Sample records for area mt princeton

  1. Water Sampling At Mt Princeton Hot Springs Geothermal Area (Olson...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mt Princeton Hot Springs Geothermal Area (Olson & Dellechaie, 1976)...

  2. Mt Princeton Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreenMoon LakeMountain ElectricMt Princeton Hot Springs

  3. Ground Gravity Survey At Mt Princeton Hot Springs Geothermal...

    Open Energy Info (EERE)

    Notes Gravity low associated with Mt. Princeton Batholith; density contrast of -0.5 gcm3 of valley-fill sediments relative to batholith References J.E. Case, R.F. Sikora...

  4. Thermal Gradient Holes At Mt Princeton Hot Springs Geothermal...

    Open Energy Info (EERE)

    the area References J. Held, F. Henderson (2012) New developments in Colorado geothermal energy projects Additional References Retrieved from "http:en.openei.orgw...

  5. Worldwide conference on plasma science coming to Princeton area | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat isJoin theanniversary lectureLosPlasma

  6. Geothermometry At Mt Princeton Hot Springs Geothermal Area (Pearl...

    Open Energy Info (EERE)

    Basis Temperature estimation of valley-fill hydrothermal reservoir Notes Si, Na-K, & Na-K-Ca geothermometry estimates yielded a reservoir temperature range of 97 to 188...

  7. Self Potential At Mt Princeton Hot Springs Geothermal Area (Richards...

    Open Energy Info (EERE)

    2008 - 2010 Usefulness useful DOE-funding Unknown Exploration Basis Determination of groundwater flux patterns Notes Researchers collected 2700 SP measurements. Equilibrium...

  8. Magnetotelluric Techniques At Mt Princeton Hot Springs Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAGMadison Gas & Jump

  9. Mt Signal Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinutemanVistaZephyr)Mountain AirPeak UtilityMt

  10. Mt Rainier Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill,Spurr GeothermalInformationMt Rainier

  11. Mt Ranier Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill,Spurr GeothermalInformationMt RainierRanier

  12. DC Resistivity Survey (Wenner Array) At Mt Princeton Hot Springs Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCpWingCushing,DA (DistributionGeothermal Area

  13. Mt St Helens Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill,Spurr GeothermalInformationMt RainierRanierMt

  14. Mt St Helens Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill,Spurr GeothermalInformationMt

  15. Geothermometry At Mt Princeton Hot Springs Geothermal Area (Pearl, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI Reference LibraryAdd toWell

  16. Ground Gravity Survey At Mt Princeton Hot Springs Geothermal Area (Case, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to:InformationGroton Jump2004) |EnergyAl., 1984)

  17. Water Sampling At Mt Princeton Hot Springs Geothermal Area (Olson &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, searchOpen EnergyKauai

  18. Aeromagnetic Survey At Mt Princeton Hot Springs Geothermal Area (Case, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE JumpAeroWind Inc. Place: Potsdam,OpenAl., 1984) | Open

  19. Self Potential At Mt Princeton Hot Springs Geothermal Area (Richards, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey JumpAir JumpCalifornia | OpenSelawik

  20. Thermal Gradient Holes At Mt Princeton Hot Springs Geothermal Area (Held &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThe year openEnergy2003) | OpenAl.,Henderson,

  1. Direct-Current Resistivity Survey At Mt Princeton Hot Springs Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale, Michigan: Energy Resources(Richards, Et Al., 2010) | Open

  2. Refraction Survey At Mt Princeton Hot Springs Geothermal Area (Lamb, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRayreview ofOzkocak, 1985)HotAl.,1979)Al., 2012)

  3. Behavioral/Systems/Cognitive Receptive Field Positions in Area MT during Slow Eye

    E-Print Network [OSTI]

    Krekelberg, Bart

    Behavioral/Systems/Cognitive Receptive Field Positions in Area MT during Slow Eye Movements Till S across eye movements. We first tested the hypothesis that motion signals are integrated by neurons whose receptive fields (RFs) do not move with the eye but stay fixed in the world. Specifically, we measured

  4. Princeton Plasma Physics Laboratory:

    SciTech Connect (OSTI)

    Phillips, C.A. (ed.)

    1986-01-01T23:59:59.000Z

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

  5. Water Sampling At Mt Ranier Area (Frank, 1995) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, searchOpen EnergyKauaiMt Ranier Area (Frank,

  6. Water Sampling At Mt St Helens Area (Shevenell & Goff, 1995) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, searchOpen EnergyKauaiMt Ranier Area

  7. Overview of physical oceanographic measurements taken during the Mt. Mitchell Cruise to the ROPME Sea Area

    SciTech Connect (OSTI)

    Reynolds, R.M.

    1993-03-31T23:59:59.000Z

    The ROPME Sea Area (RSA) is one of the most important commercial waterways in the world. However, the number of direct oceanographic observations is small. An international program to study the effect of the Iraqi oil spill on the environment was sponsored by the ROPME, the Intergovernmental Oceanographic Commission, and the National Oceanic and Atmospheric Administration (NOAA).

  8. Development of CO2 measurement system in a remote area under harsh observation environment -a case of Mt. Fuji

    E-Print Network [OSTI]

    ) GlassBottle 7/27 11007/27 1100 7/30 11007/30 1100 8/12 17008/12 1700 Measurement; a case of Mt. Fuji summer start at 3,9,15,21(JST) once / day starting at 15:00 (from 16/08/2009) (Glass bottle sampling (1L JMA facilities. We appreciate for their help with the glass bottle sampling and our activities

  9. Mt Wheeler Power, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreenMoon LakeMountain ElectricMt Princeton HotMt

  10. Site Office Manager, Princeton

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will serve as the Princeton Site Office (PSO) Manager by providing overall executive leadership to the PSO.

  11. THE TRUSTEES OF PRINCETON UNIVERSITY

    E-Print Network [OSTI]

    .............................................. 32 The Princeton University Investment Company (PRINCO).. 33 Financial Planning ................................................ 34 The Cost

  12. Theme Types of programs and initiatives Princeton examples Outreach and

    E-Print Network [OSTI]

    1 Theme Types of programs and initiatives Princeton examples Outreach and recruitment Develop. Take full advantage of the Target of Opportunity (ToO) program to hire promising faculty members or interdisciplinary area. Princeton has had a ToO program since 2001. Diversity Best Practices Faculty Members

  13. A Sustainability Plan for Princeton

    E-Print Network [OSTI]

    A Sustainability Plan for Princeton #12;Princeton University adopted its Sustainability Plan and environmental degradation, Princeton has a responsibility to shape the national sustainability agenda and alternative energy sources. The campus can serve as both a model for advanced sustainability practices

  14. PRINCETON UNIVERSITY FINANCIAL AID INFORMATION

    E-Print Network [OSTI]

    PRINCETON UNIVERSITY FINANCIAL AID INFORMATION SUMMER SCHOOL EXPENSES SUMMER 2014 Currently enrolled Princeton undergraduates who will be attending summer school may qualify for a University loan listing the cost of tuition. Funding for Princeton Programs Information about campus and external funding

  15. Analysis of borehole temperature data from the Mt. Princeton...

    Open Energy Info (EERE)

    Colorado (abstract only) Author P. Morgan Conference AAPG Rocky Mountain Meeting; Salt Lake County, Utah; 10811 Published AAPG Rocky Mountain Meeting, 2013 DOI Not Provided...

  16. DC Resistivity Survey (Wenner Array) At Mt Princeton Hot Springs...

    Open Energy Info (EERE)

    2008 - 2010 Usefulness useful DOE-funding Unknown Exploration Basis Determination of groundwater flux patterns Notes Researchers measured DC resistivity and produced 12 resistivity...

  17. Vertical Electrical Sounding Configurations At Mt Princeton Hot Springs

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning

  18. Princeton Plasma Physics Laboratory

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  19. Dirichlet Process Mixtures of Generalized Linear Models Lauren A. Hannah lhannah@princeton.edu

    E-Print Network [OSTI]

    Powell, Warren B.

    David M. Blei blei@cs.princeton.edu Department of Computer Science Princeton University Princeton, NJ

  20. Dirichlet Process Mixtures of Generalized Linear Models Lauren Hannah lhannah@princeton.edu

    E-Print Network [OSTI]

    Powell, Warren B.

    David Blei blei@cs.princeton.edu Department of Computer Science Princeton University Princeton, NJ 08544

  1. Princeton Site Office Jobs

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHome Pacific NorthwestHome Princeton

  2. Physics & Astrophysics press.princeton.edu

    E-Print Network [OSTI]

    Landweber, Laura

    Physics & Astrophysics 2013 press.princeton.edu #12;in a nutshell 1 in a nutshell 2 princeton frontiers in physics 3 textbooks 7 astronomy & astrophysics 10 princeton series in astrophysics 12 physics 15 princeton series in physics 16 quantum physics 17 condensed matter 18 mathematics, mathematical

  3. A synthesis and review of geomorphic surfaces of the boundary zone Mt. Taylor to Lucero uplift area, West-Central New Mexico

    SciTech Connect (OSTI)

    Wells, S.G. [NEOTEC, Inc., Albuquerque, NM (United States)

    1989-01-01T23:59:59.000Z

    The Mt. Taylor volcanic field and Lucero uplift of west-central New Mexico occur in a transitional-boundary zone between the tectonically active Basin-and Range province (Rio Grande rift) and the less tectonically active Colorado plateau. The general geomorphology and Cenozoic erosional history has been discussed primarily in terms of a qualitative, descriptive context and without the knowledge of lithospheric processes. The first discussion of geomorphic surfaces suggested that the erosional surface underlying the Mt. Taylor volcanic rocks is correlative with the Ortiz surface of the Rio Grande rift. In 1978 a study supported this hypothesis with K-Ar dates on volcanic rocks within each physiographic province. The correlation of this surface was a first step In the regional analysis of the boundary zone; however, little work has been done to verify this correlation with numerical age dates and quantitatively reconstruct the surface for neotectonic purposes. Those geomorphic surfaces inset below and younger than the ``Ortiz`` surface have been studied. This report provides a summary of this data as well as unpublished data and a conceptual framework for future studies related to the LANL ISR project.

  4. LEDs Go Ivy League: Princeton’s Dillon Gymnasium

    Broader source: Energy.gov [DOE]

    View the video about LED lighting in Dillon Gymnasium, a focal point of sports and recreation at Princeton since 1947. William Evans discusses measurable benefits of LED lighting in the gym and...

  5. TEXT-ALTERNATIVE VERSION: PRINCETON’S DILLON GYM

    Broader source: Energy.gov [DOE]

    Narrator: Opened in 1947, Dillon Gymnasium once served as home to nearly all varsity athletics at Princeton University. Today, Dillon remains the site of NCAA wrestling and volleyball matches, and...

  6. Princeton University Health Services *** CONFIDENTIAL***

    E-Print Network [OSTI]

    Singh, Jaswinder Pal

    Princeton University Health Services *** CONFIDENTIAL*** Medical Profile and Consent for Care Give/program abroad sponsor and to be provided to health care personnel in the event that I require medical care: ____________________________________________________________________ Health Insurance: Company: ________________________ Policy No.: ______________________________ Group No

  7. Princeton Energy Systems PES | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation,Power RentalAreas-|Log JumpNewPrinceton Energy

  8. Princeton, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation,Power RentalAreas-|Log JumpNewPrincetonTexas:

  9. Mt Wheeler Power, Inc (Utah) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreenMoon LakeMountain ElectricMt Princeton Hot

  10. Earth Science press.princeton.edu

    E-Print Network [OSTI]

    Landweber, Laura

    Earth Science 2011 press.princeton.edu #12;1........... princetonprimersinclimate 2.......... princetonfrontiersinphysics 13.......... index/orderform Dear Readers, Princeton Global Science (PGS, available here http of each month we will be featuring on the Princeton Global Science blog a recent PUP author, book, series

  11. PPPL Area Map | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest andOptimize832DepartmentTheoretical2015 SciencePPPL

  12. PRINCETON UNIVERSITY Wind Farm Valuation

    E-Print Network [OSTI]

    Powell, Warren B.

    PRINCETON UNIVERSITY Wind Farm Valuation Kimlee Wong 13th April 2009 Professor Warren B. Powell was generous and encouraged me to participate in the group to perform research pertaining to wind farm, and has helped me think of hedging strategies for wind farm operations. I have learnt a lot from my

  13. Princeton University Health Services *** CONFIDENTIAL***

    E-Print Network [OSTI]

    Singh, Jaswinder Pal

    /program abroad sponsor and to be provided to health care personnel in the event that I require medical care(over) Princeton University Health Services *** CONFIDENTIAL*** Travel Abroad Medical Profile and Consent for Care Give this form to your trip leader/designated program abroad sponsor in a sealed envelope

  14. DENISE L. MAUZERALL PRINCETON UNIVERSITY

    E-Print Network [OSTI]

    Mauzerall, Denise

    Engineering, 1988 Brown University Sc.B., with honors, Chemistry, 1985 HONORS Intergovernmental Panel) Stanford University School of Engineering Fellowship, tuition. (1987 - 1988) Elected to Sigma Xi (1985) Sc.B 402d Development of Policy Initiatives for the Sustainable Use of Energy at Princeton University

  15. Jonathan Squire wins Princeton University Honorific Fellowship...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Graduate School. The award, for which Squire was nominated by the Princeton Program in Plasma Physics at PPPL, recognizes outstanding performance and professional promise and...

  16. COLLOQUIUM: Controlling Quantum Dynamics | Princeton Plasma Physics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controlling Quantum Dynamics Professor Herschel Rabitz Princeton University Contact Information Coordinator(s): Miss Carol Ann Au caustin@pppl.gov Host(s): Dr. Elena Belova ebelova...

  17. Science on Saturday: Dr. Sabine Kastner, Princeton University...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science on Saturday: Dr. Sabine Kastner, Princeton University: Words, Tools and the Brain: Why Humans Aren't Just Another Ape Dr. Sabine Kastner, Neuroscientist Princeton...

  18. PrincetonUniversity What's new? Whom should I call?

    E-Print Network [OSTI]

    Bou-Zeid, Elie

    @princeton.edu 5. Stacey Burd Benefits 8-9114 stacey@princeton.edu 6. Marilou Chinchilla Benefits 8-9100 mchinchi

  19. Marysville Mt Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend <Stevens Jump to:source History View New

  20. Marysville Mt Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump

  1. Mt Rainier Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill,Spurr GeothermalInformation

  2. Economics & Finance press.princeton.edu

    E-Print Network [OSTI]

    Landweber, Laura

    Economics & Finance 2012 press.princeton.edu #12;TEXT Professors who wish to consider a book from & Research 18 Game Theory 22 Finance 23 Econometrics, Mathematical & Applied Economics 26 Political Economy page 25 see page 3 see page 12 see page 20 Contents #12;press.princeton.edu 1 forThcoming Finance

  3. About Prospect Eleven Princeton University's "DARPA Project"

    E-Print Network [OSTI]

    Singh, Jaswinder Pal

    About Prospect Eleven and Princeton University's "DARPA Project" Background: Prospect Eleven) miles of the more than 150 mile course. As a result, DARPA (Defense Advanced Research Projects Administration), decided to organize a second Challenge that is to take place in October, 2005. Princeton

  4. press.princeton.edu Cognitive Science

    E-Print Network [OSTI]

    Landweber, Laura

    connecting research within the humanities, social science, and science--is a natural fit for the Presspress.princeton.edu Cognitive Science 2011 #12;A Message from the Editor It is with great pleasure that, on behalf of my colleagues at Princeton University Press, I introduce our inaugural cognitive

  5. Physics & Astrophysics press.princeton.edu

    E-Print Network [OSTI]

    Landweber, Laura

    Physics & Astrophysics 2010 press.princeton.edu #12;1 Textbooks 4 Astronomy & Astrophysics 10 at Princeton University Press. In these difficult times, we are delighted to be seeing record-breaking sales avoid) fraud wherever it may arise. Bracing reading, this short book is a perfect fit for courses

  6. Princeton Plasma Physics Laboratory News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News, information andNetarchive Princeton Plasma Physics

  7. Princeton Plasma Physics Laboratory News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News, information andNetarchive Princeton Plasma Physics

  8. 2011-12 Princeton Global Scholar Slavoj Zizek

    E-Print Network [OSTI]

    , Spanish, Religion, and the Center for African American Studies at Princeton University, and the Department

  9. press.princeton.edu Political Science & Law

    E-Print Network [OSTI]

    Landweber, Laura

    and Politics in obama's America Desmond S. King & Rogers M. Smith "Still a House Divided deftly lays to rest comparative politics 44 princeton studies in muslim politics 46 political behavior 47 political methodology 48

  10. www.princeton.edu/admission Profile 201213

    E-Print Network [OSTI]

    Rowley, Clarence W.

    . At Princeton, we are committed to identifying students who possess the academic ability, energy, enthusiasm of Malaysia Mexico Nepal Netherlands New Zealand Nigeria Pakistan Peru Poland Portugal Romania Singapore South

  11. Princeton University Outdoor Action Sustainability Guide

    E-Print Network [OSTI]

    Itinerary ·Defining sustainability ·Princeton's Sustainability Plan ·Focus: fresh water and climate change of communication, respect for others, caring for the environment, and service. The impact of the Outdoor Action

  12. www.princeton.edu/admission Profile 201011

    E-Print Network [OSTI]

    Bou-Zeid, Elie

    goals. At Princeton, we are committed to identifying students who possess the academic ability, energy Belgium Bolivia Brazil Bulgaria Canada Chile China Czech Republic El Salvador France Georgia Germany Ghana

  13. Princeton, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation,Power RentalAreas-|Log JumpNewPrinceton

  14. Science Education on the Road: 2013 Princeton University Community...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Education on the Road: 2013 Princeton University Community and Staff Day October 12, 2013 Gallery: It was a beautiful autumn day in Princeton, NJ. As tailgaters got ready...

  15. VWD-0004- In the Matter of Princeton University

    Broader source: Energy.gov [DOE]

    This decision will consider a Motion for Discovery filed jointly by Princeton University (Princeton) and General Physics Corporation (GPC) on June 10, 1999 with the Office of Hearings and Appeals ...

  16. Analysis of borehole temperature data from the Mt. Princeton Hot Springs

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan BlanchAmiteInExploration At

  17. DC Resistivity Survey (Dipole-Dipole Array) At Mt Princeton Hot Springs

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs andCrops Ltd Jump to: navigation, search

  18. Nonparametric Variational Inference Samuel J. Gershman sjgershm@princeton.edu

    E-Print Network [OSTI]

    Kaski, Samuel

    @cs.princeton.edu Department of Statistics, Columbia University, New York, NY 10027 USA David M. Blei blei

  19. Environmental Survey preliminary report, Princeton Plasma Physics Laboratory, Princeton, New Jersey

    SciTech Connect (OSTI)

    Not Available

    1989-05-01T23:59:59.000Z

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL), conducted June 13 through 17, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Team members are being provided by private contractors. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with PPPL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at PPPL, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environment problems identified during its on-site activities. The S A plan is being developed by the Idaho National Engineering Laboratory. When completed, the S A results will be incorporated into the PPPL Survey findings for inclusion in the Environmental Survey Summary Report. 70 refs., 17 figs., 21 tabs.

  20. February 2013 Siemens Princeton NJ Pascal Hitzler Semantic Data Analytics

    E-Print Network [OSTI]

    Hitzler, Pascal

    February 2013 ­ Siemens Princeton NJ ­ Pascal Hitzler Semantic Data Analytics ­ The key://www.pascal-hitzler.de/ #12;February 2013 ­ Siemens Princeton NJ ­ Pascal Hitzler 2 Semantic Web journal · EiCs: Pascal://www.semantic-web-journal.net/ #12;February 2013 ­ Siemens Princeton NJ ­ Pascal Hitzler 3 Textbook Pascal Hitzler, Markus Krötzsch

  1. M.T. Thomas Recipient Named | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    M.T. Thomas Recipient Named M.T. Thomas Recipient Named EMSL Recognizes Patrick Roach for Postdoc Achievement Dr. Patrick Roach Patrick Roach, now an environmental scientist at...

  2. Art & Architecture press.princeton.edu

    E-Print Network [OSTI]

    Landweber, Laura

    Art & Architecture 2013 press.princeton.edu #12;2 The A. W. Mellon Lectures in the Fine Arts 3 Architecture 4 POINT: Essays on Architecture 5 Visual Culture 8 Essays in the Arts 9 American 10 Museum Studies, and wise book about the fundamental ele- ments of architecture, including the basic needs that it addresses

  3. Geothermal energy resource investigations at Mt. Spurr, Alaska

    SciTech Connect (OSTI)

    Turner, D.L.; Wescott, E.M. (eds.)

    1986-12-01T23:59:59.000Z

    Spurr volcano is a composite Quaternary cone of largely andesitic composition located on the west side of Cook Inlet about 80 miles west of Anchorage and about 40 miles from the Beluga electrical transmission line. Geologic mapping (Plate 1-1) shows that the present summit depression was produced by a Mt. St. Helens-type sector collapse, rather than by a caldera collapse. Geochronologic and previous tephrachronologic studies show that there has been an active magmatic system at Spurr volcano during the late Pleistocene-to-Holocene time interval that is of critical interest for geothermal energy resource assessment. Major effort was devoted to geochemical and geophysical surveys of the accessible area south of Mt. Spurr, in addition to geologic mapping and geochronologic studies. Many coincident mercury and helium anomalies were found, suggesting the presence of geothermal systems at depth. Extremely large electrical self-potential anomalies were also found, together with extensive zones of low resistivity discovered by our controlled-source audiomagnetotelluric survey. The juxtaposition of all of these different types of anomalies at certain areas on the south slope of Crater Peak indicates the presence of a geothermal system which should be accessible by drilling to about 2000 ft depth. It is also evident that there is a strong volcanic hazard to be evaluated in considering any development on the south side of Mt. Spurr. This hazardous situation may require angle drilling of production wells from safer areas and placement of power generation facilities at a considerable distance from hazardous areas.

  4. Microsoft Word - MtRichmond_CX

    Broader source: Energy.gov (indexed) [DOE]

    Dorie Welch Project Manager - KEWM-4 Proposed Action: Mt. Richmond property funding Fish and Wildlife Project No.: 2011-003-00, BPA-007071 Categorical Exclusion Applied (from...

