Powered by Deep Web Technologies
Note: This page contains sample records for the topic "area crane creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Crane Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica NREL CooperationCraighead Electric

2

Geology of the Salt Creek area, Mason County, Texas  

E-Print Network [OSTI]

and to the entrapment of. surface water in the fractures. GEOLXiBPBOLOGY The Salt Creek area in @aeon County, Texas is located on the southwestern flank of the Llano Uplift, a structural dome which has been reduced to a topographic basin by erosional processes.... STSUCT "SALCEOL00Y IIegional Structure The Llano region, which includes the Salt Creek area, is a structural dome which has been reduced to a topographic basin by erosional processes. The dose is roughly elliptical with a maximum diameter...

Harwood, William Eugene

1959-01-01T23:59:59.000Z

3

E-Print Network 3.0 - area battlement creek Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Units Calwater Subbasins ---(Planning Watersheds) 88,763 Acres 18060001 3304120101 Kings Creek (7770 Acres) Summary: Area Hydrologic Units Calwater Subbasins --- (Planning...

4

E-Print Network 3.0 - area battle creek Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Units Calwater Subbasins ---(Planning Watersheds) 88,763 Acres 18060001 3304120101 Kings Creek (7770 Acres) Summary: Area Hydrologic Units Calwater Subbasins --- (Planning...

5

Geology of the Middle Beaver Creek area, Mason and Gillespie Counties, Texas  

E-Print Network [OSTI]

AREA, NASGR AEG GILhNPIR COGRTIES, TEIAB ABSTRACT The Middle Beaver Creek area is situated on the soutlwsst flank of the Llano ?plift region in Mason and Gillespie Counties, Texas Hooks of Presa?brian, Psleosoie, Mesosois, and Genosois age... ' Figure 1. ? Map of' part of Mason and Gillespie Counties, Texass showing location of' the Middle Beaver Creek Area, on aoetats oosered aerial photographs. In order to aoourateIp locate and plot the oontaots asd faults, the photographs vere studies...

Peterson, Don Hamilton

1959-01-01T23:59:59.000Z

6

Hydrocarbon trapping mechanisms in the Miller Creek area of the Powder River Basin, Wyoming  

E-Print Network [OSTI]

'' 1975 43'W'79 ABSTRACT Hydrocarbon Trapoing Mechanisms in the Miller Creek Area of the Powder River Basin, Wyoming. (May 1975) Jennifer Ann Armstrong, B. S. , University of Texas at Austin Chairman of Advisory Committee: 17r. Robert. R. Berg...

Armstrong, Jennifer Ann

1975-01-01T23:59:59.000Z

7

Smith Creek Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement,SmartestEnergy Ltd Jump to:Creek Valley

8

Owl Creek Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrange County is aOrmesa IOvonic Battery CompanyOwl Creek

9

Big Creek Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass FacilityOregon: EnergyBiofuelsBig BendCreek Hot

10

Indian Creek Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place: Eden Prairie, Minnesota Zip: 55344ESMAP LowChange |Creek

11

Structural geology of the Irons Fork - North Fork Creek area, Lake Ouachita, Arkansas  

E-Print Network [OSTI]

by the Missouri Mountain shale, which is Silurian in age. The Blaylock sandstone, which is between the Polk Creek and Missouri Mount- ain shales in the southern Ouachitas, is absent in the study area. The Missouri Mountain contains olive brown to buff colored... estimated for the Missouri Mountain (Haley snd others, 1973b). Devonian ? Mississi ian S stem Arkansas Hovaculite. The Arkansas Novaculite overlies the Missouri Mountain shale. It is one of the predominant formations in the study 12 area, the other...

White, Marjorie Ann

1980-01-01T23:59:59.000Z

12

Geology of the Little Bluff Creek Area, Mason County, Texas  

E-Print Network [OSTI]

of the reseax'ch ax ea. A ccaxprehensive report on the Elle~ger gx'oup cx centxal Texas was written by Cloud and Pernea in 1+S~ the Canbrian, Devonian, and Pennsylvanian strata were discussed briefly. Plucxxer (lg$0) prepared a detailed xepOxt coverin...'ea range in age froa Precasbrian to Recent. Along the eastern extreaitiea of this area, Precaub! ian schist and gxanite are exposed. Upper Caabrian aandatonea, lijaeatonea, and shalea occur in seventy-five per cent of the research area. Cretaceous...

Mangum, Charles Roland

1960-01-01T23:59:59.000Z

13

Scotch Creek Wildlife Area BPA Project #1996-094-01  

E-Print Network [OSTI]

Miles 0 100 Miles #12;Area History: Landscape · Early settlement · Homesteaded in late 1800's, first Suplementation #12;Immediate Management Needs ·Continue Maintenance on previous enhancements to ensure quality on new acquisitions #12;Long-term Management Needs ·Equipment/vehicle maintenance and/or replacement

14

Geology of the Upper Schep Creek area, Mason County, Texas  

E-Print Network [OSTI]

?od the stratigraphy of Texas and encoded tho definition of the Trinity group of tho Lo?or Cretaceous. (ln 1934), Sellards reported on the structure and paleogeography of tho Llano region. This evidenoe indicated a lfississippian age for the beginning of structural... study of the Elleaburger group of central Texas. This report also inoludes stratigraphio studies of the Cretaceous rooks of this region. plunnea" ~ (1900) report on the Carboniferous rocks of this area also included stratigraphy and geologic history...

Marshall, Hollis Dale

1959-01-01T23:59:59.000Z

15

Crane Test  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases on γ-Al2O3.Winter (Part 2) | DepartmentCrane

16

SWPF Crane Lift Operation  

SciTech Connect (OSTI)

A multiple vview shot of the SWPF crane lift operation at the Savannah River Site. Funded by the Recovery Act.

None

2010-01-01T23:59:59.000Z

17

The area of North King County was once forested with deep woods and braided with creeks, where wild-  

E-Print Network [OSTI]

The area of North King County was once forested with deep woods and braided with creeks, where wild distinct identities, of the historic communities of North King County. www.ci.woodinville.wa.us www and a jumping-off point for the Burke-Gilman trail. Tracy Owen was a King county council mem- ber from 1969

Yetisgen-Yildiz, Meliha

18

Crane Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to:InformationCrandall, Texas: Energy Resources

19

Geology of the Schep-Panther Creek Area, Mason County, Texas  

E-Print Network [OSTI]

Psiat Posh shale asahor QsrSsa Crash liosstoos asahsr salSs eass&t~ osahsr Rilar f~tiaa CJQOR14N SEMI All of the reoogafssd aaEwrs of the Upper Caabrisa fa the L)?ae uplift oro repreeeated is tho Bebop - yuatber Creek ense lUddle ~ a4 Loser...

Bryant, George Frank

1959-01-01T23:59:59.000Z

20

Camas Creek.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

would connect two separate protect- ed areas owned by the Idaho Department of Fish and Game, creating a contiguous wildlife area of almost 5,000 acres. Camas Creek and...

Note: This page contains sample records for the topic "area crane creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Columbia River Wildlife Mitigation Habitat Evaluation Procedures Report / Scotch Creek Wildlife Area, Berg Brothers, and Douglas County Pygmy Rabbit Projects.  

SciTech Connect (OSTI)

This Habitat Evaluation Procedure study was conducted to determine baseline habitat units (HUs) on the Scotch Creek, Mineral Hill, Pogue Mountain, Chesaw and Tunk Valley Habitat Areas (collectively known as the Scotch Creek Wildlife Area) in Okanogan County, Sagebrush Flat and the Dormaler property in Douglas County, and the Berg Brothers ranch located in Okanogan County within the Colville Reservation. A HEP team comprised of individuals from the Washington Department of Fish and Wildlife, the Confederated Tribes of the Colville Reservation, and the Natural Resources Conservation Service (Appendix A) conducted baseline habitat surveys using the following HEP evaluation species: mule deer (Odocoileus hemionus), sharp-tailed grouse (Tympanuchus phasianellus), pygmy rabbit (Brachylagus idahoensis), white-tailed deer (Odocoileus virginiana), mink (Mustela vison), Canada goose (Branta canadensis), downy woodpecker (Picoides pubescens), Lewis woodpecker (Melanerpes lewis), and Yellow warbler (Dendroica petechia). Results of the HEP analysis are listed below. General ratings (poor, marginal, fair, etc.,) are described in Appendix B. Mule deer habitat was marginal lacking diversity and quantify of suitable browse species. Sharp-tailed grouse habitat was marginal lacking residual nesting cover and suitable winter habitat Pygmy rabbit habitat was in fair condition except for the Dormaier property which was rated marginal due to excessive shrub canopy closure at some sites. This report is an analysis of baseline habitat conditions on mitigation project lands and provides estimated habitat units for mitigation crediting purposes. In addition, information from this document could be used by wildlife habitat managers to develop management strategies for specific project sites.

Ashley, Paul R.

1997-01-01T23:59:59.000Z

22

Vegetation trends in reclaimed areas at Gibbons Creek Lignite Mine, Grimes County, Texas  

SciTech Connect (OSTI)

Vegetation productivity and cover studies have been conducted annually at the Gibbons Creek Lignite Mine since 1989, and multiple annual clippings have been collected since 1991. The primary purpose of these studies was to examine revegetation success, in terms of herbaceous productivity, for various post-mine soil types. However, the studies also contain detailed information on species composition. For the years in which multiple annual clippings have been collected (1991 through 1996), total vegetation cover increased, with the mean proportion of bare ground dropping from 12% in 1991 to 1% in 1996. Relative proportions of most introduced and native grasses were virtually static from 1991 through 1994; in 1995, however, herbicide applications to reduce clover cover resulted in a dramatic increase in total grass cover, especially in bahiagrass (Paspalum notatum) and Indiangrass (Sorgastrum nutans). In contrast to the trends of other introduced and native grasses, bahiagrass increased in cover throughout the study period, increasing from 7% in 1991 to 21 % in 1996. Annual and weedy grass species decreased in cover throughout the study period, falling from 12% cover in 1991 to 2% in 1996. This trend of displacement of annuals by perennials is typically observed during ecological succession in natural vegetation communities, and appears to have been accelerated by the herbicide application.

Westerman, C.A. [Morrison Knudsen Corp., San Antonio, TX (United States)

1997-12-31T23:59:59.000Z

23

Spatial and temporal winter territory use and behavioral responses of whooping cranes to human activities  

E-Print Network [OSTI]

cranes during winter 2003-2004 and 2004-2005 at ANWR, Texas, USA? 20 3 Percent time spent in locomotion and flight by territorial whooping crane families throughout winter 2003-2004 and 2004-2005 at ANWR, Texas, USA...????????????????????????? 22 4 Mean movement velocity (meters traveled/min) of 5 whooping crane families during winter 2003-2004 and 2004-2005 at ANWR, Texas, USA?. 34 5 Area (ha) of each habitat type within the winter territory of 5 whooping...

LaFever, Kristin E.

2009-06-02T23:59:59.000Z

24

White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 3 Appendix C  

SciTech Connect (OSTI)

This report provides details on the baseline ecological risk assessment conducted in support of the Remedial Investigation (RI) Report for the Melton Valley areas of the White Oak Creek watershed (WOCW). The RI presents an analysis meant to enable the US Department of Energy (DOE) to pursue a series of remedial actions resulting in site cleanup and stabilization. The ecological risk assessment builds off of the WOCW screening ecological risk assessment. All information available for contaminated sites under the jurisdiction of the US Department of Energy`s Comprehensive Environmental Response, Compensation, and Liability Act Federal Facilities Agreement within the White Oak Creek (WOC) RI area has been used to identify areas of potential concern with respect to the presence of contamination posing a potential risk to ecological receptors within the Melton Valley area of the White Oak Creek watershed. The risk assessment report evaluates the potential risks to receptors within each subbasin of the watershed as well as at a watershed-wide scale. The WOC system has been exposed to contaminant releases from Oak Ridge National Laboratory and associated operations since 1943 and continues to receive contaminants from adjacent waste area groupings.

NONE

1996-11-01T23:59:59.000Z

25

Codornices Creek Corridor: Land Use Regulation, Creek Restoration, and their Impacts on the Residents Perceptions  

E-Print Network [OSTI]

and perception of biodiversity and ecology is their activecommunity and perception of area ecology: individual-levelOutcomes 2 & 3: Perception of Area Ecology & Creeks Role in

Stokenberga, Aiga; Sen, Arijit

2013-01-01T23:59:59.000Z

26

Crane Operation Training  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases on γ-Al2O3.Winter (Part 2) | DepartmentCrane Operational

27

Closure certification report for the Bear Creek burial grounds B area and walk-in pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

On July 5, 1993, the revised RCRA Closure Plan for the Bear Creek Burial Grounds B Area and Walk-In Pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, DOE/OR/01-1100&D3 and Y/ER-53&D3, was approved by the Tennessee Department of Environment and Conservation (TDEC). The closure activities described in that closure plan have been performed. The purpose of this document is to summarize the closure activities for B Area and Walk-In Pits (WIPs), including placement of the Kerr Hollow Quarry debris at the WIPs.

Not Available

1994-06-01T23:59:59.000Z

28

Remedial investigation work plan for the Upper East Fork Poplar Creek characterization area, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The Oak Ridge Y-12 Plant, located within the Oak Ridge Reservation (ORR), is owned by the US Department of Energy (DOE) and managed by Lockheed Martin Energy Systems, Inc. The entire ORR was placed on the National Priorities List (NPL) of CERCLA sites in November 1989. Following CERCLA guidelines, sites under investigation require a remedial investigation (RI) to define the nature and extent of contamination, evaluate the risks to public health and the environment, and determine the goals for a feasibility study (FS) of potential remedial actions. The need to complete RIs in a timely manner resulted in the establishment of the Upper East Fork Poplar Creek (UEFPC) Characterization Area (CA) and the Bear Creek CA. The CA approach considers the entire watershed and examines all appropriate media within it. The UEFPC CA, which includes the main Y-12 Plant area, is an operationally and hydrogeologically complex area that contains numerous contaminants and containment sources, as well as ongoing industrial and defense-related activities. The UEFPC CA also is the suspected point of origin for off-site groundwater and surface-water contamination. The UEFPC CA RI also will address a carbon-tetrachloride/chloroform-dominated groundwater plume that extends east of the DOE property line into Union Valley, which appears to be connected with springs in the valley. In addition, surface water in UEFPC to the Lower East Fork Poplar Creek CA boundary will be addressed. Through investigation of the entire watershed as one ``site,`` data gaps and contaminated areas will be identified and prioritized more efficiently than through separate investigations of many discrete units.

NONE

1995-09-01T23:59:59.000Z

29

RCRA closure plan for the Bear Creek Burial Grounds B Area and Walk- In Pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

In June 1987, the RCRA Closure/Postclosure Plan for the Bear Creek Burial Grounds (BCBG) was submitted to the Tennessee Department of Environment and Conservation (TDEC) for review and approval. TDEC modified and issued the plan approved on September 30, 1987. Subsequently, this plan was modified again and approved as Y/TS-395, Revised RCRA Closure Plan for the Bear Creek Burial Grounds (February 29, 1988). Y/TS-395 was initially intended to apply to A Area, C-West, B Area, and the Walk-In Pits of BCBG. However, a concept was developed to include the B Area (non-RCRA regulated) in the Walk-In Pits so that both areas would be closed under one cap. This approach included a tremendous amount of site preparation with an underlying stabilization base of 16 ft of sand for blast protection. The plan was presented to the state of Tennessee on March 8, 1990, and the Department of Energy was requested to review other unique alternatives to close the site. This amended closure plan goes further to include inspection and maintenance criteria along with other details.

Not Available

1993-01-01T23:59:59.000Z

30

Waste area grouping 2 Phase I task data report: Ecological risk assessment and White Oak Creek watershed screening ecological risk assessment  

SciTech Connect (OSTI)

This report presents an ecological risk assessment for Waste Area Grouping (WAG) 2 based on the data collected in the Phase I remedial investigation (RI). It serves as an update to the WAG 2 screening ecological risk assessment that was performed using historic data. In addition to identifying potential ecological risks in WAG 2 that may require additional data collection, this report serves to determine whether there are ecological risks of sufficient magnitude to require a removal action or some other expedited remedial process. WAG 2 consists of White Oak Creek (WOC) and its tributaries downstream of the Oak Ridge National Laboratory (ORNL) main plant area, White Oak Lake (WOL), the White Oak Creek Embayment of the Clinch River, associated flood plains, and the associated groundwater. The WOC system drains the WOC watershed, an area of approximately 16.8 km{sup 2} that includes ORNL and associated WAGs. The WOC system has been exposed to contaminants released from ORNL and associated operations since 1943 and continues to receive contaminants from adjacent WAGs.

Efroymson, R.A.; Jackson, B.L.; Jones, D.S. [and others] [and others

1996-05-01T23:59:59.000Z

31

The Lyons Creek boat remains  

E-Print Network [OSTI]

and artifacts dating to the colonial era were discovered during a dredging operation at Lyons Creek, a tributary of the Patuxent River, Calvert County, Maryland. Also recovered from the spoil area were ceramics, wine bottles, and kaolin tobacco pipes, which... strip of dry land zeaches the northezn shore of the creek. At the mouth of the creek, a highland of sixty feet elevation rises above the southern shore. The cliffs of the highland aze of a diatomacious earth, which once weze mined for silica...

Neyland, Robert Stephen

1990-01-01T23:59:59.000Z

32

Analysis of the D0 Crane Rail as a Support for a Horizontal Lifeline  

SciTech Connect (OSTI)

The D-Zero crane rail is analyzed for use as an anchor support for a one person Horizon{trademark} Horizontal Lifeline system that will span the pit area at D-Zero assembly hall. The lifeline will span 75 ft across the pit area, will be located out of the travel of the crane and above the concrete lentil wall. The crane rail is a suitable anchor for a one person Horizon TM Horizontal Lifeline system. The expected stress on the rail is 1,995 psi which has a factor of safety of 5.5 on the allowable stress. The anchor position is located 18 feet away from the concrete lentil wall and out of the travel of the overhead crane.

Cease, H.; /Fermilab

2000-03-02T23:59:59.000Z

33

Camel Creek Minnamoolka  

E-Print Network [OSTI]

Creek Tr ebonne California Ly nd Hellhole Pac ksad dle Little Star River Ella M ic hael Davidson M eunga Echo Mid dle Leich hardt Blund er NobCreek Stony Barron Martin Deception Paddys Creek Broken River

Greenslade, Diana

34

White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 1 Main Text  

SciTech Connect (OSTI)

The purpose of this Remedial Investigation (RI) report is to present an analysis of the Melton Valley portion of the White Oak Creek (WOC) watershed, which will enable the US Department of Energy (DOE) to pursue a series of cost-effective remedial actions resulting in site cleanup and stabilization. In this RI existing levels of contamination and radiological exposure are compared to levels acceptable for future industrial and potential recreational use levels at the site. This comparison provides a perspective for the magnitude of remedial actions required to achieve a site condition compatible with relaxed access restrictions over existing conditions. Ecological risk will be assessed to evaluate measures required for ecological receptor protection. For each subbasin, this report will provide site-specific analyses of the physical setting including identification of contaminant source areas, description of contaminant transport pathways, identification of release mechanisms, analysis of contaminant source interactions with groundwater, identification of secondary contaminated media associated with the source and seepage pathways, assessment of potential human health and ecological risks from exposure to contaminants, ranking of each source area within the subwatershed, and outline the conditions that remedial technologies must address to stop present and future contaminant releases, prevent the spread of contamination and achieve the goal of limiting environmental contamination to be consistent with a potential recreational use of the site.

NONE

1996-11-01T23:59:59.000Z

35

POST CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 417: CENTRAL NEVADA TEST AREA - SURFACE, HOT CREEK VALLEY, NEVADA, FOR CALENDAR YEAR 2004  

SciTech Connect (OSTI)

This post-closure inspection and monitoring report has been prepared according to the stipulations laid out in the Closure Report (CR) for Corrective Action Unit (CAU) 417, Central Nevada Test Area (CNTA)--Surface (U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office [NNSA/NV], 2001), and the Federal Facility Agreement and Consent Order (FFACO, 1996). This report provides an analysis and summary of site inspections, subsidence surveys, meteorological information, and soil moisture monitoring data for CAU 417, which is located in Hot Creek Valley, Nye County, Nevada. This report covers Calendar Year 2004. Inspections at CAU 417 are conducted quarterly to document the physical condition of the UC-1, UC-3, and UC-4 soil covers, monuments, signs, fencing, and use restricted areas. The physical condition of fencing, monuments, and signs is noted, and any unusual conditions that could impact the integrity of the covers are reported. The objective of the soil moisture monitoring program is to monitor the stability of soil moisture conditions within the upper 1.2 meters (m) (4 feet [ft]) of the UC-1 Central Mud Pit (CMP) cover and detect changes that may be indicative of moisture movement exceeding the cover design performance expectations.

BECHTEL NEVADA; NNSA NEVADA SITE OFFICE

2005-04-01T23:59:59.000Z

36

Post-Closure Inspection and Monitoring Report for Corrective Action Unit 417: Central Nevada Test Area Surface, Hot Creek Valley, Nevada For Calendar Year 2006  

SciTech Connect (OSTI)

Corrective Action Unit (CAU) 417, Central Nevada Test Area - Surface, is located in Hot Creek Valley in northern Nye County, Nevada, and consists of three areas commonly referred to as UC-1, UC-3, and UC-4. CAU 417 consists of 34 Corrective Action Sites (CASs) which were closed in 2000 (U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office, 2001). Three CASs at UC-1 were closed in place with administrative controls. At CAS 58-09-01, Central Mud Pit (CMP), a vegetated soil cover was constructed over the mud pit. At the remaining two sites, CAS 58-09-02, Mud Pit, and CAS 58-09-05, Mud Pits (3), aboveground monuments and warning signs were installed to mark the CAS boundaries. Three CASs at UC-3 were closed in place with administrative controls. Aboveground monuments and warning signs were installed to mark the site boundaries at CAS 58-09-06, Mud Pits (5), CAS 58-25-01, Spill, and CAS 58-10-01, Shaker Pad Area. Two CASs that consist of five sites at UC-4 were closed in place with administrative controls. At CAS 58-09-03, Mud Pits (5), an engineered soil cover was constructed over Mud Pit C. At the remaining three sites in CAS 58-09-03 and at CAS 58-10-05, Shaker Pad Area, aboveground monuments and warning signs were installed to mark the site boundaries. The remaining 26 CASs at CAU 417 were either clean-closed or closed by taking no further action.

None

2007-06-01T23:59:59.000Z

37

Site characterization summary report for dry weather surface water sampling upper East Fork Poplar Creek characterization area Oak Ridge Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This report describes activities associated with conducting dry weather surface water sampling of Upper East Fork Poplar Creek (UEFPC) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. This activity is a portion of the work to be performed at UEFPC Operable Unit (OU) 1 [now known as the UEFPC Characterization Area (CA)], as described in the RCRA Facility Investigation Plan for Group 4 at the Oak- Ridge Y-12 Plant, Oak Ridge, Tennessee and in the Response to Comments and Recommendations on RCRA Facility Investigation Plan for Group 4 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Volume 1, Operable Unit 1. Because these documents contained sensitive information, they were labeled as unclassified controlled nuclear information and as such are not readily available for public review. To address this issue the U.S. Department of Energy (DOE) published an unclassified, nonsensitive version of the initial plan, text and appendixes, of this Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) Plan in early 1994. These documents describe a program for collecting four rounds of wet weather and dry weather surface water samples and one round of sediment samples from UEFPC. They provide the strategy for the overall sample collection program including dry weather sampling, wet weather sampling, and sediment sampling. Figure 1.1 is a schematic flowchart of the overall sampling strategy and other associated activities. A Quality Assurance Project Plan (QAPJP) was prepared to specifically address four rounds of dry weather surface water sampling and one round of sediment sampling. For a variety of reasons, sediment sampling has not been conducted and has been deferred to the UEFPC CA Remedial Investigation (RI), as has wet weather sampling.

NONE

1996-08-01T23:59:59.000Z

38

CRANE/HOIST SAFETY PROGRAM Texas Tech University  

E-Print Network [OSTI]

HOLDING BRAKE..........................................................................................6) are protected from potential hazards associated with the movement of equipment and material. The Crane

Zhang, Yuanlin

39

Squeezer Creek.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

20-acre conservation easement in northwest Montana to protect critical habitat for bull trout and westslope cutthroat trout in a reach of Squeezer Creek in Lake County. Squeezer...

