National Library of Energy BETA

Sample records for area fenton hill

  1. Isotopic Analysis- Fluid At Fenton Hill HDR Geothermal Area ...

    Open Energy Info (EERE)

    Geothermal Area (Rao, Et Al., 1996) Exploration Activity Details Location Fenton Hill HDR Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1996 - 1996...

  2. Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Grigsby...

    Open Energy Info (EERE)

    Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Grigsby, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas...

  3. Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Goff...

    Open Energy Info (EERE)

    Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling...

  4. Modeling-Computer Simulations At Fenton Hill HDR Geothermal Area...

    Open Energy Info (EERE)

    Modeling-Computer Simulations At Fenton Hill HDR Geothermal Area (Brown & DuTeaux, 1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  5. Petrography Analysis At Fenton Hill HDR Geothermal Area (Laughlin...

    Open Energy Info (EERE)

    Petrography Analysis At Fenton Hill HDR Geothermal Area (Laughlin, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Petrography...

  6. Fenton Hill Hdr Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbHFarinello Geothermal PowerGuidelines | OpenFediRenewableFenton Hill

  7. Core Analysis At Fenton Hill HDR Geothermal Area (Brookins &...

    Open Energy Info (EERE)

    References D. G. Brookins, A. W. Laughlin (1983) Rb-Sr Geochronologic Investigation Of Precambrian Samples From Deep Geothermal Drill Holes, Fenton Hill, New Mexico Additional...

  8. Water-Gas Sampling At Fenton Hill HDR Geothermal Area (Janik...

    Open Energy Info (EERE)

    Water-Gas Sampling At Fenton Hill HDR Geothermal Area (Janik & Goff, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Sampling At...

  9. Water-Gas Samples At Fenton Hill Hdr Geothermal Area (Goff &...

    Open Energy Info (EERE)

    Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Water-Gas Samples At Fenton Hill Hdr Geothermal Area (Goff & Janik, 2002) Redirect page Jump to:...

  10. Fenton Hill HDR Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbHFarinello Geothermal PowerGuidelines | OpenFediRenewableFenton Hill HDR

  11. Compound and Elemental Analysis At Fenton Hill HDR Geothermal...

    Open Energy Info (EERE)

    Geothermal Area (Rao, Et Al., 1996) Exploration Activity Details Location Fenton Hill HDR Geothermal Area Exploration Technique Compound and Elemental Analysis Activity Date 1996 -...

  12. Los Alamos National Laboratory Investigates Fenton Hill to Support...

    Office of Environmental Management (EM)

    Investigates Fenton Hill to Support Future Land Use Los Alamos National Laboratory Investigates Fenton Hill to Support Future Land Use July 29, 2014 - 12:00pm Addthis Sampling...

  13. HDR Geothermal Energy: Important Lessons From Fenton Hill

    National Nuclear Security Administration (NNSA)

    Stanford, California, February 9-11, 2009 SGP-TR-187 HOT DRY ROCK GEOTHERMAL ENERGY: IMPORTANT LESSONS FROM FENTON HILL Donald W. Brown Los Alamos National Laboratory...

  14. Compound and Elemental Analysis At Fenton Hill HDR Geothermal...

    Open Energy Info (EERE)

    References D. G. Brookins, A. W. Laughlin (1983) Rb-Sr Geochronologic Investigation Of Precambrian Samples From Deep Geothermal Drill Holes, Fenton Hill, New Mexico Additional...

  15. Water-Gas Sampling At Fenton Hill HDR Geothermal Area (Janik & Goff, 2002)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland:Energy Information AreaEnergy| Open Energy

  16. Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry...

    Open Energy Info (EERE)

    Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry Rock Geothermal Systems I. Fluid Mixing and Chemical Geothermometry Jump to: navigation, search OpenEI Reference...

  17. ICFT- An Initial Closed-Loop Flow Test of the Fenton Hill Phase...

    Open Energy Info (EERE)

    ICFT- An Initial Closed-Loop Flow Test of the Fenton Hill Phase II HDR Reservoir Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: ICFT- An Initial...

  18. Los Alamos National Laboratory Investigates Fenton Hill to Support Future Land Use

    Broader source: Energy.gov [DOE]

    LOS ALAMOS, N.M. – Supporting future land use for the U.S. Forest Service, Los Alamos National Laboratory’s Corrective Actions Program (CAP) completed sampling soil at Fenton Hill in the Jemez Mountains this month.

  19. Heat extracted from the long term flow test in the Fenton Hill HDR reservoir

    SciTech Connect (OSTI)

    Kruger, Paul; Robinson, Bruce

    1994-01-20

    A long-term flow test was carried out in the Fenton Hill HDR Phase-2 reservoir for 14 months during 1992-1993 to examine the potential for supplying thermal energy at a sustained rate as a commercial demonstration of HDR technology. The test was accomplished in several segments with changes in mean flowrate due to pumping conditions. Re-test estimates of the extractable heat content above a minimum useful temperature were based on physical evidence of the size of the Fenton Hill reservoir. A numerical model was used to estimate the extent of heat extracted during the individual flow segments from the database of measured production data during the test. For a reservoir volume of 6.5x10{sup 6}m{sup 3}, the total heat content above a minimum temperature of 150{degree} C was 1.5x10{sup 15}J. For the total test period at the three sustained mean flowrates, the integrated heat extracted was 0.088x10{sup 15}J, with no discernable temperature decline of the produced fluid. The fraction of energy extracted above the abandonment temperature was 5.9%. On the basis of a constant thermal energy extraction rate, the lifetime of the reservoir (without reservoir growth) to the abandonment temperature would be 13.3 years, in good agreement with the pre-test estimate of 15.0 years for the given reservoir volume.

  20. Start-up operations at the Fenton Hill HDR Pilot Plant

    SciTech Connect (OSTI)

    Ponden, R.F.

    1991-01-01

    With the completion of the surface test facilities at Fenton Hill, the Hot Dry Rock (HDR) Geothermal Energy Program at Los Alamos is moving steadily into the next stage of development. Start-up operations of the surface facilities have begun in preparation for testing the Phase II reservoir and the initial steady-state phase of operations. A test program has been developed that will entail a number of operational strategies to characterize the thermal performance of the reservoir. The surface facilities have been designed to assure high reliability while providing the flexibility and control to support the different operating modes. This paper presents a review of the system design and provides a discussion of the preliminary results of plant operations and equipment performance.

  1. Start-Up Operations at the Fenton Hill HDR Pilot Plant

    SciTech Connect (OSTI)

    Ponden, Raymond F.

    1992-03-24

    With the completion of the surface test facilities at Fenton Hill, the Hot Dry Rock (HDR) Geothermal Energy Program at Los Alamos is moving steadily into the next stage of development. Start-up operations of the surface facilities have begun in preparation for testing the Phase II reservoir and the initial steady-state phase of operations. A test program has been developed that will entail a number of operational strategies to characterize the thermal performance of the reservoir. The surface facilities have been designed to assure high reliability while providing the flexibility and control to support the different operating modes. This paper presents a review of the system design and provides a discussion of the preliminary results of plant operations and equipment performance.

  2. Microcracks, residual strain, velocity, and elastic properties of igneous rocks from a geothermal test-hole at Fenton Hill, New Mexico 

    E-Print Network [OSTI]

    Ciampa, John David

    1980-01-01

    MICROCRACKS, RESIDUAL STRAIN, VELOCITY, AND ELASTIC PROPERTIES OF IGNEOUS ROCKS FRCM A GEOTHERMAL TEST-HOLE AT FENTON HILL, NEW MEXICO A Thesis JOHN DAVID CIAMPA Submitted to the Graduate College of Texas A8M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE August 1980 Major Subject: Geophysics MICROCRACKS, RESIDUAL STRAIN, VELOCITY, AND ELASTIC PROPERTIES OF IGNEOUS ROCKS FROM A GEOTHERMAL TEST-HOLE AT FENTON HILL, NEW MEXICO A Thesis by JOHN DAVID CIAMPA...

  3. Thermal Gradient Holes At Fenton Hill HDR Geothermal Area (Purtymun...

    Open Energy Info (EERE)

    Valles caldera in order to locate an of high heat flow that would serve as a favorable test site for the HDR concept. Notes Data from these wells are report in Reiter et al....

  4. Observation Wells At Fenton Hill HDR Geothermal Area (Shevenell...

    Open Energy Info (EERE)

    for Los Alamos National Laboratory in 1984. These wells were drilled to facilitate microseismic monitoring of ongoing MHF experiments attempting to produce a viable geothermal...

  5. Geothermal Literature Review At Fenton Hill HDR Geothermal Area...

    Open Energy Info (EERE)

    useful DOE-funding Unknown Notes Review and identification of 24 potential sites for EGS development across the U.S., as well as modeling of the representative geologic systems...

  6. Modeling-Computer Simulations At Fenton Hill HDR Geothermal Area...

    Open Energy Info (EERE)

    useful DOE-funding Unknown Notes Review and identification of 24 potential sites for EGS development across the U.S., as well as modeling of the representative geologic systems...

  7. Isotopic Analysis- Fluid At Fenton Hill HDR Geothermal Area ...

    Open Energy Info (EERE)

    respect to the caldera, to understand variations in gas compositions that occured during drilling and flow testing of the Valles scientific wells, and to compare Valles gases with...

  8. Development Wells At Fenton Hill HDR Geothermal Area (Dreesen...

    Open Energy Info (EERE)

    required to support a commercial power plant. Initial attempts to connect the two wells by hydraulic pressure-stimulation in 1982 were unsuccessful. Efforts to produce a...

  9. Compound and Elemental Analysis At Fenton Hill HDR Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open EnergyColoradoBiomassPlusComposite keys? Home|(Brookins

  10. Compound and Elemental Analysis At Fenton Hill HDR Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open EnergyColoradoBiomassPlusComposite keys?

  11. Compound and Elemental Analysis At Fenton Hill HDR Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open EnergyColoradoBiomassPlusComposite keys?(Grigsby, Et

  12. Compound and Elemental Analysis At Fenton Hill HDR Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open EnergyColoradoBiomassPlusComposite keys?(Grigsby,

  13. Compound and Elemental Analysis At Fenton Hill HDR Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open EnergyColoradoBiomassPlusComposite

  14. Summary of Recent Flow Testing of the Fenton Hill HDR Reservoir | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEuropeEnergy Information Recent Flow Testing of the Fenton

  15. Massive Hydraulic Fracture of Fenton Hill HDR Well EE-3 | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenariosMarysville Mt Geothermal AreaInformationsourceMassena,

  16. Well Log Data At Fenton Hill HDR Geothermal Area (Dreesen, Et Al., 1987) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: Energy Resources Jump to:Search Your Data SearchEnergyOpen Energy

  17. Water-Gas Samples At Fenton Hill Hdr Geothermal Area (Goff & Janik, 2002) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarrensource History ViewInformation

  18. Tracer Testing At Fenton Hill HDR Geothermal Area (Callahan, 1996) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergy FacilitiesInformationTown700 Jump(Klein,Energy

  19. Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Goff & Janik,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model for theSunLanSuperDrive IncCity, New Jersey:2002) |

  20. Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Grigsby, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model for theSunLanSuperDrive IncCity, New Jersey:2002)

  1. Flow Test At Fenton Hill HDR Geothermal Area (Brown, 1994) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport Jump to:Flanders,Information85-1986) Jump

  2. Geothermal Literature Review At Fenton Hill HDR Geothermal Area (Goff &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky:Bore Technologies Inc JumpFacilityInformation

  3. Development Wells At Fenton Hill HDR Geothermal Area (Dreesen, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments IncMississippi:DeltaFishDesertDetroitSolarSurveyOpen1987) |

  4. Micro-Earthquake At Fenton Hill HDR Geothermal Area (Brown, 2009) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005 WindPRO isMickey Hot Springs5) Jump to:

  5. Modeling-Computer Simulations At Fenton Hill HDR Geothermal Area (Brown &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005MinnehahaElectricInformation Walker,2010)DuTeaux,

  6. Modeling-Computer Simulations At Fenton Hill HDR Geothermal Area (Goff &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005MinnehahaElectricInformation

  7. Isotopic Analysis At Fenton Hill Hdr Geothermal Area (Goff, Et Al., 1981) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13RenewableIrem GeothermalIslipNotOpen Energy

  8. Isotopic Analysis- Fluid At Fenton Hill HDR Geothermal Area (Goff & Janik,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,Open Energy Information Laney,Information2002) |

  9. Isotopic Analysis- Fluid At Fenton Hill HDR Geothermal Area (Goff, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,Open Energy Information Laney,Information2002)

  10. Isotopic Analysis- Fluid At Fenton Hill HDR Geothermal Area (Grigsby, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,Open Energy Information

  11. Isotopic Analysis- Fluid At Fenton Hill HDR Geothermal Area (Rao, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,Open Energy Information1996) | Open Energy

  12. Petrography Analysis At Fenton Hill HDR Geothermal Area (Laughlin, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio ProgramInformationMissouri:PartnershipPetroAsia1983) | Open

  13. Thermal Gradient Holes At Fenton Hill HDR Geothermal Area (Purtymun, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergy InformationEnergyAl., 1974) | Open

  14. Water Sampling At Fenton Hill HDR Geothermal Area (Rao, Et Al., 1996) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage EditWaterEnergyOpen EnergyOpen Energy

  15. Compound and Elemental Analysis At Fenton Hill HDR Geothermal Area (Goff &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open EnergyColoradoBiomassPlusCompositeJanik, 2002) | Open

  16. Compound and Elemental Analysis At Fenton Hill HDR Geothermal Area (Goff,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open EnergyColoradoBiomassPlusCompositeJanik, 2002) | OpenEt

  17. Compound and Elemental Analysis At Fenton Hill HDR Geothermal Area (Janik &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open EnergyColoradoBiomassPlusCompositeJanik, 2002) |

  18. Compound and Elemental Analysis At Fenton Hill HDR Geothermal Area (Rao, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open EnergyColoradoBiomassPlusCompositeJanik, 2002) |Al.,

  19. Conceptual Model At Fenton Hill HDR Geothermal Area (Goff, Et Al., 1988) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans, Et Al., 2002) ||Open EnergyOpen Energy

  20. Conceptual Model At Fenton Hill HDR Geothermal Area (Grigsby & Tester,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans, Et Al., 2002) ||Open EnergyOpen Energy1989) |

  1. Core Analysis At Fenton Hill HDR Geothermal Area (Brookins & Laughlin,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans,Oregon: Energy ResourcesCorbin2009) |1983) | Open

  2. Core Analysis At Fenton Hill HDR Geothermal Area (Laughlin, Et Al., 1983) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans,Oregon: Energy ResourcesCorbin2009) |1983) |

  3. Cuttings Analysis At Fenton Hill HDR Geothermal Area (Laughlin, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments Inc Jump to: navigation, searchCut and1983) | Open Energy

  4. Flow Test At Fenton Hill HDR Geothermal Area (Brown, 1995) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flatsInformation 7thFlorin,

  5. Flow Test At Fenton Hill HDR Geothermal Area (Callahan, 1996) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flatsInformation 7thFlorin,Information Callahan,

  6. Flow Test At Fenton Hill HDR Geothermal Area (Dash, 1989) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flatsInformation 7thFlorin,Information

  7. Flow Test At Fenton Hill HDR Geothermal Area (Dash, Et Al., 1983) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flatsInformation 7thFlorin,InformationEnergy

  8. Flow Test At Fenton Hill HDR Geothermal Area (Grigsby, Et Al., 1983) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flatsInformation 7thFlorin,InformationEnergyEnergy

  9. Development Wells At Fenton Hill HDR Geothermal Area (Dash, Et Al., 1983) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9)ask queries TypeDeveloper

  10. Observation Wells At Fenton Hill HDR Geothermal Area (Dash, Et Al., 1983) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:Information 3rd|Northfork ElectricName0

  11. Observation Wells At Fenton Hill HDR Geothermal Area (Shevenell, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:Information 3rd|Northfork ElectricName01988) | Open Energy

  12. Slip and Dilation Tendency Anlysis of McGinness Hills Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the McGinness Hills geothermal field was calculated based on the faults mapped McGinness Hills area (Siler 2012, unpublished). The McGinness Hills area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the McGinness area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. The McGinness Hills geothermal system is characterized by a left-step in a north-northeast striking west-dipping fault system wit...

  13. Slip and Dilation Tendency Anlysis of McGinness Hills Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the McGinness Hills geothermal field was calculated based on the faults mapped McGinness Hills area (Siler 2012, unpublished). The McGinness Hills area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the McGinness area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. The McGinness Hills geothermal system is characterized by a left-step in a north-northeast striking west-dipping fault system wit...

  14. Study of Reservoir Heterogencities and Structural Features Affecting Production in the Shallow Oil Zone, Eastern Elk Hills Area, California

    SciTech Connect (OSTI)

    Janice Gillespie

    2004-11-01

    Late Neogene (Plio-Pleistocene) shallow marine strata of the western Bakersfield Arch and Elk Hills produce hydrocarbons from several different reservoirs. This project focuses on the shallow marine deposits of the Gusher and Calitroleum reservoirs in the Lower Shallow Oil Zone (LSOZ). In the eastern part of the study area on the Bakersfield Arch at North and South Coles Levee field and in two wells in easternmost Elk Hills, the LSOZ reservoirs produce dry (predominantly methane) gas. In structurally higher locations in western Elk Hills, the LSOZ produces oil and associated gas. Gas analyses show that gas from the eastern LSOZ is bacterial and formed in place in the reservoirs, whereas gas associated with oil in the western part of the study area is thermogenic and migrated into the sands from deeper in the basin. Regional mapping shows that the gas-bearing LSOZ sands in the Coles Levee and easternmost Elk Hills area are sourced from the Sierra Nevada to the east whereas the oil-bearing sands in western Elk Hills appear to be sourced from the west. The eastern Elk Hills area occupied the basin depocenter, farthest from either source area. As a result, it collected mainly low-permeability offshore shale deposits. This sand-poor depocenter provides an effective barrier to the updip migration of gases from east to west. The role of small, listric normal faults as migration barriers is more ambiguous. Because our gas analyses show that the gas in the eastern LSOZ reservoirs is bacterial, it likely formed in-place near the reservoirs and did not have to migrate far. Therefore, the gas could have been generated after faulting and accumulated within the fault blocks as localized pools. However, bacterial gas is present in both the eastern AND western parts of Elk Hills in the Dry Gas Zone (DGZ) near the top of the stratigraphic section even though the measured fault displacement is greatest in this zone. Bacterial gas is not present in the west in the deeper LSOZ which has less measured fault displacement. The main difference between the DGZ and the LSOZ appears to be the presence of a sandpoor area in the LSOZ in eastern Elk Hills. The lack of permeable migration pathways in this area would not allow eastern bacterial gas to migrate farther updip into western Elk Hills. A similar sand-poor area does not appear to exist in the DGZ but future research may be necessary to verify this.

  15. 3D Model of the McGinness Hills Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    The McGinness Hills geothermal system lies in a ~8.5 km wide, north-northeast trending accommodation zone defined by east-dipping normal faults bounding the Toiyabe Range to the west and west-dipping normal faults bounding the Simpson Park Mountains to the east. Within this broad accommodation zone lies a fault step-over defined by north-northeast striking, west-dipping normal faults which step to the left at roughly the latitude of the McGinness Hills geothermal system. The McGinness Hills 3D model consists of 9 geologic units and 41 faults. The basal geologic units are metasediments of the Ordovician Valmy and Vininni Formations (undifferentiated in the model) which are intruded by Jurassic granitic rocks. Unconformably overlying is a ~100s m-thick section of Tertiary andesitic lava flows and four Oligocene-to-Miocene ash-flow tuffs: The Rattlesnake Canyon Tuff, tuff of Sutcliffe, the Cambell Creek Tuff and the Nine Hill tuff. Overlying are sequences of pre-to-syn-extensional Quaternary alluvium and post-extensional Quaternary alluvium. 10-15º eastward dip of the Tertiary stratigraphy is controlled by the predominant west-dipping fault set. Geothermal production comes from two west dipping normal faults in the northern limb of the step over. Injection is into west dipping faults in the southern limb of the step over. Production and injection sites are in hydrologic communication, but at a deep level, as the northwest striking fault that links the southern and northern limbs of the step-over has no permeability.

  16. 3D Model of the McGinness Hills Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    The McGinness Hills geothermal system lies in a ~8.5 km wide, north-northeast trending accommodation zone defined by east-dipping normal faults bounding the Toiyabe Range to the west and west-dipping normal faults bounding the Simpson Park Mountains to the east. Within this broad accommodation zone lies a fault step-over defined by north-northeast striking, west-dipping normal faults which step to the left at roughly the latitude of the McGinness Hills geothermal system. The McGinness Hills 3D model consists of 9 geologic units and 41 faults. The basal geologic units are metasediments of the Ordovician Valmy and Vininni Formations (undifferentiated in the model) which are intruded by Jurassic granitic rocks. Unconformably overlying is a ~100s m-thick section of Tertiary andesitic lava flows and four Oligocene-to-Miocene ash-flow tuffs: The Rattlesnake Canyon Tuff, tuff of Sutcliffe, the Cambell Creek Tuff and the Nine Hill tuff. Overlying are sequences of pre-to-syn-extensional Quaternary alluvium and post-extensional Quaternary alluvium. 10-15º eastward dip of the Tertiary stratigraphy is controlled by the predominant west-dipping fault set. Geothermal production comes from two west dipping normal faults in the northern limb of the step over. Injection is into west dipping faults in the southern limb of the step over. Production and injection sites are in hydrologic communication, but at a deep level, as the northwest striking fault that links the southern and northern limbs of the step-over has no permeability.

  17. Compound and Elemental Analysis At Fenton Hill HDR Geothermal...

    Open Energy Info (EERE)

    Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Additional References Retrieved from...

  18. Compound and Elemental Analysis At Fenton Hill HDR Geothermal...

    Open Energy Info (EERE)

    of the geothermal fluids and gases were collected at regular intervals during each of the heat-extraction experiments from the production wellhead, the injection wellhead, and at...

  19. Compound and Elemental Analysis At Fenton Hill HDR Geothermal...

    Open Energy Info (EERE)

    respect to the caldera, to understand variations in gas compositions that occured during drilling and flow testing of the Valles scientific wells, and to compare Valles gases with...

  20. Compound and Elemental Analysis At Fenton Hill HDR Geothermal...

    Open Energy Info (EERE)

    from each core. Standard petrographic techniques were used to identify constituent minerals and to obtain modal analyses. The number of points counted varied from about 500 to...

  1. Schematic Diagram of the Fenton Hill Geothermal Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,Sage ResourcesFlorida:SatconInformationInformation

  2. HDR Geothermal Energy: Important Lessons From Fenton Hill

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) AugustA. -71- Particulate: Columns 59 and

  3. Citric Acid-Modified Fenton's Reaction for the Oxidation of Chlorinated Ethylenes in Soil Solution Systems

    E-Print Network [OSTI]

    Seol, Yongkoo

    2008-01-01

    condition needed for catalytic oxidation. Fenton’s reactionchelates for catalytic hydrogen peroxide oxidation of 2,4-D

  4. Geology and uranium resources in Precambrian conglomerates of the Nemo area, Black Hills, South Dakota. Final report

    SciTech Connect (OSTI)

    Redden, J.A.

    1980-05-01

    The detailed work at a 1:3000 scale was done using a generalized grid system. Surface radioactive surveys used a GAD-6 spectrometer. Magnetometer surveys were also made of the Tomahawk, Steamboat Rock, Little Elk, and Greenwood areas in order to confirm the geologic interpretations. The drill core was logged, all radioactive or pebble-bearing intervals split and ground, and samples prepared for analysis by the writer, L. Alstead, and J. D. Kim. Chemical analyses were largely by neutron activation methods and were done in the Uranium Resource Evaluation Laboratory, Union Carbide Corporation, Oak Ridge, Tennessee. Personnel from that laboratory also prepared statistical data on the chemical analyses. Samples were also collected for mineralogic studies using thin sections, heavy mineral separates, and polished plates for use with the NEC energy dispersive x-ray spectroscopy system and electron probe. Some samples of pyritiferous conglomerate were successfully disaggregated using a hydrofluoric acid bath. Zircon concentrates were prepared using heavy liquids and repeated magnetic separation. Drill hole K, U, and Th logs of the different holes were made by Bendix Field Engineering Corporation personnel but due to instrument malfunction, the logs were not interpretable. Scintillation counter logs of the drill core were made during the lithologic logging.

  5. Fenton, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbHFarinello Geothermal PowerGuidelines | OpenFediRenewableFenton

  6. UNC Chapel Hill

    SciTech Connect (OSTI)

    2009-10-01

    This is a combined heat and power (CHP) project profile on a 32 MW cogeneration plant at UNC Chapel Hill in North Carolina.

  7. Hill SyStem PlaStic mulcHed

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    a Hill SyStem PlaStic mulcHed Strawberry Production Guide for colder areaS #12;#12;i Trade names do they intend or imply discrimination against those not mentioned. Hill SyStem PlaStic mulcHed ..................................................................27 Consider Fall Laying of Extra Plastic Mulch

  8. Marijanin Strawberry Hill

    E-Print Network [OSTI]

    Novak, Charles; Roschitz, Alex; Pirnat-Greenberg, Marta

    2012-06-01

    KU students of Croatian, under the supervision of their instructor, Marta Pirnat-Greenberg, interview artist Marijana Grisnik, a painter in the Croatian naive style living in Strawberry Hill, Kansas City. This is the first of a series on Croatian...

  9. Constraints on the Age of Heating at the Fenton Hill Site, Valles...

    Open Energy Info (EERE)

    disturbance, probably related to heating from a lateral flow of hot water just above the Precambrian surface at a depth of about 730 m and a deep thermal disturbance, the source...

  10. Cementing operations on Fenton Hill during FY1987, 1 October 1986-September 1987

    SciTech Connect (OSTI)

    Cocks, G.G.; Dreesen, D.S.; Gill, P.J.; Root, R.L.

    1988-01-01

    As part of repairing and sidetracking EE-2 geothermal well, a number of cementing operations were successfully carried out. These included; plugging back of EE-2 below the proposed side track site, cement behind casing at 10220-24 ft, cement behind casing at 9800-04 ft, whipstock plug, and the cementing through perforations of the 9-5/8 in. casing from 6500 ft to the surface. Specific data on each of these operations is given, and the results discussed. 1 ref., 4 figs.

  11. Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry...

    Open Energy Info (EERE)

    Rock Geothermal Systems II. Modeling Geochemical Behavior Abstract A transient mass balance model is developed to account for the dynamic behavior of an artificially stimulated...

  12. Subsurface Geology of the Fenton Hill Hot Dry Rock Geothermal Energy Site

    SciTech Connect (OSTI)

    Levey, Schon S.

    2010-12-01

    The Precambrian rock penetrated by wells EE-2A and -3A belongs to one or more granitic to granodioritic plutons. The plutonic rock contains two major xenolith zones of amphibolite, locally surrounded by fine-grained mafic rock of hybrid igneous origin. The granodiorite is cut by numerous leucogranite dikes that diminish in abundance with depth. The most prominent structural feature is the main breccia zone, in which the rock is highly fractured and moderately altered. This zone is at least 75 m thick and is of uncertain but near-horizontal orientation. Fracture abundance decreases with increasing depth below the main breccia zone, and fractures tend to be associated with leucogranite dikes. This association suggests that at least some of the fractures making up the geothermal reservoir are of Precambrian age or have long-range orientations controlled by the presence of Precambrian-age granitic dikes.

  13. Hot Dry Rock Geothermal Energy- Important Lessons From Fenton Hill | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNew Jersey:Hopkinsville, Kentucky:Open Energy

  14. How to Achieve a Four-Fold Productivity Increase at Fenton Hill | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNew Jersey:Hopkinsville,Advanced ResearchHow can IHow do

  15. Geology Of The Fenton Hill, New Mexico, Hot Dry Rock Site | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: EnergyGateway1997) | OpenRaft river valley, Idaho

  16. Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry Rock

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, NewMichigan: Energy Resources JumpMtSampling JumpGeothermal

  17. Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry Rock

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, NewMichigan: Energy Resources JumpMtSampling

  18. Three Principal Results from Recent Fenton Hill Flow Testing | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film Solar Technologies Jump to:Thousand

  19. Constraints on the Age of Heating at the Fenton Hill Site, Valles Caldera,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans, Et Al.,Information Logo:Co-NYofGroupLakeNew

  20. Geology of Geothermal Test Hole GT-2 Fenton Hill Site, July 1974 | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprintGEXAGeminiEnergyHawaii | OpenEnergy

  1. ICFT- An Initial Closed-Loop Flow Test of the Fenton Hill Phase II HDR

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on Openei | Open Energy2010) | OpenHywindIBEW Local 103

  2. Hydroxyl radical production via the photo-Fenton reaction in natural waters

    E-Print Network [OSTI]

    Southworth, Barbara A. (Barbara Anne), 1973-

    2002-01-01

    This dissertation investigates the importance of photo-Fenton chemistry in natural waters. The Fenton reaction, H202 + Fe(ll) [right arrow] Fe(ll) + OH- + OH', can occur in sunlit waters because both H202 and Fe(ll) are ...

  3. EA-1581: Sand Hills Wind Project, Wyoming

    Broader source: Energy.gov [DOE]

    The Bureau of Land Management, with DOE’s Western Area Power Administration as a cooperating agency, was preparing this EA to evaluate the environmental impacts of a proposal to construct, operate, and maintain the Sand Hills Wind Energy Facility on private and federal lands in Albany County, Wyoming. If the proposed action had been implemented, Western would have interconnected the proposed facility to an existing transmission line. This project has been canceled.

  4. Lake Fenton, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: EnergyKulpsville,LEDSGP/activitiesPlataLahendongSouth Dakota:EnergyFenton, Michigan:

  5. Dr. Kathleen Hill Associate Professor

    E-Print Network [OSTI]

    Kari, Lila

    ://www.uwo.ca/biology/Faculty/hill/index.htm Genomes DNA Genes to Proteins Kathleen Hill Lab Tour WSC 333 #12;2 The human genome is a multi-volume instruction manual · The GENOME is a multi-volume instruction manual · Each CHROMOSOME is a volume of text letter alphabet A,C,G,T NUCLEOTIDES Our instruction manual can be read in our DNA Genome Chromosome Gene

  6. Mendota Hills Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenariosMarysville MtMedical Area Total Egy Plt IncshallowHills Wind Farm

  7. MARQUAM HILL CAMPUS SW SWGIBBS ST / SAM JACKSON PARK RD

    E-Print Network [OSTI]

    Chapman, Michael S.

    B28 EMC MARQUAM HILL CAMPUS BRB SW SWGIBBS ST / SAM JACKSON PARK RD SW SAM JACKSON PARK RD SW US VETERANS HOSPITAL RD SW GAINES ST SW6THAVE SW CAMPUS DR SWUSVETERANSHOSPITALRD SW CAM PUS DR map: www.ohsu.edu/map From Lake Oswego/Sellwood Bridge area · Travel north on S.W. Macadam Ave. · Turn

  8. Spittal Hill Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Spittal Hill Wind Farm Jump to: navigation, search Name: Spittal Hill Wind Farm Place: United Kingdom Sector: Wind energy Product: Set up to manage wind projects in the Scotland....