  5. Ecological environment of the proposed site for the Compact Ignition Tokamak at Princeton Plasma Physics Laboratory

    SciTech Connect (OSTI)

    Not Available

    1987-12-01T23:59:59.000Z

    This report gives a description of the exological environment of D-site and the surrounding area at Princeton Plasma Physics Laboratory (PPPL) near Princeton, New Jersey. D-site at PPL is the proposed location for construction of a new fusion test facility, the Compact Ignition Tokamak (CIT). This report was prepared as supplemental information for an Environmental Assessment for the proposed CIT at PPL. The report characterizes the vegetation and wildlife occuring at and near the site and describes the water quality and aquatic ecology of Bee Brook. No threatened or endangered plant or animal species are known to occur in the area, although suitable habitat exists for some species. The occurrence of a forested wetland north of the site is discussed. 9 refs., 2 figs.

  6. Sparse stochastic inference for latent Dirichlet allocation David Mimno mimno@cs.princeton.edu

    E-Print Network [OSTI]

    Blei, David M.

    . Blei blei@cs.princeton.edu Princeton U., Dept. of Computer Science, 35 Olden St., Princeton, NJ 08540 Topic models are hierarchical Bayesian models of doc- ument collections (Blei et al., 2003). They can

  7. Princeton-CEFRC Summer Program on Combustion: 2013 Session |...

    Office of Science (SC) Website

    Princeton-CEFRC Summer Program on Combustion: 2013 Session Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC...

  8. Princeton-CEFRC Summer Program on Combustion: 2010 Session |...

    Office of Science (SC) Website

    Princeton-CEFRC Summer Program on Combustion: 2011 Session Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC...

  9. Princeton and PPPL launch center to study volatile space weather...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton and PPPL launch center to study volatile space weather and violent solar storms By John Greenwald December 12, 2013 Tweet Widget Google Plus One Share on Facebook...

  10. advanced study princeton: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UNIVERSITY Office of Communications Stanhope Hall Princeton, New Jersey 08544 of the family home from its financial aid calculations. These actions build on initiatives begun...

  11. LEDs Go Ivy League: Princeton University and DOE GATEWAY Demonstrations

    Broader source: Energy.gov [DOE]

    View the video about LED lighting at Princeton University, which has dramatically reduced energy costs in a number of installations around campus. William Evans, electrical engineer, describes the...

  12. Agassiz Glacier Glacier National Park, MT

    E-Print Network [OSTI]

    Agassiz Glacier Glacier National Park, MT Greg Pederson photo USGS USGS Repeat Photography Project Glacier Glacier National Park, MT Greg Pederson photo USGS USGS Repeat Photography Project http://nrmsc.usgs.gov/repeatphoto/ 2005 M. V. Walker photo courtesy of GNP archives1943 #12;Blackfoot ­ Jackson Glacier Glacier National

  13. ALSEP-MT-06 APOLLO LUNAR SURFACE

    E-Print Network [OSTI]

    Rathbun, Julie A.

    ALSEP-MT-06 APOLLO LUNAR SURFACE EXPERIMENTS PACKAGE (ALSEP) APOLLO 16 ALSEP ARRAY D FLIGHT July 1971 A #12;ALSEP-MT-06 INTRODUCTION The Apollo 16 LWlar Surface Expe riments Package (ALSEP of the Moon consistent with the scientific objectives of the Apollo Program. The measur ement data

  14. Energetic-Particle-Induced Geodesic Acoustic Mode Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA

    E-Print Network [OSTI]

    , Princeton, New Jersey 08543, USA (Received 24 June 2008; published 30 October 2008) A new energetic particle that energetic particles can indeed excite a new GAM-like mode via free energy associated with velocity space, the new mode, to be called EGAM (for energetic- particle-induced GAM), is intrinsically an energetic parti

  15. An active seismic reconnaissance survey of the Mount Princeton area,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources Jump to:Almo,TransmissionOperations at theChaffee

  16. The Mount Princeton geothermal area, Chaffee County, Colorado | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformation 2EnergyCityGreen Data BookInformation

  17. Mount Princeton Area Space Heating Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill, California:Morse,WaveLebanon,York:Open Energy

  18. Theme Types of programs and initiatives Princeton examples Recruitment

    E-Print Network [OSTI]

    1 Theme Types of programs and initiatives Princeton examples Recruitment initiatives Develop summer research programs to bring promising non-Princeton undergraduates to campus to build their research. These students conduct original research on which they receive detailed feedback. Students in these programs

  19. press.princeton.edu A SWEEPING INTELLECTUAL HISTORY

    E-Print Network [OSTI]

    Landweber, Laura

    Trade 1 press.princeton.edu A SWEEPING INTELLECTUAL HISTORY OF THE ROLE OF WEALTH IN THE CHURCH;2 Trade press.princeton.edu NOVEMBER Cloth $19.95T 978-0-691-15575-3 104 pages. 10 color illus. 5 1 /2 x 8 1 /2. ARCHITECTURE z CURRENT AFFAIRS Fit An Architect's Manifesto Robert Geddes Fit is a manifesto

  20. Princeton Public Utils Comm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergyInformation toPowerPrinceton Public Utils Comm Jump to:

  1. Press Releases | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press Releases Archive Publications Princeton Journal Watch

  2. Weixing Wang | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOETHEWeekly Reports 2014 WeeklyProgram

  3. Welcome 2014 undergrads! | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOETHEWeekly Reports 2014CCS Directorate

  4. Wenjun Deng | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOETHEWeekly ReportsWenjun Deng Associate

  5. COLLOQUIUM: Environmental Condensed Matter Physics | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience,InstitutePlasma PhysicsPrinceton

  6. Xingqiu Yuan | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat isJoin theanniversaryI 1 0ornl.gov8 14Xingqiu

  7. Cancer: Detect and DestroyCancer: Detect and Destroy PrincetonPrinceton iGEMiGEM TeamTeam

    E-Print Network [OSTI]

    Petta, Jason

    Cancer: Detect and DestroyCancer: Detect and Destroy PrincetonPrinceton iGEMiGEM TeamTeam PresentedPresentation Overview What is Synthetic Biology?What is Synthetic Biology? ProjectProject Cancer: Detect and DestroyCancer regeneration Diabetes Cancer therapy Artificial immune system Environmental Biosensing Environmental

  8. To learn the many ways to stay connected to Princeton,

    E-Print Network [OSTI]

    ." He thoroughly enjoyed becoming part of a multi-cultural community, learning Spanish as much from lunch conversations in Commons as from his Spanish classes. So enthusiastic was he about Princeton

  9. 2011-12 Princeton Global Scholar Rafael Rojas

    E-Print Network [OSTI]

    at Princeton as a Global Scholar in the Department of Spanish and Portuguese Languages and Cultures of Spanish and Portuguese Languages and Cultures, the Center for African American Studies, and the programs

  10. 2010-2011 Princeton Graduate Students with Academic Interests in South Asia Shahana Chattaraj, PHD, Woodrow Wilson School, Urban Policy shahanac@princeton.edu

    E-Print Network [OSTI]

    Rowley, Clarence W.

    2010-2011 Princeton Graduate Students with Academic Interests in South Asia Shahana Chattaraj, PHD, Woodrow Wilson School, Urban Policy shahanac@princeton.edu Barret F Bradstreet, Phd, WWS, Security Studies, Indian military strategy bbradstr@princeton.edu Diane L Coffey, Phd, WWS, Population coffey

  11. Compound and Elemental Analysis At Mt St Helens Area (Shevenell...

    Open Energy Info (EERE)

    Goff (2000) Temporal Geochemical Variations In Volatile Emissions From Mount St Helens, Usa, 1980-1994 Additional References Retrieved from "http:en.openei.orgw...

  12. Compound and Elemental Analysis At Mt St Helens Area (Shevenell...

    Open Energy Info (EERE)

    Fraser Goff (1995) Evolution Of Hydrothermal Waters At Mount St Helens, Washington, Usa Additional References Retrieved from "http:en.openei.orgwindex.php?titleCompounda...

  13. Field Mapping At Marysville Mt Area (Blackwell) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BV JumpFederalInformation Jump

  14. Ground Gravity Survey At Marysville Mt Area (Blackwell) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open Energy Information 2000) ExplorationAl., 1979)

  15. Ground Magnetics At Marysville Mt Area (Blackwell) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open Energy Information 2000)2004) | OpenInformation

  16. Micro-Earthquake At Marysville Mt Area (Blackwell) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole Inc Jump to:Michigan/WindOpen Energy2010) |

  17. Data Acquisition-Manipulation At Marysville Mt Area (Blackwell) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility Database Data andDarnestown, Maryland:(Blackwell, Et Al.,Al.,

  18. A Language-based Approach to Measuring Scholarly Impact Sean M. Gerrish SGERRISH@CS.PRINCETON.EDU

    E-Print Network [OSTI]

    Blei, David M.

    @CS.PRINCETON.EDU David M. Blei BLEI@CS.PRINCETON.EDU Department of Computer Science, Princeton University 35 Olden St our model on dynamic topic models, allowing for multiple threads of influence within a corpus (Blei

  19. Mt. Baker Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill,Spurr GeothermalInformationMtMt. Baker

  20. Princeton University Plasma Physics Laboratory, Princeton, New Jersey. Annual report, October 1, 1990--September 30, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-12-31T23:59:59.000Z

    This report discusses the following topics: Principal parameters of experimental devices; Tokamak Fusion Test Reactor; Burning Plasma Experiment; Princeton Beta Experiment-Modification; Current Drive Experiment-Upgrade; International Thermonuclear Experimental Reactor; International Collaboration; X-Ray Laser Studies; Hyperthermal Atomic Beam Source; Pure Electron Plasma Experiments; Plasma Processing: Deposition and Etching of Thin Films; Theoretical Studies; Tokamak Modeling; Engineering Department; Environment, Safety, and Health and Quality Assurance; Technology Transfer; Office of Human Resources and Administration; PPPL Patent Invention Disclosures; Office of Resource Management; Graduate Education: Plasma Physics; Graduate Education: Program in Plasma Science and Technology; and Science Education Program.

  1. MT STROMLO OBSERVATORY VISITOR GUIDE & WALK

    E-Print Network [OSTI]

    Botea, Adi

    to the Observatory and construction of a new Advanced Instrumentation and Technology Centre was begun. You can watch, the University of NSW, and the Faulkes Telescope Project. Mt Stromlo began operation as the Commonwealth Solar Optical Munitions Factory. After the war, the Observatory changed from solar to stellar astronomy

  2. PRINCETON CHARITABLE FOUNDATION LIMITED 19 NORCOTT ROAD LONDON N16 7EJ UNITED KINGDOM

    E-Print Network [OSTI]

    PRINCETON CHARITABLE FOUNDATION LIMITED 19 NORCOTT ROAD · LONDON N16 7EJ · UNITED KINGDOM GIFT AID DECLARATION Registered Office Address -- 16 Old Bailey, London EC4M 7EG Princeton Charitable Foundation

  3. Princeton Plasma Physics Laboratory Highlights for Fiscal Year 2006

    E-Print Network [OSTI]

    use, large-scale energy storage, very long-distance transmission, or local carbon dioxide to developing the scientific and technological knowledge base for fusion energy as a safe, economical, and environmentally attractive energy source for the world's long-term energy requirements. Princeton University

  4. 2013-14 Princeton Global Scholar Nicolas Regnault

    E-Print Network [OSTI]

    is recognized worldwide as a pioneering leader in numerical simulations of Fractional Quantum Hall systems. His-advised Princeton students interested in learning high- end numerical physics during visits to campus. His unique point of view on the numerical simulations of many-body systems was applauded by over 100 graduate

  5. PrincetonUniversity In-Vitro Studies of Cancer

    E-Print Network [OSTI]

    Petta, Jason

    PrincetonUniversity In-Vitro Studies of Cancer Cell Death Due to Hyperthermia C. Barkey1, RUniversity Cancer: Facts and Figures World Wide 10.1 million newly diagnoses/year with ~10% increase 6.2 million deaths are attributed to cancer and its complication each year American Cancer Society 2007 and Le Cancer

  6. Princeton University Woodrow Wilson School of Public and International Affairs

    E-Print Network [OSTI]

    Mauzerall, Denise

    Princeton University Woodrow Wilson School of Public and International Affairs Spring 2009 WWS of biological diversity, depletion of global fisheries, and the environmental consequences of energy supply on class participation, a presentation and a mid-term and final paper. The following percentages

  7. Welcometo the rest of your life princeton university

    E-Print Network [OSTI]

    Association's Web site. Join the over 39,000 alumni who currently participate in the Alumni Association Princetonians by name, location and occupation in the searchable directory n over 115 Web-based discussion To register or to sign in, just go to the Alumni Association home page at http://alumni.princeton.edu The Web

  8. 2010-11 Princeton Global Scholar Giacomo Luciani

    E-Print Network [OSTI]

    on the evolution of oil and gas supplies from the Caspian Sea and the Persian Gulf. He also has participated on the security of gas supplies. In addition, he organized a joint conference titled "Caspian Oil and Gas, and the Energy, Oil and Gas Club of the Institut français du pétrole. At Princeton, Luciani will teach and mentor

  9. Emergency Service Officer | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to the Incident Commander during emergency situations Responds to potentially extremely hazardous environments and may work in areas with Self Contained Breathing Apparatus for...

  10. Development of an Extreme Environment Materials Research Facility at Princeton

    SciTech Connect (OSTI)

    Cohen, A B; Tully, C G; Austin, R; Calaprice, F; McDonald, K; Ascione, G; Baker, G; Davidson, R; Dudek, L; Grisham, L; Kugel, H; Pagdon, K; Stevenson, T; Woolley, R

    2010-11-17T23:59:59.000Z

    The need for a fundamental understanding of material response to a neutron and/or high heat flux environment can yield development of improved materials and operations with existing materials. Such understanding has numerous applications in fields such as nuclear power (for the current fleet and future fission and fusion reactors), aerospace, and other research fields (e.g., high-intensity proton accelerator facilities for high energy physics research). A proposal has been advanced to develop a facility for testing various materials under extreme heat and neutron exposure conditions at Princeton. The Extreme Environment Materials Research Facility comprises an environmentally controlled chamber (48 m^3) capable of high vacuum conditions, with extreme flux beams and probe beams accessing a central, large volume target. The facility will have the capability to expose large surface areas (1 m^2) to 14 MeV neutrons at a fluence in excess of 10^13 n/s. Depending on the operating mode. Additionally beam line power on the order of 15-75 MW/m2 for durations of 1-15 seconds are planned... The multi-second duration of exposure can be repeated every 2-10 minutes for periods of 10-12 hours. The facility will be housed in the test cell that held the Tokamak Fusion Test Reactor (TFTR), which has the desired radiation and safety controls as well as the necessary loading and assembly infrastructure. The facility will allow testing of various materials to their physical limit of thermal endurance and allow for exploring the interplay between radiation-induced embrittlement, swelling and deformation of materials, and the fatigue and fracturing that occur in response to thermal shocks. The combination of high neutron energies and intense fluences will enable accelerated time scale studies. The results will make contributions for refining predictive failure modes (modeling) in extreme environments, as well as providing a technical platform for the development of new alloys, new materials, and the investigation of repair mechanisms. Effects on materials will be analyzed with in situ beam probes and instrumentation as the target is exposed to radiation, thermal fluxes and other stresses. Photon and monochromatic neutron fluxes, produced using a variable-energy (4-45 MeV) electron linac and the highly asymmetric electron-positron collisions technique used in high-energy physics research, can provide non-destructive, deep-penetrating structural analysis of materials while they are undergoing testing. The same beam lines will also be able to generate neutrons from photonuclear interactions using existing Bremsstrahlung and positrons on target quasi-monochromatic gamma rays. Other diagnostics will include infrared cameras, residual gas analyzer (RGA), and thermocouples; additional diagnostic capability will be added.

  11. ,"Sweetgrass, MT Natural Gas Pipeline Imports From Canada (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Sweetgrass, MT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  12. ,"Whitlash, MT Natural Gas Pipeline Imports From Canada (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Whitlash, MT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  13. ,"Babb, MT Natural Gas Pipeline Imports From Canada (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Babb, MT...

  14. ,"Havre, MT Natural Gas Pipeline Imports From Canada (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Havre, MT...

  15. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1999

    SciTech Connect (OSTI)

    Virginia Finley

    2001-04-20T23:59:59.000Z

    The results of the 1999 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 1999. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to create innovations to make fusion power a practical reality--an alternative energy source. 1999 marked the first year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion reactors. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. The 1999 performance of the Princeton Plasma Physics Laboratory was rated ''outstanding'' by the U.S. Department of Energy in the Laboratory Appraisal report issued early in 2000. The report cited the Laboratory's consistently excellent scientific and technological achievements, its successful management practices, and included high marks in a host of other areas including environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary agreement with the New Jersey Department of Environmental Protection. PPPL monitored for the presence of non-radiological contaminants, mainly volatile organic compounds (components of degreasing solvents). Monitoring revealed the presence of low levels of volatile organic compounds in an area adjacent to PPPL. Also, PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the TFTR stack; the data are presented in this report.

  16. Test report : Princeton power systems prototype energy storage system.

    SciTech Connect (OSTI)

    Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

    2013-08-01T23:59:59.000Z

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. Princeton Power Systems has developed an energy storage system that utilizes lithium ion phosphate batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the Princeton Power Systems Prototype Energy Storage System.

  17. Weekly Highlights: September 2014 | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOETHE

  18. WPA Omnibus Award MT Wind Power Outreach

    SciTech Connect (OSTI)

    Brian Spangler, Manager Energy Planning and Renewables

    2012-01-30T23:59:59.000Z

    The objective of this grant was to further the development of Montanaâ??s vast wind resources for small, medium, and large scale benefits to Montana and the nation. This was accomplished through collaborative work with wind industry representatives, state and local governments, the agricultural community, and interested citizens. Through these efforts MT Dept Environmental Quality (DEQ) was able to identify development barriers, educate and inform citizens, as well as to participate in regional and national dialogue that will spur the development of wind resources. The scope of DEQâ??s wind outreach effort evolved over the course of this agreement from the development of the Montana Wind Working Group and traditional outreach efforts, to the current focus on working with the stateâ??s university system to deliver a workforce trained to enter the wind industry.

  19. 2014 Princeton CEFRC Summer School on Combustion | U.S. DOE Office...

    Office of Science (SC) Website

    2014 Princeton CEFRC Summer School on Combustion Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE...

  20. Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs...

    Open Energy Info (EERE)

    Methods Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs,...

  1. Pattern of shallow ground water flow at Mount Princeton Hot Springs...

    Open Energy Info (EERE)

    methods Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Pattern of shallow ground water flow at Mount Princeton Hot Springs,...

  2. Data Update for Mt. Tom, Holyoke, MA August 2006

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA August 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Elkinton Monthly Data Summary for August 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  3. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA June 2005 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for June 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59.2" N, 72

  4. Data Update for Mt. Tom, Holyoke, MA January 2006

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA January 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for December 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  5. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA May 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for May 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  6. Data Update for Mt. Tom, Holyoke, MA October 2006

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA October 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Elkinton Monthly Data Summary for October 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  7. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA July 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for July 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  8. Data Update for Mt. Tom, Holyoke, MA December 2005

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA December 2005 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for December 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  9. Data Update for Mt. Tom, Holyoke, MA October 2005

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA October 2005 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for October 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  10. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA July 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Elkinton Monthly Data Summary for July 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  11. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA July 2005 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for July 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59.2" N, 72

  12. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA March 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for March 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  13. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA May 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for May 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59.2" N, 72

  14. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA April 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for April 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  15. Data Update for Mt. Tom, Holyoke, MA October 2007

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA October 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for October 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  16. Data Update for Mt. Tom, Holyoke, MA November 2005

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA November 2005 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for November 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  17. Data Update for Mt. Tom, Holyoke, MA January 2008

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA January 2008 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for January 2008 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  18. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA June 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for June 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  19. Data Update for Mt. Tom, Holyoke, MA January 2007

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA January 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for January 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  20. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA April 2008 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for April 2008 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  1. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA March 2008 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for March 2008 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  2. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA June 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Elkinton Monthly Data Summary for June 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  3. Data Update for Mt. Tom, Holyoke, MA November 2006

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA November 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Elkinton Monthly Data Summary for November 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  4. Data Update for Mt. Tom, Holyoke, MA February 2007

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA February 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for February 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  5. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA April 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for April 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59.2" N, 72

  6. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA March 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for March 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59.2" N, 72

  7. Data Update for Mt. Tom, Holyoke, MA August 2005

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA August 2005 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for August 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  8. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA May 2008 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for May 2008 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  9. Data Update for Mt. Tom, Holyoke, MA August 2007

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA August 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for August 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  10. Princeton Power Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:Precourt Institute for EnergyWister AreaPrimePrincePower Systems

  11. Princeton, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:Precourt Institute for EnergyWister AreaPrimePrincePower

  12. Fact Sheets | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget » FY 2014FacilitiesSheet 300 AreaFACTFactFact

  13. Princeton Power Systems (TRL 5 6 Component)- Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage

    Broader source: Energy.gov [DOE]

    Princeton Power Systems (TRL 5 6 Component) - Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage

  14. Princeton University March 9, 1987 DOE/ER/3072-41 THE HAWKING-UNRUH TEMPERATURE

    E-Print Network [OSTI]

    McDonald, Kirk

    during the radiation of accel- erated particles, particularly those in storage rings. This view FLUCTUATIONS IN PARTICLE ACCELERATORS K. T. McDonald Joseph Henry Laboratories, Princeton University, Princeton on the details of the accelerating force, nor of the nature of the accelerated particle. The idea of an effective

  15. The Woodrow Wilson School of Public and International Affairs Princeton University

    E-Print Network [OSTI]

    Mauzerall, Denise

    from British Petroleum and Ford Motor Company, continues its work on carbon capture and storage as well of Policy Initiatives for the Sustainable Use of Energy at Princeton University Spring 2007 Summary Report and Atmospheric Administration and is affiliated with Princeton University, is one of the top climate modeling

  16. Dynamic Topic Models David M. Blei BLEI@CS.PRINCETON.EDU

    E-Print Network [OSTI]

    Blei, David M.

    Dynamic Topic Models David M. Blei BLEI@CS.PRINCETON.EDU Computer Science Department, Princeton patterns of words in document collec- tions using hierarchical probabilistic models (Blei et al., 2003; McCallum et al., 2004; Rosen-Zvi et al., 2004; Grif- fiths and Steyvers, 2004; Buntine and Jakulin, 2004; Blei

  17. The 29th International Electric Propulsion Conference, Princeton University, October 31 November 4, 2005

    E-Print Network [OSTI]

    Walker, Mitchell

    The 29th International Electric Propulsion Conference, Princeton University, October 31 ­ November International Electric Propulsion Conference, Princeton University, October 31 ­ November 4, 2005 James H magnetic field transient with the vacuum facility. The thrust stand has been revamped to allow for active

  18. International Electric Propulsion Conference, Princeton University, October 31 November 4, 2005

    E-Print Network [OSTI]

    King, Lyon B.