40

POST CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 417: CENTRAL NEVADA TEST AREA - SURFACE, HOT CREEK VALLEY, NEVADA; FOR CALENDAR YEAR 2005  

SciTech Connect (OSTI)

Corrective Action Unit (CAU) 417, Central Nevada Test Area - Surface, is located in Hot Creek Valley in northern Nye County, Nevada, and consists of three areas commonly referred to as UC-1, UC-3, and UC-4. CAU 417 consists of 34 Corrective Action Sites (CASs) which were closed in 2000 (U. S. Department of Energy, National Nuclear Security Administration Nevada Operations Office, 2001). Three CASs at UC-1 were closed in place with administrative controls. At CAS 58-09-01, Central Mud Pit (CMP), a vegetated soil cover was constructed over the mud pit. At the remaining two sites CAS 58-09-02, Mud Pit and 58-09-05, Mud Pits (3), aboveground monuments and warning signs were installed to mark the CAS boundaries. Three CASs at UC-3 were closed in place with administrative controls. Aboveground monuments and warning signs were installed to mark the site boundaries at CAS 58-09-06, Mud Pits (5), CAS 58-25-01, Spill and CAS 58-10-01, Shaker Pad Area. Two CASs that consist of five sites at UC-4 were closed in place with administrative controls. At CAS 58-09-03, Mud Pits 9, an engineered soil cover was constructed over Mud Pit C. At the remaining three sites in CAS 58-09-03 and at CAS 58-10-05, Shaker Pad Area, aboveground monuments and warning signs were installed to mark the site boundaries. The remaining 26 CASs at CAU 417 were either clean-closed or closed by taking no further action. Quarterly post-closure inspections are performed at the CASs that were closed in place at UC-I, UC-3, and UC-4. During calendar year 2005, site inspections were performed on March 15, June 16, September 22, and December 7. The inspections conducted at the UC-1 CMP documented that the site was in good condition and continued to show integrity of the cover unit. No new cracks or fractures were observed until the December inspection. A crack on the west portion of the cover showed evidence of lateral expansion; however, it is not at an actionable level. The crack will be sealed by filling with bentonite during the first quarter of 2006 and monitored during subsequent inspections. The cover vegetation was healthy and well established. No issues were identified with the CMP fence, gate, or subsidence monuments. No issues were identified with the warning signs and monuments at the other two UC-1 locations. The inspections at UC-3 indicated that the sites are in excellent condition. All monuments and signs showed no displacement, damage, or removal. A small erosion gully from spring rain runoff was observed during the June inspection, but it did not grow to an actionable level during 2005. No other issues or concerns were identified. Inspections performed at UC-4 Mud Pit C cover revealed that erosion rills were formed during March and September exposing the geosynthetic clay liner. Both erosion rills were repaired within 90 days of reporting. Sparse vegetation is present on the cover. The overall condition of the monuments, fence, and gate are in good condition. No issues were identified with the warning signs and monuments at the other four UC-4 locations. Subsidence surveys were conducted at UC-1 CMP and UC-4 Mud Pit C in March and September of 2005. The results of the subsidence surveys indicate that the covers are performing as expected, and no unusual subsidence was observed. The June vegetation survey of the UC-1 CMP cover and adjacent areas indicated that the revegetation has been very successful. The vegetation should continue to be monitored to document any changes in the plant community and identify conditions that could potentially require remedial action in order to maintain a viable vegetative cover on the site. Vegetation surveys should be conducted only as required. Precipitation during 2005 was above average, with an annual rainfall total of 21.79 centimeters (8.58 inches). Soil moisture content data show that the UC-1 CMP cover is performing as designed, with evapotranspiration effectively removing water from the cover. It is recommended to continue quarterly site inspections and the collection of soil moisture data for the UC-1 CMP cove

NONE

2006-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "area crane creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Analysis of crane and lifting accidents in North America from 2004 to 2010  

E-Print Network [OSTI]

Cranes are the fundamental machinery used during lifting operations, and are crucial to the construction industry. Several key construction processes would be impossible without cranes and the benefits they provide. Cranes ...

King, Ray Addison

2012-01-01T23:59:59.000Z

42

Manufacturing Battle Creek  

E-Print Network [OSTI]

Computer simulation Facilities design Finite element analysis Green manufacturing Industrial materialsManufacturing Research Center Kalamazoo Battle Creek The College of Engineering and Applied Sciences The Supporting manufacturing industries by providing opportunities for collaboration with faculty

de Doncker, Elise

43

Scheduling co-operating stacking cranes with predetermined ...  

E-Print Network [OSTI]

Nov 7, 2011 ... Crane scheduling in container terminals is known as a difficult optimization problem .... an overview focussing on design and control issues.

2011-11-19T23:59:59.000Z

44

Addendum to the remedial investigation report on Bear Creek Valley Operable Unit 2 (Rust Spoil Area, Spoil Area 1, and SY-200 Yard) at the Oak Ridge Y-12 Plant Oak Ridge, Tennessee. Volume 1: Main text  

SciTech Connect (OSTI)

This addendum to the Remedial Investigation (RI) Report on Bear Creek Valley Operable Unit (OU) 2 at the Oak Ridge Y-12 Plant was prepared in accordance with requirements under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for reporting the results of a site characterization for public review. This addendum is a supplement to a document that was previously issued in January 1995 and that provided the Environmental Restoration Program with information about the results of the 1993 investigation performed at OU 2. The January 1995 D2 version of the RI Report on Bear Creek Valley OU 2 included information on risk assessments that have evaluated impacts to human health and the environment. Information provided in the document formed the basis for the development of the Feasibility Study Report. This addendum includes revisions to four chapters of information that were a part of the document issued in January 1995. Specifically, it includes revisions to Chaps. 2, 3, 4, and 9. Volume 1 of this document is not being reissued in its entirety as a D3 version because only the four chapters just mentioned have been affected by requested changes. Note also that Volume 2 of this RI Report on Bear Creek Valley OU 2 is not being reissued in conjunction with Volume 1 of this document because there have been no changes requested or made to the previously issued version of Volume 2 of this document.

NONE

1995-04-01T23:59:59.000Z

45

Waste Isolation Pilot Plant TruDock crane system analysis  

SciTech Connect (OSTI)

The WIPP TruDock crane system located in the Waste Handling Building was identified in the WIPP Safety Analysis Report (SAR), November 1995, as a potential accident concern due to failures which could result in a dropped load. The objective of this analysis is to evaluate the frequency of failure of the TruDock crane system resulting in a dropped load and subsequent loss of primary containment, i.e. drum failure. The frequency of dropped loads was estimated to be 9.81E-03/year or approximately one every 102 years (or, for the 25% contingency, 7.36E-03/year or approximately one every 136 years). The dominant accident contributor was the failure of the cable/hook assemblies, based on failure data obtained from NUREG-0612, as analyzed by PLG, Inc. The WIPP crane system undergoes a rigorous test and maintenance program, crane operation is discontinued following any abnormality, and the crane operator and load spotter are required to be trained in safe crane operation, therefore it is felt that the WIPP crane performance will exceed the data presented in NUREG-0612 and the estimated failure frequency is felt to be conservative.

Morris, B.C. [Westinghouse Electric Corp., Pittsburgh, PA (United States); Carter, M. [Westinghouse Electric Corp., Carlsbad, NM (United States). Waste Isolation Div.

1996-10-01T23:59:59.000Z

46

An economic evaluation of the Green Creek Watershed Project  

E-Print Network [OSTI]

can never be given their true value. TABLE OF CONTENTS Chapter Page INTRODUCTION Statement of the Problem Purpose of the Study Objectives II. BENEFIT-COST ANALYSIS III DESCRIPTION OF THE AREA AND THE FLOOD PROBLEH IV. PROCEDURE AND NETEODOLOGY...: DISCOUNTING PROCEDURES 64 74 VITA LlST CF TABLES Table Page Completion Schedule of Flood Water Retarding Structures 17 Design Features of Flood Mater Retarding Structures Green Creek Watershed Project 18 3. Rainfall Record - Green Creek Watershed...

Gray, Roy Mack

2012-06-07T23:59:59.000Z

47

Cedar Creek: a significant paleotectonic feature of Williston basin  

SciTech Connect (OSTI)

Cedar Creek is the major anticlinal structure demarcating the southwest flank of the Williston basin. This pronounced fold developed through a geologic history of recurrent tectonic movements along a northwest-southeast striking fault zone. The four major periods of tectonism documentable in the Cedar Creek area from early Paleozoic through mid-Tertiary affected the local and regional distribution, erosion, and/or preservation, and, though moderately, the depositional facies of sedimentary strata since Ordovician time.

Clement, J.H.

1983-08-01T23:59:59.000Z

48

Remedial investigation work plan for Bear Creek Valley Operable Unit 2 (Rust Spoil Area, SY-200 Yard, Spoil Area 1) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Environmental Restoration Program  

SciTech Connect (OSTI)

The enactment of the Resource Conservation and Recovery Act (RCRA) in 1976 and the Hazardous and Solid Waste Amendments (HSWA) to RCRA in 1984 created management requirements for hazardous waste facilities. The facilities within the Oak Ridge Reservation (ORR) were in the process of meeting the RCRA requirements when ORR was placed on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) National Priorities List (NPL) on November 21, 1989. Under RCRA, the actions typically follow the RCRA Facility Assessment (RFA)/RCRA Facility Investigation (RFI)/Corrective Measures Study (CMS)/Corrective Measures implementation process. Under CERCLA the actions follow the PA/SI/Remedial Investigation (RI)/Feasibility Study (FS)/Remedial Design/Remedial Action process. The development of this document will incorporate requirements under both RCRA and CERCLA into an RI work plan for the characterization of Bear Creek Valley (BCV) Operable Unit (OU) 2.

Not Available

1993-05-01T23:59:59.000Z

49

Winging it : a bold step toward the whooping crane's return  

E-Print Network [OSTI]

Since the fall of 2001, biologists have taught endangered whooping cranes how to migrate over a once-lost course stretching from the wetlands of central Wisconsin to the mud flats of Florida's Gulf Coast. Wildlife biologists ...

McKenna, Philip Rood

2006-01-01T23:59:59.000Z

50

Evaluation of organic matter, Subsurface temperature nd pressure with regard to gas generation in low-permeability upper cretaceous and lower tertiary sandstones in Pacific Creek area, sublette and Sweetwater Counties, Wyoming  

SciTech Connect (OSTI)

Investigations of a sequence of Upper Cretaceous and lower Tertiary rocks in the Pacific Creek area of Wyoming show that studies of organic matter content, type, and maturity in conjunction with subsurface temperature and reservoir pressure, will help define prospective gas-saturated intervals and delineate areas of maximum gas-resource potential. The onset of overpressuring occurs at about 11,600 ft (3,500 m), near the base of the Upper Cretaceous Lance Formation. Drill stem test data indicate that at about 12,800 ft (3,900 m) the pressure gradient is as high as 0.84 psi/ft (19.0 kPa/m). The development of overpressuring probably due to the active generation of large amounts of wet gas. Nearly coincident with the top of overpressuring is a reversal of the spontaneous potential (SP) curve that is thought to be caused by a reduction of formation water salinity. The very small amounts of water produced during thermochemical decomposition of organic matter and the dehydration of clays during clay transformation may provide enough low-salinity water to effictively dilute the original formation water to a degree that the formation water resistivity is greater than mud filtrate resistivity. Microscopic and geochemical evaluation of organic matter shows that they are dominantly humic-type kerogen. Total organic carbon contents of 26 samples range from 0.25 to 7.84 weight percent. Most samples exceed 0.5 percent organic carbon and the average is 1.38 percent. A vertial profile of organic maturation, shows that the top of overpressuring and beginning of important wet-gas generation occur at vitrinite reflectance values of 0.74 to 0.86. (JMT)

Law, B.E.; Spencer, C.W.; Bostick, N.H.

1980-04-01T23:59:59.000Z

51

Oxley Creek Common Brisbane, Australia  

E-Print Network [OSTI]

right about 100 m after the bridge over Oxley Creek. The gate is always open. Amenities The main and turn left before the bridge crossing Oxley Creek. If approaching from the west (Sherwood side) turn. Both Rainbow and Scaly-breasted Lorikeets fly over in small screeching flocks. Golden-headed Cisticola

Queensland, University of

52

Post-Closure Inspection and Monitoring Report for Corrective Action Unit 417: Central Nevada Test Area Surface, Hot Creek Valley, Nevada  

SciTech Connect (OSTI)

This report presents results of data collected during the annual post-closure site inspections conducted at the Central Nevada Test Area surface Corrective Action Unit (CAU) 417 in May 2011 and July 2012. The annual post-closure site inspections included inspections of the UC-1, UC-3, and UC-4 sites in accordance with the Post-Closure Monitoring Plan provided in the CAU 417 Closure Report (NNSA/NV 2001). The annual inspections conducted at the UC-1 Central Mud Pit (CMP) indicated that the site and soil cover were in good condition. No new fractures or extension of existing fractures were observed and no issues with the fence or gate were identified. The vegetation on the cover continues to look healthy, but the biennial vegetation survey conducted during the 2012 inspection indicated that the total foliar cover was slightly higher in 2009 than in 2012. This may be indicative of a decrease in precipitation observed during the 2-year monitoring period. The precipitation totaled 9.9 inches from July 1, 2010, through June 30, 2011, and 5 inches from July 1, 2011, through June 30, 2012. This decrease in precipitation is also evident in the soil moisture data obtained from the time domain reflectometry sensors. Soil moisture content data show that the UC-1 cover is performing as designed, and evapotranspiration is effectively removing water from the cover.

None

2013-03-01T23:59:59.000Z

53

Crane Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) |Cordova39. It is classified

54

Crane Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) |Cordova39. It is classified

55

E-Print Network 3.0 - asotin creek watershed Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Units Calwater Subbasins ---(Planning Watersheds) 88,763 Acres 18060001 3304120101 Kings Creek (7770 Acres) Summary: ForemanCreek Manson Creek Mill Creek Malosky Creek...

56

E-Print Network 3.0 - asotin creek instream Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Units Calwater Subbasins ---(Planning Watersheds) 88,763 Acres 18060001 3304120101 Kings Creek (7770 Acres) Summary: Creek Malosky Creek Spring Creek Silver Creek San...

57

An analysis of energy expenditure in Goodwin Creek Peter Molnar and Jorge A. Ramirez  

E-Print Network [OSTI]

An analysis of energy expenditure in Goodwin Creek Peter Molna´r and Jorge A. Rami´rez Department with recent observations of channel change in Goodwin Creek. This energy expenditure analysis suggests of energy dissipation per unit channel area, Pa, is constant throughout the river network is explored

Ramírez, Jorge A.

58

Ecological effects of contaminants and remedial actions in Bear Creek  

SciTech Connect (OSTI)

Ecological studies of the Bear Creek watershed, which drains the area surrounding several Oak Ridge Y-12 Plant waste disposal facilities, were initiated in May 1984 and are continuing at present. These studies consisted of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek, and they were followed by a presently ongoing monitoring phase that involves reduced sampling intensities. The characterization phase utilized two approaches: (1) instream sampling of benthic invertebrate and fish communities in Bear Creek to identify spatial and temporal patterns in distribution and abundance and (2) laboratory bioassays on water samples from Bear Creek and selected tributaries to identify potential sources of toxicity to biota. The monitoring phase of the ecological program relates to the long-term goals of identifying and prioritizing contaminant sources and assessing the effectiveness of remedial actions. It continues activities of the characterization phase at less frequent intervals. The Bear Greek Valley is a watershed that drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in Bear Creek Valley resulted in contamination of Bear Creek and consequent ecological damage. Extensive remedial actions have been proposed at waste sites, and some of the have been implemented or are now underway. The proposed study plan consists of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek in the first year followed by a reduction in sampling intensity during the monitoring phase of the plan. The results of sampling conducted from May 1984 through early 1989 are presented in this report.

Southworth, G.R.; Loar, J.M.; Ryon, M.G.; Smith, J.G.; Stewart, A.J. [Oak Ridge National Lab., TN (United States); Burris, J.A. [C. E. Environmental, Inc., Tallahassee, FL (United States)

1992-01-01T23:59:59.000Z

59

Cherry Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanic National Park | Open EnergyFacility JumpCherry

60

Clear Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPower Address: 13615Boulder Jump to:IncGeothermal

Note: This page contains sample records for the topic "area crane creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Separation Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton AbbeyARaft River, Idaho |SenateSentral School

62

Trout Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,LtdInformation DixieTraverseEnergy. It isTrosky,Trousdale

63

Lava Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:Keystone CleanLaton, California: Energy

64

Lower East Fork Poplar Creek  

Broader source: Energy.gov (indexed) [DOE]

is safe for limited water-contact recreational uses, such as wading in footwear. Eating fish from the creek is not recommended based upon the level of mercury in the fish. Are...

65

Hoe Creek groundwater restoration, 1989  

SciTech Connect (OSTI)

During the summer of 1989, approximately 6.5 million gallons of contaminated groundwater were pumped from 23 wells at the Hoe Creek underground coal gasification site, near Gillette, Wyoming. The organic contaminants were removed using activated carbon before the water was sprayed on 15.4 acres at the sites. Approximately 2647 g (5.8 lb) of phenols and 10,714 g (23.6 lb) of benzene were removed from the site aquifers. Phenols, benzene, toluene, ethylbenzene, and naphthalene concentrations were measured in 43 wells. Benzene is the only contaminant at the site exceeds the federal standard for drinking water (5 {mu}g/L). Benzene leaches into the groundwater and is slow to biologically degrade; therefore, the benzene concentration has remained high in the groundwater at the site. The pumping operation affected groundwater elevations across the entire 80-acre site. The water levels rebounded quickly when the pumping operation was stopped on October 1, 1989. Removing contaminated groundwater by pumping is not an effective way to clean up the site because the continuous release of benzene from coal tars is slow. Benzene will continue to leach of the tars for a long time unless its source is removed or the leaching rate retarded through mitigation techniques. The application of the treated groundwater to the surface stimulated plant growth. No adverse effects were noted or recorded from some 60 soil samples taken from twenty locations in the spray field area. 20 refs., 52 figs., 8 tabs.

Renk, R.R.; Crader, S.E.; Lindblom, S.R.; Covell, J.R.

1990-01-01T23:59:59.000Z

66

Heavy lift crane/derrick barge stability analysis  

E-Print Network [OSTI]

Curve DB17 2. Righting Arm Curve Corrected for Vertical Lift 3. Righting Arm Curve Corrected for Beam Lift 4. Righting Arm Curve Corrected for Vertical Lift 5. Righting Arru Curve Corrected for Beam Lift 6. Assumed Coordinate System . 7.... Rawston and Graham J. Blight, Brown and Root, Inc. , state that the crane/derrick barge's ability to conduct a heavy lii't operation safely can be reduced "to a single value represented by the vertical motion of the crane boom tip". [6] The ability...

Loesch, Robert Morrison

2012-06-07T23:59:59.000Z

67

Case Study: Goose Creek CISD  

E-Print Network [OSTI]

GOOSE CREEK CISD FINANCIALS $4,866,124 project $600k annual savings 5,954,383 kWh annual savings IMPROVEMENTS Lighting and water efficiency, computer power management, HVAC, controls redesign case study McKinstry first worked with Goose... Creek CISD performing retro-commissioning through the Centerpoint/Nexant RCx rebate program. McKinstry found additional projects with good returns on investment, warranting a performance contract. Working with the district to apply for the State...

White, D.

2014-01-01T23:59:59.000Z

68

Big Canyon Creek Ecological Restoration Strategy.  

SciTech Connect (OSTI)

He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe then used data collected from the District's stream assessment and inventory, utilizing the Stream Visual Assessment Protocol (SVAP), to determine treatment necessary to bring 90% of reaches ranked Poor or Fair through the SVAP up to good or excellent. In 10 year's time, all reaches that were previously evaluated with SVAP will be reevaluated to determine progress and to adapt methods for continued success. Over 400 miles of stream need treatment in order to meet identified restoration goals. Treatments include practices which result in riparian habitat improvements, nutrient reductions, channel condition improvements, fish habitat improvements, invasive species control, water withdrawal reductions, improved hydrologic alterations, upland sediment reductions, and passage barrier removal. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resource Management Watershed Division (Tribe) developed this document to guide restoration activities within the Big Canyon Creek watershed for the period of 2008-2018. This plan was created to demonstrate the ongoing need and potential for anadromous fish habitat restoration within the watershed and to ensure continued implementation of restoration actions and activities. It was developed not only to guide the District and the Tribe, but also to encourage cooperation among all stakeholders, including landowners, government agencies, private organizations, tribal governments, and elected officials. Through sharing information, skills, and resources in an active, cooperative relationships, all concerned parties will have the opportunity to join together to strengthen and maintain a sustainable natural resource base for present and future generations within the watershed. The primary goal of the strategy is to address aquatic habitat restoration needs on a watershed level for resident and anadromous fish species, promoting quality habitat within a self-sustaining watershed. Seven objectives have been developed to support this goal: (1) Identify factors limiting quality

Rasmussen, Lynn; Richardson, Shannon

2007-10-01T23:59:59.000Z

69

Big Bayou Creek and Little Bayou Creek Watershed Monitoring Program  

SciTech Connect (OSTI)

Biological monitoring of Little Bayou and Big Bayou creeks, which border the Paducah Site, has been conducted since 1987. Biological monitoring was conducted by University of Kentucky from 1987 to 1991 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 through March 1999. In March 1998, renewed Kentucky Pollutant Discharge Elimination System (KPDES) permits were issued to the US Department of Energy (DOE) and US Enrichment Corporation. The renewed DOE permit requires that a watershed monitoring program be developed for the Paducah Site within 90 days of the effective date of the renewed permit. This plan outlines the sampling and analysis that will be conducted for the watershed monitoring program. The objectives of the watershed monitoring are to (1) determine whether discharges from the Paducah Site and the Solid Waste Management Units (SWMUs) associated with the Paducah Site are adversely affecting instream fauna, (2) assess the ecological health of Little Bayou and Big Bayou creeks, (3) assess the degree to which abatement actions ecologically benefit Big Bayou Creek and Little Bayou Creek, (4) provide guidance for remediation, (5) provide an evaluation of changes in potential human health concerns, and (6) provide data which could be used to assess the impact of inadvertent spills or fish kill. According to the cleanup will result in these watersheds [Big Bayou and Little Bayou creeks] achieving compliance with the applicable water quality criteria.

Kszos, L.A.; Peterson, M.J.; Ryon; Smith, J.G.

1999-03-01T23:59:59.000Z

70

Sway control method and system for rotary cranes  

DOE Patents [OSTI]

Methods and apparatuses are disclosed for reducing the oscillatory motion of rotary crane payloads during operator-commanded or computer-controlled maneuvers. An Input-shaping filter receives input signals from multiple operator input devices and converts them into output signals readable by the crane controller to dampen the payload tangential and radial sway associated with rotation of the jib. The input signals are characterized by a hub rotation trajectory [gamma](t), which includes a jib angular acceleration [gamma], a trolley acceleration x, and a load-line length velocity L. The system state variables are characterized by a tangential rotation angle [theta](t) and a radial rotation angle [phi](t) of the load-line. The coupled equations of motion governing the filter are non-linear and configuration-dependent. In one embodiment, a filter is provided between the operator and the crane for filtering undesired frequencies from the angular [gamma] and trolley x velocities to suppress payload oscillation. In another embodiment, crane commands are computer generated and controlled to suppress vibration of the payload using a postulated asymmetrical shape for the acceleration profiles of the jib, which profiles are uniquely determined by a set of parameters (including the acceleration pulse amplitude and the duration and coast time between pulses), or a dynamic programming approach. 25 figs.

Robinett, R.D.; Parker, G.G.; Feddema, J.T.; Dohrmann, C.R.; Petterson, B.J.

1999-06-01T23:59:59.000Z

71

Remedial Investigation Report on Bear Creek Valley Operable Unit 2 (Rust Spoil Area, Spoil Area 1, and SY-200 Yard) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1, Main text  

SciTech Connect (OSTI)

This report on the BCV OU 2 at the Y-12 Plant, was prepared in accordance with requirements under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for reporting the results of a site characterization for public review. It provides the Environmental Restoration Program with information about the results of the 1993 investigation. It includes information on risk assessments that have evaluated impacts to human health and the environment. Field activities included collection of subsurface soil samples, groundwater and surface water samples, and sediments and seep at the Rust Spoil Area (RSA), SY-200 Yard, and SA-1.

NONE

1995-01-01T23:59:59.000Z

72

Comparative breeding ecology of Lesser Sandhill Cranes (Grus canadensis canadensis) and Siberian cranes (G. leucogeranus) in Eastern Siberia  

E-Print Network [OSTI]

VII CONCLUSION ................................................................................................ 91 Future Research Considerations................................................................. 93 LITERATURE...). Harvested grain fields (corn, wheat, and barley) were the principal habitat types used by Lesser Sandhill Cranes during spring migration in Nebraska, Saskatchewan, and Alaska, respectively (Iverson et al. 1987). Wheat, corn, sorghum, and milo are major...

