fette & C. Weber

  17. Grays River Watershed Geomorphic Analysis

    SciTech Connect (OSTI)

    Geist, David R.

    2005-04-30

    This investigation, completed for the Pacific Northwest National Laboratory (PNNL), is part of the Grays River Watershed and Biological Assessment commissioned by Bonneville Power Administration under project number 2003-013-00 to assess impacts on salmon habitat in the upper Grays River watershed and present recommendations for habitat improvement. This report presents the findings of the geomorphic assessment and is intended to support the overall PNNL project by evaluating the following: 􀂃 The effects of historical and current land use practices on erosion and sedimentation within the channel network 􀂃 The ways in which these effects have influenced the sediment budget of the upper watershed 􀂃 The resulting responses in the main stem Grays River upstream of State Highway 4 􀂃 The past and future implications for salmon habi

  18. Bayer Material Science (TRL 1 2 3 System)- River Devices to Recover Energy with Advanced Materials(River DREAM)

    Broader source: Energy.gov [DOE]

    Bayer Material Science (TRL 1 2 3 System) - River Devices to Recover Energy with Advanced Materials(River DREAM)

  19. Columbia River Component Data Evaluation Summary Report

    SciTech Connect (OSTI)

    C.S. Cearlock

    2006-08-02

    The purpose of the Columbia River Component Data Compilation and Evaluation task was to compile, review, and evaluate existing information for constituents that may have been released to the Columbia River due to Hanford Site operations. Through this effort an extensive compilation of information pertaining to Hanford Site-related contaminants released to the Columbia River has been completed for almost 965 km of the river.

  20. Irrigation Depletions 1928-1989 : 1990 Level of Irrigation, Snake Yakima and Deschutes River Basins.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administation; A.G. Crook Company

    1993-07-01

    The vast amount of irrigation in relation to the available water and extensive system of reservoirs located in the Snake River Basin above Brownlee reservoir precludes this area from using methods such as Blaney-Criddle for estimating irrigation depletions. Also the hydrology, irrigation growth patterns, and water supply problems are unique and complex. Therefore regulation studies were utilized to reflect the net effect on streamflow of the changes in irrigated acreage in terms of corresponding changes in storage regulation and in the amount of water depleted and diverted from and returned to the river system. The regulation study for 1990 conditions was conducted by the Idaho Department of Water Resources. The end product of the basin simulation is 61 years of regulated flows at various points in the river system that are based on 1990 conditions. Data used by the Idaho Department of Water Resources is presented in this section and includes natural gains to the river system and diversions from the river system based on a 1990 level of development and operation criteria. Additional information can be obtained for an Idaho Department of Water Resources Open-File Report ``Stream Flows in the Snake River Basin 1989 Conditions of Use and Management`` dated June 1991. Similar considerations apply to the Yakima and Deschutes river basins.

  1. Forrest Conservation Area : Management & Implementation FY 2004 Annual Report.

    SciTech Connect (OSTI)

    Smith, Brent

    2008-12-01

    The Confederated Tribes of Warm Springs Reservation of Oregon (Tribes) acquired the Forrest Conservation Area during July of 2002. The property is located in the Upper John Day subbasin within the Columbia basin. The property consists of two parcels comprising 4,232 acres. The Mainstem parcel consists of 3,445 acres and is located 1/2 mile to the east of Prairie City, Oregon on the mainstem John Day River. The Middle Fork parcel consists of 786 acres and is located one mile to the west of the town of Austin, OR on the Middle Fork John Day River. The Forrest Conservation Area is under a memorandum of agreement with the Bonneville Power Administration (BPA) to provide an annual written report generally describing the real property interests of the project and management activities undertaken or in progress. Acquisition of the Forrest Conservation Area was funded by BPA as part of their program to protect, mitigate, and enhance fish and wildlife habitat affected by hydroelectric facilities on the Columbia River and its tributaries. The intent of the Conservation Area is to partially mitigate fish and wildlife impacts for the John Day Dam on the Columbia River as outlined in the Northwest Power Planning Council's Wildlife Program (NPPC 1994, {section}11.1, {section}7.6). While the Tribes hold fee-title to the property, the BPA has assured a level of management funding for the protection and restoration of fish and wildlife habitat through a memorandum of agreement.

  2. Final Review of Safety Assessment Issues at Savannah River Site, August 2011

    SciTech Connect (OSTI)

    Napier, Bruce A.; Rishel, Jeremy P.; Bixler, Nathan E.

    2011-12-15

    At the request of Savannah River Nuclear Solutions (SRNS) management, a review team composed of experts in atmospheric transport modeling for environmental radiation dose assessment convened at the Savannah River Site (SRS) on August 29-30, 2011. Though the meeting was prompted initially by suspected issues related to the treatment of surface roughness inherent in the SRS meteorological dataset and its treatment in the MELCOR Accident Consequence Code System Version 2 (MACCS2), various topical areas were discussed that are relevant to performing safety assessments at SRS; this final report addresses these topical areas.

  3. Diets of the Arkansas River Shiner and Peppered Chub in the Canadian River, New Mexico and Texas

    E-Print Network [OSTI]

    Wilde, Gene

    Diets of the Arkansas River Shiner and Peppered Chub in the Canadian River, New Mexico and Texas)collectedfrom the Canadian River in New Mexico andTexasfrom September1996to August 1998. Both the Ark~n~~ River streamsand rivers of the Arkansas River drainage systemof Arkansas,Colorado, Kansas,New Mexico, Kansas

  4. Wildlife Management Areas (Florida)

    Broader source: Energy.gov [DOE]

    Certain sites in Florida are designated as wildlife management areas, and construction and development is heavily restricted in these areas.

  5. River and Plateau Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100NationalquestionnairesDrought-induced forestNovember 2012) Page 1 Area

  6. Transportation Packages to Support Savannah River Site Missions

    SciTech Connect (OSTI)

    Opperman, E.

    2001-08-20

    The Savannah River Site's missions have expanded from primarily a defense mission to one that includes environmental cleanup and the stabilization, storage, and preparation for final disposition of nuclear materials. The development of packaging and the transportation of radioactive materials are playing an ever-increasing role in the successful completion of the site's missions. This paper describes the Savannah River Site and the three strategic mission areas of (1) nuclear materials stewardship, (2) environmental stewardship, and (3) nuclear weapons stockpile stewardship. The materials and components that need to be shipped, and associated packaging, will be described for each of the mission areas. The diverse range of materials requiring shipment include spent fuel, irradiated target assemblies, excess plutonium and uranium materials, high level waste canisters, transuranic wastes, mixed and low level wastes, and nuclear weapons stockpile materials and components. Since many of these materials have been in prolonged storage or resulted from disassembly of components, the composition, size and shape of the materials present packaging and certification challenges that need to be met. Over 30 different package designs are required to support the site's missions. Approximately 15 inbound shipping-legs transport materials into the Savannah River Site and the same number (15) of outgoing shipment-legs are carrying materials from the site for further processing or permanent disposal.

  7. Page 1 of 5 NWPPC. 1992. Response to comments: 1992 protected areas rulemaking (92-26; Supp. A). Washington

    E-Print Network [OSTI]

    of small. run-of-the-river hydro project. (Agency will probably support.) Methow ;Basin tributaries. Add protected for resident fish and wildlife to unprotected. Submitted by Nooksack River Hydro. Reason: project area not important for species of concern. If approved, this change would allow construction of hydro

  8. The "dead zone" is a large area of decreased dissolved oxygen concentration in bottom waters that forms

    E-Print Network [OSTI]

    Dodds, Walter

    that forms each summer in the northern Gulf of Mexico. This hypoxic zone (HZ) is formally defined as an area human activi- ties are loaded into the Gulf of Mexico via the Mississippi and Atchafalaya Rivers agricultural activities in the Mississippi River drainage basin and entering the Gulf of Mexico, was thought

  9. Shallow water areas (defined as areas with less than 6 feet of water) are important components of the shoreline ecosystem providing food

    E-Print Network [OSTI]

    dredge to create deep water access to large creeks and rivers. After the initial impacts from-boatable areas. In this way activities in a confined area (e.g. shallow water) can affect both birds and deep of deep water shoreline. As populations on the coastal plain of Virginia grow, more and more development