  9. Reservoir Investigations on the Hot Dry Rock Geothermal System, Fenton

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewable Energy RFPsLtdEnergy PlcWorld BankSocialHill,

  10. Hands-on tools for nanotechnology Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill,

    E-Print Network [OSTI]

    Falvo, Michael

    Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 S. Paulson and M. Falvo Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 A. Helser 3rdTech Corp, Chapel Hill, North Carolina 27516 R. M. Taylor II Department of Computer Science, University

  11. Creating Mountains out of Mole Hills: Automatic Identification of Hills and Ranges Using Morphometric Analysis

    E-Print Network [OSTI]

    1 Creating Mountains out of Mole Hills: Automatic Identification of Hills and Ranges Using that comprise them (that mountain ranges are a collection of clustered yet individually identifiable mountains for automatically discerning mountain ranges as well as the smaller hills that constitute them. A mountainous region

  12. A review of "Milton's Places of Hope: Spiritual and Political Connections of Hope with Land" by Mary C. Fenton 

    E-Print Network [OSTI]

    Moreman, Sarah

    2008-01-01

    changes her focus from physical and political expressions of hope in Milton?s works to ?Milton?s view of tending to the interior land of the human soul? (97). Fenton describes the shift in Reformation England of the ?spatial rela- tionship between God... and humans? (98) from physical places such as cathe- drals to spiritual terrains including the human soul, thus prayer creates an ?interior, sanctified dwelling place? (99). Within this context of prelapsarian and postlapsarian hopeful prayer, Fenton...

  13. Record Hill | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎Wind FarmReFuelRecentstressRecord Hill

  14. Glacier Hills | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages RecentPlant <Silver PeakGinerHills Jump to: navigation,

  15. Laurel Hill | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWinds Jump to:Laredo Ridge WindHill Jump to:

  16. Cedro Hill | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla,Thermal Gradient Holes JumpHills Wind Facility

  17. Pleasant Hill Leadership Institute Founded in 1925, Pleasant Hill Baptist Church has worked for decades to facilitate the educational,

    E-Print Network [OSTI]

    Aazhang, Behnaam

    Pleasant Hill Leadership Institute Founded in 1925, Pleasant Hill Baptist, and spiritual leadership of the Fifth Ward community. They are engaged in a variety, amongst other population groups. In many ways, Pleasant Hill Baptist Church acts

  18. Independent Oversight Review, Hanford Site CH2M Hill Plateau...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CH2M Hill Plateau Remediation Company - November 2012 Independent Oversight Review, Hanford Site CH2M Hill Plateau Remediation Company - November 2012 November 2012 Review of the...

  19. Environmental protection and regulatory compliance at the Elk Hills Field

    SciTech Connect (OSTI)

    Chappelle, H.H. (BCM Engineers, Inc., Plymouth Meeting, PA (United States)); Donahoe, R.L. (Bechtel Petroleum Operations, Inc., Tupman, CA (United States)); Kato, T.T. (EG and G Energy Measurements, Inc., Las Vegas, NV (United States)); Ordway, H.E. (Chevron U.S.A., Inc., San Francisco, CA (United States))

    1991-01-01

    Environmental protection has played an integral role in the development and operation of the Elk Hills field since production at the maximum efficient rate was authorized in 1976. The field is located in a non-attainment area for California and National Ambient Air Quality Standards for two criteria pollutants and their associated precursors, is home to four endangered species, and operates within the California regulatory framework. Environmental protection and regulatory compliance is a multi-faceted program carried out through a substantial commitment of resources and workforce involvement. This paper describes the actions taken and resources employed to protect the environment, specific technologies and projects implement, and the ongoing nature of these efforts at Elk Hills.

  20. Environmental protection and regulatory compliance at the Elk Hills Field

    SciTech Connect (OSTI)

    Chappelle, H.H. [BCM Engineers, Inc., Plymouth Meeting, PA (United States); Donahoe, R.L. [Bechtel Petroleum Operations, Inc., Tupman, CA (United States); Kato, T.T. [EG and G Energy Measurements, Inc., Las Vegas, NV (United States); Ordway, H.E. [Chevron U.S.A., Inc., San Francisco, CA (United States)

    1991-12-31

    Environmental protection has played an integral role in the development and operation of the Elk Hills field since production at the maximum efficient rate was authorized in 1976. The field is located in a non-attainment area for California and National Ambient Air Quality Standards for two criteria pollutants and their associated precursors, is home to four endangered species, and operates within the California regulatory framework. Environmental protection and regulatory compliance is a multi-faceted program carried out through a substantial commitment of resources and workforce involvement. This paper describes the actions taken and resources employed to protect the environment, specific technologies and projects implement, and the ongoing nature of these efforts at Elk Hills.

  1. Forestry and Farming System In the Mid-Hills of Nepal

    E-Print Network [OSTI]

    Upadhyay, Kiran Dutta

    1993-01-01

    material to provide food for the huusehold members, heafs, kids to the farming hou;ehold and also dung for composting and recycling, and of income to the far­ ming households Earlier than 1950's sufficient areas of pasture and forest were available... -Hills has been converted into bush land. Trees are overcut, lopped and forest IIoor is overgrazed. The situation is, in fact, worse than what available figures suggest, because many areas of the Hills, now classified under forest, are in fact degraded waste...

  2. University of North Carolina at Chapel Hill The University of North Carolina at Chapel Hill Department of

    E-Print Network [OSTI]

    Rowe, Daniel B.

    University of North Carolina at Chapel Hill The University of North Carolina at Chapel Hill Chen Weili Lin§ Daniel B. Rowe¶ Bradley G. Peterson The University of North Carolina at Chapel Hill, hzhu@bios.unc.edu The University of North Carolina at Chapel Hill, liyimei

  3. Millstone Hill Thomson Scatter Results for 1969

    E-Print Network [OSTI]

    Evans, J. V.

    1974-07-23

    This report summarizes the results for the electron-density distribution, electron and ion temperatures, and vertical ionization fluxes in the F-region obtained during 1969 using the Millstone Hill (42.6°N, 71.5°W) Thomson ...

  4. Hills Creek Powerhouse Turbine and Unit Rehabilitation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and oxygen content suitable for fish, require the project to discharge a minimum of 300 cfs throughout its entire operating head range. The Francis runners at Hills Creek have...

  5. Hill Air Force Base Energy Performance Contract 

    E-Print Network [OSTI]

    Leach, M. D.

    1996-01-01

    This paper describes a basewide energy performance contract in progress at Hill Air Force Base (AFB) near Ogden, Utah. This performance contract differs from many performance contracts in that energy conservation measures (ECMs) which provide short...

  6. Millstone Hill Thomson Scatter Results for 1965

    E-Print Network [OSTI]

    Evans, J. V.

    1969-12-08

    This report presents F-region electron densities, and electron and ion temperatures observed during the year 1965 at the Millstone Hill Radar Observatory (42.6°N. 71.5“W) by the UHF Thomson (incoherent) scatter radar. The ...

  7. Millstone Hill Thomson Scatter Results for 1964

    E-Print Network [OSTI]

    Evans, J. V.

    1967-11-15

    Thomson scatter (incoherent backscatter) observations of the ionosphere were made at Millstone Hill at a wavelength of 68 cm during 1964, for 30-hour periods every two weeks. These data have been employed to derive the ...

  8. Black Hills Energy- Solar Power Program

    Broader source: Energy.gov [DOE]

    All incentive payments are subject to the availability of funds and a pre-installation site inspection. Black Hills Energy has established participation caps for each tier. The status of funding ...

  9. A review of "Their Maker's Image: New Essays on John Milton" edited by Mary C. Fenton and Louis Schwartz 

    E-Print Network [OSTI]

    Furman-Adams, Wendy

    2012-01-01

    stream_source_info fenton schwartz rev furman adams.pdf.txt stream_content_type text/plain stream_size 9591 Content-Encoding windows-1252 stream_name fenton schwartz rev furman adams.pdf.txt Content-Type text/plain; charset... the solitude of Adam?the ?unbounded? solitude of loneliness before the creation of Eve?from the solitude of the Son. ?e Son?s solitude, Smith argues, is ?bounded? by a strong network of deep human relations (especially with his mother Mary); moreover...

  10. EA-118 Hill County Electric Cooperative, Inc. | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy to Canada. EA-118 Hill County.pdf More Documents & Publications PP-118 Hill County Electric Cooperative Inc EA-209 Cargill-Alliant, LLC EA-211 DTE Energy Trading, Inc...

  11. EA-1824: Record Hill Wind Project in Roxbury, ME | Department...

    Office of Environmental Management (EM)

    to Record Hill Wind, LLC for Construction of a Wind Energy Project in Roxbury, Maine July 11, 2011 EA-1824: Finding of No Significant Impact Loan Guarantee to Record Hill...

  12. Contemporizing Performance: Mexican California and the Pádua Hills Theatre

    E-Print Network [OSTI]

    Arrizón, Alicia

    1993-01-01

    The Padua Hills Theatre ÁGUILA-NOPAL EAGLE AND CACTUS THE FEnotes of "Águila y Nopal. "Padua Hills Theatre Collection atAmador directed Águila y nopal (Eagle and Cactus, Figure

  13. DOE Settles Elk Hills Equity Claims | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Settles Elk Hills Equity Claims DOE Settles Elk Hills Equity Claims April 22, 2011 - 4:58pm Addthis The Department of Energy announced today that it has settled a longstanding...

  14. Elk Hills: still out in front

    SciTech Connect (OSTI)

    Rintoul, B.

    1982-07-01

    The producing history and capacity of the Elk Hills Oil and Gas Fields in California are described. Developments in the field are discussed, including waterflooding. The field presently produces ca. 160,000 bpd of oil and 350 mmcfd of natural gas. Gas liquids production totals ca. 683,000 gal/day. Waterflooding is expected to pay an increasingly important role in the production of crude oil. Steaming techniques also are viewed with favor after analysis of results of pilot projects. Exploratory develoment in Elk Hills also continues.

  15. Millstone Hill Thomson Scatter Results for 1971

    E-Print Network [OSTI]

    Evans, J. V.

    1978-03-24

    During 1971, the incoherent scatter radar at Millstone Hill (42.6°N, 71.5°W) was employed to measure the electron density, electron and ion temperatures, and the vertical velocity of the 0[superscript +] ions in the F-region ...

  16. McGuinness Hills Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to: navigation, searchScotland JumpPlantation Elec CoSAMcCoyMcGrath

  17. McGuinness Hills Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenariosMarysville Mt GeothermalMauna LoaMcAdoo WindMcFadden

  18. datamanagementgroup 2011 SURVEY AREA SUMMARY

    E-Print Network [OSTI]

    Toronto, University of

    datamanagementgroup 2011 SURVEY AREA SUMMARY DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF TORONTO PREPARED BY 51 TOWN OF RICHMOND HILL REGIONAL MUNICIPALITY OF YORK LeslieSt. Stouffville Rd. King 6 Kilometers Area = 10,180 Hectares #12;POPULATION CHARACTERISTICS Population Age Daily

  19. WIND DATA REPORT Camden Hills Regional High School, ME

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Camden Hills Regional High School, ME December 1, 2006 ­ February 28, 2007...................................................................................................................... 7 Wind Speed Time Series............................................................................................................. 8 Wind Speed Distributions

  20. WIND DATA REPORT Camden Hills Regional High School, ME

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Camden Hills Regional High School, ME March 1st 2006 to May 31th 2006 Prepared.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  1. WIND DATA REPORT Camden Hills Regional High School, ME

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Camden Hills Regional High School, ME September 1st 2006 to November 30th 2006.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  2. WIND DATA REPORT Camden Hills Regional High School, ME

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Camden Hills Regional High School, ME December 1st 2005 to February 28th 2006.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  3. WIND DATA REPORT Camden Hills Regional High School, ME

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Camden Hills Regional High School, ME June 1st 2006 to August 31th 2006 Prepared.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  4. PP-118 Hill County Electric Cooperative Inc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications EA-118 Hill County Electric Cooperative, Inc. PP-305 Montana Alberta Tie Ltd Application for presidential permit OE Docket No. PP-305 Montana Alberta Tie...

  5. CH2M HILL Plateau Remediation Company are

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HILL Plateau Remediation Company are safely removing contaminated equipment from the Plutonium Finishing Plant once used to produce plutonium during the Cold War at the Hanford...

  6. Marquam Hill Campus OHSU's central campus, Marquam Hill, is Portland's largest medical destination.

    E-Print Network [OSTI]

    Chapman, Michael S.

    . The intersection of SW Moody Ave & SW Gibbs St alone is host to an aerial tram, pedestrian bridge, streetcar, bike for Students OHSU Transportation & Parking Mail code: PP22A 3181 SW Sam Jackson Park Road Portland, OR 97239 Waterfront (SW Moody Ave & Gibbs St) to Marquam Hill (OHSU Kohler Pavilion) in 5 minutes. The tram operates

  7. Hills, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources Jump to:Hershey,High-TemperatureHiles,Hillcrest, New York:IncHills,

  8. Sou Hills Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSiliciumEnergy Inc JumpPennsylvania: EnergySonnenSou Hills

  9. Long Hill Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgency (IRENA) JumpLiterature Review Home Qinsun'sHill Energy Ltd

  10. Red Hills Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎WindRecycleBank Jump to:Hills Wind Farm

  11. Steamboat Hills Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPageBefore the SenateHills Geothermal Facility

  12. Sunny Hill Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEuropeEnergy Information RecentSundropEnergy JumpHill

  13. Wilmont Hills Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw,WhatUtilityRateNamingHelperVirginia:WillowWilmont Hills

  14. Black Hills Power Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-Gas Technologies, LLCMichigan:Earth, Wisconsin:Black Hills

  15. Goodnoe Hills Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages RecentPlantMagma Energy GroupDOESwitzerland)Goodnoe Hills

  16. Arbor Hills Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYork Jump| OpenExploration At TheWindAquillianHills

  17. Cedar Hills Wind Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla,Thermal Gradient Holes JumpHills Wind Facility Jump to:

  18. Chandler Hills Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla,Thermal Gradient HolesCentral,Chandler Hills Wind Farm Jump

  19. Hills Creek Powerhouse Turbine and Unit Rehabilitation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHigh energyHighland View school HighlandHydrogen andHighlyHills

  20. City of Castle Hills State of the City and Recommendations 

    E-Print Network [OSTI]

    Bright, Elise; Croxell, Christina

    2003-01-01

    stream_source_info 2006_CastleHills.pdf.txt stream_content_type text/plain stream_size 250 Content-Encoding ISO-8859-1 stream_name 2006_CastleHills.pdf.txt Content-Type text/plain; charset=ISO-8859-1 ...

  1. Becky Hill Green Mountain DNA Conference LT-DNA Analysis

    E-Print Network [OSTI]

    Becky Hill ­ Green Mountain DNA Conference LT-DNA Analysis July 26, 2010 http of the Chief Medical Examiner, NYC Green Mountain DNA Conference Burlington, VT July 26, 2010 Low Template (LT generally aim for 0.5-2 ng 100 pg template 5 pg template #12;Becky Hill ­ Green Mountain DNA Conference LT

  2. University of Virginia Housing Areas

    E-Print Network [OSTI]

    Huang, Wei

    University of Virginia Housing Areas Copeley Hill Faulkner Copeley III & IV Piedmont Hereford Gardens Lile-Maupin House 2372 Tuttle - Dunnington House 2373 Shannon House 2374 Gibbons House 2375 IvyGardensWay Tree House Drive Grady Avenue University Court Farrish Circle W estview Road Engineer'sWay Gildersleve

  3. McGraw-Hill 2008 Yearbook of Science & Technology The McGraw-Hill Companies "Solitons in Electrical Networks"

    E-Print Network [OSTI]

    Ricketts, David S.

    of wave energy within the pulse shape without dispersion and exhibit remarkable nonlinear dynamics dispersion of energy, the light-wave solitons can carry a large amount of digital information in longMcGraw-Hill 2008 Yearbook of Science & Technology © The McGraw-Hill Companies "Solitons

  4. Subsurface water flow simulated for hill slopes with spatially dependent soil hydraulic characteristics

    SciTech Connect (OSTI)

    Sharma, M.L.; Luxmoore, R.J.; DeAngelis, R.; Ward, R.C.; Yeh, G.T.

    1987-08-01

    Water flow through hill slopes consisting of five soil layers, with varying spatial dependence in hydraulic characteristics in the lateral plane was simulated by solving Richards' equation in three dimensions under varying rainfall intensities and for two complexities of terrain. By concepts of similar media the variability in soil hydraulic characteristics was expressed by a single dimensionless parameter, the scaling factor ..cap alpha... The moments of log normally distributed ..cap alpha.. were set as: Mean = 1.0 and standard deviation = 1.0. Four cases of spatial dependence of ..cap alpha.. in the lateral plane were selected for simulation, using exponential variogram functions ranging in spatial structure from random (no spatial dependence) to large dependence (large correlation lengths). The simulations showed that the rates of subsurface flow from the 30/sup 0/ hillslope, during and following rainfall, were significantly enhanced with an increase in spatial dependence. Subsurface drainage was also increased with increases in rainfall intensity and slop complexity. For hill slopes the relative effects of spatial dependence in soil hydraulic characteristics was smaller with 30/sup 0/ horizontal pitching than without pitching. Hill slopes with a random distribution of hydraulic characteristics provided greater opportunity for soil units with differing water capacities to interact than in cases with spatially correlated distributions. This greater interaction is associated with a greater lag in subsurface flow generation. These studies illustrate some of the expected effects of spatial dependence of soil hydraulic characteristics of the integrated hydrologic response of land areas.

  5. Town of Kill Devil Hills- Wind Energy Systems Ordinance

    Broader source: Energy.gov [DOE]

    In October 2007, the town of Kill Devil Hills adopted an ordinance to regulate the use of wind-energy systems. The ordinance directs any individual or organization wishing to install a wind-energy...

  6. Becky Hill ABI 3130xl Validation Applied Biosystems HID University/

    E-Print Network [OSTI]

    · Technology ­ Research programs in SNPs, miniSTRs, Y-STRs, mtDNA, qPCR ­ Assay and software development Experiments Performed at NIST Becky Hill ABI Seminar Series Future Trends in Forensic DNA Technology

  7. Rock Hill Utilities- Water Heater and Heat Pump Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Through the SmartChoice program, Rock Hill Utilities offers rebates for water heater and heat pump replacements. Information on financing for heat pumps can also be found on the web site listed...

  8. Town of Chapel Hill- Land-Use Management Ordinance

    Broader source: Energy.gov [DOE]

    In 2003, the Town of Chapel Hill adopted a land-use management ordinance that includes prohibitions against neighborhood or homeowners association covenants or other conditions of sale that...

  9. After runaway: The trans-Hill stage of planetesimal growth

    SciTech Connect (OSTI)

    Lithwick, Yoram [Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA and Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Evanston, IL 60208 (United States)

    2014-01-01

    When planetesimals begin to grow by coagulation, they first enter an epoch of runaway, during which the biggest bodies grow faster than all the others. The questions of how runaway ends and what comes next have not been answered satisfactorily. We show that runaway is followed by a new stage—the 'trans-Hill stage'—that commences when the bodies that dominate viscous stirring ('big bodies') become trans-Hill, i.e., when their Hill velocity matches the random speed of the small bodies they accrete. Subsequently, the small bodies' random speed grows in lockstep with the big bodies' sizes, such that the system remains in the trans-Hill state. Trans-Hill growth is crucial for determining the efficiency of growing big bodies, as well as their growth timescale and size spectrum. Trans-Hill growth has two sub-stages. In the earlier one, which occurs while the stirring bodies remain sufficiently small, the evolution is collisionless, i.e., collisional cooling among all bodies is irrelevant. The efficiency of forming big bodies in this collisionless sub-stage is very low, ?10? << 1, where ? ? 0.005(a/AU){sup –1} is the ratio between the physical size of a body and its Hill radius. Furthermore, the size spectrum is flat (equal mass per size decade, i.e., q = 4). This collisionless trans-Hill solution explains results from previous coagulation simulations for both the Kuiper Belt and the asteroid belt. The second trans-Hill sub-stage commences once the stirring bodies grow big enough (>?{sup –1} × the size of the accreted small bodies). After that time, collisional cooling among small bodies controls the evolution. The efficiency of forming big bodies rises and the size spectrum becomes more top heavy. Trans-Hill growth can terminate in one of two ways, depending on the sizes of the small bodies. First, mutual accretion of big bodies can become significant and conglomeration proceeds until half of the total mass is converted into big bodies. This mode of growth may explain the observed size distributions of small bodies in the solar system and is explored in our subsequent work. Second, if the big bodies' orbits become separated by their Hill radius, oligarchy commences. This mode likely precedes the formation of fully fledged planets.

  10. A Demonstrated Optical Tracker With Scalable Work Area for Head-Mounted Display Systems

    E-Print Network [OSTI]

    Pollefeys, Marc

    A Demonstrated Optical Tracker With Scalable Work Area for Head- Mounted Display Systems Mark Ward Hall University of North Carolina Chapel Hill, NC 27599-3175 Abstract An optoelectronic head of an optoelectronic head-tracking concept developed at the University of North Carolina at Chapel Hill. In the concept

  11. Precambrian geology of a portion of the Purdy Hill quadrangle, Mason County, Texas 

    E-Print Network [OSTI]

    Mutis-Duplat, Emilio

    1969-01-01

    ) (Head of Department) (Membe r) A ust 1969 ABS TRAC T Precambrian Geology of a Portion of the Purdy Hill Quadrangle, Mason County, Texas. (August 1969) Emilio Mutis-Duplat, Geologist and Geophysicist, Unive re idad Nacional de Colombia; Directed by...'s understanding of the geology of the area. Dr. Robert R. Berg, Head of the Department of Geology, who was a permanent source of encouragement. The members of the Awards Committee of the Department of Geology, for the award that provided financial support...

  12. This article was downloaded by: [University North Carolina -Chapel Hill] On: 19 July 2012, At: 11:00

    E-Print Network [OSTI]

    Shen, Haipeng

    This article was downloaded by: [University North Carolina - Chapel Hill] On: 19 July 2012, At: 11 of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 b Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 c Department of Statistics and Operations Research

  13. Economic Development Benefits of the Mars Hill Wind Farm, Wind Powering America Rural Economic Development, Case Study (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-06-01

    This case study summarizes the economic development benefits of the Mars Hill Wind Farm to the community of Mars Hill, Maine. The Mars Hill Wind Farm is New England's first utility-scale wind farm.

  14. Seismicity Characterization and Monitoring at WESTCARB's Proposed Montezuma Hills Geologic Sequestration Site

    SciTech Connect (OSTI)

    Daley, T.M.; Haught, R.; Peterson, J.E.; Boyle, K.; Beyer, J.H.; Hutchings, L.R.

    2010-09-15

    The West Coast Regional Carbon Sequestration Partnership (WESTCARB), in collaboration with Shell Oil Co. performed site characterization for a potential small-scale pilot test of geologic sequestration of carbon dioxide (CO2). The site area, know as Montezuma Hills, is near the town of Rio Vista in northern California. During the process of injection at a CO2 storage site, there is a potential for seismic events due to slippage upon pre-existing discontinuities or due to creation of new fractures. Observations from many injection projects have shown that the energy from these events can be used for monitoring of processes in the reservoir. Typically, the events are of relatively high frequency and very low amplitude. However, there are also well documented (non-CO2-related) cases in which subsurface injection operations have resulted in ground motion felt by near-by communities. Because of the active tectonics in California (in particular the San Andreas Fault system), and the potential for public concern, WESTCARB developed and followed an induced seismicity protocol (Myer and Daley, 2010). This protocol called for assessing the natural seismicity in the area and deploying a monitoring array if necessary. In this report, we present the results of the natural seismicity assessment and the results of an initial temporary deployment of two seismometers at the Montezuma Hills site. Following the temporary array deployment, the project was suspended and the array removed in August of 2010.

  15. SEP Success Story: Turkey Hill Dairy: Where Energy is Not Left...

    Office of Environmental Management (EM)

    Turkey Hill Dairy: Where Energy is Not Left Flapping in the Wind SEP Success Story: Turkey Hill Dairy: Where Energy is Not Left Flapping in the Wind December 21, 2011 - 11:57am...

  16. SURVEYOR REPORT STANDARDS FOR THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL

    E-Print Network [OSTI]

    McLaughlin, Richard M.

    SURVEYOR REPORT STANDARDS FOR THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL A survey report is to accompany each digital survey submitted to the University of North Carolina at Chapel Hill. Reports describe

  17. Flint Hills Resources, LP- FE Dkt. No. 15-168-LNG

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Office of Fossil Energy (FE) of the Department of Energy (DOE) gives notice of receipt of an application, filed on November 5, 2015, by Flint Hills Resources, LP (Flint Hills), requesting long...

  18. Voluntary Protection Program Onsite Review, CH2M HILL B&W West...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CH2M HILL B&W West Valley LLC, West Valley Demonstration Project - October 2013 Voluntary Protection Program Onsite Review, CH2M HILL B&W West Valley LLC, West Valley Demonstration...

  19. The Naming, Identification, and Protection of Place in the Loess Hills of the Middle Missouri Valley

    E-Print Network [OSTI]

    McDermott, David Thomas

    2009-11-09

    Definitions of the extent of the Loess Hills of the Missouri River valley have become smaller over the last century. The reduced extent of the Hills, as represented in both promotional and scientific literature, no longer accurately reflects...

  20. Intimate Emptiness: The Flint Hills Wind Turbine Controversy

    E-Print Network [OSTI]

    Graham, Howard Russell

    2008-07-28

    wind turbine sites across the state. 21 In 2000, wind research revealed that the ?Sunflower State ranked near the top in the country for wind-energy potential;? 22 in 2001, the Montezuma Project in Gray County, near Dodge City, Kansas? first wind..., and their argument. My first chapter locates the Flint Hills, explains why they are unique, discovers the reason wind developers wanted to site turbines in the Hills, and introduces the wind controversy. I draw on a number of secondary sources to help position...

  1. 2013 strategic petroleum reserve big hill well integrity grading report.

    SciTech Connect (OSTI)

    Lord, David L.; Roberts, Barry L.; Lord, Anna C. Snider; Bettin, Giorgia; Sobolik, Steven Ronald; Park, Byoung Yoon; Rudeen, David Keith; Eldredge, Lisa; Wynn, Karen; Checkai, Dean; Perry, James Thomas

    2014-02-01

    This report summarizes the work performed in developing a framework for the prioritization of cavern access wells for remediation and monitoring at the Big Hill Strategic Petroleum Reserve site. This framework was then applied to all 28 wells at the Big Hill site with each well receiving a grade for remediation and monitoring. Numerous factors affecting well integrity were incorporated into the grading framework including casing survey results, cavern pressure history, results from geomechanical simulations, and site geologic factors. The framework was developed in a way as to be applicable to all four of the Strategic Petroleum Reserve sites.

  2. Application of turbidite facies of the Stevens Oil Zone for reservoir management, Elk Hills Field, California

    SciTech Connect (OSTI)

    Reid, S.A.; Thompson, T.W.; McJannet, G.S.

    1996-12-31

    A detailed depositional model for the uppermost sand reservoirs of the Stevens Oil Zone, Elk Hills Field, California, contains three facies: turbidite channel-fill sand bodies, overbank Sandstone and mudstone, and pelagic and hemipelagic siliceous shale. Sand bodies are the primary producing facies and consist of layered, graded sandstone with good permeability. The presence of incipient anticlines with subsea relief in the late Miocene resulted in deposition of lenticular and sinuous sand Was within structurally created channels. Relief of these structural channels was low when the earliest sand bodies were deposited, leading to a wide channel complex bounded by broad overbank deposits of moderate to low permeability. As deposition proceeded, increased structural relief constrained the channels, resulting in narrower sand body width and relatively abrupt channel terminations against very low permeability siliceous shale. With post-Miocene uplift and differential compaction, stratigraphic mounding of sand bodies helped create structural domes such as the 24Z reservoir. Stratigraphic traps including the 26R reservoir were also created. Such traps vary in seal quality from very effective to leaky, depending on the lateral transition from sand bodies to siliceous shale. Application of the Elk Hills turbidity model (1) provides a framework for monitoring production performance in the 24Z and Northwest Stevens waterflood projects; and for tracking gas migration into and out of the 26R reservoir, (2) helps b identify undeveloped locations in the 26R reservoir ideally suited for horizontal wells, (3) has led to the identification of two new production trends in the 29R area, and (4) makes possible the development of exploration plays in western Elk Hills.

  3. Application of turbidite facies of the Stevens Oil Zone for reservoir management, Elk Hills Field, California

    SciTech Connect (OSTI)

    Reid, S.A.; Thompson, T.W. ); McJannet, G.S. )

    1996-01-01

    A detailed depositional model for the uppermost sand reservoirs of the Stevens Oil Zone, Elk Hills Field, California, contains three facies: turbidite channel-fill sand bodies, overbank Sandstone and mudstone, and pelagic and hemipelagic siliceous shale. Sand bodies are the primary producing facies and consist of layered, graded sandstone with good permeability. The presence of incipient anticlines with subsea relief in the late Miocene resulted in deposition of lenticular and sinuous sand Was within structurally created channels. Relief of these structural channels was low when the earliest sand bodies were deposited, leading to a wide channel complex bounded by broad overbank deposits of moderate to low permeability. As deposition proceeded, increased structural relief constrained the channels, resulting in narrower sand body width and relatively abrupt channel terminations against very low permeability siliceous shale. With post-Miocene uplift and differential compaction, stratigraphic mounding of sand bodies helped create structural domes such as the 24Z reservoir. Stratigraphic traps including the 26R reservoir were also created. Such traps vary in seal quality from very effective to leaky, depending on the lateral transition from sand bodies to siliceous shale. Application of the Elk Hills turbidity model (1) provides a framework for monitoring production performance in the 24Z and Northwest Stevens waterflood projects; and for tracking gas migration into and out of the 26R reservoir, (2) helps b identify undeveloped locations in the 26R reservoir ideally suited for horizontal wells, (3) has led to the identification of two new production trends in the 29R area, and (4) makes possible the development of exploration plays in western Elk Hills.

  4. The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon Query Processing on GPUs

    E-Print Network [OSTI]

    Ailamaki, Anastassia

    The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon Databases Query Processing on GPUs The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon Databases CPU vs. GPU CPU (3 GHz) System Memory MB) GPU (690 MHz) 2 x 1 MB Cache The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon

  5. The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL1 http://gamma.cs.unc.edu/DAB

    E-Print Network [OSTI]

    Lin, Ming C.