Watanabe, Tsuyoshi

2007-04-25T23:59:59.000Z

73

Results of the radiological survey at Two Mile Creek, Tonawanda, New York (TNY002)  

SciTech Connect (OSTI)

At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at Two Mile Creek, Tonawanda, New York. The survey was performed in November 1991 and May 1996. The purpose of the survey was to determine if radioactive materials from work performed under government contract at the Linde Air Products Division of Union Carbide Corporation, Tonawanda, New York, had been transported into the creek. The survey included a surface gamma scan in accessible areas near the creek and the collection of soil, sediment, and core samples for radionuclide analyses. Survey results indicate that no significant material originating at the Linde plant is presently in the creek. Three of the 1991 soil sample locations on the creek bank and one near the lake contained slightly elevated concentrations of {sup 238}U with radionuclide distributions similar to that found in materials resulting from former processing activities at the Linde site.

Murray, M.E.; Rodriguez, R.E.; Uziel, M.S.

1997-08-01T23:59:59.000Z

74

Asotin Creek Model Watershed Plan  

SciTech Connect (OSTI)

The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon``. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity. The watershed coordinator for the Asotin County Conservation District led a locally based process that combined local concerns and knowledge with technology from several agencies to produce the Asotin Creek Model Watershed Plan.

Browne, D.; Holzmiller, J.; Koch, F.; Polumsky, S.; Schlee, D.; Thiessen, G.; Johnson, C.

1995-04-01T23:59:59.000Z

75

Bacterial Monitoring for the Buck Creek Watershed  

E-Print Network [OSTI]

The Bacterial Monitoring for the Buck Creek Watershed project was developed in response to the creeks listing on the Texas Water Quality Inventory and 303(d) List due to a bacterial impairment and subsequent total maximum daily load (TMDL...

76

Putah Creek Terrestrial Wildlife Monitoring Program  

E-Print Network [OSTI]

;#12;#12;#12;#12;#12;#12;#12;#12;#12;MAP EXHIBITS C1-36 Avian Focal Species Distribution Maps Putah Creek and Yolo-Sutter Bypass Sites, OX=Oxbow, DC=Dry Creek Confluence, WN=Winters Putah Creek Park, YH=Yolo Housing, LB=Center for Land

Todd, Brian

77

Report on the biological monitoring program for Bear Creek at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, 1989-1994  

SciTech Connect (OSTI)

The Bear Creek Valley watershed drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in the Bear Creek Valley resulted in the contamination of Bear Creek and consequent ecological damage. Ecological monitoring by the Biological Monitoring and Abatement Program (BMAP) was initiated in the Bear Creek watershed in May 1984 and continues at present. Studies conducted during the first year provided a detailed characterization of the benthic invertebrate and fish communities in Bear Creek. The initial characterization was followed by a biological monitoring phase in which studies were conducted at reduced intensities.

Hinzman, R.L. [ed.] [ed.; Beauchamp, J.J.; Cada, G.F.; Peterson, M.J. [and others] [and others

1996-04-01T23:59:59.000Z

78

E-Print Network 3.0 - area sierra leone Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fresno RiverFresno River Project AreaProject Area Sampling sitesSampling sites Landscape... ;12;12;12;12;12;12;12;12;12;CraneValleyRd 12;Oakhurst WWTP 12;May 28...

79

Water Conservation Study for Manastash Creek Water Users, Kittias County, Washington, Final Report 2002.  

SciTech Connect (OSTI)

Manastash Creek is tributary of the Yakima River and is located southwest and across the Yakima River from the City of Ellensburg. The creek drains mountainous terrain that ranges in elevation from 2,000 feet to over 5,500 feet and is primarily snowmelt fed, with largest flows occurring in spring and early summer. The creek flows through a narrow canyon until reaching a large, open plain that slopes gently toward the Yakima River and enters the main stem of the Yakima River at river mile 154.5. This area, formed by the alluvial fan of the Creek as it leaves the canyon, is the subject of this study. The area is presently dominated by irrigated agriculture, but development pressures are evident as Ellensburg grows and develops as an urban center. Since the mid to late nineteenth century when irrigated agriculture was established in a significant manner in the Yakima River Basin, Manastash Creek has been used to supply irrigation water for farming in the area. Adjudicated water rights dating back to 1871 for 4,465 acres adjacent to Manastash Creek allow appropriation of up to 26,273 acre-feet of creek water for agricultural irrigation and stock water. The diversion of water from Manastash Creek for irrigation has created two main problems for fisheries. They are low flows or dewatered reaches of Manastash Creek and fish passage barriers at the irrigation diversion dams. The primary goal of this study, as expressed by Yakama Nation and BPA, is to reestablish safe access in tributaries of the Yakima River by removing physical barriers and unscreened diversions and by adding instream flow where needed for fisheries. The goal expressed by irrigators who would be affected by these projects is to support sustainable and profitable agricultural use of land that currently uses Manastash Creek water for irrigation. This study provides preliminary costs and recommendations for a range of alternative projects that will partially or fully meet the goal of establishing safe access for fisheries in Manastash Creek by reducing or eliminating diversions and eliminating fish passage barriers. Further study and design will be necessary to more fully develop the alternatives, evaluate their environmental benefits and impacts and determine the effect on Manastash Creek water users. Those studies will be needed to determine which alternative has the best combination of benefits and costs, and meets the goal of the Manastash Creek water users.

Montgomery Watson Harza (Firm)

2002-12-31T23:59:59.000Z

80

Couse/Tenmile Creeks Watershed Project Implementation : 2007 Conservtion Projects. [2007 Habitat Projects Completed].  

SciTech Connect (OSTI)

The Asotin County Conservation District (ACCD) is the primary entity coordinating habitat projects on private lands within Asotin County watersheds. The Tenmile Creek watershed is a 42 square mile tributary to the Snake River, located between Asotin Creek and the Grande Ronde River. Couse Creek watershed is a 24 square mile tributary to the Snake River, located between Tenmile Creek and the Grande Ronde River. Both watersheds are almost exclusively under private ownership. The Washington Department of Fish and Wildlife has documented wild steelhead and rainbow/redband trout spawning and rearing in Tenmile Creek and Couse Creek. The project also provides Best Management Practice (BMP) implementation throughout Asotin County, but the primary focus is for the Couse and Tenmile Creek watersheds. The ACCD has been working with landowners, Bonneville Power Administration (BPA), Washington State Conservation Commission (WCC), Natural Resource Conservation Service (NRCS), Farm Service Agency (FSA), Salmon Recovery Funding Board (SRFB), Washington Department of Fish and Wildlife (WDFW), U.S. Forest Service, Pomeroy Ranger District (USFS), Nez Perce Tribe (NPT), Washington Department of Ecology (DOE), National Marine Fisheries Service (NOAA Fisheries), and U.S. Fish and Wildlife Service (USFWS) to address habitat projects in Asotin County. The Asotin Subbasin Plan identified priority areas and actions for ESA listed streams within Asotin County. Couse Creek and Tenmile Creek are identified as protection areas in the plan. The Conservation Reserve Enhancement Program (CREP) has been successful in working with landowners to protect riparian areas throughout Asotin County. Funding from BPA and other agencies has also been instrumental in protecting streams throughout Asotin County by utilizing the ridge top to ridge top approach.

Asotin County Conservation District

2008-12-10T23:59:59.000Z

Note: This page contains sample records for the topic "area crane creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Co-relation of Variables Involved in the Occurrence of Crane Accidents in U.S. through Logit Modeling.  

E-Print Network [OSTI]

technical challenges, which has lead to escalation of danger on a construction site. Data from OSHA show that crane accidents have increased rapidly from 2000 to 2004. By analyzing the characteristics of all the crane accident inspections, we can better...

Bains, Amrit Anoop Singh

2010-10-12T23:59:59.000Z

82

Vegetation survey of Four Mile Creek wetlands. [Savannah River Plant  

SciTech Connect (OSTI)

A survey of forested wetlands along upper Four Mile Creek was conducted. The region from Road 3 to the creek headwaters was sampled to evaluate the composition of woody and herbaceons plant communities. All sites were found to fall into either the Nyssa sylvatica (Black Gum) -- Persea borbonia (Red Bay) or Nyssa sylvatica -- Acer rubrum (Red Maple) types. These community types are generally species-rich and diverse. Previous studies (Greenwood et al., 1990; Mackey, 1988) demonstrated contaminant stress in areas downslope from the F- and H-Area seepage basins. In the present study there were some indications of contaminant stress. In the wetland near H-Area, shrub basal area, ground cover stratum species richness, and diversity were low. In the area surrounding the F-Area tree kill zone, ground cover stratum cover and shrub basal area were low and ground cover stratum species richness was low. The moderately stressed site at F-Area also showed reduced overstory richness and diversity and reduced ground cover stratum richness. These results could, however, be due to the very high basal area of overstory trees in both stressed F-Area sites that would reduce light availability to understory plants. No threatened or endangered plant species were found in the areas sampled. 40 refs., 4 figs., 8 tabs.

Loehle, C.

1990-11-01T23:59:59.000Z

83

EA-1978: Sand Creek Winds, McCone County, Montana  

Broader source: Energy.gov [DOE]

Western Area Power Administration (Western) is preparing an EA to analyze the potential environmental impacts of the proposed Sand Creek Winds Project, a 75-MW wind farm between the towns of Circle and Wolf Point in McCone County, Montana. The proposed wind farm would interconnect to Westerns existing Wolf Point to Circle 115-kV transmission line approximately 18 miles north of Wolf Point.

84

Lagrangian Sampling of Wastewater Treatment Plant Effluent in Boulder Creek, Colorado, and Fourmile Creek,  

E-Print Network [OSTI]

Lagrangian Sampling of Wastewater Treatment Plant Effluent in Boulder Creek, Colorado, and Fourmile of wastewater treatment plant effluent in Boulder Creek, Colorado, and Fourmile Creek, Iowa, during the summer........................................................................................................................................................... 5 Field Measurements, Nutrients, Carbon, Major Ions, Trace Elements, and Biological Components

85

Kansas Nuclear Profile - Wolf Creek Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

April 2012" "Next Release Date: February 2013" "Wolf Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor...

86

New Jersey Nuclear Profile - Oyster Creek  

U.S. Energy Information Administration (EIA) Indexed Site

Oyster Creek" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

87

Microsoft Word - Coyote Creek CX.docx  

Broader source: Energy.gov (indexed) [DOE]

of funds to acquire a conservation easement over the 310-acre Coyote Creek property. Fish and Wildlife Project No.: 2011-003-00, Contract BPA-006468 Categorical Exclusion...

88

Microsoft Word - Ninemile_Creek_CX.doc  

Broader source: Energy.gov (indexed) [DOE]

Tribes of the Colville Reservation for purchase of the Ninemile Creek property Fish and Wildlife Project No.: 2008-104-00, BPA-005670 Categorical Exclusion Applied (from...

89

Microsoft Word - CoyoteCreekNE_CX  

Broader source: Energy.gov (indexed) [DOE]

Project Manager - KEWM-4 Proposed Action: Coyote Creek Property Acquisition Funding Fish and Wildlife Project No.: 2011-003-00, Contract BPA-007521 Categorical Exclusion...

90

The Copper Creek Clovis Point from Hells Canyon, Northeastern Oregon  

E-Print Network [OSTI]

No. 1 (2008) | pp. 75-84 The Copper Creek Clovis Point fromside of the Snake River to the Copper Creek point discovery1 (2008) 5 cm Figure 4. The Copper Creek Clovis point (tick

Reid, Kenneth C.; Root, Matthew J.; Hughes, Richard E.

2008-01-01T23:59:59.000Z

91

Blue Crane Holdings Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey:form ViewBlackBloomfield,710541°,Ash, Ohio:CoveCrane

92

DOE - Office of Legacy Management -- Crane Co - IL 13  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here Home »HillNY 28 CornellCrane Co - IL

93

City of Crane, Missouri (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy InformationLakeWyoming (Utility Company)Corwith, IowaCovington,Crane

94

DOE - Office of Legacy Management -- Hoe Creek Underground Coal...  

Office of Legacy Management (LM)

Hoe Creek Underground Coal Gasification Site - 045 FUSRAP Considered Sites Site: Hoe Creek Underground Coal Gasification Site (045) Designated Name: Alternate Name: Location:...

95

Post-project appraisal of Martin Canyon Creek restoration  

E-Print Network [OSTI]

Martin Canyon Creek Stream Restoration Owners Manual: FinalMartin Canyon Creek Stream Restoration in project documents,important component of stream restoration projects to assess

Wagner, Wayne; Roseman, Jesse

2006-01-01T23:59:59.000Z

96

EIS-0134: Charlie Creek-Belfield Transmission Line Project, North Dakota  

Broader source: Energy.gov [DOE]

The Western Area Power Administration developed this EIS to assess the environmental impact of constructing a high voltage transmission line between Charlie Creek and Belfield, North Dakota, and a new substation near Belfield to as a means of adding transmission capacity to the area.

97

Whooping crane (Grus americana) demography and environmental factors in a population growth simulation model  

E-Print Network [OSTI]

The Whooping Crane (Grus americana) is among North America?s most charismatic species. Between 1938 and 2004, the population that migrates between Aransas National Wildlife Refuge (ANWR) and Wood Buffalo National Park (WBNP), grew from 18 to 217...

Gil de Weir, Karine

2006-08-16T23:59:59.000Z

98

Reintroduction of Native FishReintroduction of Native Fish Species to Coal CreekSpecies to Coal Creek  

E-Print Network [OSTI]

1 Reintroduction of Native FishReintroduction of Native Fish Species to Coal CreekSpecies to Coal Control and Reclamation ActSurface Mining Control and Reclamation Act of 1977of 1977 Coal Creek Watershed Foundation (2000)Coal Creek Watershed Foundation (2000) BackgroundBackground Fish populations in Coal Creek

Gray, Matthew

99

AREA  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South Valley ResponsibleSubmissionofDepartmentNo.7-052 ofFocusAREA FAQ #

100

Development and chemical quality of a ground-water system in cast overburden as the Gibbons Creek Lignite Mine  

E-Print Network [OSTI]

-water conditions which develop in response to surface mining. TMPA has supported research at the Gibbons Creek Lignite Mine in order to meet the needs of mine develop- ment and permitting, Most of the data on ground-water conditions 1n reclaimed spoil has been... on the west by the Navasota River, on the south by Gibbons Creek, and on the north by State Highway 30 (Figure 1). This area includes the Gibbons Creek Steam Electric Station. Lignite is extracted from two pits within the permit boundary, termed the A...

Borbely, Evelyn Susanna

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "area crane creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Toms Creek IGCC Demonstration Project  

SciTech Connect (OSTI)

The Toms Creek Integrated Gasification Combined Cycle (IGCC) Demonstration Project was selected by DOE in September 1991 to participate in Round Four of the Clean Coal Technology Demonstration Program. The project will demonstrate a simplified IGCC process consisting of an air-blown, fluidized-bed gasifier (Tampella U-Gas), a gas cooler/steam generator, and a hot gas cleanup system in combination with a gas turbine modified for use with a low-Btu content fuel and a conventional steam bottoming cycle. The demonstration plant will be located at the Toms Creek coal mine near Coeburn, Wise County, Virginia. Participants in the project are Tampella Power Corporation and Coastal Power Production Company. The plant will use 430 tons per day of locally mined bituminous coal to produce 55 MW of power from the gasification section of the project. A modern pulverized coal fired unit will be located adjacent to the Demonstration Project producing an additional 150 MW. A total 190 MW of power will be delivered to the electric grid at the completion of the project. In addition, 50,000 pounds per hour of steam will be exported to be used in the nearby coal preparation plant. Dolomite is used for in-bed gasifier sulfur capture and downs cleanup is accomplished in a fluidized-bed of regenerative zinc titanate. Particulate clean-up, before the gas turbine, will be performed by high temperature candle filters (1020[degree]F). The demonstration plant heat rate is estimated to be 8,700 Btu/kWh. The design of the project goes through mid 1995, with site construction activities commencing late in 1995 and leading to commissioning and start-up by the end of 1997. This is followed by a three year demonstration period.

Virr, M.J.

1992-01-01T23:59:59.000Z

102

Toms Creek IGCC Demonstration Project  

SciTech Connect (OSTI)

The Toms Creek Integrated Gasification Combined Cycle (IGCC) Demonstration Project was selected by DOE in September 1991 to participate in Round Four of the Clean Coal Technology Demonstration Program. The project will demonstrate a simplified IGCC process consisting of an air-blown, fluidized-bed gasifier (Tampella U-Gas), a gas cooler/steam generator, and a hot gas cleanup system in combination with a gas turbine modified for use with a low-Btu content fuel and a conventional steam bottoming cycle. The demonstration plant will be located at the Toms Creek coal mine near Coeburn, Wise County, Virginia. Participants in the project are Tampella Power Corporation and Coastal Power Production Company. The plant will use 430 tons per day of locally mined bituminous coal to produce 55 MW of power from the gasification section of the project. A modern pulverized coal fired unit will be located adjacent to the Demonstration Project producing an additional 150 MW. A total 190 MW of power will be delivered to the electric grid at the completion of the project. In addition, 50,000 pounds per hour of steam will be exported to be used in the nearby coal preparation plant. Dolomite is used for in-bed gasifier sulfur capture and downs cleanup is accomplished in a fluidized-bed of regenerative zinc titanate. Particulate clean-up, before the gas turbine, will be performed by high temperature candle filters (1020{degree}F). The demonstration plant heat rate is estimated to be 8,700 Btu/kWh. The design of the project goes through mid 1995, with site construction activities commencing late in 1995 and leading to commissioning and start-up by the end of 1997. This is followed by a three year demonstration period.

Virr, M.J.

1992-11-01T23:59:59.000Z

103

Food habits, habitat, distribution, numbers, and subspecies of sandhill cranes wintering in southern Texas  

E-Print Network [OSTI]

FOOD HABITS, HABITAT, DISTRIBUTION& NUMBERS, AND SUBSPJ CIES OF SANDHILL CRANES WINTERING IN SOUTHERN TEXAS A Thesis FREDERICK STEWART GUTHERY Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement... and content bye P. e a. dd C$. . ~ Chairman of Committee Head of Department N ember Hem r August 1972 Food Habits, Habitat, Distribution, Numbers ~ and Subspecies of Sandhill Cranes Wintering in Southern Texas. (August 1972) FredericK Stewart Guthery...

Guthery, Frederick Stewart

1972-01-01T23:59:59.000Z

104

Steel Creek fish, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991  

SciTech Connect (OSTI)

The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal plain in west-central South Carolina. The Savannah River forms the western boundary of the site. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. All but Upper Three Runs Creek receive, or in the past received, thermal effluents from nuclear production reactors. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor, and protect the lower reaches from thermal impacts. The lake has an average width of approximately 600 m and extends along the Steel Creek valley approximately 7000 m from the dam to the headwaters. Water level is maintained at a normal pool elevation of 58 m above mean sea level by overflow into a vertical intake tower that has multilevel discharge gates. The intake tower is connected to a horizontal conduit that passes through the dam and releases water into Steel Creek. The Steel Creek Biological Monitoring Program was designed to meet environmental regulatory requirements associated with the restart of L-Reactor and complements the Biological Monitoring Program for L Lake. This extensive program was implemented to address portions of Section 316(a) of the Clean Water Act. The Department of Energy (DOE) must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems.

Sayers, R.E. Jr.; Mealing, H.G. III [Normandeau Associates, Inc., New Ellenton, SC (United States)

1992-04-01T23:59:59.000Z

105

Biological monitoring of Upper Three Runs Creek, Savannah River Plant, Aiken County, South Carolina  

SciTech Connect (OSTI)

In anticipation of the fall 1988 start up of effluent discharges into Upper Three Creek by the F/H Area Effluent Treatment Facility of the Savannah River Site, Aiken, SC, a two and one half year biological study was initiated in June 1987. Upper Three Runs Creek is an intensively studied fourth order stream known for its high species richness. Designed to assess the potential impact of F H area effluent on the creek, the study includes qualitative and quantitative macroinvertebrate stream surveys at five sites, chronic toxicity testing of the effluent, water chemistry and bioaccumulation analysis. This final report presents the results of both pre-operational and post-operational qualitative and quantitative (artificial substrate) macroinvertebrate studies. Six quantitative and three qualitative studies were conducted prior to the initial release of the F/H ETF effluent and five quantitative and two qualitative studies were conducted post-operationally.

Specht, W.L.

1991-10-01T23:59:59.000Z

106

Urban Influences on Stream Chemistry and Biology in the Big Brushy Creek Watershed, South Carolina  

E-Print Network [OSTI]

and rural sites. Discharge of wastewater treatment plant effluent at one rural location caused an increase land cover. wastewater treatment plant 1 Introduction The expansion of urban land areas affects between urban and rural sites may indicate that urban development in the Big Brushy Creek watershed has

107

TR-025 Geomorphology March 2003 Schmidt Creek Sediment Sources  

E-Print Network [OSTI]

TR-025 Geomorphology March 2003 Schmidt Creek Sediment Sources and the Johnstone Strait Killer, Thomas. 2003. Schmidt Creek Sediment Sources and the Johnstone Strait Killer Whale Rubbing Beach. Res.................................................................................................................... 2 3. Sediment Sources - Natural and Logging Related

108

Groundwater contamination near the Hoe Creek UCG experiments  

SciTech Connect (OSTI)

It has been shown that underground coal gasification (UCG) may introduce a broad range of residual gasification products into the groundwater of a coal aquifer. Sorption of many contaminants by the coal itself is an important factor in restricting the migration of these contaminants in the groundwater. However, our field studies, conducted at Lawrence Livermore National Laboratory's Hoe Creek site, have shown that sorption of organic compounds by coal is not as effective as expected, perhaps because the coal surface area is limited. Furthermore, if severe roof collapse has taken place during gasification, non-coal aquifers located above the gasified coal seam may be interconnected with the coal aquifer, and contaminants may enter these non-coal aquifers, in which sorption is even less effective. The Hoe Creek II and III experiments have provided us with opportunities to study the contamination of a sand aquifer located above a gasified coal seam in a hydrological recharge area. Our preliminary results indicate that the water in the overlying sand aquifer is much less contaminated with organic compounds than the water in the gasified coal aquifer. In conducting these field investigations, we have also learned valuable lessons concerning groundwater monitoring. A suggested monitoring strategy will be discussed.

Wang, F.T.; Mead, S.W.; Stuermer, D.H.

1981-01-01T23:59:59.000Z

109

Steel Creek fish: L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1987  

SciTech Connect (OSTI)

Fish samples were collected from Steel Creek during 1986 and 1987 following the impoundment of the headwaters of the stream to form L-Lake, a cooling reservoir for L-Reactor which began operating late in 1985. Electrofishing and ichthyoplankton sample stations were located throughout the creek. Fykenetting sample stations were located in the creek mouth and just above the Steel Creek swamp. Larval fish and fish eggs were collected with 0.5 m plankton nets. Multivariate analysis of the electrofishing data suggested that the fish assemblages in Steel Creek exhibited structural differences associated with proximity to L-Lake, and habitat gradients of current velocity, depth, and canopy cover. The Steel Creek corridor, a lotic reach beginning at the base of the L-Lake embankment was dominated by stream species and bluegill. The delta/swamp, formed where Steel Creek enters the Savannah River floodplain, was dominated by fishes characteristic of slow flowing waters and heavily vegetated habitats. The large channel draining the swamp supported many of the species found in the swamp plus riverine and anadromous forms.

Paller, M.H.; Heuer, J.H.; Kissick, L.A.

1988-03-01T23:59:59.000Z

110

Recommendation 195: Mitigation of Contamination in Bear Creek Burial Grounds  

Broader source: Energy.gov [DOE]

The ORSSAB requests DOE provide possible remedial actions to mitigate releases of contamination from Bear Creek Burial Grounds.

111

Evaluation of Failed Crane Chempumps Used During Salt Well Pumping  

SciTech Connect (OSTI)

The Interim Stabilization Project is responsible for removing pumpable interstitial liquid from remaining single shelled tanks and transferring the waste to safer double-shelled tanks. This waste transfer is conducted by installing a saltwell pumping system within the designated single shell tank, and transferring the waste to double shelled tank using approved transfer lines. The saltwell pumping system is placed within a saltwell screen installed into the tank waste, the screen is designed to allow gravity flow of liquid into the screen and prevent solids from entering the pumping system. A foot valve consisting of a venturi jet and nozzle creates a suction, picking up waste at an equal rate as the out flow transfer rate of the saltwell system. A centrifugal pump is used to create the motive force across the eductor and drive the waste through the associated system piping and transfer lines leading to the double shelled tanks. The centrifugal pump that has typically been used in the saltwell pumping system installations is the Crane Chempump, model GA-1 1/2 K with 4 3/4 inch impeller. The following evaluation is not intended to be an all inclusive analysis of the operation of a saltwell system and associated pump. This evaluation will detail some of the noted failures in specific saltwell systems and document those findings. Due to the large number of saltwell systems installed over the duration of the Stabilization Project, only those saltwell systems installed over the last two years within S, SX, U, A and AX tank farms, shall be included in this evaluation. After identification of the pump failures mechanism, recommendations shall be identified to address potential means of improving overall operational efficiency and reducing overall equipment failures.