  10. Grays River Watershed and Biological Assessment, 2006 Final Report.

    SciTech Connect (OSTI)

    May, Christopher; Geist, David

    2007-04-01

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic habitat conditions, and biological integrity. In addition, human land-use impacts are factored into the conceptual model because they can alter habitat quality and can disrupt natural habitat forming processes. In this model (Figure S.1), aquatic habitat--both instream and riparian--is viewed as the link between watershed conditions and biologic responses. Based on this conceptual model, assessment of habitat loss and the resultant declines in salmonid populations can be conducted by relating current and historical (e.g., natural) habitat conditions to salmonid utilization, diversity, and abundance. In addition, assessing disrupted ecosystem functions and processes within the watershed can aid in identifying the causes of habitat change and the associated decline in biological integrity. In this same way, restoration, enhancement, and conservation projects can be identified and prioritized. A watershed assessment is primarily a landscape-scale evaluation of current watershed conditions and the associated hydrogeomorphic riverine processes. The watershed assessment conducted for this project focused on watershed processes that form and maintain salmonid habitat. Landscape metrics describing the level of human alteration of natural ecosystem attributes were used as indicators of water quality, hydrology, channel geomorphology, instream habitat, and biotic integrity. Ecological (watershed) processes are related to and can be predicted based on specific aspects of spatial pattern. This study evaluated the hydrologic regime, sediment delivery regime, and riparian condition of the sub-watersheds that comprise the upper Grays River watershed relative to their natural range of conditions. Analyses relied primarily on available geographic information system (GIS) data describing landscape characteristics such as climate, vegetation type and maturity, geology and soils, topography, land use, and road density. In addition to watershed-scale landscape characteristics, the study area was also evaluated on the riparian scale, with appropriate landscape variables analyzed within

  11. Grays River Watershed and Biological Assessment Final Report 2006.

    SciTech Connect (OSTI)

    May, Christopher W.; McGrath, Kathleen E.; Geist, David R.; Abbe, Timothy; Barton, Chase

    2008-02-04

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic habitat conditions, and biological integrity. In addition, human land-use impacts are factored into the conceptual model because they can alter habitat quality and can disrupt natural habitat-forming processes. In this model (Figure S.1), aquatic habitat--both instream and riparian--is viewed as the link between watershed conditions and biologic responses. Based on this conceptual model, assessment of habitat loss and the resultant declines in salmonid populations can be conducted by relating current and historical (e.g., natural) habitat conditions to salmonid utilization, diversity, and abundance. In addition, assessing disrupted ecosystem functions and processes within the watershed can aid in identifying the causes of habitat change and the associated decline in biological integrity. In this same way, restoration, enhancement, and conservation projects can be identified and prioritized. A watershed assessment is primarily a landscape-scale evaluation of current watershed conditions and the associated hydrogeomorphic riverine processes. The watershed assessment conducted for this project focused on watershed processes that form and maintain salmonid habitat. Landscape metrics describing the level of human alteration of natural ecosystem attributes were used as indicators of water quality, hydrology, channel geomorphology, instream habitat, and biotic integrity. Ecological (watershed) processes are related to and can be predicted based on specific aspects of spatial pattern. This study evaluated the hydrologic regime, sediment delivery regime, and riparian condition of the sub-watersheds that comprise the upper Grays River watershed relative to their natural range of conditions. Analyses relied primarily on available geographic information system (GIS) data describing landscape characteristics such as climate, vegetation type and maturity, geology and soils, topography, land use, and road density. In addition to watershed-scale landscape characteristics, the study area was also evaluated on the riparian scale, with appropriate landscape variables analyzed within

  12. Columbia River: Terminal fisheries research project. 1994 Annual report

    SciTech Connect (OSTI)

    Hirose, P.; Miller, M.; Hill, J.

    1996-12-01

    Columbia River terminal fisheries have been conducted in Youngs Bay, Oregon, since the early 1960`s targeting coho salmon produced at the state facility on the North Fork Klaskanine River. In 1977 the Clatsop County Economic Development Council`s (CEDC) Fisheries Project began augmenting the Oregon Department of Fish and Wildlife production efforts. Together ODFW and CEDC smolt releases totaled 5,060,000 coho and 411,300 spring chinook in 1993 with most of the releases from the net pen acclimation program. During 1980-82 fall commercial terminal fisheries were conducted adjacent to the mouth of Big Creek in Oregon. All past terminal fisheries were successful in harvesting surplus hatchery fish with minimal impact on nonlocal weak stocks. In 1993 the Northwest Power Planning Council recommended in its` Strategy for Salmon that terminal fishing sites be identified and developed. The Council called on the Bonneville Power Administration to fund a 10-year study to investigate the feasibility of creating and expanding terminal known stock fisheries in the Columbia River Basin. The findings of the initial year of the study are included in this report. The geographic area considered for study extends from Bonneville Dam to the river mouth. The initial year`s work is the beginning of a 2-year research stage to investigate potential sites, salmon stocks, and methodologies; a second 3-year stage will focus on expansion in Youngs Bay and experimental releases into sites with greatest potential; and a final 5-year phase establishing programs at full capacity at all acceptable sites. After ranking all possible sites using five harvest and five rearing criteria, four sites in Oregon (Tongue Point, Blind Slough, Clifton Channel and Wallace Slough) and three in Washington (Deep River, Steamboat Slough and Cathlamet Channel) were chosen for study.

  13. River System Hydrology in Texas 

    E-Print Network [OSTI]

    Wurbs, R.; Zhang, Y.

    2014-01-01

    and databases maintained by the Texas Water Development Board and the U.S. Geological Survey. River basin volume budgets and trend and frequency metrics for simulated naturalized and regulated stream flows and reservoir storage are developed using the WAM System...

  14. Environmental audit of the Savannah River Ecology Laboratory (SREL)

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    This report documents the results of the environmental audit conducted at the Savannah River Ecology Laboratory (SREL) at the Savannah River Site (SRS), principally in Aiken and Barnwell Counties, South Carolina. The audit was conducted by the US Department of Energy`s (DOE`s), Office of Environmental Audit (EH-24), beginning September 13, 1993, and ending September 23, 1993. The scope of the audit at SREL was comprehensive, addressing environmental activities in the technical areas of air; surface water/drinking water; groundwater/soil, sediment, and biota; waste management; toxic and chemical materials; inactive Waste sites; radiation; quality assurance; and environmental management. Specifically assessed was the compliance of SREL operations and activities with Federal, state, and local regulations; DOE Orders; and best management practices.

  15. Savannah River Site 1992 ALARA goals

    SciTech Connect (OSTI)

    Smith, L.S.

    1992-06-01

    The ALARA Goals for the Savannah River Site (SRS) for 1992 have been established by the operating Divisions/Departments and totaled for the anticipated scope of sitewide work. Goals for maximum individual exposure and personnel contamination cases have been reduced from 1991 actual data. The goal for assimilations of radionuclides remains at zero. The 633.20 rem cumulative exposure goal is constituted of special work operations and base routine operations, respectively 244.68 rem and 388.52 rem. The cumulative exposure goal is an increase of 50% over the 1991 data to support the start up to K Reactor, operations of FB Line and scheduled special work. The 633.20 rem is 4% less than the 1990 data. Additionally, three reduction goals have been established to demonstrate a decrease in the Site overall radiological hazard. These reduction goals are for the size of airborne activity and contamination areas and the number of contamination events occurring outside a radiologically controlled area (RCA). The ALARA program is documented in the recently revised SRS ALARA Guide (October 1991).

  16. Savannah River Site 1992 ALARA goals

    SciTech Connect (OSTI)

    Smith, L.S.

    1992-01-01

    The ALARA Goals for the Savannah River Site (SRS) for 1992 have been established by the operating Divisions/Departments and totaled for the anticipated scope of sitewide work. Goals for maximum individual exposure and personnel contamination cases have been reduced from 1991 actual data. The goal for assimilations of radionuclides remains at zero. The 633.20 rem cumulative exposure goal is constituted of special work operations and base routine operations, respectively 244.68 rem and 388.52 rem. The cumulative exposure goal is an increase of 50% over the 1991 data to support the start up to K Reactor, operations of FB Line and scheduled special work. The 633.20 rem is 4% less than the 1990 data. Additionally, three reduction goals have been established to demonstrate a decrease in the Site overall radiological hazard. These reduction goals are for the size of airborne activity and contamination areas and the number of contamination events occurring outside a radiologically controlled area (RCA). The ALARA program is documented in the recently revised SRS ALARA Guide (October 1991).