    The 29th International Electric Propulsion Conference, Princeton University, October 31 ­ November at the 29th International Electric Propulsion Conference, Princeton University, October 31 ­ November 4 consisting of a magnetic monopole with a constant axial E-field is used to identify fundamentals of electron

  19. International Electric Propulsion Conference, Princeton University, October 31 November 4, 2005

    E-Print Network [OSTI]

    King, Lyon B.

    The 29th International Electric Propulsion Conference, Princeton University, October 31 ­ November-effect Thruster IEPC-2005-274 Presented at the 29th International Electric Propulsion Conference, Princeton electron plasma in a pristine environment. A purely radial magnetic field is applied with a crossed

  20. INFORMATION TECHNOLOGY AT PRINCETON IN THE 21ST CENTURY: A STRATEGIC DIRECTION

    E-Print Network [OSTI]

    INFORMATION TECHNOLOGY AT PRINCETON IN THE 21ST CENTURY: A STRATEGIC DIRECTION FINDINGS Princeton must consolidate and strengthen its engagement with information technology. This is the principal 2004 If the 20th century was the age of computer technology, the 21st is emerging as the age

  1. Eliot Feibush leads new Princeton consortium to visualize Big Data |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater UseC SupportsElectronicEligibilityPrinceton Plasma

  2. Visualization of Multivariate Data --- Inventor: Eliot Feibush | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1 - USAFofEmailNORDUnet,govVisitor

  3. Christie Administration Honors Princeton Plasma Physics Lab As New Jersey's

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma ofTop Environmental Steward | Princeton

  4. PPPL now offering SUMMER high school internship! | Princeton Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomass and4/26/11:Tel.:162Physics LabPlasmaPrincetonLab

  5. PPPL: Great story, Bright Future | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomass and4/26/11:Tel.:162Physics|stationPrinceton PlasmaPPPL:

  6. Princeton Plasma Physics Laboratory Technology Marketing Summaries - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News, information andNetarchive Princeton Plasma

  7. City of Princeton, Kentucky (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity of Okolona,Plummer, IdahoCity of Princeton, Kentucky

  8. City of Princeton, Wisconsin (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity of Okolona,Plummer, IdahoCity of Princeton,

  9. Wave-driven Countercurrent Plasma Centrifuge | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOETHE FUTURE LOOKSof Energy WaveWave-driven

  10. Weekly Highlights Monthly Archive | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOETHE FUTUREBrowsertablesVer 5:Ethanol

  11. Weekly Highlights: December 2014 | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOETHE FUTUREBrowsertablesVer 5:EthanolDecember

  12. Weekly Highlights: February 2015 | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOETHE FUTUREBrowsertablesVer

  13. Weekly Highlights: January 2015 | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOETHE FUTUREBrowsertablesVerJanuary 2015 PPPL

  14. Weekly Highlights: July 2015 | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOETHE FUTUREBrowsertablesVerJanuary 2015

  15. Weekly Highlights: June 2015 | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOETHE FUTUREBrowsertablesVerJanuary 2015June

  16. Weekly Highlights: March 2015 | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOETHE FUTUREBrowsertablesVerJanuary

  17. Weekly Highlights: May 2015 | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOETHE FUTUREBrowsertablesVerJanuaryMay 2015

  18. Weekly Highlights: November 2014 | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOETHE FUTUREBrowsertablesVerJanuaryMay

  19. Weekly Highlights: October 2014 | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOETHE FUTUREBrowsertablesVerJanuaryMayOctober

  20. Wei-li W Lee | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOETHEWeekly Reports 2014 Weekly ReportWei-li W

  1. White brings talent, energy to PPPL's small business program | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is a “Shut-down” inEmissions

  2. Whitman appointed to DOE's Minorities in Energy Initiative | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is a “Shut-down” inEmissionsPlasma Physics

  3. Women@Energy: Aliya Merali | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abig worldFĂ©licieTeresa

  4. COLLOQUIUM: Consciousness and the Social Brain | Princeton Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience,Institute forPrinceton PlasmaLab

  5. COLLOQUIUM: Evolution of Coil Design and Manufacturing at PPPL | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience,InstitutePlasma PhysicsPrincetonPlasma

  6. COLLOQUIUM: In Silico Plasmas Under Extreme Intensities | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess StoriesFebruary 26, 2014, 4:00pm to 5:30pmPrincetonMay

  7. COLLOQUIUM: Industrialization of Nb3Sn conductor | Princeton Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess StoriesFebruary 26, 2014, 4:00pm to 5:30pmPrincetonMayLab

  8. COLLOQUIUM: Magnetized Target Fusion Work at General Fusion | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess StoriesFebruary 26, 2014, 4:00pm to| Princeton Plasma

  9. COLLOQUIUM: Mikhail Lomonosov - Father of Russian Science | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess StoriesFebruary 26, 2014, 4:00pm to| Princeton PlasmaPlasma

  10. Young Women's Conference cheers on girls interested in STEM | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhatY-12 recognizedThesis Prize | Jefferson

  11. Young Women's Conference cheers on girls interested in STEM | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhatY-12 recognizedThesis Prize | JeffersonPlasma

  12. Young Womens Conference attracts more attendees in 2014! | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhatY-12 recognizedThesis Prize |

  13. Integrated Dense Array and Transect MT Surveying at Dixie Valley...

    Open Energy Info (EERE)

    and Deep Fluid Sources Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Integrated Dense Array and Transect MT Surveying at Dixie Valley...

  14. The Investigation on Fibrous Veins and Their Host from Mt. Ida, Ouachita Mountains, Arkansas 

    E-Print Network [OSTI]

    Chung, Jae Won

    2004-09-30T23:59:59.000Z

    of the host is given by: ?* = 3b/(16kBV0B) (2) where b is the radius of rock sphere containing one vein or spherical crystal, ?* is the critical value of surrounding host rock viscosity, k is a constant in kinetic law for precipitation/dissolution... goal to test some of these implications. 7 2. GEOLOGY Samples of fibrous veins were collected from Paleozoic Womble Shale around Mt. Ida, Arkansas (Fig. 2). The study area lies within the Benton Uplift of eastern Arkansas. The Benton Uplift...

  15. A.J. Stewart Smith, Princeton's first dean for research, becomes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A.J. Stewart Smith, Princeton's first dean for research, becomes vice president for PPPL By Catherine Zandonella, Office of the Dean for Research June 28, 2013 Tweet Widget Google...

  16. Sam Wang, Princeton Genes, Brain Circuits, and the Mind: From Optical Imaging to Genomics

    E-Print Network [OSTI]

    Glashausser, Charles

    Sam Wang, Princeton WANG 12-4 Genes, Brain Circuits, and the Mind: From Optical Imaging to Genomics information, my laboratory uses multiphoton optical methods to image activity in the cerebellum, a structure

  17. Near-Surface imaging of a hydrogeothermal system at Mount Princeton...

    Open Energy Info (EERE)

    imaging of a hydrogeothermal system at Mount Princeton, Colorado using 3D seismic, self-potential, and dc resistivity data Jump to: navigation, search OpenEI Reference LibraryAdd...

  18. m_T2 : the truth behind the glamour

    E-Print Network [OSTI]

    Alan Barr; Christopher Lester; Phil Stephens

    2003-04-23T23:59:59.000Z

    We present the kinematic variable, m_T2, which is in some ways similar to the more familiar `transverse-mass', but which can be used in events where two or more particles have escaped detection. We define this variable and describe the event topologies to which it applies, then present some of its mathematical properties. We then briefly discuss two case studies which show how m_T2 is vital when reconstructing the masses of supersymmetric particles in mSUGRA-like and AMSB-like scenarios at the Large Hadron Collider.

  19. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 2000

    SciTech Connect (OSTI)

    Virginia L. Finley

    2002-04-22T23:59:59.000Z

    The results of the 2000 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and nonradioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2000. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to create innovations to make fusion power a practical reality -- an alternative energy source. The year 2000 marked the second year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion power plants. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. In 2000, PPPL's radiological environmental monitoring program measured tritium in the air at on-site and off-site sampling stations. PPPL is capable of detecting small changes in the ambient levels of tritium by using highly sensitive monitors. The operation of an in-stack monitor located on D-site is a requirement of the National Emission Standard for Hazardous Air Pollutants (NESHAPs) regulations with limits set by the Environmental Protection Agency (EPA). Also included in PPPL's radiological environmental monitoring program, are precipitation, surface, ground, a nd waste water monitoring. Groundwater investigations continued under a voluntary agreement with the New Jersey Department of Environmental Protection. PPPL monitored for the presence of nonradiological contaminants, mainly volatile organic compounds (components of degreasing solvents). Monitoring revealed the presence of low levels of volatile organic compounds in an area adjacent to PPPL. Also, PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the D-site stack; the data are presented in this report.

  20. A polymorphism in metallothionein 1A (MT1A) is associated with cadmium-related excretion of urinary beta 2?microglobulin

    SciTech Connect (OSTI)

    Lei, Lijian [Department of Occupational Health, School of Public Health, Fudan University, Shanghai (China) [Department of Occupational Health, School of Public Health, Fudan University, Shanghai (China); Department of Epidemiology, School of Public Health, Shanxi Medical University, Shanxi (China); Chang, Xiuli [Department of Occupational Health, School of Public Health, Fudan University, Shanghai (China)] [Department of Occupational Health, School of Public Health, Fudan University, Shanghai (China); Rentschler, Gerda [Department of Occupational and Environmental Medicine, Lund University, SE-22185, Lund (Sweden)] [Department of Occupational and Environmental Medicine, Lund University, SE-22185, Lund (Sweden); Tian, Liting [Department of Occupational Health, School of Public Health, Fudan University, Shanghai (China)] [Department of Occupational Health, School of Public Health, Fudan University, Shanghai (China); Zhu, Guoying; Chen, Xiao [Department of Bone Metabolism, Institute of Radiation Medicine, Fudan University, Shanghai (China)] [Department of Bone Metabolism, Institute of Radiation Medicine, Fudan University, Shanghai (China); Jin, Taiyi, E-mail: tyjinster@gmail.com [Department of Occupational Health, School of Public Health, Fudan University, Shanghai (China)] [Department of Occupational Health, School of Public Health, Fudan University, Shanghai (China); Broberg, Karin, E-mail: karin.broberg_palmgren@med.lu.se [Department of Occupational and Environmental Medicine, Lund University, SE-22185, Lund (Sweden)] [Department of Occupational and Environmental Medicine, Lund University, SE-22185, Lund (Sweden)

    2012-12-15T23:59:59.000Z

    Objectives: Cadmium (Cd) toxicity of the kidney varies between individuals despite similar exposure levels. In humans Cd is mainly bound to metallothioneins (MT), which scavenge its toxic effects. Here we analyzed whether polymorphisms in MT genes MT1A and MT2A influence Cd-related kidney damage. Methods: In a cross-sectional study N = 512 volunteers were selected from three areas in South-Eastern China, which to varying degree were Cd-polluted from a smelter (control area [median Cd in urine U-Cd = 2.67 ?g/L], moderately [U-Cd = 4.23 ?g/L] and highly [U-Cd = 9.13 ?g/L] polluted areas). U-Cd and blood Cd (B-Cd) concentrations were measured by graphite-furnace atomic absorption spectrometry. MT1A rs11076161 (G/A), MT2A rs10636 (G/C) and MT2A rs28366003 (A/G) were determined by Taqman assays; urinary N-Acetyl-beta-(D)-Glucosaminidase (UNAG) by spectrometry, and urinary ?2-microglobulin (UB2M) by ELISA. Results: Higher B-Cd (natural log-transformed) with increasing number of MT1A rs11076161 A-alleles was found in the highly polluted group (p-value trend = 0.033; all p-values adjusted for age, sex, and smoking). In a linear model a significant interaction between rs11076161 genotype and B-Cd was found for UNAG (p = 0.001) and UB2M concentrations (p = 0.001). Carriers of the rs11076161 AA genotype showed steeper slopes for the associations between Cd in blood and natural log-transformed UB2M (? = 1.2, 95% CI 0.72–1.6) compared to GG carriers (? = 0.30, 95% CI 0.15–0.45). Also for UNAG (natural log-transformed) carriers of the AA genotype had steeper slopes (? = 0.55, 95% CI 0.27–0.84) compared to GG carriers (? = 0.018, 95% CI ? 0.79–0.11). Conclusions: MT1A rs11076161 was associated with B-Cd concentrations and Cd-induced kidney toxicity at high exposure levels. -- Highlights: ? Cadmium is toxic to the kidney but the susceptibility differs between individuals. ? The toxic effect of cadmium is scavenged by metallothioneins. ? A common variant of metallothionein 1A was genotyped in 512 cadmium exposed humans. ? Variant carriers of this polymorphism showed more kidney damage from cadmium. ? The frequency of these variants needs to be taken into account in risk assessment.

  1. Modeling Spike Trains from Area This chapter describes the application of a motion energy model to the dynamic dot

    E-Print Network [OSTI]

    Bair, Wyeth

    74 Chapter 6 Modeling Spike Trains from Area MT This chapter describes the application of a motion energy model to the dynamic dot stimulus. We wanted to know whether the precise temporal modulation widely compared to electrophysiological data from both area MT and its V1 inputs (Heeger, 1987; Grzywacz

  2. Butler Hibben Princeton Grad Lawrence Wegmans Wegmans Walmart Trader Butler Apts Magie Station College Apts (arrive) (depart) Joe's Apts

    E-Print Network [OSTI]

    Bou-Zeid, Elie

    Butler Hibben Princeton Grad Lawrence Wegmans Wegmans Walmart Trader Butler Apts Magie Station Wegmans Wegmans Walmart Trader Butler Apts Magie Station College Apts (arrive) (depart) Joe's Apts

  3. Princeton Plasma Physics Laboratory FY2003 Annual Highlights

    SciTech Connect (OSTI)

    Editors: Carol A. Phillips; Anthony R. DeMeo

    2004-08-23T23:59:59.000Z

    The Princeton Plasma Physics Laboratory FY2003 Annual Highlights report provides a summary of the activities at the Laboratory for the fiscal year--1 October 2002 through 30 September 2003. The report includes the Laboratory's Mission and Vision Statements, a message ''From the Director,'' summaries of the research and engineering activities by project, and sections on Technology Transfer, the Graduate and Science Education Programs, Awards and Honors garnered by the Laboratory and the employees, and the Year in Pictures. There is also a listing of the Laboratory's publications for the year and a section of the abbreviations, acronyms, and symbols used throughout the report. In the PDF document, links have been created from the Table of Contents to each section. You can also return to the Table of Contents from the beginning page of each section. The PPPL Highlights for fiscal year 2003 is also available in hardcopy format. To obtain a copy e-mail Publications and Reports at: pub-reports@pppl.gov. Be sure to include your complete mailing address

  4. Going-to-the-Sun Road, Glacier National Park, MT, USA

    E-Print Network [OSTI]

    Going-to-the-Sun Road, Glacier National Park, MT, USA Avalanche Path Atlas Erich H. Peitzsch Daniel..................................................................................................................................... 2 Overview of Red Rock Group avalanche paths, Going-to-the-Sun Road, Glacier National Park, MT................................................................................................................................................... 3 Overview of Lower GTSR group avalanche paths, Going-to-the-Sun Road, Glacier National Park, MT

  5. Phylogeography of pipistrelle-like bats within the Canary Islands, based on mtDNA sequences

    E-Print Network [OSTI]

    Brown, Richard

    Phylogeography of pipistrelle-like bats within the Canary Islands, based on mtDNA sequences J January 2002; received in revised form 7 July 2002 Abstract Evolution of three Canary Island by comparison of 1 kbp of mtDNA (from cytochrome b and 16S rRNA genes) between islands. mtDNA reveals that both

  6. Princeton Plasma Physics Laboratory Procedure Title: Access to NSTX Experimental Areas

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    and Operations Division Energy Conversion Systems Engineering Environmental Restoration & Waste Management NSTX D-Site Caretaking Vacuum Computer Tritium Quality Assurance/Quality Control AC Power Maintenance Division Water Systems Neutral Beam (Heating Systems Branch of Electrical Engineering) Radiofrequency

  7. Train directions from Newark Airport to Nassau Inn or Palmer House Hotel Train is the most convenient way to get to Princeton from EWR. From the terminals at

    E-Print Network [OSTI]

    convenient way to get to Princeton from EWR. From the terminals at Newark there is a free "Airtrain" monorail

  8. Princeton -Weekly Bulletin 06/14/04 -Grants fund research on underwater vehicles, high-tech materials June 14, 2004

    E-Print Network [OSTI]

    Aksay, Ilhan A.

    Princeton - Weekly Bulletin 06/14/04 - Grants fund research on underwater vehicles, high research on underwater vehicles, high- tech materials By Steven Schultz Princeton NJ -- University mobile unmanned networks of underwater sensors and to develop new high-tech materials. The Department

  9. Peter Lighte's route to and through Princeton is out of the ordinary. A student adrift at George Washington University, he inadvertently

    E-Print Network [OSTI]

    Peter Lighte's route to and through Princeton is out of the ordinary. A student adrift at George, Lighte first taught and then rose in the banking world, living in London, Hong Kong, Tokyo and Beijing; but the road regularly circled back to Princeton. "Princeton was the making of me," notes Lighte of his

  10. Princeton Plasma Physics Laboratory. Annual report, October 1, 1989--September 30, 1990

    SciTech Connect (OSTI)

    Not Available

    1990-12-31T23:59:59.000Z

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  11. Princeton University, Plasma Physics Laboratory annual report, October 1, 1988--September 30, 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    This report contains discussions on the following topics: principal parameters achieved in experimental devices (FY89); tokamak fusion test reactor; compact ignition tokamak; princeton beta experiment- modification; current drive experiment; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for (FY89); graduate education: plasma physics; graduate education: plasma science and technology; and Princeton Plasmas Physics Laboratory Reports (FY89).

  12. Princeton University, Plasma Physics Laboratory annual report, October 1, 1988--September 30, 1989

    SciTech Connect (OSTI)

    Not Available

    1989-12-31T23:59:59.000Z

    This report contains discussions on the following topics: principal parameters achieved in experimental devices (FY89); tokamak fusion test reactor; compact ignition tokamak; princeton beta experiment- modification; current drive experiment; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for (FY89); graduate education: plasma physics; graduate education: plasma science and technology; and Princeton Plasmas Physics Laboratory Reports (FY89).

  13. COLLOQUIUM: On Tracing the Origins of the Solar Wind | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess StoriesFebruary 26, 2014, 4:00pm to| PrincetonPrinceton

  14. COLLOQUIUM: One Second After the Big Bang | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess StoriesFebruary 26, 2014, 4:00pm to| PrincetonPrincetonOctober

  15. Final Technical Report - Development of a tunable diode laser induced fluorescence diagnostic for the Princeton magnetic nozzle experiment: West Virginia University and Princeton Plasma Physics Laboratory

    SciTech Connect (OSTI)

    Earl Scime

    2006-11-07T23:59:59.000Z

    This project involves the construction of a compact, portable, laser induced fluorescence (LIF) diagnostic for measurements of neutral helium, neutral argon, and argon ion velocity space distributions in a high density, steady state, helicon source. The project is collaborative effort between the Princeton Plasma Physics Laboratory (PPPL) and the West Virginia University (WVU) helicon source group. A key feature of the diagnostic system will be the use of tunable diode lasers instead of the tunable dye lasers typically used in LIF experiments.

  16. Properties of MT2 in the massless limit

    E-Print Network [OSTI]

    Colin H. Lally; Christopher G. Lester

    2013-09-10T23:59:59.000Z

    Although numerical methods are required to evaluate the stransverse mass, MT2, for general input momenta, non-numerical methods have been proposed for some special clases of input momenta. One special case, considered in this note, is the so-called `massless limit' in which all four daughter objects (comprising one invisible particle and one visible system from each `side' of the event) have zero mass. This note establishes that it is possible to construct a stable and accurate implementation for evaluating MT2 based on an analytic expression valid in that massless limit. Although this implementation is found to have no significant speed improvements over existing evaluation strategies, it leads to an unexpected by-product: namely a secondary variable, that is found to be very similar to MT2 for much of its input-space and yet is much faster to calculate. This is potentially of interest for hardware applications that require very fast estimation of a mass scale (or QCD background discriminant) based on a hypothesis of pair production -- as might be required by a high luminosity trigger for a search for pair production of new massive states undergoing few subsequent decays (eg di-squark or di-slepton production). This is an application to which the contransverse mass MCT has previously been well suited due to its simplicity and ease of evaluation. Though the new variable requires a quadratic root to be found, it (like MCT) does not require iteration to compute, and is found to perform better then MCT in circumstances in which the information from the missing transverse momentum (which the former retains and the latter discards) is both reliable and useful.

  17. Photo by David Benet Naomi Leonard, a Princeton University professor of

    E-Print Network [OSTI]

    Leonard, Naomi

    Photo by David Benet Naomi Leonard, a Princeton University professor of mechanical and aerospace of Mechanical and Aerospace Engineering Naomi Leonard. "Every day, I'm looking out at the Pacific Ocean and I data," Professor Leonard said Monday in a phone call from California. "It's really amazing." Professor

  18. PRINCETON UNIVERSITY ART MUSEUM Small group visits to the Art Museum can...

    E-Print Network [OSTI]

    PRINCETON UNIVERSITY ART MUSEUM Small group visits to the Art Museum can... ...Hone visual literacy, Lights, Camera, Action (FRS 110), to the Museum to apply lessons learned about how the eye sees via a module at the Art Museum on French Impressionist art. They first visit the Museum together

  19. The Woodrow Wilson School of Public and International Affairs Princeton University

    E-Print Network [OSTI]

    Mauzerall, Denise

    of Policy Initiatives for the Sustainable Use of Energy at Princeton University Spring 2007 Task Force Initiative, the result of a $20 million grant from British Petroleum and Ford Motor Company, continues its work on carbon capture and storage as well as other cutting edge climate change research projects

  20. Analysis of a Third-Generation Princeton Tri-leaflet Mechanical Heart Valve

    E-Print Network [OSTI]

    Petta, Jason

    Analysis of a Third-Generation Princeton Tri-leaflet Mechanical Heart Valve Michael Hsu Advisor heart valve · Static analysis of leaflet under uniform pressure of 10 MPa Summer Objectives · Find Heart valve disease · Over 5 million affected · Over 225,000 valve- replacement surgeries performed

  1. Princeton Plasma Physics Laboratory: Annual report, October 1, 1986--September 30, 1987

    SciTech Connect (OSTI)

    Not Available

    1987-01-01T23:59:59.000Z

    This report contains papers on the following topics: Principle Parameters Achieved in Experimental Devices (FY87); Tokamak Fusion Test Reactor; Princeton Beta Experiment-Modification; S-1 Spheromak; Current-Drive Experiment; X-Ray Laser Studies; Theoretical Division; Tokamak Modeling; Compact Ignition Tokamak; Engineering Department; Project Planning and Safety Office; Quality Assurance and Reliability; Administrative Operations; and PPPL Patent Invention Disclosures (FY87).