    The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL1 http://gamma.cs.unc.edu/DAB http of NORTH CAROLINA at CHAPEL HILL2 Digital Painting Alvy Ray Smith and Ed Ernshwiller working on "Paint ·No fading or decay ·No physical limits #12;The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL3

  6. The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon Query co-Processing on

    E-Print Network [OSTI]

    Ailamaki, Anastassia

    The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon Databases Query co University of North Carolina at Chapel Hill #12;The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL Superscalar Out-of-order SMT Performance *graph courtesy of Rakesh Kumar #12;The UNIVERSITY of NORTH CAROLINA

  7. The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon Query co-Processing on

    E-Print Network [OSTI]

    Ailamaki, Anastassia

    The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon Databases Query co University of North Carolina at Chapel Hill The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon Out-of-order SMT Performance *graph courtesy of Rakesh Kumar #12;The UNIVERSITY of NORTH CAROLINA

  8. The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon Query co-Processing on

    E-Print Network [OSTI]

    Ailamaki, Anastassia

    The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon Databases Query co University of North Carolina at Chapel Hill The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon Out-of-order SMT Performance *graph courtesy of Rakesh Kumar The UNIVERSITY of NORTH CAROLINA

  9. The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon Query Processing on GPUs

    E-Print Network [OSTI]

    Ailamaki, Anastassia

    The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon Databases Query Processing on GPUs The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon Databases CPU vs. GPU CPU (3 GHz) System Memory MB) GPU (690 MHz) 2 x 1 MB Cache #12;The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon

  10. The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL DiFi: Distance Fields -Fast

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL DiFi: Distance Fields - Fast Computation Using UNIVERSITY of NORTH CAROLINA at CHAPEL HILL Distance Fields Distance Function For a site a scalar function f UNIVERSITY of NORTH CAROLINA at CHAPEL HILL What is a Voronoi Diagram? Given a collection of geometric

  11. The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon Query co-Processing on

    E-Print Network [OSTI]

    The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon Databases Query co University of North Carolina at Chapel Hill Stavros Harizopoulos MIT #12;The UNIVERSITY of NORTH CAROLINA of Rakesh Kumar #12;The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon Databases © A. Ailamaki

  12. The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon Query Processing on GPUs

    E-Print Network [OSTI]

    Ailamaki, Anastassia

    The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon Databases Query Processing on GPUs UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon Databases CPU vs. GPU CPU (3 GHz) System Memory MB) GPU (690 MHz) 2 x 1 MB Cache #12;The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon

  13. Lithium in Jack Hills zircons: Evidence for extensive weathering of Earth's earliest crust Takayuki Ushikubo a,

    E-Print Network [OSTI]

    Mcdonough, William F.

    Lithium in Jack Hills zircons: Evidence for extensive weathering of Earth's earliest crust Takayuki Hills lithium weathering continental crust Hadean In situ Li analyses of 4348 to 3362 Ma detrital of REEs. The Jack Hills zircons also have fractionated lithium isotope ratios (7 Li=-19 to+13) about five

  14. DEVELOPMENT OF AN ELK SIGHTABILITY MODEL FOR THE BLACK HILLS OF SOUTH DAKOTA

    E-Print Network [OSTI]

    DEVELOPMENT OF AN ELK SIGHTABILITY MODEL FOR THE BLACK HILLS OF SOUTH DAKOTA BY EVAN C. PHILLIPS SIGHTABILITY MODEL FOR THE BLACK HILLS OF SOUTH DAKOTA Evan C. Phillips August 26, 2011 Elk (Cervus elaphus specific to the elk population that resides within the Black Hills of South Dakota. Sightability trials

  15. Linda Hill, Ph.D.1 Olha Buchel, MLS.1

    E-Print Network [OSTI]

    Janée, Greg

    . The agendas for digital library and classification research in relating to KOS are also proposed. [Keywords DIGITIZING RETRIEVING SEARCHING VISUALIZING KNOWLEDGE ORGANIZATION SYSTEMS AUTHORITY FILES CLASSIFICATION ( ) [] [] Integration of Knowledge Organization Systems into Digital Library Architectures Linda Hill, Ph.D.1 Olha

  16. Penrose Life: ash and oscillators Margaret Hill1

    E-Print Network [OSTI]

    Stepney, Susan

    Penrose Life: ash and oscillators Margaret Hill1 , Susan Stepney1 , and Francis Wan2 1 Department tiling grid. We in- vestigate the lifetime to stability, the final `ash' density, and the number quantitative behaviour, with shorter lifetimes, lower ash densities, and higher ocurrence of long

  17. Implications from a study of the timing of oil entrapment in Monterey siliceous shales, Lost Hills, San Joaquin Valley, California

    SciTech Connect (OSTI)

    Julander, D.R. )

    1992-01-01

    The oil and gas-rich upper Miocene siliceous shales of the Monterey Group are the primary development target in the Lost Hills Oil Field, San Joaquin Valley, California. As a result of diagenesis, the siliceous shales can be subdivided by opal phase into three sections (from shallow to deep): the Opal-A diatomites which are rich in oil saturation; the Opal-CT porcellanites which are predominantly wet but include pockets of moderate oil saturation; and the Quartz cherts and porcellanites which in some places are highly oil saturated immediately below the Opal CT section. Productivity trends in each of the three sections have been established through drilling and production testing, but a predictive model was not available until a study of the timing of oil entrapment at Lost Hills was recently completed. The study included an analysis of the depositional history of the siliceous shales and timing of: (1) structural growth of the Lost Hills fold, (2) source-rock maturation, and (3) development of the opal-phase segregation of the Monterey shales. The study led to enhanced understanding of the known oil saturation and production trends in the three opal-phase sections and yielded a predictive model that is being used to identify areas in the field with remedial or delineation potential. The study also produced evidence of fold axis rotation during the Pliocene and Pleistocene that helps explain differences in fracture orientations within the Monterey shales.

  18. Fracture-coating minerals in the Topopah Spring Member and upper tuff of Calico Hills from drill hole J-13

    SciTech Connect (OSTI)

    Carlos, B.

    1989-02-01

    Fracture-lining minerals from drill core in the Topopah Spring Member of the Paintbrush Tuff and the tuff of Calico Hills from water well J-13 were studied to identify the differences between these minerals and those seen in drill core USW G-4. In USW G-4 the static water level (SWL) occurs below the tuff of Calico Hills, but in J-13 the water table is fairly high in the Topopah Spring Member. There are some significant differences in fracture minerals between these two holes. In USW G-4 mordenite is a common fracture-lining mineral in the Topopah Spring Member, increasing in abundance with depth. Euhedral heulandite >0.1 mm in length occurs in fractures for about 20 m above the lower vitrophyre. In J-13, where the same stratigraphic intervals are below the water table, mordenite is uncommon and euhedral heulandite is not seen. The most abundant fracture coating in the Topopah Spring Member in J-13 is drusy quartz, which is totally absent in this interval in USW G-4. Though similar in appearance, the coatings in the vitrophyre have different mineralogy in the two holes. In USW G-4 the coatings are extremely fine grained heulandite and smectite. In J-13 the coatings are fine-grained heulandite, chabazite, and alkali feldspar. Chabazite has not been identified from any other hole in the Yucca Mountain area. Fractures in the tuff of Calico Hills have similar coatings in core from both holes. In J-13, as in USW G-4, the tuff matrix of the Topopah Spring Member is welded and devitrified and that of the tuff of Calico Hills is zeolitic. 11 refs., 10 figs., 5 tabs.

  19. Technical Safety Appraisal of the Naval Petroleum Reserve No. 1, Elk Hills, California

    SciTech Connect (OSTI)

    Not Available

    1990-02-01

    This report presents the results of a focused Technical Safety Appraisal (TSA) of the Naval Petroleum Reserve No. 1 (NPR-1), Elk Hills, California, conducted during November 27 through December 8, 1989. The Department of Energy (DOE) program organization responsible for NPR-1 is the Assistant Secretary for Fossil Energy (FE); the responsible Field Office is the Naval Petroleum Reserves California (NPRC) Office. This appraisal is an application of the program that was initiated in 1985 to strengthen the DOE Environment, Safety and Health Program. The appraisal was conducted by the staff of the DOE Assistant Secretary for Environment, Safety and Health (EH), Office of Safety Appraisals, with support from experts in specific appraisal areas, including a number from the petroleum industry, and a liaison representative from FE. The Senior EH Manager for the appraisal was Mr. Robert Barber, Acting Director, Office of Compliance Programs; the Team Leader was Dr. Owen Thompson, Office of Safety Appraisals.

  20. The University of North Carolina at Chapel Hill The University of North Carolina at Chapel Hill offers a comprehensive benefit package

    E-Print Network [OSTI]

    McLaughlin, Richard M.

    The University of North Carolina at Chapel Hill The University of North Carolina at Chapel Hill positions. EPA positions are Exempt from the provisions of the State Personnel Act of North Carolina plans are underwritten by the State Health Plan of North Carolina and administered by Blue Cross Blue

  1. Wesley Hills, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: Energy Resources Jump to:SearchWesley Hills, New York: Energy

  2. Woodland Hills, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:Wizard Power Pty Ltd JumpWoodcliffWoodlakeHills, Utah:

  3. Vine Hill, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,Village of Wellington, Ohio (Utility Company)Hill, California:

  4. Sugar Hill, New Hampshire: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model for the Entire Country |Illinois: EnergyHill, New

  5. Hidden Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources Jump to:Hershey, Pennsylvania:Hidden Hills, California: Energy

  6. Druid Hills, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsAreafor Geothermal Resources Rules - IdahoDruid Hills,

  7. Sedco Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,SageScheucoSedco Hills, California: Energy Resources Jump to:

  8. Settlers Hill Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity for Low Emission Development StrategiesInformationSettlers Hill

  9. Shorewood Hills, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity for LowInformation NanoTexas:Shiloh,Shoreacres,Shorewood Hills,

  10. Society Hill, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSilicium de ProvenceSolarProjectHill, New Jersey: Energy

  11. Marshfield Hills, Massachusetts: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,InformationIllinois: EnergyWisconsin:Marshfield Hills, Massachusetts:

  12. Liberty Hill, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona: EnergyLebanonTexas:Hill, Texas: Energy Resources Jump to:

  13. Raleigh Hills, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/WaterEnergy Marketing Corp Jump to:RajasthanHills, Oregon:

  14. DOE to accept bids for Elk Hills crude

    SciTech Connect (OSTI)

    Not Available

    1992-05-04

    This paper reports that the Department of Energy will accept bids in a reoffering sale covering 53,400 b/d of Elk Hills field oil but later may exercise an option to cut sales volumes and ship 20,000 b/d to Strategic Petroleum Reserve sites in Texas. DOE rejected all 19 bids submitted in an earlier semiannual sale of crude oil from the California naval petroleum reserve, saying they were too low. DOE the, The unique combination of federal and state government policies affecting the movement of oil into and out of the California market has contributed to a situation in which it apparently is very difficult for the government to receive a price for Elk Hills oil that satisfies the minimum price tests that govern the sale of Elk Hills oil. The 12 winning bids in the reoffering sale averaged $13.58/bbl, with bids for the higher quality Stevens zone crude averaging $13.92/bbl, about 67 cents/bbl higher than bids rejected last month. DOE the 20,000 b/d is all local pipelines can ship to the interstate All-American pipeline for transfer to Texas beginning in June.

  15. A CO{sub 2}-based analysis of a light-oil steamflood at NPR-1, Elk Hills, CA

    SciTech Connect (OSTI)

    Shotts, D.R.; Senum, G.I.

    1992-12-01

    A steamdrive pilot was run on a light-oil reservoir at the Naval Petroleum Reserve No 1 (NPR1) in the Elk Hills oil field, Kern County, CA. The goal of this work was to establish a correlation between a documented growth in CO{sub 2} concentrations found in producing wells in the pilot area to the light-oil steamflood (LOSF); then to use a thermodynamic analysis of the expended energy to come up with an energy efficiency of the steamdrive.

  16. DOE Selects CH2M Hill Plateau Remediation Company for Plateau...

    Energy Savers [EERE]

    by CH2M Hill Constructors, Inc. The team also includes AREVA Federal Services, LLC; East Tennessee Materials & Energy Corporation, Inc.; and Fluor Federal Services, Inc. as...

  17. Located between Snyder Hill Road and Ellis Hollow Road, this precinct is at the periphery of the main campus and is home to the research facilities used by the College of Veterinary

    E-Print Network [OSTI]

    Chen, Tsuhan

    205 Located between Snyder Hill Road and Ellis Hollow Road, this precinct is at the periphery a defined spine running north to south along Hungerford road. The Baker Laboratory and its support buildings end of Hungerford Road looking west to the core campus should be preserved. The forested area

  18. Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Coastal Plain

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2003-12-31

    Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates proposed a three-phase, focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling (Phase I) and a field demonstration project (Phases II and III) at Womack Hill Field Unit, Choctaw and Clarke Counties, Alabama, eastern Gulf Coastal Plain. Phase I of the project has been completed. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The major tasks of the project included reservoir characterization, recovery technology analysis, recovery technology evaluation, and the decision to implement a demonstration project. Reservoir characterization consisted of geoscientific reservoir characterization, petrophysical and engineering property characterization, microbial characterization, and integration of the characterization data. Recovery technology analysis included 3-D geologic modeling, reservoir simulation, and microbial core experiments. Recovery technology evaluation consisted of acquiring and evaluating new high quality 2-D seismic data, evaluating the existing pressure maintenance project in the Womack Hill Field Unit, and evaluating the concept of an immobilized enzyme technology project for the Womack Hill Field Unit. The decision to implement a demonstration project essentially resulted in the decision on whether to conduct an infill drilling project in Womack Hill Field. Reservoir performance, multiwell productivity analysis, and reservoir simulation studies indicate that water injection continues to provide stable support to maintain production from wells in the western unitized area of the field and that the strong water drive present in the eastern area of the field is adequate to sustain production from this part of the field. Although the results from the microbial characterization and microbial core experiments are very promising, it is recommended that an immobilized enzyme technology project not be implemented in the Womack Hill Field Unit until live (freshly taken and properly preserved) cores from the Smackover reservoir in the field are acquired to confirm the microbial core experiments to date. From 3-D geologic modeling, reservoir performance analysis, and reservoir simulation, four areas in the Womack Hill Field were identified as prospective infill drilling sites to recover undrained oil from the field. It was determined that the two areas in the unit area probably can be effectively drained by perforating higher zones in the Smackover reservoir in currently producing wells. The two areas in the eastern (non-unitized) part of the field require the drilling of new wells. The successful drilling and testing of a well in 2003 by J. R. Pounds, Inc. has proven the oil potential of the easternmost site in the non-unitized part of the field. Pruet Production Co. acquired new 2-D seismic data to evaluate the oil potential of the westernmost site. Because of the effects of a fault shadow from the major fault bounding the southern border of the Womack Hill Field, it is difficult to evaluate conclusively this potential drill site. Pruet Production Co. has decided not to drill this new well at this time and to further evaluate the new 2-D seismic profiles after these data have been processed using a pre-stack migration technique. Pruet Production Co. has elected not to continue into Phase II of this project because they are not prepared to make a proposal to the other mineral interest owners regarding the drilling of new wells as part of an infil

  19. Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Costal Plain

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2006-05-31

    Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates proposed a three-phase, focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling (Phase I) and a field demonstration project (Phases II and III) at Womack Hill Field Unit, Choctaw and Clarke Counties, Alabama, eastern Gulf Coastal Plain. Phase I of the project has been completed. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The major tasks of the project included reservoir characterization, recovery technology analysis, recovery technology evaluation, and the decision to implement a demonstration project. Reservoir characterization consisted of geoscientific reservoir characterization, petrophysical and engineering property characterization, microbial characterization, and integration of the characterization data. Recovery technology analysis included 3-D geologic modeling, reservoir simulation, and microbial core experiments. Recovery technology evaluation consisted of acquiring and evaluating new high quality 2-D seismic data, evaluating the existing pressure maintenance project in the Womack Hill Field Unit, and evaluating the concept of an immobilized enzyme technology project for the Womack Hill Field Unit. The decision to implement a demonstration project essentially resulted in the decision on whether to conduct an infill drilling project in Womack Hill Field. Reservoir performance, multiwell productivity analysis, and reservoir simulation studies indicate that water injection continues to provide stable support to maintain production from wells in the western unitized area of the field and that the strong water drive present in the eastern area of the field is adequate to sustain production from this part of the field. Although the results from the microbial characterization and microbial core experiments are very promising, it is recommended that an immobilized enzyme technology project not be implemented in the Womack Hill Field Unit until live (freshly taken and properly preserved) cores from the Smackover reservoir in the field are acquired to confirm the microbial core experiments to date. From 3-D geologic modeling, reservoir performance analysis, and reservoir simulation, four areas in the Womack Hill Field were identified as prospective infill drilling sites to recover undrained oil from the field. It was determined that the two areas in the unit area probably can be effectively drained by perforating higher zones in the Smackover reservoir in currently producing wells. The two areas in the eastern (non-unitized) part of the field require the drilling of new wells. The successful drilling and testing of a well in 2003 by J. R. Pounds, Inc. has proven the oil potential of the easternmost site in the non-unitized part of the field. Pruet Production Co. acquired new 2-D seismic data to evaluate the oil potential of the westernmost site. Because of the effects of a fault shadow from the major fault bounding the southern border of the Womack Hill Field, it is difficult to evaluate conclusively this potential drill site. Pruet Production Co. has decided not to drill this new well at this time and to further evaluate the new 2-D seismic profiles after these data have been processed using a pre-stack migration technique. Pruet Production Co. has elected not to continue into Phase II of this project because they are not prepared to make a proposal to the other mineral interest owners regarding the drilling of new wells as part of an infil

  20. Significant results of deep drilling at Elk Hills, Kern County, California

    SciTech Connect (OSTI)

    Fishburn, M.D. (Dept. of Energy, Elk Hills, CA (USA))

    1990-05-01

    Naval Petroleum Reserve 1 (Elk Hills) is located in the southwestern San Joaquin basin one of the most prolific oil-producing areas in the US. Although the basin is in a mature development stage, the presence of favorable structures and high-quality source rocks continue to make the deeper parts of the basin, specifically Elk Hills, an inviting exploration target. Of the three deep tests drilled by the US Department of Energy since 1976, significant geologic results were achieved in two wells. Well 987-25R reached low-grade metamorphic rock at 18,761 ft after penetrating over 800 ft of salt below the Eocene Point of Rocks Sandstone. In well 934-29R, the deepest well in California, Cretaceous sedimentary rocks were encountered at a total depth of 24,426 ft. In well 934-29R several major sand units were penetrated most of which encountered significant gas shows. Minor amounts of gas with no water were produced below 22,000 ft. In addition, production tests at 17,000 ft produced 46{degree} API gravity oil. Geochemical analysis of cores and cuttings indicated that the potential for hydrocarbon generation exists throughout the well and is significant because the possibility of hydrocarbon production exists at a greater depth than previously expected. A vertical seismic profile in the well indicated that basement at this location is at approximately 25,500 ft. Successful drilling of well 934-29R was attributed to the use of an oil-based mud system. The well took 917 days to drill, including 9,560 rotating hr with 134 bits. Bottom-hole temperature was 431{degree}F and pressures were approximately 18,000 psi. The high overburden pressure at 24,000 ft created drilling problems that ultimately led to the termination of drilling at 24,426 ft.

  1. West Hills, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: Energy Resources JumpChicago, Illinois:JumpHaverstraw, NewHills,

  2. Turpin Hills, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York: Energy Resources Jump to:Georgia:Turpin Hills, Ohio:

  3. Western Shallow Oil Zone, Elk Hills Field, Kern County, California:

    SciTech Connect (OSTI)

    Carey, K.B.

    1987-09-01

    This study, Appendix V, addresses the Gusher Sands and their sub units and pools. Basic pressure, production and assorted technical dta were provided by the US Department of Energy staff at Elk Hills. These data were accepted as furnished with no attempt made by Evans, Carey and Crozier for independent verification. This study has identified the petrophysical properties and the past productive performance of the reservoir. Primary reserves have been determined and general means of enhancing future recovery have been suggested. It is hoped that this volume can now additionally serve as a take off points for exploitation engineers to develop specific programs towards these ends. 16 refs., 9 tabs.

  4. From the hills to the mountain. [Oil recovery in California

    SciTech Connect (OSTI)

    McDonald, J.

    1980-05-01

    The oil reserves at Elk Hills field, California, are listed as amounting to 835 million bbl. There is 12 times that amount lying in shallow sands in the San Joaquin Valley, although the oil is much heavier and requires more refining before use. Improved recovery techniques have enabled higher rates of recovery for heavy oil than in the past. Some of these techniques are described, including bottom-hole heating, steam injection, and oil mining. Bottom-hole heating alone raised recovery rates for heavy oil to 25%, and steam injection raised rates to 50%. It is predicted that oil mining may be able to accomplish 100% recovery of the heavy oil.

  5. Tara Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)ModelTalbotts Ltd JumpJumpInformationTaos County,Hills,

  6. Harris Hill, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynnMassachusetts: EnergySoftware IncHarmon,Tennessee: EnergyHarrisHill,

  7. Heritage Hills, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources Jump to: navigation,NavigationIndiana:Herald Harbor,Hills, New

  8. Homa Hills, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNew Jersey: EnergyHollyHoma Hills, Wyoming: Energy Resources

  9. Four Hills Nashua Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban TransportFortistar LLC Jump to:EnergyMontana: Energy ResourcesHills

  10. Granite Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County, Georgia: EnergyGorlitzLedge,Ohio: EnergyTexas:OpenHills,

  11. Rolling Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, NewMichigan: EnergyRocklinRohm and Haas Co JumpElectricHills,

  12. Shinnecock Hills, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity for LowInformation NanoTexas:Shiloh, Ohio:Shinnecock Hills, New

  13. Spring Hill, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) Jump to:Spill Prevention andWell Log JumpHill, Kansas:

  14. Meridian Hills, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy Resources Jump1.2619821°,Energy Information| OpenHills, Indiana:

  15. Morgan Hill, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformation MontanaOhio:Hill, California: Energy Resources Jump to:

  16. Los Altos Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona:Oregon: EnergyLloyd, NewBranchLongweiLos Alamos CountyAltos Hills,

  17. McGinness Hills Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy Resources Jump to: navigation,McDonough County,McGinness Hills

  18. McGraw Hill Construction | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy Resources Jump to: navigation,McDonough County,McGinnessMcGraw Hill

  19. Lea Hill, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona: Energy ResourcesProjectMississippi: EnergyLawrie v.SueurHill,

  20. Lexington Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona: EnergyLebanonTexas: EnergyIdaho: EnergyWestHills, California:

  1. Jefferson Hills, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder atHills, Pennsylvania: Energy Resources Jump to: navigation,

  2. Quartz Hill, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration JumpPublic Utility DistrictQuail Valley,QuantityQuartz Hill,

  3. Red Hill, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/WaterEnergy MarketingNewOpenRecycled EnergyButte,FeatherHill,

  4. Oak Hills Place, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt. Louis, Minnesota:Nulato,Nyack, - MiningBrook,Oregon:Hills

  5. Palos Hills, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio Program |View New Pages RecentPalomar Ventures Jump to:Hills,

  6. Penn Hills, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio Program |ViewIllinois: EnergyPelham,Peninsula, Ohio: EnergyHills,

  7. Southern Minnesota Hills Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSolo EnergySouthSouthInformationHills Wind Farm

  8. Barrington Hills, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustriaBiofuelsOpenBardonia,Kentucky: EnergyBarrington Hills,

  9. Barton Hills, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminexInformation Bartholomew County,Creek, Texas: EnergyHills,

  10. Bay Hill, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminexInformationArkansas: Energy Resources JumpBayHarborHill,

  11. Campton Hills, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,Cammack Village, Arkansas: Energy ResourcesNew York:Campton Hills,

  12. Beverly Hills, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation BeaufortBentMichigan: EnergyCensusPennsylvania:Beverly Hills,

  13. Blue Hills, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-GasIllinois: EnergyHills, Connecticut: Energy Resources Jump

  14. Braddock Hills, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine: Energy Resources Jump to:Open EnergyBradbury, California:Hills,

  15. Brewster Hill, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine: Energy ResourcesCounty, Texas:Brewer, Maine: Energy ResourcesHill,

  16. Bunker Hill Village, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine: EnergyEnergyOhio: EnergyNorth Dakota:Hill Village, Texas: Energy

  17. Clover Hill, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company) JumpIowa: Energy Resources Jump to:NewNewIncHill, Maryland:

  18. Clyde Hill, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company) JumpIowa: Energy Resources JumpCloverly,Hill, Washington:

  19. Country Club Hills, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)|Alabama: Energy Resources Jump to:| OpenofCountry Club Hills,

  20. Cedar Hills, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR Jump to:RAPIDCavallo Energy Jump to:Iowa:West Virginia:Hills,

  1. Cimarron Hills, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIRChurch Point, Louisiana: Energy ResourcesHills, Colorado: Energy

  2. City of Blue Hill, Nebraska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIRChurch Point,Blue Hill, Nebraska (Utility Company) Jump to:

  3. City of Hill City, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIRChurchFontanelle, Iowa (UtilityHagerstown,CityHermiston,Hill

  4. Golden Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages RecentPlantMagma Energy GroupDOE Golden Field Office)Hills,

  5. Hill County Electric Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea, CaliforniaHessWind Project Jump to:NewHill

  6. Hill County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea, CaliforniaHessWind Project Jump to:NewHillTexas:

  7. Loess Hills Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWindsCompressedListguided waves fromLocustLoess Hills

  8. Bedford Hills, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYorkColorado StateWindInc JumpBeatty,Hills, New York:

  9. Black Hills Electric Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:Pontiac Biomass Facility JumpII Jump to:Bitworks WindBlack Hills

  10. WilderHill New Energy Finance LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho)VosslohWest PlainsAssn,WilderHill New Energy

  11. Clover Hill High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures Jump to: navigation, searchClover Hill High School Wind Project

  12. THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL ANNUAL CAMPUS SECURITY REPORT

    E-Print Network [OSTI]

    McLaughlin, Richard M.

    THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL 2014 ANNUAL CAMPUS SECURITY REPORT INCLUDING policies. In accordance with that requirement, The University of North Carolina at Chapel Hill's Office of University Counsel, working with partners across campus, has prepared this report. The University of North

  13. Subsurface Utility Location Standards UNC Chapel Hill Page 1 of 2 May 17, 2013

    E-Print Network [OSTI]

    McLaughlin, Richard M.

    Subsurface Utility Location Standards UNC ­ Chapel Hill Page 1 of 2 May 17, 2013 THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL SUBSURFACE UTILITY LOCATION STANDARDS Created on July 7, 2005 (Updated May 2013) Scope: Perform field location surveys of utilities installed during the construction phase

  14. HEPATIC MINERALS OF WHITE-TAILED AND MULE DEER IN THE SOUTHERN BLACK HILLS, SOUTH DAKOTA

    E-Print Network [OSTI]

    HEPATIC MINERALS OF WHITE-TAILED AND MULE DEER IN THE SOUTHERN BLACK HILLS, SOUTH DAKOTA Teresa J status, and species. Key words: Black Hills, elements, fire, liver, mule deer, Odocoileus hemionus and laboratory animals (Robbins, 1983). Liver concentrations of some trace elements have been measured in elk

  15. Connaught Hill Park 37.0 acres (Connaught Drive & Queensway St.)

    E-Print Network [OSTI]

    Northern British Columbia, University of

    CITY PARKS · Connaught Hill Park 37.0 acres (Connaught Drive & Queensway St.) Picnic Site 346.0 acres (Cranbrook Hill Rd.) Hiking Trails (15.0 km), Picnic Shelter and Sites, Viewpoint, Public (Heather Rd. & Austin Rd. West) Ball Diamonds, Soccer Pitch, Washrooms, Elks Centre · Recreation Place 33

  16. 1. Introduction The Ferguson Hill section in New York Canyon has been

    E-Print Network [OSTI]

    McRoberts, Christopher A.

    1. Introduction The Ferguson Hill section in New York Canyon has been well studied.g. Muller & Ferguson, 1939; Taylor et al., 1983, 2000; Guex et al., 1997, 2003a, b; Ward et al., 2007 of the Psiloceras tilmanni group at Ferguson Hill as the defining criteria for the base Hettangian GSSP

  17. Independent Oversight Review, Richland Operations Office and CH2M Hill Plateau Remediation Company and Mission Support Alliance- April 2012

    Office of Energy Efficiency and Renewable Energy (EERE)

    Review of Richland Operations Office and CH2M Hill Plateau Remediation Company and Mission Support Alliance Conduct of Operations

  18. The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL DiFi: Fast 3D Distance Field Computation

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL DiFi: Fast 3D Distance Field Computation using Graphics Hardware Avneesh Sud, Miguel A. Otaduy and Dinesh Manocha University of North Carolina at Chapel Hill http://gamma.cs.unc.edu/DiFi #12;The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL Distance Field

  19. Wildlife and Wildlife Habitat Loss Assessment at Hills Creek Dam and Reservoir Project, Middle Fork Willamette River, Oregon, 1985 Final Report.

    SciTech Connect (OSTI)

    Noyes, J.H.

    1985-09-01

    A habitat based assessment was conducted of the US Army Corps of Engineers' Hills Creek Dam and Reservoir Project on the Middle Fork Willamette River, Oregon, to determine losses or gains resulting from the development and operation of the hydroelectric related components of the project. Preconstruction, postconstruction, and recent vegetation cover types of the project site were mapped based on aerial photographs from 1944, 1964, and 1979, respectively. Vegetation cover types were identified within the affected area and acreages of each type at each period were determined. Fifteen wildlife target species were selected to represent a cross-section of species groups affected by the project. An interagency team evaluated the suitability of the habitat to support the target species at each time period. An evaluation procedure which accounted for both the quantity and quality of habitat was used to aid in assessing impacts resulting from the project. The Hills Creek Project extensively altered or affected 4662 acres of land and river in the Middle Fork Willamette River drainage. Impacts to wildlife centered around the loss of 2694 acres of old-growth forest and 207 acres of riparian habitat. Impacts resulting from the Hills Creek Project included the loss of winter range for Roosevelt elk, and the loss of year-round habitat for black-tailed deer, black bear, cougar, river otter, beaver, ruffed grouse, spotted owl, and other nongame species. Bald eagle and osprey were benefited by an increase in foraging habitat. The potential of the affected area to support wildlife was greatly altered as a result of the Hills Creek Project, losses or gains in the potential of the habitat to support wildlife will exist over the life of the project.

  20. Area wind farm energy production BACKGROUND -In Central New York State, home of the New York State Fair, wind turbine construction has had a noticeable

    E-Print Network [OSTI]

    Keinan, Alon

    Area wind farm energy production ­ BACKGROUND - In Central New York State, home of the New York State Fair, wind turbine construction has they are then trucked to their destinations, and quite a few wind farms dot the hills. One

  1. Hot dry rock geothermal energy development program. Annual report, fiscal year 1980

    SciTech Connect (OSTI)

    Cremer, G.M.