  17. Area Activation 1 Running Head: AREA ACTIVATION

    E-Print Network [OSTI]

    Pomplun, Marc

    Area Activation 1 Running Head: AREA ACTIVATION Advancing Area Activation towards a General Model at Boston 100 Morrissey Boulevard Boston, MA 02125-3393 USA Phone: 617-287-6485 Fax: 617-287-6433 e. Without great effort, human observers clearly outperform every current artificial vision system in tasks

  18. Historical Shoreline Evolution as a Response to Dam Placement on the Elwha River, Washington

    E-Print Network [OSTI]

    Nagid, Bethany Marie

    2015-01-01

    of the Elwha River, Washington- Biological and physicalthe Elwha River, Washington, U.S. , Fisheries Management &on the Elwha River, Washington, USA: River channel and

  19. SAVANNAH RIVER SITE ENVIRONMENTAL REPORT FOR 2010

    SciTech Connect (OSTI)

    Mamatey, A.; Dunaway-Ackerman, J.

    2011-08-16

    This report was prepared in accordance with U.S. Department of Energy (DOE) Order 231.1A, 'Environment, Safety and Health Reporting,' to present summary environmental data for the purpose of: (a) characterizing site's environmental management performance; (b) summarizing environmental occurrences and responses reported during the calendar year; (c) describing compliance status with respect to environmental standards and requirements; and (d) highlighting significant site programs and efforts. This report is the principal document that demonstrates compliance with the requirements of DOE Order 5400.5, 'Radiation Protection of the Public and the Environment,' and is a key component of DOE's effort to keep the public informed of environmental conditions at Savannah River Site (SRS). SRS has four primary missions: (1) Environmental Management - Cleaning up the legacy of the Cold War efforts and preparing decommissioned facilities and areas for long-term stewardship; (2) Nuclear Weapons Stockpile Support - Meeting the needs of the U.S. nuclear weapons stockpile through the tritium programs of the National Nuclear Security Administration (NNSA); (3) Nuclear Nonproliferation Support - Meeting the needs of the NNSA's nuclear nonproliferation programs by safely storing and dispositioning excess special nuclear materials; and (4) Research and Development - Supporting the application of science by the Savannah River National Laboratory (SRNL) to meet the needs of SRS, the DOE complex, and other federal agencies During 2010, SRS worked to fulfill these missions and position the site for future operations. SRS continued to work with the South Carolina Department of Health and Environmental Control (SCDHEC), the Environmental Protection Agency (EPA), and the Nuclear Regulatory Commission to find and implement solutions and schedules for waste management and disposition. As part of its mission to clean up the Cold War legacy, SRS will continue to address the highest-risk waste management issues by safely storing and preparing liquid waste and nuclear materials for disposition, and by safely stabilizing any tank waste residues that remain on site.

  20. A Day in the Life of the Hudson River 10/16/14 & 10/20/14 Data (Salt Front RM 65.9 & 63.6)

    E-Print Network [OSTI]

    Lance, Veronica P.

    MILE East River 1 East ­ Brooklyn Bridge Park P Janet Villas, Brooklyn Friends School, 28 (11th & 12th @ the new Brooklyn Bridge Park Area: 100% Urban/residential Surrounding Land Use: Urban residential 100

  1. Savannah River Plant/Savannah River Laboratory radiation exposure report

    SciTech Connect (OSTI)

    Rogers, C.D.; Hyman, S.D.; Keisler, L.L. and Co., Aiken, SC . Savannah River Plant); Reeder, D.F.; Jolly, L.; Spoerner, M.T.; Schramm, G.R. and Co., Aiken, SC . Savannah River Lab.)

    1989-01-01

    The protection of worker health and safety is of paramount concern at the Savannah River Site. Since the site is one of the largest nuclear sites in the nation, radiation safety is a key element in the protection program. This report is a compendium of the results in 1988 of the programs at the Savannah River Plant and the Savannah River Laboratory to protect the radiological health of employees. By any measure, the radiation protection performance at this site in 1988 was the best since the beginning of operations. This accomplishment was made possible by the commitment and support at all levels of the organizations to reduce radiation exposures to ALARA (As Low As Reasonably Achievable). The report provides detailed information about the radiation doses received by departments and work groups within these organizations. It also includes exposure data for recent years to allow Plant and Laboratory units to track the effectiveness of their ALARA efforts. Many of the successful practices and methods that reduced radiation exposure are described. A new goal for personnel contamination cases has been established for 1989. Only through continual and innovative efforts to minimize exposures can the goals be met. The radiation protection goals for 1989 and previous years are included in the report. 27 figs., 58 tabs.

  2. Updated Conceptual Model for the 300 Area Uranium Groundwater Plume

    SciTech Connect (OSTI)

    Zachara, John M.; Freshley, Mark D.; Last, George V.; Peterson, Robert E.; Bjornstad, Bruce N.

    2012-11-01

    The 300 Area uranium groundwater plume in the 300-FF-5 Operable Unit is residual from past discharge of nuclear fuel fabrication wastes to a number of liquid (and solid) disposal sites. The source zones in the disposal sites were remediated by excavation and backfilled to grade, but sorbed uranium remains in deeper, unexcavated vadose zone sediments. In spite of source term removal, the groundwater plume has shown remarkable persistence, with concentrations exceeding the drinking water standard over an area of approximately 1 km2. The plume resides within a coupled vadose zone, groundwater, river zone system of immense complexity and scale. Interactions between geologic structure, the hydrologic system driven by the Columbia River, groundwater-river exchange points, and the geochemistry of uranium contribute to persistence of the plume. The U.S. Department of Energy (DOE) recently completed a Remedial Investigation/Feasibility Study (RI/FS) to document characterization of the 300 Area uranium plume and plan for beginning to implement proposed remedial actions. As part of the RI/FS document, a conceptual model was developed that integrates knowledge of the hydrogeologic and geochemical properties of the 300 Area and controlling processes to yield an understanding of how the system behaves and the variables that control it. Recent results from the Hanford Integrated Field Research Challenge site and the Subsurface Biogeochemistry Scientific Focus Area Project funded by the DOE Office of Science were used to update the conceptual model and provide an assessment of key factors controlling plume persistence.

  3. Savannah River Laboratory Decontamination Program

    SciTech Connect (OSTI)

    Rankin, W.N.

    1991-01-01

    Savannah River Laboratory (SRL) has had a Decontamination and Decommissioning (D D) Technology program since 1981. The objective of this program is to provide state-of-the-art technology for use in D D operations that will enable our customers to minimize waste generated and personal exposure, increase productivity and safety, and to minimize the potential for release and uptake of radioactive material. The program identifies and evaluates existing technology, develops new technology, and provides technical assistance to implement its use onsite. This program has impacted not only the Savannah River Site (SRS), but the entire Department of Energy (DOE) complex. To document and communicate the technology generated by this program, 28 papers have been presented at National and International meetings in the United States and Foreign Countries.

  4. Savannah River Laboratory Decontamination Program

    SciTech Connect (OSTI)

    Rankin, W.N.

    1991-12-31

    Savannah River Laboratory (SRL) has had a Decontamination and Decommissioning (D&D) Technology program since 1981. The objective of this program is to provide state-of-the-art technology for use in D&D operations that will enable our customers to minimize waste generated and personal exposure, increase productivity and safety, and to minimize the potential for release and uptake of radioactive material. The program identifies and evaluates existing technology, develops new technology, and provides technical assistance to implement its use onsite. This program has impacted not only the Savannah River Site (SRS), but the entire Department of Energy (DOE) complex. To document and communicate the technology generated by this program, 28 papers have been presented at National and International meetings in the United States and Foreign Countries.