  2. Solar energy research at Princeton University Universities today bear the same responsibility to confront environmental challenges

    E-Print Network [OSTI]

    Solar energy research at Princeton University Universities today bear the same responsibility in anticipation of increased power demands required by almost two million square feet of new development by the central power facility that provides power, heating, and cooling to campus buildings. Although additional

  3. MT Energie GmbH Co KG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma:EnergyECO Auger <SmarTurbineMIT-MRINewMT Energie

  4. RAPID/Roadmap/17-MT-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, search RAPIDaUT-ab <-MT-b

  5. RAPID/Roadmap/17-MT-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, search RAPIDaUT-ab <-MT-bd

  6. RAPID/Roadmap/5-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, searche <caMT-a <

  7. RAPID/Roadmap/9-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to:b < RAPID‎ | Roadmap JumpMT-a <

  8. City of Mt Pleasant, Utah (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban TransportMartinsville,Minidoka,City ofIowaMt Pleasant,

  9. Mt Carmel Public Utility Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill,Spurr GeothermalInformation Biofuels,(RECP)Mt

  10. RAPID/Roadmap/1-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas) Redirect page JumpAK-aHI-aMT-a

  11. RAPID/Roadmap/13-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-a < RAPID‎ID-a <MT-a

  12. RAPID/Roadmap/4-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ |gWA-eID-b <aibHI-aMT-a

  13. Monitoring and Targeting (M&T): A Low Investment, Low Risk Approach to Energy Cost Savings

    E-Print Network [OSTI]

    McMullan, A.; Rutkowski, M.; Karp, A.

    Monitoring and Targeting (M&T): A Low Investment, Low Risk Approach to Energy Cost Savings Andrew McMullan Mike Rutkowski Alan Karp Vice President President Manager Bus. Development VERITECH, INC. Sterling, VA ABSTRACT Monitoring... and Targeting (M&T) is a disciplined approach to energy management that ensures that energy resources are used to their maximmn economic advantage. M&T serves two principal functions: ? Ongoing, day-to-day control of energy use ? Planned improvements...

  14. ,"Port of Del Bonita, MT Natural Gas Pipeline Imports From Canada...

    U.S. Energy Information Administration (EIA) Indexed Site

    Del Bonita, MT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  15. Self Potential At Mt St Helens Area (Bedrosian, Et Al., 2007) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScotts Corners,Energy Information

  16. Aeromagnetic Survey At Mt St Helens Area (Towle, 1983) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE JumpAeroWind Inc. Place: Potsdam,OpenAl., 1984) |

  17. Isotopic Analysis At Mt St Helens Area (Shevenell & Goff, 1995) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar Energy JumpIremNot Available)Information2002)

  18. Isotopic Analysis At Mt St Helens Area (Shevenell & Goff, 2000) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar Energy JumpIremNot Available)Information2002)Energy

  19. Geothermometry At Mt St Helens Area (Shevenell & Goff, 1995) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005)EnergyAmatitlanGmbH und Co2010) |Information

  20. Controlled Source Audio MT At Mccoy Geothermal Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew| OpenCongress,ConsolidatedContainedInformation

  1. Direct-Current Resistivity Survey At Marysville Mt Area (Blackwell) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale, Michigan: Energy Resources Jump(Thomas,(Thomas,Energy

  2. Thermal And-Or Near Infrared At Marysville Mt Area (Blackwell) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLC JumpWoodlands, Texas:InformationEnergy

  3. Thermal And-Or Near Infrared At Mt Ranier Area (Frank, 1995) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLC JumpWoodlands,

  4. Compound and Elemental Analysis At Mt St Helens Area (Shevenell & Goff,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005) | Open(Thompson, 1985) |Open Energy1995)

  5. Compound and Elemental Analysis At Mt St Helens Area (Shevenell & Goff,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005) | Open(Thompson, 1985) |Open

  6. Controlled Source Audio MT At Cove Fort Area - Liquid (Combs 2006) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005)ConservationLSCEnergy Information

  7. Controlled Source Audio MT At Pilgrim Hot Springs Area (DOE GTP) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005)ConservationLSCEnergy

  8. Controlled Source Audio MT At Roosevelt Hot Springs Area (Combs 2006) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005)ConservationLSCEnergyOpen Energy

  9. Rock Sampling At Mt Ranier Area (Frank, 1995) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRock Lab

  10. Geothermal Literature Review At Mt Ranier Area (Frank, 1995) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005)Energy Information )Et Al., 2001)

  11. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 2001

    SciTech Connect (OSTI)

    Virginia L. Finley

    2004-04-07T23:59:59.000Z

    The purpose of this report is to provide the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants (if any) that are added to the environment as a result of the Princeton Plasma Physics Laboratory's (PPPL) operations. The results of the 2001 environmental surveillance and monitoring program for PPPL are presented and discussed. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2001. PPPL has engaged in fusion energy research since 1951. The vision of the Laboratory is to create innovations to make fusion power a practical reality--a clean, alternative energy source. The Year 2001 marked the third year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion reactors. In 2001, PPPL's radiological environmental monitoring program measured tritium in the air at on- and off-site sampling stations. PPPL is capable of detecting small changes in the ambient levels of tritium by using highly sensitive monitors. The operation of an in-stack monitor located on D-site is a requirement of the National Emission Standard for Hazardous Air Pollutants (NESHAPs) regulations; also included in PPPL's radiological environmental monitoring program, are water monitoring--precipitation, ground-, surface-, and waste-waters. PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the D-site stack; the data are presented in this report. Groundwater monitoring continue d under a voluntary agreement with the New Jersey Department of Environmental Protection. PPPL monitored for the presence of nonradiological contaminants, mainly volatile organic compounds (components of degreasing solvents). Monitoring revealed the low levels of volatile organic compounds in an area adjacent to PPPL. In 2001, PPPL was in compliance with its permit limits for surface and sanitary discharges and had no reportable releases. Additionally, as part of DOE's program for the purchase of recycled content and other environmentally preferred products, PPPL has ranked in the excellent category of 80 to 90% of the goal.

  12. MT-SDF: Scheduled Dataflow Architecture with mini-threads Domenico Pace

    E-Print Network [OSTI]

    Kavi, Krishna

    MT-SDF: Scheduled Dataflow Architecture with mini-threads Domenico Pace University of Pisa Pisa Dataflow (SDF) architecture. We call the new architecture MT-SDF. We introduce mini-threads to execute and quantitative comparison of the mini-threads with the original SDF architecture, and out-of-order superscalar

  13. An assessment of regional climate trends and changes to the Mt. Jaya glaciers of Irian Jaya

    E-Print Network [OSTI]

    Kincaid, Joni L.

    2007-09-17T23:59:59.000Z

    on the Mt. Jaya glaciers has been lacking since the early 1970s. Using IKONOS satellite images, the ice extents of the Mt. Jaya glaciers in 2000, 2002, 2003, 2004, and 2005 were mapped. The mapping indicates that the recessional trend which began in the mid...

  14. Intraspecific evolution of Canary Island Plecotine bats, based on mtDNA sequences

    E-Print Network [OSTI]

    Brown, Richard

    Intraspecific evolution of Canary Island Plecotine bats, based on mtDNA sequences J Pestano1 , RP investigated in the endemic Canary Island bat Plecotus teneriffae, based on B1 kb of mtDNA from the 16S r of differentiation between Canary Islands were quite high relative to Pipis- trelle-like bats, consistent

  15. Visual Field Maps, Population Receptive Field Sizes, and Visual Field Coverage in the Human MT Complex

    E-Print Network [OSTI]

    Dumoulin, Serge O.

    of processing in human motion-selective cortex. I N T R O D U C T I O N Neuroimaging experiments localize human by additional experiments. Defining human MT based on stimulus selectivity means that the identificationVisual Field Maps, Population Receptive Field Sizes, and Visual Field Coverage in the Human MT

  16. A MT System from Turkmen to Turkish Employing Finite State and Statistical Methods

    E-Print Network [OSTI]

    Yanikoglu, Berrin

    between close language pairs can be relatively easier and can still benefit from simple(r) paradigms in MT with a disambiguation post-processing stage based on statistical language models. The very productive inflectionalA MT System from Turkmen to Turkish Employing Finite State and Statistical Methods A. Cüneyd TANTU

  17. Final Report: High Energy Physics Program (HEP), Physics Department, Princeton University

    SciTech Connect (OSTI)

    Callan, Curtis G. [Princeton University; Gubser, Steven S. [Princeton University; Marlow, Daniel R. [Princeton University; McDonald, Kirk T. [Princeton University; Meyers, Peter D. [Princeton University; Olsen, James D. [Princeton University; Smith, Arthur J.S. [Princeton University; Steinhardt, Paul J. [Princeton University; Tully, Christopher G. [Princeton University; Stickland, David P. [Princeton University

    2013-04-30T23:59:59.000Z

    The activities of the Princeton Elementary particles group funded through Department of Energy Grant# DEFG02-91 ER40671 during the period October 1, 1991 through January 31, 2013 are summarized. These activities include experiments performed at Brookhaven National Lab; the CERN Lab in Geneva, Switzerland; Fermilab; KEK in Tsukuba City, Japan; the Stanford Linear Accelerator Center; as well as extensive experimental and the- oretical studies conducted on the campus of Princeton University. Funded senior personnel include: Curtis Callan, Stephen Gubser, Valerie Halyo, Daniel Marlow, Kirk McDonald, Pe- ter Meyers, James Olsen, Pierre Pirou#19;e, Eric Prebys, A.J. Stewart Smith, Frank Shoemaker (deceased), Paul Steinhardt, David Stickland, Christopher Tully, and Liantao Wang.

  18. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Years 2002 and 2003

    SciTech Connect (OSTI)

    Virginia L. Finley, Editor

    2004-12-22T23:59:59.000Z

    This report provides the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and non-radioactive pollutants (if any) that are added to the environment as a result of Princeton Plasma Physics Laboratory's (PPPL) operations. The results of the 2002 and 2003 environmental surveillance and monitoring program for PPPL are presented and discussed. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2002 and 2003.

  19. Ark-Tex Area Regional Public Transportation Coordination Plan

    E-Print Network [OSTI]

    Ark-Tex Council of Governments

    2006-11-30T23:59:59.000Z

    ? 30 corridor. The transportation network in the Ark-Tex area is managed and operated through two transit providers, a variety of organizations that provide or fund transportation in support of their primary programs (including public entities... and Texarkana proper. 3. Ark-Tex Area Agency on Aging (AAA) ? Senior transportation throughout the service area to meals and other services. 4. Northeast Texas Community College ? Service from Mt. Pleasant to the community college is provided by TRAX...

  20. Impact of monsoons, temperature, and CO2 on the rainfall and ecosystems of Mt. Kenya during the Common Era

    E-Print Network [OSTI]

    Vuille, Mathias

    Impact of monsoons, temperature, and CO2 on the rainfall and ecosystems of Mt. Kenya during Leaf waxes Glacial and early Holocene-age sediments from lakes on Mt. Kenya have documented strong and atmospheric CO2 concentra- tions. However, little is known about climate and ecosystem variations on Mt. Kenya

  1. Princeton Junction, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:Precourt Institute for EnergyWister AreaPrimePrince William

  2. Princeton Meadows, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:Precourt Institute for EnergyWister AreaPrimePrince WilliamMeadows,

  3. Princeton North, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:Precourt Institute for EnergyWister AreaPrimePrince

  4. MT3D: a 3 dimensional magnetotelluric modeling program (user's guide and documentation for Rev. 1)

    SciTech Connect (OSTI)

    Nutter, C.; Wannamaker, P.E.

    1980-11-01T23:59:59.000Z

    MT3D.REV1 is a non-interactive computer program written in FORTRAN to do 3-dimensional magnetotelluric modeling. A 3-D volume integral equation has been adapted to simulate the MT response of a 3D body in the earth. An integro-difference scheme has been incorporated to increase the accuracy. This is a user's guide for MT3D.REV1 on the University of Utah Research Institute's (UURI) PRIME 400 computer operating under PRIMOS IV, Rev. 17.

  5. L mt i tng nghin cu, qu v c nhng quyn li sau

    E-Print Network [OSTI]

    Church, George M.

    . Quyt nh nŕy s không nh hng ti dch v chm sóc mŕ quý v nhn c ti bnh vin. c nhn mt bn sao ca mu chp thun

  6. TIME-VARIABLEFILTERING OF MtTLTI[CHANNELSIGNALS USING MULTIPLE WINDOWS COHERENCEAND THE WEYL TRANSFORM

    E-Print Network [OSTI]

    Sandsten, Maria

    TIME-VARIABLEFILTERING OF MtTLTI[CHANNELSIGNALS USING MULTIPLE WINDOWS COHERENCEAND THE WEYL between all channel pairs. Time-frequency coherence functions are estimated using the multiple window

  7. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    Physics Laboratory Global Hybrid Simulations of Energetic Particle Effects on the n=1 Mode in Tokamaks://www.ntis.gov/ordering.htm #12;Global hybrid simulations of energetic particle effects on the n=1 mode in tokamaks: internal kink.E. Sugiyamac aPrinceton Plasma Physics Laboratory, Princeton, New Jersey 08543 b New York University, New York

  8. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    , California 92186 3 Columbia University, New York, New York 10027 Abstract Plasma shape control using realPrepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma is posted on the U.S. Department of Energy's Princeton Plasma Physics Laboratory Publications and Reports

  9. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for calendar year 1993

    SciTech Connect (OSTI)

    Finley, V.L.; Wiezcorek, M.A.

    1995-01-01T23:59:59.000Z

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY93. The report is prepared to provide the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and non-radioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs that were undertaken in 1993. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. In 1993, PPPL had both of its two large tokamak devices in operation; the Tokamak Fusion Test Reactor (TFTR) and the Princeton Beta Experiment-Modification (PBX-M). PBX-M completed its modifications and upgrades and resumed operation in November 1991. TFTR began the deuterium-tritium (D-T) experiments in December 1993 and set new records by producing over six million watts of energy. The engineering design phase of the Tokamak Physics Experiment (TPX), which replaced the cancelled Burning Plasma Experiment in 1992 as PPPL`s next machine, began in 1993 with the planned start up set for the year 2001. In 1993, the Environmental Assessment (EA) for the TFRR Shutdown and Removal (S&R) and TPX was prepared for submittal to the regulatory agencies.

  10. Random mtDNA mutations modulate proliferation capacity in mouse embryonic fibroblasts

    SciTech Connect (OSTI)

    Kukat, Alexandra [Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institute, S-17171 Stockholm (Sweden) [Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institute, S-17171 Stockholm (Sweden); Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Cologne University Clinic, D-50674 Cologne (Germany); Edgar, Daniel [Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institute, S-17171 Stockholm (Sweden)] [Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institute, S-17171 Stockholm (Sweden); Bratic, Ivana [Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institute, S-17171 Stockholm (Sweden) [Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institute, S-17171 Stockholm (Sweden); Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Cologne University Clinic, D-50674 Cologne (Germany); Maiti, Priyanka [Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Cologne University Clinic, D-50674 Cologne (Germany)] [Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Cologne University Clinic, D-50674 Cologne (Germany); Trifunovic, Aleksandra, E-mail: aleksandra.trifunovic@ki.se [Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institute, S-17171 Stockholm (Sweden) [Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institute, S-17171 Stockholm (Sweden); Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Cologne University Clinic, D-50674 Cologne (Germany)

    2011-06-10T23:59:59.000Z

    Highlights: {yields} Increased mtDNA mutations in MEFs lead to high level of spontaneous immortalization. {yields} This process is independent of endogenous ROS production. {yields} Aerobic glycolysis significantly contributes to spontaneous immortalization of MEFs. -- Abstract: An increase in mtDNA mutation load leads to a loss of critical cells in different tissues thereby contributing to the physiological process of organismal ageing. Additionally, the accumulation of senescent cells that display changes in metabolic function might act in an active way to further disrupt the normal tissue function. We believe that this could be the important link missing in our understanding of the molecular mechanisms of premature ageing in the mtDNA mutator mice. We tested proliferation capacity of mtDNA mutator cells in vitro. When cultured in physiological levels of oxygen (3%) their proliferation capacity is somewhat lower than wild-type cells. Surprisingly, in conditions of increased oxidative stress (20% O{sub 2}) mtDNA mutator mouse embryonic fibroblasts exhibit continuous proliferation due to spontaneous immortalization, whereas the same conditions promote senescence in wild-type cells. We believe that an increase in aerobic glycolysis observed in mtDNA mutator mice is a major mechanism behind this process. We propose that glycolysis promotes proliferation and allows a fast turnover of metabolites, but also leads to energy crisis due to lower ATP production rate. This could lead to compromised replication and/or repair and therefore, in rare cases, might lead to mutations in tumor suppressor genes and spontaneous immortalization.

  11. Current profile modification during lower hybrid current drive in the Princeton Beta Experiment-Modification

    SciTech Connect (OSTI)

    Kaita, R.; Bell, R. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Batha, S.H. [Fusion Physics and Technology, Torrance, CA (United States)] [and others

    1996-02-01T23:59:59.000Z

    Current profile modification with lower hybrid waves has been demonstrated in the Princeton Beta Experiment-Modification tokamak. When the n{parallel} spectrum of the launched waves was varied, local changes in the current profile were observed according to equilibria reconstructed from motional Stark effect polarimetry measurements. Changes in the central safety factor (q) were also determined to be a function of the applied radio frequency (rf) power. These results have been modeled with the Tokamak Simulation Code/Lower Hybrid Simulation Code, which is able to duplicate the general trends seen in the data.

  12. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for Calendar Year 1992

    SciTech Connect (OSTI)

    Finley, V.L.; Wieczorek, M.A.

    1994-03-01T23:59:59.000Z

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY92. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health.

  13. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1998

    SciTech Connect (OSTI)

    V. Finley

    2000-03-06T23:59:59.000Z

    The results of the 1998 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the US Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants, if any, that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 1998. One significant initiative is the Integrated Safety Management (ISM) program that embraces environment, safety, and health principles as one.

  14. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for calendar year 1991

    SciTech Connect (OSTI)

    Finley, V.L.; Stencel, J.R.

    1992-11-01T23:59:59.000Z

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY91. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health.

  15. Princeton Site Office Homepage | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHome Pacific NorthwestHome Princeton Site

  16. Video e-card offers holiday greetings from everyone at PPPL | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1 - USAFofEmail Mr. William HirstVictor

  17. PPPL to launch major upgrade of key fusion energy test facility | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomass and4/26/11:Tel.:162Physics|station | Princeton PlasmaPlasma

  18. PPPL wins R&amp;D 100 Award | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomass and4/26/11:Tel.:162Physics|station | PrincetonPPPL wins

  19. The Princeton Tritium Observatory for Light, Early Universe, Massive Neutrino Yield (PTOLEMY) Prototype

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy Solar Decathlon2001Competitivenessconvened theandPrinceton

  20. "Is It The Higgs-Boson", Professor James Olsen, Princeton University |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship ProgramBiomass andTriangleNameAND THECzech,Princeton Plasma

  1. "Progress in U.S. ITER Magnet Systems", Wayne Reiersen, Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship ProgramBiomassUniversity | Princeton Plasma Physics Lab

  2. Princeton Plasma Physics Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven National LaboratoryJeffreyMs. LindaOfficePresidentMeetingsPrinceton

  3. Princeton Plasma Physics Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven National LaboratoryJeffreyMs.Princeton Plasma Physics Laboratory

  4. Princeton-CEFRC Summer Program on Combustion: 2013 Session | U.S. DOE

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven National LaboratoryJeffreyMs.Princeton Plasma Physics

  5. Princeton Plasma Physics Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhavenMassachusetts RegionsPaul Bohn, ThreeGenerator | U.S.Princeton

  6. Princeton-CEFRC Summer Program on Combustion: 2010 Session | U.S. DOE

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhavenMassachusetts RegionsPaul Bohn, ThreeGenerator | U.S.PrincetonOffice

  7. COLLOQUIUM: In Search of the First Americans | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess StoriesFebruary 26, 2014, 4:00pm to 5:30pmPrincetonMay 1,

  8. Princeton Site Office EA / EIS | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.7 348,016.0stellarators Figure-eight shapedtokamaksPrinceton

  9. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for calendar year 1990

    SciTech Connect (OSTI)

    Stencel, J.R.; Finley, V.L.

    1991-12-01T23:59:59.000Z

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory for CY90. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health. The PPPL has engaged in fusion energy research since 1951 and in 1990 had one of its two large tokamak devices in operation: namely, the Tokamak Fusion Test Reactor. The Princeton Beta Experiment-Modification is undergoing new modifications and upgrades for future operation. A new machine, the Burning Plasma Experiment -- formerly called the Compact Ignition Tokamak -- is under conceptual design, and it is awaiting the approval of its draft Environmental Assessment report by DOE Headquarters. This report is required under the National Environmental Policy Act. The long-range goal of the US Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. 59 refs., 39 figs., 45 tabs.

  10. Uranium hydrogeochemical and stream-sediment reconnaissance of the Mt. Michelson NTMS quadrangle, Alaska

    SciTech Connect (OSTI)

    Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr. (comps.) [comps.

    1982-04-01T23:59:59.000Z

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Mt. Michelson NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report.