    1981-07-01

    Investigation and flow testing of the enlarged Phase I heat-extraction system at Fenton Hill continued throughout FY80. Temperature drawdown observed at that time indicated an effective fracture of approximately 40,000 to 60,000 m/sup 2/. In May 1980, hot dry rock (HDR) technology was used to produce electricity in an interface demonstration experiment at Fenton Hill. A 60-kVA binary-cycle electrical generator was installed in the Phase I surface system and heat from about 3 kg/s of geothermal fluid at 132/sup 0/C was used to boil Freon R-114, whose vapor drove a turboalternator. A Phase II system was designed and is now being constructed at Fenton Hill that should approach commercial requirements. Borehole EE-2, the injection well, was completed on May 12, 1980. It was drilled to a vertical depth of about 4500 m, where the rock temperature is approximately 320/sup 0/C. The production well, EE-3 had been drilled to a depth of 3044 m and drilling was continuing. Environmental monitoring of Fenton Hill site continued. Development of equipment, instruments, and materials for technical support at Fenton Hill continued during FY80. Several kinds of models were also developed to understand the behavior of the Phase I system and to develop a predictive capability for future systems. Data from extensive resource investigations were collected, analyzed, and assembled into a geothermal gradient map of the US, and studies were completed on five specific areas as possible locations for HDR Experimental Site 2.

  2. GEOTHERMAL EXPLORATION ASSESSMENT AND INTERPRETATION, KLAMATH BASIN, OREGON-SWAN LAKE AND KLAMATH HILLS AREA

    E-Print Network [OSTI]

    Stark, M.

    2011-01-01

    review, 1977 outlook: Geothermal Energy Magazine, v.5, no.6,Lyons, T , 1976, Geothermal energy in California-statusConference on Geothermal Energy, Oregon Institute of

  3. GEOTHERMAL EXPLORATION ASSESSMENT AND INTERPRETATION, KLAMATH BASIN, OREGON-SWAN LAKE AND KLAMATH HILLS AREA

    E-Print Network [OSTI]

    Stark, M.

    2011-01-01

    1966, Energy and power of geothermal resources: Dept. o fTelluric exploration for geothermal anomalies i n Oregon:Bowen, R.G. , 1972, Geothermal o v k i e w s of t h e '

  4. Geologic Map and Cross Sections of the McGinness Hills Geothermal Area - GIS Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    Geologic map data in shapefile format that includes faults, unit contacts, unit polygons, attitudes of strata and faults, and surficial geothermal features. 5 cross?sections in Adobe Illustrator format. Comprehensive catalogue of drill?hole data in spreadsheet, shapefile, and Geosoft database formats. Includes XYZ locations of well heads, year drilled, type of well, operator, total depths, well path data (deviations), lithology logs, and temperature data. 3D model constructed with EarthVision using geologic map data, cross?sections, drill?hole data, and geophysics.

  5. GEOTHERMAL EXPLORATION ASSESSMENT AND INTERPRETATION, KLAMATH BASIN, OREGON-SWAN LAKE AND KLAMATH HILLS AREA

    E-Print Network [OSTI]

    Stark, M.

    2011-01-01

    Taylor, B E , 1974, Geothermal systems of northern Nevada: Ur b a s h and range geothermal systems: Geothennal Resourcesevidence for a geothermal system in the Swan Lake-Meadow

  6. Geologic Map and Cross Sections of the McGinness Hills Geothermal Area - GIS Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    Geologic map data in shapefile format that includes faults, unit contacts, unit polygons, attitudes of strata and faults, and surficial geothermal features. 5 cross?sections in Adobe Illustrator format. Comprehensive catalogue of drill?hole data in spreadsheet, shapefile, and Geosoft database formats. Includes XYZ locations of well heads, year drilled, type of well, operator, total depths, well path data (deviations), lithology logs, and temperature data. 3D model constructed with EarthVision using geologic map data, cross?sections, drill?hole data, and geophysics.

  7. GEOTHERMAL EXPLORATION ASSESSMENT AND INTERPRETATION, KLAMATH BASIN, OREGON-SWAN LAKE AND KLAMATH HILLS AREA

    E-Print Network [OSTI]

    Stark, M.

    2011-01-01

    New York, New York, p. 290. Group Seven Incorporated, 1972,Falls and Honey Lake: Group Seven Incorporated, Golden,125-135. The O r e Bin, Group Seven, 1972, Electrical r e s

  8. Dry Gas Zone, Elk Hills field, Kern County, California: General reservoir study: Engineering text and exhibits: (Final report)

    SciTech Connect (OSTI)

    Not Available

    1988-08-01

    The Dry Gas Zone in the Elk Hills field is comprised of fourteen separate productive horizons deposited in the MYA Group of the San Joaquin Formation of Pliocene Age. Eighty-six separate Reservoir Units have been identified within the interval over an area roughly ten miles long and four miles wide. One basal Tulare sand, the Tulare B, was also included in the geologic study. Five earlier studies have been made of the Dry Gas Zone; each is referenced in the Appendix of this report. Most of these studies were geologic in nature, and none provided in-depth reservoir analyses. This report is made up of ten (10) separate volumes which include: engineering text and exhibits (white dot); engineering data (black dot); geologic text and tables (green dot); structure and isochore maps (light blue dot); structural cross sections (dark blue dot); stratigraphic cross sections (brown dot); geologic data sheets -book 1 (yellow dot); geologic data sheets - book 2 (orange dot); geologic data sheets - book 3 (red dot); and geologic data sheets - book 4 (pink or coral dot). Basic production, injection, pressure, and other assorted technical data were provided by the US Department of Energy engineering staff at Elk Hills. These data were accepted as furnished with no attempt being made at independent verification.

  9. Characteristics of the C Shale and D Shale reservoirs, Monterey Formation, Elk Hills Field, Kern County, California

    SciTech Connect (OSTI)

    Reid, S.A.; McIntyre, J.L. [Bechtel Petroleum Operations, Inc., Tupman, CA (United States); McJannet, G.S. [Dept. of Energy, Tupman, CA (United States)

    1996-12-31

    The upper Miocene C Shale and D Shale reservoirs of the Elk Hills Shale Member of the Monterey Formation have cumulative oil and gas production much higher than the originally estimated recovery. These San Joaquin basin reservoirs are the lowest of the Stevens producing zones at Elk Hills and currently produce from a 2800-acre area on the 31 S anticline. The C Shale contains lower slope and basin plain deposits of very fine grained, thinly bedded, graded turbidites, pelagic and hemipelagic claystone, and slump deposits. Although all units are oil-bearing, only the lower parts of the graded turbidity intervals have sufficient horizontal permeability to produce oil. The D Shale consists of chart, claystone, carbonates and slump deposits, also originating in a lower slope to basin plain setting. All D Shale rock types contain oil, but the upper chart interval is the most productive. The chart has high matrix porosity, and due to a complex horizontal and vertical microfracture system, produces at a highly effective rate. Core samples indicate more oil-in-place is present in the thin, graded C Shale beds and in the porous D Shale chart than is identifiable from conventional electric logs. High gas recovery rates are attributed mostly to this larger volume of associated oil. Gas also enters the reservoirs from the adjacent 26R reservoir through a leaky normal fault. Significant gas volumes also may desorb from immature organic material common in the rock matrix.

  10. Characteristics of the C Shale and D Shale reservoirs, Monterey Formation, Elk Hills Field, Kern County, California

    SciTech Connect (OSTI)

    Reid, S.A.; McIntyre, J.L. (Bechtel Petroleum Operations, Inc., Tupman, CA (United States)); McJannet, G.S. (Dept. of Energy, Tupman, CA (United States))

    1996-01-01

    The upper Miocene C Shale and D Shale reservoirs of the Elk Hills Shale Member of the Monterey Formation have cumulative oil and gas production much higher than the originally estimated recovery. These San Joaquin basin reservoirs are the lowest of the Stevens producing zones at Elk Hills and currently produce from a 2800-acre area on the 31 S anticline. The C Shale contains lower slope and basin plain deposits of very fine grained, thinly bedded, graded turbidites, pelagic and hemipelagic claystone, and slump deposits. Although all units are oil-bearing, only the lower parts of the graded turbidity intervals have sufficient horizontal permeability to produce oil. The D Shale consists of chart, claystone, carbonates and slump deposits, also originating in a lower slope to basin plain setting. All D Shale rock types contain oil, but the upper chart interval is the most productive. The chart has high matrix porosity, and due to a complex horizontal and vertical microfracture system, produces at a highly effective rate. Core samples indicate more oil-in-place is present in the thin, graded C Shale beds and in the porous D Shale chart than is identifiable from conventional electric logs. High gas recovery rates are attributed mostly to this larger volume of associated oil. Gas also enters the reservoirs from the adjacent 26R reservoir through a leaky normal fault. Significant gas volumes also may desorb from immature organic material common in the rock matrix.

  11. $?$-tempered metadynamics: Artifact independent convergence times for wide hills

    E-Print Network [OSTI]

    Bradley M. Dickson

    2015-10-26

    Recent analysis of well-tempered metadynamics (WTmetaD) showed that it converges without mollification artifacts in the bias potential. Here we explore how metadynamics heals mollification artifacts, how healing impacts convergence time, and whether alternative temperings may be used to improve efficiency. We introduce "$\\mu$-tempered" metadynamics as a simple tempering scheme, inspired by a related mollified adaptive biasing potential (mABP), that results in artifact independent convergence of the free energy estimate. We use a toy model to examine the role of artifacts in WTmetaD and solvated alanine dipeptide to compare the well-tempered and $\\mu$-tempered frameworks demonstrating fast convergence for hill widths as large as $60^{\\circ}$ for $\\mu$TmetaD.

  12. Western Shallow Oil Zone, Elk Hills Field, Kern County, California:

    SciTech Connect (OSTI)

    Carey, K.B.

    1987-09-01

    The general Reservoir Study of the Western Shallow Oil Zone was prepared by Evans, Carey and Crozier as Task Assignment 009 with the United States Department of Energy. This study, Appendix II addresses the first Wilhelm Sands and its sub unites and pools. Basic pressure, production and assorted technical data were provided by the US Department of Energy staff at Elk Hills. These data were accepted as furnished with no attempt being made by Evans, Carey and Crozier for independent verification. This study has identified the petrophysical properties and the past productive performance of the reservoir. Primary reserves have been determined and general means of enhancing future recovery have been suggested. It is hoped that this volume can now additionally serve as a take off point for exploitation engineers to develop specific programs toward the end.

  13. DOE turns down all bids for Elk Hills crude

    SciTech Connect (OSTI)

    Not Available

    1992-03-30

    This paper reports that the U.S. Department of Energy has rejected all bids submitted in the Mar. 5 semiannual sale of crude oil from Elk Hills Naval Petroleum Reserve (NPR-1) in California. DOE the all 19 bids for the 53,740 b/d of crude were too low. The bids ranged from $11.71 to $14.06/bbl, with the top bids for the highest quality Stevens zone crude averaging $13.25/bbl. California oil companies the they bid what the market would bear, explaining a surplus of Alaskan crude on the West Coast has driven down the price of local crudes, notably heavy crudes. DOE will extend the current oil purchase contracts through April while it issues a new request for bids. It planned to issue the solicitation Mar. 23 and receive bids Apr. 15.

  14. Abilene Metropolitan Area Metropolitan Transportation Plan 2010-2035 

    E-Print Network [OSTI]

    Abilene Metropolitan Planning Organization

    2010-01-12

    Lindley, former Abilene City Engineer MPO Staff (Non-Voting) Robert Allen, Abilene MPO Transportation Planning Director Dyess AFB SH 351 SH 351 FM 10 82 Jones County JonesCounty Jones County Jones County Jones County Te xt Jones County Jones... Area Urbanized Area Boundary county lines City Limits Freeways and Expressways Major Streets and Highways Railroad 0241Miles Tye Potosi Caps Dyess AFB Abilene Regional Airport Abilene ??? 20 ??? 20 ??? 20 Hamby State Prisons Lake Fort Phantom Hill...

  15. Population Characteristics and Seasonal Movement Patterns of the Rattlesnake Hills Elk Herd - Status Report 2000

    SciTech Connect (OSTI)

    Tiller, B.L.; Zufelt, R.K.; Turner, S.; Cadwell, L.L.; Bender, L.; Turner, G.K.

    2000-10-10

    Population characteristics of the Rattlesnake Hills elk herd indicate reduced herd growth rates from the 1980s compared to the 1990s (McCorquodale 1988; Eberhardt 1996). However, the population continued to grow approximately 25% annually through the 1990s, reaching a high of 838 animals in summer 1999. Calf recruitment rates appear to be cyclic and are likely related to reduced calf survival during the first weeks of life; however, late-term abortions may also have occurred. The cause(s) could be predator-related and/or a function of shifts in nutritional condition (age-class distributions, assuming older-age cows are less likely to recruit calves, major climate shifts) or changes in the human-related disturbances during gestation, and/or calf rearing periods. In fall 1999 and spring 2000, the population was reduced from 838 individuals to 660 individuals. The primary controlling factors were modified hunting seasons on private and state lands and the large-scale roundup conducted in spring 2000. Continued removal of animals (particularly females) within the population will be pivotal to maintain the population at a level that minimizes land damage complaints, animal-vehicle collisions, use of central Hanford areas, and deterioration of natural resources.

  16. Light-oil steamdrive pilot test at NPR-1, Elk Hills, California

    SciTech Connect (OSTI)

    Garner, T.A. (Bechtel Petroleum Operations Inc. (United States))

    1992-08-01

    This paper reports that a steamdrive pilot was run on a light-oil reservoir at the Naval Petroleum Reserve No. 1 (NPR-1) in the Elk Hills oil field, Kern County, CA. From a reservoir perspective, the steamdrive process behaved much as expected. The first event to occur was the appearance of freshened water production accompanied by CO[sub 2] gas 3 months from startup of steam injection. The second event, an increase in crude gravity, appeared 3 months later, or 6 months into the project. Finally, the third event was the arrival of the heat front at the producing wells 13 months after startup. From a production perspective, CO[sub 2] in the freshened produced water caused wellbore scale damage and loss of well productivity. The steamdrive, however, mobilized residual oil, which mostly was captured outside the pilot pattern area. Acid stimulations to restore well productivity were done by injecting inhibitor in the steam feedwater and by designing acid cleanup treatments on the basis of results from laboratory tests.

  17. Intern experience at CH?M Hill, Inc.: an internship report 

    E-Print Network [OSTI]

    Winter, William John, 1949-

    2013-03-13

    (standards) imposed upon the mill by the State of Washington Department of Ecology and the U.S. Environmental Protection Agency. The author's assignment also entailed necessary interaction with the project manager and other CH?M HILL design...

  18. Microsoft Word - CH1311-11 CH2M HILL Awards $1B to Small Businesses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    price. Since receiving the contract in 2008, CH2M HILL awarded more than 1 billion in contracts to small businesses, representing 28 percent of the contract price to-date. Of...

  19. Joint DOE-CH2M HILL News Release Media Contact: For Immediate...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    price. Since receiving the contract in 2008, CH2M HILL awarded more than 1 billion in contracts to small businesses, representing 28 percent of the contract price to date....

  20. Turkey Hill Dairy: Where Energy is Not Left Flapping in the Wind...

    Broader source: Energy.gov (indexed) [DOE]

    Liberty Mint and Blitzburgh Crunch sold from Vermont to Florida, Turkey Hill Dairy is the fourth largest producer of ice cream in the United States. Now, nearly a quarter of the...

  1. Case Study Walnut Hill United Methodist Church - Dallas, Texas, Chiller Replacement Analysis 

    E-Print Network [OSTI]

    Phillips, J.

    1998-01-01

    In March of 1992 Walnut Hill United Methodist Church in Dallas, Tx. decided that their existing thermal storage and electric reciprocating chiller system were both in need of replacement. After analyzing several options, they chose to install 150...

  2. Restructuring the urban neighborhood : the dialogue between image and ideology in Phoenix Hill, Louisville, Kentucky

    E-Print Network [OSTI]

    Isaacs, Mark Andrew

    1980-01-01

    This thesis addresses the problems of restructuring the urban neighborhood as specifically applied to the Phoenix Hill community in Louisville, Kentucky. Theory and concepts are briefly presented as a basis for design ...

  3. Hadean-Archean transitions: Constraints from the Jack Hills detrital zircon record

    E-Print Network [OSTI]

    Bell, Elizabeth Ann

    2013-01-01

    Sr, Sm-Nd and Pb-Pb geochronology of ancient gneisses from1991. SHRIMP U-Pb zircon geochronology of the Narryer GneissAmelin, Y.V. , 1998. Geochronology of the Jack Hills

  4. University of the West Indies Cave Hill Campus, P.O. Boa: 64

    E-Print Network [OSTI]

    University of the West Indies Cave Hill Campus, P.O. Boa: 64 Barbados. West Indies Bellairs Resea previously (Fbr- ward 1974) in a Sherer! environmental chamber (Model CEL-44) on a 14:10 LD cycle

  5. 2004 Universities Federation for Animal Welfare The Old School, Brewhouse Hill, Wheathampstead,

    E-Print Network [OSTI]

    Indiana University

    S115 © 2004 Universities Federation for Animal Welfare The Old School, Brewhouse Hill by animals in choice tests and improvements in welfare is not straightfor- ward. A range of different

  6. EIS-0266: Glass Mountain/Four Mile Hill Geothermal Project, California

    Broader source: Energy.gov [DOE]

    The EIS analyzes BPA's proposed action to approve the Transmission Services Agreements (TSAs) and Power Purchase Agreements (PPAs) with Calpine Siskiyou Geothermal Partners, L.P. (Calpine) to acquire output from the Fourmile Hill Geothermal Development Project (Project).

  7. Improved oil recovery using horizontal wells at Elk Hills, California

    SciTech Connect (OSTI)

    Gangle, F.J.; Schultz, K.L.; McJannet, G.S.; Ezekwe, N.

    1995-03-01

    Eight horizontal wells have been drilled and completed in a steeply dipping Stevens sand reservoir in the Elk Hills field, Kern County, California. The subject reservoir, called the Stevens 26R, is a turbidite channel sand deposit one mile wide, three miles long, and one mile deep. Formation beds have a gross thickness up to 1,500 feet and dips as high as 60 degrees on the flanks. The original oil column of 1,810 feet has been pulled down to 200 feet by continual production since 1976. The reservoir management operating strategy has been full pressure maintenance by crestal gas injection since 1976. The steep dip of the formation makes gravity drainage the dominant drive mechanism. Additionally, improved recovery is coming from cycling dry gas through the large secondary gas cap region. The prudent placement of the horizontal wells above the oil/water contact promises to improve oil recovery and extend the operating life of the reservoir. Field results are given to compare the performance of the horizontal wells with the conventional wells. The horizontal wells produce at higher rates, lower draw downs, and lower gas/oil ratio which will extend the life of the project and result in higher recovery.

  8. Horizontal wells improve recovery at the Elk Hills Petroleum Reserve

    SciTech Connect (OSTI)

    Rintoul, B.

    1995-11-01

    In 1988 the US Department of Energy and Bechtel implemented a program to slow production declines in the Elk Hills 26R pool sand of the Naval Petroleum Reserve No. 1. It was also hoped horizontal wells would increase the production rate, decrease gas production and extend economic life of the reservoir. The Stevens sand pool targeted for the project is a high-quality, sand-rich turbidite channel system encapsulated within Miocene Monterey siliceous shales, mudstones and associated sediments. The pool is about 3-miles long by 3/4-mile wide. The paper describes the specifications and drilling of the first four out of the 14 horizontal wells drilled at this facility. Horizontal drilling technology has completely altered the future of the 26R pool. In 1980 estimated ultimate recovery (EUR) from the sand was 211 million bbl. With the latest horizontal well drilling campaign, the pool is expected to pass that estimate in 1997 when oil production is forecasted to be at least 13,000 b/d. EUR form the 26R sand now is more than 250 million bbl, and even that estimate is being revised upward.

  9. Dry gas zone, Elk Hills Field, Kern County, California: General reservoir study: Engineering data, effective August 1, 1988

    SciTech Connect (OSTI)

    Not Available

    1989-01-10

    This reservoir study of the dry gas zone of Elk Hills Field is a data compilation with information relating to well: completion; production; pressure; and back pressure. (JF)

  10. Mori Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformation MontanaOhio:Hill, California: EnergyMori Geothermal Area

  11. Hot Dry Rock Geothermal Energy Development Program. Annual report, fiscal year 1979

    SciTech Connect (OSTI)

    Cremer, G.M.; Duffield, R.B.; Smith, M.C.; Wilson, M.G. (comps.)

    1980-08-01

    The Fenton Hill Project is still the principal center for developing methods, equipment, and instrumentation for creating and utilizing HDR geothermal reservoirs. The search for a second site for a similar experimental system in a different geological environment has been intensified, as have the identification and characterization of other HDR areas that may prove suitable for either experimental or commercial development. The Phase I fracture system was enlarged during FY79. Drilling of the injection well of the Phase II system began at Fenton Hill in April 1979. Environmental monitoring of the Fenton Hill area continued through FY79. The environmental studies indicate that the hot dry rock operations have caused no significant environmental impact. Other supporting activities included rock physics, rock mechanics, fracture mapping, and instrumentation development. Two closely related activities - evaluation of the potential HDR energy resource of the US and the selection of a site for development of a second experimental heat-extraction system generally similar to that at Fenton Hill - have resulted in the collection of geology, hydrology, and heat-flow data on some level of field activity in 30 states. The resource-evaluation activity included reconnaissance field studies and a listing and preliminary characterization of US geothermal areas in which HDR energy extraction methods may be applicable. The selection of Site 2 has taken into account such legal, institutional, and economic factors as land ownership and use, proximity to possible users, permitting and licensing requirements and procedures, environmental issues, areal extent of the geothermal area, and visibility to and apparent interest by potential industrial developers.

  12. DOE to ship 20,000 b/d of Elk Hills oil to SPR

    SciTech Connect (OSTI)

    Not Available

    1992-05-11

    This paper reports that the U.S. department of Energy has decided to ship 20,000 b/d of its Elk Hills field production in California to the Strategic Petroleum Reserve on the Gulf Coast. DOE says prices are too low to sell the high quality Elk Hills Stevens zone oil on the California market. It had warned local buyers it might divert the oil to the Gulf Coast. It says shipping the Elk Hills crude to the SPR site at Big Hill, Tex., will save $2/bbl under the price of comparable crude delivered there for storage in the SPR. Pipeline shipments are to begin June 1 and continue for 4 months, totaling about 2.4 million bbl. DOE may or may not continue the shipments, depending on results of the semiannual Elk Hills crude oil sale in September. Reductions in the existing 12 sales contracts will be prorated among buyers. The 20,000 b/d volume is the most that can be shipped from the West Coast to the Gulf Coast through available pipelines.

  13. Olig sand, shallow oil zone, Elk Hills Field, Kern County, California: General reservoir study

    SciTech Connect (OSTI)

    Not Available

    1986-08-01

    The Olig Sand Reservoirs, classified as part of the Shallow Oil Zone, were studied and evaluated. The reservoirs are located in Section 30R, T30S, R23E and Section 24Z, T30S, R22E, M.D.B. and M., all in Elk Hills Oil Field, Naval Petroleum Reserve No. 1, Kern County, California. The three productive reservoirs studied cover an area of 255 acres, and originally contained 3311 MMCF of gas condensate in 4292 acre-feet of sand. The main reservoir, Fault Block I in Section 30R, has been on production since 1982 and is largely depleted. The reservoirs around wells 324-30R and 385-24Z should still be in a virgin state. They can be depleted either through those wells, when their service as Stevens Zone producers is completed, or by twin well replacements drilled specifically as Olig Sand completions. Thirty-six exhibits have been included to present basic data and study results in a manner that will enhance the readers's understanding of the reservoirs. These exhibits include six maps in the M-series, six sections in the S-Series, and fourteen figures in the F-Series, as well as ten tables. The Appendix includes miscellaneous basic data such as well logs, core analyses, pressure measurements, and well tests. The Calculations Section of the report develops and explains the analytical methods used to define well productivity, determine reserves, and schedule future production of those reserves. Although no MER recommendations have been made for these gas condensate reservoirs, recommended depletion schemes and schedules are presented. These schemes include one eventual recompletion and one new well to maximize present worth of these reservoirs which carry proved reserves of 289 MMCF and probable reserves of 853 MMCF, effective August 1, 1986. In addition, potential future testing is earmarked for wells 322-30R and 344-30R. 11 refs., 14 figs., 10 tabs.

  14. U.S. strategic petroleum reserve Big Hill 114 leak analysis 2012.

    SciTech Connect (OSTI)

    Lord, David L.; Roberts, Barry L.; Lord, Anna C. Snider; Sobolik, Steven Ronald; Park, Byoung Yoon; Rudeen, David Keith [GRAM, Inc., Albuquerque, NM

    2013-06-01

    This report addresses recent well integrity issues related to cavern 114 at the Big Hill Strategic Petroleum Reserve site. DM Petroleum Operations, M&O contractor for the U.S. Strategic Petroleum Reserve, recognized an apparent leak in Big Hill cavern well 114A in late summer, 2012, and provided written notice to the State of Texas as required by law. DM has since isolated the leak in well A with a temporary plug, and is planning on remediating both 114 A- and B-wells with liners. In this report Sandia provides an analysis of the apparent leak that includes: (i) estimated leak volume, (ii) recommendation for operating pressure to maintain in the cavern between temporary and permanent fixes for the well integrity issues, and (iii) identification of other caverns or wells at Big Hill that should be monitored closely in light of the sequence of failures there in the last several years.

  15. Elk Hills endangered and threatened species program: Phase 1 progress summary

    SciTech Connect (OSTI)

    O'Farrell, T.P.

    1980-03-01

    The endangered San Joaquin kit fox, Vulpes macrotis mutica, and bluntnosed leopard lizard, Crotaphytus silus, are known to occur on the Elk Hills Naval Petroleum Reserve, NPR-1. An integrated, multiphased field program was designed to gather, synthesize, and interpret ecological information necessary for Biological Assessments required by the Secretary of Interior. These assessments will be used as the basis for a formal consultation with the Department of Interior to determine whether DOE activities on Elk Hills are compatible with the continued existence of the two species. Transects totalling 840 km were walked through all sections of Elk Hills to determine: (1) the presence and relative densities of endangered or threatened species; (2) past and potential impacts of NPR-1 activities on endangered and threatened species; and (3) the potential application of remote sensing for gathering necessary data.

  16. POPULATION ESTIMATION PROCEDURES FOR ELK AND DEER IN THE BLACK HILLS, SOUTH DAKOTA: DEVELOPMENT OF A SIGHTABILITY

    E-Print Network [OSTI]

    POPULATION ESTIMATION PROCEDURES FOR ELK AND DEER IN THE BLACK HILLS, SOUTH DAKOTA: DEVELOPMENT PROCEDURES FOR ELK AND DEER IN THE BLACK HILLS, SOUTH DAKOTA: DEVELOPMENT OF A SIGHTABILITY MODEL my masters in elk research. It has been a wonderful learning and growing experience for which I am

  17. BIOGRAPHICAL SKETCH OF MARK E. LUTHER Education: University of North Carolina at Chapel Hill, A.B., Mathematics and Physics, 1976;

    E-Print Network [OSTI]

    Meyers, Steven D.

    BIOGRAPHICAL SKETCH OF MARK E. LUTHER Education: University of North Carolina at Chapel Hill, A.B., Mathematics and Physics, 1976; University of North Carolina at Chapel Hill, M.S., Physical Oceanography, 1980; University of North Carolina at Chapel Hill, Ph.D., Physical Oceanography, 1982 Professional Background

  18. VBA-0033- In the Matter of Kaiser-Hill Company, L.L.C.

    Broader source: Energy.gov [DOE]

    On August 26 and 27, 1999, Kaiser-Hill Company, L.L.C. (K-H) and EG&G Rocky Flats, Inc. (EG&G) respectively filed Notices of Appeal from an Initial Agency Decision by a Hearing Officer from...

  19. The Alexandria Digital Library Project: Metadata Development and Linda L. Hill and Greg Jane

    E-Print Network [OSTI]

    Janée, Greg

    The Alexandria Digital Library Project: Metadata Development and Use Linda L. Hill and Greg Janée lhill@alexandria.ucsb.edu and gjanee@alexandria.ucsb.edu Alexandria Digital Library Project University of California, Santa Barbara Introduction The Alexandria Digital Library (ADL) Project has the unique advantage

  20. The 26 December (Boxing Day) 1997 sector collapse and debris avalanche at Soufriere Hills Volcano, Montserrat

    E-Print Network [OSTI]

    Belousov, Alexander

    , Russia 5 Institut de Physique du Globe de Paris (IPGP), 4 Place Jussieu, B 89, 75252 Cedex 05 Paris & Mullineaux 1981). At Soufriere Hills, an andesilic lava dome had grown over the unstable, hydro- thermally dome was exposed and depressurized, and it exploded to generate a powerful pyroclastic density current

  1. UNC-Chapel Hill, COMP 145 Team 18:The Kalman Filter Learning Tool

    E-Print Network [OSTI]

    Welch, Greg

    the modeled (Kalman filter) formulations. 1.1.1 Constant In this case, the water level does not change) the discrete time process noise matrix is (5) where , for the full water level . The filter update equationsUNC-Chapel Hill, COMP 145 Team 18:The Kalman Filter Learning Tool Dynamic and Measurement Models

  2. Test-Taking Strategies compiled by Sheila Kannappan, UNC Chapel Hill Physics & Astronomy

    E-Print Network [OSTI]

    Kannappan, Sheila

    Test-Taking Strategies compiled by Sheila Kannappan, UNC Chapel Hill Physics & Astronomy General* immediately before the test. 3. Know the rubric/grading style of your grader as well as the relative importance of the test. 4. Read all problems and go for the easiest ones first (based on ALL parts). 5. Watch

  3. Transparent Mode Flip-Flops for Collapsible Pipelines Eric L. Hill and Mikko H. Lipasti

    E-Print Network [OSTI]

    Lipasti, Mikko H.

    Transparent Mode Flip-Flops for Collapsible Pipelines Eric L. Hill and Mikko H. Lipasti University of Wisconsin - Madison {elhill, mikko}@ece.wisc.edu Abstract Prior work has shown that collapsible pipelining% of the dynamic power in modern high performance microprocessors. Previous collapsible pipeline proposals either

  4. Page 1 of 5 The University of North Carolina at Chapel Hill

    E-Print Network [OSTI]

    McLaughlin, Richard M.

    Page 1 of 5 The University of North Carolina at Chapel Hill Residence Status Supplemental Form for the Marital Provision Under North Carolina law, married persons are neither favored nor disadvantaged by being provision that allows an applicant who marries a North Carolina legal resident and who becomes domiciled

  5. RSC DECISION THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AO DECISION

    E-Print Network [OSTI]

    McLaughlin, Richard M.

    RSC DECISION THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AO DECISION Application for Residence North Carolina law, bona fide legal residents (domiciliaries) of North Carolina are eligible for a lower are available for inspection in admissions offices. North Carolina statute (G.S. 116-143) requires: "To qualify

  6. Page 1 of 4 The University of North Carolina at Chapel Hill

    E-Print Network [OSTI]

    McLaughlin, Richard M.