  5. Salinity Budget and WRAP Salinity Simulation Studies of the Brazos River/Reservoir System 

    E-Print Network [OSTI]

    Wurbs, Ralph; Lee, Chihun

    2009-01-01

    Reservoirs on the Brazos River .......................... 16 1.5 Reservoir Storage Capacity ....................................................................................................... 16 1.6 Watershed Drainage Area and Lake Surface...-of-Anlaysis Covered by USGS Observed Data ...................... 45 3.8 Observed Storage and Outflow Concentrations for Lake Whitney ........................................ 66 4.1 Comparison of Means for Upstream Reach...

  6. EIS-0121: Alternative Cooling Water Systems, Savannah River Plant, Aiken, South Carolina

    Office of Energy Efficiency and Renewable Energy (EERE)

    The purpose of this Environmental Impact Statement (EIS) is to provide environmental input into the selection and implementation of cooling water systems for thermal discharges from K– and C-Reactors and from a coal-fired powerhouse in the D-Area at the Savannah River Plant (SRP)

  7. The relationship between tibetan snow depth, ENSO, river discharge and the monsoons of Bangladesh

    E-Print Network [OSTI]

    Kaplan, Alexey

    The relationship between tibetan snow depth, ENSO, river discharge and the monsoons of Bangladesh, we examine the interannual variability of the monsoon rains of Bangladesh, an area greatly affected of Bengal storm surge. For the twentieth century, we found Bangladesh monsoon rainfall (BMR

  8. Two-dimensional river modeling 

    E-Print Network [OSTI]

    Thompson, James Cameron

    1988-01-01

    heavily vegetated flood plain. It is found that the two-dimensional model can determine the flow more completely and more accurately than a corresponding one- dimensional model. Two-dimensional models are best applied where the flow conditions... committee, W. P. James, R. A. Wurbs, and R. 0. Reid, for their support and interest in this research. Dr. James, in particular, has shown great foresight in supporting broader use of two-dimensional river modeling. Dave Froehlich deserves much...

  9. Savannah River | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-AA-1 SECTION JSTEM-ing theSummarySavannah River Site

  10. The Columbia River System : the Inside Story.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1991-09-01

    The Columbia Ricer is one of the greatest natural resources in the western United States. The river and its tributaries touch the lives of nearly every resident of the Northwest-from providing the world-famous Pacific salmon to supplying the clean natural fuel for over 75 percent of the region's electrical generation. Since early in the century, public and private agencies have labored to capture the benefits of this dynamic river. Today, dozens of major water resource projects throughout the region are fed by the waters of the Columbia Basin river system. And through cooperative efforts, the floods that periodically threaten developments near the river can be controlled. This publication presents a detailed explanation of the planning and operation of the multiple-use dams and reservoirs of the Columbia River system. It describes the river system, those who operate and use it, the agreements and policies that guide system operation, and annual planning for multiple-use operation.

  11. Savannah River Site RCRA/CERCLA/NEPA integrated investigation case study

    SciTech Connect (OSTI)

    Clark, D.R.; Thomas, R.; Wilson, M.P.

    1992-01-01

    The Savannah River Site (SRS) is a US Department of Energy facility placed on the Superfund National Priority List in 1989. Numerous past disposal facilities and contaminated areas are undergoing the integrated regulatory remediation process detailed in the draft SRS Federal Facility Agreement. This paper will discuss the integration of these requirements by highlighting the investigation of the D-Area Burning/Rubble Pits, a typical waste unit at SRS.

  12. Savannah River Site RCRA/CERCLA/NEPA integrated investigation case study

    SciTech Connect (OSTI)

    Clark, D.R.; Thomas, R.; Wilson, M.P.

    1992-07-01

    The Savannah River Site (SRS) is a US Department of Energy facility placed on the Superfund National Priority List in 1989. Numerous past disposal facilities and contaminated areas are undergoing the integrated regulatory remediation process detailed in the draft SRS Federal Facility Agreement. This paper will discuss the integration of these requirements by highlighting the investigation of the D-Area Burning/Rubble Pits, a typical waste unit at SRS.

  13. Green River Locks and Dams 3, 4, 5, 6 and Barren River Lock and Dam 1 Disposition, Kentucky

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Green River Locks and Dams 3, 4, 5, 6 and Barren River Lock and Dam 1 Disposition, Kentucky 16 September 2014 ABSTRACT: Green River Locks and Dams 3 through 6 and Barren River Lock and Dam 1 were. The Green River Locks and Dams 5 and 6 ceased operations in 1951 due to a marked decline in navigation

  14. North University Dr. Indian River Street

    E-Print Network [OSTI]

    Marques, Oge

    ) around campus and running path on Indian River Street. Participants MUST run WITH tra c on all roads 39 4 31B 31A 7636 8W 6 80 46 89 92 31E 31 31D 31C 81 49 North University Dr. Indian River Street B-04.LucieAve.South Indian River St. BrevardCt. BrevardCt. Lot 23 Lot 22 Lot 11 Lot 7 Lot 6 Lot 21 LakeFPL Substation Lot 9

  15. Savannah River Technology Center. Monthly report, May 1993

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    This report covers the progress and accomplishments made at the Savannah River Technology Center for the month of May 1993. Progress is reported for projects in the following areas: reactors, tritium, separations, environmental, waste management, and general. General projects are: an eight week tutorial of the Los Alamos National Laboratory developed Monte Carlo Neutron Photon (MCNP) code; development of materials and fabrication technologies for the spallation and tritium targets for the accelerator production of tritium; and a program to develop welding methods to repair stainless steel containing helium.

  16. Influence of a river valley constriction on upstream sedimentation 

    E-Print Network [OSTI]

    Kinnebrew, Quin

    1988-01-01

    is constant, and the channel is wide, then the velocity is proportional to the depth-slope product (D2/s st/2). This quantitative description makes it easy to visualize the control that depth and slope have over the flow velocity. Channels with greater.... Wetted perimeter (P) is the outline of the edge where water and channel surface meet. Cross section (A) is the area of a transverse section of the river. The depth (D) is approximately the same as the hydraulic radius (R), which is the cross sectional...

  17. The Columbia River System Inside Story

    SciTech Connect (OSTI)

    none,

    2001-04-01

    The Columbia River is one of the greatest natural resources in the western United States. The river and its tributaries touch the lives of nearly every resident of the Pacific Northwest—from fostering world-famous Pacific salmon to supplying clean natural fuel for 50 to 65 percent of the region’s electrical generation. Since early in the 20th century, public and private agencies have labored to capture the benefits of this dynamic river. Today, dozens of major water resource projects throughout the region are fed by the waters of the Columbia Basin river system.

  18. New Columbia River Estuary purchases benefit salmon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the mouth of the Columbia River to permanently protect riverside habitat for Northwest fish and wildlife, including threatened and endangered salmon and steelhead. The...

  19. Microsoft Word - CROOKED RIVER VALLEY REHABILITATION PROJECT...

    Broader source: Energy.gov (indexed) [DOE]

    Power Act). Among other things, this Act directs BPA to protect, mitigate, and enhance fish and wildlife affected by the development and operation of the Federal Columbia River...

  20. River Falls Municipal Utilities - Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Name Utility Administrator River Falls Municipal Utilities Website http:www.rfmu.orgindex.aspx?nid681 Funding Source Wisconsin Focus on Energy State Wisconsin Program Type...

  1. Lumbee River EMC- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Lumbee River EMC (LREMC) offers rebates to its residential customers who purchase and install qualified energy efficient products or services. Rebates are available for water heaters, refrigerator...

  2. Voluntary Protection Program Onsite Review, Washington River...

    Broader source: Energy.gov (indexed) [DOE]

    February 13, 2014 Evaluation to determine whether Washington River Protection Solutions, LLC, Hanford is performing at a level deserving DOE-VPP Star recognition. Voluntary...

  3. Cuivre River Electric- Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Cuivre River Electric Cooperative, through the Take Control & Save program, offers rebates for cooperative members who purchase efficient geothermal and dual fuel heat pumps, and electric water...

  4. Savannah River Laboratory monthly report, October 1991

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1991-01-01

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separations operations; environmental concerns; and waste management. (FI)

  5. Savannah River Laboratory monthly report, October 1991

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1991-12-31

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separations operations; environmental concerns; and waste management. (FI)

  6. Savannah River National Laboratory (SRNL) Environmental Sciences...

    Office of Environmental Management (EM)

    (SRNL) Environmental Sciences and Biotechnology Support of Waste Isolation Pilot Plant (WIPP) Savannah River National Laboratory (SRNL) Environmental Sciences and Biotechnology...