  11. 2009-10 Princeton Global Scholar Ge Zhaoguang. Professor Ge is the founding director of the National Institute for Advanced

    E-Print Network [OSTI]

    2009-10 Princeton Global Scholar Ge Zhaoguang. Professor Ge is the founding director, and emendation of all sorts of newly discovered texts (mostly found at archaeological sites). Professor Ge University, Professor Ge taught at Tsinghua University for a number of years. He is known for many important

  12. Energy and Environment Research Position The Department of Civil and Environmental Engineering at Princeton University seeks a research scientist to

    E-Print Network [OSTI]

    Bou-Zeid, Elie

    Energy and Environment Research Position The Department of Civil and Environmental Engineering and the environment, with particular emphasis on geologic sequestration of carbon dioxide. The research program at Princeton University seeks a research scientist to develop a new research program at the nexus of energy

  13. 2011-12 Princeton Global Scholar Dean of Peking University's School of International Studies, Jisi Wang is

    E-Print Network [OSTI]

    policy, and he is among a small number of Chinese scholars who have published articles in English and Strategic Studies, one of the first academic research centers in China to conduct policy-relevant research's foreign policy, and for Princeton scholars to develop academic ties at Peking University's School

  14. Princeton Plasma Physics Laboratory annual report, October 1, 1991--September 30, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31T23:59:59.000Z

    This report discusses the following topics: Principal parameters achieved in experimental devices for fiscal year 1992; tokamak fusion test reactor; princeton beta experiment-modification; current drive experiment-upgrade; tokamak physics experiment/steady-state advanced tokamak; international thermonuclear experimental reactor; international collaboration; x-ray laser studies; plasma processing: Deposition and etching of thin films; pure electron plasma experiments; theoretical studies; tokamak modeling; high-field magnet project; engineering department; environment, safety, and health and quality assurance; technology transfer; office of human resources and administration; PPPL invention disclosures for fiscal year 1992; office of resource management; graduate education: plasma physics; graduate education: program in plasma science and technology; and science education program.

  15. FY93 Princeton Plasma Physics Laboratory. Annual report, October 1, 1992--September 30, 1993

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    This is the annual report from the Princeton Plasma Physics Laboratory for the period October 1, 1992 to September 30, 1993. The report describes work done on TFTR during the year, as well as preparatory to beginning of D-T operations. Design work is ongoing on the Tokamak Physics Experiment (TPX) which is to test very long pulse operations of tokamak type devices. PBX has come back on line with additional ion-Bernstein power and lower-hybrid current drive. The theoretical program is also described, as well as other small scale programs, and the growing effort in collaboration on international design projects on ITER and future collaborations at a larger scale.

  16. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1996

    SciTech Connect (OSTI)

    J.D. Levine; V.L. Finley

    1998-03-01T23:59:59.000Z

    The results of the 1996 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the US Department of Energy and the public with information on the level of radioactive and nonradioactive pollutants, if any, that are added to the environment as a result of PPPL's operations. During Calendar Year 1996, PPPL's Tokamak Fusion Test Reactor (TFTR) continued to conduct fusion experiments. Having set a world record on November 2, 1994, by achieving approximately 10.7 million watts of controlled fusion power during the deuterium-tritium (D-T) plasma experiments, researchers turned their attention to studying plasma science experiments, which included ''enhanced reverse shear techniques.'' Since November 1993, more than 700 tritium-fueled experiments were conducted, which generated more than 4 x 10(superscript 20) neutrons and 1.4 gigajoules of fusion energy. In 1996, the overall performance of Princeton Plasma Physics Laboratory was rated ''excellent'' by the US Department of Energy in the Laboratory Appraisal report issued in early 1997. The report cited the Laboratory's consistently excellent scientific and technological achievements and its successful management practices, which included high marks for environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary agreement with the New Jersey Department of Environmental Protection. PPPL monitored for the presence of nonradiological contaminants, mainly volatile organic compounds (components of degreasing solvents) and petroleum hydrocarbons (past leaks of releases of diesel fuel from underground storage tanks). Also, PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the TFTR stack; the data are presented in this report. During 1996, PPPL completed the removal of contaminated soil from two locations that were identified through the monitoring program: petroleum hydrocarbons along a drainage swale and chromium adjacent to the cooling tower.

  17. Princeton Environmental Institute PRINCETON UNIVERSITY

    E-Print Network [OSTI]

    ..........................................................................................22 1.4.1. Huntorf

  18. To shape a realistic ten-year Campus Plan, Princeton had to balance the needs and desires of two interdependent communities. The University, a thriving community

    E-Print Network [OSTI]

    and civil rights took on renewed urgency. It was also a transformational era for Princeton, with women to cultural events, from the children's library to the Art Museum. Some mobilize the volunteer energies

  19. PARTICLE FILTER WITH EFFICIENT IMPORTANCE SAMPLING AND MODE TRACKING (PF-EIS-MT) AND ITS APPLICATION TO LANDMARK SHAPE TRACKING

    E-Print Network [OSTI]

    Vaswani, Namrata

    PARTICLE FILTER WITH EFFICIENT IMPORTANCE SAMPLING AND MODE TRACKING (PF-EIS-MT) AND ITS a practically implementable particle filtering (PF) method called "PF-EIS-MT" for tracking on large dimensional dimensions and (b) direct application of PF requires an impractically large number of particles. PF-EIS

  20. MSU Human Resources 19 Montana Hall ~ PO Box 172520 ~ Bozeman, MT 59717-2520

    E-Print Network [OSTI]

    Dyer, Bill

    MSU Human Resources 19 Montana Hall ~ PO Box 172520 ~ Bozeman, MT 59717-2520 Tel (406) 994 with the Social Security Administration and State policies, the Human Resources procedure for Name and Address changes has been modified. The Human Resources Department uses two separate forms ­ one for name changes

  1. Dr. Joseph A. Shaw Electrical & Computer Engineering Dept., Montana State University, Bozeman, MT 59717

    E-Print Network [OSTI]

    Lawrence, Rick L.

    Dr. Joseph A. Shaw Electrical & Computer Engineering Dept., Montana State University, Bozeman, MT M.S. Electrical Engineering University of Utah 1987 B.S. Electrical Engineering University of Alaska Experience: 2008 ­ present Professor ­ Electrical & Computer Engineering (ECE) Department, Montana State

  2. Hybrid Rule-Based Example-Based MT: Feeding Apertium with Sub-sentential Translation Units

    E-Print Network [OSTI]

    Way, Andy

    Hybrid Rule-Based ­ Example-Based MT: Feeding Apertium with Sub-sentential Translation Units Felipe S´anchez-Mart´inez Mikel L. Forcada Andy Way Dept. Llenguatges i Sistemes Inform`atics Universitat University Dublin 9, Ireland {mforcada,away}@computing.dcu.ie Abstract This paper describes a hybrid machine

  3. Job submission to grid computing environments RP Bruin, TOH White, AM Walker, KF Austen, MT Dove

    E-Print Network [OSTI]

    Cambridge, University of

    Job submission to grid computing environments RP Bruin, TOH White, AM Walker, KF Austen, MT Dove Albemarle Street, London W1S 4BS Abstract The problem of enabling scientist users to submit jobs to grid scientists to work with raw Globus job-submission commands ­ in the end they are likely to end up

  4. The School for Marine Science and The Heat Budget for Mt. Hope Bay

    E-Print Network [OSTI]

    Chen, Changsheng

    SMAST, UMassD SMAST Technical Report No. SMAST-03-0801 The School for Marine Science and Technology not hold during the summer, when heat losses due to tidal exchanges between MHB and NB/SR may be important-fuel-fired electrical generating facility at Brayton Point, Massachusetts, on the Mt. Hope Bay ecosystem. Recent studies

  5. MS2a: Bioinformatics and Computational Biology -16MT Recommended Prerequisites

    E-Print Network [OSTI]

    Goldschmidt, Christina

    MS2a: Bioinformatics and Computational Biology - 16MT Recommended Prerequisites None. In particular of statistical analysis and modelling to be properly interpreted. The fields of Bioinformatics and Computational Biology have this as their subject matter and there is no sharp boundary between them. Bioinformatics has

  6. Characterization of a geothermal system in the Upper Arkansas Valley, CO Thomas Blum*, Kasper van Wijk and Lee Liberty, Boise State University

    E-Print Network [OSTI]

    Characterization of a geothermal system in the Upper Arkansas Valley, CO Thomas Blum*, Kasper van a geothermal system in the Mt. Princeton area. We conclude that a shallow orthogonal fault system in this area appears to be responsible for the local geothermal signature at and near the surface. The extent to which

  7. 2006 Annual Meeting of the Vision Sciences Society Receptive Field Shifts in Area MT during Smooth and Rapid Eye Movements

    E-Print Network [OSTI]

    Krekelberg, Bart

    during Smooth and Rapid Eye Movements Till S Hartmann1,2,4 , Frank Bremmer4 , Thomas D Albright2,3 , Bart is generally quite robust against our ever present eye movements, there are cracks in this perceptual stability. For instance, briefly flashed objects are often mislocalized in the direction of both smooth and rapid eye

  8. LOCA simulation in NRU program: data report for the fourth materials experiment (MT-4)

    SciTech Connect (OSTI)

    Wilson, C.L.; Mohr, C.L.; Hesson, G.M.; Wildung, N.J.; Russcher, G.E.; Webb, B.J.; Freshley, M.D.

    1983-07-01T23:59:59.000Z

    A series of in-reactor experiments were conducted using full-length 32-rod pressurized water reactor (PWR) fuel bundles as part of the Loss-of-Coolant Accident (LOCA) Simulation Program by Pacific Northwest Laboratory (PNL). This experiment (MT-4) was funded by the US Nuclear Regulatory Commission (NRC) to evaluate ballooning and rupture during adiabatic heatup in the temperature range of 1033 to 1200K (1400 to 1700/sup 0/F). The 12 rest rods in the center of the 32-rod bundle were initially pressurized to 4.62 MPa (670 psia) to insure rupture in the correct temperature range. All 12 test rods ruptured with an average strain of 43.7% at the maximum flow blockage elevation of 2.68 m (105.4 in.). Experimental data for the MT-4 transient experiment and post-test measurements and photographs of the fuel are presented in this report.

  9. Altered Mitochondrial Retrograde Signaling in Response to mtDNA Depletion or a Ketogenic Diet

    E-Print Network [OSTI]

    Selfridge, Jennifer Eva

    2012-12-31T23:59:59.000Z

    kinase kinase MCI Mild cognitive impairment MCT Monocarboxylate transporter Mfn Mitofusin mtDNA Mitochondrial DNA mTOR Mammalian target of rapamycin mTORC1 mTOR complex 1 MRC Mitochondrial Respiratory Complex NAD(H) Nicotinamide adenine...; Smith et al., 1991; Sultana et al., 2010). Many studies suggest that oxidative damage is also present in individuals with mild cognitive impairment (MCI), a syndromic state that in many cases represents a very early AD clinical stage (Aluise et al...

  10. Global analysis of genetic variation in human arsenic (+ 3 oxidation state) methyltransferase (AS3MT)

    SciTech Connect (OSTI)

    Fujihara, Junko [Department of Legal Medicine, Faculty of Medicine, Shimane University, Izumo, Shimane (Japan); Soejima, Mikiko [Department of Forensic Medicine and Human Genetics, Kurume University School of Medicine, Kurume, Fukuoka (Japan); Yasuda, Toshihiro [Division of Medical Genetics and Biochemistry, Faculty of Medical Sciences, University of Fukui, Eiheiji-cho, Fukui (Japan); Koda, Yoshiro [Department of Forensic Medicine and Human Genetics, Kurume University School of Medicine, Kurume, Fukuoka (Japan); Agusa, Tetsuro [Department of Legal Medicine, Faculty of Medicine, Shimane University, Izumo, Shimane (Japan); Kunito, Takashi [Department of Environmental Sciences, Faculty of Science, Shinshu University, Matsumoto, Nagano (Japan); Tongu, Miki; Yamada, Takaya [Department of Experimental Animals, Center for Integrated Research in Science, Faculty of Medicine, Shimane University, Izumo (Japan); Takeshita, Haruo, E-mail: htakeshi@med.shimane-u.ac.j [Department of Legal Medicine, Faculty of Medicine, Shimane University, Izumo, Shimane (Japan)

    2010-03-15T23:59:59.000Z

    Human arsenic (+ 3 oxidation state) methyltransferase (AS3MT) is known to catalyze the methylation of arsenite. The objective of this study was to investigate the diversity of the AS3MT gene at the global level. The distribution of 18 single nucleotide polymorphisms (SNPs) in AS3MT was performed in 827 individuals from 10 populations (Japanese, Korean, Chinese, Mongolian, Tibetans, Sri Lankan Tamils, Sri Lankan Sinhalese, Nepal Tamangs, Ovambo, and Ghanaian). In the African populations, the A allele in A6144T was not observed; the allele frequencies of C35587 were much lower than those in other populations; the allele frequencies of A37616 and C37950 were relatively higher than those in other populations. Among Asian populations, Mongolians showed a different genotype distribution pattern. A lower C3963 and T6144 frequencies were observed, and, in the C37616A and T37950C polymorphism, the Mongolian population showed higher A37616 and C37950 allele frequencies than other Asian populations, similarly to the African populations. A total of 66 haplotypes were observed in the Ovambo, 48, in the Ghanaian, 99, in the Japanese, 103, in the Korean, 103, in the South Chinese, 20, in the Sri Lankan Tamil, 12, in the Sri Lankan Sinhalese, 21, in the Nepal Tamang, 50, in the Tibetan, and 45, in the Mongolian populations. The D' values between the SNP pairs were extremely high in the Sri Lankan Sinhalese population. Relatively higher D' values were observed in Mongolian and Sri Lankan Tamil populations. Network analysis showed two clusters that may have different origins, African and Asians (Chinese and/or Japanese). The present study is the first to demonstrate the existence of genetic heterogeneity in a world wide distribution of 18 SNPs in AS3MT.

  11. Tidally dominated depositional environment for the Mt. Simon Sandstone in central Illinois

    SciTech Connect (OSTI)

    Sargent, M.L.; Lasemi, Z. (Illinois State Geological Survey, Champaign, IL (United States))

    1993-03-01T23:59:59.000Z

    Several hundred feet of core from the upper part of the Mt. Simon in central Illinois have been examined macroscopically. Grain sizes and their systematics, bedding characteristics, sedimentary structures, and relationships among beds show that the upper Mt. Simon Sandstone is composed of a series of fining-upward cycles up to 10 m (30 feet) thick. A typical cycle consists, in ascending order, of a sandy subtidal facies, a mixed sand and mud intertidal-flat facies, and a muddy upper tidal-flat facies upward through the succession, the maximum and average grain size becomes progressively finer and the cycles thinner. The lower sandstone of each cycle contains beds that are massive to cross bedded and cross laminated; some beds show scoured reactivation surfaces. A few cycles contain a middle unit characterized by flaser and lenticular bedding and abundant mudcracks. Mudcracks also are common in the shale beds at the top of each cycle. Sedimentary structures such as reactivation surfaces, flaser and lenticular bedding, and mudcracks suggest that these cycles were deposited in peritidal environments. The presence of Skolithos in some cycles suggests very shallow marine conditions. The within-cycle upward fining is caused by regression or progradation that reflects a progressive decrease in current velocity from subtidal to intertidal parts of the tidal flat. Frequent flooding of the tidal flat resulted in repeated fining-upward cycles within the upper part of the Mt. Simon Sandstone.

  12. Review of potential technologies for the treatment of Methyl tertiary butyl Ether (MtBE) in drinking water

    SciTech Connect (OSTI)

    Brown, A.; Browne, T.E. [Komex H2O Science, Huntington Beach, CA (United States); Devinny, J.S. [Univ. of Southern California, Los Angeles, CA (United States)] [and others

    1997-12-31T23:59:59.000Z

    At present, the state of knowledge on effective treatment technologies for MtBE in drinking water, and groundwater in general, is limited. Research by others is focusing on the remediation of MtBE close to the point of release. The City of Santa Monica, MWD, Komex and USC are currently conducting research into different technologies that could be used to remove MtBE from drinking water supplies. The objectives of the research are to evaluate different treatment technologies to identify cost-effective and technically feasible alternatives for the removal of MtBE from drinking water. The evaluation is considering moderate to high water flow rates (100 to 2,000+ gpm) and low to moderate MtBE concentrations (<2,000 {mu}g/l). The research program includes four phases: (1) Literature Review; (2) Bench Scale Study; (3) Field Scale Pre-pilot Study; and (4) Summary Evaluation. This paper presents some preliminary information and findings from the first phase of this research - the literature review. The review discusses the chemical properties of MtBE and how they affect remediation and thus, an evaluation of alternative treatment technologies. The review of available literature, and the applicability and limitations of the following technologies are presented in detail.

  13. Published as: Aerts, D., 1998, "The entity and modern physics: the creation-discovery view of reality", in Interpreting Bodies: Classical and Quantum Objects in Modern Physics, ed. Castellani, E., Princeton

    E-Print Network [OSTI]

    Aerts, Diederik

    Published as: Aerts, D., 1998, "The entity and modern physics: the creation-discovery view of reality", in Interpreting Bodies: Classical and Quantum Objects in Modern Physics, ed. Castellani, E., Princeton University Press, Princeton. The entity and modern physics: the creation-discovery- view

  14. Princeton Plasma Physics Laboratory annual report, October 1, 1982-September 30, 1983

    SciTech Connect (OSTI)

    Phillips, C.A. (ed.)

    1983-01-01T23:59:59.000Z

    The Tokamak Fusion Test Reactor (TFTR) achieved first plasma at 3:05 a.m. on December 24, 1982. During the course of the year, the plasma current was raised to a maximum of 1 MA, and extensive confinement studies were carried out with ohmic-heated plasmas. The most important finding was that tokamak energy confinement time increases as the cube of the plasma size. The Princeton Large Torus (PLT) carried out a number of high-powered plasma-heating experiments in the ion cyclotron frequency range, and also demonstrated for the first time that a 100-kA tokamak discharge can be built up by means of rf-waves in the lower hybrid range, without any need for inductive current drive by the conventional tokamak transformer system. The Poloidal Divertor Experiment (PDX) demonstrated that substantial improvements in plasma confinement during intense neutral-beam heating can be obtained by means of either a magnetic divertor or a mechanical scoop limiter. The S-1 spheromak experiment has come into operation, with first plasma in January 1983, and machine completion in August. The soft X-ray laser development experiment continues to make strong progress towards the demonstration of laser amplification. Thus far, a single-pass gain of 3.5 has been achieved, using the 182 A line of CVI. Theoretical MHD-stability studies have shed new light on the nature of the energetic-ion-driven ''fishbone instability,'' and the utilization of the bean-shaping technique to reach higher beta values in the tokamak.

  15. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press Releases 2014References by WebsitehomeResearch Areas

  16. Methyl tertiary butyl ether (MtBE) contamination of the City of Santa Monica drinking water supply

    SciTech Connect (OSTI)

    Brown, A.; Farrow, J.R.C. [Komex H2O Science, Huntington Beach, CA (United States); Rodriguez, R.A. [City of Santa Monica, CA (United States)] [and others

    1997-12-31T23:59:59.000Z

    In the summer of 1996, the City of Santa Monica ceased pumping groundwater from two Well Fields (Charnock and Arcadia) used for public drinking water supply due to persistent and increasing concentrations of MtBE in all seven municipal water supply wells. This lost production accounted for 50% of the City`s total drinking water supply. In late 1996, the City, in cooperation with State and Federal agencies, initiated an investigation of MtBE contamination at the two well fields. The objectives of the investigation were as follows: (1) Review available data on the production, use, chemical characteristics, fate and transport, toxicology, and remediation of MtBE; (2) Identify locations of potential sources of MtBE groundwater contamination at the well fields; (3) Develop an understanding of the hydrologic pathways from the potential sources to the drinking water wells; and (4) Evaluate alternative treatment technologies for the removal of MtBE from drinking water. In addition to a review of available information about MtBE, the investigation included an extensive review of literature and available data relevant to the well fields, including well field production histories, site and regional hydrogeology, all well logs and production in the groundwater basins, general groundwater quality, and the record of MtBE detection. Based upon the review of background information, conceptual hydrogeologic models were developed. A detailed review of agency files for over 45 potential source sites was conducted. The information from this review was summarized, and source site screening and ranking criteria were developed. A field program was conducted at the major well field (Charnock), including soil gas surveys, CPTs, soil borings and well installations, geophysics, and aquifer testing. The field program provided site data which allowed the conceptual hydrogeologic model to be refitted to actual site conditions.

  17. Structural and functional studies of a phosphatidic acid-binding antifungal plant defensin MtDef4: Identification of an RGFRRR motif governing fungal cell entry

    SciTech Connect (OSTI)

    Sagaram, Uma S.; El-Mounadi, Kaoutar; Buchko, Garry W.; Berg, Howard R.; Kaur, Jagdeep; Pandurangi, Raghoottama; Smith, Thomas J.; Shah, Dilip

    2013-12-04T23:59:59.000Z

    A highly conserved plant defensin MtDef4 potently inhibits the growth of a filamentous fungus Fusarium graminearum. MtDef4 is internalized by cells of F. graminearum. To determine its mechanism of fungal cell entry and antifungal action, NMR solution structure of MtDef4 has been determined. The analysis of its structure has revealed a positively charged patch on the surface of the protein consisting of arginine residues in its ?-core signature, a major determinant of the antifungal activity of MtDef4. Here, we report functional analysis of the RGFRRR motif of the ?-core signature of MtDef4. The replacement of RGFRRR to AAAARR or to RGFRAA not only abolishes fungal cell entry but also results in loss of the antifungal activity of MtDef4. MtDef4 binds strongly to phosphatidic acid (PA), a precursor for the biosynthesis of membrane phospholipids and a signaling lipid known to recruit cytosolic proteins to membranes. Mutations of RGFRRR which abolish fungal cell entry of MtDef4 also impair its binding to PA. Our results suggest that RGFRRR motif is a translocation signal for entry of MtDef4 into fungal cells and that this positively charged motif likely mediates interaction of this defensin with PA as part of its antifungal action.