    Page 1 of 4 The University of North Carolina at Chapel Hill Residence Status Supplemental Form) they are stationed in North Carolina for active duty military service or live with a service member who is stationed in North Carolina for active duty military service, or (2) they are residents of North Carolina but have

  7. Page 1 of 4 The University of North Carolina at Chapel Hill

    E-Print Network [OSTI]

    McLaughlin, Richard M.

    Page 1 of 4 The University of North Carolina at Chapel Hill Residence Status Supplemental Form). For the tuition waiver to apply, the deceased or disabled law enforcement/emergency worker must have been a North Carolina legal resident at the time of death or injury. Furthermore, disabled law enforcement

  8. Dating of Sand Dunes Using Cosmogenic Chlorine-36: An Example From the Nebraska Sand Hills, USA

    E-Print Network [OSTI]

    Zreda, Marek

    Dating of Sand Dunes Using Cosmogenic Chlorine-36: An Example From the Nebraska Sand Hills, USA Stephen Moysey, Marek Zreda and Jim Goeke The large-scale mobility of sand dunes in continental dune of the history of a dune field can therefore, provide a proxy climate record derived from the continental plains

  9. Testing the Hill model of transpolar potential with Super Dual Auroral Radar Network observations

    E-Print Network [OSTI]

    Shepherd, Simon

    as a function of solar wind speed and ram pressure, the interplanetary magnetic field, the reconnection electric electric potential and is an important indicator of the amount of energy flowing into and throughTesting the Hill model of transpolar potential with Super Dual Auroral Radar Network observations S

  10. Software Tamper Resistance: Obstructing Static Analysis of Chenxi Wang, Jonathan Hill, John Knight, Jack Davidson

    E-Print Network [OSTI]

    Huang, Wei

    1 Software Tamper Resistance: Obstructing Static Analysis of Programs Chenxi Wang, Jonathan Hill this represents a significant hurdle for code optimization, it provides a theoretical basis for structuring tamper if the decryption process takes place on the same host. What is needed, in this case, is tamper resistant software

  11. SURVIVAL AND HOME RANGE CHARACTERISTICS OF MERRIAM'S TURKEY GOBBLERS IN THE SOUTHERN BLACK HILLS, SOUTH DAKOTA

    E-Print Network [OSTI]

    SURVIVAL AND HOME RANGE CHARACTERISTICS OF MERRIAM'S TURKEY GOBBLERS IN THE SOUTHERN BLACK HILLS;ii SURVIVAL AND HOME RANGE CHARACTERISTICS OF MERRIAM'S TURKEY GOBBLERS IN THE SOUTHERN BLACK l. I thank all fellow graduate students who helped trap turkeys and for making the office an enjoyable

  12. A Socioeconomic Profile of the Poters in the Central Mid-Hills of Nepal

    E-Print Network [OSTI]

    Upadhyay, Kiran Dutta

    1990-01-01

    size of such holdings is less than 0 5 ha. While the hills and mountains support 65 percent of Ute total . population of Nepal. they consist only 43 percent of Ute cultivated land. This comes of an average of 0.12 ha. per person (CBS 1987:vtl­ Ix). lnc.eas...

  13. Highway 280 North or South Take the Sand Hill Road exit, head east

    E-Print Network [OSTI]

    Ford, James

    Highway 280 North or South · Take the Sand Hill Road exit, head east · Turn right on Stock Farm for "all" below From Bayshore US Highway 101 NorthFrom Bayshore US Highway 101 North or South · Take · Turn left on Stock Farm Road LKSC ParkingTurn left on Stock Farm Road · Make the next lefthand turn

  14. Particle Swarm Optimization Approach with Parameter-wise Hill-climbing Heuristic for Task

    E-Print Network [OSTI]

    Ludwig, Simone

    addressed the task allocation problem made use of Particle Swarm Optimization (PSO). This paper further improves the performance of PSO by combining PSO with a local search heuristic. In particular, PSO with a parameter-wise hill-climbing heuristic (PSO-HC) for the execution of computationally-intensive as well as I

  15. Lithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota

    E-Print Network [OSTI]

    Rudnick, Roberta L.

    Lithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota Fang compositions may reflect Li isotopic fractionation resulting from extensive crystal-melt fractionation. Lithium fractionation in the near­surface environment of > 60 (Tomascak, 2004). Lithium isotopic fractionation has been

  16. Hill Climbing Algorithms for Content-Based Retrieval of Similar Configurations

    E-Print Network [OSTI]

    Papadias, Dimitris

    Hill Climbing Algorithms for Content-Based Retrieval of Similar Configurations Dimitris Papadias Department of Computer Science Hong Kong University of Science and Technology Clear Water Bay, Hong Kong +852 is an important form of content-based retrieval. Exhaustive processing (i.e., retrieval of the best solutions

  17. Extending clp(FD) by Negative Constraint Solving Antonio J. Fern andez and Patricia M. Hill

    E-Print Network [OSTI]

    Hill, Patricia

    and new methods for their propagation. Keywords: Constraint Solving, Constraint Propagation, Labeling several processes: constraint propagation, consistency checks, and labeling (also called enumeration is with School of Computer Studies,University of Leeds, England. Email: hill@scs.leeds.ac.uk This work was partly

  18. EA-1967: Hills Creek-Lookout Point Transmission Line Rebuild, Lane County, Oregon

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration is preparing an EA to assess potential environmental impacts of the proposed rebuild of its 26-mile 115 kilovolt (kV) wood-pole Hills Creek-Lookout Point transmission line, which is generally located between Lowell and Oakridge, in Lane County, Oregon.

  19. The No-Boundary Probability for the Universe starting at the top of the hill

    E-Print Network [OSTI]

    Tim Clunan

    2007-04-16

    We use the Hartle-Hawking No-Boundary Proposal to make a comparison between the probabilities of the universe starting near, and at, the top of a hill in the effective potential. In the context of top-down cosmology, our calculation finds that the universe doesn't start at the top.

  20. Reproduction of the San Joaquin kit fox on Naval Petroleum Reserve No. 1, Elk Hills, California: 1980-1985

    SciTech Connect (OSTI)

    Zoellick, B.W.; O'Farrell, T.P.; McCue, P.M.; Harris, C.E.; Kato, T.T.

    1987-01-01

    Reproduction of the San Joaquin kit fox (Vulpes macrotis mutica) was studied in areas of petroleum development and areas relatively undisturbed by development on and adjacent to Elk Hills Naval Petroleum Reserve No. 1 (NPR-1), California from 1980-1985. Pregnancy rates of adults did not differ between habitats (93 to 100%), but the yearling pregnancy rate in developed habitat (56%) was lower than the adult rates and the yearling rate for undeveloped habitat (100%). Mean corpora lutea and placental scar counts did not differ between undeveloped and developed habitats, but adults had greater corpora lutea and placental scar counts than yearlings. Litter sizes averaged 4.1 and 4.4 for undeveloped and developed habitats respectively from 1980-1985 and did not differ between years or habitats. Mean number of litters observed per square mile during 1980-1985 did not differ between undeveloped (0.34) and developed habitats (0.29). The percentage of all females successfully raising pups in developed habitat declined significantly from 1980-1985 in comparison with the percent success of females in undeveloped habitat. Numbers of litters per square mile in developed habitat also declined significantly after 1981. The sex ratio of pups trapped in developed habitat was skewed towards males during the decline in litters produced per square mile from 1982-1985, but the ratio of males to females in undeveloped habitat did not differ from 1:1 during this time. The decline in some measures of reproductive success in developed habitat after 1981 coincided with a decrease in black-tailed jackrabbit and desert cottontail numbers on the NPR-1 study area. The decreased reproductive success of foxes in developed habitat after 1981 may have resulted from habitat degradation caused by oil field production activities, declining lagomorph numbers, or other unknown causes. 49 refs., 7 figs., 8 tabs.

  1. UONPR No. 1, Elk Hills, 26R Reservoir, Elk Hills oil and gas field, Kern County, California: Management Review: Surface operations and measurements of production and injection volumes

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    Evans, Carey and Crozier was given the task to conduct a Management Review of the Surface Operations of the 26R Reservoir in UONPR No. 1, Elk Hills field, Kern County, California. The MER strategy for this reservoir is to maintain pressure, and toward this end, gas injection volumes are scheduled to amount to 110% of calculated withdrawals. In spite of this, however, reservoir pressure continues to decline. The purpose of this study was, therefore, to determine if, and to what extent, field operating practices and accounting procedures may be contributing to this dilemma and to make appropriate recommendations pertaining to correcting any deficiencies which may have been found.

  2. Dry Gas Zone, Elk Hills Field, Kern County, California: General reservoir study: Geologic text and tables: Final report

    SciTech Connect (OSTI)

    Not Available

    1988-06-29

    The Dry Gas Zone was defined by US Naval Petroleum Reserve No. 1 Engineering Committee (1957) as ''/hor ellipsis/all sands bearing dry gas above the top of the Lower Scalez marker bed. The term is used to include the stratigraphic interval between the Scalez Sand Zone and the Tulare Formation - the Mya Sand Zone. The reservoirs in this upper zone are thin, lenticular, loosely cemented sandstones with relatively high permeabilities.'' Other than the limited Tulare production in the western part of the field, the Dry Gas Zone is the shallowest productive zone in the Elk Hills Reserve and is not included in the Shallow Oil Zone. It is Pliocene in age and makes up approximately eighty percent of the San Joaquin Formation as is summarized in Exhibit TL-1. The lithologic character of the zone is one of interbedded shales and siltstones with intermittent beds of various thickness sands. The stratigraphic thickness of the Dry Gas Zone ranges from 950 to 1150 feet with a general thickening along the flanks and thinning over the crests of the anticlines. The productive part of the Dry Gas Zone covers portions of 30 sections in an area roughly 10 miles long by 4 miles wide. 4 refs.

  3. Dix Hills, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsArea (DOE GTP)DisplacementTudorOpenApplication | Open

  4. Incoherent Scatter Measurements of E- and F-Region Density, Temperatures, and Collision Frequency at Millstone Hill

    E-Print Network [OSTI]

    Oliver, W. L.

    1979-02-23

    The Millstone Hill incoherent (Thomson) scatter radar system has been operated since 1963 to perform a synoptic study of F2-region electron densities, and electron and ion temperatures. These measurements have been conducted ...

  5. Croatian Language and Cultural Maintenance in the Slavic-American Community of Strawberry Hill, Kansas City, Kansas

    E-Print Network [OSTI]

    Glasgow, Holly Hood

    2012-05-31

    The purpose of this qualitative study was to investigate levels of immigrant language retention among Croatian-Americans in the Slavic diaspora community of Strawberry Hill in Kansas City, Kansas. There have been three major waves of Croatian...

  6. Clean Water Alliance Colorado Citizens Against ToxicWaste, Inc. Defenders of the Black Hills EARTHWORKS High Country

    E-Print Network [OSTI]

    Clean Water Alliance · Colorado Citizens Against ToxicWaste, Inc. Defenders of the Black Hills Alliance for a Safe Environment · Nuclear Information and Resource Service · Sierra Club Nuclear Free

  7. Where Do I Belong?: Evolving Reform and Identity Amongst the Zeme Heraka of North Cachar Hills, Assam, India. 

    E-Print Network [OSTI]

    Longkumer, Arkotong

    2008-01-01

    The focus of this thesis is the Heraka movement and its impact on the Zeme, a ‘Naga tribe’, in the North Cachar Hills of Assam, India. The Heraka is a religious reform movement derived from the traditional practice known ...

  8. CH2M Hill Heat Stress Mitigation Efforts During Tank Farm Work Activities

    SciTech Connect (OSTI)

    Smoot, W.L. [CH2M HILL Hanford Group, Inc., Richland, WA (United States)

    2007-07-01

    In the past, while working under the hot summer sun at the Hanford Tank Farms, workers were assigned a protective work-rest regimen and heat stress mitigation efforts were applied to prevent heat-related illnesses and minimize impacts to project schedules. In February 2006, CH2M HILL kicked off a heat stress improvement initiative led by an experienced person emphasizing the importance of worker involvement, employee education, and the application of the ALARA, or As Low As Reasonably Achievable, concepts of engineered controls, administrative controls, personal protective equipment, and physiological and work site monitoring. As a result of this initiative built upon previous years' efforts, CH2M HILL experienced increased 'wrench time' during the summer of 2006 with fewer heat-related illnesses than in previous years. (authors)

  9. Technical safety appraisal of the Naval Petroleum Reserve No. 1, Elk Hills, California

    SciTech Connect (OSTI)

    Not Available

    1989-04-01

    The existing Elk Hills facilities for fluid production consist of tank settings, gas and oil/water gathering pipelines, gas plants, compressor facilities, lease automatic custody transfer units which meter the crude oil going to sales, and natural gas sales meters and pipelines, water injection and source wells, and gas injection pipelines and wells. The principal safety concerns presented by operations at Elk Hills are fire, occupational safety and industrial hygiene considerations. Transportation and motor vehicle accidents are also of great concern because of the large amount of miles driven on more than 900 miles of roads. Typical operations involve hazardous materials and processing equipment such as vessels, compressors, boilers, piping and valves. The aging facilities, specifically the 35R Gas Plant (constructed in 1952) and many of the pipelines, introduce an additional element of hazard to the operations.

  10. Naval petroleum reserves: Preliminary analysis of future net revenues from Elk Hills production

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    This is an interim report on the present value of the net revenues from Elk Hills Naval Petroleum Reserve. GAO calculated alternative present values of the net revenues applying (1) low, medium, and high forecasts of future crude oil prices and (2) alternative interest rates for discounting the future net revenues to their present values. The calculations are sensitive to both the oil price forecasts and discount rates used; they are preliminary and should be used with caution. They do not take into account possible added tax revenues collected by the government if Elk Hills were sold nor varying production levels and practices, which could either increase or decrease the total amount of oil that can be extracted.

  11. Naval petroleum reserves: Oil sales procedures and prices at Elk Hills, April through December 1986

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    The Elk Hills Naval Petroleum Reserve is located near Bakersfield, California and ranks seventh among domestic producing oil fields. In Feb. 1986 the Department of Energy awarded contracts to 16 companies for the sale of about 82,000 barrels per day of NPR crude oil between April and September 1986. These companies bid a record high average discount of $4.49 from DOE's base price. The discounts ranged from $0.87 to $6.98 per barrel. These contracts resulted in DOE selling Elk Hills oil as low as $3.91 per barrel. Energy stated that the process for selling from NPR had gotten out of step with today's marketplace. Doe subsequently revised its sales procedures which requires bidders to submit a specific price for the oil rather than a discount to a base price. DOE also initiated other efforts designed to avoid future NPR oil sales at less than fair market value.

  12. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen Generation |Publications TheGashome /Areas Research Areas

  13. How the DNA sequence affects the Hill curve of transcriptional response

    E-Print Network [OSTI]

    M. Sheinman; Y. Kafri

    2011-11-16

    The Hill coefficient is often used as a direct measure of the cooperativity of binding processes. It is an essential tool for probing properties of reactions in many biochemical systems. Here we analyze existing experimental data and demonstrate that the Hill coefficient characterizing the binding of transcription factors to their cognate sites can in fact be larger than one -- the standard indication of cooperativity -- even in the absence of any standard cooperative binding mechanism. By studying the problem analytically, we demonstrate that this effect occurs due to the disordered binding energy of the transcription factor to the DNA molecule and the steric interactions between the different copies of the transcription factor. We show that the enhanced Hill coefficient implies a significant reduction in the number of copies of the transcription factors which is needed to occupy a cognate site and, in many cases, can explain existing estimates for numbers of the transcription factors in cells. The mechanism is general and should be applicable to other biological recognition processes.

  14. Pumped Storage Hydropower (Project Development Support)—Geotechnical Investigation and Value Stream Analysis for the Iowa Hill Pumped-Storage Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    Pumped Storage Hydropower (Project Development Support)—Geotechnical Investigation and Value Stream Analysis for the Iowa Hill Pumped-Storage Development

  15. Benefits of Research in Particle Physics Phil Allport, Barbara Camanzi, Marcus French, ,Nathan Hill, Mark Lancaster, Steve Lloyd, Jason McFall, Val O'Shea, Mike Poole,

    E-Print Network [OSTI]

    Crowther, Paul

    Hill, Mark Lancaster, Steve Lloyd, Jason McFall, Val O'Shea, Mike Poole, Tim Short, Stephen Watts ........................................8 2.9. Professor Mike Poole: a Biography

  16. Western Shallow Oil Zone, Elk Hills Field, Kern County, California: General Reservoir Study, Executive Summary: Bittium, Wilhelm, Gusher, and Calitroleum Sands

    SciTech Connect (OSTI)

    Carey, K.B.

    1987-12-22

    The general Reservoir Study of the Western Shallow Oil Zone was prepared by Evans, Carey and Crozier as Task Assignment 009 with the United States Department of Energy. The study addresses the Bittium Wilhelm, Gusher, and Calitroleum Sands and their several sub units and pools. A total of twenty-eight (28) separate reservoir units have been identified and analyzed. Areally, these reservoirs are located in 31 separate sections of land including and lying northwest of sections 5G, 8G, and 32S, all in the Elk Hills Oil Fileds, Naval Petroleum Reserve No. 1, Kern County California. Vertically, the reservoirs occur as shallow as 2600 feet and as deep as 4400 feet. Underlying a composite productive area of about 8300 acres, the reservoirs originally contained an estimated 138,022,000 stock tank barrels of oil, and 85,000 MMCF of gas, 6300 MMCF of which occurred as free gas in the Bittium and W-1B Sands. Since original discovery in April 1919, a total of over 500 wells have been drilled into or through the zones, 120 of which were completed as Western Shallow Oil Zone producers. Currently, these wells are producing about 2452 barrels of oil per day, 1135 barrels of water per day and 5119 MCF of gas per day from the collective reservoirs. Basic pressure, production and assorted technical data were provided by the US Department of Energy staff at Elk Hills. These data were accepted as furnished with no attempt being made by Evans, Carey and Crozier for independent vertification. This study has successfully identified the size and location of all commercially productive pools in the Western Shallow Oil Zone. It has identified the petrophysical properties and the past productive performance of the reservoirs. Primary reserves have been determined and general means of enhancing future recovery have been suggested. 11 figs., 8 tabs.

  17. The use of wireline pressure measurements to refine reservoir description, Main Body B waterflood, Elk Hills oil field, Kern County, California

    SciTech Connect (OSTI)

    Wilson, M. (Bechtel Petroleum Operations, Inc., Tupman, CA (United States)); Love, C. (Scientific Software Intercomp, Bakersfield, CA (United States)); Fishburn, M. (Dept. of Energy, Los Angeles, CA (United States)); Humphrey, M. (Chevron, USA, San Ramon, CA (United States))

    1991-02-01

    The Main Body B, one of five large Stevens sand reservoirs at Elk Hills, occupies the eastern half of the 31S anticline. Early in the production history of this reservoir, the Elk Hills unit initiated peripheral water injection to maintain reservoir pressure. Water injection has proceeded at a rate approximately equal to the voidage created by oil and gas production and has moved water upstructure creating an oil bank. Bechtel Petroleum Operations Inc., the current unit operator, drills five to ten new wells each year to fully exploit this oil bank. In 1985, the unit added wireline pressure measurements to the open-hole logging programs of these infill wells for the purpose of evaluating the net effect of injection into and production from the Main Body B reservoir. A typical well provides the opportunity to obtain 8-10 pressures from the Main Body B. To date, the Unit has measured wireline pressures in more than two dozen wells. The wireline measurements have shown a broader than expected range of formation pressures (1,600 {plus minus} psi to 4,200 {plus minus} psi). The pressures show that this is a layered reservoir with little vertical pressure communication between some of the layers. In some parts of the reservoir, wireline pressures indicate horizontal continuity of the layers between wells and in other areas pressure differences between adjacent wells may indicate faults or cementation barriers. Permeabilities calculated from the sampling drawdown are the same order of magnitude as brine permeabilities obtained from core and show that higher-pressured layers of the reservoir have lower permeability. These observations fundamentally alter performance evaluation of the Main Body B waterflood.

  18. Application of horizontal drilling in the development of a complex turbidite sandstone reservoir, Elk Hills Field, Kern County, California

    SciTech Connect (OSTI)

    Reid, S.A. (Bechtel Petroleum Operations, Inc., Tupman, CA (USA)); McJannet, G.S. (Dept. of Energy, Tupman, CA (USA)); Hart, O.D. (Chevron Inc., Tupman, CA (USA))

    1990-05-01

    Horizontal drilling techniques have been used at the Elk Hills field, to more effectively produce the complex 26R reservoir. This Stevens zone reservoir of the Miocene Monterey Formation contains turbid sediments deposited in a deep-sea fan setting and consists of several distinct sandstone layers averaging 150 ft thick and usually separated by mudstone beds. Layers in the reservoir dip as much as 50{degree} southwest. An expanding gas cap makes many vertical wells less favorable to operate. Horizontal completions were thought ideal for the pool because (1) original oil-water contact is level and believed stable, (2) water production is low, (3) a horizontal well provides for a long production life; and (4) several sandstone layers can be produced through one well. For the first well, the plan was to redrill an idle well to horizontal along an arc with a radius of 350 ft. The horizontal section was to be up to 1,000 ft long and extend northeast slightly oblique to dip just above the average oil-water contact. The well was drilled in September 1988, reached horizontal nearly as planned, was completed after perforating 210 ft of oil sand, and produced a daily average of 1,000 bbl oil and 8 bbl of water. However, structural influence was stronger than expected, causing the horizontal drill path to turn directly updip away from the bottom-hole target area. The well also encountered variable oil-water contacts, with more than half the horizontal section possibly water productive. Geologic and drilling data from the first well were used for planning another well. This well was drilled in October 1989, and was highly successful with over 1,000 ft of productive interval.

  19. Solar cycle and seasonal variations in F region electrodynamics at Millstone Hill

    SciTech Connect (OSTI)

    Buonsanto, M.J.; Hagan, M.E.; Salah, J.E. [Massachusetts Institute of Technology, Westford, MA (United States); Fejer, B.G. [Utah State Univ., Logan, UT (United States)

    1993-09-01

    Incoherent scatter radar observations of ion drifts taken at Millstone Hill (42.6{degrees}N, 288.5{degrees}E) during 73 experiments in the period February 1984 to February 1992 are used to construct, for the first time at this station, average quiet-time ExB drift patterns for both solar cycle maximum and minimum, for the summer, winter, and equinox seasons. The daily variation of V{sub {perpendicular}N} shows a reversal from northward to southward drifts near noon, and a return to northward drifts in the premidnight hours. The weaker southward drift in the afternoon in summer noted by Wand and Evans is shown to occur only at sunspot minimum. The daily variation of V{sub {perpendicular}E} shows daytime eastward drifts and nighttime westward drifts, except in summer when the usual daytime eastward maximum near 1200 LT is suppressed. The daily mean drift is westward for all seasons, and is largest in summer. The daytime eastward drift and nighttime westward drift tend to be stronger at solar maximum than at solar minimum. Average drift patterns are also constructed for equinox for both extremely quiet and geomagnetically disturbed periods. V{sub {perpendicular}N} is appreciably more northward under extremely quiet than under disturbed conditions in the postmidnight and morning periods. During extremely quiet periods, V{sub {perpendicular}E} turns slightly eastward in the evening hours, while it is strongly westward for disturbed conditions. This result contrasts with the strong eastward drifts in the evening in summer reported for extremely quiet conditions at Millstone Hill by Gonzalez et al. A strong anticorrelation is seen at Millstone Hill between V{sub {perpendicular}N} and V{sub {parallel}}, as is found at lower latitude stations. The quiet-time patterns are discussed in terms of the causative E and F region dynamo mechanisms. 39 refs., 6 figs., 2 tabs.

  20. CH2M HILL Plateau Remediation Company, NEL-2014-01

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics AndBerylliumDepartmentResolutionCamberley Homes |EnergyJune 19,| Department ofCFASTCH2M HILL

  1. Ranching in the Kansas Flint Hills: Exploring the Built Forms of a Family Cattle Ranch

    E-Print Network [OSTI]

    Adams, Paula Graves

    1997-05-01

    in the Flint Hills 234 Sources Consulted 237 iv List of Figures Page 1.1 Adaptation of W. P. Webb's Land Regions of the United States 2 1.2 The Lazy Flying S Ranch, township 13, range 9, section 4 2 1.3 Periodization of key influences on the landscape 7 2... of concrete silo typical of the 1920s on Skyline Drive 127 5.9 Home ceramic block chicken coop, south elevation 128 5.10 Home ceramic block chicken coop, west elevation 128 5.11 Gus and Auguste Schultz, 1901 136 5.12 Ranch home of Mr. Samuel Fixx, Yampa, Colorado 137...

  2. Western Shallow Oil Zone, Elk Hills Field, Kern County, California: General Reservoir Study:

    SciTech Connect (OSTI)

    Carey, K.B.

    1987-09-01

    This study, Appendix I, addresses the Bittium Sands and its sub units and pools. Basic pressure, production and assorted technical data were provided by the US Department of Energy staff at Elk Hills. These data were accepted as furnished with no attempt being made by Evanc, Carey and Crozier for independent verification. This study has identified the petrophysical properties and the past productive performance of the reservoirs. Primary reserves have been determined and general means of enhancing future recovery have been suggested. It is hoped that this volume can now additionally serve as a take off point for exploitation engineers to develop specific programs toward the end. 21 figs., 9 tabs.

  3. Naval petroleum reserves: Sales procedures and prices received for Elk Hills oil

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    The Congress expressed concern about the Department of Energy's actions in selling oil from the Elk Hills Naval Petroleum Reserve at what appeared to be unreasonably low prices. DOE officials believe that Naval Petroleum Reserve oil has been and is currently being produced at the appropriate rate and that no recoverable oil has been lost. This fact sheet provides information on the basis for the procedures followed by DOE in selling Naval Petroleum Reserve oil and sales data for the period extending from October 1985 through April 1986.

  4. Changing Pattern of Forest Consumption: A Case Study from An Eastern Hill Village in Nepal

    E-Print Network [OSTI]

    Pokharel, Binod

    2003-01-01

    , HMGIN 1982 : 63). It is considered a very important contribution of forestry to hill farming in the use of plant bio-mass when mixed with animal excreta yields organic compost m'anure which forms the principal source of soil nutrients for hilly... an important role m sustamlng. the productivity of the land by using the organic manure of anllnal Binod Pokhorell Chonging Pal/ern ofFores/... 43 dung supported with bedding materials from the forest which provides grass, trees and fodder for animals (ADBIN...

  5. Voluntary Protection Program Onsite Review, CH2M HILL Plateau Remediation

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-Sessions | Department ofVPV-SiteTestingOfficeU.S. DepartmentVPPPAM HILL

  6. Seven Mile Hill I & II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewableSMUDSectionalIndustriels de GeneveMile Hill I

  7. Consent Order, Kaiser-Hill Company, LLC - EA 98-03 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle (PEV)Day-June 22,FresnoSky)Nuclear8 Issued to Kaiser-Hill

  8. Amer J of Potato Res (2006) 83:249-257 249 Furrow vs Hill Planting of Sprinkler-Irrigated Russet Burbank

    E-Print Network [OSTI]

    Steele, Dean D.

    2006-01-01

    -row water-harvesting effect for furrow planting compared with hill planting. The furrow-plant- ing method December 2005. ADDITIONAL KEY WORDS: furrow sowing, inter-row water harvesting, soil water content, water Surface water runoff from the hill, where potatoes are planted, to the furrow may exacerbate potato

  9. Application of carbon nanotubes as electrodes in gas discharge tubes Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599

    E-Print Network [OSTI]

    and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599 W. Simendingera) and C. Debbault Raychem Co., P.O. Box 3000, Fuquay-Varina, North Carolina 27526-3000 H. Shimoda, L. Fleming, B. Stoner, University of North Carolina, Chapel Hill, North Carolina 27599 Received 15 November 1999; accepted

  10. RING-DIAGRAM ANALYSIS WITH GONG++ T. Corbard 1 , C. Toner 1 , F. Hill 1 , K. D. Hanna 1 , D. A. Haber 2 , B. W. Hindman 2 , and

    E-Print Network [OSTI]

    Corbard, Thierry

    1 RING-DIAGRAM ANALYSIS WITH GONG++ T. Corbard 1 , C. Toner 1 , F. Hill 1 , K. D. Hanna 1 , D. A-HEPL, Stanford, CA 94305-4085, USA ABSTRACT Images from the updated GONG network (GONG+) have been produced since of the new GONG pipeline (GONG++) (Hill et al., 2003). We present here the data-cube, 3D power spectra

  11. Influence of anticlinal growth on upper Miocene turbidite deposits, Elk Hills field, Kern County, California

    SciTech Connect (OSTI)

    Reid, S.A. (Bechtel Petroleum Operations, Inc., Tupman, CA (United States)); McJannet, G.S. (Dept. of Energy, Tupman, CA (United States))

    1991-02-01

    Growth of subsea anticlines during deposition of the upper Miocene 24Z and 26R sandstones at Elk Hills caused the development of several sinuous, lenticular sand bodies. later structural growth enhanced the trap characteristics of these sandstones. Both sandstones are in the uppermost portion of the Elk Hills Shale Member of the Monterey Formation and contain channel-fill and overbank deposits of sand-rich turbidite systems. At the onset of turbidite deposition, low relief subsea anticlines separated broad basins which progressively deepened to the northeast. Channel-fill deposits of coarse-grained sand generally followed the axes of these northwest-southeast-trending basins. At several sites, channel-fill deposits also spilled north across anticlinal axes into the next lower basins. Wide bands of overbank sand and mud were deposited at sand body edges on the flat basin floors. Midway through turbidite deposition, a period of anticlinal growth substantially raised subsea relief. Channel-fill deposits continued in narrower basins but passed north into deeper basin only around well-defined sites at the anticlines' downplunge termini. Narrow basin shapes and higher anticline relief prevented significant overbank deposition. With Pliocene to Holocene uplift of the late Miocene structural trends, stratigraphic mounding of the north-directed channel-fill deposits helped create structural domes at 24Z, 2B and Northwest Stevens pools. In sand bodies lacking significant overbank deposits prevented oil entrapment in sand bodies deposited at times of low anticlinal relief.

  12. Seismological investigation of crack formation in hydraulic rock fracturing experiments and in natural geothermal environments. Progress report, September 1, 1979-August 31, 1980

    SciTech Connect (OSTI)

    Aki, K.