  7. Gila River Indian Community- 2012 Project

    Broader source: Energy.gov [DOE]

    The Gila River Indian Community (GRIC) will conduct feasibility studies of potential renewable energy projects on its lands in south central Arizona.

  8. ENVIRONMENTAL SCIENCES; SAVANNAH RIVER PLANT; ENVIRONMENTAL EFFECTS...

    Office of Scientific and Technical Information (OSTI)

    5 audit of SRP radioactive waste Ashley, C. 05 NUCLEAR FUELS; 54 ENVIRONMENTAL SCIENCES; SAVANNAH RIVER PLANT; ENVIRONMENTAL EFFECTS; RADIOACTIVE EFFLUENTS; EMISSION; HIGH-LEVEL...

  9. Savannah River Laboratory monthly report, November 1991

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1991-12-31

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  10. Savannah River Laboratory monthly report, November 1991

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1991-01-01

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  11. Savannah River Laboratory monthly report, September 1991

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1991-01-01

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  12. Savannah River Laboratory monthly report, September 1991

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1991-12-31

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  13. Savannah River Laboratory monthly report, July 1991

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1991-01-01

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  14. Savannah River Laboratory monthly report, July 1991

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1991-12-31

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  15. Savannah River Laboratory monthly report, August 1991

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1991-12-31

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  16. Savannah River Laboratory monthly report, August 1991

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1991-01-01

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  17. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Kolan FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    is information about: (Last updated June 2015) · Flood Risk · Previous Flooding · Flood Forecasting · Local Classifications · Other Links Flood Risk The Kolan River catchment is located in south east Queensland and coversBureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Kolan FLOOD

  18. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Bulloo FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    in this document is information about: (Last updated June 2015) · Flood Risk · Previous Flooding · Flood Bulletins · Flood Classifications · Other Links Flood Risk The Bulloo River catchment is located in southBureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Bulloo FLOOD

  19. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    Contained in this document is information about: (Last updated June 2015) · Flood Risk · Previous Flooding and River Height Bulletins · Flood Classifications · Other Links Flood Risk The Leichhardt River catchment FLOOD WARNING SYSTEM for the LEICHHARDT RIVER This brochure describes the flood warning system operated

  20. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Paroo FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    is information about : (Last updated June 2015) · Flood Risk · Previous Flooding · Flood Forecasting · Local Classifications · Other Links Flood Risk The Paroo River catchment is located in south west Queensland and coversBureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Paroo FLOOD

  1. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Moonie FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    is information about : (Last updated June 2015) · Flood Risk · Previous Flooding · Flood Forecasting · Local Classifications · Other Links Flood Risk The Moonie River basin is located in southwest Queensland and drainsBureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Moonie FLOOD

  2. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Daintree FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    Post Contained in this document is information about: (Last updated June 2015) · Flood Risk · Previous Warnings and River Height Bulletins · Flood Classifications · Other Links Flood Risk The Daintree River FLOOD WARNING SYSTEM for the DAINTREE RIVER This brochure describes the flood warning system operated

  3. Bureau Home > Australia> Queensland> Rainfall& River Conditions > River Brochures> Gilbert FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    in this document is information about: (Last updated June 2015) · Flood Risk · Previous Flooding · Flood Bulletins · Flood Classifications · Other Links Flood Risk The Gilbert River catchment is located in northBureau Home > Australia> Queensland> Rainfall& River Conditions > River Brochures> Gilbert FLOOD

  4. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Haughton FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    in this document is information about: (Last updated June 2015) · Flood Risk · Previous Flooding · Flood Warnings and River Height Bulletins · Flood Classifications · Other Links Flood Risk The Haughton River FLOOD WARNING SYSTEM for the HAUGHTON RIVER This brochure describes the flood warning system operated

  5. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Bremer FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    Contained in this document is information about: (Last updated June 2015) · Flood Risk · Previous Flooding Flood Warnings and River Height Bulletins · Flood Classifications · Other Links Flood Risk The BremerBureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Bremer FLOOD

  6. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Pine and FLOOD SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    and Caboolture FLOOD SYSTEM for the PINE & CABOOLTURE RIVERS This brochure describes the flood system operated information which will be useful for understanding River Height Bulletins issued by the Bureau's Flood Warning Centre during periods of high rainfall and flooding. Pine River at Murrumba Downs Contained

  7. Reference Inflow Characterization for River Resource Reference Model (RM2)

    SciTech Connect (OSTI)

    Neary, Vincent S [ORNL

    2011-12-01

    Sandia National Laboratory (SNL) is leading an effort to develop reference models for marine and hydrokinetic technologies and wave and current energy resources. This effort will allow the refinement of technology design tools, accurate estimates of a baseline levelized cost of energy (LCoE), and the identification of the main cost drivers that need to be addressed to achieve a competitive LCoE. As part of this effort, Oak Ridge National Laboratory was charged with examining and reporting reference river inflow characteristics for reference model 2 (RM2). Published turbulent flow data from large rivers, a water supply canal and laboratory flumes, are reviewed to determine the range of velocities, turbulence intensities and turbulent stresses acting on hydrokinetic technologies, and also to evaluate the validity of classical models that describe the depth variation of the time-mean velocity and turbulent normal Reynolds stresses. The classical models are found to generally perform well in describing river inflow characteristics. A potential challenge in river inflow characterization, however, is the high variability of depth and flow over the design life of a hydrokinetic device. This variation can have significant effects on the inflow mean velocity and turbulence intensity experienced by stationary and bottom mounted hydrokinetic energy conversion devices, which requires further investigation, but are expected to have minimal effects on surface mounted devices like the vertical axis turbine device designed for RM2. A simple methodology for obtaining an approximate inflow characterization for surface deployed devices is developed using the relation umax=(7/6)V where V is the bulk velocity and umax is assumed to be the near-surface velocity. The application of this expression is recommended for deriving the local inflow velocity acting on the energy extraction planes of the RM2 vertical axis rotors, where V=Q/A can be calculated given a USGS gage flow time-series and stage vs. cross-section area rating relationship.

  8. Lesson Learned by Savannah River Site Activity-level Work Planning and Control

    Broader source: Energy.gov [DOE]

    Slide Presentation by Bonnie Barnes, Savannah River Remediation. Work Planning and Control at Savannah River Remediation.

  9. Columbia River Basin Fish and Wildlife Program Work Plan for Fiscal Year 1988.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration; Northwest Power Planning Council; Columbia Basin Fish and Wildlife Authority

    1987-10-01

    The FY 1988 Columbia River Basin Fish and Wildlife Program Work Plan (Work Plan) presents Bonneville Power Administration's plans for implementing the Columbia River Basin Fish and Wildlife Program (Program) in FY 1988. The Work Plan focuses on individual Action Items found in the amended Program for which Bonneville Power Administration (BPA) has determined it has authority and responsibility to implement. The FY 1988 Work Plan emphasizes continuation of 95 ongoing projects, most of which involve protection, mitigation, or enhancement of anadromous fishery resources. These continuing activities are summarized briefly by Program area: (1) mainstem passage; (2) artificial propagation; (3) natural propagation; (4) resident fish and wildlife; and (5) planning activities.

  10. CRAD, Emergency Management - Office of River Protection K Basin...

    Energy Savers [EERE]

    CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System May 2004 A...

  11. Letter from Commonwealth to Mirant Potomac River Concerning Serious...

    Office of Environmental Management (EM)

    to Mirant Potomac River Concerning Serious Violations of the National Ambient Air Quality Standards for Sulfur Dioxide Letter from Commonwealth to Mirant Potomac River Concerning...

  12. Columbia River Treaty Review #2 - April 2009.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Columbia River Treaty has provided signifi cant benefi ts to the United States and Canada through coordinated river management by the two countries. It remains the standard...

  13. Lessons Learned and Best Practices in Savannah River Site Saltstone...

    Office of Environmental Management (EM)

    Lessons Learned and Best Practices in Savannah River Site Saltstone and Tank Farm Performance Assessments Lessons Learned and Best Practices in Savannah River Site Saltstone and...