  18. 2nd Int. Symp. on Lithium Applications for Fusion Devices, April 27-29, 2011, Princeton, NJ Program for the 2nd International Symposium

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    Plasma-Material Interactions with evaporated lithium coatings in NSTX 1:50 ­ 2:10 M. A. Jaworski 2nd Int. Symp. on Lithium Applications for Fusion Devices, April 27-29, 2011, Princeton, NJ Program for the 2nd International Symposium on Lithium Applications for Fusion Devices April 27-29, 2011

  19. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    Physics Laboratory Global Hybrid Simulations of Energetic Particle-driven Modes in Toroidal Plasmas G://www.ntis.gov/ordering.htm #12;Global Hybrid Simulations of Energetic Particle-driven Modes in Toroidal Plasmas G. Y. Fu 1), J, Princeton, NJ 08543, U.S.A. 2) New York University, New York, NY e-mail: fu@pppl.gov Abstract Global hybrid

  20. On hiatus from teaching after majoring in Slavic Languages & Literature at Princeton and getting her M.A. at the Harvard Graduate

    E-Print Network [OSTI]

    her M.A. at the Harvard Graduate School of Education, Mary Koger started attending PANE events in Mary, quickly sweeping her onto its board and into service to Princeton that is still going strong more than 20 years later. Now vice president of PANE's board, she cites her involvement with PANE

  1. MT1-MMP promotes cell growth and ERK activation through c-Src and paxillin in three-dimensional collagen matrix

    SciTech Connect (OSTI)

    Takino, Takahisa; Tsuge, Hisashi; Ozawa, Terumasa [Department of Molecular Virology and Oncology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan)] [Department of Molecular Virology and Oncology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Sato, Hiroshi, E-mail: vhsato@kenroku.kanazawa-u.ac.jp [Department of Molecular Virology and Oncology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan)] [Department of Molecular Virology and Oncology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan)

    2010-06-11T23:59:59.000Z

    Membrane-type 1 matrix metalloproteinase (MT1-MMP) is essential for tumor invasion and growth. We show here that MT1-MMP induces extracellular signal-regulated kinase (ERK) activation in cancer cells cultured in collagen gel, which is indispensable for their proliferation. Inhibition of MT1-MMP by MMP inhibitor or small interfering RNA suppressed activation of focal adhesion kinase (FAK) and ERK in MT1-MMP-expressing cancer cells, which resulted in up-regulation of p21{sup WAF1} and suppression of cell growth in collagen gel. Cell proliferation was also abrogated by the inhibitor against ERK pathway without affecting FAK phosphorylation. MT1-MMP and integrin {alpha}{sub v}{beta}{sub 3} were shown to be involved in c-Src activation, which induced FAK and ERK activation in collagen gel. These MT1-MMP-mediated signal transductions were paxillin dependent, as knockdown of paxillin reduced cell growth and ERK activation, and co-expression of MT1-MMP with paxillin induced ERK activation. The results suggest that MT1-MMP contributes to proliferation of cancer cells in the extracellular matrix by activating ERK through c-Src and paxillin.

  2. EIS-0092: Conversion to Coal, Holyoke Water Power Company, Mt. Tom Generating Station Unit 1 Holyoke, Hampden County, Massachusetts

    Broader source: Energy.gov [DOE]

    The Economic Regulatory Administration prepared this statement to assess the environmental impacts of prohibiting Unit 1 of the Mt. Tom Generation Station Unit 1 from using either natural gas or petroleum products as a primary energy source, which would result in the utility burning low-sulfur coal.

  3. Retreat of Glaciers in Glacier National Park In Glacier National Park (GNP), MT some effects of global

    E-Print Network [OSTI]

    Retreat of Glaciers in Glacier National Park In Glacier National Park (GNP), MT some effects of global climate change are strikingly clear. Glacier recession is underway, and many glaciers have already disappeared. The retreat of these small alpine glaciers reflects changes in recent climate as glaciers respond

  4. Site Monitoring Area Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to the Site Monitoring Area (SMA) The Site Monitoring Area sampler Control measures (best management practices) installed at the Site Monitoring Area Structures such as...

  5. Wildlife Management Areas (Minnesota)

    Broader source: Energy.gov [DOE]

    Certain areas of the State are designated as wildlife protection areas and refuges; new construction and development is restricted in these areas.

  6. Wildlife Management Areas (Florida)

    Broader source: Energy.gov [DOE]

    Certain sites in Florida are designated as wildlife management areas, and construction and development is heavily restricted in these areas.

  7. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    .A. Gates, R.W. Harvey, S.M. Kaye, T.K. Mau, J. Menard, C.K. Phillips, G. Taylor, R. Wilson, and the NSTX. Mau2 , J. Menard, C. K. Phillips, G. Taylor, R. Wilson and the NSTX Research Team Princeton Plasma Scenario Simulations for NSTX C. E. Kessel, E. J. Synakowski, D. A. Gates, R. W. Harvey1 , S. M. Kaye, T. K

  8. Princeton Plasma Physics Laboratory annual report, October 1, 1984-September 30, 1985

    SciTech Connect (OSTI)

    Phillips, C.A. (ed.)

    1985-01-01T23:59:59.000Z

    Summaries of research progress during this period are given for the following areas: (1) TFTR, (2) PLT, (3) PBX, (4) S-1 Spheromak, (5) Advanced Concepts Torus-1, (6) x-ray laser studies, (7) theory, (8) tokamak modeling, (9) spin-polarization, and (10) ignition studies. (MOW)

  9. Princeton University: Department of Civil and Environmental Engineering CEE 478 Senior Thesis

    E-Print Network [OSTI]

    Bou-Zeid, Elie

    and/or linear algebra Solid mechanics Structural engineering Probability and statistics Fluid Application of math, science, engineering principles for analysis and solution of problems in civil and environmental engineering. (ABET criterion 3a; PI a1int) Identify the areas of math, science and engineering

  10. Princeton University: Department of Civil and Environmental Engineering CEE 478 Senior Thesis

    E-Print Network [OSTI]

    Bou-Zeid, Elie

    /or linear algebra Solid mechanics Structural engineering Probability and statistics Fluid mechanics Application of math, science, engineering principles for analysis and solution of problems in civil and environmental engineering. (ABET criterion 3a; PI a3adv) Identify the areas of math, science and engineering

  11. SeyedHosseinHezaveh 410-662-2787 | shezaveh@princeton.edu

    E-Print Network [OSTI]

    Bou-Zeid, Elie

    research area: Large eddy simulations of Vertical Axis Wind Turbines M.Sc. | 2008-2011 | Sharif University of technology · Major: Civil and Environmental Engineering · Minor: Hydraulic Structures · Thesis: Numerical Research Interests Hybrid Wind Turbine Design Computational Mechanics Green Energy Large Eddy Simulations

  12. Four-year prospective study of the respiratory effects of volcanic ash from Mt. St. Helens

    SciTech Connect (OSTI)

    Buist, A.S.; Vollmer, W.M.; Johnson, L.R.; Bernstein, R.S.; McCamant, L.E.

    1986-04-01T23:59:59.000Z

    This report describes the 4-yr follow-up of 712 loggers exposed over an extended period to varying levels of fresh volcanic ash from the 1980 eruptions of Mt. St. Helens. Concerns related to the irritant effect the ash might have on the airways and also to its fibrogenic potential if exposures were intense and continued over many years. Our subjects were divided into 3 groups: high, low, and no exposure. Baseline testing was begun in June 1980, 1 month after the major eruption, and follow-up testing continued on an annual basis through 1984; 88% of the loggers have been tested at least 3 times. Analysis of lung function data showed that a significant, exposure-related decline in FEV1 occurred during the first year after the eruption. The decline was short-lived, however, and by 1984 the differences between exposure groups were no longer significant. Self-reported symptoms of cough, phlegm, and wheeze showed a similar pattern. No ash-related changes were seen in chest roentgenograms taken in 1980 and in 1984. Our findings are consistent with the hypothesis that the inhaled ash caused mucus hypersecretion and/or airway inflammation that reversed when the exposure levels decreased. The ash levels to which the loggers were exposed were low compared with permissible occupational levels for nuisance dusts, but generally higher than the total suspended particulate levels permissible in ambient air.

  13. CO2 flood tests on whole core samples of the Mt. Simon sandstone, Illinois Basin

    SciTech Connect (OSTI)

    O'Connor, William K.; Rush, Gilbert E.

    2005-09-01T23:59:59.000Z

    Geological sequestration of CO2, whether by enhanced oil recovery (EOR), coal-bed methane (CBM) recovery, or saline aquifer injection is a promising near-term sequestration methodology. While tremendous experience exists for EOR, and CBM recovery has been demonstrated in existing fields, saline aquifer injection studies have only recently been initiated. Studies evaluating the availability of saline aquifers suitable for CO2 injection show great potential, however, the long-term fate of the CO2 injected into these ancient aqueous systems is still uncertain. For the subject study, a series of laboratory-scale CO2 flood tests were conducted on whole core samples of the Mt. Simon sandstone from the Illinois Basin. By conducting these tests on whole core samples rather than crushed core, an evaluation of the impact of the CO2 flood on the rock mechanics properties as well as the geochemistry of the core and brine solution has been possible. This empirical data could provide a valuable resource for the validation of reservoir models under development for these engineered CO2 systems.

  14. Princeton Plasma Physics Laboratory annual report, October 1, 1983-September 30, 1984

    SciTech Connect (OSTI)

    Phillips, C.A. (ed.)

    1984-01-01T23:59:59.000Z

    Progress made during this reporting period is reported for each of the following areas: (1) principal parameters achieved in experimental devices, (2) TFTR, (3) PLT, (4) PBX, (5) S-1 Spheromak, (6) advanced concepts Torus-1, (7) x-ray laser studies, (8) theory, (9) tokamak modeling, (10) reactor studies, (11) spin-polarized fusion program, (12) tokamak fusion core experiment, and (13) engineering. (MOW)

  15. Assignment 4 BS4a Actuarial Science Oxford MT 2011 IX A.4 Inflation, taxation and project appraisal

    E-Print Network [OSTI]

    Winkel, Matthias

    Assignment 4 ­ BS4a Actuarial Science ­ Oxford MT 2011 IX A.4 Inflation, taxation and project are indexed by reference to the value of a retail price index with a time lag of 8 months. The retail price index value in September 1996 was Q(-8/12) = 200 and in March 1997 was Q(-2/12) = 206. The issue price

  16. Getting Our Feet Wet: Water Management at Mt. Laguna in Cleveland National Forest

    E-Print Network [OSTI]

    Mumby, William Cade

    2013-01-01T23:59:59.000Z

    of water systems (i.e. how many people are serviced and howwealthy people with holiday homes in the area comprised many

  17. Go.Applying to Princeton ABOUT PRINCETON

    E-Print Network [OSTI]

    ,musicortheater In addition, for students intending to pursue a bachelor of science in engineering (B.S.E.) degree or physical undergraduate population is about 5,200, including a freshman class of about 1,300 students. Every year we accept a diverse mix of high-achieving, intellectually gifted students from around the country

  18. ExperiencePrinceton At Princeton, you will

    E-Print Network [OSTI]

    Politics Psychology Religion Slavic Languages and Literatures Sociology Spanish and Portuguese Languages

  19. Dark Matter Particle Spectroscopy at the LHC: Generalizing M(T2) to Asymmetric Event Topologies

    SciTech Connect (OSTI)

    Konar, Partha; /Florida U.; Kong, Kyoungchul; /SLAC; Matchev, Konstantin T.; Park, Myeonghun; /Florida U.; ,

    2012-04-03T23:59:59.000Z

    We consider SUSY-like missing energy events at hadron colliders and critically examine the common assumption that the missing energy is the result of two identical missing particles. In order to experimentally test this hypothesis, we generalize the subsystem M{sub T2} variable to the case of asymmetric event topologies, where the two SUSY decay chains terminate in different 'children' particles. In this more general approach, the endpoint M{sub T2(max)} of the M{sub T2} distribution now gives the mass {tilde M}p({tilde M}{sub c}{sup (a)}, {tilde M}{sub c}{sup (b)}) of the parent particles as a function of two input children masses {tilde M}{sub c}{sup (a)} and {tilde M}{sub c}{sup (b)}. We propose two methods for an independent determination of the individual children masses M{sub c}{sup (a)} and M{sub c}{sup (b)}. First, in the presence of upstream transverse momentum PUTM the corresponding function {tilde M}p({tilde M}{sub c}{sup (a)}, {tilde M}{sub c}{sup (b)}, P{sub UTM}) is independent of P{sub UTM} at precisely the right values of the children masses. Second, the previously discussed MT2 'kink' is now generalized to a 'ridge' on the 2-dimensional surface {tilde M}p({tilde M}{sub c}{sup (a)}, {tilde M}{sub c}{sup (b)}). As we show in several examples, quite often there is a special point along that ridge which marks the true values of the children masses. Our results allow collider experiments to probe a multi-component dark matter sector directly and without any theoretical prejudice.

  20. Western Area Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    29-30, 2011 2 Agenda * Overview of Western Area Power Administration * Post-1989 Loveland Area Projects (LAP) Marketing Plan * Energy Planning and Management Program * Development...

  1. Hydrologically Sensitive Areas: Variable Source Area Hydrology

    E-Print Network [OSTI]

    Walter, M.Todd

    Hydrologically Sensitive Areas: Variable Source Area Hydrology Implications for Water Quality Risk hydrology was developed and applied to the New York City (NYC) water supply watersheds. According and are therefore hydrologically sensitive with respect to their potential to transport contaminants to perennial

  2. AREA COORDINATOR RESIDENTIAL EDUCATION

    E-Print Network [OSTI]

    Bordenstein, Seth

    AREA COORDINATOR RESIDENTIAL EDUCATION VANDERBILT UNIVERSITY, NASHVILLE, TENNESSEE The Office of Housing and Residential Education at Vanderbilt University is seeking applicants for an Area Coordinator. The Area Coordinator is responsible for assisting in the management and operation of a residential area

  3. Getting Our Feet Wet: Water Management at Mt. Laguna in Cleveland National Forest

    E-Print Network [OSTI]

    Mumby, William Cade

    2013-01-01T23:59:59.000Z

    could prove that water shortages exist at Mount Laguna, itto fire, and risk of water shortage. In particular, issues72,73 Rural areas with water shortage problems tend to

  4. Observations of roAp stars at the Mt. Dushak-Erekdag station of Odessa Astronomical Observatory

    E-Print Network [OSTI]

    T. N. Dorokhova; N. I. Dorokhov

    1998-05-14T23:59:59.000Z

    Since 1992, observations of roAp stars have been carried out using the dual-channel photometer attached to the 0.8m telescope, which is situated in Central Asia, at the Mt. Dushak-Erekdag station of Odessa Astronomical Observatory. Some results of observations of gamma Equ and of HD 134214 are presented. 5 stars were investigated as roAp candidates. The Fourier spectra of 4 stars did not show any variability in the high-frequency region. The Fourier spectrum of HD 99563 revealed a peak at a frequency f=128.9 c/d and with a semi-amplitude of 3.98 mmag.

  5. Effects of Large Area Liquid Lithium Limiters on Spherical Torus Plasmas

    SciTech Connect (OSTI)

    R. Kaita; R. Majeski; M. Boaz; P. Efthimion; G. Gettelfinger; T. Gray; D. Hoffman; S. Jardin; H. Kugel; P. Marfuta; T. Munsat; C. Neumeyer; S. Raftopoulos; V. Soukhanovskii; J. Spaleta; G. Taylor; J. Timberlake; R. Woolley; L. Zakharov; M. Finkenthal; D. Stutman; L. Delgado-Aparicio; R.P. Seraydarian; G. Antar; R. Doerner; S. Luckhardt; M. Baldwin; R.W. Conn; R. Maingi; M. Menon; R. Causey; D. Buchenauer; M. Ulrickson; B. Jones; D. Rodgers

    2004-06-07T23:59:59.000Z

    Use of a large-area liquid lithium surface as a first wall has significantly improved the plasma performance in the Current Drive Experiment-Upgrade (CDX-U) at the Princeton Plasma Physics Laboratory. Previous CDX-U experiments with a partially-covered toroidal lithium limiter tray have shown a decrease in impurities and the recycling of hydrogenic species. Improvements in loading techniques have permitted nearly full coverage of the tray surface with liquid lithium. Under these conditions, there was a large drop in the loop voltage needed to sustain the plasma current. The data are consistent with simulations that indicate more stable plasmas having broader current profiles, higher temperatures, and lowered impurities with liquid lithium walls. As further evidence for reduced recycling with a liquid lithium limiter, the gas puffing had to be increased by up to a factor of eight for the same plasma density achieved with an empty toroidal tray limiter.

  6. Wetland Preservation Areas (Minnesota)

    Broader source: Energy.gov [DOE]

    A wetland owner can apply to the host county for designation of a wetland preservation area. Once designated, the area remains designated until the owner initiates expiration, except where a state...

  7. The Journal of Neuroscience, May 1994, 14(5): 2870-2892 Power Spectrum Analysis of Bursting Cells in Area MT in the

    E-Print Network [OSTI]

    Koch, Christof

    The Journal of Neuroscience, May 1994, 14(5): 2870-2892 Power Spectrum Analysis of Bursting Cells Computation and Neural Systems Program, California Institute of Technology, Pasadena, California 91125 and 2 proposals, however, emphasize the information potentially available in the temporal structure of spike

  8. The Journal of Neuroscience, May 1994, 74(5): 2870-2892 Power Spectrum Analysis of Bursting Cells in Area MT in the

    E-Print Network [OSTI]

    Newsome, William

    The Journal of Neuroscience, May 1994, 74(5): 2870-2892 Power Spectrum Analysis of Bursting Cells* `Computation and Neural Systems Program, California Institute of Technology, Pasadena, California 91125 proposals, however, emphasize the information potentially available in the temporal structure of spike

  9. Protected Areas Stacy Philpott

    E-Print Network [OSTI]

    Gottgens, Hans

    · Convention of Biological Diversity, 1992 #12;IUCN Protected Area Management Categories Ia. Strict Nature. Protected Landscape/ Seascape VI. Managed Resource Protected Area #12;Ia. Strict Nature Preserves and Ib. Wilderness Areas · Natural preservation · Research · No · No #12;II. National Parks · Ecosystem protection

  10. Service Entry Delivery Area

    E-Print Network [OSTI]

    New South Wales, University of

    Catheter Lab Boiler House Main Entry Short Street ChapelStreet Vehicle Exit 23. Gray Street Car ParkingService Entry Waste Handling Area Delivery Area Admissions Entrance Inquiries Desk Cafeteria Coffee in July 2000 Vehicle Entry Emergency Main Entrance TOKOGARAHRAILWAYSTATION LEGEND Areas under construction

  11. Searches for supersymmetry using the MT2 variable in hadronic events produced in pp collisions at 8 TeV

    E-Print Network [OSTI]

    CMS Collaboration

    2015-02-15T23:59:59.000Z

    Searches for supersymmetry (SUSY) are performed using a sample of hadronic events produced in 8 TeV pp collisions at the CERN LHC. The searches are based on the MT2 variable, which is a measure of the transverse momentum imbalance in an event. The data were collected with the CMS detector and correspond to an integrated luminosity of 19.5 inverse femtobarns. Two related searches are performed. The first is an inclusive search based on signal regions defined by the value of the MT2 variable, the hadronic energy in the event, the jet multiplicity, and the number of jets identified as originating from bottom quarks. The second is a search for a mass peak corresponding to a Higgs boson decaying to a bottom quark-antiquark pair, where the Higgs boson is produced as a decay product of a SUSY particle. For both searches, the principal backgrounds are evaluated with data control samples. No significant excess over the expected number of background events is observed, and exclusion limits on various SUSY models are derived.

  12. LOCA simulation in the national research universal reactor program: postirradiation examination results for the third materials experiment (MT-3)

    SciTech Connect (OSTI)

    Rausch, W.N.

    1984-04-01T23:59:59.000Z

    A series of in-reactor experiments were conducted using full-length 32-rod pressurized water reactor (PWR) fuel bundles as part of the Loss-of-Coolant Accident (LOCA) Simulation Program. The third materials experiment (MT-3) was the sixth in the series of thermal-hydraulic and materials deformation/rutpure experiments conducted in the National Research Universal (NRU) reactor, Chalk River, Ontario, Canada. The main objective of the experiment was to evaluate ballooning and rupture during active two-phase cooling in the temperature range from 1400 to 1500/sup 0/F (1030 to 1090 K). The 12 test rods in the center of the 32-rod bundle were initially pressurized to 550 psi (3.8 MPa) to insure rupture in the correct temperature range. All 12 of the rods ruptured, with an average peak bundle strain of approx. 55%. The UKAEA also funded destructive postirradiation examination (PIE) of several of the ruptured rods from the MT-3 experiment. This report describes the work performed and presents the PIE results. Information obtained during the PIE included cladding thickness measurements metallography, and particle size analysis of the cracked and broken fuel pellets.

  13. MT DOE/EPSCoR planning grant. Annual technical progress report

    SciTech Connect (OSTI)

    Bromenshenk, J.J.; Scruggs, V.L.

    1992-08-31T23:59:59.000Z

    The Montana DOE/EPSCoR planning process has made significant changes in the state of Montana. This is exemplified by notification from the Department of Energy`s Experimental Program to Stimulate Competitive Research (DOE/EPSCoR) recommendation to fund Montana`s 1992 graduate traineeship grant proposal in the amount of $500,000. This is a new award to Montana. DOE traineeship reviewers recognized that our planning grant enabled us to develop linkages and build the foundation for a competitive energy-related research and traineeship program in Montana. During the planning, we identified three major focus areas: Energy Resource Base, Energy Production, and Environmental Effects. For each focus area, we detailed specific problem areas that the trainees may research. We also created MORE, a consortium of industrial affiliates, state organizations, the Montana University System (MUS), tribal colleges, and DOE national laboratories. MORE and our state-wide Research and Education Workshop improved and solidified working relationships. We received numerous letters of support. DOE reviewers endorsed our traineeship application process. They praised the linkage of each traineeship with a faculty advisor, and the preference for teams of faculty members and two or more students. ``Particularly commendable`` were our programs to involve Native American educators and the ``leveraging effect`` of this on the human resources in the state. Finally, the DOE reviewers indicated that cost-sharing via support of Native Americans was creative and positive.

  14. MT DOE/EPSCoR planning grant. [Annual Technical Progress Report

    SciTech Connect (OSTI)

    Bromenshenk, J.J.; Scruggs, V.L.

    1992-08-31T23:59:59.000Z

    The Montana DOE/EPSCoR planning process has made significant changes in the state of Montana. This is exemplified by notification from the Department of Energy's Experimental Program to Stimulate Competitive Research (DOE/EPSCoR) recommendation to fund Montana's 1992 graduate traineeship grant proposal in the amount of $500,000. This is a new award to Montana. DOE traineeship reviewers recognized that our planning grant enabled us to develop linkages and build the foundation for a competitive energy-related research and traineeship program in Montana. During the planning, we identified three major focus areas: Energy Resource Base, Energy Production, and Environmental Effects. For each focus area, we detailed specific problem areas that the trainees may research. We also created MORE, a consortium of industrial affiliates, state organizations, the Montana University System (MUS), tribal colleges, and DOE national laboratories. MORE and our state-wide Research and Education Workshop improved and solidified working relationships. We received numerous letters of support. DOE reviewers endorsed our traineeship application process. They praised the linkage of each traineeship with a faculty advisor, and the preference for teams of faculty members and two or more students. Particularly commendable'' were our programs to involve Native American educators and the leveraging effect'' of this on the human resources in the state. Finally, the DOE reviewers indicated that cost-sharing via support of Native Americans was creative and positive.