    1980-09-01

    Progress is reported in the following research areas: a synthesis of seismic experiments at the Fenton Hill Hot-Dry-Rock System; attenuation of high-frequency shear waves in the lithosphere; a new kinematic source model for deep volcanic tremors; ground motion in the near-field of a fluid-driven crack and its interpretation in the study of shallow volcanic tremor; low-velocity bodies under geothermal areas; and operation of event recorders in Mt. St. Helens and Newberry Peak with preliminary results from them. (MHR)

  13. Mitigation action plan sale of Naval Petroleum Reserve No. 1 (Elk Hills) Kern County, California

    SciTech Connect (OSTI)

    NONE

    1998-01-01

    Naval Petroleum Reserve No. 1 (NPR-1, also called {open_quotes}Elk Hills{close_quotes}), a Federally-owned oil and gas production field in Kern County, California, was created by an Executive Order issued by President Taft on September 2, 1912. He signed another Executive Order on December 13, 1912, to establish Naval Petroleum Reserve No. 2 (NPR-2), located immediately south of NPR-1 and containing portions of the town of Taft, California. NPR-1 was not developed until the 1973-74 oil embargo demonstrated the nation`s vulnerability to oil supply interruptions. Following the embargo, Congress passed the Naval Petroleum Reserves Production Act of 1976 which directed that the reserve be explored and developed to its fall economic potential at the {open_quotes}maximum efficient rate{close_quotes} (MER) of production. Since Elk Hills began full production in 1976, it has functioned as a commercial operation, with total revenues to the Federal government through FY 1996 of $16.4 billion, compared to total exploration, development and production costs of $3.1 billion. In February 1996, Title 34 of the National Defense Authorization Act for Fiscal Year 1996 (P.L. 104-106), referred to as the Elk Hills Sales Statute, directed the Secretary of Energy to sell NPR-1 by February 10, 1998.The Secretary was also directed to study options for enhancing the value of the other Naval Petroleum and Oil Shale Reserve properties such as NPR-2, located adjacent to NPR-1 in Kern County- Naval Petroleum Reserve No. 3 (NPR-3) located in Natrona County, Wyoming; Naval Oil Shale Reserves No. 1 and No. 3 (NOSR-1 and NOSR-3) located in Garfield County, Colorado; and Naval Oil Shale Reserve No. 2 (NOSR-2) located in Uintah and Carbon Counties, Utah. The purpose of these actions was to remove the Federal government from the inherently non-Federal function of operating commercial oil fields while making sure that the public would obtain the maximum value from the reserves.

  14. LRO observations of morphology and surface roughness of volcanic cones and lobate lava flows in the Marius Hills

    E-Print Network [OSTI]

    Glotch, Timothy D.

    of the cones are found in local groupings or alignments. The wide range of volcanic features, from broad low and Head, 1977; Weitz and Head, 1999]. As such, the Marius Hills represent a significant episode of lunar.5 Ga) [McCauley, 1967a; Whitford-Stark and Head, 1977; Heather and Dunkin, 2002; Heather et al., 2003

  15. A Split-Foundry Asynchronous FPGA Benjamin Hill, Robert Karmazin, Carlos Tadeo Ortega Otero, Jonathan Tse, and Rajit Manohar

    E-Print Network [OSTI]

    Manohar, Rajit

    A Split-Foundry Asynchronous FPGA Benjamin Hill, Robert Karmazin, Carlos Tadeo Ortega Otero of a complex digital integrated circuit fabricated in both standard and split-foundry processes. Our 1- conductor foundries, which have become a global resource providing service to a wide range of customers

  16. MerriaM's Turkey PoulT survival in The Black hills, souTh DakoTa

    E-Print Network [OSTI]

    MerriaM's Turkey PoulT survival in The Black hills, souTh DakoTa By Chad P. Lehman, Lester D. Flake, 2008 531-W #12;78 © Intermountain Journal of Sciences, Vol. 14, No. 4, 2008 MerriaM's Turkey Poul investigated poult survival from hatching to 4 wks of age for Merriam's wild turkey (Meleagris gallopavo

  17. The Fifth International Symposium on Computational Wind Engineering (CWE2010) Chapel Hill, North Carolina, USA May 23-27, 2010

    E-Print Network [OSTI]

    Chow, Fotini Katopodes

    the siting of wind turbines to predictions of flow in urban terrain for contaminant dispersion. MesoscaleThe Fifth International Symposium on Computational Wind Engineering (CWE2010) Chapel Hill, North Carolina, USA May 23-27, 2010 Accurate wind characterization in complex terrain using the immersed boundary

  18. OUR SPACES--THE MOST USED RESOURCE ON Library facilities include two main libraries--the D. H. Hill

    E-Print Network [OSTI]

    Young, R. Michael

    , the Libraries supports the innovation that is the economic engine of growth for the state. LIBRARIES FACT SHEETOUR SPACES--THE MOST USED RESOURCE ON CAMPUS Library facilities include two main libraries--the D. H. Hill Library and the James B. Hunt Jr. Library--as well as the Harrye B. Lyons Design Library

  19. Global Control of Complex Power Systems David J. Hill 1 , Yi Guo 2 , Mats Larsson 3 , and Youyi Wang 4

    E-Print Network [OSTI]

    Guo, Yi

    Global Control of Complex Power Systems David J. Hill 1 , Yi Guo 2 , Mats Larsson 3 , and Youyi to total control of power systems. It is upwards compatible from any conventional or prior advanced control voltage control of power systems. 1 Introduction This chapter describes progress towards a general

  20. Flow Maps from GONG Ring Diagrams R. Komm, J. Bolding, T. Corbard 1 , F. Hill, R. Howe, and C. Toner

    E-Print Network [OSTI]

    Corbard, Thierry

    Flow Maps from GONG Ring Diagrams R. Komm, J. Bolding, T. Corbard 1 , F. Hill, R. Howe, and C d'Azur, F­06304 Nice Cedex 4 Introduction y We show first results from GONG++ observations covering Carrington rotation 1988 (2002/3/30 ­ 2002/4/26) analyzed with a ring­diagram technique as part of the GONG

  1. Water content of 1997 vulcanian pumices at Soufriere Hills Volcano (Montserrat) and implications on pre-eruptive conduit conditions

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Water content of 1997 vulcanian pumices at Soufriere Hills Volcano (Montserrat) and implications of the eruptive products. We used quantitative analysis of water content in residual glasses (matrix glass. To better link water content to structural level, we performed new water solubility experiments at low

  2. CO2 percolation experiment through chlorite/zeolite-rich sandstone (Pretty Hill Formation Otway BasinAustralia)

    E-Print Network [OSTI]

    Cattin, Rodolphe

    . After injecting the CO2 as a supercritical fluid at depth, a certain amount will slowly dissolve of the dissolved CO2) and even- tually the upward flow of supercritical or gaseous CO2 accompanied by caprockCO2 percolation experiment through chlorite/zeolite-rich sandstone (Pretty Hill Formation ­ Otway

  3. FEASIBILITY OF WIND TO SERVE UPPER SKAGIT'S BOW HILL TRIBAL LANDS AND FEASIBILITY UPDATE FOR RESIDENTIAL RENEWABLE ENERGY.

    SciTech Connect (OSTI)

    RICH, LAUREN

    2013-09-30

    A two year wind resource assessment was conducted to determine the feasibility of developing a community scale wind generation system for the Upper Skagit Indian Tribe?s Bow Hill land base, and the project researched residential wind resource technologies to determine the feasibility of contributing renewable wind resource to the mix of energy options for our single and multi-family residential units.

  4. Environmental Assessment and Finding of No Significant Impact: Waste Remediation Activities at Elk Hills (Former Naval petroleum Reserve No. 1), Kern County, California

    SciTech Connect (OSTI)

    N /A

    1999-12-17

    DOE proposes to conduct a variety of post-sale site remediation activities, such as characterization, assessment, clean-up, and formal closure, at a number of inactive waste sites located at Elk Hills. The proposed post-sale site remediation activities, which would be conducted primarily in developed portions of the oil field, currently are expected to include clean-up of three basic categories of waste sites: (1) nonhazardous solid waste surface trash scatters, (2) produced wastewater sumps, and (3) small solid waste landfills. Additionally, a limited number of other inactive waste sites, which cannot be typified under any of these three categories, have been identified as requiring remediation. Table 2.1-1 presents a summary, organized by waste site category, of the inactive waste sites that require remediation per the PSA, the ASA, and/or the UPCTA. The majority of these sites are known to contain no hazardous waste. However, one of the surface scatter sites (2G) contains an area of burn ash with hazardous levels of lead and zinc, another surface scatter site (25S) contains an area with hazardous levels of lead, a produced wastewater sump site (23S) and a landfill (42-36S) are known to contain hazardous levels of arsenic, and some sites have not yet been characterized. Furthermore, additional types of sites could be discovered. For example, given the nature of oil field operations, sites resulting from either spills or leaks of hazardous materials could be discovered. Given the nature of the agreements entered into by DOE regarding the required post-sale clean-up of the inactive waste sites at Elk Hills, the Proposed Action is the primary course of action considered in this EA. The obligatory remediation activities included in the Proposed Action are standard procedures such that possible variations of the Proposed Action would not vary substantially enough to require designation as a separate, reasonable alternative. Thus, the No Action Alternative is the only other option considered in this EA.

  5. Naval Petroleum Reserve No. 1 (Elk Hills): Supplemental environmental impact statement. Record of decision

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    Pursuant to the Council on Environmental Quality regulations, which implement the procedural provisions of the National Environmental Policy Act, and the US Department of Energy National Environmental Policy Act regulations, the Department of Energy, Office of Fossil Energy, is issuing a Record of Decision on the continued operation of Naval Petroleum Reserve No. 1, Kern County, California. The Department of Energy has decided to continue current operations at Naval Petroleum Reserve No. 1 and implement additional well drilling, facility development projects and other activities necessary for continued production of Naval Petroleum Reserve No. 1 in accordance with the requirements of the Naval Petroleum Reserves Production Act of 1976. The final Supplemental Environmental Impact Statement, entitled ``Petroleum Production at Maximum Efficient Rate, Naval Petroleum Reserve No. 1 (Elk Hills), Kern County, California (DOE/SEIS-0158),`` was released on September 3, 1993.

  6. $\\mu$-tempered metadynamics: Artifact independent convergence times for wide hills

    E-Print Network [OSTI]

    Dickson, Bradley M

    2015-01-01

    Recent analysis of well-tempered metadynamics (WTmetaD) showed that it converges without mollification artifacts in the bias potential. Here we explore how metadynamics heals mollification artifacts, how healing impacts convergence time, and whether alternative temperings may be used to improve efficiency. We introduce "$\\mu$-tempered" metadynamics as a simple tempering scheme, inspired by a related mollified adaptive biasing potential (mABP), that results in artifact independent convergence of the free energy estimate. We use a toy model to examine the role of artifacts in WTmetaD and solvated alanine dipeptide to compare the well-tempered and $\\mu$-tempered frameworks demonstrating fast convergence for hill widths as large as $60^{\\circ}$ for $\\mu$TmetaD.

  7. Crosshole EM for oil field characterization and EOR monitoring: Field examples from Lost Hills, California

    SciTech Connect (OSTI)

    Wilt, M.; Schenkel, C.; Wratcher, M.; Lambert, I.; Torres-Verdin, C.; Tseng H.W.

    1996-07-16

    A steamflood recently initiated by Mobil Development and Production U.S. at the Lost Hills No 3 oil field in California is notable for its shallow depth and the application of electromagnetic (EM) geophysical techniques to monitor the subsurface steam flow. Steam was injected into three stacked eastward-dipping unconsolidated oil sands at depths from 60 to 120 m; the plume is expected to develop as an ellipsoid aligned with the regional northwest-southeast strike. Because of the shallow depth of the sands and the high viscosity of the heavy oil, it is important to track the steam in the unconsolidated sediments for both economic and safety reasons. Crosshole and surface-to-borehole electromagnetic imaging were applied for reservoir characterization and steamflood monitoring. The crosshole EM data were collected to map the interwell distribution of the high-resistivity oil sands and to track the injected steam and hot water. Measurements were made in two fiberglass-cased observation wells straddling the steam injector on a northeast-southwest profile. Field data were collected before the steam drive, to map the distribution of the oil sands, and then 6 and 10 months after steam was injected, to monitor the expansion of the steam chest. Resistivity images derived from the collected data clearly delineated the distribution and dipping structure of the target oil sands. Difference images from data collected before and during steamflooding indicate that the steam chest has developed only in the middle and lower oil sands, and it has preferentially migrated westward in the middle oil sand and eastward in the deeper sand. Surface-to-borehole field data sets at Lost Hills were responsive to the large-scale subsurface structure but insufficiently sensitive to model steam chest development in the middle and lower oil sands. As the steam chest develops further, these data will be of more use for process monitoring.

  8. Dune-dammed lakes of the Nebraska Sand Hills: Geologic setting and paleoclimatic implications

    SciTech Connect (OSTI)

    Loope, D.B.; Swinehart, J.B. (Univ. of Nebraska, Lincoln, NE (United States))

    1992-01-01

    Within the western half of this grass-stabilized dunefield, about 1,000 interdune lakes are grouped into two clusters here named the Blue and Birdwood lake basins. In the lake basins, those parts of the valley not filled by dune sand are occupied by modern lakes and Holocene lake sediments. The Blue Creek dam is mounded transverse to flow; spill-over of the lake basin takes place over bedrock on the east side of the dam when lake level is 2 m higher than present. The permeability of dune sand prevents massive overflow, and thereby contributes to the integrity and longevity of the dam. Preserved lake sediments in the basin indicate that Blue Creek was obstructed prior to 13,000 yr BP, probably during glacial maximum (18,000 yr BP). Extensive peats dated at 1,500-1,000 yr BP lie directly on fluvial sand and gravel along the Calamus River, a stream that presently discharges a nearly constant 350 cfs. These sediments indicate blockage of streams also took place when linear dunes were active in the eastern Sand Hills in Late Holocene time. With the onset of an arid episode, dunes forming an interfluves curtail the severity of runoff events. As the regional water table drops, drainages go dry and dunes move uncontested into blocking positions. Although drainages of the eastern Sand Hills appear to have repeatedly broken through sand-blocked channels, the Blue and Birdwood lake basins are still blocked by Late Pleistocene dune dams. The repeated episodes of stream blockage and interbedded lake sediments and dune sands behind the extant dams record several strong fluctuations in Holocene climate. Recently proposed climatic models indicate that the northward flow of warm, moist air from the Gulf of Mexico is enhanced when the Gulf's surface temperature is low and the Bermuda high is intensified and in a western position. When the Bermuda high moves eastward, the core of the North American continent becomes desiccated.

  9. The Interfacial-Area-Based Relative Permeability Function

    SciTech Connect (OSTI)

    Zhang, Z. F.; Khaleel, Raziuddin

    2009-09-25

    CH2M Hill Plateau Remediation Company (CHPRC) requested the services of the Pacific Northwest National Laboratory (PNNL) to provide technical support for the Remediation Decision Support (RDS) activity within the Soil & Groundwater Remediation Project. A portion of the support provided in FY2009, was to extend the soil unsaturated hydraulic conductivity using an alternative approach. This alternative approach incorporates the Brooks and Corey (1964), van Genuchten (1980), and a modified van Genuchten water-retention models into the interfacial-area-based relative permeability model presented by Embid (1997). The general performance of the incorporated models is shown using typical hydraulic parameters. The relative permeability models for the wetting phase were further examined using data from literature. Results indicate that the interfacial-area-based model can describe the relative permeability of the wetting phase reasonably well.

  10. Rb-Sr Geochronologic Investigation Of Precambrian Samples From...

    Open Energy Info (EERE)

    Rb-Sr Geochronologic Investigation Of Precambrian Samples From Deep Geothermal Drill Holes, Fenton Hill, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to...

  11. Diagenesis of Woodbine and Sub-Clarksville sandstones at the Kurten and Iola field areas, Brazos and Grimes Counties, Texas 

    E-Print Network [OSTI]

    Frossard, Michael Louis

    1982-01-01

    shale cleats which have been slightly deformed by compaction. These sand units are also separated by zones of horizontal, wavy shale laminae. Maximum thickness of the "D" sandstone at Hill field is 28 ft. (8. 5m) (Barton, 1982). Upper and lower...Diagenesis of Woodbine' and Sub-Clarksville Sandstones at the Kurten and Iola Field Areas, Brazos and Grimes Counties, Texas A Thesis by MICHAEL LOUIS FROSSARD Submitted to the Graduate College of Texas A&M University in partial fulfillment...

  12. Wildlife Management Areas (Florida)

    Broader source: Energy.gov [DOE]

    Certain sites in Florida are designated as wildlife management areas, and construction and development is heavily restricted in these areas.

  13. Results of preconstruction surveys used as a management technique for conserving endangered species and their habitats on Naval Petroleum Reserve No. 1 (Elk Hills), Kern County, California

    SciTech Connect (OSTI)

    Kato, T.T.; O'Farrell, T.P.; Johnson, J.W.

    1985-08-01

    In 1976 an intensive program of petroleum production at maximum efficient rate was initiated on the US Department of Energy's (DOE) Naval Petroleum Reserve No. 1 (Elk Hills) in western Kern County, California. In a Biological Opinion required by the Endangered Species Act, the US Fish and Wildlife Service concluded that proposed construction and production activities may jeopardize the continued existence of the endangered San Joaquin kit fox, Vulpes macrotis mutica, and the blunt-nosed leopard lizard, Gambelia silus, inhabiting the Reserve. DOE committed itself to carrying out a compensation/mitigation plan to offset impacts of program activities on endangered species and their habitats. One compensation/mitigation strategy was to develop and implement preconstruction surveys to assess potential conflicts between proposed construction activities, and endangered species and their critical habitats, and to propose reasonable and prudent alternatives to avoid conflicts. Between 1980 and 1984, preconstruction surveys were completed for 296 of a total of 387 major construction projects encompassing 3590 acres. Fewer than 22% of the projects potentially conflicted with conservation of endangered species, and most conflicts were easily resolved by identifying sensitive areas that required protection. Only 8% of the projects received minor modification in their design or locations to satisfy conservation needs, and only three projects had to be completely relocated. No projects were cancelled or delayed because of conflicts with endangered species, and costs to conduct preconstruction surveys were minimal. 27 refs., 9 figs., 2 tabs.

  14. Environmental assessment of a proposed steam flood of the Shallow Oil Zone, Naval Petroleum Reserve No. 1 (Elk Hills), Kern County, California

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    The US Department of Energy proposes to develop a limited enhanced oil recovery project in the Shallow Oil Zone at Naval Petroleum Reserve No. 1 (NPR-1) Elk Hills. The project would employ steam forced into the oil-bearing formation through injector wells, and would involve two phases. The initiation of the second phase would be dependent on the economic success of the first phase. The total project would require the drilling of 22 new wells in a 45-acre area supporting seven existing production wells. It would also require construction of various surface facilities including a tank setting (gas-oil separation system), steam generators, and a water treatment plant. Adverse environmental impacts associated with the proposed steam flood project would include the effects on vegetation, wildlife and land-use resulting from the total reconfiguration of the topography within the project bondaries. Other adverse impacts include the emission of oxides of nitrogen, carbon monoxide, hydrocarbons and particulates from steam generators, vehicles and associated surface facilities. Minor adverse impacts include localized noise and dust during constuction, and reduction of visual quality. 48 refs., 7 figs., 10 tabs.

  15. Proceedings of the 2013 Winter Simulation Conference R. Pasupathy, S.-H. Kim, A. Tolk, R. Hill, and M. E. Kuhl, eds.

    E-Print Network [OSTI]

    Whitt, Ward

    Proceedings of the 2013 Winter Simulation Conference R. Pasupathy, S.-H. Kim, A. Tolk, R. Hill University New York, NY 10027, USA Ward Whitt Industrial Engineering and Operations Research Columbia

  16. Australian Journal of Earth Sciences (1984) 31, 403-426. The structural evolution of the Fyfe Hills-Khmara Bay region,

    E-Print Network [OSTI]

    Sandiford, Mike

    1984-01-01

    Australian Journal of Earth Sciences (1984) 31, 403-426. The structural evolution of the Fyfe Hills of 403 #12;404 M. SANDIFORD AND C. 1. L. WILSON ~s Strike and dip of composltlonal layering -- Trend

  17. Area Activation 1 Running Head: AREA ACTIVATION

    E-Print Network [OSTI]

    Pomplun, Marc

    Area Activation 1 Running Head: AREA ACTIVATION Advancing Area Activation towards a General Model at Boston 100 Morrissey Boulevard Boston, MA 02125-3393 USA Phone: 617-287-6485 Fax: 617-287-6433 e. Without great effort, human observers clearly outperform every current artificial vision system in tasks

  18. Western Shallow Oil Zone, Elk Hills Field, Kern County, California: General reservoir study, Appendix 4, Fourth Wilhelm sand

    SciTech Connect (OSTI)

    Carey, K.B.

    1987-09-01

    The general Reservoir Study of the Western Shallow Oil Zone was prepared by Evans, Carey and Crozier as Task Assignment 009 with the United States Department of Energy. This study, Appendix IV, addresses the Fourth Wilhelm Sand and its sub units and pools. Basic pressure, production and assorted technical data were provided by the US Department of Energy staff at Elk Hills. Basic pressure production and assorted technical data were provided by the US Department of Energy staff at Elk Hills. These data were accepted as furnished with no attempt being made by Evans, Carey and Crozier for independent verification. This study has identified the petrophysical properties and the past productive performance of the reservoir. Primary reserves have been determined and general means of enhancing future recovery have been suggested. It is hoped that this volume can now additionally serve as a take off point for exploitation engineers to develop specific programs toward the end. 12 figs., 9 tabs.

  19. datamanagementgroup 2011 SURvEY AREA SUMMARY

    E-Print Network [OSTI]

    Toronto, University of

    BY RESIDENTS OF TOWN OF RICHMOND HILL - WARD 1 19,900 25.8% 47% 19% 22% 12% 67% 11% 6% 7% 3% 6% 12.2 6.0 20 HILL - WARD 1 6,600 13.8% 27% 25% 15% 33% 72% 13% 2% * 6% 7% 4.4 3.8 9.3 * 47,800 6% 4% 67% 24% 72% 15-9 AM 24 Hours 24 SimcoeSt. Conc. Rd. 5 Reg. Rd. 15 Hwy.12&48 ± TOWN OF RICHMOND HILL 92,000 44% 6% 5

  20. Extremely organic-rich coma of comet C/2010 G2 (Hill) during its outburst in 2012

    SciTech Connect (OSTI)

    Kawakita, Hideyo; Kobayashi, Hitomi; Russo, Neil Dello; Vervack, Ron Jr.; Weaver, Harold A.; DiSanti, Mike A.; Opitom, Cyrielle; Jehin, Emmanuel; Manfroid, Jean; Gillon, Michael; Cochran, Anita L.; Harris, Walter M.; Bockelée-Morvan, Dominique; Biver, Nicolas; Crovisier, Jacques; McKay, Adam J.

    2014-06-20

    We performed high-dispersion near-infrared spectroscopic observations of comet C/2010 G2 (Hill) at 2.5 AU from the Sun using NIRSPEC (R ? 25,000) at the Keck II Telescope on UT 2012 January 9 and 10, about a week after an outburst had occurred. Over the two nights of our observations, prominent emission lines of CH{sub 4} and C{sub 2}H{sub 6}, along with weaker emission lines of H{sub 2}O, HCN, CH{sub 3}OH, and CO were detected. The gas production rate of CO was comparable to that of H{sub 2}O during the outburst. The mixing ratios of CO, HCN, CH{sub 4}, C{sub 2}H{sub 6}, and CH{sub 3}OH with respect to H{sub 2}O were higher than those for normal comets by a factor of five or more. The enrichment of CO and CH{sub 4} in comet Hill suggests that the sublimation of these hypervolatiles sustained the outburst of the comet. Some fraction of water in the inner coma might exist as icy grains that were likely ejected from nucleus by the sublimation of hypervolatiles. Mixing ratios of volatiles in comet Hill are indicative of the interstellar heritage without significant alteration in the solar nebula.

  1. Comparison and coherence with the chromium electroplating NESHAP at Hill Air Force Base

    SciTech Connect (OSTI)

    Palmer, G. [OO-ALC/EME, Hill AFB, UT (United States); Hallenburg, E. [JBR Environmental Consultants, Inc., Sandy, UT (United States)

    1998-12-31

    One of the major functions at the landing gear facility located at Hill AFB are the chromium electroplating operations. This facility is classified as a major, large-hard-chromium electroplating operation, and was likely the first source in United States to comply with Subpart N of the National Emissions Standards for Hazardous Air Pollutants (NESHAP). A required initial performance test under Subpart N was required, besides establishing site-specific operating parameter values. These requirements were established after final promulgation of NESHAPS`s Subpart N on January 25, 1995. Because this compliance effort was the first test of Subpart N in EPA Region VIII, many precedents were established. Classifying the state-of-the-art MAPCO scrubber system to a specific type of scrubber listed in Subpart N posed some challenges and interpretation. The biggest challenge was compliance with the prescribed work practice standard, monitoring, reporting and recordkeeping requirements. The chromium electroplating environment is a corrosive and caustic domicile for equipment and components. With the promulgation of Subpart N, the electroplating facility received additional attention. Following the initial performance test, various modifications were deemed necessary to the control systems, ventilation ducts, exhaust configuration, mesh pads, mesh pad housing and other electroplating assemblages. Decommissioning of the chromium anodizing tanks at the facility was also a result of trying to achieve compliance. Because of system upgrades, a new initial performance test was warranted. The improved system operated under new flow characteristics, site-specific parameter values, and improved collection and scrubbing efficiencies.

  2. Summary of Degas II performance at the US Strategic Petroleum Reserve Big Hill site.

    SciTech Connect (OSTI)

    Rudeen, David K.; Lord, David L.

    2007-10-01

    Crude oil stored at the US Strategic Petroleum Reserve (SPR) requires mitigation procedures to maintain oil vapor pressure within program delivery standards. Crude oil degasification is one effective method for lowering crude oil vapor pressure, and was implemented at the Big Hill SPR site from 2004-2006. Performance monitoring during and after degasification revealed a range of outcomes for caverns that had similar inventory and geometry. This report analyzed data from SPR degasification and developed a simple degas mixing (SDM) model to assist in the analysis. Cavern-scale oil mixing during degassing and existing oil heterogeneity in the caverns were identified as likely causes for the range of behaviors seen. Apparent cavern mixing patterns ranged from near complete mixing to near plug flow, with more mixing leading to less efficient degassing due to degassed oil re-entering the plant before 100% of the cavern oil volume was processed. The report suggests that the new cavern bubble point and vapor pressure regain rate after degassing be based on direct in-cavern measurements after degassing as opposed to using the plant outlet stream properties as a starting point, which understates starting bubble point and overstates vapor pressure regain. Several means to estimate the cavern bubble point after degas in the absence of direct measurement are presented and discussed.

  3. Geomechanical analysis to predict the oil leak at the wellbores in Big Hill Strategic Petroleum Reserve

    SciTech Connect (OSTI)

    Park, Byoung Yoon

    2014-02-01

    Oil leaks were found in wellbores of Caverns 105 and 109 at the Big Hill Strategic Petroleum Reserve site. According to the field observations, two instances of casing damage occurred at the depth of the interbed between the caprock bottom and salt top. A three dimensional finite element model, which contains wellbore element blocks and allows each cavern to be configured individually, is constructed to investigate the wellbore damage mechanism. The model also contains element blocks to represent interface between each lithology and a shear zone to examine the interbed behavior in a realistic manner. The causes of the damaged casing segments are a result of vertical and horizontal movements of the interbed between the caprock and salt dome. The salt top subsides because the volume of caverns below the salt top decrease with time due to salt creep closure, while the caprock subsides at a slower rate because the caprock is thick and stiffer. This discrepancy yields a deformation of the well. The deformed wellbore may fail at some time. An oil leak occurs when the wellbore fails. A possible oil leak date of each well is determined using the equivalent plastic strain failure criterion. A well grading system for a remediation plan is developed based on the predicted leak dates of each wellbore.

  4. Silica phase changes: Diagenetic agent for oil entrapment, Lost Hills field, California

    SciTech Connect (OSTI)

    Julander, D.R.; Szymanski, D.L. )

    1991-02-01

    The siliceous shales of the Monterey Group are the primary development target at Lost Hills. Silica phase changes have influenced the distribution and entrapment of hydrocarbons. With increasing temperature, opal A phase diatomite is converted to opal CT and finally quartz phase rock. All phases are low in permeability. The opal A diatomite is characteristically high in oil saturation and productive saturation. Productivity from this phase is dependent on structural position and fieldwide variations in oil viscosity and biodegradation. The deeper chert reservoir coincides with the opal CT to quartz phase transition. Porosity is again reduced in this transition, but saturations in the quartz phase rocks increase. Tests in the chert reservoir indicate a single, low-permeability system, suggesting the importance of matric contribution. resistivity and porosity in the diatomite, and resistivity and velocity in the chert, are the physical properties which best reflect saturation. Methods exploiting these properties (FMS, BHTV, borehole, and surface shear wave studies) should be helpful in further characterizing the reservoirs and identifying future pay.

  5. Recharge Data Package for Hanford Single-Shell Tank Waste Management Areas

    SciTech Connect (OSTI)

    Fayer, Michael J.; Keller, Jason M.

    2007-09-24

    Pacific Northwest National Laboratory (PNNL) assists CH2M HILL Hanford Group, Inc., in its preparation of the Resource Conservation and Recovery Act (RCRA) Facility Investigation report. One of the PNNL tasks is to use existing information to estimate recharge rates for past and current conditions as well as future scenarios involving cleanup and closure of tank farms. The existing information includes recharge-relevant data collected during activities associated with a host of projects, including those of RCRA, the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), the CH2M HILL Tank Farm Vadose Zone Project, and the PNNL Remediation and Closure Science Project. As new information is published, the report contents can be updated. The objective of this data package was to use published data to provide recharge estimates for the scenarios being considered in the RCRA Facility Investigation. Recharge rates were estimated for areas that remain natural and undisturbed, areas where the vegetation has been disturbed, areas where both the vegetation and the soil have been disturbed, and areas that are engineered (e.g., surface barrier). The recharge estimates supplement the estimates provided by PNNL researchers in 2006 for the Hanford Site using additional field measurements and model analysis using weather data through 2006.

  6. Characterization of Vadose Zone Sediments from C Waste Management Area: Investigation of the C-152 Transfer Line Leak

    SciTech Connect (OSTI)

    Brown, Christopher F.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Valenta, Michelle M.; Lanigan, David C.; Vickerman, Tanya S.; Clayton, Ray E.; Geiszler, Keith N.; Iovin, Cristian; Clayton, Eric T.; Kutnyakov, Igor V.; Baum, Steven R.; Lindberg, Michael J.; Orr, Robert D.

    2008-09-11

    The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in January 2007. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc., tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within waste management area (WMA) C. Specifically, this report contains all the geologic, geochemical, and selected physiochemical characterization data compiled on vadose zone sediment recovered from direct-push samples collected around the site of an unplanned release (UPR), UPR-200-E-82, adjacent to the 241-C-152 Diversion Box located in WMA C.

  7. Department of Justice: CH2M Hill Hanford Group Inc. Admits Criminal Conduct, Parent Company Agrees to Cooperate in Ongoing Investigation and Pay $18.5 Million to Resolve Civil and Criminal Allegations

    Broader source: Energy.gov [DOE]

    The Justice Department, in conjunction with the U.S. Attorney’s Office for the Eastern District of Washington, announced today that Colorado-based CH2M Hill Hanford Group Inc. (CHG) and its parent company, CH2M Hill Companies Ltd. (CH2M Hill) have agreed that CHG committed federal criminal violations, defrauding the public by engaging in years of widespread time card fraud.