  14. Trona Injection Tests: Mirant Potomac River Station, Unit 1,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trona Injection Tests: Mirant Potomac River Station, Unit 1, November 12 to December 23, 2005, Summary Report Trona Injection Tests: Mirant Potomac River Station, Unit 1, November...

  15. Exhibit D: Mirant Potomac River Schedule of Unit Operations:...

    Office of Environmental Management (EM)

    Exhibit D: Mirant Potomac River Schedule of Unit Operations: Supplement 4, January - March 2006 Exhibit D: Mirant Potomac River Schedule of Unit Operations: Supplement 4, January -...

  16. CRAD, Engineering - Office of River Protection K Basin Sludge...

    Energy Savers [EERE]

    CRAD, Engineering - Office of River Protection K Basin Sludge Waste System CRAD, Engineering - Office of River Protection K Basin Sludge Waste System May 2004 A section of Appendix...

  17. Savannah River Field Office | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics Savannah River Field Office Savannah River Field Office FY15 Semi Annual Report...

  18. 2013 Annual Planning Summary for the Office of River Protection...

    Energy Savers [EERE]

    River Protection and Richland Operations Office 2013 Annual Planning Summary for the Office of River Protection and Richland Operations Office The ongoing and projected...

  19. LiT Electrolysis Research at Savannah River National Laboratory...

    Office of Environmental Management (EM)

    LiT Electrolysis Research at Savannah River National Laboratory (SRNL) LiT Electrolysis Research at Savannah River National Laboratory (SRNL) Presentation from the 35th Tritium...

  20. PIA - Savannah River Nuclear Solutions (SRNS) Human Resource...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SRNS) Human Resource Management System (HRMS) PIA - Savannah River Nuclear Solutions (SRNS) Human Resource Management System (HRMS) PIA - Savannah River Nuclear Solutions (SRNS)...

  1. PIA - Savannah River Nuclear Solutions Training Records and Informatio...

    Energy Savers [EERE]

    Nuclear Solutions Training Records and Information Network (TRAIN) PIA - Savannah River Nuclear Solutions Training Records and Information Network (TRAIN) PIA - Savannah River...

  2. PIA - Savannah River Nuclear Solutions Badge Request and Site...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Badge Request and Site Personnel Roster Systems PIA - Savannah River Nuclear Solutions Badge Request and Site Personnel Roster Systems PIA - Savannah River Nuclear Solutions Badge...

  3. PIA - Savannah River Nuclear Solution SRNS ProRad Environment...

    Energy Savers [EERE]

    SRNS ProRad Environment Management PIA - Savannah River Nuclear Solution SRNS ProRad Environment Management PIA - Savannah River Nuclear Solution SRNS ProRad Environment Management...

  4. Independent Oversight Review, Savannah River Site Tritium Facilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    June 2012 Independent Oversight Review, Savannah River Site Tritium Facilities - June 2012 June 2012 Review of the Savannah River Site Tritium Facilities Implementation...

  5. EA-1973: Kootenai River Restoration at Bonners Ferry, Boundary...

    Energy Savers [EERE]

    73: Kootenai River Restoration at Bonners Ferry, Boundary County, Idaho EA-1973: Kootenai River Restoration at Bonners Ferry, Boundary County, Idaho Summary Bonneville Power...

  6. Independent Oversight Activity Report, Savannah River Site Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report, Savannah River Site Waste Solidification Building May 2013 Savannah River Site Waste Solidification Building Corrective Actions from the January 2013 Report on...

  7. UVA Hydraulic and Transport Engineering Lab for Sustainable River Resources

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    #12;UVA Hydraulic and Transport Engineering Lab for Sustainable River Resources Some Applications: Small and Large Dam Removal River Restoration / Rehabilitation In Stream Flow Calculation Stormwater

  8. Employee of Savannah River Site Contractor Recognized as Exemplary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Employee of Savannah River Site Contractor Recognized as Exemplary in Safety and Health Employee of Savannah River Site Contractor Recognized as Exemplary in Safety and Health...

  9. Hood River Passive House, Hood River, Oregon (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to "reduce home energy use by 30%-50%" (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  10. Evaluation of Bull Trout Movements in the Tucannon and Lower Snake Rivers, 2002-2006 Project Completion Summary.

    SciTech Connect (OSTI)

    Faler, Michael P.; Mendel, Glen; Fulton, Carl

    2008-11-20

    The Columbia River Distinct Population Segment of bull trout (Salvelinus confluentus) was listed as threatened under the Endangered Species Act in 1998. One of the identified major threats to the species is fragmentation resulting from dams on over-wintering habitats of migratory subpopulations. A migratory subgroup in the Tucannon River appeared to utilize the Snake River reservoirs for adult rearing on a seasonal basis. As a result, a radio telemetry study was conducted on this subgroup from 2002-2006, to help meet Reasonable and Prudent Measures, and Conservation Recommendations associated with the lower Snake River dams in the FCRPS Biological Opinion, and to increase understanding of bull trout movements within the Tucannon River drainage. We sampled 1,109 bull trout in the Tucannon River; 124 of these were surgically implanted with radio tags and PIT tagged, and 681 were only PIT tagged. The remaining 304 fish were either recaptures, or released unmarked. Bull trout seasonal movements within the Tucannon River were similar to those described for other migratory bull trout populations. Bull trout migrated upstream in spring and early summer to the spawning areas in upper portions of the Tucannon River watershed. They quickly moved off the spawning areas in the fall, and either held or continued a slower migration downstream through the winter until early the following spring. During late fall and winter, bull trout were distributed in the lower half of the Tucannon River basin, down to and including the mainstem Snake River below Little Goose Dam. We were unable to adequately radio track bull trout in the Snake River and evaluate their movements or interactions with the federal hydroelectric dams for the following reasons: (1) none of our radio-tagged fish were detected attempting to pass a Snake River dam, (2) our radio tags had poor transmission capability at depths greater than 12.2 m, and (3) the sample size of fish that actually entered the Snake River was small (n=6). In spite of this project's shortcomings, bull trout continue to be observed in low numbers at Snake River dam fish facilities. It is highly possible that bull trout observed at the Snake River dam fish facilities are originating from sources other than the Tucannon River. We suggest that these fish might come from upstream sources like the Clearwater or Salmon rivers in Idaho, and are simply following the outmigration of juvenile anadromous fish (a food supply) as they emigrate toward the Pacific Ocean. Based on our study results, we recommend abandoning radio telemetry as a tool to monitor bull trout movements in the mainstem Snake River. We do recommend continuing PIT tagging and tag interrogation activities to help determine the origin of bull trout using the Snake River hydropower facilities. As a complementary approach, we also suggest the use of genetic assignment tests to help determine the origin of these fish. Lastly, several recommendations are included in the report to help manage and recover bull trout in the Tucannon subbasin.

  11. Savannah River Site dose control

    SciTech Connect (OSTI)

    Smith, L.S.

    1992-06-01

    Health physicists from the Brookhaven National Laboratory (BNL) visited the Savannah River Site (SRS) as one of 12 facilities operated by the Department of Energy (DOE) contractors with annual collective dose equivalents greater than 100 person-rem (100 person-cSv). Their charter was to review, evaluate and summarize as low as reasonably achievable (ALARA) techniques, methods and practices as implemented. This presentation gives an overview of the two selected ALARA practices implemented at the SRS: Administrative Exposure Limits and Goal Setting. These dose control methods are used to assure that individual and collective occupational doses are ALARA and within regulatory limits.

  12. The State of the Columbia River Basin

    E-Print Network [OSTI]

    1 The State of the Columbia River Basin Draft Fiscal Year 2009 ANNUAL REPORT To Congress and fish and wildlife policy in the Columbia River Basin and to inform the public about energy and fish Basin, and a synopsis of the major activities of the Council during the fiscal year ending September 30

  13. BLUE RIVER BASIN (Dodson Industrial District)

    E-Print Network [OSTI]

    US Army Corps of Engineers

    BLUE RIVER BASIN (Dodson Industrial District) Kansas City, Missouri MODIFICATION REQUEST capability to support this request. PROJECT PURPOSE Dodson Industrial District is located along the Blue of a 6,800 foot long levee- floodwall along the north bank of the Blue River from the Bannister Road

  14. 2010 Expenditures Report Columbia River Basin Fish

    E-Print Network [OSTI]

    tables 27 Table 1A: Total Cost of BPA Fish & Wildlife Actions 29 Table 1B: Cumulative Expenditures 1978 and habitat, of the Columbia River Basin that have been affected by hydroelectric development. This program fish and wildlife affected by hydropower dams in the Columbia River Basin. The Power Act requires

  15. Fast Facts About the Columbia River Basin

    E-Print Network [OSTI]

    cost and availability, and the effect of the hydropower system on fish and wildlife. columbia River, and fish and wildlife affected by, the columbia River Basin hydropower dams. the council is a unique of the Council under the Act are to: 1. Develop a regional power plan to assure the Northwest an adequate

  16. Prospective Climate Change Impact on Large Rivers

    E-Print Network [OSTI]

    Julien, Pierre Y.