ELSEN, J.J.

2000-09-18T23:59:59.000Z

112

Control system and method for payload control in mobile platform cranes  

DOE Patents [OSTI]

A crane control system and method provides a way to generate crane commands responsive to a desired payload motion to achieve substantially pendulation-free actual payload motion. The control system and method apply a motion compensator to maintain a payload in a defined payload configuration relative to an inertial coordinate frame. The control system and method can further comprise a pendulation damper controller to reduce an amount of pendulation between a sensed payload configuration and the defined payload configuration. The control system and method can further comprise a command shaping filter to filter out a residual payload pendulation frequency from the desired payload motion.

Robinett, III, Rush D. (Tijeras, NM); Groom, Kenneth N. (Albuquerque, NM); Feddema, John T. (Albuquerque, NM); Parker, Gordon G. (Houghton, MI)

2002-01-01T23:59:59.000Z

113

Cold Vacuum Drying Facility Crane and Hoist System Design Description (SYS 14)  

SciTech Connect (OSTI)

This system design description (SDD) is for the Cold Vacuum Drying (CVD) Facility overhead crane and hoist system. The overhead crane and hoist system is a general service system. It is located in the process bays of the CVD Facility, supports the processes required to drain the water and dry the spent nuclear fuel (SNF) contained in the multi-canister overpacks (MCOs) after they have been removed from the K-Basins. The location of the system in the process bay is shown.

TRAN, Y.S.

2000-06-07T23:59:59.000Z

114

Protect and Restore Mill Creek Watershed : Annual Report CY 2005.  

SciTech Connect (OSTI)

The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership, more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Mill Creek watershed of the South Fork Clearwater River in 2000. Progress has been made in restoring the watershed through excluding cattle from critical riparian areas through fencing. Starting in FY 2002, continuing into 2004, trees were planted in riparian areas in the meadow of the upper watershed. In addition, a complete inventory of culverts at road-stream crossings was completed. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed, and one high priority culvert was replaced in 2004. Maintenance to the previously built fence was also completed.

McRoberts, Heidi

2006-03-01T23:59:59.000Z

115

Restore McComas Meadows; Meadow Creek Watershed, 2005-2006 Annual Report.  

SciTech Connect (OSTI)

The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Meadow Creek watershed are coordinated and cost shared with the Nez Perce National Forest. The Nez Perce Tribe began watershed restoration projects within the Meadow Creek watershed of the South Fork Clearwater River in 1996. Progress has been made in restoring the watershed by excluding cattle from critical riparian areas through fencing, planting trees in riparian areas within the meadow and its tributaries, prioritizing culverts for replacement to accommodate fish passage, and decommissioning roads to reduce sediment input. During this contract period work was completed on two culvert replacement projects; Doe Creek and a tributary to Meadow Creek. Additionally construction was also completed for the ditch restoration project within McComas Meadows. Monitoring for project effectiveness and trends in watershed conditions was also completed. Road decommissioning monitoring, as well as stream temperature, sediment, and discharge were completed.

McRoberts, Heidi (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

2006-07-01T23:59:59.000Z

116

Range Creek Calibrated Dates Beta-202190  

E-Print Network [OSTI]

Range Creek Calibrated Dates 0 200 400 600 800 1000 1200 1400 Beta-202190 Beta-175753 Beta-175755 Beta-235067 Beta-202189 Beta-214831 Beta-202188 Beta-202191 Beta-203630 Beta-214832 Beta-175754 Beta a Carbon-14 calibrated date (95% CI) between 1000 and 1200 C.E. (Figure 5: Beta-235067). The calibrated

Provancher, William

117

Clear Creek, Texas Flood Risk Management Project  

E-Print Network [OSTI]

) of 1996 requires four distinct steps for an evaluation of economic benefits and costs for projects for an evaluation of economic benefits and costs for projects were conducted and displayed in the Economic Appendix Economic Evaluation. The non-Federal projects (FEMA buyout and detention on Marys Creek) augments

US Army Corps of Engineers

118

Vegetation survey of Pen Branch and Four Mile Creek wetlands  

SciTech Connect (OSTI)

One hundred-fifty plots were recently sampled (vegetational sampling study) at the Savannah River Site (SRS). An extensive characterization of the vascular flora, in four predetermined strata (overstory, Understory, shrub layer, and ground cover), was undertaken to determine dominance, co-dominance, and the importance value (I.V.) of each species. These results will be used by the Savannah River Laboratory (SRL) to evaluate the environmental status of Four Mile Creek, Pen Branch, and two upland pine stands. Objectives of this study were to: Describe in detail the plant communities previously mapped with reference to the topography and drainage, including species of plants present: Examine the successional trends within each sampling area and describe the extent to which current vegetation communities have resulted from specific earlier vegetation disturbances (e.g., logging and grazing); describe in detail the botanical field techniques used to sample the flora; describe the habitat and location of protected and/or rare species of plants; and collect and prepare plant species as herbarium quality specimens. Sampling was conducted at Four Mile Creek and Pen Branch, and in two upland pine plantations of different age growth.

Not Available

1992-10-01T23:59:59.000Z

119

Vegetation survey of Pen Branch and Four Mile Creek wetlands  

SciTech Connect (OSTI)

One hundred-fifty plots were recently sampled (vegetational sampling study) at the Savannah River Site (SRS). An extensive characterization of the vascular flora, in four predetermined strata (overstory, Understory, shrub layer, and ground cover), was undertaken to determine dominance, co-dominance, and the importance value (I.V.) of each species. These results will be used by the Savannah River Laboratory (SRL) to evaluate the environmental status of Four Mile Creek, Pen Branch, and two upland pine stands. Objectives of this study were to: Describe in detail the plant communities previously mapped with reference to the topography and drainage, including species of plants present: Examine the successional trends within each sampling area and describe the extent to which current vegetation communities have resulted from specific earlier vegetation disturbances (e.g., logging and grazing); describe in detail the botanical field techniques used to sample the flora; describe the habitat and location of protected and/or rare species of plants; and collect and prepare plant species as herbarium quality specimens. Sampling was conducted at Four Mile Creek and Pen Branch, and in two upland pine plantations of different age growth.

Not Available

1992-01-01T23:59:59.000Z

120

Environmental geophysics at Kings Creek Disposal Site and 30th Street Landfill, Aberdeen Proving Ground, Maryland  

SciTech Connect (OSTI)

Geophysical studies on the Bush River Peninsula in the Edgewood Area of Aberdeen Proving Ground, Maryland, delineate landfill areas and provide diagnostic signatures of the hydrogeologic framework and possible contaminant pathways. These studies indicate that, during the Pleistocene Epoch, alternating stands of high and low seal levels resulted in a complex pattern of shallow channel-fill deposits in the Kings Creek area. Ground-penetrating radar studies reveal a paleochannel greater than 50 ft deep, with a thalweg trending offshore in a southwest direction into Kings Creek. Onshore, the ground-penetrating radar data indicate a 35-ft-deep branch to the main channel, trending to the north-northwest directly beneath the 30th Street Landfill. Other branches are suspected to meet the offshore paleochannel in the wetlands south and east of the 30th Street Landfill. This paleochannel depositional system is environmentally significant because it may control the shallow groundwater flow regime beneath the site. Electromagnetic surveys have delineated the pre-fill lowland area currently occupied by the 30th Street Landfill. Magnetic and conductive anomalies outline surficial and buried debris throughout the study area. On the basis of geophysical data, large-scale dumping has not occurred north of the Kings Creek Disposal Site or east of the 30th Street Landfill.

Davies, B.E.; Miller, S.F.; McGinnis, L.D.; Daudt, C.R.; Thompson, M.D.; Stefanov, J.E.; Benson, M.A.; Padar, C.A.

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "area crane creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Level 1: Incidental crane operator`s and incidental rigger`s manual. Revision  

SciTech Connect (OSTI)

This document is a safety manual for incidental crane operators and incidental riggers. The information contained in this manual includes: Terminology and definitions, safety orientation, general operating procedures, high-consequence/high value lifts, sling safety, basic rules of hitching and rigging, and common errors in hitching.

Neubauer, P. [ed.

1992-11-01T23:59:59.000Z

122

Ichnotaxonomic assessment of Mazon Creek area trace fossils, Illinois, USA  

E-Print Network [OSTI]

45748, PE 51523 DESCRIPTIONStraight to slightly sinuous, horizontal to subhorizontal, mostly unlined burrows with meniscate backfill structures. Backfills may be slightly offset from 14 one another and merge laterally to form a crenulate burrow...; slight sinuosity still represents sinuosity. Keighley and Pickerill (1994; p. 311) stated that ichnogenera should not be differentiated based on variations in the style of backfill. The variations of the menisci, however, may represent different...

LoBue, David J.

2010-08-12T23:59:59.000Z

123

Thermal Gradient Holes At Upper Hot Creek Ranch Area (Benoit...  

Open Energy Info (EERE)

planned but higher than anticipated drilling and permitting costs within a fixed budget reduced the number of holes to five. Four of the five holes drilled to depths of 300...

124

East Basin Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classified asThis article is a stub.1228923°,

125

Upper Hot Creek Ranch Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401 etWisconsin:california JumpEnergyDivision Hot

126

Upper Hot Creek Ranch Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401 etWisconsin:california JumpEnergyDivision

127

Slate Creek Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement, 2009) | OpenSixthSkypoint Solar IncSlate

128

Deer Creek Hot Spring Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has been approved forDaytonCounty,Deepi

129

Improvement of Anadromous Fish Habitat and Passage in Omak Creek, 2008 Annual Report : February 1, 2008 to January 31, 2009.  

SciTech Connect (OSTI)

During the 2008 season, projects completed under BPA project 2000-100-00 included installation of riparian fencing, maintenance of existing riparian fencing, monitoring of at-risk culverts and installation of riparian vegetation along impacted sections of Omak Creek. Redd and snorkel surveys were conducted in Omak Creek to determine steelhead production. Canopy closure surveys were conducted to monitor riparian vegetation recovery after exclusion of cattle since 2000 from a study area commonly known as the Moomaw property. Additional redd and fry surveys were conducted above Mission Falls and in the lower portion of Stapaloop Creek to try and determine whether there has been successful passage at Mission Falls. Monitoring adult steelhead trying to navigate the falls resulted in the discovery of shallow pool depth at an upper pool that is preventing many fish from successfully navigating the entire falls. The Omak Creek Habitat and Passage Project has worked with NRCS to obtain additional funds to implement projects in 2009 that will address passage at Mission Falls, culvert replacement, as well as additional riparian planting. The Omak Creek Technical Advisory Group (TAG) is currently revising the Omak Creek Watershed Assessment. In addition, the group is revising strategy to focus efforts in targeted areas to provide a greater positive impact within the watershed. In 2008 the NRCS Riparian Technical Team was supposed to assess areas within the watershed that have unique problems and require special treatments to successfully resolve the issues involved. The technical team will be scheduled for 2009 to assist the TAG in developing strategies for these special areas.

Dasher, Rhonda; Fisher, Christopher [Colville Confederated Tribes

2009-06-09T23:59:59.000Z

130

Steel Creek primary producers: Periphyton and seston, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991  

SciTech Connect (OSTI)

The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor and to protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to assess various components of the system and identify and changes due to the operation of L-Reactor or discharge from L Lake. An intensive ecological assessment program prior to the construction of the lake provided baseline data with which to compare data accumulated after the lake was filled and began discharging into the creek. The Department of Energy must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems. This report summarizes the results of six years` data from Steel Creek under the L-Lake/Steel Creek Monitoring Program. L Lake is discussed separately from Steel Creek in Volumes NAI-SR-138 through NAI-SR-143.

Bowers, J.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Toole, M.A.; van Duyn, Y. [Normandeau Associates Inc., New Ellenton, SC (United States)

1992-02-01T23:59:59.000Z

131

Bull Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHISBrickyardRepowerBull Creek Wind Farm Jump to:

132

New Jersey Nuclear Profile - PSEG Hope Creek Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

PSEG Hope Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

133

Microsoft Word - Trimble_Creek_Acquisition_CX.doc  

Broader source: Energy.gov (indexed) [DOE]

funds to the Kalispel Tribe (Kalispel) for purchase of Trimble Creek (Doramus) Property Fish and Wildlife Project No.: 1992-061-00, Contract BPA-004991 Categorical Exclusion...

134

Microsoft Word - CX_ThorneCreek_Final.doc  

Broader source: Energy.gov (indexed) [DOE]

the Confederated Salish and Kootenai Tribes for purchase of the Thorne Creek Property. Fish and Wildlife Project No.: 2002-003-00, Contract CR-201269 Categorical Exclusion Applied...

135

Microsoft Word - CX_Beaver Creek.doc  

Broader source: Energy.gov (indexed) [DOE]

(BPA) funding to acquire the Beaver Creek property and to maintain this property for fish and wildlife habitat protection. Budget Information: Work Order 00225478 Fish and...

136

Compound and Elemental Analysis At Crane Hot Springs Area (Wood, 2002) |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy,(EC-LEDS)ColumbusDHeat Ltd

137

Water Sampling At Crane Hot Springs Area (Wood, 2002) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt LakeWashtenaw County, Michigan:

138

Assessing the Feasibility of Creek Daylighting in San Francisco, Part II: A Preliminary Analysis of Yosemite Creek  

E-Print Network [OSTI]

or purchased properties) to daylight the stream? Or is itrestoration (Smith 2007). Why Daylight in San Francisco? Inof San Francisco to daylight Yosemite Creek, how and where

Smith, Brooke Ray

2007-01-01T23:59:59.000Z

139

Wetland Survey of Selected Areas in the Oak Ridge Y-12 Plant Area of Responsibilty, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This document was prepared to summarize wetland surveys performed in the Y- 1 2 Plant area of responsibility in June and July 1994. Wetland surveys were conducted in three areas within the Oak Ridge Y- 12 Plant area of responsibility in June and July 1994: the Upper East Fork Poplar Creek (UEFPC) Operable Unit (OU), part of the Bear Creek Valley OU (the upper watershed of Bear Creek from the culvert under Bear Creek Road upstream through the Y-12 West End Environmental Management Area, and the catchment of Bear Creek North Tributary 1), and part of Chestnut Ridge OU 2 (the McCoy Branch area south of Bethel Valley Road). Using the criteria and methods set forth in the Wetlands Delineation Manual, 18 wetland areas were identified in the 3 areas surveyed; these areas were classified according to the system developed by Cowardin. Fourteen wetlands and one wetland/pond area that are associated with disturbed or remnant stream channels and seeps were identified in the UEFPC OU. Three wetlands were identified in the Bear Creek Valley OU portion of the survey area. One wetland was identified in the riparian zone of McCoy Branch in the southern portion of Chestnut Ridge OU 2.

Rosensteel

1997-01-01T23:59:59.000Z

140

E-Print Network 3.0 - abernathy creek washington Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Watersheds) 88,763 Acres 18060001 3304120101 Kings Creek (7770 Acres) Summary: Kings Creek (7770 Acres) 35,920 Hectares 4th Field HUC 3304120102 Castlerock Falls (7371...

Note: This page contains sample records for the topic "area crane creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

E-Print Network 3.0 - allens creek nuclear Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Units Calwater Subbasins ---(Planning Watersheds) 88,763 Acres 18060001 3304120101 Kings Creek (7770 Acres) Summary: Kings Creek (7770 Acres) 35,920 Hectares 4th Field HUC...

142

E-Print Network 3.0 - asotin creek fencing Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Watersheds) 88,763 Acres 18060001 3304120101 Kings Creek (7770 Acres) Summary: Kings Creek (7770 Acres) 35,920 Hectares 4th Field HUC 3304120102 Castlerock Falls (7371...

143

E-Print Network 3.0 - asotin creek model Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Units Calwater Subbasins ---(Planning Watersheds) 88,763 Acres 18060001 3304120101 Kings Creek (7770 Acres) Summary: Kings Creek (7770 Acres) 35,920 Hectares 4th Field HUC...

144

High Seastate Container Transfer System/Auxillary Crane Ship vertical relative motion analysis  

E-Print Network [OSTI]

) Michael James Ottens, B. S. ; U. S. Military Academy Chairman of Advisory Committee: Dr. Cheung H. Kim The transfer of cargo by crane from ship to lighter outside of sheltered ports can be adversely affected by the sea environment, Wave... of vertical relative motions exceed prescribed safety factors. Additionally, there is a continuing need to develop improved seakeeping designs of ships/lighterage. This paper calculates theoretically the vertical relative motions between a cargo ship...

Ottens, Michael James

1992-01-01T23:59:59.000Z

145

Discrete quantum gravity: the Lorentz invariant weight for the Barrett-Crane model  

E-Print Network [OSTI]

In a recent paper [1] we have constructed the spin and tensor representations of SO(4) from which the invariant weight can be derived for the Barrett-Crane model in quantum gravity. By analogy with the SO(4) group, we present the complexified Clebsch-Gordan coefficients in order to construct the Biedenharn-Dolginov function for the SO(3,1) group and the spherical function as the Lorentz invariant weight of the model.

M. Lorente

2004-11-14T23:59:59.000Z

146

Development of remote crane system for use inside small argon hot-cell  

SciTech Connect (OSTI)

In this paper, we describe the design of a novel crane system for the use in a small argon hot-cell where only a pair of master-slave manipulators (MSM) is available for the remote maintenance of the crane. To increase the remote maintainability in the space-limited environment, we devised a remote actuation mechanism in which electrical parts consisting of a servo-motor, a position sensor, and two limit switches located inside the workspace of the MSM transmit power to the mechanical parts located in the ceiling. Even though the design concept does not provide thoroughly sufficient solution because the mechanical parts are placed out of the MSM's workspace, the durability of mechanical parts can be easily increased if they have a high safety margin. Therefore, the concept may be one of the best solutions for our special crane system. In addition, we developed a servo-control system based on absolute positioning technology; therefore, it is possible for us to perform the given tasks more safely through an automatic operation. (authors)

Lee, Jong Kwang; Park, Byung Suk; Yu, Seung-Nam; Kim, Kiho; Cho, Ilje [Nuclear Fuel Cycle Process Technology Development Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

2013-07-01T23:59:59.000Z

147

Biological monitoring of Upper Three Runs Creek, Savannah River Site, Aiken County, South Carolina, March 1990--July 1991  

SciTech Connect (OSTI)

In anticipation of the fall 1988 start up of effluent discharges into Upper Three Runs Creek by the F/H Area Effluent Treatment Facility of the Savannah River Site, Aiken, SC, a two and one half year biological study was initiated in June 1987. Upper Three Runs Creek is an intensively studied fourth order stream known for its high species richness. Designed to assess the potential impact of F/H area effluent on the creek, the study included qualitative and quantitative macroinvertebrate stream surveys at five sites (see map), chronic toxicity testing of the effluent, water chemistry and bioaccumulation analysis. In a March 1990 study of the potential impact of F/H Area effluent on the macroinvertebrate communities of Upper Three Runs Creek was extended, with reductions in the number of sites to be sampled and in the frequency of water chemistry sampling. This report presents the results of macroinvertebrate stream surveys at three sites, chronic toxicity testing of the effluent and water chemistry analysis of the three stream sites and the effluent from March 1990 to July 1991.

Not Available

1991-12-01T23:59:59.000Z

148

Reedy Creek Improvement Dist | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerType Jump to:Co JumpRETScreenJam HomeReedy Creek

149

Stony Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACAOpen Energy InformationStony Creek Wind Farm Jump

150

Fermilab | Tritium at Fermilab | Indian Creek Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000Technology |TheoryTufteTakeIndian Creek

151

Bear Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass Facility Jump to:SectorBear Canyon GeothermalCreek

152

Willow Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEdit JumpWill County, Illinois: Facility Willow Creek

153

Edwards Creek Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classified asThisEcoGridCounty, South Dakota: EnergyKansas. ItsCreek

154

Tons of Heavy Metals in Mill Creek Sediments Heather Freeman  

E-Print Network [OSTI]

objectives for this summer research were to: 1.) determine how much heavy metal pollution has accumulatedTons of Heavy Metals in Mill Creek Sediments Heather Freeman 8/30/99 Geology Department Advisors: Dr. Kees DeJong Dr. Barry Manyard Dr. David Nash #12;Tons of heavy metals in Mill Creek sediments

Maynard, J. Barry

155

NAME: Green Gulch Creek Stream Restoration Project LOCATION: Redwood Creek Watershed in Marin County, CA (closest town is Muir Beach)  

E-Print Network [OSTI]

NAME: Green Gulch Creek Stream Restoration Project LOCATION: Redwood Creek Watershed in Marin County, CA (closest town is Muir Beach) ACRES: 1.5 acres riparian habitat; 0.3 miles of stream channel-modified, straightened, and downcut channel; relocate the farm road and fences paralleling the stream to provide

US Army Corps of Engineers

156

Hoe Creek 1990 quarterly sampling cumulative report  

SciTech Connect (OSTI)

Groundwater samples were collected and analyzed for benzene and for total phenols three times during 1990. This report summarizes the results of these sampling events and compares the results with those obtained in previous years. Possible further options for remediation of the Hoe Creek site was addressed. Three underground coal gasification (UCG) burns were performed by Lawrence Livermore National Laboratory for the US Department of Energy in 1976, 1977, and 1979 at the Hoe Creek site, which is about 20 miles south of Gillette, Wyoming. As a result of these burns, there has been considerable contamination of groundwater by various organic compounds. There have been three efforts at remediating this situation. In 1986 and again in 1987, contaminated water was pumped out, treated, and reinjected. In 1989, the water was pumped, treated, and sprayed into the atmosphere. Benzene and total phenols have been monitored at various monitoring wells as the site during 1990. The highest detected benzene concentration in 1990 was 220 {mu}g/L, and the highest total phenols concentration was 430 {mu}g/L. It is apparent that contamination is still above baseline levels, although the concentration of total phenols is far less than immediately after the burns. The burned coal seams are still releasing organic compounds into the groundwater that passes through them.

Crader, S.E.; Huntington, G.S.

1991-03-01T23:59:59.000Z

157

Superfund Record of Decision (EPA Region 8): Anaconda Smelter Site, Mill Creek, Montana (first remedial action), October 1988  

SciTech Connect (OSTI)

The 160-acre community of Mill Creek is located in Deerlodge County, Montana, immediately adjacent to the Anaconda Smelter NPL site. The community of Mill Creek has been contaminated for over 100 years with smelter emissions, fugitive emissions of flu dust at the smelter, and continued fugitive emissions emanating from adjacent highly contaminated soils. Settled flue emissions in the community of Mill Creek, from the now-defunct copper-smelting operation, contain arsenic, cadmium, and lead. Environmental siting of the community and biological testing of pre-school children, led EPA to conclude that contamination in the Mill Creek area poses an imminent and substantial endangerment to the health of individuals residing there. The primary contaminant of concern at this site is arsenic. Cadmium and lead are secondary contaminants of concern. The selected remedial action for the site includes: permanent relocation of all residents (8 homes) with temporary erosional stabilization of disturbed areas by establishing and maintaining a vegetative cover; demolition, consolidation, and storage.

Not Available

1988-10-02T23:59:59.000Z

158

Improving Remedial Planning Performance: The Rattlesnake Creek Experience  

SciTech Connect (OSTI)

The U.S. Army Corps of Engineers (USACE), Buffalo District, has responsibility for characterizing and remediating radiologically contaminated properties under the Formerly Utilized Sites Remedial Action Program (FUSRAP). Most of these FUSRAP sites include radionuclide contamination in soils where excavation and offsite disposal is the selected remedial action. For many FUSRAP soil remediation projects completed to date, the excavated contaminated soil volumes have significantly exceeded the pre-excavation volume estimates that were developed for project planning purposes. The exceedances are often attributed to limited and sparse datasets that are used to calculate the initial volume estimates. These volume exceedances complicate project budgeting and planning. Building on these experiences, the USACE took a different approach in the remediation of Rattlesnake Creek, located adjacent to the Ashland 2 site, in Tonawanda, New York. This approach included a more extensive pre-design data collection effort to improve and reduce the uncertainty in the pre-excavation volume estimates, in addition to formalizing final status survey data collection strategies prior to excavation. The final status survey sampling was fully integrated with the pre-design data collection, allowing dual use of the pre-design data that was collected (i.e., using the data to close out areas where contamination was not found, and feeding the data into volume estimates when contamination was encountered). The use of real-time measurement techniques (e.g., X-ray fluorescence [XRF] and gamma walkover surveys) during pre-excavation data collection allowed the USACE to identify and respond to unexpected contamination by allocating additional data collection to characterizing new areas of concern. The final result was an estimated soil volume and excavation footprint with a firm technical foundation and a reduction in uncertainty. However, even with extensive pre-design data collection, additional contamination was found during the excavation that led to an increase in the soil volume requiring offsite disposal. This paper describes the lessons learned regarding improving remedial planning performance from the Rattlesnake Creek experience and evaluates the level of project uncertainty reduction achieved through pre-design data collection. (authors)

Rieman, C.R.; Spector, H.L.; Andrews, S.M. [U.S. Army Corps of Engineers, Buffalo District, 1776 Niagara St., Buffalo, NY 14207 (United States); Durham, L. A.; Johnson, R. L. [Argonne National Laboratory, 9700 S. Cass Ave., EVS 900, Argonne, IL 60439 (United States); Racino, R. R. [Cabrera Services, Inc., 29 Railroad Avenue, Middletown, NY 10940 (United States)

2006-07-01T23:59:59.000Z

159

Reintroduction of Lower Columbia River Chum Salmon into Duncan Creek, 2007 Annual Report.  