  8. Reservoir compartmentalization caused by mass transport deposition Northwest Stevens pool, Elk Hills Naval Petroleum Reserves, California

    SciTech Connect (OSTI)

    Milliken, M.D.; McJannet, G.S.; Shiflett, D.W.; Deutsch, H.A.

    1996-12-31

    The {open_quotes}A{close_quotes} sands of the Northwest Stevens Pool consist of six major subdivisions (A1-A6) and numerous sublayers. These sands are above the {open_quotes}N Point{close_quotes} stratigraphic marker, making them much younger than most other Stevens sands at Elk Hills. Cores show the A1-A3 sands to be possibly mass transport deposition, primarily debris flows, slumps, and sand injection bodies. The A4-A6 sands are characterized by normally graded sheet-like sand bodies Hospital of traditional outer fan turbidite lithofacies. Most current production from the A1-A2 interval comes from well 373A-7R, are completed waterflood wells that came on line in 1992 at 1400 BOPD. Well 373A-7R is an anomaly in the A1-A2 zone, where average production from the other ten wells is 200 BOPD. Other evidence for compartmentalization in the A1-A2 interval includes sporadic oil-water contacts and drawdown pressures, difficult log correlations, and rapid thickness changes. In 1973, well 362-7R penetrated 220 ft of wet Al sand. The well was redrilled updip and successfully completed in the A1, where the oil-water contact is more than 130 ft lower than the original hole and faulting is not apparent. In 1992, horizontal well 323H-7R unexpectedly encountered an entirely wet Al wedge zone. Reevaluation of the A1-A3 and other sands as mass transport origin is important for modeling initialization and production/development strategies.

  9. Reservoir compartmentalization caused by mass transport deposition Northwest Stevens pool, Elk Hills Naval Petroleum Reserves, California

    SciTech Connect (OSTI)

    Milliken, M.D.; McJannet, G.S. ); Shiflett, D.W. ); Deutsch, H.A. )

    1996-01-01

    The [open quotes]A[close quotes] sands of the Northwest Stevens Pool consist of six major subdivisions (A1-A6) and numerous sublayers. These sands are above the [open quotes]N Point[close quotes] stratigraphic marker, making them much younger than most other Stevens sands at Elk Hills. Cores show the A1-A3 sands to be possibly mass transport deposition, primarily debris flows, slumps, and sand injection bodies. The A4-A6 sands are characterized by normally graded sheet-like sand bodies Hospital of traditional outer fan turbidite lithofacies. Most current production from the A1-A2 interval comes from well 373A-7R, are completed waterflood wells that came on line in 1992 at 1400 BOPD. Well 373A-7R is an anomaly in the A1-A2 zone, where average production from the other ten wells is 200 BOPD. Other evidence for compartmentalization in the A1-A2 interval includes sporadic oil-water contacts and drawdown pressures, difficult log correlations, and rapid thickness changes. In 1973, well 362-7R penetrated 220 ft of wet Al sand. The well was redrilled updip and successfully completed in the A1, where the oil-water contact is more than 130 ft lower than the original hole and faulting is not apparent. In 1992, horizontal well 323H-7R unexpectedly encountered an entirely wet Al wedge zone. Reevaluation of the A1-A3 and other sands as mass transport origin is important for modeling initialization and production/development strategies.

  10. Mesozoic and Cenozoic structural geology of the CP Hills, Nevada Test Site, Nye County, Nevada; and regional implications

    SciTech Connect (OSTI)

    Caskey, S.J.

    1991-08-01

    Detailed mapping and structural analysis of upper Proterozoic and Paleozoic rocks in the CP Hills of the Nevada Test Site, together with analysis of published maps and cross sections and a reconnaissance of regional structural relations indicate that the CP thrust of Barnes and Poole (1968) actually comprises two separate, oppositely verging Mesozoic thrust systems: (1) the west-vergent CP thrust which is well exposed in the CP Hills and at Mine Mountain, and (2) the east-vergent Belted Range thrust located northwest of Yucca Flat. West-vergence of the CP thrust is indicated by large scale west-vergent recumbent folds in both its hangingwall and footwall and by the fact that the CP thrust ramps up section through hangingwall strata toward the northwest. Regional structural relations indicate that the CP thrust forms part of a narrow sigmoidal belt of west-vergent folding and thrusting traceable for over 180 km along strike. The Belted Range thrust represents earlier Mesozoic deformation that was probably related to the Last Chance thrust system in southeastern California, as suggested by earlier workers. A pre-Tertiary reconstruction of the Cordilleran fold and thrust belt in the region between the NTS and the Las Vegas Range bears a close resemblance to other regions of the Cordillera and has important implications for the development of hinterland-vergent deformation as well as for the probable magnitude of Tertiary extension north of Las Vegas Valley. Subsequent to Mesozoic deformation, the CP Hills were disrupted by at least two episodes of Tertiary extensional deformation: (1) an earlier episode represented by pre-middle Miocene low-angle normal faults, and (2) a later, post-11 Ma episode of high-angle normal faulting. Both episodes of extension were related to regional deformation, the latter of which has resulted in the present basin and range topography of the NTS region.

  11. Reservoir analysis study, Naval Petroleum Reserve No. 1, Elk Hills Field, Kern County, California: Phase 2 report, Executive summary

    SciTech Connect (OSTI)

    Not Available

    1988-07-01

    The Naval Petroleum Reserve No. 1 (Elk Hills) is located in Kern County, California, and is jointly owned by the US Department of Energy and Chevron USA Inc. The Elk Hills Field is presently producing oil and gas from five geologic zones. These zones contain a number of separate and geologically complex reservoirs. Considerable field development and production of oil and gas have occurred since initial estimates of reserves were made. Total cumulative field production through December 1987 is 850 MMBbls of oil, 1.2 Tcf of gas and 648.2 MMBbls of water. In December 1987, field producing rates expressed on a calendar day basis amounted to 110,364 BOPD, 350,946 Mcfd and 230,179 BWPD from 1157 producers. In addition, a total of two reservoirs have gas injection in progress and four reservoirs have water injection in progress and four reservoirs have water injection in progress. Cumulative gas and water injection amounted to 586 Bcf of gas and 330 MMB of water. December 1987 gas and water injection rates amounted to 174 MMcfd and 234 MBWPD, into 129 injectors. In addition, a steamflood pilot program is currently active in the Eastern Shallow Oil Zone. Jerry R. Bergeson and Associates, Inc. (Bergeson) has completed Phase II of the Reservoir Analysis, Naval Petroleum Reserve Number 1, Elk Hills Oilfield, California. The objectives for this phase of the study included the establishment of revised estimates of the original oil and gas-in-place for each of the zones/reservoirs, estimation of the remaining proved developed, proved undeveloped, probable and possible reserves, and assessment of the effects of historical development and production operations and practices on recoverable reserves. 28 figs., 37 tabs.

  12. Thermal Gradient Holes At Lightning Dock Geothermal Area (Arnold...

    Open Energy Info (EERE)

    Arnold, Anderson, Donaldson, Foster, Gutjahr, Hatton, Hill, Martinez (1978) New Mexico's Energy Resources '77: Office of the State Geologist Additional References Retrieved from...

  13. Unit 51 - GIS Application Areas

    E-Print Network [OSTI]

    Unit 51, CC in GIS; Cowen, David; Ferguson, Warren

    1990-01-01

    51 - GIS APPLICATION AREAS UNIT 51 - GIS APPLICATION AREAS1990 Page 1 Unit 51 - GIS Application Areas Computers inyour students. UNIT 51 - GIS APPLICATION AREAS Compiled with

  14. Geology and geothermal resources of the Santiam Pass area of the Oregon Cascade Range, Deschutes, Jefferson and Linn Counties, Oregon

    SciTech Connect (OSTI)

    Hill, B.E. (ed.)

    1992-10-01

    This open-file report presents the results of the Santiam Pass drilling program. The first phase of this program was to compile all available geological, geophysical and geothermal data for the Santiam Pass area and select a drill site on the basis of these data (see Priest and others, 1987a), A summary of the drilling operations and costs associated with the project are presented in chapter 1 by Hill and Benoit. An Overview of the geology of the Santiam Pass area is presented by Hill and Priest in chapter 2. Geologic mapping and isotopic age determinations in the Santiam Pass-Mount Jefferson area completed since 1987 are summarized in chapter 2. One of the more important conclusions reached in chapter 2 is that a minimum of 2 km vertical displacement has occurred in the High Cascade graben in the Santiam Pass area. The petrology of the Santiam Pass drill core is presented by Hill in chapter 3. Most of the major volcanic units in the core have been analyzed for major, minor, and trace element abundances and have been studied petrographically. Three K-Ar ages are interpreted in conjunction with the magnetostratigraphy of the core to show that the oldest rocks in the core are approximately 1.8 Ma. Geothermal and geophysical data collected from the Santiam Pass well are presented by Blackwell in chapter 4. The Santiam Pass well failed to penetrate beneath the zone of lateral groundwater flow associated with highly permeable Quaternary volcanic rocks. Calculated geothermal gradients range from about 50[degree]C/km at depth 700-900 m, to roughly 110[degree]C/km from 900 m to the bottom of the well at 929 m. Heat-flow values for the bottom part of the hole bracket the regional average for the High Cascades. Blackwell concludes that heat flow along the High Cascades axis is equal to or higher than along the western edge of the High Cascades.

  15. Constitutive models for the Etchegoin Sands, Belridge Diatomite, and overburden formations at the Lost Hills oil field, California

    SciTech Connect (OSTI)

    FOSSUM,ARLO F.; FREDRICH,JOANNE T.

    2000-04-01

    This report documents the development of constitutive material models for the overburden formations, reservoir formations, and underlying strata at the Lost Hills oil field located about 45 miles northwest of Bakersfield in Kern County, California. Triaxial rock mechanics tests were performed on specimens prepared from cores recovered from the Lost Hills field, and included measurements of axial and radial stresses and strains under different load paths. The tested intervals comprise diatomaceous sands of the Etchegoin Formation and several diatomite types of the Belridge Diatomite Member of the Monterey Formation, including cycles both above and below the diagenetic phase boundary between opal-A and opal-CT. The laboratory data are used to drive constitutive parameters for the Extended Sandler-Rubin (ESR) cap model that is implemented in Sandia's structural mechanics finite element code JAS3D. Available data in the literature are also used to derive ESR shear failure parameters for overburden formations. The material models are being used in large-scale three-dimensional geomechanical simulations of the reservoir behavior during primary and secondary recovery.

  16. Bulletin ofthe Torrey Botanical Club 118(3), 1991, pp. 312-325 The vegetation of the Wave Hill natural area,

    E-Print Network [OSTI]

    Hartvigsen, Gregg

    a history of anthropogenic disturbance. This disturbance includes wood- land fragmentation, soil with other woodlands in the New York City region, which have been described in a number of stud- ies (Airola

  17. Site Monitoring Area Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and roads The spatial location and boundaries for each Site shown on the Site Monitoring Area maps originate from activities conducted under the Compliance Order on Consent with...

  18. Characterization of Vadose Zone Sediment: Borehole 299-E33-45 Near BX-102 in the B-BX-BY Waste Management Area

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Last, George V.; Gee, Glendon W.; Schaef, Herbert T.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Orr, Robert D.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Brown, Christopher F.; Valenta, Michelle M.; Vickerman, Tanya S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Table 4.22. The data was removed due to potential contamination introduced during the acid extraction process. The remaining text is unchanged from the original report issued in 2002. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area B-BX-BY. This report is the first in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from borehole 299-E33-45 installed northeast of tank BX-102.

  19. Mycorrhizal Species Dominate the Soil-Fungal Community in Estonian Oil Shale-Ash Hills Charles Cowden, Sam Willis, and Richard Shefferson

    E-Print Network [OSTI]

    Shefferson, Richard P.

    Mycorrhizal Species Dominate the Soil-Fungal Community in Estonian Oil Shale-Ash Hills Charles 30602 Introduction Estonia relies on vast reserves of oil shale to produce electricity. The mining and burning of oil shale is extremely inefficient and produces large quantities of tailings and ash (Vallner

  20. A Comparison of Trace-Sampling Techniques for Multi-Megabyte Caches R. E. Kessler, Mark D. Hill, and David A. Wood

    E-Print Network [OSTI]

    Hill, Mark D.

    . Hill, and David A. Wood University of Wisconsin Computer Sciences Department Madison, Wisconsin 53706 also find that cold-start bias in time samples is most effectively reduced by the technique of Wood et Corporation. David A. Wood is supported in part by the National Science Foundation (CCR-9157366

  1. Harvesting Ornamental Fish From Ponds1 Tina C. Crosby, Jeffrey E. Hill, Carlos V. Martinez, Craig A. Watson, Deborah B. Pouder, and Roy

    E-Print Network [OSTI]

    Watson, Craig A.

    FA-117 Harvesting Ornamental Fish From Ponds1 Tina C. Crosby, Jeffrey E. Hill, Carlos V. Martinez, ornamental fish are predominantly farmed in earthen ponds. Once fish reach marketable size and are ready and physical damage during harvesting (see UF IFAS Circular 919 Stress-Its Role in Fish Disease). Overall, col

  2. The GONG++ DATA Processing Pipeline F. Hill,, J. Bolding, C. Toner, T. Corbard, S. Wampler, B. Goodrich, J. Goodrich, P. Eliason National Solar Observatory

    E-Print Network [OSTI]

    Corbard, Thierry

    The GONG++ DATA Processing Pipeline F. Hill,, J. Bolding, C. Toner, T. Corbard, S. Wampler, B. Goodrich, J. Goodrich, P. Eliason­ National Solar Observatory Introduction The GONG++ data processing pipeline is currently under construction. This system will produce the GONG++ science data products

  3. Localized Parameter Shifts from GONG+ data R. Howe1, J. Bolding1, T. Corbard2, F. Hill1, R. Komm1, C. Toner1

    E-Print Network [OSTI]

    Corbard, Thierry

    Localized Parameter Shifts from GONG+ data R. Howe1, J. Bolding1, T. Corbard2, F. Hill1, R. Komm1. 2002). Upgraded cameras now allow similar data to be taken year-round from the six stations of the GONG of preliminary analysis of the mode frequencies, widths and amplitudes obtained from GONG for Carrington Rotation

  4. On-Farm Transport of Ornamental Fish 1 Tina C. Crosby, Jeffrey E. Hill, Carlos V. Martinez, Craig A. Watson, Deborah B. Pouder, and Roy

    E-Print Network [OSTI]

    Watson, Craig A.

    FA-119 On-Farm Transport of Ornamental Fish 1 Tina C. Crosby, Jeffrey E. Hill, Carlos V. Martinez and transport of fish will affect survival and overall quality of the fish (see UF IFAS Circular 919 Stress-It's Role in Fish Disease). Fish should be moved quickly and efficiently to minimize stress, the risk

  5. [1] H. P. Hsu, Schaum's outline series: theory and problem of analog and digital communications. New York: McGraw-Hill, 1993.

    E-Print Network [OSTI]

    Kovintavewat, Piya

    [1] H. P. Hsu, Schaum's outline series: theory and problem of analog and digital communications and Tables. McGraw-Hill, 3rd edition, 2008. [10] M. H. Hayes, Statistical digital signal processing communications: fundamentals and applications. Prentice Hall, 2nd-edition, 2001. [13] J. G. Proakis, Digital

  6. Department of Computer Science University of North Carolina at Chapel Hill March 2005 Hair modeling is crucial for generating realistic appearances of

    E-Print Network [OSTI]

    Pollefeys, Marc

    Department of Computer Science University of North Carolina at Chapel Hill March 2005 Motivation of the computational power towards the hairs that are the most significant to the viewer at a given time. Framework Our of the skeleton. The hair geometry (in any geometric representation) Long, curly, red hair blowing in the wind

  7. THIS TRAINING MODULE IS APPROVED FOR NON-COMMERCIAL USE ONLY. Copyright protected by the University of North Carolina at Chapel Hill, 2013-15

    E-Print Network [OSTI]

    McLaughlin, Richard M.

    THIS TRAINING MODULE IS APPROVED FOR NON-COMMERCIAL USE ONLY. Copyright protected by the University of North Carolina at Chapel Hill, 2013-15 Welcome to the HIPAA, Privacy & Security Training Module #12 health information. This training module addresses the essential elements of maintaining the privacy

  8. The Passivity and Breakdown of Beryllium in Aqueous Solutions M.A. Hill, D.P. Butt, and R.S. Lillard

    E-Print Network [OSTI]

    The Passivity and Breakdown of Beryllium in Aqueous Solutions M.A. Hill, D.P. Butt, and R beryllium (Be) has been studied as a function of pH. Below pH 2, Be exhibited active dissolution at all, the presence of the fluoride increased the passive current density of beryllium, but had no effect

  9. TopoftheCity-37miles/byReidPriedhorsky(reid@reidster.net) 00.00 -down hill to Clarence & Seymour 00.09 Right -Seymour Ave. -short visibility

    E-Print Network [OSTI]

    Priedhorsky, Reid

    TopoftheCity-37miles/byReidPriedhorsky(reid@reidster.net) 00.00 - down hill to Clarence & Seymour 00.09 Right - Seymour Ave. - short visibility 00.44 Right - Franklin Ave. - rough pavement 00.69 Left Ave. 36.58 Left - Seymour Ave. 36.93 Left - trail 37.04 - end at water tower #12;

  10. EIS-0012: Petroleum Production at Maximum Efficient Rate, Naval Petroleum Reserve #1, Elk Hills, Kern County, California (also see EA-0261, EA-0334, and EIS-0158-S)

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared this statement to evaluate the environmental impacts of increasing petroleum production, and of additional or expanded operational facilities, at Elk Hills from 160,000 barrels per day up to 240,000 barrels per day.

  11. Geothermal br Resource br Area Geothermal br Resource br Area...

    Open Energy Info (EERE)

    Area Central Nevada Seismic Zone Pull Apart in Strike Slip Fault Zone Ordovician shale quartzite MW K Blue Mountain Geothermal Area Blue Mountain Geothermal Area Northwest...

  12. Reservoir analysis study, Naval Petroleum Reserve No. 1, Elk Hills Field, Kern County, California: Phase 2 report, Volume 1

    SciTech Connect (OSTI)

    Not Available

    1988-06-01

    Jerry R. Bergeso and Associates, Inc. (Bergeson) has completed Phase II of the Reservoir Analysis, Naval Petroleum Reserve Number 1, Elk Hills Oilfield, California. The objectives for this phase of the study included the establishment of revised estimates of the original oil and gas-in-place for each of the zones/reservoirs, estimation of the remaining proved developed, proved undeveloped, probable and possible reserves, and assessment of the effects of historical development and production operations and practices on recoverable reserves. Volume one contains the following: summary; introduction; and reservoir studies for tulare, dry gas zone, eastern shallow oil zone, western shallow oil zone, and Stevens --MBB/W31S, 31S NA/D.

  13. Measurement of airborne fission products in Chapel Hill, NC, USA from the Fukushima Dai-ichi reactor accident

    E-Print Network [OSTI]

    S. MacMullin; G. K. Giovanetti; M. P. Green; R. Henning; R. Holmes; K. Vorren; J. F. Wilkerson

    2012-10-03

    We present measurements of airborne fission products in Chapel Hill, NC, USA, from 62 days following the March 11, 2011, accident at the Fukushima Dai-ichi nuclear power plant. Airborne particle samples were collected daily in air filters and radio-assayed with two high-purity germanium (HPGe) detectors. The fission products I-131 and Cs-137 were measured with maximum activities of 4.2 +/- 0.6 mBq/m^3 and 0.42 +/- 0.07 mBq/m^3 respectively. Additional activity from I-131, I-132, Cs-134, Cs-136, Cs-137 and Te-132 were measured in the same air filters using a low-background HPGe detector at the Kimballton Underground Research Facility (KURF).

  14. Western Shallow Oil Zone, Elk Hills Field, Kern County, California: General reservoir study, Appendix 3, Second Wilhelm Sand

    SciTech Connect (OSTI)

    Carey, K.B.

    1987-09-01

    The general Reservoir Study of the Western Shallow Oil Zone was prepared by Evans, Carey and Crozier as Task Assignment 009 under Contract No. DE-ACO1-85FE60600 with the United States Department of Energy. This study Appendix III, the second Wilhelm Sand and it's sub units and pools. Basic pressure, production and assorted technical data were provided by the U.S. Department of Energy staff at Elk Hills. These data were accepted as furnished with no attempt being made by Evans, Carey and Crozier for independent verification. This study has identified the petrophysical properties and the past productive performance of the reservoir. Primary reserves have been determined and general means of enhancing future recovery have been suggested. It is hoped that this volume can not additionally serve as a take off point for exploitation engineers to develop specific programs towards these ends. 15 figs., 9 tabs.

  15. Western Shallow Oil Zone, Elk Hills Field, Kern County, California: General Reservoir Study: Appendix 6, First Calitroleum Sand

    SciTech Connect (OSTI)

    Carey, K.B.

    1987-09-01

    The general Reservoir Study of the Western Shallow Oil Zone was prepared by Evans, Carey and Crozier as Task Assignment 009 under Contract No. DE-ACO1-85FE60600 with the United States Department of Energy. This study, Appendix VI, addresses the first Calitroleum Sand and its sub units and pools. Basic pressure, production and assorted technical data were provided by the U.S. Department of Energy staff at Elk Hills. These data were accepted as furnished with no attempt being made by Evans, Carey and Crozier for independent verification. This study has identified the petrophysical properties and the past productive performance of the reservoir. Primary reserves have been determined and general means of enhancing future recovery have been suggested. It is hoped that this volume can now additionally serve as a take off point for exploitation engineers todevelop specific programs towards these ends. 12 figs., 9 tabs.

  16. Western Shallow Oil Zone, Elk Hills Field, Kern County, California: General reservoir study: Appendix 7, Second Calitroleum Sand

    SciTech Connect (OSTI)

    Carey, K.B.

    1987-09-01

    The general Reservoir Study of the Western Shallow Oil Zone was prepared by Evans, Carey and Crozier as Task Assignment 009 under Contract No. DE-AC0185FE60600 with the United States Department of Energy. This study, Appendix VII, the second Calitroleum Sand and its sub units and pools. Basic pressure, production and assorted technical data were provided by the U.S. Department of Energy staff at Elk Hills. These data were accepted as furnished with no attempt being made by Evans, Carey and Crozier for independent verfication. This study has identified the petrophysical properties and the past productive performance of the reservoir. Primary reserves have been determined and general means of enhancing futuree recovery have been suggested. It is hoped that this volume can now additionally serve as a take off point for exploitation engineers to develop specific programs towards these ends. 13 figs., 9 tabs.

  17. 2008 Universities Federation for Animal Welfare The Old School, Brewhouse Hill, Wheathampstead,

    E-Print Network [OSTI]

    behaviour of dominant males in mixed groups, pit digging and territoriality whereas a lack of substrate was characterised by increased chafing and inactivity. Vacuum-pit digging was also observed. Frequency of aggression and husbandry standards as well as legislative requirements have been established in a number of different areas

  18. Particle radiography of high energy density plasmas Supervisors: M. Borghesi (QUB), M. Hill (AWE plc)

    E-Print Network [OSTI]

    Paxton, Anthony T.

    of relevance to fundamental plasma physics, to schemes for energy production via thermonuclear fusion (Inertial Fusion Energy, IFE), and to laboratory-based studies of astrophysical phenomena. The extreme acceleration, and filamentation, which are of relevance to areas such as Inertial Confinement Fusion

  19. Elk Hills Endangered Species Program: environmental assessment of the blunt-nosed leopard lizard, Crotaphytus silus. Phase 2, 1980

    SciTech Connect (OSTI)

    Mullen, R.K.

    1981-02-01

    This report represents an extension of previous findings concerning the status of the endangered species, Crotaphytus silus (blunt-nosed leopard lizard) on the Naval Petroleum Reserve Number 1 (NPR-1), Elk Hills, California. Previous findings in 1979 were limited to superficial observations of the occurrence and distribution of C. silus on NPR-1. The present report details findings from more extensive field work conducted from late May to early August 1980, and complements the 1979 work. The ultimate purpose of the investigations reported here is to provide sufficient bases for making informed decisions concerning the relationships of present and possible future oil-related activities at Elk Hills to the status of C. silus. There have been no particularly unique life history indicators of environmental impact on C. silus mediated through activities on NPR-1. Observations may be made, however, on the seasonal correlates of such activities: (1) individual C. silus may be buried or fatally exposed to the environment by construction activities occurring during the species' hibernation; (2) during periods when adult C. silus is active on the surface, construction activities may displace individuals that may not then be able to successfully occupy a new range, although it is to be noted in this regard that the home range of the species can be rather plastic; (3) construction activities bury or expose nest chambers of C. silus. This would unfavorably affect an average of three potential hatchlings with each burial or exposure; and (4) construction occurring when only (or predominantly) hatchlings are active on the surface may affect animals less able to avoid these activities than adults. In addition, hibernating adults will be affected, as previously noted.

  20. Neutron Science Research Areas | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home | Science & Discovery | Neutron Science | Research Areas SHARE Research Areas Neutron scattering research at ORNL covers four broad research areas: biology and soft...

  1. Geographic Area Month

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Fuels by PAD District and State (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month No. 1 Distillate No. 2 Distillate a No. 4 Fuel b Sales to End Users Sales for...

  2. Decontamination & decommissioning focus area

    SciTech Connect (OSTI)

    1996-08-01

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  3. 300 Area Disturbance Report

    SciTech Connect (OSTI)

    LL Hale; MK Wright; NA Cadoret

    1999-01-07

    The objective of this study was to define areas of previous disturbance in the 300 Area of the U.S. Department of Energy (DOE) Hanford Site to eliminate these areas from the cultural resource review process, reduce cultural resource monitoring costs, and allow cultural resource specialists to focus on areas where subsurface disturbance is minimal or nonexistent. Research into available sources suggests that impacts from excavations have been significant wherever the following construction activities have occurred: building basements and pits, waste ponds, burial grounds, trenches, installation of subsurface pipelines, power poles, water hydrants, and well construction. Beyond the areas just mentioned, substrates in the' 300 Area consist of a complex, multidimen- sional mosaic composed of undisturbed stratigraphy, backfill, and disturbed sediments; Four Geographic Information System (GIS) maps were created to display known areas of disturbance in the 300 Area. These maps contain information gleaned from a variety of sources, but the primary sources include the Hanford GIS database system, engineer drawings, and historic maps. In addition to these maps, several assumptions can be made about areas of disturbance in the 300 Area as a result of this study: o o Buried pipelines are not always located where they are mapped. As a result, cultural resource monitors or specialists should not depend on maps depicting subsurface pipelines for accurate locations of previous disturbance. Temporary roads built in the early 1940s were placed on layers of sand and gravel 8 to 12 in. thick. Given this information, it is likely that substrates beneath these early roads are only minimally disturbed. Building foundations ranged from concrete slabs no more than 6 to 8 in. thick to deeply excavated pits and basements. Buildings constructed with slab foundations are more numerous than may be expected, and minimally disturbed substrates may be expected in these locations. Historic black and white photographs provide a partial record of some excavations, including trenches, building basements, and material lay-down yards. Estimates of excavation depth and width can be made, but these estimates are not accurate enough to pinpoint the exact location where the disturbedhmdisturbed interface is located (e.g., camera angles were such that depths and/or widths of excavations could not be accurately determined or estimated). In spite of these limitations, these photographs provide essential information. Aerial and historic low-level photographs have captured what appears to be backfill throughout much of the eastern portion of the 300 Area-near the Columbia River shoreline. This layer of fill has likely afforded some protection for the natural landscape buried beneath the fill. This assumption fits nicely with the intermittent and inadvertent discoveries of hearths and stone tools documented through the years in this part of the 300 Area. Conversely, leveling of sand dunes appears to be substantial in the northwestern portion of the 300 Area during the early stages of development. o Project files and engineer drawings do not contain information on any impromptu but necessary adjustments made on the ground during project implementation-after the design phase. Further, many projects are planned and mapped but never implemented-this information is also not often placed in project files. Specific recommendations for a 300 Area cultural resource monitoring strategy are contained in the final section of this document. In general, it is recommended that monitoring continue for all projects located within 400 m of the Columbia River. The 400-m zone is culturally sensitive and likely retains some of the most intact buried substrates in the 300 Area.

  4. Fenton Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop,ErosionNewCoalFarmlandExpress JumpWindWindWind Power

  5. Preliminary Notice of Violation, CH2M HILL Hanford Group, Inc. -

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary Areas ofEnergyCorpsDepartment of Energy 8 Issued

  6. Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc - EA-2005-01

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary Areas ofEnergyCorpsDepartment of Energy 8 Issued|

  7. Preliminary Notice of Violation, Kaiser-Hill Company - EA-97-03 |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary Areas ofEnergyCorpsDepartment ofDepartment ofDepartment of

  8. Preliminary Notice of Violation, Kaiser-Hill Company, LLC - EA-1999-06 |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary Areas ofEnergyCorpsDepartment ofDepartment ofDepartment

  9. Preliminary Notice of Violation, Kaiser-Hill Company, LLC - EA-2000-05 |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary Areas ofEnergyCorpsDepartment ofDepartmentDepartment of

  10. Preliminary Notice of Violation, Kaiser-Hill Company, LLC - EA-2001-04 |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary Areas ofEnergyCorpsDepartment ofDepartmentDepartment

  11. Preliminary Notice of Violation, Kaiser-Hill Company, LLC - EA-96-04 |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary Areas ofEnergyCorpsDepartment

  12. Preliminary of Violation, Kaiser-Hill Company, LLC, - EA-2004-02 |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary AreasDepartment of Energy 898-09 |

  13. What can be learned with a lead-based supernova-neutrino detector? Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599-3255

    E-Print Network [OSTI]

    Engel, Jonathan

    and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599-3255 G. C. McLaughlin Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202 C. Volpe Institut de Physique

  14. OLED area illumination source

    DOE Patents [OSTI]

    Foust, Donald Franklin (Scotia, NY); Duggal, Anil Raj (Niskayuna, NY); Shiang, Joseph John (Niskayuna, NY); Nealon, William Francis (Gloversville, NY); Bortscheller, Jacob Charles (Clifton Park, NY)

    2008-03-25

    The present invention relates to an area illumination light source comprising a plurality of individual OLED panels. The individual OLED panels are configured in a physically modular fashion. Each OLED panel comprising a plurality of OLED devices. Each OLED panel comprises a first electrode and a second electrode such that the power being supplied to each individual OLED panel may be varied independently. A power supply unit capable of delivering varying levels of voltage simultaneously to the first and second electrodes of each of the individual OLED panels is also provided. The area illumination light source also comprises a mount within which the OLED panels are arrayed.

  15. Geology and geothermal resources of the Santiam Pass area of the Oregon Cascade Range, Deschutes, Jefferson and Linn Counties, Oregon. Final report

    SciTech Connect (OSTI)

    Hill, B.E. [ed.