    1 Prospective Climate Change Impact on Large Rivers in the US and South Korea Pierre Y. Julien Dept. of Civil and Environ. Eng. Colorado State University Seoul, South Korea August 11, 2009 Climate Change and Large Rivers 1. Climatic changes have been on-going for some time; 2. Climate changes usually predict

  17. Savannah River Site Environmental Report for 1998

    SciTech Connect (OSTI)

    Arnett, M.

    1999-06-09

    The mission at the Savannah River Site (SRS) is focused primarily on support of the national defense, nonproliferation, and environmental cleanup. SRS-through its prime operating contractor, Westinghouse Savannah River Company-continues to maintain a comprehensive environmental monitoring program.

  18. Financial Sustainability of International River Basin Organizations

    E-Print Network [OSTI]

    Wolf, Aaron

    Financial Sustainability of International River Basin Organizations Final Report #12;Published by financing of a sample of African, Asian and European River Basin Organizations (RBOs). Its focus contributions to cov- er their regular run-ning costs. To a degree, the financial challenges some African RBOs

  19. WAMweisman art museum 333 east river road

    E-Print Network [OSTI]

    Thomas, David D.

    WAMweisman art museum press release 333 east river road minneapolis, MN 55455 www per person (current Individual and Dual level members) FREE for members at the Sustainer level: The Weisman is located at 333 E. River Road in Minneapolis. There is no admission fee to the Weisman

  20. Interannual variations of river water storage from a multiple satellite approach: A case study for the Rio Negro River basin

    E-Print Network [OSTI]

    Frappart, Frédéric; Papa, Fabrice; Famiglietti, James S; Prigent, Catherine; Rossow, William B; Seyler, Frédérique

    2008-01-01

    satellite track runs along the river. As T/P cross track (orthe T/P tracks run parallel to the river. In these cases,

  1. Studies on the content of heavy metals in Aries River using ICP-MS

    SciTech Connect (OSTI)

    Voica, Cezara Kovacs, Melinda Feher, Ioana

    2013-11-13

    Among the industrial branches, the mining industry has always been an important source of environmental pollution, both aesthetically and chemically. Through this paper results of ICP-MS characterization of Aries River Basin are reported. Mining activities from this area has resulted in contamination of environment and its surrounding biota. This is clearly evidenced in analyzed water samples, especially from Baia de Aries site where increased amount of trace elements as Cr, Zn, As, Se, Cd, Pb and U were founded. Also in this site greater amount of rare earth elements was evidenced also. Through monitoring of Aries River from other non-mining area it was observed that the quantitative content of heavy metals was below the maximum permissible levels which made us to conclude that the water table wasn't seriously affected (which possibly might be attributed to the cessation of mining activities in this area from a few years ago)

  2. River Protection Project (RPP) Dangerous Waste Training Plan

    SciTech Connect (OSTI)

    POHTO, R.E.

    2000-03-09

    This supporting document contains the training plan for dangerous waste management at River Protection Project TSD Units. This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by River Protection Project (RPP) in the Hanford 200 East, 200 West and 600 Areas and the <90 Day Accumulation Area at 209E. Operating TSD Units managed by RPP are: the Double-Shell Tank (DST) System, 204-AR Waste Unloading Facility, Grout, and the Single-Shell Tank (SST) System. The program is designed in compliance with the requirements of Washington Administrative Code (WAC) 173-303-330 and Title 40 Code of Federal Regulations (CFR) 265.16 for the development of a written dangerous waste training program and the Hanford Facility Permit. Training requirements were determined by an assessment of employee duties and responsibilities. The RPP training program is designed to prepare employees to operate and maintain the Tank Farms in a safe, effective, efficient, and environmentally sound manner. In addition to preparing employees to operate and maintain the Tank Farms under normal conditions, the training program ensures that employees are prepared to respond in a prompt and effective manner should abnormal or emergency conditions occur. Emergency response training is consistent with emergency responses outlined in the following Building Emergency Plans: HNF-IP-0263-TF and HNF-=IP-0263-209E.

  3. Unit 51 - GIS Application Areas

    E-Print Network [OSTI]

    Unit 51, CC in GIS; Cowen, David; Ferguson, Warren

    1990-01-01

    51 - GIS APPLICATION AREAS UNIT 51 - GIS APPLICATION AREAS1990 Page 1 Unit 51 - GIS Application Areas Computers inyour students. UNIT 51 - GIS APPLICATION AREAS Compiled with

  4. River 

    E-Print Network [OSTI]

    Unknown

    2011-09-05

    ............................................................ 29 14 Alluvial fans along the Guadalupe Mountains in Big Dog Canyon........ 31 15 Alluvial fans along the Brokeoff Mountains in Big Dog Canyon........... 35 16 View of alluvial fans from their drainage basins.................................. 75 27 Salt Basin-Brokeoff Mountains alluvial fan group ................................. 76 28 Big Dog Canyon-Brokeoff Mountains alluvial fan group....................... 77 29 Big Dog Canyon-Guadalupe Mountains alluvial fan group...

  5. Role of borehole geophysics in defining the physical characteristics...

    Open Energy Info (EERE)

    Role of borehole geophysics in defining the physical characteristics of the Raft River geothermal reservoir, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to...

  6. Fracture characteristics and their relationships to producing...

    Open Energy Info (EERE)

    rocks in the Raft River KGRA of Idaho are analyzed using geological, hydrological and borehole geophysical data from five deep geothermal production wells. Particular emphasis...

  7. Seismic baseline and induction studies- Roosevelt Hot Springs...

    Open Energy Info (EERE)

    Seismic baseline and induction studies- Roosevelt Hot Springs, Utah and Raft River, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Seismic...

  8. A Three-Year Study of Ichyoplankton in Coastal Plains Reaches of the Savannah River Site and its Tributaries

    SciTech Connect (OSTI)

    Martin, D.

    2007-03-05

    Altering flow regimes of rivers has large effects on native floras and faunas because native species are adapted to the natural flow regime, many species require lateral connectivity with floodplain habitat for feeding or spawning, and the change in regime often makes it possible for invasive species to replace natives (Bunn & Arthington 2002). Floodplain backwaters, both permanent and temporary, are nursery areas for age 0+ fish and stable isotope studies indicate that much of the productivity that supports fish larvae is autochthonous to these habitats (Herwig et al. 2004). Limiting access by fish to floodplain habitat for feeding, spawning and nursery habitat is one of the problems noted with dams that regulate flow in rivers and is considered to be important as an argument to remove dams and other flow regulating structures from rivers (Shuman 1995; Bednarek 2001). While there have been a number of studies in the literature about the use of floodplain habitat for fish reproduction (Copp 1989; Killgore & Baker 1996; Humphries, et al. 1999; Humphries and Lake 2000; Crain et al. 2004; King 2004) there have been only a few studies that examined this aspect of stream ecology in more than a cursory way. The study reported here was originally designed to determine whether the Department of Energy's (DOE) Savannah River Site was having a negative effect on fish reproduction in the Savannah River but its experimental design allowed examination of the interactions between the river, the floodplain and the tributaries entering the Savannah River across this floodplain. This study is larger in length of river covered than most in the literature and because of its landscape scale may be in important indicator of areas where further study is required.

  9. Willamette River Transit Bridge PSU CTS Seminar January 16, 2009

    E-Print Network [OSTI]

    Bertini, Robert L.