SciTech Connect (OSTI)

The National Marine Fisheries Service (NMFS) listed Lower Columbia River (LCR) chum salmon as threatened under the Endangered Species Act (ESA) in March, 1999 (64 FR 14508, March 25, 1999). The listing was in response to the reduction in abundance from historical levels of more than one-half million returning adults to fewer than 10,000 present-day spawners. Harvest, habitat degradation, changes in flow regimes, riverbed movement and heavy siltation have been largely responsible for this decline. The timing of seasonal changes in river flow and water temperatures is perhaps the most critical factor in structuring the freshwater life history of this species. This is especially true of the population located directly below Bonneville Dam, where hydropower operations can block access to spawning sites, dewater redds, strand fry, cause scour or fill of redds and increase sedimentation of spawning gravels. Prior to 1997, only two chum salmon populations were recognized as genetically distinct in the Columbia River, although spawning had been documented in many Lower Columbia River tributaries. The first population was in the Grays River (RKm 34), a tributary of the Columbia River, and the second was a group of spawners utilizing the mainstem Columbia River just below Bonneville Dam (RKm 235) adjacent to Ives Island and in Hardy and Hamilton creeks. Using additional DNA samples, Small et al. (2006) grouped chum salmon spawning in the mainstem Columbia River and the Washington State tributaries into three groups: the Coastal, the Cascade and the Gorge. The Coastal group comprises those spawning in the Grays River, Skamokawa Creek and the broodstock used at the Sea Resources facility on the Chinook River. The Cascade group comprises those spawning in the Cowlitz (both summer and fall stocks), Kalama, Lewis, and East Fork Lewis rivers, with most supporting unique populations. The Gorge group comprises those spawning in the mainstem Columbia River from the I-205 Bridge up to Bonneville Dam and those spawning in Hamilton and Hardy creeks. Response to the federal ESA listing has been primarily through direct-recovery actions: reducing harvest, hatchery supplementation using local broodstock for populations at catastrophic risk, habitat restoration (including construction of spawning channels) and flow agreements to protect spawning and rearing areas. Both state and federal agencies have built controlled spawning areas. In 1998, the Washington Department of Fish and Wildlife (WDFW) began a chum salmon supplementation program using native stock on the Grays River. This program was expanded during 1999 - 2001 to include reintroduction into the Chinook River using eggs from the Grays River Supplementation Program. These eggs are incubated at the Grays River Hatchery, reared to release size at the Sea Resources Hatchery on the Chinook River, and the fry are released at the mouth of the Chinook River. Native steelhead, chum, and coho salmon are present in Duncan Creek, and are recognized as subpopulations of the Lower Gorge population, and are focal species in the Lower Columbia Fish Recovery Board (LCFRB) plan. Steelhead, chum and coho salmon that spawn in Duncan Creek are listed as Threatened under the ESA. Duncan Creek is classified by the LCFRB plan as a watershed for intensive monitoring (LCFRB 2004). This project was identified in the 2004 Federal Columbia River Power System (FCRPS) revised Biological Opinion (revised BiOp) to increase survival of chum salmon, 'BPA will continue to fund the program to re-introduce Columbia River chum salmon into Duncan Creek as long as NOAA Fisheries determines it to be an essential and effective contribution to reducing the risk of extinction for this ESU'. (USACE et al. 2004, page 85-86). The Governors Forum on Monitoring and Salmon Recovery and Watershed Health recommends one major population from each ESU have adult and juvenile monitoring. Duncan Creek chum salmon are identified in this plan to be intensively monitored. Planners recommended that a combination of natural and hatchery production

Hillson, Todd D. [Washington Department of Fish and Wildlife

2009-06-12T23:59:59.000Z

160

TR-019 Hydrology March 2002 Roberts Creek Study Forest  

E-Print Network [OSTI]

TR-019 Hydrology March 2002 Roberts Creek Study Forest: effects of partial retention harvesting, 250-751-7001 Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife Abstract

Note: This page contains sample records for the topic "area crane creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Microsoft Word - JockoSpringCreek_Scott_Acquisition_CX_Final...  

Broader source: Energy.gov (indexed) [DOE]

purchase of Jocko Spring Creek Property. Fish and Wildlife Project No.: 2002-003-00, Contract BPA-44646 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021):...

162

Microsoft Word - CX_PistolCreek_Final.doc  

Broader source: Energy.gov (indexed) [DOE]

the Confederated Salish and Kootenai Tribes for purchase of the Pistol Creek Property. Fish and Wildlife Project No.: 2002-003-00 Categorical Exclusion Applied (from Subpart D, 10...

163

Microsoft Word - MissionCreek_Kingston_Acquisition_CX_final.doc  

Broader source: Energy.gov (indexed) [DOE]

purchase of the Mission Creek Property. Fish and Wildlife Project No.: 2002-003-00, Contract BPA-44646 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25...

164

White Creek and Nine Canyon wind farms Fact Sheet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(MW) of wind storage and shaping service to help integrate power from the proposed White Creek Wind Project in Klickitat Co., Wash., into the Northwest power system. BPA also...

165

HYDROLOGY OF BISHOP CREEK, CALIFORNIA: AN ISOTOPIC ANALYSIS 1  

E-Print Network [OSTI]

diverting Bishop creek water for hydroelectric power for many years. Recently there has been concern that must be released from the hydroelectric power plants to the channel, during certain times of the year

Standiford, Richard B.

166

Willow Creek Wildlife Mitigation Project. Final Environmental Assessment.  

SciTech Connect (OSTI)

Today`s notice announces BPA`s proposal to fund land acquisition or acquisition of a conservation easement and a wildlife management plan to protect and enhance wildlife habitat at the Willow Creek Natural Area in Eugene, Oregon. This action would provide partial mitigation for wildlife and wildlife habitat lost by the development of Federal hydroelectric projects in the Willamette River Basin. The project is consistent with BPA`s obligations under provisions of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 as outlined by the Northwest Power Planning Council`s 1994 Columbia River Basin Fish and Wildlife Program. BPA has prepared an environmental assessment (DOE/EA-1023) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required and BPA is issuing this FONSI.

NONE

1995-04-01T23:59:59.000Z

167

NORTH HILL CREEK 3-D SEISMIC EXPLORATION PROJECT  

SciTech Connect (OSTI)

Wind River Resources Corporation (WRRC) received a DOE grant in support of its proposal to acquire, process and interpret fifteen square miles of high-quality 3-D seismic data on non-allotted trust lands of the Uintah and Ouray (Ute) Indian Reservation, northeastern Utah, in 2000. Subsequent to receiving notice that its proposal would be funded, WRRC was able to add ten square miles of adjacent state and federal mineral acreage underlying tribal surface lands by arrangement with the operator of the Flat Rock Field. The twenty-five square mile 3-D seismic survey was conducted during the fall of 2000. The data were processed through the winter of 2000-2001, and initial interpretation took place during the spring of 2001. The initial interpretation identified multiple attractive drilling prospects, two of which were staked and permitted during the summer of 2001. The two initial wells were drilled in September and October of 2001. A deeper test was drilled in June of 2002. Subsequently a ten-well deep drilling evaluation program was conducted from October of 2002 through March 2004. The present report discusses the background of the project; design and execution of the 3-D seismic survey; processing and interpretation of the data; and drilling, completion and production results of a sample of the wells drilled on the basis of the interpreted survey. Fifteen wells have been drilled to test targets identified on the North Hill Creek 3-D Seismic Survey. None of these wildcat exploratory wells has been a dry hole, and several are among the best gas producers in Utah. The quality of the data produced by this first significant exploratory 3-D survey in the Uinta Basin has encouraged other operators to employ this technology. At least two additional 3-D seismic surveys have been completed in the vicinity of the North Hill Creek Survey, and five additional surveys are being planned for the 2004 field season. This project was successful in finding commercial oil, natural gas and natural gas liquids production on a remote part of the Uintah & Ouray Reservation. Much of the natural gas and natural gas liquids are being produced from the Wingate Formation, which to our knowledge has never produced commercially anywhere. Another large percentage of the natural gas is being produced from the Entrada Formation which has not previously produced in this part of the Uinta Basin. In all, at least nine geologic formations are contributing hydrocarbons to these wells. This survey has clearly established the fact that high-quality data can be obtained in this area, despite the known obstacles.

Marc T. Eckels; David H. Suek; Denise H. Harrison; Paul J. Harrison

2004-05-06T23:59:59.000Z

168

Unique Chernobyl Cranes for Deconstruction Activities in the New Safe Confinement - 13542  

SciTech Connect (OSTI)

The devastation left behind from the Chernobyl nuclear power plant (ChNPP) Unit 4 accident which occurred on April 26, 1986 presented unparalleled technical challenges to the world engineering and scientific community. One of the largest tasks that are in progress is the design and construction of the New Safe Confinement (NSC). The NSC is an engineered enclosure for the entire object shelter (OS) that includes a suite of process equipment. The process equipment will be used for the dismantling of the destroyed Chernobyl Nuclear Power Plant (ChNPP) Unit. One of the major mechanical handling systems to be installed in the NSC is the Main Cranes System (MCS). The planned decontamination and decommissioning or dismantling (D and D) activities will require the handling of heavily shielded waste disposal casks containing nuclear fuel as well as lifting and transporting extremely large structural elements. These activities, to be performed within the NSC, will require large and sophisticated cranes. The article will focus on the unique design features of the MCS for the D and D activities. (authors)

Parameswaran, N.A. Vijay [Bechtel Systems and Infrastructure, Inc. (United States)] [Bechtel Systems and Infrastructure, Inc. (United States); Chornyy, Igor [Chernobyl NPP-SIP-PMU (Ukraine)] [Chernobyl NPP-SIP-PMU (Ukraine); Owen, Rob [PaR Systems, Inc. (United States)] [PaR Systems, Inc. (United States); Schmieman, Eric [Battelle Memorial Institute (United States)] [Battelle Memorial Institute (United States); Kedrowski, Dan

2013-07-01T23:59:59.000Z

169

An insoluble residue study of the Cretaceous Cow Creek Limestone of Central Texas  

E-Print Network [OSTI]

Regional Stratigr chy. Local Stratigrapby 14 14 Honeycut Bend. Cyoress Creek. Hickory Creek. Cox Crossing Hamilton Pool. IB 19 2O 21 21 Rebecca Creek. PALEONTOLOGY MINERALOGY 23 25 Page Introduction 27 Constituents of the Sand... of the Cow. Creek Limestone on the basis of the silt-clay fraction 46 10. Zonation and suggested corr . lation of the Cow Creek Limestone on the basis of feldspar content of the sand-size fraction. 47 11. Zonation of the Cow Creek Limestone on the basis...

Morton, William Rogers

1967-01-01T23:59:59.000Z

170

Exploration of the Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada  

SciTech Connect (OSTI)

The Upper Hot Creek Ranch (UHCR) geothermal system had seen no significant exploration activity prior to initiation of this GRED III project. Geochemical geothermometers calculated from previously available but questionable quality analyses of the UHCR hot spring waters indicated possible subsurface temperatures of +320 oF. A complex Quaternary and Holocene faulting pattern associated with a six mile step over of the Hot Creek Range near the UHCR also indicated that this area was worthy of some exploration activity. Permitting activities began in Dec. 2004 for the temperature-gradient holes but took much longer than expected with all drilling permits finally being received in early August 2005. The drilling and geochemical sampling occurred in August 2005. Ten temperature gradient holes up to 500 deep were initially planned but higher than anticipated drilling and permitting costs within a fixed budget reduced the number of holes to five. Four of the five holes drilled to depths of 300 to 400 encountered temperatures close to the expected regional thermal background conditions. These four holes failed to find any evidence of a large thermal anomaly surrounding the UHCR hot springs. The fifth hole, located within a narrow part of Hot Creek Canyon, encountered a maximum temperature of 81 oF at a depth of 105 but had cooler temperatures at greater depth. Temperature data from this hole can not be extrapolated to greater depths. Any thermal anomaly associated with the UHCR geothermal system is apparently confined to the immediate vicinity of Hot Creek Canyon where challenges such as topography, a wilderness study area, and wetlands issues will make further exploration time consuming and costly. Ten water samples were collected for chemical analysis and interpretation. Analyses of three samples of the UHCR thermal give predicted subsurface temperatures ranging from 317 to 334 oF from the Na-K-Ca, silica (quartz), and Na-Li geothermometers. The fact that all three thermometers closely agree gives the predictions added credibility. Unfortunately, the final result of this exploration is that a moderate temperature geothermal resource has been clearly identified but it appears to be restricted to a relatively small area that would be difficult to develop.

Dick Benoit; David Blackwell

2006-01-01T23:59:59.000Z

171

A study of post-thermal recovery of the macroinvertebrate community of Four Mile Creek, June 1985--September 1987. [Savannah River Plant  

SciTech Connect (OSTI)

Four Mile Creek is one of several streams at the Savannah River Site which has received thermal effluents ({le}70{degrees}C water) from nuclear production operations. From 1955--mid-1985, Four Mile Creek received thermal effluent from C-Reactor as well as non-thermal discharges from F and H Separation Areas. Total discharges from all of these facilities was about ten times higher than the natural flow of the creek (Firth et al. 1986). All water being discharged into Four Mile Creek was originally pumped from the Savannah River. This study reports the results of the artificial substrate sampling of macroinvertebrate communities of Four Mile Creek from June 1985 through September 1987, when sampling was terminated. Macroinvertebrate taxa richness, densities, and biomass data from this study are compared to Four Mile data collected prior to the shutdown of C-Reactor (Kondratieff and Kondratieff 1985 and Firth et al. 1986), and to comparable macroinvertebrate data from other Savannah River Site streams. 29 refs., 11 figs., 4 tabs.

Lauritsen, D.; Starkel, W.; Specht, W.

1989-11-01T23:59:59.000Z

172

PROBABILITY OF FAILURE OF THE TRUDOCK CRANE SYSTEM AT THE WASTE ISOLATION PILOT PLANT (WIPP)  

SciTech Connect (OSTI)

This probabilistic analysis of WIPP TRUDOCK crane failure is based on two sources of failure data. The source for operator errors is the report by Swain and Guttman, NUREG/CR-1278-F, August 1983. The source for crane cable hook breaks was initially made by WIPP/WID-96- 2196, Rev. O by using relatively old (1970s) U.S. Navy data (NUREG-0612). However, a helpful analysis by R.K. Deremer of PLG guided the authors to values that were more realistic and more conservative, with the recommendation that the crane cable/hook failure rate should be 2.5 x 10-6 per demand. This value was adopted and used. Based on these choices a mean failure rate of 9.70 x 10-3(1/yr) was calculated. However, a mean rate by itself does not reveal the level of confidence to be associated with this number. Guidance to making confidence calculations came from the report by Swain and Guttman, who stated that failure data could be described by lognormal distributions. This is in agreement with the widely use d reports (by DOE and others) NPRD-95 and NPRD-91, on failure data. The calculations of confidence levels showed that the mean failure rate of 9.70x 10-3(1/yr) corresponded to a percentile value of approximately 71; i.e. there is a 71% likelihood that the failure rate is less than 9.70x 10-3(1/yr). One also calculated that there is a 95% likelihood that the failure rate is less than 29.6x 10-3(1/yr). Or, as stated previously, there is a 71% likelihood that not more than one dropped load will occur in 103 years. Also, there is a 95% likelihood that not more than one dropped load will occur in approximately 34 years. It is the responsibility of DOE to select the confidence level at which it desires to operate.

Greenfield, M.A.; Sargent, T.J.

2000-05-01T23:59:59.000Z

173

Safety First Safety Last Safety Always Accessible areas within the swing radius of the rear of the  

E-Print Network [OSTI]

Safety First Safety Last Safety Always Accessible areas within the swing radius of the rear is permissible to meet the OSHA barricade requirement. Crane Swing Radius Safety Tip #12 Better to be dead sure on the reverse side of this safety tip sheet. Please refrain from reading the information verbatim

Minnesota, University of

174

EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County, Wyoming  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming.

175

Spatial and temporal variation in fish assemblage structure at Village Creek  

E-Print Network [OSTI]

Fish assemblages were sampled seasonally at Village Creek, a blackwater tributary of the Neches River in Hardin County, Texas. Forty four fish species were captured at Village Creek from diverse aquatic mesohabitats, (e.g., backwater pools, deep...

Moriarty, Loren Joan

1995-01-01T23:59:59.000Z

176

Water-quality monitoring at the Hoe Creek test site: review and preliminary conclusions  

SciTech Connect (OSTI)

It has been shown that underground coal gasification (UCG) may introduce a broad range of residual gasification products into the groundwater of a coal aquifer. Sorption of many contaminants by the coal itself is an important factor in restricting the migration of these contaminants in the groundwater. However, our field studies at the Lawrence Livermore National Laboratory (LLNL) Hoe Creek site in northeastern Wyoming have shown that sorption of organic compounds by coal is not as effective as expected, perhaps because the coal surface area is limited. Furthermore, if severe roof collapse has taken place during gasification, non-coal aquifers located above the gasified coal seam may be interconnected with the coal aquifer. Contaminants may enter these non-coal aquifers, in which sorption is even less effective. The Hoe Creek II and III experiments have enabled us to study the contamination of a sand aquifer located above a gasified coal seam in a hydrological recharge area. Our preliminary results indicate that the water in the overlying sand aquifer is much less contaminated with organic compounds than that in the gasified coal aquifer. In conducting these field investigations, we have also learned valuable lessons concerning a strategy for groundwater monitoring. 21 figures.

Wang, F.T.; Mead, S.W.; Stuermer, D.H.

1983-04-16T23:59:59.000Z

177

Water quality monitoring at the Hoe Creek test site: review and preliminary conclusions  

SciTech Connect (OSTI)

It has been shown that underground coal gasification (UCG) may introduce a broad range of residual products into the groundwater of a coal aquifer. Sorption of many contaminants by the coal itself is an important factor in restricting the migration of these contaminants in the groundwater. However, our field studies at the Lawrence Livermore National Laboratory (LLNL) Hoe Creek site in northeastern Wyoming have shown that sorption of organic compounds by coal is not as effective as expected, perhaps because the coal surface area is limited. Furthermore, if severe roof collapse has taken place during gasification, non-coal aquifers located above the gasified coal seam may become interconnected with the cavity. Contaminants may enter these non-coal aquifers, in which sorption is even less effective. The Hoe Creek II and III experiments have enabled us to study the contamination of a sand aquifer located above a gasified coal seam in a hydrological recharge area. The preliminary results indicate that the water in the overlying sand aquifer is much less contaminated with organic compounds than that in the gasified

Wang, F.T.; Mead, S.W.; Sturmer, D.H.

1983-01-01T23:59:59.000Z

178

Water-quality monitoring at the Hoe Creek test site: review and preliminary conclusions  

SciTech Connect (OSTI)

It has been shown that underground coal gasification (UCG) may introduce a broad range of residual gasification products into the groundwater of a coal aquifer. Sorption of many contaminants by the coal itself is an important factor in restricting the migration of these contaminants in the ground water. However, field studies, conducted at Lawrence Livermore National Laboratory's Hoe Creek site, have shown that sorption of organic compounds by coal is not as effective as expected, perhaps because the coal surface area is limited. Furthermore, if severe roof collapse has taken place during gasification, non-coal aquifers located above the gasified coal seam may be interconnected with the coal aquifer, and contaminants may enter these non-coal aquifers, in which sorption is even less effective. The Hoe Creek II and III experiments have provided opportunities to study the contamination of a sand aquifer located above a gasified coal seam in a hydrological recharge area. Preliminary results indicate that the water in the overlying sand aquifer is much less contaminated with organic compounds than the water in the gasified coal aquifer. In conducting these field investigations, valuable lessons ere learned concerning groundwater monitoring. A suggested monitoring strategy is discussed.

Wang, F T; Mead, S W; Stuermer, D H

1982-05-20T23:59:59.000Z

179

Fast-growing willow shrub named `Fish Creek`  

DOE Patents [OSTI]

A distinct male cultivar of Salix purpurea named `Fish Creek`, characterized by rapid stem growth producing greater than 30% more woody biomass than either of its parents (`94001` and `94006`) and 20% more biomass than a current production cultivar (`SV1`). `Fish Creek` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Fish Creek` displays a low incidence of rust disease or damage by beetles or sawflies.

Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

2007-05-08T23:59:59.000Z

180

Fast-growing willow shrub named `Fish Creek`  

DOE Patents [OSTI]

A distinct male cultivar of Salix purpurea named `Fish Creek`, characterized by rapid stem growth producing greater than 30% more woody biomass than either of its parents (`94001` and `94006`) and 20% more biomass than a current production cultivar (`SV1`). `Fish Creek` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Fish Creek` displays a low incidence of rust disease or damage by beetles or sawflies.

Abrahamson, Lawrence P. (Marcellus, NY); Kopp, Richard F. (Marietta, NY); Smart, Lawrence B. (Geneva, NY); Volk, Timothy A. (Syracuse, NY)

2007-05-08T23:59:59.000Z

Note: This page contains sample records for the topic "area crane creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Protect and Restore Lolo Creek Watershed : Annual Report CY 2005.  

SciTech Connect (OSTI)

The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Lolo Creek watershed are coordinated with the Clearwater National Forest and Potlatch Corporation. The Nez Perce Tribe began watershed restoration projects within the Lolo Creek watershed of the Clearwater River in 1996. Fencing to exclude cattle for stream banks, stream bank stabilization, decommissioning roads, and upgrading culverts are the primary focuses of this effort. The successful completion of the replacement and removal of several passage blocking culverts represent a major improvement to the watershed. These projects, coupled with other recently completed projects and those anticipated in the future, are a significant step in improving habitat conditions in Lolo Creek.

McRoberts, Heidi

2006-03-01T23:59:59.000Z

182

Analysis of geothermal electric-power generation at Big Creek Hot Springs, Lemhi County, Idaho  

SciTech Connect (OSTI)

Big Creek Hot Springs was evaluated as a source of electrical power for the Blackbird Cobalt Mine, approximately 13 miles south of the hot spring. An evaluaton of the geothermal potential of Big Creek Hot Springs, a suggested exploration program and budget, an engineering feasibility study of power generation at Big Creek Hot Springs, an economic analysis of the modeled power generating system, and an appraisal of the institutional factors influencing development at Big Creek Hot Springs are included.

Struhsacker, D.W. (ed.)

1981-01-01T23:59:59.000Z

183

Perspectives on Dam Removal: York Creek Dam and the Water Framework Directive  

E-Print Network [OSTI]

Environmental Impact Report, Upper York Creek Ecosystem Restoration Project on April 8, 2008 to learn more about the history

Lawrence, Justin E; Pollak, Josh D; Richmond, Sarah F

2008-01-01T23:59:59.000Z

184

Sediment and radionuclide transport in rivers: radionuclide transport modeling for Cattaraugus and Buttermilk Creeks, New York  

SciTech Connect (OSTI)

SERATRA, a transient, two-dimensional (laterally-averaged) computer model of sediment-contaminant transport in rivers, satisfactorily resolved the distribution of sediment and radionuclide concentrations in the Cattaraugus Creek stream system in New York. By modeling the physical processes of advection, diffusion, erosion, deposition, and bed armoring, SERATRA routed three sediment size fractions, including cohesive soils, to simulate three dynamic flow events. In conjunction with the sediment transport, SERATRA computed radionuclide levels in dissolved, suspended sediment, and bed sediment forms for four radionuclides (/sup 137/Cs, /sup 90/Sr, /sup 239/ /sup 240/Pu, and /sup 3/H). By accounting for time-dependent sediment-radionuclide interaction in the water column and bed, SERATA is a physically explicit model of radionuclide fate and migration. Sediment and radionuclide concentrations calculated by SERATA in the Cattaraugus Creek stream system are in reasonable agreement with measured values. SERATRA is in the field performance phase of an extensive testing program designed to establish the utility of the model as a site assessment tool. The model handles not only radionuclides but other contaminants such as pesticides, heavy metals and other toxic chemicals. Now that the model has been applied to four field sites, including the latest study of the Cattaraugus Creek stream system, it is recommended that a final model be validated through comparison of predicted results with field data from a carefully controlled tracer test at a field site. It is also recommended that a detailed laboratory flume be tested to study cohesive sediment transport, deposition, and erosion characteristics. The lack of current understanding of these characteristics is one of the weakest areas hindering the accurate assessment of the migration of radionuclides sorbed by fine sediments of silt and clay.