  15. Groundwater Management Areas (Texas)

    Broader source: Energy.gov [DOE]

    This legislation authorizes the Texas Commission on Environmental Quality and the Texas Water Development Board to establish Groundwater Management Areas to provide for the conservation,...

  16. Riparian Area. . . . . . . . . . . . . . . . . . . . Management Handbook

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    ..............................................................................................................19 Bruce Hoagland, Oklahoma Biological Survey and the University of Oklahoma Forest Management Riparian Area. . . . . . . . . . . . . . . . . . . . Management Handbook E-952 Oklahoma Cooperative . . . . . . . . . . . . . Oklahoma Conservation Commission Management Handbook #12

  17. Robert Stengel Princeton University

    E-Print Network [OSTI]

    Stengel, Robert F.

    ! Autonomous Vehicles ­ Intelligent Guidance for Headway and Lane Control Neural-Adaptive Control of Dynamic and Biological Paradigms for Intelligent Agents ! Intelligent Vehicle/Highway Systems ! Advanced Vehicle Control Systems ­ Control of a Fuel-Cell Preferential Oxidizer ­ Adaptive Critic Neural Control of an Aircraft

  18. PRINCETON UNIVERSITY LIBRARY CHRONICLE

    E-Print Network [OSTI]

    by Peggy Meyer Sherry More than a Civil (War) Friendship: 39 Anthony Trollope and Frank Lawley by Julia Print Connoisseur" (1986), by Barry Moser 103 Poet Stanley Kunitz in Potsdam, New York, in the 1950s 115- search considers representations of cannibals and cannibalism in Victorian literature. PEGGY MEYER SHERRY

  19. Princeton Site Ofice

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prev next > Sun Mon2015DepartmentPolicy| Department

  20. Princeton Site Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+ Report Presentation: Hubs+DepartmentDepartment of

  1. Princeton Site Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+ Report Presentation: Hubs+DepartmentDepartment ofJAN 18 2012 To:

  2. Geothermal br Resource br Area Geothermal br Resource br Area...

    Open Energy Info (EERE)

    Zone Mesozoic granite granodiorite Aurora Geothermal Area Aurora Geothermal Area Walker Lane Transition Zone Geothermal Region MW Beowawe Hot Springs Geothermal Area Beowawe Hot...

  3. Integrated Dense Array and Transect MT Surveying at Dixie Valley Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWPIndiantown,Innoferm GmbHCaltech CenterArea, Nevada-

  4. Comment on ``A modified leapfrog scheme for shallow water equations'' by Wen-Yih Sun and Oliver M.T. Sun

    E-Print Network [OSTI]

    Williams, Paul

    Commentary Comment on ``A modified leapfrog scheme for shallow water equations'' by Wen-Yih Sun and Oliver M.T. Sun Paul D. Williams Department of Meteorology, University of Reading, UK a r t i c l e i n f integration of the shallow-water equa- tions using the leapfrog time-stepping scheme [Sun Wen-Yih, Sun Oliver

  5. The mitochondrial fatty acid synthesis (mtFASII) pathway is capable of mediating nuclear-mitochondrial cross talk through the PPAR system of transcriptional activation

    SciTech Connect (OSTI)

    Parl, Angelika; Mitchell, Sabrina L.; Clay, Hayley B.; Reiss, Sara; Li, Zhen; Murdock, Deborah G., E-mail: deborah.murdock@vanderbilt.edu

    2013-11-15T23:59:59.000Z

    Highlights: •The function of the mitochondria fatty acid synthesis pathway is partially unknown. •Overexpression of the pathway causes transcriptional activation through PPARs. •Knock down of the pathway attenuates that activation. •The last enzyme in the pathway regulates its own transcription. •Products of the mtFASII pathway are able to drive nuclear transcription. -- Abstract: Mammalian cells contain two fatty acid synthesis pathways, the cytosolic FASI pathway, and the mitochondrial FASII pathway. The selection behind the conservation of the mitochondrial pathway is not completely understood, given the presence of the cytosolic FAS pathway. In this study, we show through heterologous gene reporter systems and PCR-based arrays that overexpression of MECR, the last step in the mtFASII pathway, causes modulation of gene expression through the PPAR pathway. Electromobility shift assays (EMSAs) demonstrate that overexpression of MECR causes increased binding of PPARs to DNA, while cell fractionation and imaging studies show that MECR remains localized to the mitochondria. Interestingly, knock down of the mtFASII pathway lessens the effect of MECR on this transcriptional modulation. Our data are most consistent with MECR-mediated transcriptional activation through products of the mtFASII pathway, although we cannot rule out MECR acting as a coactivator. Further investigation into the physiological relevance of this communication will be necessary to better understand some of the phenotypic consequences of deficits in this pathway observed in animal models and human disease.

  6. Magnetotelluric models of the Roosevelt Hot Springs thermal area, Utah

    SciTech Connect (OSTI)

    Wannamaker, P.E.; Ward, S.H.; Hohmann, G.W.; Sill, W.R.

    1980-09-01T23:59:59.000Z

    The Roosevelt Hot Springs (RHS) thermal area, which includes a hotwater-dominated fracture zone prospect, near the eastern margin of the Basin-Range tectonic province, conceivably possesses a whole family of resistivity structures that includes the following: deep hot brine reservoirs, deep-seated partially molten heat sources in the crust or upper mantle that drive the convective system, near-surface hydrothermal alteration zones, wet sedimentary fill in valleys, and a regional, apparently one-dimensional resistivity profile of the crust and upper mantle. This complex resistivity makeup, particular to RHS but probably similar to that at other geothermal areas in the Great Basin, must be treated as being fully three-dimensional (3-D). In an attempt to understand these structures, broadband (10/sup -3/ to 10/sup -2/ Hz) tensor magnetotelluric (MT) data were obtained including apparent resistivities (rho/sub a/), impedance phases (phi) and vertical magnetic field transfer functions for 93 sites in the vicinity of this resource area.

  7. The Tokamak Fusion Test Reactor decontamination and decommissioning project and the Tokamak Physics Experiment at the Princeton Plasma Physics Laboratory. Environmental Assessment

    SciTech Connect (OSTI)

    NONE

    1994-05-27T23:59:59.000Z

    If the US is to meet the energy needs of the future, it is essential that new technologies emerge to compensate for dwindling supplies of fossil fuels and the eventual depletion of fissionable uranium used in present-day nuclear reactors. Fusion energy has the potential to become a major source of energy for the future. Power from fusion energy would provide a substantially reduced environmental impact as compared with other forms of energy generation. Since fusion utilizes no fossil fuels, there would be no release of chemical combustion products to the atmosphere. Additionally, there are no fission products formed to present handling and disposal problems, and runaway fuel reactions are impossible due to the small amounts of deuterium and tritium present. The purpose of the TPX Project is to support the development of the physics and technology to extend tokamak operation into the continuously operating (steady-state) regime, and to demonstrate advances in fundamental tokamak performance. The purpose of TFTR D&D is to ensure compliance with DOE Order 5820.2A ``Radioactive Waste Management`` and to remove environmental and health hazards posed by the TFTR in a non-operational mode. There are two proposed actions evaluated in this environmental assessment (EA). The actions are related because one must take place before the other can proceed. The proposed actions assessed in this EA are: the decontamination and decommissioning (D&D) of the Tokamak Fusion Test Reactor (TFTR); to be followed by the construction and operation of the Tokamak Physics Experiment (TPX). Both of these proposed actions would take place primarily within the TFTR Test Cell Complex at the Princeton Plasma Physics Laboratory (PPPL). The TFTR is located on ``D-site`` at the James Forrestal Campus of Princeton University in Plainsboro Township, Middlesex County, New Jersey, and is operated by PPPL under contract with the United States Department of Energy (DOE).

  8. COII/tRNA[sup Lys] intergenic 9-bp deletion and other mtDNA markers clearly reveal that the Tharus (Southern Nepal) have oriental affinities

    SciTech Connect (OSTI)

    Passarino, G.; Semino, O.; Santachiara-Benerecetti, A.S.; Modiano, G. (Universita di Tor Vergata (Romania))

    1993-09-01T23:59:59.000Z

    The authors searched for the East Asian mtDNA 9-bp deletion in the intergenic COII/tRNA[sup Lys] region in a sample of 107 Tharus (50 from central Terai and 57 from eastern Terai), a population whose anthropological origin has yet to be completely clarified. The deletion, detected by electrophoresis of the PCR-amplified nt 7392-8628 mtDNA fragment after digestion with HaeIII, was found in about 8% of both Tharu groups but was found in none of the 76 Hindus who were examined as a non-Oriental neighboring control population. A complete triplication of the 9-bp unit, the second case so far reported, was also observed in one eastern Tharu. All the mtDNAs with the deletion, and that with the triplication, were further characterized (by PCR amplification of the relevant mTDNA fragments and their digestion with the appropriate enzymes) to locate them in the Ballinger et al. phylogeny of East Asian mtDNA haplotypes. The deletion was found to be associated with four different haplotypes, two of which are reported for the first time. One of the deletions and especially the triplication could be best explained by the assumption of novel length-change events. Ballinger's classification of East Asian mtDNA haplotypes is mainly based on the phenotypes for the DdeI site at nt 10394 and the AluI site at nt 10397. Analysis of the entire Tharu sample revealed that more than 70% of the Tharus have both sites, the association of which has been suggested as an ancient East Asian peculiarity. These results conclusively indicate that the Tharus have a predominantly maternal Oriental ancestry. Moreover, they show at least one and perhaps two further distinct length mutations, and this suggests that the examined region is a hot spot of rearrangements. 21 refs., 5 figs., 6 tabs.

  9. 300 AREA URANIUM CONTAMINATION

    SciTech Connect (OSTI)

    BORGHESE JV

    2009-07-02T23:59:59.000Z

    {sm_bullet} Uranium fuel production {sm_bullet} Test reactor and separations experiments {sm_bullet} Animal and radiobiology experiments conducted at the. 331 Laboratory Complex {sm_bullet} .Deactivation, decontamination, decommissioning,. and demolition of 300 Area facilities

  10. Decontamination & decommissioning focus area

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  11. Physics Thrust Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum ReservesThrust Areas Physics Thrust Areas

  12. 300 Area Disturbance Report

    SciTech Connect (OSTI)

    LL Hale; MK Wright; NA Cadoret

    1999-01-07T23:59:59.000Z

    The objective of this study was to define areas of previous disturbance in the 300 Area of the U.S. Department of Energy (DOE) Hanford Site to eliminate these areas from the cultural resource review process, reduce cultural resource monitoring costs, and allow cultural resource specialists to focus on areas where subsurface disturbance is minimal or nonexistent. Research into available sources suggests that impacts from excavations have been significant wherever the following construction activities have occurred: building basements and pits, waste ponds, burial grounds, trenches, installation of subsurface pipelines, power poles, water hydrants, and well construction. Beyond the areas just mentioned, substrates in the' 300 Area consist of a complex, multidimen- sional mosaic composed of undisturbed stratigraphy, backfill, and disturbed sediments; Four Geographic Information System (GIS) maps were created to display known areas of disturbance in the 300 Area. These maps contain information gleaned from a variety of sources, but the primary sources include the Hanford GIS database system, engineer drawings, and historic maps. In addition to these maps, several assumptions can be made about areas of disturbance in the 300 Area as a result of this study: o o Buried pipelines are not always located where they are mapped. As a result, cultural resource monitors or specialists should not depend on maps depicting subsurface pipelines for accurate locations of previous disturbance. Temporary roads built in the early 1940s were placed on layers of sand and gravel 8 to 12 in. thick. Given this information, it is likely that substrates beneath these early roads are only minimally disturbed. Building foundations ranged from concrete slabs no more than 6 to 8 in. thick to deeply excavated pits and basements. Buildings constructed with slab foundations are more numerous than may be expected, and minimally disturbed substrates may be expected in these locations. Historic black and white photographs provide a partial record of some excavations, including trenches, building basements, and material lay-down yards. Estimates of excavation depth and width can be made, but these estimates are not accurate enough to pinpoint the exact location where the disturbedhmdisturbed interface is located (e.g., camera angles were such that depths and/or widths of excavations could not be accurately determined or estimated). In spite of these limitations, these photographs provide essential information. Aerial and historic low-level photographs have captured what appears to be backfill throughout much of the eastern portion of the 300 Area-near the Columbia River shoreline. This layer of fill has likely afforded some protection for the natural landscape buried beneath the fill. This assumption fits nicely with the intermittent and inadvertent discoveries of hearths and stone tools documented through the years in this part of the 300 Area. Conversely, leveling of sand dunes appears to be substantial in the northwestern portion of the 300 Area during the early stages of development. o Project files and engineer drawings do not contain information on any impromptu but necessary adjustments made on the ground during project implementation-after the design phase. Further, many projects are planned and mapped but never implemented-this information is also not often placed in project files. Specific recommendations for a 300 Area cultural resource monitoring strategy are contained in the final section of this document. In general, it is recommended that monitoring continue for all projects located within 400 m of the Columbia River. The 400-m zone is culturally sensitive and likely retains some of the most intact buried substrates in the 300 Area.

  13. Glacier terminus fluctuations on Mt. Baker, Washington, USA, 1940-1990, and climatic variations

    SciTech Connect (OSTI)

    Harper, J.T. (Western Washington Univ., Bellingham, WA (United States))

    1993-11-01T23:59:59.000Z

    The terminus positions of six glaciers located on Mount Baker, Washington, were mapped by photogrammetric techniques at 2- to 7-yr intervals for the period 1940-1990. Although the timing varied slightly, each of the glaciers experienced a similar fluctuation sequence consisting of three phases: (1) rapid retreat, beginning prior to 1940 and lasting through the late 1940s to early 1950s; (2) approximately 30 yr of advance, ending in the late 1970s to early 1980s; (3) retreat though 1990. Terminus positions changed by up to 750 m during phases, with the advance phase increasing the lengths of glaciers by 13 to 24%. These fluctuations are well explained by variations in a smoothed time-series of accumulation-season precipitation and ablation-season mean temperature. The study glaciers appear to respond to interannual scale changes in climate within 20 yr or less. The glaciers on Mount Baker have a maritime location and a large percentage of area at high elevation, which may make their termini undergo greater fluctuations in response to climatic changes, especially precipitation variations, than most other glaciers in the North Cascades region. 40 refs., 6 figs., 2 tabs.

  14. OLED area illumination source

    DOE Patents [OSTI]

    Foust, Donald Franklin (Scotia, NY); Duggal, Anil Raj (Niskayuna, NY); Shiang, Joseph John (Niskayuna, NY); Nealon, William Francis (Gloversville, NY); Bortscheller, Jacob Charles (Clifton Park, NY)

    2008-03-25T23:59:59.000Z

    The present invention relates to an area illumination light source comprising a plurality of individual OLED panels. The individual OLED panels are configured in a physically modular fashion. Each OLED panel comprising a plurality of OLED devices. Each OLED panel comprises a first electrode and a second electrode such that the power being supplied to each individual OLED panel may be varied independently. A power supply unit capable of delivering varying levels of voltage simultaneously to the first and second electrodes of each of the individual OLED panels is also provided. The area illumination light source also comprises a mount within which the OLED panels are arrayed.

  15. Inner Area Principles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other News linkThermalInner Area Principles The Inner Area

  16. PROTECTED AREAS AMENDMENTS AND.

    E-Print Network [OSTI]

    as critical fish and wildlife habitat. The "protected areas" amendment is a major step in the Council's efforts to rebuild fish and wildlife populations that have been damaged by hydroelectric development. Low also imposed significant costs. The Northwest's fish and wildlife have suffered extensive losses

  17. MSL ENTERANCE REFERENCE AREA

    E-Print Network [OSTI]

    Aalberts, Daniel P.

    MSL ENTERANCE LOBBY ELEV STAIRS SSL-019 REFERENCE AREA SSL-021 GROUP STUDY SSL-018 STUDY ROOM SSL-029 SSL-020 COPY ROOM SSL-022 GROUP STUDY SSL-026 STACKS SSL-023 GROUP STUDY SSL-024 GROUP STUDY SSL TBL-014 TBL-014A STAIRS SSL-007 GIS/ WORKROOM SSL-011 SSL-008 SSL-009 SSL-010 SSL-014 SSL-017 STAIRS

  18. Subsurface contaminants focus area

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

  19. Plutonium focus area

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this new approach, EM developed a management structure and principles that led to the creation of specific Focus Areas. These organizations were designed to focus the scientific and technical talent throughout DOE and the national scientific community on the major environmental restoration and waste management problems facing DOE. The Focus Area approach provides the framework for intersite cooperation and leveraging of resources on common problems. After the original establishment of five major Focus Areas within the Office of Technology Development (EM-50, now called the Office of Science and Technology), the Nuclear Materials Stabilization Task Group (EM-66) followed the structure already in place in EM-50 and chartered the Plutonium Focus Area (PFA). The following information outlines the scope and mission of the EM, EM-60, and EM-66 organizations as related to the PFA organizational structure.

  20. DOE Designates Southwest Area and Mid-Atlantic Area National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interest Electric Transmission Corridors DOE Designates Southwest Area and Mid-Atlantic Area National Interest Electric Transmission Corridors October 2, 2007 - 11:12am Addthis...

  1. Acute and chronic effects of exposure to a 1-mT magnetic field on the cytoskeleton, stress proteins, and proliferation of astroglial cells in culture

    SciTech Connect (OSTI)

    Bodega, G. [Departamento de Biologia Celular y Genetica, Facultad de Biologia, Universidad de Alcala, 28871 Alcala de Henares, Madrid (Spain)]. E-mail: guillermo.bodega@uah.es; Forcada, I. [Departamento de Biologia Celular y Genetica, Facultad de Biologia, Universidad de Alcala, 28871 Alcala de Henares, Madrid (Spain); Suarez, I. [Departamento de Biologia Celular y Genetica, Facultad de Biologia, Universidad de Alcala, 28871 Alcala de Henares, Madrid (Spain); Fernandez, B. [Departamento de Biologia Celular, Facultad de Biologia, Universidad Complutense, 28040 Madrid (Spain)

    2005-07-01T23:59:59.000Z

    This paper reports the effects of exposure to static, sinusoidal (50 Hz), and combined static/sinusoidal magnetic fields on cultured astroglial cells. Confluent primary cultures of astroglial cells were exposed to a 1-mT sinusoidal, static, or combined magnetic field for 1 h. In another experiment, cells were exposed to the combined magnetic field for 1, 2, and 4 h. The hsp25, hsp60, hsp70, actin, and glial fibrillary acidic protein contents of the astroglial cells were determined by immunoblotting 24 h after exposure. No significant differences were seen between control and exposed cells with respect to their contents of these proteins, neither were any changes in cell morphology observed. In a third experiment to determine the effect of a chronic (11-day) exposure to a combined 1-mT static/sinusoidal magnetic field on the proliferation of cultured astroglial cells, no significant differences were seen between control, sham-exposed, or exposed cells. These results suggest that exposure to 1-mT sinusoidal, static, or combined magnetic fields has no significant effects on the stress, cytoskeletal protein levels in, or proliferation of cultured astroglial cells.

  2. Structural and tectonic implications of pre-Mt. Simon strata -- or a lack of such -- in the western part of the Illinois basin

    SciTech Connect (OSTI)

    Sargent, M.L. (Illinois State Geological Survey, Champaign, IL (United States))

    1993-03-01T23:59:59.000Z

    The discovery of a pre-Mt. Simon lithic arenite (arkose) in southwestern Ohio has lead to reevaluation of many basement tests in the region. Several boreholes in adjacent states have been reexamined by others and are now believed to bottom in the Middle Run Formation. Seismic-reflection sections in western Ohio and Indiana have indicated pre-Mt. Simon basins filled with layered rocks that are interpreted to be Middle Run, however, the pre-Mt. Simon basins and east of Illinois. Samples from Illinois basement tests were reexamined to determine whether they had encountered similar strata. All reported crystalline-basement tests in Illinois show diagnostic igneous textures and mineralogical associations. Coarsely crystalline samples in cores show intergrown subhedral grains of quartz, microcline, and sodic plagioclase. Medium-crystalline rocks in cuttings samples show numerous examples of micrographic intergrowths of quartz and K-feldspar. This texture cannot be authigenically grown in a sediment and probably could not have survived a single cycle of erosion and deposition. Aphanitic rocks show porphyritic and spherulitic textures that are distinctly igneous and would be destroyed by weathering. Substantial relief on the Precambrian crystalline surface in Illinois is postulated for major structural features like the LaSalle Anticlinorium, the Sparta Shelf, the Ste. Genevieve Fault zone, etc. Paleotopographic relief up to 300 m (1,000 feet) is documented from drilling on the western flank of the basin.

  3. Scientific and Natural Areas (Minnesota)

    Broader source: Energy.gov [DOE]

    Certain scientific and natural areas are established throughout the state for the purpose of preservation and protection. Construction and new development is prohibited in these areas.

  4. Spherical Torus Plasma Interactions with Large-area Liquid Lithium Surfaces in CDX-U

    SciTech Connect (OSTI)

    R. Kaita; R. Majeski; M. Boaz; P. Efthimion; B. Jones; D. Hoffman; H. Kugel; J. Menard; T. Munsat; A. Post-Zwicker; V. Soukhanovskii; J. Spaleta; G. Taylor; J. Timberlake; R. Woolley; L. Zakharov; M. Finkenthal; D. Stutman; G. Antar; R. Doerner; S. Luckhardt; R. Maingi; M. Maiorano; S. Smith

    2002-01-18T23:59:59.000Z

    The Current Drive Experiment-Upgrade (CDX-U) device at the Princeton Plasma Physics Laboratory (PPPL) is a spherical torus (ST) dedicated to the exploration of liquid lithium as a potential solution to reactor first-wall problems such as heat load and erosion, neutron damage and activation, and tritium inventory and breeding. Initial lithium limiter experiments were conducted with a toroidally-local liquid lithium rail limiter (L3) from the University of California at San Diego. Spectroscopic measurements showed a clear reduction of impurities in plasmas with the L3, compared to discharges with a boron carbide limiter. The evidence for a reduction in recycling was less apparent, however. This may be attributable to the relatively small area in contact with the plasma, and the presence of high-recycling surfaces elsewhere in the vacuum chamber. This conclusion was tested in subsequent experiments with a fully toroidal lithium limiter that was installed above the floor of the vacuum vessel. The new limiter covered over ten times the area of the L3 facing the plasma. Experiments with the toroidal lithium limiter have recently begun. This paper describes the conditioning required to prepare the lithium surface for plasma operations, and effect of the toroidal liquid lithium limiter on discharge performance.