    Willamette River Transit Bridge PSU CTS Seminar January 16, 2009 Dave Unsworth, TriMet Guenevere River Transit Bridge · Portland-Milwaukie Light Rail Project · Plans for a new Willamette River Bridge · Public Process Today's Agenda #12;Willamette River Transit BridgePortland-Milwaukie Light Rail Project

  10. Independent Oversight Inspection, Savannah River Site- December 2009

    Office of Energy Efficiency and Renewable Energy (EERE)

    Inspection of Reinforced Concrete Construction at the Savannah River Site Mixed Oxide Fuel Fabrication Facility

  11. Independent Oversight Inspection, Savannah River Site, Summary Report- February 2004

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health Management and Emergency Management at the Savannah River Site

  12. M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities groundwater monitoring and corrective-action report (U). Third and fourth quarters 1996, Vol. I

    SciTech Connect (OSTI)

    NONE

    1997-03-01

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 1996.

  13. River Data Package for Hanford Assessments

    SciTech Connect (OSTI)

    Rakowski, Cynthia L.; Guensch, Gregory R.; Patton, Gregory W.

    2006-08-01

    This data package documents the technical basis for selecting physical and hydraulic parameters and input values that will be used in river modeling for Hanford assessments. This work was originally conducted as part of the Characterization of Systems Task of the Groundwater Remediation Project managed by Fluor Hanford, Inc. and revised as part of the Characterization of Systems Project managed by PNNL for DOE. The river data package provides calculations of flow and transport in the Columbia River system. The module is based on the legacy code for the Modular Aquatic Simulation System II (MASS2), which is a two-dimensional, depth-averaged model that provides the capability to simulate the lateral (bank-to-bank) variation of flow and contaminants. It simulates river hydrodynamics (water velocities and surface elevations), sediment transport, contaminant transport, biotic transport, and sediment-contaminant interaction, including both suspended sediments and bed sediments. This document presents the data assembled to run the river module components for the section of the Columbia River from Vernita Bridge to the confluence with the Yakima River. MASS2 requires data on the river flow rate, downstream water surface elevation, groundwater influx and contaminants flux, background concentrations of contaminants, channel bathymetry, and the bed and suspended sediment properties. Stochastic variability for some input parameters such as partition coefficient (kd) values and background radionuclide concentrations is generated by the Environmental Stochastic Preprocessor. River flow is randomized on a yearly basis. At this time, the conceptual model does not incorporate extreme flooding (for example, 50 to 100 years) or dam removal scenarios.

  14. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 1995 Annual Report.

    SciTech Connect (OSTI)

    Shaw, R.Todd

    1996-05-01

    During the 1995 - 96 project period, four new habitat enhancement projects were implemented under the Umatilla River Basin Anadromous Fish Habitat Enhancement Project by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) in the upper Umatilla River Basin. A total of 38,644 feet of high tensile smooth wire fencing was constructed along 3.6 miles of riparian corridor in the Meacham Creek, Wildhorse Creek, Greasewood Creek, West Fork of Greasewood Creek and Mission Creek watersheds. Additional enhancements on Wildhorse Creek and the lower Greasewood Creek System included: (1) installation of 0.43 miles of smooth wire between river mile (RM) 10.25 and RM 10.5 Wildhorse Creek (fence posts and structures had been previously placed on this property during the 1994 - 95 project period), (2) construction of 46 sediment retention structures in stream channels and maintenance to 18 existing sediment retention structures between RM 9.5 and RM 10.25 Wildhorse Creek, and (3) revegetation of stream corridor areas and adjacent terraces with 500 pounds of native grass seed or close species equivalents and 5,000 native riparian shrub/tree species to assist in floodplain recovery, stream channel stability and filtering of sediments during high flow periods. U.S. Fish and Wildlife Service (USFWS), Bureau of Indian Affairs (BIA) and Environmental Protection Agency (EPA) funds were cost shared with Bonneville Power Administration (BPA) funds, provided under this project, to accomplish habitat enhancements. Water quality monitoring continued and was expanded for temperature and turbidity throughout the upper Umatilla River Watershed. Physical habitat surveys were conducted on the lower 13 river miles of Wildhorse Creek and within the Greasewood Creek Project Area to characterize habitat quality and to quantify various habitat types by area.

  15. Modeling the influence of river rehabilitation scenarios on bed material sediment flux in a large river over decadal timescales

    E-Print Network [OSTI]

    Singer, Michael

    Modeling the influence of river rehabilitation scenarios on bed material sediment flux in a large and calibrated sediment transport formulae were used to assess the decadal impact of major river rehabilitation the implementation of three major river rehabilitation strategies being considered in the Sacramento River Valley

  16. The influence of sediment cover variability on longterm river incision rates: An example from the Peikang River,

    E-Print Network [OSTI]

    Mueller, Karl

    The influence of sediment cover variability on longterm river incision rates: An example from reach of the Peikang River. Sediment from these landslides produced widespread aggradation the spatial and temporal variability of sediment cover for the Peikang River. Because the river is undergoing

  17. EA-1981: Bonneville-Hood River Transmission Line Rebuild, Multnomah and Hood River Counties, Oregon

    Office of Energy Efficiency and Renewable Energy (EERE)

    Bonneville Power Administration (BPA) is preparing an EA to assess potential environmental impacts of a proposal to rebuild its 24-mile long, 115 kilovolt Bonneville-Hood River transmission line. The existing line runs between the Bonneville Powerhouse at Bonneville Dam in Multnomah County, Oregon, and BPA's existing Hood River Substation in Hood River County, Oregon. The project would include replacing structures and conductor wires, improving access roads, and constructing new access roads or trails where needed.

  18. Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008 Annual Report.

    SciTech Connect (OSTI)

    Sather, NK; Johnson, GE; Storch, AJ [Pacific Northwest National Laboratory

    2009-07-06

    The tidal freshwater monitoring (TFM) project reported herein is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, the U.S. Army Corps of Engineers [USACE], and the U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act (ESA) as a result of operation of the Federal Columbia River Power System. The project is being performed under the auspices of the Northwest Power and Conservation Council's Columbia Basin Fish and Wildlife Program (Project No. 2005-001-00). The research is a collaborative effort among the Pacific Northwest National Laboratory, the Oregon Department of Fish and Wildlife, the National Marine Fisheries Service, and the University of Washington. The overarching goal of the TFM project is to bridge the gap in knowledge between tidal freshwater habitats and the early life history attributes of migrating salmon. The research questions include: In what types of habitats within the tidal freshwater area of the Columbia River are juvenile salmon found, when are they present, and under what environmental conditions? What is the ecological contribution of shallow (0-5 m) tidal freshwater habitats to the recovery of ESA-listed salmon in the Columbia River basin? Field data collection for the TFM project commenced in June 2007 and since then has continued monthly at six to nine sites in the vicinity of the Sandy River delta (river kilometer 192-208). While this report includes summary data spanning the 19-month period of study from June 2007 through December 2008, it highlights sampling conducted during calendar year 2008. Detailed data for calendar year 2007 were reported previously. The 2008 research objectives were as follows: (1) Characterize the vegetation composition and percent cover, conventional water quality, water surface elevation, substrate composition, bathymetry, and beach slope at the study sites within the vicinity of the Sandy River delta. (2) Characterize the fish community and juvenile salmon migration, including species composition, length-frequency distribution, density (number/m{sup 2}), and temporal and spatial distributions in the vicinity of the Sandy River delta in the lower Columbia River and estuary (LCRE). (3) Determine the stock of origin for juvenile Chinook salmon (Oncorhynchus tshawytscha) captured at sampling sites through genetic identification. (4) Characterize the diets of juvenile Chinook and coho (O. kisutch) salmon captured within the study area. (5) Estimate run timing, residence times, and migration pathways for acoustic-tagged fish in the study area. (6) Conduct a baseline evaluation of the potential restoration to reconnect the old Sandy River channel with the delta. (7) Apply fish density data to initiate a design for a juvenile salmon monitoring program for beach habitats within the tidal freshwater segment of the LCRE (river kilometer 56-234).

  19. Fracture characteristics and their relationships to producing zones in deep

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban TransportFortistar LLC Jumpwells, Raft River geothermal area | Open

  20. Fracture orientation analysis by the solid earth tidal strain method | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban TransportFortistar LLC Jumpwells, Raft River geothermal area |