Onishi, Y.; Yabusaki, S.B.; Kincaid, C.T.; Skaggs, R.L.; Walters, W.H.

1982-12-01T23:59:59.000Z

185

Roberts Creek Study Forest: the effects of shelterwood harvesting and blowdown  

E-Print Network [OSTI]

is sediment produc- tion in domestic water supply creeks. The effects of timber harvesting on sedimentRoberts Creek Study Forest: the effects of shelterwood harvesting and blowdown on sediment production in a small zero-order creek by Robert O. Hudson and Brian D'Anjou KEYWORDS: Shelterwood harvest

186

Optimization Online - All Areas Submissions - November 2011  

E-Print Network [OSTI]

Scheduling co-operating stacking cranes with predetermined container sequences ... Joint Spectral Radius and Path-Complete Graph Lyapunov Functions

187

CTUIR Grande Ronde River Watershed Restoration Program McCoy Creek/McIntyre Creek Road Crossing, 1995-1999 Progress Report.  

SciTech Connect (OSTI)

The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Bonneville Power Administration (BPA) entered into a contract agreement beginning in 1996 to fund watershed restoration and enhancement actions and contribute to recovery of fish and wildlife resources and water quality in the Grande Ronde River Basin. The CTUIR's habitat program is closely coordinated with the Grande Ronde Model Watershed Program and multiple agencies and organizations within the basin. The CTUIR has focused during the past 4 years in the upper portions of the Grande Ronde Subbasin (upstream of LaGrande, Oregon) on several major project areas in the Meadow, McCoy, and McIntyre Creek watersheds and along the mainstem Grande Ronde River. This Annual Report provides an overview of individual projects and accomplishments.

Childs, Allen B.

2000-08-01T23:59:59.000Z

188

Phase 2 confirmatory sampling data report, Lower East Fork Poplar Creek, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

A Remedial Investigation of East Fork Poplar Creek (EFPC) concluded that mercury is the principal contaminant of concern in the EFPC floodplain. The highest concentrations of mercury were found to be in a visually distinct black layer of soil that typically lies 15 to 30 cm (6 to 12 in.) below the surface. Mercury contamination was found to be situated in distinct areas along the floodplain, and generally at depths > 20 cm (8 in.) below the surface. In accordance with Comprehensive, Environmental Response, Compensation, and Liability Act (CERCLA), a feasibility study was prepared to assess alternatives for remediation, and a proposed plan was issued to the public in which a preferred alternative was identified. In response to public input, the plan was modified and US Department of Energy (DOE) issued a Record of Decision in 1995 committing to excavating all soil in the EFPC floodplain exceeding a concentration of 400 parts per million (ppm) of mercury. The Lower East Fork Poplar Creek (LEFPC) remedial action (RA) focuses on the stretch of EFPC flowing from Lake Reality at the Y-12 Plant, through the city of Oak Ridge, to Poplar Creek on the Oak Ridge Reservation (ORR) and its associated floodplain. Specific areas were identified that required remediation at the National Oceanographic and Atmospheric Administration (NOAA) Site along Illinois Avenue and at the Bruner Site along the Oak Ridge Turnpike. The RA was conducted in two separate phases. Phase 2, conducted from February to October 1997, completed the remediation efforts at the NOAA facility and fully remediated the Bruner Site. During both phases, data were collected to show that the remedial efforts performed at the NOAA and Bruner sites were successful in implementing the Record of Decision and had no adverse impact on the creek water quality or the city of Oak Ridge publicly owned treatment works.

NONE

1998-01-01T23:59:59.000Z

189

Atmospheric Mercury Concentrations Near Salmon Falls Creek Reservoir - Phase 1  

SciTech Connect (OSTI)

Elemental and reactive gaseous mercury (EGM/RGM) were measured in ambient air concentrations over a two-week period in July/August 2005 near Salmon Falls Creek Reservoir, a popular fishery located 50 km southwest of Twin Falls, Idaho. A fish consumption advisory for mercury was posted at the reservoir in 2002 by the Idaho Department of Health and Welfare. The air measurements were part of a multi-media (water, sediment, precipitation, air) study initiated by the Idaho Department of Environmental Quality and the U.S. Environmental Protection Agency (EPA) Region 10 to identify potential sources of mercury contamination to the reservoir. The sampling site is located about 150 km northeast of large gold mining operations in Nevada, which are known to emit large amounts of mercury to the atmosphere (est. 2,200 kg/y from EPA 2003 Toxic Release Inventory). The work was co-funded by the Idaho National Laboratorys Community Assistance Program and has a secondary objective to better understand mercury inputs to the environment near the INL, which lies approximately 230 km to the northeast. Sampling results showed that both EGM and RGM concentrations were significantly elevated (~ 30 70%, P<0.05) compared to known regional background concentrations. Elevated short-term RGM concentrations (the primary form that deposits) were likely due to atmospheric oxidation of high EGM concentrations, which suggests that EGM loading from upwind sources could increase Hg deposition in the area. Back-trajectory analyses indicated that elevated EGM and RGM occurred when air parcels came out of north-central and northeastern Nevada. One EGM peak occurred when the air parcels came out of northwestern Utah. Background concentrations occurred when the air was from upwind locations in Idaho (both northwest and northeast). Based on 2003 EPA Toxic Release Inventory data, it is likely that most of the observed peaks were from Nevada gold mine sources. Emissions from known large natural mercury sources in that area cannot account for the observed EGM peaks due to their diffuse source geometry and the large (170 km) transport distance involved. The EGM peak originating from northwestern Utah air may be from three known mercury sources west of Salt Lake City (Kennecott, US Magnesium, Clean Harbors Aragonite) and/or the 1600 MW coal-fired Intermountain Power plant near Delta. However, the relative importance of these short-term peaks for long-term watershed mercury loading (critical factor affecting fish concentrations) is not known, and there is a need to better quantify the annual frequency and magnitude of these different inputs over a longer period of time.

M. L. Abbott

2005-10-01T23:59:59.000Z

190

Atmospheric Mercury near Salmon Falls Creek Reservoir in Southern Idaho  

SciTech Connect (OSTI)

Gaseous elemental mercury (GEM) and reactive gaseous mercury (RGM) were measured over two-week seasonal field campaigns near Salmon Falls Creek Reservoir in south-central Idaho from the summer of 2005 through the fall of 2006 and over the entire summer of 2006 using automated Tekran mercury analyzers. GEM, RGM, and particulate mercury (HgP) were also measured at a secondary site 90 km to the west in southwestern Idaho during the summer of 2006. The study was performed to characterize mercury air concentrations in the southern Idaho area for the first time, estimate mercury dry deposition rates, and investigate the source of observed elevated concentrations. High seasonal variability was observed with the highest GEM (1.91 0.9 ng m-3) and RGM (8.1 5.6 pg m-3) concentrations occurring in the summer and lower values in the winter (1.32 0.3 ng m-3, 3.2 2.9 pg m-3 for GEM, RGM respectively). The summer-average HgP concentrations were generally below detection limit (0.6 1 pg m-3). Seasonally-averaged deposition velocities calculated using a resistance model were 0.034 0.032, 0.043 0.040, 0.00084 0.0017 and 0.00036 0.0011 cm s-1 for GEM (spring, summer, fall, and winter, respectively) and 0.50 0.39, 0.40 0.31, 0.51 0.43 and 0.76 0.57 cm s-1 for RGM. The total annual RGM + GEM dry deposition estimate was calculated to be 11.9 3.3 g m-2, or about 2/3 of the total (wet + dry) deposition estimate for the area. Periodic elevated short-term GEM (2.2 12 ng m-3) and RGM (50 - 150 pg m-3) events were observed primarily during the warm seasons. Back-trajectory modeling and PSCF analysis indicated predominant source directions from the southeast (western Utah, northeastern Nevada) through the southwest (north-central Nevada) with fewer inputs from the northwest (southeastern Oregon and southwestern Idaho).

Michael L. Abbott; Jeffrey J. Einerson

2007-12-01T23:59:59.000Z

191

sanfranciscoestuaryinstitute//finalreport Coyote Creek/Coyote Valley  

E-Print Network [OSTI]

Laguna Seca Coyote Creek Fisher Cr. #12;III - 49 sanfranciscoestuaryinstitute//finalreport Map 4B-ca.1800, green; project boundary, white (scale 1:40,000; 1"~3300'; 1 square inch ~250 acres; original photographs, with historicaL Landscape features overLay. Historical fluvial features in blue; other features, green; project

192

Okanogan Focus Watershed Salmon Creek : Annual Report 1999.  

SciTech Connect (OSTI)

During FY 1999 the Colville Tribes and the Okanogan Irrigation District (OID) agreed to study the feasibility of restoring and enhancing anadromous fish populations in Salmon Creek while maintaining the ability of the district to continue full water service delivery to it members.

Lyman, Hilary

1999-11-01T23:59:59.000Z

193

The geoarchaeology of Buttermilk Creek, Bell County, Texas  

E-Print Network [OSTI]

was conducted. Buttermilk Creek is a 13 km stream incised into limestone bedrock with a drainage basin size of 43 kM2 , a stream gradient of 8.5 m/km, and a sinuosity of 1.26. This project was undertaken with two objectives in mind-, to create a...

Gibson, Brandy Deanne

2012-06-07T23:59:59.000Z

194

Evidence of Streamflow and Sediment Effects on Juvenile Coho and Benthic Macroinvertebrates of Lagunitas Creek and San Geronimo Creek, Marin County, California  

E-Print Network [OSTI]

Resh. 2008. Quantitative linkages among sediment supply,streambed fine sediment, and benthic macroinvertebrates inData: Lagunitas Creek Sediment and Riparian Management Plan,

Ball, Joanie; Diver, Sibyl; Hwan, Jason

2009-01-01T23:59:59.000Z

195

Assess Current and Potential Salmonid Production in Rattlesnake Creek in Association with Restoration Efforts, US Geological Survey Report, 2004-2005 Annual Report.  

SciTech Connect (OSTI)

This project was designed to document existing habitat conditions and fish populations within the Rattlesnake Creek watershed (White Salmon River subbasin, Washington) before major habitat restoration activities are implemented and prior to the reintroduction of salmon and steelhead above Condit Dam. Returning adult salmon Oncorhynchus spp. and steelhead O. mykiss have not had access to Rattlesnake Creek since 1913. An assessment of resident trout populations should serve as a good surrogate for evaluation of factors that would limit salmon and steelhead production in the watershed. Personnel from United States Geological Survey's Columbia River Research Laboratory (USGS-CRRL) attended to three main objectives of the Rattlesnake Creek project. The first objective was to characterize stream and riparian habitat conditions. This effort included measures of water quality, water quantity, stream habitat, and riparian conditions. The second objective was to determine the status of fish populations in the Rattlesnake Creek drainage. To accomplish this, we derived estimates of salmonid population abundance, determined fish species composition, assessed distribution and life history attributes, obtained tissue samples for genetic analysis, and assessed fish diseases in the watershed. The third objective was to use the collected habitat and fisheries information to help identify and prioritize areas in need of restoration. As this report covers the fourth year of a five-year study, it is largely restricted to describing our efforts and findings for the first two objectives.

Allen, M. Brady; Connolly, Patrick J.; Jezorek, Ian G. (US Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, Cook, WA)

2006-06-01T23:59:59.000Z

196

Operator control systems and methods for swing-free gantry-style cranes  

DOE Patents [OSTI]

A system and method are disclosed for eliminating swing motions in gantry-style cranes while subject to operator control. The present invention comprises an infinite impulse response (IIR) filter and a proportional-integral (PI) feedback controller. The IIR filter receives input signals (commanded velocity or acceleration) from an operator input device and transforms them into output signals in such a fashion that the resulting motion is swing free (i.e., end-point swinging prevented). The parameters of the IIR filter are updated in real time using measurements from a hoist cable length encoder. The PI feedback controller compensates for modeling errors and external disturbances, such as wind or perturbations caused by collision with objects. The PI feedback controller operates on cable swing angle measurements provided by a cable angle sensor. The present invention adjusts acceleration and deceleration to eliminate oscillations. An especially important feature of the present invention is that it compensates for variable-length cable motions from multiple cables attached to a suspended payload. 10 figs.

Feddema, J.T.; Petterson, B.J.; Robinett, R.D. III

1998-07-28T23:59:59.000Z

197

Operator control systems and methods for swing-free gantry-style cranes  

DOE Patents [OSTI]

A system and method for eliminating swing motions in gantry-style cranes while subject to operator control is presented. The present invention comprises an infinite impulse response ("IIR") filter and a proportional-integral ("PI") feedback controller (50). The IIR filter receives input signals (46) (commanded velocity or acceleration) from an operator input device (45) and transforms them into output signals (47) in such a fashion that the resulting motion is swing free (i.e., end-point swinging prevented). The parameters of the IIR filter are updated in real time using measurements from a hoist cable length encoder (25). The PI feedback controller compensates for modeling errors and external disturbances, such as wind or perturbations caused by collision with objects. The PI feedback controller operates on cable swing angle measurements provided by a cable angle sensor (27). The present invention adjusts acceleration and deceleration to eliminate oscillations. An especially important feature of the present invention is that it compensates for variable-length cable motions from multiple cables attached to a suspended payload.

Feddema, John T. (Albuquerque, NM); Petterson, Ben J. (Albuquerque, NM); Robinett, III, Rush D. (Albuquerque, NM)

1998-01-01T23:59:59.000Z

198

An economic evaluation of the Sulphur Creek Watershed Project  

E-Print Network [OSTI]

!IC CONS IDERATIQNS IN R SOURCE ALI. OCATIOiV 12 Social Choice Benef'ts and Costs ~ The Sulphur Creek Project IV. PROCEDURE AND METHODOLOGy 12 14 16 17 Determination of Co ts Determination of Benefits Comparison of Results with Origina! Study... analyses could be impzoved. A lack of funds and personnel have prevented govern- ment agencies from making studies which would determirte how accurate their forecasts have been. Sevezal economists familiar with the procedures used in benefit...

Burns, Henry Taylor

2012-06-07T23:59:59.000Z

199

Early cavity growth during forward burn. [Hoe Creek III problems  

SciTech Connect (OSTI)

During the early portion of the forward burn phase of the Hoe Creek III field experiment, the cavity progagated rapidly down the deviated borehole and to the top of the coal seam. As a first step to understanding this phenomena we have conducted small scale coal block experiments. Drying as well as combustion tests were performed. This paper describes the test hardware and the experimental results.

Shannon, M.J.; Thorsness, C.B.; Hill, R.W.

1980-07-03T23:59:59.000Z

200

Lower East Fork Poplar Creek | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-Temperature Combustion DemonstratorEast Fork Poplar Creek Lower

Note: This page contains sample records for the topic "area crane creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Cedar Creek Wind Farm II (Nordex) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWindSyracuse, NYCedar Creek Wind Farm II

202

Moose Creek, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 Climate ZoneMontrose, Wisconsin: EnergyMoodyMoose Creek, Alaska:

203

Pigeon Creek, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine: EnergyPierce County, Nebraska: EnergyJump to: navigation,Creek,

204

Queen Creek, Arizona: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacityPulaski County, Kentucky:County, Georgia:Quay County, NewQueen Creek,

205

City of Battle Creek, Nebraska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuoCatalystPathwaysAltamontCreek, Nebraska (Utility Company)

206

Hunters Creek Village, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: Energy Resources Jump to:Cogeneration LP JumpCreek

207

Twin Creeks Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective:ToyoTurkey: EnergyGeothermal Area

208

Hydrology of Deer Creek and its tributaries : a contribution to planning a restoration project  

E-Print Network [OSTI]

data is not useful in developing a flood frequency curve for Deer Creek because the gauge records discharge from the powerhouse. (

Skrtic, Lana

2005-01-01T23:59:59.000Z

209

Microsoft Word - 2012_Rapid_Lightening_Creek_Easement_CX_Rev2...  

Broader source: Energy.gov (indexed) [DOE]

Manager - KEWM-4 Proposed Action: AMENDED Provision of funds to the Idaho Department of Fish and Game (IDFG) to purchase the Rapid Lightning Creek Property. Fish and Wildlife...

210

Microsoft Word - Spring Creek Final Draft CX 7-15-2013.docx  

Broader source: Energy.gov (indexed) [DOE]

Cecilia Brown Project Manager - KEWM-4 Proposed Action: Spring Creek Property funding Fish and Wildlife Project No. and Contract No.: 2002-003-00, BPA-007168 Categorical...

211

Microsoft Word - CX_PerryCreek_4.29.11.doc  

Broader source: Energy.gov (indexed) [DOE]

Cecilia Brown Project Manager - KEWM-4 Proposed Action: Provision of funds to Montana Fish, Wildlife and Parks for purchase of the Perry Creek Property. Fish and Wildlife Project...

212

Assessment of Water Resources and Watershed Conditions in Moores Creek National Battlefield, North Carolina  

E-Print Network [OSTI]

Assessment of Water Resources and Watershed Conditions in Moores Creek National Battlefield, North Assessment of Park Water Resources.......................................................................25 resources........................................................................15 Biological resources

Mallin, Michael

213

A Watershed Approach to Urban River Restoration: A Conceptual Restoration Plan for Sausal Creek  

E-Print Network [OSTI]

be sustainable considering the hydrologic processes remainprocess of applying the WFD to Sausal Creek, we identified opportunities to improve the sustainable

Ippolito, Teresa; Podolak, Kristen

2008-01-01T23:59:59.000Z

214

Natural Recharge to the Unconfined Aquifer System on the Hanford Site from the Greater Cold Creek Watershed: Progress Report 2004  

SciTech Connect (OSTI)

Movement of contaminants in groundwater at the Hanford Site is heavily dependent on recharge to the unconfined aquifer. As the effects of past artificial discharges dissipate, the water table is expected to return to more natural conditions, and natural recharge will become the driving force when evaluating future groundwater flow conditions and related contaminant transport. Previous work on the relationship of natural recharge to groundwater movement at the Hanford Site has focused on direct recharge from infiltrating rainfall and snowmelt within the area represented by the Sitewide Groundwater Model (SGM) domain. However, part of the groundwater recharge at Hanford is provided by flow from Greater Cold Creek watershed (GCC), a large drainage area on the western boundary of the Hanford Site that includes Cold Creek Valley, Dry Creek Valley, and the Hanford side of Rattlesnake Mountain. This study was undertaken to estimate the recharge from GCC, which is believed to enter the unconfined aquifer as both infiltrating streamflow and shallow subsurface flow. To estimate recharge, the Distributed Hydrology-Soil-Vegetation Model (DHSVM) was used to simulate a detailed water balance of GCC from 1956 to 2001 at a spatial resolution of 200~m and a temporal resolution of one hour. For estimating natural recharge to Hanford from watersheds along its western and southwestern boundaries, the most important aspects that need to be considered are 1)~distribution and relative magnitude of precipitation and evapotranspiration over the watershed, 2)~streamflow generation at upper elevations and infiltration at lower elevations during rare runoff events, and 3)~permeability of the basalt bedrock surface underlying the soil mantle.

Waichler, Scott R.; Wigmosta, Mark S.; Coleman, Andre M.

2004-09-14T23:59:59.000Z

215

Assessing the Feasibility of Creek Daylighting in San Francisco, Part I: A Synthesis of Lessons Learned from Existing Urban Daylighting Projects  

E-Print Network [OSTI]

and Leonardson 2004). Why Daylight? In San Francisco, creekof San Francisco to daylight historical urban creeks withincity governments to daylight urban creeks, with successful

Smith, Brooke Ray

2007-01-01T23:59:59.000Z

216

A Probabilistic Water Resources Assessment of the Paradise Creek Watershed Presented in Partial Fulfillment of the Requirements for the  

E-Print Network [OSTI]

A Probabilistic Water Resources Assessment of the Paradise Creek Watershed A Thesis Presented Probabilistic Water Resources Assessment of the Paradise Creek Watershed," has been reviewed in final form ____________________________________Date____________ Margrit von Braun #12;iii iii A Probabilistic Water Resources Assessment

Fiedler, Fritz R.

217

Ballenger Creek, Maryland: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin EnergyBacliff,Ballenger Creek, Maryland: Energy Resources

218

Beaver Creek, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine:Barbers PointEnergy Information HotUtah: Energy Resources JumpCreek,

219

LaCreek Electric Assn, Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJuno Beach,October, 2012 - 08:20 Event linkedLaCreek

220

Birch Creek Village Elec Util | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGE IS UNDER(RedirectedBiomass:Birch Creek

Note: This page contains sample records for the topic "area crane creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Cantua Creek, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahan DivideCannon (Various) Jump to:IICantua Creek,

222

Panther Creek II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrange County is aOrmesaPPTAct YearBiofuelsPanther Creek II

223

Panther Creek III Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrange County is aOrmesaPPTAct YearBiofuelsPanther Creek

224

Williams Creek, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to:Westview,GeothermalHawaii:SageWillard, Ohio:Creek, Indiana:

225

Oak Creek Phase I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico:CommunityNorthwest BasinOahu, Hawaii: Energy ResourcesOak Creek

226

Todd Creek, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd JumpOperations Jump to:National EnvironmentalCreek, Colorado:

227

Two Creeks, Wisconsin: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,LtdInformationTulsa,Tuscarawas County,Florida:Creeks, Wisconsin:

228

Asotin Creek Model Watershed Plan: Asotin County, Washington, 1995.  

SciTech Connect (OSTI)

The Northwest Power Planning Council completed its ``Strategy for Salmon'' in 1992. This is a plan, composed of four specific elements,designed to double the present production of 2.5 million salmon in the Columbia River watershed. These elements have been called the ``four H's'': (1) improve harvest management; (2) improve hatcheries and their production practices; (3) improve survival at hydroelectric dams; and (4) improve and protect fish habitat. The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon''. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity.

Browne, Dave

1995-04-01T23:59:59.000Z

229

Remediation cleanup options for the Hoe Creek UCG site  

SciTech Connect (OSTI)

The US Department of Energy must restore groundwater quality at the Hoe Creek, Wyoming, underground coal gasification site using the best proven practicable technology. Six alternative remediation methods are evaluated in this project: (1) excavation, (2) three variations of groundwater plume containment, (3) in situ vacuum extraction, (4) pump and treat using a defined pattern of pumping wells to obtain an effective matrix sweep, (5) in situ flushing using a surfactant, and (6) in situ bioremediation. Available site characterization data is insufficient to accurately project the cost of remediation. Several alternative hypothetical examples and associated costs are described in the text and in the appendices. However, not enough information is available to use these examples as a basis for comparison purposes. Before a cleanup method is selected, core borings should be taken to define the areal extent and depth of contaminated matrix material. Segments of these core borings should be analyzed for organic contaminants in the soil (e.g., benzene) and their relationship to the groundwater contamination. These analyses and subsequent treatability studies will show whether or not the contaminants can be effectively removed by surface on in situ volatilization, leached from the matrix using washing solutions, or removed by bioremediation. After this information is obtained, each technology should be evaluated with respect to cost and probability of success. A decision tree for implementing remediation cleanup at the Hoe Creek site is presented in this report. 26 refs., 11 figs., 3 tabs.

Nordin, J.; Griffin, W.; Chatwin, T.; Lindblom, S.; Crader, S.

1990-03-01T23:59:59.000Z

230

Residual-oil-saturation-technology test, Bell Creek Field, Montana. Final report  

SciTech Connect (OSTI)

A field test was conducted of the technology available to measure residual oil saturation following waterflood secondary oil recovery processes. The test was conducted in a new well drilled solely for that purpose, located immediately northwest of the Bell Creek Micellar Polymer Pilot. The area where the test was conducted was originally drilled during 1968, produced by primary until late 1970, and was under line drive waterflood secondary recovery until early 1976, when the area was shut in at waterflood depletion. This report presents the results of tests conducted to determine waterflood residual oil saturation in the Muddy Sandstone reservoir. The engineering techniques used to determine the magnitude and distribution of the remaining oil saturation included both pressure and sidewall cores, conventional well logs (Dual Laterolog - Micro Spherically Focused Log, Dual Induction Log - Spherically Focused Log, Borehole Compensated Sonic Log, Formation Compensated Density-Compensated Neutron Log), Carbon-Oxygen Logs, Dielectric Logs, Nuclear Magnetism Log, Thermal Decay Time Logs, and a Partitioning Tracer Test.