  5. WASTE AREA GROUP 7 PROPOSED PLAN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1 -VisualizingVote For the# * WASHINGTO N5, 2000

  6. Solar Energy Grid Integration Systems. Final Report of the Princeton Power Systems Development of the 100kW Demand Response Inverter.

    SciTech Connect (OSTI)

    Bower, Ward Isaac; Heavener, Paul (Princeton Power Systems, Inc., Princeton, NJ); Sena-Henderson, Lisa; Hammell, Darren (Princeton Power Systems, Inc., Princeton, NJ); Holveck, Mark (Princeton Power Systems, Inc., Princeton, NJ); David, Carolyn; Akhil, Abbas Ali; Gonzalez, Sigifredo

    2012-01-01T23:59:59.000Z

    Initiated in 2008, the Solar Energy Grid Integration (SEGIS) program is a partnership involving the U.S. Department of Energy, Sandia National Laboratories, electric utilities, academic institutions and the private sector. Recognizing the need to diversify the nation's energy portfolio, the SEGIS effort focuses on specific technologies needed to facilitate the integration of large-scale solar power generation into the nation's power grid Sandia National Laboratories (SNL) awarded a contract to Princeton Power Systems, Inc., (PPS) to develop a 100kW Advanced AC-link SEGIS inverter prototype under the Department of Energy Solar Energy Technologies Program for near-term commercial applications. This SEGIS initiative emphasizes the development of advanced inverters, controllers, communications and other balance-of-system components for photovoltaic (PV) distributed power applications. The SEGIS Stage 3 Contract was awarded to PPS on July 28, 2010. PPS developed and implemented a Demand Response Inverter (DRI) during this three-stage program. PPS prepared a 'Site Demonstration Conference' that was held on September 28, 2011, to showcase the cumulative advancements. This demo of the commercial product will be followed by Underwriters Laboratories, Inc., certification by the fourth quarter of 2011, and simultaneously the customer launch and commercial production sometime in late 2011 or early 2012. This final report provides an overview of all three stages and a full-length reporting of activities and accomplishments in Stage 3.

  7. Large area bulk superconductors

    DOE Patents [OSTI]

    Miller, Dean J. (Darien, IL); Field, Michael B. (Jersey City, NJ)

    2002-01-01T23:59:59.000Z

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  8. Strategic Focus Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarshipSpiralingSecurity217,354Strategic Focus Areas Lockheed

  9. versity (MT Assistant o

    E-Print Network [OSTI]

    discipline um vitae, s and contac electronica cmsearch@ 2011, an trategic Fac nitiative ates are en rsities

  10. T-1 Training Area

    SciTech Connect (OSTI)

    None

    2014-11-07T23:59:59.000Z

    Another valuable homeland security asset at the NNSS is the T-1 training area, which covers more than 10 acres and includes more than 20 separate training venues. Local, County, and State first responders who train here encounter a variety of realistic disaster scenarios. A crashed 737 airliner lying in pieces across the desert, a helicopter and other small aircraft, trucks, buses, and derailed train cars are all part of the mock incident scene. After formal classroom education, first responders are trained to take immediate decisive action to prevent or mitigate the use of radiological or nuclear devices by terrorists. The Counterterrorism Operations Support Center for Radiological Nuclear Training conducts the courses and exercises providing first responders from across the nation with the tools they need to protect their communities. All of these elements provide a training experience that cannot be duplicated anywhere else in the country.

  11. T-1 Training Area

    ScienceCinema (OSTI)

    None

    2015-01-09T23:59:59.000Z

    Another valuable homeland security asset at the NNSS is the T-1 training area, which covers more than 10 acres and includes more than 20 separate training venues. Local, County, and State first responders who train here encounter a variety of realistic disaster scenarios. A crashed 737 airliner lying in pieces across the desert, a helicopter and other small aircraft, trucks, buses, and derailed train cars are all part of the mock incident scene. After formal classroom education, first responders are trained to take immediate decisive action to prevent or mitigate the use of radiological or nuclear devices by terrorists. The Counterterrorism Operations Support Center for Radiological Nuclear Training conducts the courses and exercises providing first responders from across the nation with the tools they need to protect their communities. All of these elements provide a training experience that cannot be duplicated anywhere else in the country.

  12. Functional Area Assessments Project Charter Workstream Name Functional Area Assessments

    E-Print Network [OSTI]

    Sheridan, Jennifer

    with Huron on detailed project plan. Subject Experts Subject Expert Role Functional leadership Administrative1 of 2 Functional Area Assessments ­ Project Charter Workstream Name Functional Area Assessments - Internal Budgeting - Human Resources These diagnostics will be performed using interviews, surveys, data

  13. Surface Water Management Areas (Virginia)

    Broader source: Energy.gov [DOE]

    This legislation establishes surface water management areas, geographically defined surface water areas in which the State Water Control Board has deemed the levels or supply of surface water to be...

  14. Boundary Waters Canoe Area (Minnesota)

    Broader source: Energy.gov [DOE]

    The Boundary Waters Canoe Area occupies a large section of northern Minnesota, and is preserved as a primitive wilderness area. Construction and new development is prohibited. A map of the...

  15. Communication in Home Area Networks

    E-Print Network [OSTI]

    Wang, Yubo

    2012-01-01T23:59:59.000Z

    used in area like smart buildings, street light controls andbuilding. This section focuses on HAN design to address two smart

  16. Magnetotellurics At Roosevelt Hot Springs Geothermal Area (Ward...

    Open Energy Info (EERE)

    MT data. References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  17. Microsoft Word - Omak-Area-3G-CX.doc

    Broader source: Energy.gov (indexed) [DOE]

    visual value. The new tower at Foster Creek RS is 60' tall and surrounded by similar transmission infrastructure and larger towers, and the EG building at Fox Mt is one of...

  18. Experiment Safety Assurance Package for the 40- to 50-GWd/MT Burnup Phase of Mixed Oxide Fuel Irradiation in Small I-Hole Positions in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Khericha, S.T.

    2002-06-30T23:59:59.000Z

    This experiment safety assurance package (ESAP) is a revision of the last MOX ESAP issued in February 2001(Khericha 2001). The purpose of this revision is to identify the changes in the loading pattern and to provide a basis to continue irradiation up to {approx}42 GWd/MT burnup (+ 2.5%) as predicted by MCNP (Monte Carlo N-Particle) transport code before the preliminary postirradiation examination (PIE) results for 40 GWd/MT burnup are available. Note that the safety analysis performed for the last ESAP is still applicable and no additional analysis is required (Khericha 2001). In July 2001, it was decided to reconfigure the test assembly using the loading pattern for Phase IV, Part 3, at the end of Phase IV, Part 1, as the loading pattern for Phase IV, Parts 2 and 3. Three capsule assemblies will be irradiated until the highest burnup capsule assembly accumulates: {approx}50 GWd/MT burnup, based on the MCNP code predictions. The last ESAP suggests that at the end of Phase IV, Part 1, we remove the two highest burnup capsule assemblies ({at} {approx}40 GWd/MT burnup) and send them to ORNL for PIE. Then, irradiate the test assembly using the loading pattern for Phase IV, Part 2, until the highest burnup capsule reaches {approx}40 GWd/MT burnup per MCNP-predicted values.

  19. Experiment Safety Assurance Package for the 40- to 50-GWd/MT Burnup Phase of Mixed Oxide Fuel Irradiation in Small I-Hole Positions in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Khericha, Soli T

    2002-06-01T23:59:59.000Z

    This experiment safety assurance package (ESAP) is a revision of the last MOX ESAP issued in February 2001(Khericha 2001). The purpose of this revision is to identify the changes in the loading pattern and to provide a basis to continue irradiation up to ~42 GWd/MT burnup (+ 2.5% as predicted by MCNP (Monte Carlo N-Particle) transport code before the preliminary postirradiation examination (PIE) results for 40 GWd/MT burnup are available. Note that the safety analysis performed for the last ESAP is still applicable and no additional analysis is required (Khericha 2001). In July 2001, it was decided to reconfigure the test assembly using the loading pattern for Phase IV, Part 3, at the end of Phase IV, Part 1, as the loading pattern for Phase IV, Parts 2 and 3. Three capsule assemblies will be irradiated until the highest burnup capsule assembly accumulates: ~50 GWd/MT burnup, based on the MCNP code predictions. The last ESAP suggests that at the end of Phase IV, Part 1, we remove the two highest burnup capsule assemblies (@ ~40 GWd/MT burnup) and send them to ORNL for PIE. Then, irradiate the test assembly using the loading pattern for Phase IV, Part 2, until the highest burnup capsule reaches ~40 GWd/MT burnup per MCNP-predicted values.

  20. Fire Hazards Analysis for the 200 Area Interim Storage Area

    SciTech Connect (OSTI)

    JOHNSON, D.M.

    2000-01-06T23:59:59.000Z

    This documents the Fire Hazards Analysis (FHA) for the 200 Area Interim Storage Area. The Interim Storage Cask, Rad-Vault, and NAC-1 Cask are analyzed for fire hazards and the 200 Area Interim Storage Area is assessed according to HNF-PRO-350 and the objectives of DOE Order 5480 7A. This FHA addresses the potential fire hazards associated with the Interim Storage Area (ISA) facility in accordance with the requirements of DOE Order 5480 7A. It is intended to assess the risk from fire to ensure there are no undue fire hazards to site personnel and the public and to ensure property damage potential from fire is within acceptable limits. This FHA will be in the form of a graded approach commensurate with the complexity of the structure or area and the associated fire hazards.

  1. DOE Designates Southwest Area and Mid-Atlantic Area National...

    Energy Savers [EERE]

    twelve years. The Mid-Atlantic Area National Corridor includes certain counties in Ohio, West Virginia, Pennsylvania, New York, Maryland, Virginia, and all of New Jersey,...

  2. area spoil area: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    populations. It is part of a network of AHEC organiza- tions Collins, Gary S. 25 tight environment high radiation area Physics Websites Summary: , no active electronics ...

  3. Experiment Safety Assurance Package for the 40- to 52-GWd/MT Burnup Phase of Mixed Oxide Fuel Irradiation in Small I-hole Positions in the Advanced Test Reactor

    SciTech Connect (OSTI)

    S. T. Khericha; R. C. Pedersen

    2003-09-01T23:59:59.000Z

    This experiment safety assurance package (ESAP) is a revision of the last mixed uranium and plutonium oxide (MOX) ESAP issued in June 2002). The purpose of this revision is to provide a basis to continue irradiation up to 52 GWd/MT burnup [as predicted by MCNP (Monte Carlo N-Particle) transport code The last ESAP provided basis for irradiation, at a linear heat generation rate (LHGR) no greater than 9 kW/ft, of the highest burnup capsule assembly to 50 GWd/MT. This ESAP extends the basis for irradiation, at a LHGR no greater than 5 kW/ft, of the highest burnup capsule assembly from 50 to 52 GWd/MT.

  4. Communication in Home Area Networks

    E-Print Network [OSTI]

    Wang, Yubo

    2012-01-01T23:59:59.000Z

    and implementation of smart home energy management systemsStandard Technologies for Smart Home Area Networks EnablingInteroperability framework for smart home systems”, Consumer

  5. Tech Area II: A history

    SciTech Connect (OSTI)

    Ullrich, R. [Ktech Corp., Albuquerque, NM (United States)] [Ktech Corp., Albuquerque, NM (United States)

    1998-07-01T23:59:59.000Z

    This report documents the history of the major buildings in Sandia National Laboratories` Technical Area II. It was prepared in support of the Department of Energy`s compliance with Section 106 of the National Historic Preservation Act. Technical Area II was designed and constructed in 1948 specifically for the final assembly of the non-nuclear components of nuclear weapons, and was the primary site conducting such assembly until 1952. Both the architecture and location of the oldest buildings in the area reflect their original purpose. Assembly activities continued in Area II from 1952 to 1957, but the major responsibility for this work shifted to other sites in the Atomic Energy Commission`s integrated contractor complex. Gradually, additional buildings were constructed and the original buildings were modified. After 1960, the Area`s primary purpose was the research and testing of high-explosive components for nuclear weapons. In 1994, Sandia constructed new facilities for work on high-explosive components outside of the original Area II diamond-shaped parcel. Most of the buildings in the area are vacant and Sandia has no plans to use them. They are proposed for decontamination and demolition as funding becomes available.

  6. 5/28/08 6:03 PMPrinceton University -PPPL to phase out compact stellarator experiment, upgrade spherical torus program Page 1 of 2http://www.princeton.edu/main/news/archive/S21/15/04A97/index.xml?section=topstories

    E-Print Network [OSTI]

    in an underestimation of its cost and a more prolonged construction process. An 18-month series of project reviews spherical torus program Page 1 of 2http://www.princeton.edu/main/news/archive/S21/15/04A97/index://www.pppl.gov/> (PPPL) will phase out construction of the National Compact Stellarator Experiment (NCSX) and instead

  7. Loop Current and Deep Eddies Princeton University, Princeton, New Jersey

    E-Print Network [OSTI]

    . It is shown that north of Campeche Bank is a fertile ground for the growth of deep cyclones by baroclinic

  8. Eisgruber named 20th president of Princeton University | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater Use Goal 4: Efficient Water UseEighth ShullD.Physics

  9. Jonathan Squire wins Princeton University Honorific Fellowship | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron beamJoin HERO MarinersJoint Trade-22, 2001Plasma

  10. Jonathan Squire wins Princeton University Honorific Fellowship | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron beamJoin HERO MarinersJoint Trade-22,

  11. PRINCETON UNIVERSITY DEPARTMENT OF CHEMISTRY PRINCETON NEW JERSEY

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN .METALS~TEXAS CITYWINCHESTERpJ

  12. Hanford 200 Areas Development Plan

    SciTech Connect (OSTI)

    Rinne, C.A.; Daly, K.S.

    1993-08-01T23:59:59.000Z

    The purpose of the Hanford 200 Areas Development Plan (Development Plan) is to guide the physical development of the 200 Areas (which refers to the 200 East Area, 200 West Area, and 200 Area Corridor, located between the 200 East and 200 West Areas) in accordance with US Department of Energy (DOE) Order 4320.lB (DOE 1991a) by performing the following: Establishing a land-use plan and setting land-use categories that meet the needs of existing and proposed activities. Coordinating existing, 5-year, and long-range development plans and guiding growth in accordance with those plans. Establishing development guidelines to encourage cost-effective development and minimize conflicts between adjacent activities. Identifying site development issues that need further analysis. Integrating program plans with development plans to ensure a logical progression of development. Coordinate DOE plans with other agencies [(i.e., Washington State Department of Ecology (Ecology) and US Environmental Protection Agency (EPA)]. Being a support document to the Hanford Site Development Plan (DOE-RL 1990a) (parent document) and providing technical site information relative to the 200 Areas.

  13. Surficial Extent And Conceptual Model Of Hydrothermal System...

    Open Energy Info (EERE)

    Area (Frank, 1995) Rock Sampling At Mt Ranier Area (Frank, 1995) Thermal And-Or Near Infrared At Mt Ranier Area (Frank, 1995) Water Sampling At Mt Ranier Area (Frank, 1995) Areas...

  14. Visualizing the Surface Infrastructure Used to Move 2 MtCO2/year from the Dakota Gasification Company to the Weyburn CO2 Enhanced Oil Recovery Project: Version of July 1, 2009

    SciTech Connect (OSTI)

    Dooley, James J.

    2009-07-09T23:59:59.000Z

    Google Earth Pro has been employed to create an interactive flyover of the world’s largest operational carbon dioxide capture and storage project. The visualization focuses on the transport and storage of 2 MtCO2/year which is captured from the Dakota Gasification Facility (Beula, North Dakota) and transported 205 miles and injected into the Weyburn oil field in Southeastern Saskatchewan.

  15. Arnaud Rykner, L'incomprhensible dans le tapis (Sur Henry James) , in L'Incomprhensible. Littrature, rel, visuel, sous la dir. de M.-T. Mathet, Paris, L'Harmattan,

    E-Print Network [OSTI]

    Boyer, Edmond

    'Incompréhensible. Littérature, réel, visuel, sous la dir. de M.-T. Mathet, Paris, L'Harmattan, coll. Champs visuels, 2003, p.-T. Mathet, Paris, L'Harmattan, coll. Champs visuels, 2003, p. 137-165. 2 Georges Didi-Huberman et dans un

  16. AREA

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of2 of 5) ALARA TrainingANDREW W.categoricalHSS/UNIONAREA

  17. Anthropology press.princeton.edu

    E-Print Network [OSTI]

    Landweber, Laura

    12 Muslim Studies 18 Related Interest 21 Index 22 Order Form New When Experiments Travel Clinical. . . . [O]ne likes to think that if Barack Obama were somehow to stumble across a copy of David Vine's fine

  18. Princeton Professor Resolves Complex Puzzle

    Broader source: Energy.gov [DOE]

    By relating two problems with equations to describe minimum-energy systems, Dr. Torquato found new tools to solve both.

  19. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    after tests at PPPL. (Photo by Elle StarkmanPPPL Office of Communications) The titanium coupon being treated in the oxygen plasma. (Photo by Elle StarkmanPPPL Office of...

  20. Princeton University Plasma Physics Laboratory

    E-Print Network [OSTI]

    : Manickam, J., McGuire, K.M., Monticello, D., Nagayama, Y., Park, W., Taylor, G., Drake, J.F., Kleva, R Simulations of Beam­Fueled Supershot­like Plasmas Budny, R.V. 14 pgs. Near Ignition Preprint: March 1993, S.A., Scott, S.D., Stotler, D., Wieland, R., Zarnstorff, M., Zweben, S.J. #12; ­3­ PPPL­2880

  1. Princeton University Plasma Physics Laboratory

    E-Print Network [OSTI]

    : Manickam, J., McGuire, K.M., Monticello, D., Nagayama, Y., Park, W., Taylor, G., Drake, J.F., Kleva, R Simulations of Beam-Fueled Supershot-like Plasmas Budny, R.V. 14 pgs. Near Ignition Preprint: March 1993, S.A., Scott, S.D., Stotler, D., Wieland, R., Zarnstorff, M., Zweben, S.J. #12;-3- PPPL-2880

  2. Dr. Martin Jucker Princeton University

    E-Print Network [OSTI]

    Rodgers, Keith

    ": Numerical simulations of radio frequency heating in thermonuclear fusion devices by coupling and further- axisymmetric stellarator", Nucl. Fusion 52, 013015 (2012) M. Jucker, J.P. Graves, W.A. Cooper, N. Mellet, T. Fusion 53, 054010 (2011) M. Jucker, J.P. Graves, G.A. Cooper and W.A. Cooper, "Impact of pressure

  3. Hybrid Machine Learning Princeton University

    E-Print Network [OSTI]

    Mohri, Mehryar

    : Learn an apprentice policy !A such that V(!A) # V(!E) where the value function V(!) is unknown. Expert policy !E Apprentice policy !A Learning algorithm #12;Apprenticeship Learning !! Our contribution: New apprentice policy than existing algorithms. #12;Assumptions !! Definition: Let µ(!) be the feature vector

  4. Directory | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date: Contact: ShelleyDirector'sDirector Procurement

  5. Education | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date:research community --Education OfficeEducation

  6. History | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNot Logged3EducationCenterLeadershipAbout

  7. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew4 CarbonNews ReleasesPeoplePPPL

  8. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew4 CarbonNews

  9. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew4 CarbonNewsDelgado-Aparicio urges

  10. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew4 CarbonNewsDelgado-Aparicio

  11. ITER | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen StorageITER

  12. ITER | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen StorageITERITER Subscribe to RSS - ITER ITER is a

  13. Communiversity | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting theCommercialization and Innovation TheCommunicationsLeadersCommunityApril

  14. Disclosures | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirectionsDirectorateDisability

  15. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing4 News ReleasesNews NewsAbout

  16. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing4 News ReleasesNews NewsAboutNews

  17. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing4 News ReleasesNews

  18. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing4 News ReleasesNewsScience on

  19. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing4 News ReleasesNewsScience

  20. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing4 News ReleasesNewsScienceFierce

  1. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing4 News

  2. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing4 NewsEngineer Russ Feder leads

  3. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing4 NewsEngineer Russ Feder leadsNat

  4. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing4 NewsEngineer Russ Feder

  5. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing4 NewsEngineer Russ Federmuscle

  6. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing4 NewsEngineer Russ

  7. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing4 NewsEngineer RussEliot Feibush

  8. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing4 NewsEngineer RussEliot FeibushAn

  9. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing4 NewsEngineer RussEliot

  10. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing4 NewsEngineer RussEliotLaurie

  11. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing4 NewsEngineer RussEliotLaurie

  12. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing4 NewsEngineer RussEliotLaurie

  13. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing4 NewsEngineer RussEliotLaurie

  14. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing4 NewsEngineer RussEliotLaurie

  15. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing4 NewsEngineer RussEliotLaurie

  16. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing4 NewsEngineer RussEliotLaurie

  17. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing4 NewsEngineer

  18. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing4 NewsEngineerResearchers

  19. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing4 NewsEngineerResearchers Press

  20. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing4 NewsEngineerResearchers Press

  1. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing4 NewsEngineerResearchers Press

  2. Lithium | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatestCenter (LMI-EFRC) -ChoicesList List

  3. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThreeNews ReleasesNews

  4. Organization | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics One ofSpeedingthis siteOrgLeadership » Furth

  5. Research | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn the Inorganic PVResearch The U.S.

  6. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew4 CarbonNewsDelgado-AparicioX marks

  7. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew4 CarbonNewsDelgado-AparicioX

  8. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew4 CarbonNewsDelgado-AparicioXChuck

  9. Newsletters | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew4 News Releases

  10. STEM | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJuly throughR E Q U ESTEM Subscribe to RSS

  11. Weather | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRural PublicRatesAbout UsWeapons>

  12. Controller | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution And BylawsMetal-Organic Frameworks |lUU

  13. Patents | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTestPhysicsParticipantsPartners ofPatents Kumar,

  14. Tours | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program The NIF andPointsThrust 1: StructureToday History

  15. Tokamaks | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesisAppliances Tips:

  16. Purpose | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnicalPurchase, Delivery, and Storage of Gases Print ALSPurpose

  17. About | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Become agovEducationWelcome toAboutAboutUsUser ProgramAbout

  18. Communications | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms AboutRESEARCH CAPABILITIESCommittee

  19. Research | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s Overview Experimental Fusion Research Theoretical Fusion

  20. Forms | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget(DANCE) TargetForms & DocumentsForms