    1992-10-01

    This open-file report presents the results of the Santiam Pass drilling program. The first phase of this program was to compile all available geological, geophysical and geothermal data for the Santiam Pass area and select a drill site on the basis of these data (see Priest and others, 1987a), A summary of the drilling operations and costs associated with the project are presented in chapter 1 by Hill and Benoit. An Overview of the geology of the Santiam Pass area is presented by Hill and Priest in chapter 2. Geologic mapping and isotopic age determinations in the Santiam Pass-Mount Jefferson area completed since 1987 are summarized in chapter 2. One of the more important conclusions reached in chapter 2 is that a minimum of 2 km vertical displacement has occurred in the High Cascade graben in the Santiam Pass area. The petrology of the Santiam Pass drill core is presented by Hill in chapter 3. Most of the major volcanic units in the core have been analyzed for major, minor, and trace element abundances and have been studied petrographically. Three K-Ar ages are interpreted in conjunction with the magnetostratigraphy of the core to show that the oldest rocks in the core are approximately 1.8 Ma. Geothermal and geophysical data collected from the Santiam Pass well are presented by Blackwell in chapter 4. The Santiam Pass well failed to penetrate beneath the zone of lateral groundwater flow associated with highly permeable Quaternary volcanic rocks. Calculated geothermal gradients range from about 50{degree}C/km at depth 700-900 m, to roughly 110{degree}C/km from 900 m to the bottom of the well at 929 m. Heat-flow values for the bottom part of the hole bracket the regional average for the High Cascades. Blackwell concludes that heat flow along the High Cascades axis is equal to or higher than along the western edge of the High Cascades.

  16. Appendix: A catalogue of hydrogendeficient stars C.S. Jeffery 1 , U. Heber 2 , P.W. Hill 1 , S. Dreizler 3;2 , J.S. Drilling 4 ,

    E-Print Network [OSTI]

    Jeffery, Simon

    . Dreizler 3;2 , J.S. Drilling 4 , W.A. Lawson 5 , U. Leuenhagen 3 , K. Werner 6 1 Dept. of Physics to the proceedings of IAU Colloquium No. 87 on `Hydrogen­Deficient Stars and Related Objects' (Drilling & Hill 1986 of Variable Stars and by Drilling & Hill (1986). Table 2. A­and B­type extreme helium stars (EHe: e.g. HD

  17. Plutonium focus area

    SciTech Connect (OSTI)

    NONE

    1996-08-01

    To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this new approach, EM developed a management structure and principles that led to the creation of specific Focus Areas. These organizations were designed to focus the scientific and technical talent throughout DOE and the national scientific community on the major environmental restoration and waste management problems facing DOE. The Focus Area approach provides the framework for intersite cooperation and leveraging of resources on common problems. After the original establishment of five major Focus Areas within the Office of Technology Development (EM-50, now called the Office of Science and Technology), the Nuclear Materials Stabilization Task Group (EM-66) followed the structure already in place in EM-50 and chartered the Plutonium Focus Area (PFA). The following information outlines the scope and mission of the EM, EM-60, and EM-66 organizations as related to the PFA organizational structure.

  18. Subsurface contaminants focus area

    SciTech Connect (OSTI)

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

  19. Population Characteristics and Seasonal Movement Patterns of the Rattlesnake Hills Elk Herd - Status Report 2000

    SciTech Connect (OSTI)

    Tiller, Brett L; Cadwell, Larry L; Zufelt, Rhett K; Turner, Scott D; Turner, Gerald K

    2000-10-10

    Wildlife biologists documented an isolated elk population in 1972 on the U.S. Department of Energy's (DOE) Hanford Site. Since then the herd has grown, exceeding 800 animals in 1999. Limited harvests on adjacent private lands have occurred since 1986. The large herd size coupled with limited annual harvest have increased concerns about private land crop damages, vehicle collisions, degradation of the native environment, and the herd's use of radiologically controlled areas on the Hanford Site. As a result, in 1999, a decision was made by the Washington Department of Fish and Wildlife (WDFW) (animal management), the U.S. Fish and Wildlife Service (USFWS) (land management), and DOE (landowner) to conduct a large-scale animal roundup to remove elk from the DOE-owned lands and relocate them to distant areas within Washington State. The interagency roundup and relocation occurred in spring 2000. This report presents the current status of the herd size and composition, annual removal estimates, and some limited seasonal area-use patterns by several radio-collared elk subsequent to the large-scale elk roundup. The elk herd maintained an approximate 25% annual increase until 2000. A large harvest offsite in 1999 coupled with the large-scale roundup in spring 2000 reduced herd size to the current estimate of 660 animals. As of August 2000, the herd consisted of 287 (43%) males, 282 (42%) females, and 91 (13%) calves. There has been a notable cycling of calf recruitment rates throughout the 1990s and in 2000. Elk home-range estimates revealed a substantial decrease in summer home ranges in 2000, presumably, in part, as a result of the summer 2000 Hanford Site wildfire. Movement analysis also determined that, as population size increased, so has the frequency and extent of the animals' offsite movements, particularly on private lands adjacent to the Hanford Site in both spring and summer seasons. The frequency and duration of movements by male elk onto the central portions of the Hanford Site has increased substantially as the population increased.

  20. Reinterpretation of Rb/Sr isotopic data for the Little Elk Granite: Implications for the timing of deformational events, Black Hills, South Dakota

    SciTech Connect (OSTI)

    Dahl, P.S.; Gardner, E.T.; Holm, D.K. (Kent State Univ., OH (United States). Dept. of Geology)

    1993-04-01

    Early Proterozoic rift sediments in the Black Hills were multiply deformed (into refolded nappe structures) during the Trans-Hudson Orogeny, which culminated in Harney Peak Granite (HPG) emplacement at 1,715--1,697 Ma. A reset whole-rock Rb/Sr age of 1,840 [+-] 70 Ma obtained from the Archean (2,549 [+-] 11 Ma) Little Elk Granite (LEG, Zartman and Stern, 1967) is widely interpreted as being coeval with D2, based upon parallelism of gneissic foliation in the granite and F2 foliation predominant elsewhere in the Black Hills. However, the authors have recalculated the whole-rock Rb/Sr age by applying the IUGS-recommended [sup 87]Rb decay constant (Steiger and Jager, 1977) to the original isotopic data, obtaining a revised age of 1,905 [+-] 59 Ma. The authors interpret this age as representing a whole-rock isotopic resetting event associated with Early Proterozoic (2,170--1,880 Ma) rifting in the Black Hills. The authors envision the LEG to have experienced a convective hydrothermal fluid-flow regime associated with the rifting. This scenario would allow for the sustained heating and isotopic exchange between granite and abundant water-rich fluid (seawater ) that would be required to effect complete resetting of an Rb/Sr whole-rock isochron. They favor an age for the refolding event and the development of F2 structures that is more closely linked in time with HPG emplacement. Such an age is more compatible with published field/petrologic observations and Proterozoic tectonothermal models for the Black Hills.

  1. Production accounting and controls at the Naval Petroleum Reserve No. 1, Elk Hills, California

    SciTech Connect (OSTI)

    Not Available

    1987-07-17

    Purpose of the audit was to determine if the Reserve's crude oil and gas products were properly accounted for and controlled from well-head to ultimate use or sale and physical controls and security measures at the Reserve were sufficient to ensure that Government assets were safeguarded as required. Our review showed that the Reserve used sales rather than actual production as the basis for its production accounting process. This method of accounting gave the Reserve only an approximation of the oil and gas it produced. Security measures had been significantly improved since the Reserve was opened; however, there were certain well and tank site areas which were not adequately secured and safeguarded against loss. During the course of the audit, management took prompt action to enhance security procedures.

  2. Audit of joint owner costing and billing practices, Naval Petroleum Reserve No. 1, Elk Hills, California

    SciTech Connect (OSTI)

    Richards, J.R.

    1986-01-13

    The review showed a need for the Department to revise and strengthen cash management and cost allocation procedures and practices for jointly shared Reserve operating costs funded by the Government. The procedures and practices in effect for processing Joint Owner costs, billings and collections do not permit the Government to receive full advantage of the time value of money paid in behalf of Chevron or provide for the full sharing of all costs incurred by the Government to absorb unnecessary interest and operating costs since assuming responsibility for funding Reserve operations in October 1975. It is estimated that the Department would benefit by over $3 million per year if our recommendations in these areas are fully implemented.

  3. Neutral and ion composition changes in the F Region over Millstone Hill during the equinox transition study

    SciTech Connect (OSTI)

    Oliver, W.L.

    1990-04-01

    Overhead ionospheric incoherent scatter radar data from Millstone Hill is used to deduce the storm time variations of the thermospheric temperature, O and N2 densities, and F1 region ion composition during the Equinox Transition study of September 17-24, 1984. The measured neutral temperature profile and O density at 400 km altitude is extrapolated to determine O density changes in the lower thermosphere. Using these O densities and the measured electron densities, we deduce the variation of the N{sub 2} density. Our initial attempt leads to the deduction of large depletions in both O and N{sub 2} in the lower thermosphere. The radar-measured neutral temperatures were contaminated by ion-neutral frictional heating effects during the disturbed periods of the ETS and this served to invalidate neutral density extrapolations made with these temperatures. The height of 50% O+ ion composition in the F1 region and the height of the peak electron density in the ionosphere, are completed and compared. The height of the peak on the distributed days was located in the lower F1 region molecular-ion layer rather than in the F1 region O+ layer. This occurrance has serious consequences for methods of deducing neutral winds from the height of the F layer, for these methods rely on the peak containing primarily O+ ions.

  4. Depth and mineralogy of the magma source or pause region for the Carboniferous Liberty Hill pluton, South Carolina

    SciTech Connect (OSTI)

    Speer, J.A.

    1988-06-01

    Use of Al content geobarometry on clinopyroxene inclusions in plagioclase from the Carboniferous Liberty Hill pluton, South Carolina, yields pressure estimates of 8-10 kbar. Amphibole crystallization pressures are 3.1-4.7 kbar; contact metamorphic pressure are 4.5 kbar. Clinopyroxenes could be early crystallization products from the melt, restite crystals from the source region, xenocrysts from the magma conduit walls, or xenocrysts from a more mafic magma. Compositional uniformity of granitoid clinopyroxenes but dissimilarity with those in contemporaneous gabbroids is evidence against a xenocrystic origin. The deeper depths are interpreted as either the source region or a pausing place important in the crystallization history of the magma during its ascent to the upper crust. Early crystallization assemblage of the granitoid, and possibly the assemblage of the source region, was amphibole + clinopyroxene +/- plagioclase-bearing. An amphibolitic lower crustal source is consistent with the Sr and O isotopic and rare-earth-element studies of this and many other similar-age granitoids in the southern Appalachians.

  5. UONPR No. 1 Elk Hills: 26R reservoir: Reservoir analysis, reserves and economics, and alternative exploitation strategies: Final technical report

    SciTech Connect (OSTI)

    Not Available

    1989-01-12

    The 26R Stevens Reservoir is located along the southern, west-central flank of the Elk Hills structure in western Kern County, California. In September 1988, the 26R Reservoir produced an average of 22,447 barrels of oil per day from 46 producing wells. The average producing gas-oil ratio was 5912 cubic feet per barrel and the average water cut was 8.4%. The 26R Reservoir was put on production in July 1976, and gas injection for the purpose of pressure maintenance was initiated soon thereafter in October 1976. In September 1988, injection was an average of 168,911 Mcf/D into nine wells, which was in keeping with the policy of injecting 110% of calculated withdrawals. Gas production and residue gas injection are at or near current plant capacity. The purpose of this report is, therefore, to determine if current policy of full pressure maintenance is still viable, or if there is another exploitation option which would better result in maximizing both recovery of hydrocarbons and economic return. 16 figs., 18 tabs.

  6. Property description and fact-finding report for NPR-2, Buena Vista Hills Field, Kern County, California

    SciTech Connect (OSTI)

    NONE

    1996-06-01

    The US Department of Energy has asked Gustavson Associates, Inc. to serve as an Independent Petroleum Consultant under contract DE-AC01-96FE64202. This authorizes a study and recommendations regarding future development of Naval Petroleum Reserve No. 2 (NPR-2) in Kern County, California. The report that follows is the Phase 1 fact-finding and property description for that study. The United States of America owns 100 percent of the mineral rights and 96.1 percent of surface rights in 10,447 acres of the 30,182 acres contained within NPR-2. This property comprises the Buena Vista Hills Oil Field. Oil and gas companies have leased out 9,227 acres in 17 separate leases. Discovered in 1909, this field has approximately 435 active wells producing 2,819 gross barrels of oil and 8.6 million cubic feet of gas per day. Net production to the Government royalty interests include 200 barrels of oil per day and 750 thousand cubic feet of gas per day. Royalty revenues are about $1.7 million per year. Remaining recoverable reserves are approximately 407 thousand barrels of oil and 1.8 billion cubic feet of gas. Significant plugging and abandonment (P&A) and environmental liabilities are present, but these should be the responsibility of the lessees. Ultimate liability still rests with the United States and may increase as the leases are sold to smaller and smaller operators.

  7. Sonar atlas of caverns comprising the U.S. Strategic Petroleum Reserve. Volume 2, Big Hill Site, Texas.

    SciTech Connect (OSTI)

    Rautman, Christopher Arthur; Lord, Anna Snider

    2007-08-01

    Downhole sonar surveys from the four active U.S. Strategic Petroleum Reserve sites have been modeled and used to generate a four-volume sonar atlas, showing the three-dimensional geometry of each cavern. This volume 2 focuses on the Big Hill SPR site, located in southeastern Texas. Volumes 1, 3, and 4, respectively, present images for the Bayou Choctaw SPR site, Louisiana, the Bryan Mound SPR site, Texas, and the West Hackberry SPR site, Louisiana. The atlas uses a consistent presentation format throughout. The basic geometric measurements provided by the down-cavern surveys have also been used to generate a number of geometric attributes, the values of which have been mapped onto the geometric form of each cavern using a color-shading scheme. The intent of the various geometrical attributes is to highlight deviations of the cavern shape from the idealized cylindrical form of a carefully leached underground storage cavern in salt. The atlas format does not allow interpretation of such geometric deviations and anomalies. However, significant geometric anomalies, not directly related to the leaching history of the cavern, may provide insight into the internal structure of the relevant salt dome.

  8. Program Areas | National Security | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organizations National Security Home | Science & Discovery | National Security | Program Areas SHARE Program Areas image Oak Ridge National Laboratory (ORNL) has a robust...

  9. 100 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopmentataboutScalablePhysicist: Christian Bauer 101000 Area

  10. 300 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.TheoryTuesday, August 10, 20102016 News Below are newsBelle-IIProcesses -1300 Area

  11. 700 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.TheoryTuesday, August 10, 20102016 News Below are4B Drawings 4B618-10 and700 Area

  12. Tank Farm Area Closure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S. Coal StocksSuppliers Tag:Take Action APPENDIX-11CoverArea

  13. Tank Farm Area Closure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S. Coal StocksSuppliers Tag:Take Action APPENDIX-11CoverArea

  14. Material Disposal Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS onBudgetMaterial Disposal Areas Material

  15. datamanagementgroup 2011 SURVEY AREA SUMMARY

    E-Print Network [OSTI]

    Toronto, University of

    Collingwood CFB Borden 0 10 20 Kilometers Area = 521,900 Hectares #12;POPULATION CHARACTERISTICS Population

  16. Seferihisar Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,SageScheucoSedco Hills, California: EnergySeeo, Inc Smart

  17. Mount Amiata Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformation MontanaOhio:Hill,Morrisville,Mount Airy, Maryland:

  18. Lightning Dock Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona: EnergyLebanonTexas:Hill, Texas:Controls/Sensors Jump

  19. Lihir Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona: EnergyLebanonTexas:Hill,Photovoltaic Jump to: navigation,

  20. Sediment Properties: E-Area Completion Project

    SciTech Connect (OSTI)

    Millings, M.; Bagwell, L.; Amidon, M.; Dixon, K.

    2011-04-29

    To accommodate a future need for additional waste disposal facilities at the Savannah River Site, the Solid Waste Management Division (SWMD) designated nine additional plots for development (Kasraii 2007; SRS 2010); these plots are collectively known as the E Area Completion Project (ECP). Subsurface samples were collected from ECP plots 6, 7, 8 and 9 (Figure 1) for chemical and physical property analyses to support Performance Assessment (PA) and Special Analyses (SA) modeling. This document summarizes the sampling and analysis scheme and the resultant data, and provides interpretations of the data particularly in reference to existing soil property data. Analytical data in this document include: gamma log, cone penetrometer log, grain size (sieve and hydrometer), water retention, saturated hydraulic conductivity (falling head permeameter), porosity, dry bulk density, total organic carbon, x-ray diffraction, and x-ray fluorescence data. SRNL provided technical and safety oversight for the fieldwork, which included completion of eight soil borings, four geophysical logs, and the collection of 522 feet of core and 33 Shelby tubes from ECP plots 6, 7, 8, and 9. Boart Longyear provided sonic drilling and logging services. Two soil borings were completed at each location. The first set of boreholes extended into (but did not fully penetrate) the Warley Hill Formation. These boreholes were continuously cored, then geophysically (gamma ray) logged. The recovered core was split, photographed, and described; one half of the core was archived at SRS's Core Lab facilities, and the remaining half was consumed as necessary for testing at SRS and off-site labs. Core descriptions and geophysical data were used to calculate target elevations for Shelby tube samples, which were obtained from the second set of boreholes. Shelby tubes were shipped to MACTEC Engineering and Consulting Inc. (MACTEC) in Atlanta for physical property testing. SRNL deployed their Site Characterization and Analysis Penetrometer System (SCAPS) cone penetrometer test (CPT) truck at ECP plots 6, 7, 8 and 9 to collect inferred lithology data for the vadose zone. Results from this study are used to make recommendations for future modeling efforts involving the ECP plots. The conceptual model of the ECP hydrogeology differs from the conceptual model of the current ELLWF disposal area in that for the ECP plots, the topography (ground surface) is generally lower in elevation; The Upland and top of Tobacco Road lithostratigraphic units are missing (eroded); The water table occurs lower in elevation (i.e., it occurs in lower stratigraphic units); and the Tan Clay Confining Zone (TCCZ) often occurs within the vadose zone (rather than in the saturated zone). Due to the difference in the hydrogeology between the current ELLWF location and the ECP plots, different vadose zone properties are recommended for the ECP plots versus the properties recommended by Phifer et al. (2006) for the current disposal units. Results from this study do not invalidate or conflict with the current PA's use of the Upper and Lower Vadose Zone properties as described by Phifer et al. (2006) for the current ELLWF disposal units. The following modeling recommendations are made for future modeling of the ECP plots where vadose zone properties are required: (1) If a single vadose zone property is preferred, the properties described by Phifer et al. (2006) for the Upper Vadose Zone encompass the general physical properties of the combined sands and clays in the ECP vadose zone sediments despite the differences in hydrostratigraphic units. (2) If a dual zone system is preferred, a combination of the Lower Zone properties and the Clay properties described by Phifer et al. (2006) are appropriate for modeling the physical properties of the ECP vadose zone. The Clay properties would be assigned to the Tan Clay Confining Zone (TCCZ) and any other significant clay layers, while the Lower Zone properties would be assigned for the remainder of the vadose zone. No immediate updates or changes are recommended for

  1. Neutral and ion composition changes in the F region over Millstone Hill during the equinox transition study

    SciTech Connect (OSTI)

    Oliver, W.L. (Boston Univ., MA (United States))

    1990-04-01

    The author uses overhead ionospheric incoherent scatter radar data from Millstone Hill to deduce the stormtime variations of the thermospheric temperature, O and N{sub 2} densities, and F{sub 1} region ion composition during the Equinox Transition Study of September 17-24, 1984. Using the measured neutral temperature profile and O density at 400 km altitude, they extrapolate to determine O density changes in the lower thermosphere. Using these O densities and the measured electron densities, he deduces the variation of the N{sub 2} density. His initial attempt leads to the deduction of large depletions in both O and N{sub 2} in the lower thermosphere. On using the MSIS model neutral temperatures for the extrapolation, however, he computes O depletions having magnitudes more comparable with theoretical predictions and N{sub 2} variations consistent with expected thermal expansion effects. He speculates that the radar-measured neutral temperature were contaminated by ion-neutral frictional heating effects during the disturbed periods of the ETS and that this served to invalidate neutral density extrapolations made with these temperatures. Further, they computes the height of 50% O{sup +} ion composition in the F{sub 1} region and the height of the peak electron density in the ionosphere, and, upon comparing these, find that the height of the peak on the disturbed days was located in the lower F{sub 1} consequences for methods of deducing neutral winds from the height of the F layer, for these methods rely on the peak containing primarily O{sup +} ions.

  2. T-1 Training Area

    ScienceCinema (OSTI)

    None

    2015-01-09

    Another valuable homeland security asset at the NNSS is the T-1 training area, which covers more than 10 acres and includes more than 20 separate training venues. Local, County, and State first responders who train here encounter a variety of realistic disaster scenarios. A crashed 737 airliner lying in pieces across the desert, a helicopter and other small aircraft, trucks, buses, and derailed train cars are all part of the mock incident scene. After formal classroom education, first responders are trained to take immediate decisive action to prevent or mitigate the use of radiological or nuclear devices by terrorists. The Counterterrorism Operations Support Center for Radiological Nuclear Training conducts the courses and exercises providing first responders from across the nation with the tools they need to protect their communities. All of these elements provide a training experience that cannot be duplicated anywhere else in the country.

  3. T-1 Training Area

    SciTech Connect (OSTI)

    2014-11-07

    Another valuable homeland security asset at the NNSS is the T-1 training area, which covers more than 10 acres and includes more than 20 separate training venues. Local, County, and State first responders who train here encounter a variety of realistic disaster scenarios. A crashed 737 airliner lying in pieces across the desert, a helicopter and other small aircraft, trucks, buses, and derailed train cars are all part of the mock incident scene. After formal classroom education, first responders are trained to take immediate decisive action to prevent or mitigate the use of radiological or nuclear devices by terrorists. The Counterterrorism Operations Support Center for Radiological Nuclear Training conducts the courses and exercises providing first responders from across the nation with the tools they need to protect their communities. All of these elements provide a training experience that cannot be duplicated anywhere else in the country.

  4. DOE Designates Southwest Area and Mid-Atlantic Area National...

    Energy Savers [EERE]

    Corridors DOE Designates Southwest Area and Mid-Atlantic Area National Interest Electric Transmission Corridors October 2, 2007 - 2:50pm Addthis WASHINGTON, DC - U.S. Department...

  5. Characterization of Vadose Zone Sediment: Slant Borehole SX-108 in the S-SX Waste Management Area

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Last, George V.; Schaef, Herbert T.; Lanigan, David C.; Lindenmeier, Clark W.; Ainsworth, Calvin C.; Clayton, Ray E.; Legore, Virginia L.; O'Hara, Matthew J.; Brown, Christopher F.; Orr, Robert D.; Kutnyakov, Igor V.; Wilson, Teresa C.; Wagnon, Kenneth B.; Williams, Bruce A.; Burke, Deborah S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Table 4.17. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in February 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is the fourth in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from a slant borehole installed beneath tank SX-108 (or simply SX-108 slant borehole).

  6. Characterization of Vadose Zone Sediment: Borehole 41-09-39 in the S-SX Waste Management Area

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Last, George V.; Schaef, Herbert T.; Lanigan, David C.; Lindenmeier, Clark W.; Ainsworth, Calvin C.; Clayton, Ray E.; Legore, Virginia L.; O'Hara, Matthew J.; Brown, Christopher F.; Orr, Robert D.; Kutnyakov, Igor V.; Wilson, Teresa C.; Wagnon, Kenneth B.; Williams, Bruce A.; Burke, Deborah S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Table 5.15. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in February 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is one in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from borehole 41-09-39 installed adjacent to tank SX-109.

  7. The use of logistic regression to model the probability of oak wilt occurrence in the Texas hill country using forest stand and site characteristics 

    E-Print Network [OSTI]

    Dignum, David Rory

    1988-01-01

    , such as logistic regression analysis, to differentiate b G. ~f if . d d . ' f d d b d d and site characteristics. Had a significant logistic model been produced, landowners would have been able to reduce the risk of incidence through proper management. Stand...THE USE OF LOGISTIC REGRESSION TO MODEL THE PROBABILITY OF OAK MILT OCCURRENCE IN THE TEXAS HILL COUNTRY USING FOREST STAND AND SITE CHARACTERISTICS A Thesis by DAVID RORY DIGNUM Submitted to the Graduate College of Texas Afdi University...

  8. Video camera log used for water isolation in the Main Body B pool, Elk Hills field, Kern Co., California -- Water and oil identification

    SciTech Connect (OSTI)

    Starcher, M.G.; Murphy, J.R.; Alexander, P.D.; Whittaker, J.L.

    1995-12-31

    The Main Body B reservoir in the Elk Hills Field is a peripherally waterflooded, +400 ft thick series of layered, turbidite Stevens sands. Permeability variation between layers adversely affects the vertical sweep, resulting in production from lower permeability oil sands dominated by production from higher permeability sands. This paper discusses the unique use of various tools to identify water zones to isolate and oil zones to stimulate. Tools used to identify water and oil entry are discussed with respect to their capabilities of identifying oil and water entry into the wellbore.

  9. Voluntary Protection Program Onsite Review, CH2M HILL B&W West Valley LLC, West Valley Demonstration Project Â… October 2013

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-Sessions | Department ofVPV-SiteTestingOfficeU.S. DepartmentVPPPAM HILL B&W

  10. State College Area High School From State College, PA Wins DOE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High School, Fort Collins, Colorado Regina Education Center, Iowa City, Iowa Smokey Hill High School, Aurora, Colorado The Harker School, San Jose, California Thomas...

  11. F Reactor Area Cleanup Complete

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – U.S. Department of Energy (DOE) contractors have cleaned up the F Reactor Area, the first reactor area at the Hanford Site in southeastern Washington state to be fully remediated.

  12. Monroe Urbanized Area MTP 2035 

    E-Print Network [OSTI]

    Monroe Urbanized Area Metropolitan Planning Organization

    2010-10-31

    /plain; charset=ISO-8859-1 Monroe Urbanized Area MTP 2035 The 2035 Metropolitan Transportation Plan for the Monroe Urbanized Area Developed for The Monroe Urbanized Area Metropolitan Planning Organization and The Louisiana Department... of Transportation and Development Developed by In association with Neel-Schaffer, Inc. **DRAFT** Adopted Date Here This document was prepared in cooperation with: The Monroe Urbanized Area MPO Technical Advisory Committee and The Louisiana...

  13. Communication in Home Area Networks

    E-Print Network [OSTI]

    Wang, Yubo

    2012-01-01

    used in area like smart buildings, street light controls andbuilding. This section focuses on HAN design to address two smart

  14. datamanagementgroup 2011 SURVEY AREA SUMMARY

    E-Print Network [OSTI]

    Toronto, University of

    RidgeRd. SimcoeSt. Hwy.7&12 RegRd.57 0 4 8 Kilometers Area = 51,980 Hectares #12;POPULATION CHARACTERISTICSdatamanagementgroup 2011 SURVEY AREA SUMMARY DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY Drivers Vehicles Trips/day 2011 2006 1996 1986 datamanagementgroup 2011 SURVEY AREA SUMMARY DEPARTMENT

  15. datamanagementgroup 2011 SURVEY AREA SUMMARY

    E-Print Network [OSTI]

    Toronto, University of

    .7 4.1 5.8 27.9 TRIPS MADE TO TTS AREA 4,070,800 22.8% 51% 22% 6% 21% 61% 13% 12% 2% 8% 4% 7.1 3.3 7datamanagementgroup 2011 SURVEY AREA SUMMARY DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF TORONTO PREPARED BY 5 TRANSPORTATION TOMORROW SURVEY AREA City of Orillia Durham Region City

  16. An Archaeological Survey for the Woodrow-Osceola Water Supply Corporation Water System Improvements Project in Hill County Texas 

    E-Print Network [OSTI]

    Moore, William

    2015-07-15

    ). In all, 69 acres were examined, and no archaeological sites were found to be within any of the 15 areas. The Jawbone Cemetery and Blanton Cemetery are near the project area, but they will not be affected. It is recommended that construction of the water...

  17. Seven: Justice for Janitors in Los Angeles

    E-Print Network [OSTI]

    Erikson, Christopher; Fisk, Catherine; Milkman, Ruth; Mitchell, Daniel J.B.; Wong, Kent

    2002-01-01

    Oaks, Woodland Hills/West Valley Area 5 = Other areas ofOaks, Woodland Hills/West Valley. Area 3: Greater Los

  18. Unions and Low-Wage Immigrant Workers: Lessons from the Justice for Janitors Campaign in Los Angeles, 1990- 2002

    E-Print Network [OSTI]

    Erickson, Christopher L.; Fisk, Catherine; Milkman, Ruth; Mitchell, Daniel J.B.; Wong, Kent

    2002-01-01

    Oaks, Woodland Hills/West Valley. Area 3: Greater LosOaks, Woodland Hills/West Valley Area 5 = Other areas of

  19. Report on inspection of concerns regarding DOE`s evaluation of Chevron USA`s unsolicited proposal for the Elk Hills Naval Petroleum Reserve

    SciTech Connect (OSTI)

    NONE

    1997-11-17

    An allegation was made to the Office of Inspector General (OIG) that the integrity of the Department of Energy`s (DOE) unsolicited proposal review process may have been compromised by the actions of a former Deputy Secretary of Energy and his Executive Assistant during the review of an unsolicited proposal received from Chevron U.S.A. Production Company (Chevron) in may 1993. The Chevron unsolicited proposal was for the management and operation of DOE`s Elk Hills Naval Petroleum Reserve (Elk Hills), located near Bakersfield, California. Chevron submitted the unsolicited proposal on May 19, 1993. DOE formally rejected Chevron`s unsolicited proposal in May 1995. Although Chevron`s unsolicited proposal was eventually rejected by DOE, the complainant specifically alleged that the {open_quotes}sanctity, integrity, and sensitivity{close_quotes} of the unsolicited proposal review process had been breached in meetings during the Fall of 1993 between Chevron officials, the Deputy Secretary of Energy (Deputy Secretary), and his Executive Assistant. Based on our review of the allegation, we identified the following issue as the focus of our inspection.

  20. Geothermal resource area 9: Nye County. Area development plan

    SciTech Connect (OSTI)

    Pugsley, M.

    1981-01-01

    Geothermal Resource area 9 encompasses all of Nye County, Nevada. Within this area there are many different known geothermal sites ranging in temperature from 70/sup 0/ to over 265/sup 0/ F. Fifteen of the more major sites have been selected for evaluation in this Area Development Plan. Various potential uses of the energy found at each of the resource sites discussed in this Area Development Plan were determined after evaluating the area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities, and comparing those with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories certain subdivisions were considered separately. The findings about each of the 15 geothermal sites considered in this Area Development Plan are summarized.