Not Available

1981-06-01T23:59:59.000Z

231

Phase 1 report on the Bear Creek Valley treatability study, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

Bear Creek Valley (BCV) is located within the US Department of Energy (DOE) Oak Ridge Reservation and encompasses multiple waste units containing hazardous and radioactive wastes associated with past operations at the adjacent Oak Ridge Y-12 Plant. The BCV Remedial Investigation determined that disposal of wastes at the S-3 Site, Boneyard/Burnyard (BYBY), and Bear Creek Burial Grounds (BCBG) has caused contamination of both deep and shallow groundwater. The primary contaminants include uranium, nitrate, and VOCs, although other metals such as aluminum, magnesium, and cadmium persist. The BCV feasibility study will describe several remedial options for this area, including both in situ and ex situ treatment of groundwater. This Treatability Study Phase 1 Report describes the results of preliminary screening of treatment technologies that may be applied within BCV. Four activities were undertaken in Phase 1: field characterization, laboratory screening of potential sorbents, laboratory testing of zero valent iron products, and field screening of three biological treatment systems. Each of these activities is described fully in technical memos attached in Appendices A through G.

NONE

1997-04-01T23:59:59.000Z

232

Clinoptilolite and associated authigenic minerals in Miocene tuffaceous rocks in the Goose Creek Basin, Cassia County, Idaho  

SciTech Connect (OSTI)

Miocene tuffaceous fluviolacustrine deposits in the southeastern part of the Goose Creek basin contain a variety of authigenic minerals, including clinoptilolite, smectite, pyrite, gypsum, and calcite. Clinoptilolite is the primary mineral in the diagenetically altered rhyolitic vitric tuffs in the study area. These zeolitic tuffs locally attain thicknesses of as much as 30 meters. Examinations of samples of the altered tuff beds using the scanning electron microscope reveal that the clinoptilolite usually occurs as clean, well-formed tabular crystals about 0.005 mm across in a matrix of smectite. Prismatic clinoptilolite crystals, as much as 0.06 mm long, are present in the larger vugs. During the Miocene, thick beds of air-fall rhyolitic vitric volcanic ash accumulated in the Goose Creek basin in a coalescing fluviolacustrine depositional setting. In the southeastern part of the basin, the volcanic ash was deposited in a lacustrine fan delta, where it was partly reworked and interbedded with sandstone and siltstone. Diagenetic alteration of the ash beds proceeded in an open hydrologic system. Solution and hydrolysis by ground water initially altered the glass shards to form smectite and silica gel. Clinoptilolite subsequently precipitated on the altered shard surfaces. The paragenesis of pyrite, gypsum, and calcite in the zeolitic tuffs is uncertain.

Brownfield, M.E.; Hildebrand, R.T.

1985-01-01T23:59:59.000Z

233

Campbell Creek Research Homes FY 2012 Annual Performance Report  

SciTech Connect (OSTI)

The Campbell Creek project is funded and managed by the Tennessee Valley Authority (TVA) Technology Innovation, Energy Efficiency, Power Delivery & and Utilization Office. Technical support is provided under contract by the Oak Ridge National Laboratory (ORNL) and the Electric Power Research Institute.The project was designed to determine the relative energy efficiency of typical new home construction, energy efficiency retrofitting of existing homes, and high -performance new homes built from the ground up for energy efficiency. This project will compare three houses that represented the current construction practice as a base case (Builder House CC1); a modified house that could represent a major energy- efficient retrofit (Retrofit House CC2); and a house constructed from the ground up to be a high- performance home (High Performance House CC3). In order tTo enablehave a valid comparison, it was necessary to simulate occupancy in all three houses and heavily monitor the structural components and the energy usage by component. All three houses are two story, slab on grade, framed construction. CC1 and CC2 are approximately 2,400 square feet2. CC3 has a pantry option, that is primarily used as a mechanical equipment room, that adds approximately 100 square feet2. All three houses are all-electric (with the exception of a gas log fireplace that is not used during the testing), and use air-source heat pumps for heating and cooling. The three homes are located in Knoxville in the Campbell Creek Subdivision. CC1 and CC2 are next door to each other and CC3 is across the street and a couple of houses down. The energy data collected will be used to determine the benefits of retrofit packages and high -performance new home packages. There are over 300 channels of continuous energy performance and thermal comfort data collection in the houses (100 for each house). The data will also be used to evaluate the impact of energy -efficient upgrades ton the envelope, mechanical equipment, or demand -response options. Each retrofit will be evaluated incrementally, by both short -term measurements and computer modeling, using a calibrated model. This report is intended to document the comprehensive testing, data analysis, research, and findings within the January 2011 through October 2012 timeframe at the Campbell Creek research houses. The following sections will provide an in-depth assessment of the technology progression in each of the three research houses. A detailed assessment and evaluation of the energy performance of technologies tested will also be provided. Finally, lessons learned and concluding remarks will be highlighted.

Gehl, Anthony C [ORNL; Munk, Jeffrey D [ORNL; Jackson, Roderick K [ORNL; Boudreaux, Philip R [ORNL; Khowailed, Gannate A [ORNL

2013-01-01T23:59:59.000Z

234

Survey of Critical Wetlands and Riparian Areas in Dolores County Colorado Natural Heritage Program  

E-Print Network [OSTI]

Survey of Critical Wetlands and Riparian Areas in Dolores County Colorado Natural Heritage Program 2005 #12;Survey of Critical Wetlands and Riparian Areas in Dolores County Prepared for: Colorado photograph: Riverine wetlands dominated by Mountain Willow along Fish Creek, SJNF. Photo taken by Sarah

235

EA-1988: NFSC (Northwest Fisheries Science Center) Earthen Drainage Channel, Burley Creek Hatchery, Port Orchard, Washington  

Broader source: Energy.gov [DOE]

The National Oceanic and Atmospheric Administration (NOAA), with DOEs Bonneville Power Administration (BPA) as a cooperating agency, prepared an EA that assesses the potential environmental impacts of a NOAA Northwest Fisheries Science Center proposal to construct an earthen drainage channel at its Burley Creek Hatchery in Kitsap County, Washington. The project would facilitate increased discharge of treated effluent from the hatchery facility into the adjacent Burley Creek. BPAs proposal is to fund the project. The project website is http://efw.bpa.gov/environmental_services/Document_Library/Burley_Creek/.

236

Review of underground coal gasification field experiments at Hoe Creek  

SciTech Connect (OSTI)

LLNL has conducted three underground coal gasification experiments at the Hoe Creek site near Gillette, WY. Three different linking methods were used: explosive fracturing, reverse burning and directional drilling. Air was injected on all three experiments and a steam/oxygen mixture during 2 days of the second and most of the third experiment. Comparison of results show that the linking method didn't influence gas quality. The heat of combustion of the product gas was higher with steam/oxygen injection, mainly because of reduced inert diluent. Gas quality was generally independent of other operating parameters, but declined from its initial value over a period of time. This was due to heat loss to the wet overburden and extensive roof collapse in the second and third experiments.

Thorsness, C.B.; Creighton, J.R.

1983-01-01T23:59:59.000Z

237

Review of underground coal gasification field experiments at Hoe Creek  

SciTech Connect (OSTI)

In three underground coal gasification experiments at the Hoe Creek site near Gillette, WY, LLNL applied three different linking methods: explosive fracture, reverse burning, and directional drilling. Air was injected in all three experiments; a steam/oxygen mixture, during 2 days of the second and most of the third experiment. Comparison of results show that the type of linking method did not influence gas quality. The heat of combustion of the product gas was higher with steam/oxygen injection, mainly because of reduced inert diluent. Gas quality was generally independent of other operating parameters but declined from its initial value over a period of time because of heat loss to the wet overburden and extensive roof collapse in the second and third experiments.

Thorsness, C.B.; Creighton, J.R.

1983-01-01T23:59:59.000Z

238

Stratigraphy and structure of the Williams Creek area, Hinsdale, Mineral, and Archuleta counties, Colorado  

E-Print Network [OSTI]

Formation 35 38 Cenozoic Rocks 40 Tertiary System. Blanco Basin Formation. Conejos Quartz Latite. Quaternary System. STRUCTURE 40 40 44 47 50 Regional Structure General Statement San Juan Dome . Archuleta Arch. San Juan Basin. Local... Mountains of southwestern Colorado and this formation name was used in the geologic folios oi' the U. S. Geological Survey and other early geologic work in and adjacent to the San Juan Mountains. This name is no longer in current use, but is entrenched...

Moore, George Edwards

1964-01-01T23:59:59.000Z

239

Structural geology of the Central Bluff Creek area, Mason County, Texas  

E-Print Network [OSTI]

A ~ ~~, mNh 4K~ g, 4sw'~ ' ' The loess, sea%set of "the Illoshsxmso gxxxsp eihh 'Qa? Sea @aha' xxosbea' ef ihe +KDeoss foxxxatios is gxa4axiosal anf is @side Bit fissile io locate soosx'ately, %ae hossfaof sayyek is 4hto x'iyoxo io pioke4 os lkihologio...

Grote, Fred Rankin

1954-01-01T23:59:59.000Z

240

Geology of the Bee Branch-Mill Creek area, Mason County, Texas  

E-Print Network [OSTI]

that originated on the Cretaceous ctr-te in Tertiary time in Csn tral Texas, Tarr brcu?ht cut +he fact that, since the Coloraoo in Cen- tral Texas flo -s with a ?en&. ral ccm: e at ri&ht an". les tc the strike of the Carboniferous reck, in an opposite direction... tc the d1p, the Cole- racc River sel. ected its course on a structure thaw is nc longer present. He believed that this earlier . ructure wes present cn Cretaceous strata because the Paleos& ic reyi& n of Central Texas is only partially unsovered...

Miller, George Howard

1957-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "area crane creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Thermal Gradient Holes At Upper Hot Creek Ranch Area (Benoit & Blackwell,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective JumpInc., 2010) | Open2008) | Open

242

Geothermometry At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformation Mexico -Information Shevenell, EtOpen

243

Isotopic Analysis At Separation Creek Area (Van Soest, Et Al., 2002) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen Energy Information 2006)EnergyInformation

244

B I OENV I RONMENTAL FEATURES OF THE OGOTORUK CREEK AREA, CAPE THOMPSON, ALASKA  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO:March_ ,'I-Amchitka,Ashtabula,\ l

245

Geology of an area between Bluff and Honey Creeks, Mason County, Texas  

E-Print Network [OSTI]

, the proWambrian rooks oonaist ef two metsmorphio unite y tho mar'bl o and the gneiss y an4 'two tnt rus i vs bodies ~ the ooareo~rainsd granite and the fino~ained granite. The Cambrian reeks aro 4ivido4 into tho Riley snd Nil borne formations... of the marble outcrop are 1} in- trusive caxtacts with precambrian granites, 8) overlap by basal Palsoso1c bede, snd 5) fault ccntacts with lower Paleosoic beds. There are two different precambrian granites which have intrusive contaots w1th ths marble unit...

Fritz, Joseph Francis

1954-01-01T23:59:59.000Z

246

Biomonitoring of fish communities, using the Index of Biotic Integrity (IBI) in Rabbit Creek-Cat Creek Watershed, Summer 1992  

SciTech Connect (OSTI)

The Index of Biotic Integrity (IBI) is a method for evaluating the health of water bodies and watersheds by analyzing sample catches of fishes. Sites are scored on a numerical scale of 12--60 and on that basis assigned to a ``bioclass`` ranging from ``very poor`` to ``excellent.`` Overall, the major causes of depressed IBI scores in the Rabbit Creek watershed would appear to be: Organic pollution, mostly from livestock, but also from agricultural runoff and possible septic tank failures; sedimentation, principally from stream bank damage by cattle, also possibly from agriculture and construction; toxic pollution from agrochemicals applied to Holly Springs Golf course and agricultural fields` and Warming of water and evaporation loss due to elimination of shade on stream banks and construction of ponds.

Not Available

1993-08-01T23:59:59.000Z

247

Review of underground coal-gasification field experiments at Hoe Creek. [Hoe Creek 1, 2, and 3  

SciTech Connect (OSTI)

LLNL has conducted three underground coal gasification experiments at the Hoe Creek site near Gillette, Wyoming. Three different linking methods were used: explosive fracture, reverse burning and directional drilling. Air was injected on all three experiments and a steam/oxygen mixture during 2 days of the second and most of the third experiment. Comparison of results show that the linking method didn't influence gas quality. The heat of combustion of the product gas was higher with steam/oxygen injection, mainly because of reduced inert diluent. Gas quality was generally independent of other operating parameters, but declined from its initial value over a period of time. This was due to heat loss to the wet overburden and extensive roof collapse in the second and third experiments.

Thorsness, C.B.; Creighton, J.R.

1982-05-26T23:59:59.000Z

248

Microsoft Word - CX-SpringCreek-WineCountry-TowerRelocationFY13...  

Broader source: Energy.gov (indexed) [DOE]

November 29, 2012 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Justin Estes Project Manager - TELM-TPP-3 Proposed Action: Spring Creek - Wine County No. 1...

249

Tribal Decision-Making and Intercultural Relations: Crow Creek Agency, 1863-1885  

E-Print Network [OSTI]

Lower Yanktonai residents experienced great change during the first two decades at the Crow Creek agency in Dakota Territory. This essay traces the evolution of relations between tribal members, federal agents, and ...

Galler, Robert

2002-03-01T23:59:59.000Z

250

The investigation of the Caney Creek shipwreck archaeological site 41MG32  

E-Print Network [OSTI]

in Matagorda, Texas, 1860, Produced by Ed Lang. . . . , , . . . . . . . . . . . . . . . 18 Figure 7. Figure 8. Figure 9. Fitnire 10. Location of Caney Creek in Southeast Texas. . Soil types of Matagorda County. Portrait of J. B. Hawkins. Map showing... of the Caney Creek Shipwreck Archaeological Site 4 IMG32. (August 1998) David Layne Hedrick, B. A. , University of North Texas Chair of Advisory Committee: Dr. Frederick M Hocker The history of river transportation in the interior of Texas has received...

Hedrick, David Layne

2012-06-07T23:59:59.000Z

251

Trout Creek, Oregon Watershed Assessment; Findings, Condition Evaluation and Action Opportunities, 2002 Technical Report.  

SciTech Connect (OSTI)

The purpose of the assessment is to characterize historical and current watershed conditions in the Trout Creek Watershed. Information from the assessment is used to evaluate opportunities for improvements in watershed conditions, with particular reference to improvements in the aquatic environment. Existing information was used, to the extent practicable, to complete this work. The assessment will aid the Trout Creek Watershed Council in identifying opportunities and priorities for watershed restoration projects.

Runyon, John

2002-08-01T23:59:59.000Z

252

Correlation of stratigraphy with revegetation conditions at the Gibbons Creek Lignite Mine, Grimes County, Texas  

E-Print Network [OSTI]

CORRELATION OF STRATIGRAPHY WITH REVEGETATION CONDITIONS AT THE GIBBONS CREEK LIGNITE MINE, GRIMES COUNTY, TEXAS A Thesis by LAURENCE D. PARISOT Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 1991 Major Subject: Geology CORRELATION OF STRATIGRAPHY WITH REVEGETATION CONDITIONS AT THE GIBBONS CREEK LIGNITE MINE, GRIMES COUNTY, TEXAS A Thesis by LAURENCE D. PARISOT ; Approved...

Parisot, Laurence D.

1991-01-01T23:59:59.000Z

253

Association of coal metamorphism and hydrothermal mineralization in Rough Creek fault zone and Fluorspar District, Western Kentucky  

SciTech Connect (OSTI)

The ambient coal rank (metamorphism) of the Carboniferous coals in the Western Kentucky coalfield ranges from high volatile A bituminous (vitrinite maximum reflectance up to 0.75% R/sub max/) in the Webster syncline (Webster and southern Union Counties) to high volatile C bituminous (0.45 to 0.60% R/sub max/) over most of the remainder of the area. Anomalous patterns of metamorphism, however, have been noted in coals recovered from cores and mines in fault blocks of the Rough Creek fault zone and Fluorspar District. Coals in Gil-30 borehole (Rough Creek faults, Bordley Quadrangle, Union County) vary with no regard for vertical position, from high volatile C(0.55% R/sub max/) to high volatile A (0.89%R/sub max) bituminous. Examination of the upper Sturgis Formation (Missourian/Virgilian) coals revealed that the higher rank (generally above 0.75% R/sub max/) coals had vein mineral assemblages of sphalerite, twinned calcite, and ferroan dolomite. Lower rank coals had only untwinned calcite. Several sites in Webster County contain various coals (Well (No. 8) to Coiltwon (No. 14)) with vitrinite reflectances up to 0.83% R/sub max/ and associated sphalerite mineralization. Mississippian and Lower Pennsylvanian (Caseyville Formation Gentry coal) coals in the mineralized Fluorspar District have ranks to nearly medium volatile bituminous (1.03% R/sub max/). The regional rank trend exhibited by the fualt zones is generally higher rank than the surrounding areas. Sphalerite mineralization in itself is not unique within Illinois basin coals, but if it was partly responsible for the metamorphism of these coals, then the fluid temperature must have been higher within the above mentioned fault complexes.

Hower, J.C.; Fiene, F.L.; Trinkle, E.J.

1983-09-01T23:59:59.000Z

254

Water quality in the vicinity of Mosquito Creek Lake, Trumbull County, Ohio, in relation of the chemistry of locally occurring oil, natural gas, and brine  

SciTech Connect (OSTI)

The purpose of this report is to describe current water quality and the chemistry of oil, natural gas, and brine in the Mosquito Creek Lake area. Additionally, these data are used to characterize water quality in the Mosquito Creek Lake area in relation to past oil and natural gas well drilling and production. To meet the overall objective, several goals for this investigation were established. These include (1) collect water-quality and subsurface-gas data from shallow sediments and rock that can be used for future evaluation of possible effects of oil and natural gas well drilling and production on water supplies, (2) characterize current surface-water and ground-water quality as it relates to the natural occurrence and (or) release of oil, gas, and brine (3) sample and chemically characterize the oil in the shallow Mecca Oil Pool, gas from the Berea and Cussewago Sandstone aquifers, and the oil, gas, and brine from the Clinton sandstone, and (4) identify areas where aquifers are vulnerable to contamination from surface spills at oil and natural gas drilling and production sites.

Barton, G.J.; Burruss, R.C.; Ryder, R.T.

1998-12-31T23:59:59.000Z

255

West Foster Creek Expansion Project 2007 HEP Report.  

SciTech Connect (OSTI)

During April and May 2007, the Columbia Basin Fish and Wildlife Authority's (CBFWA) Regional HEP Team (RHT) conducted baseline Habitat Evaluation Procedures (HEP) (USFWS 1980, 1980a) analyses on five parcels collectively designated the West Foster Creek Expansion Project (3,756.48 acres). The purpose of the HEP analyses was to document extant habitat conditions and to determine how many baseline/protection habitat units (HUs) to credit Bonneville Power Administration (BPA) for funding maintenance and enhancement activities on project lands as partial mitigation for habitat losses associated with construction of Grand Coulee and Chief Joseph Dams. HEP evaluation models included mule deer (Odocoileus hemionus), western meadowlark (Sturnella neglecta), sharp-tailed grouse, (Tympanuchus phasianellus), Bobcat (Lynx rufus), mink (Neovison vison), mallard (Anas platyrhynchos), and black-capped chickadee (Parus atricapillus). Combined 2007 baseline HEP results show that 4,946.44 habitat units were generated on 3,756.48 acres (1.32 HUs per acre). HEP results/habitat conditions were generally similar for like cover types at all sites. Unlike crediting of habitat units (HUs) on other WDFW owned lands, Bonneville Power Administration received full credit for HUs generated on these sites.

Ashley, Paul R.

2008-02-01T23:59:59.000Z

256

Postburn core-drilling results from Hoe Creek 3  

SciTech Connect (OSTI)

This paper presents interpretations derived from the analysis of the postburn drilling results from the Hoe Creek 3 experiment. Sixteen partially cored boreholes were drilled using an HQ triple-tube core barrel. The general objectives of this work were to establish the characteristics of the burn cavity and of the materials within and surrounding the cavity. The lateral extent of the burn and the characteristics of the collapsed region overlying the burn cavity were also to be investigated. Important conclusions derived from this study include the following: (1) The horizontally drilled link borehole strongly controlled burn cavity shape and location; no significant combustion occurred below the link; (2) the slag may have acted as an insulation blanket, protecting the coal below the horizontal link borehole; (3) significant roof collapse occurred during the course of the experiment, probably inducing substantial heat losses; (4) the lateral extent of the burn was greatest along the Felix 2 seam; the cavity outline in plan view is shaped like a teardrop; a vertical transverse cross section through the cavity shows a mushroom-shaped outline; (5) roof collapse after the end of the experiment filled much of the space within and above the cavity, producing a mechanically disturbed zone full of voids and weak materials. A zone of fractures or loosened material exists in the remaining (uncollapsed) roof and wall materials, surrounding and paralleling the upper margins of the collapsed region. A void zone was found near the bottom of the collapsed region.

Ramirez, A.L.; Ganow, H.C.; Wilder, D.G.

1981-10-08T23:59:59.000Z

257

Floods on Nottely River and Martin, Peachtree, and Slow Creeks in Cherokee County, North Carolina. Flood report  

SciTech Connect (OSTI)

This report describes the flood situation along the Nottely River from the North Carolina-Georgia State line, at stream mile 18.72, downstream to the head of Hiwassee Reservoir backwater, stream mile 6.50; Martin Creek from mile 6.12 downstream to mile 1.38; Peachtree Creek from Ammon Bottom at mile 4.78 downstream to its mouth at Hiwassee River mile 100,68; and Slow Creek from mile 3.15 downstream to its mouth at Peachtree Creek mile 1.98.

Not Available

1985-09-01T23:59:59.000Z

258

C(re)ek-storation Community Collaboration Site: North Fork of Strawberry Creek by La Loma and Le Conte Avenues  

E-Print Network [OSTI]

history of urban stream restoration. Aquatic Conservation:on Codornices Creek. Restoration of Rivers and Streams.Restoration of Rivers and Streams, Water Resources

Tannenbaum, Sara Rose

2011-01-01T23:59:59.000Z

259

Stream migration and sediment movement on Lower Cache Creek from Capay Dam to Interstate 5 at Yolo, CA.  

E-Print Network [OSTI]

??The geomorphology of waterways like Cache Creek has been modified not only by natural flooding events, but also by human activity. Aggregate mining, agriculture and (more)

Leathers, Tami

2010-01-01T23:59:59.000Z

260

LLNL underground coal gasification project. Quarterly progress report, July-Sep 1980. [Hoe Creek and Gorgas, Alabama tests  

SciTech Connect (OSTI)

Laboratory studies of forward gasification through drilled holes in blocks of coal have continued. Such studies give insight into cavity growth mechanisms and particulate production. In addition to obtaining a qualitative comparison of the forward burn characteristics of two coals, we obtained information on the influence of bedding plane/cleat structure orientation on the early-time shape of the burn cavity in the Roland coal. We have improved our model of the coal drying rate during underground coal gasification (UCG) by adding refinements to the model. To aid in analyzing and predicting the performance of UCG tests, we have developed a simple gas-compositional model. When the model was tested against experimental data from the three Hoe Creek experiments, it was able to match very closely the observed gas compositions, energy fractions, and water influxes. This model can be used to make performance predictions consistent with the material and energy balance constraints of the underground system. A postburn coring and wireline-logging study is under way at the Hoe Creek No. 3 site to investigate the overall effect of the directionally-drilled, horizontal linking hole to better estimate the amount of coal gasified and the shape of the combustion front, and to provide additional information on subsurface deformation and thermal effects. The site reclamation work was completed, including the dismantling of all surface equipment and piping and the plugging and sealing of process and diagnostics wells. Final grading of the reclaimed land has been completed, and the area is ready for disk-seeding. Our survey of the UCG literature has continued with a review of the extensive tests at Gorgas, Alabama, carried on by the US Bureau of Mines from 1947 to 1959.

Olness, D.U. (ed.)

1980-10-14T23:59:59.000Z

Note: This page contains sample records for the topic "area crane creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Simulation of contaminated sediment transport in White Oak Creek basin  

SciTech Connect (OSTI)

This paper presents a systematic approach to management of the contaminated sediments in the White Oak Creek watershed at Oak Ridge National Laboratory near Oak Ridge, Tennessee. The primary contaminant of concern is radioactive cesium-137 ({sup 137}Cs), which binds to soil and sediment particles. The key components in the approach include an intensive sampling and monitoring system for flood events; modeling of hydrological processes, sediment transport, and contaminant flux movement; and a decision framework with a detailed human health risk analysis. Emphasis is placed on modeling of watershed rainfall-runoff and contaminated sediment transport during flooding periods using the Hydrologic Simulation Program- Fortran (HSPF) model. Because a large number of parameters are required in HSPF modeling, the major effort in the modeling process is the calibration of model parameters to make simulation results and measured values agree as closely as possible. An optimization model incorporating the concepts of an expert system was developed to improve calibration results and efficiency. Over a five-year simulation period, the simulated flows match the observed values well. Simulated total amount of sediment loads at various locations during storms match with the observed values within a factor of 1.5. Simulated annual releases of {sup 137}Cs off-site locations match the data within a factor of 2 for the five-year period. The comprehensive modeling approach can provide a valuable tool for decision makers to quantitatively analyze sediment erosion, deposition, and transport; exposure risk related to radionuclides in contaminated sediment; and various management strategies.

Bao, Y.; Clapp, R.B.; Brenkert, A.L. [Oak Ridge National Lab., TN (United States); Moore, T.D. [Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN (United States); Fontaine, T.A. [Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD (United States)

1995-12-31T23:59:59.000Z

262

Dissolved Oxygen in Allen CreekDissolved Oxygen in Allen Creek Dissolved oxygen (DO) enters the water by diffusion from air, as a by-product of photosynthesis and  

E-Print Network [OSTI]

Dissolved Oxygen in Allen CreekDissolved Oxygen in Allen Creek Dissolved oxygen (DO) enters and rapids. There is an inverse relationship between temperature and DO, i.e. colder water holds more oxygen it supplies oxygen to aquatic organisms. Higher DO levels also give the water a better taste. Figure 2. During

Tyler, Christy

263

Flow Characteristics Analysis of Widows' Creek Type Control Valve for Steam Turbine Control  

SciTech Connect (OSTI)

The steam turbine converts the kinetic energy of steam to mechanical energy of rotor blades in the power conversion system of fossil and nuclear power plants. The electric output from the generator of which the rotor is coupled with that of the steam turbine depends on the rotation velocity of the steam turbine bucket. The rotation velocity is proportional to the mass flow rate of steam entering the steam turbine through valves and nozzles. Thus, it is very important to control the steam mass flow rate for the load following operation of power plants. Among various valves that control the steam turbine, the control valve is most significant. The steam flow rate is determined by the area formed by the stem disk and the seat of the control valve. While the ideal control valve linearly controls the steam mass flow rate with its stem lift, the real control valve has various flow characteristic curves pursuant to the stem lift type. Thus, flow characteristic curves are needed to precisely design the control valves manufactured for the operating conditions of nuclear power plants. OMEGA (Optimized Multidimensional Experiment Geometric Apparatus) was built to experimentally study the flow characteristics of steam flowing inside the control valve. The Widows' Creek type control valve was selected for reference. Air was selected as the working fluid in the OMEGA loop to exclude the condensation effect in this simplified approach. Flow characteristic curves were plotted by calculating the ratio of the measured mass flow rate versus the theoretical mass flow rate of the air. The flow characteristic curves are expected to be utilized to accurately design and operate the control valve for fossil as well as nuclear plants. (authors)

Yoo, Yong H.; Sohn, Myoung S.; Suh, Kune Y. [PHILOSOPHIA, Inc., Seoul National University, San 56-1 Sillim-dong, Gwanak-gu, Seoul, 151-742 (Korea, Republic of)

2006-07-01T23:59:59.000Z

264

Johnson Creek Artificial Propagation and Enhancement Project Operations and Maintenance Program; Brood Year 2000: Johnson Creek Chinook Salmon Supplementation, Biennial Report 2000-2002.  

SciTech Connect (OSTI)

The Nez Perce Tribe, through funding provided by the Bonneville Power Administration, has implemented a small scale chinook salmon supplementation program on Johnson Creek, a tributary in the South Fork of the Salmon River, Idaho. The Johnson Creek Artificial Propagation Enhancement project was established to enhance the number of threatened Snake River summer chinook salmon (Oncorhynchus tshawytscha) returning to Johnson Creek through artificial propagation. Adult chinook salmon trapping, broodstock selection, and spawning was first implemented in 1998, did not occur in 1999, and was resumed in 2000. A total of 152 salmon were trapped in Johnson Creek in 2000, of which 73 (25 males, 16 females, and 32 jacks) fish were transported to Idaho Fish and Game=s South Fork Salmon River adult holding and spawning facility for artificial propagation purposes. The remaining 79 (29 males, 16 females, and 24 jacks) fish were released above the weir to spawn naturally. A total of 65,060 green eggs were taken from 16 female salmon and transported to the McCall Fish Hatchery for incubation and rearing. Egg counts indicated an average eye-up rate of 86.0% for 55,971 eyed eggs. Average fecundity for Johnson Creek females was 4,066 eggs per female. Juvenile fish were reared indoors at the McCall Fish Hatchery through November 2001. These fish were transferred to outdoor rearing facilities in December 2001 where they remained until release in March 2002. All of these fish were marked with Coded Wire Tags and Visual Implant Elastomer tags. In addition 9,987 were also PIT tagged. Hand counts provided by marking crews were used to amend the number of juvenile salmon released from the original egg count. A total of 57,392 smolts were released into a temporary acclimation channel in Johnson Creek on March 18, 19, 20, 2002. These fish were held in this facility until a fish screen was removed on March 22, 2002 and the fish were allowed to emigrate.

Daniel, Mitch; Gebhards, John; Hill, Robert

2003-05-01T23:59:59.000Z

265

Boiling Water at Hot Creek--The Dangerous and Dynamic Thermal Springs in California's Long Valley Caldera  

E-Print Network [OSTI]

). Conditions in Hot Creek can change very quickly. These fish--caught in a burst of high-temperature water" or intermittently spurting very hot, sediment-laden water as high as 6 feet (2 m) above the stream surface. At timesBoiling Water at Hot Creek--The Dangerous and Dynamic Thermal Springs in California's Long Valley

Torgersen, Christian

266

Depth-gradient analysis of the Colony Creek Cycle (late Pennsylvanian) of north Texas  

E-Print Network [OSTI]

Creek Cycle in the Brazos River valley (Brad locality). . . . . . . . . . . . . . 31 2-9 Stratigraph1c section of the upper part of the Colony Creek Cycle in the Brazos River valley (North locality) . . . . . ~ . . ~ . ~ . . . . 32 5-2 Schematic...-1 Fusulinid Association (BRAD01). 5-2 Permophorus Association (LAKE09). 5-3 Linoproductus Association (PARK09). 5-4 Crurithyris Association (PARKOB). 5-5 Hemi zyga Association (NRTH09). 5-6 Nuculoid Association (NRTH01). 5-7 Ammonoid Association (PARK01...

Kennedy, Noel Lynne

2012-06-07T23:59:59.000Z

267

Steam tracer experiment at the Hoe Creek No. 3 underground coal gasification field test  

SciTech Connect (OSTI)

Water plays an important role in in-situ coal gasification. To better understand this role, we conducted a steam tracer test during the later stages of the Hoe Creek No. 3 underground coal gasification field test. Deuterium oxide was used as the tracer. This report describes the tracer test and the analysis of the data obtained. The analysis indicates that at Hoe Creek the injected steam interacts with a large volume of water as it passes through the underground system. We hypothesize that this water is undergoing continual reflux in the underground system, resulting in a tracer response typical of a well-stirred tank.

Thorsness, C.B.

1980-11-26T23:59:59.000Z

268

Site Environmental Report for 2012, Volumes 1 & 2  

E-Print Network [OSTI]

and southern areas. Downstream from the monitoring station,Creek Creeks; Sediment Chicken Creek Downstream ChickenCreek downstream of routine monitoring site Creeks Chicken

Pauer, Ron

2013-01-01T23:59:59.000Z

269

IMPACT OF MINE DRAINAGE AND DISTRIBUTION OF METAL LOADING SOURCES IN THE JAMES CREEK WATERSHED  

E-Print Network [OSTI]

Creek watershed contributes directly to the water supply for Jamestown, Colorado, a town the past several decades has led to widespread concern about the adverse effects that heavy mining has had on the environment. These effects are felt particularly in the form of water contamination from acid mine drainage

Ryan, Joe

270

Figure 1: ATA 42 antenna array at Hat Creek ********ADAPTIVE REAL TIME IMAGING FOR RADIO ASTRONOMY*******  

E-Print Network [OSTI]

Figure 1: ATA 42 antenna array at Hat Creek ********ADAPTIVE REAL TIME IMAGING FOR RADIO ASTRONOMY --------------------------­ · Astronomers primarily interested in astronomy. ­ Data reduction preoccupies radio astronomy specialists,f,p Bandpass( )f PolCal( )f,p Gains( )s,f,p S Beam Imager Astronomy Solver I2 ( ) )^(^, 2sVpfV - å ¹kj X Solver

Militzer, Burkhard

271

OCEANOGRAPHY Stratigraphic Distribution of Amino Acids in Peats from Cedar Creek  

E-Print Network [OSTI]

in Peats from Cedar Creek Bog, Minnesota, and Dismal Swamp, Virginia' F. M. SWAIN, A. BLUMENTALS, AND R the bog waters and waters squeezed from the peats. Attempts to detect proteins in these substances by means of paper electrophoresis were unsuccessful. Fibrous proteins may be present, however. In both peat

Minnesota, University of

272

EA-1967: Hills Creek-Lookout Point Transmission Line Rebuild, Lane County, Oregon  

Broader source: Energy.gov [DOE]

Bonneville Power Administration is preparing an EA to assess potential environmental impacts of the proposed rebuild of its 26-mile 115 kilovolt (kV) wood-pole Hills Creek-Lookout Point transmission line, which is generally located between Lowell and Oakridge, in Lane County, Oregon.

273

Environmental evaluation and restoration plan of the Hoe Creek Underground Coal Gasification Site, Wyoming: Topical report  

SciTech Connect (OSTI)

Three underground coal gasification (UCG) experiments were conducted by Lawrence Livermore National Laboratory (LLNL) at the Hoe Creek Site, Wyoming; the Hoe Creek I experiment was conducted in 1976, the Hoe Creek II experiment in 1977, and the Hoe Creek III experiment in 1979. These experiments have had an impact on the land and groundwater quality at the site, and the Department of Energy (DOE) has requested that Western Research Institute (WRI) develop and implement a site restoration plan. The purpose of the plan is to restore the site to conditions being negotiated with the Wyoming Department of Environmental Quality (WDEQ). To prepare for developing a plan, WRI compiled background information on the site. The geologic and hydrologic characteristics of the site were determined, and the water quality data were analyzed. Modelling the site was considered and possible restoration methods were examined. Samples were collected and laboratory tests were conducted. WRI then developed and began implementing a field-scale restoration test. 41 refs, 46 figs., 13 tabs.

Barteaux, W.L.; Berdan, G.L.; Lawrence, J.

1986-09-01T23:59:59.000Z

274

Groundwater restoration field test at the Hoe Creek underground coal gasification site  

SciTech Connect (OSTI)

Three underground coal gasification burns were conducted at the Hoe Creek Site in the Powder River Basin. Some contaminants were released in the groundwater. The Department of Energy (DOE) analyzed the water from a network of wells. Two million gallons of groundwater were pumped from wells adjacent to the Hoe Creek II underground coal gasification cavity, passed through filters and carbon adsorbers, and reinjected into the cavity. Phenol was the target compound of the water treatment system. The phenol concentration pumped from well WS-10 decreased from 974 parts per billion (ppB) when treatment began on July 2, 1987, to about 200 ppB when treatment ceased on August 29, 1987. Phenol concentrations pumped from well WS-22 fluctuated during the tests, but they decreased to the 150 to 200 ppB range by the time treatment was terminated. The phenol concentration of treated water reinjected into the Hoe Creek II cavity was below detectable limits (less than 20 ppB). Pumping rates were about 18 gallons per minute (gpm) from well WS-10 and 6 to 8 gpm from well WS-22. Hoe Creek is located approximately 20 miles southwest of Gillette, Wyoming. 12 refs., 5 figs., 8 tabs.

Nordin, J.S.; Barrash, W.; Nolan, B.T.

1988-02-01T23:59:59.000Z

275

AN INVESTIGATION OF DEWATERING FOR THE MODIFIED IN-SITU RETORTING PROCESS, PICEANCE CREEK BASIN, COLORADO  

E-Print Network [OSTI]

c:es .B~l:JJ:. }eti. ',~, Colorado School of Mines, VoL 2'1,v Piceance Creek Basin v Colorado r and 9 p' 1974. Pc:u:~tBetween 'che White and Colorado Rivers, '! \\lo:ci:hwegt:ern

Mehran, M.

2013-01-01T23:59:59.000Z

276

Pipeline corridors through wetlands -- Impacts on plant communities: Little Timber Creek Crossing, Gloucester County, New Jersey. Topical report, August 1991--January 1993  

SciTech Connect (OSTI)

The goal of the Gas Research Institute Wetland Corridors Program is to document impacts of existing pipelines on the wetlands they traverse. To accomplish this goal, 12 existing wetland crossings were surveyed. These sites varied in elapsed time since pipeline construction, wetland type, pipeline installation techniques, and right-of-way (ROW) management practices. This report presents results of a survey conducted over the period of August 5--7, 1991, at the Little Timber Creek crossing in Gloucester County, New Jersey, where three pipelines, constructed in 1950, 1960, and 1990, cross the creek and associated wetlands. The old side of the ROW, created by the installation of the 1960 pipeline, was designed to contain a raised peat bed over the 1950 pipeline and an open-water ditch over the 1960 pipeline. The new portion of the ROW, created by installation of the 1990 pipeline, has an open-water ditch over the pipeline (resulting from settling of the backfill) and a raised peat bed (resulting from rebound of compacted peat). Both the old and new ROWs contain dense stands of herbs; the vegetation on the old ROW was more similar to that in the adjacent natural area than was vegetation in the new ROW. The ROW increased species and habitat diversity in the wetlands. It may contribute to the spread of purple loosestrife and affect species sensitive to habitat fragmentation.

Shem, L.M.; Zimmerman, R.E.; Alsum, S.K. [Argonne National Lab., IL (United States). Center for Environmental Restoration Systems; Van Dyke, G.D. [Argonne National Lab., IL (United States). Center for Environmental Restoration Systems]|[Trinity Christian Coll., Palos Heights, IL (United States). Dept. of Biology

1994-12-01T23:59:59.000Z

277

Geomorphic structure of tidal hydrodynamics in salt marsh creeks  

E-Print Network [OSTI]

of the tidal signal within the marsh area. Citation: Fagherazzi, S., M. Hannion, and P. D'Odorico (2008 by elegant hydrological and geomorphological theories [Gupta et al., 1980; Rodriguez-Iturbe and Valdes, 1979

Fagherazzi, Sergio

278

Evaluation of Calendar Year 1996 groundwater and surface water quality data for the Upper East Fork Poplar Creek Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This report presents an evaluation of the groundwater monitoring data obtained in the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) during calendar year (CY) 1996. The East Fork Regime encompasses several confirmed and suspected sources of groundwater contamination within industrialized areas of the US Department of Energy (DOE) Y-12 Plant in Bear Creek Valley (BCV) southeast of Oak Ridge, Tennessee. The CY 1996 groundwater and surface water monitoring data are presented in Calendar Year 1996 Annual Groundwater Monitoring Report for the Upper East Fork Poplar Creek Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee, along with the required data evaluations specified in the Resource Conservation and Recovery Act (RCRA) post-closure permit for the East Fork Regime. This report provides additional evaluation of the CY 1996 groundwater and surface water monitoring data with an emphasis on regime-wide groundwater contamination and long-term concentration trends for regulated and non-regulated monitoring parameters.

NONE

1997-09-01T23:59:59.000Z

279

Groundwater Protection Program Calendar Year 1998 Evaluation of Groundwater and Surface Water Quality Data for the Bear Creek Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This report presents an evaluation of the water quality monitoring data obtained by the Y-12 Plant Groundwater Protection Program (GWPP) in the Bear Creek Hydrogeologic Regime (Bear Creek Regime) during calendar year (CY) 1998. The Bear Creek Regime contains many confirmed and potential sources of groundwater and surface water contamination associated with the U.S. Department of Energy (DOE) Oak Ridge Y-12 Plant. Applicable provisions of DOE Order 5400.1A - General Environmental Protection Program - require evaluation of groundwater and surface water quality near the Y-12 Plant to: (1) gauge groundwater quality in areas that are, or could be, affected by plant operations, (2) determine the quality of surface water and groundwater where contaminants are most likely to migrate beyond the DOE Oak Ridge Reservation (ORR) property line, and (3) identify and characterize long-term trends in groundwater quality. The following sections of this report contain relevant background information (Section 2.0); describe the results of the respective data evaluations required under DOE Order 5400.1A (Section 3.0); summarize significant findings of each evaluation (Section 4.0); and list the technical reports and regulatory documents cited for more detailed information (Section 5.0). All of the figures (maps and trend graphs) and data tables referenced in each section are presented in Appendix A and Appendix B, respectively.

None

1999-09-01T23:59:59.000Z

280

Screening of contaminants in Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

Waste Area Grouping 2 (WAG 2) of the Oak Ridge National Laboratory (ORNL) is located in the White Oak Creek Watershed and is composed of White Oak Creek Embayment, White Oak Lake and associated floodplain, and portions of White Oak Creek (WOC) and Melton Branch downstream of ORNL facilities. Contaminants leaving other ORNL WAGs in the WOC watershed pass through WAG 2 before entering the Clinch River. Health and ecological risk screening analyses were conducted on contaminants in WAG 2 to determine which contaminants were of concern and would require immediate consideration for remedial action and which contaminants could be assigned a low priority or further study. For screening purposes, WAG 2 was divided into four geographic reaches: Reach 1, a portion of WOC; Reach 2, Melton Branch; Reach 3, White Oak Lake and the floodplain area to the weirs on WOC and Melton Branch; and Reach 4, the White Oak Creek Embayment, for which an independent screening analysis has been completed. Screening analyses were conducted using data bases compiled from existing data on carcinogenic and noncarcinogenic contaminants, which included organics, inorganics, and radionuclides. Contaminants for which at least one ample had a concentration above the level of detection were placed in a detectable contaminants data base. Those contaminants for which all samples were below the level of detection were placed in a nondetectable contaminants data base.

Blaylock, B.G.; Frank, M.L.; Hoffman, F.O.; Hook, L.A.; Suter, G.W.; Watts, J.A.

1992-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "area crane creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

ARCHAEOLOGY, LATE-QUATERNARY LANDSCAPE EVOLUTION, AND ENVIRONMENTAL CHANGE IN THE UPPER DRIFTWOOD CREEK BASIN, BARBER COUNTY, KANSAS  

E-Print Network [OSTI]

This study focused on valley fills in the upper Driftwood Creek basin, a 3rd order drainage network in south-central Kansas to determine the geologic potential for stratified cultural material and to reconstruct a record of Late...

Kessler, Nicholas Victor

2010-12-09T23:59:59.000Z

282

Spring Creek Project for Ideas, Nature, and the Written Word Call for Nominations: Graduate Student Research and Writing Retreat  

E-Print Network [OSTI]

Spring Creek Project for Ideas, Nature, and the Written Word Call for Nominations: Graduate Student on a collaborative project or two graduate students who each have individual projects are invited to nominate graduate students in the humanities or environmental sciences

Grünwald, Niklaus J.

283

Abstract At the time of this study Fossil Creek was being considered as a site for the restoration  

E-Print Network [OSTI]

. This study was conducted prior to a hydroelectric dam decommissioning project in Fossil Creek where full limitation ? Phosphorous ? Nitrogen ? Invertebrate ? Dam ? Hydroelectric ? Native fish ? Food base

284

LLL in situ coal gasification project. Quarterly progress report, October-December 1979. [Hoe Creek No. 3 and planning  

SciTech Connect (OSTI)

The major effort this quarter has been postexperiment analysis of Hoe Creek No. 3 and planning for future gasification experiments. Hoe Creek No. 3: Thermal data have been analyzed to determine the performance of the drilled horizontal channel during forward gasification. Thermal and material balance data are combined to determine late-time burn boundaries for the experiment. Surface subsidence after the experiment was completed is described. Process wells were inspected to determine failure characteristics and pinpoint late-time injection location. Ground-water quality before and after Hoe Creek No. 3 and the effects of aquifer interconnection on hydraulic measurements at the Hoe Creek No. 2 and No. 3 sites are discussed. Future experiments: Potential UCG sites are being characterized for future tests. Two sites in the Powder River Basin near Gillette, Wyoming are discussed. Preliminary plans for a deep site gasification experiment and a new method for in situ gasification of thick seams are presented.

Cena, R.J.; Strack, B.S. (eds.)

1980-04-23T23:59:59.000Z

285

Assessment of water resources in lead-zinc mined areas in Cherokee County, Kansas, and adjacent areas  

SciTech Connect (OSTI)

A study was conducted to evaluate water resources problems related to abandoned lead and zinc mines in Cherokee County, Kansas, and adjacent areas in Missouri and Oklahoma. Past mining activities have caused changes in the geohydrology of the area. Discharge of mine-contaminated groundwater to Tar Creek occurs in Oklahoma from drill holes and shafts where the potentiometric surface of the shallow aquifer is above the land surface. Pumping of the deep aquifer has resulted in a potential for downward movement of water from the shallow aquifer. Water from mines in the eastern area contained dissolved solids concentrations of < 500 mg/L a median pH of 3.9, sulfate concentrations that ranged between 98 and 290 mg/L, and median concentrations for zinc of 37,600 micrograms/L (ug/L) for lead of 240 ug/L, for cadmium of 180 ug/L, for iron of 70 ug/L, for manganese of 240 ug/L, and for silica of 15 mg/L. Water from mines in the western area contained dissolved solids concentrations of generally > 500 mg/L, a median pH of 6.8, sulfate concentrations that ranged between 170 and 2,150 mg/L, and median concentrations for zinc of 3,200 ug/L for lead of 0 ug/L. No conclusive evidence of lateral migration of water from the mines into domestic well water supplies in the shallow aquifer was found in the study area in Kansas. Effects of abandoned lead and zinc mines on tributaries of the Spring River in the eastern area are most severe in Short Creek. Drainage from tailings cause large concentrations of sulfate, zinc, and cadmium in Tar Creek in Kansas. Compared with four other major streams in the western area in Kansas, Tar Creek contained the largest low flow concentrations of sulfate (910 mg/L), zinc (5,800 ug/L), and cadmium (40 ug/L). 45 refs., 23 figs., 26 tabs.

Spruill, T.B.

1987-01-01T23:59:59.000Z

286

A postdevelopmental evaluation of Langford Creek Watershed Project  

E-Print Network [OSTI]

Evaluation of Benefits and Costs Viewpoint of the Analysis 7 8 9 11 III DESCRIPTION OF T?. 'AREA AND THE FLOOD PROBLEM ~ ~ 12 PROCEDURES AND METHODOLOGY ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 24 Determination of Costs Determination of Benefits Comparison of Results... of small watershed projects by providing informa- tion beneficial for planning procedures and tools for project evaluation. Multiple purpose watersheds . (agricultural land and water management; fish, wildlife and recreational development; municipal...

Rico, Luis

2012-06-07T23:59:59.000Z

287

Addendum to the post-closure permit application for the Bear Creek Hydrogeologic Regime at the Y-12 Plant: Walk-in pits. Revision 2  

SciTech Connect (OSTI)

The revised Closure Plan was initially intended to apply to A Area, C-West, B Area, and the Walk-In Pits (WIPs) of the Bear Creek Burial Grounds (BCBG). However, a strategy was developed to include the B Area [a solid waste management unit (SWMU)] with the WIPs so that both areas would be closed under one cap. The plan was presented to the State of Tennessee on March 8, 1990, and the Department of Energy was requested to review other unique alternatives to close the site. Therefore, in November 1992, the Closure Plan for B Area and the WIPs was prepared separately from that of the other sites associated with the BCBG and was presented in a RCRA Closure Plan. The Closure Plan revision issued April 1993 was intended to reflect the placement of the Kerr Hollow Quarry debris at the WIPs, revise the closure data, and acknowledge that the disposition of a monitoring well within the closure site could not be verified. A Post-Closure Permit Application (PCPA) was to include the WIPs; however, at the time of submittal, closure of the WIPs had not been certified. This addendum contains information on the WIPs to accompany the BCBG PCPA. The purpose of this document is to supplement the information provided in the BCBG PCPA. This document is not intended to be a stand-alone document. Only additional information regarding the WIPs is included in the sections of this document, which correspond to sections of the PCPA submitted in June 1994.

NONE

1995-04-01T23:59:59.000Z

288

The Hanna and Hoe Creek underground coal gasification test sites: Status report, (June 1986-June 1987)  

SciTech Connect (OSTI)

To comply with a cooperative agreement with the U.S. Department of Energy (DOE), the Western Research Institute (WRI) is required to submit an annual report summarizing the status of environmentally related work performed by WRI at the Hanna and Hoe Creek underground coal gasification (UCG) sites. The following is a summary of work performed at these two sites from June 1986 to June 1987. Several tasks for restoring the water quailty at Hoe Creek were: (1) groundwater treatment demonstration (1986); (2) bench-scale carbon adsorption experiments (1987); (3) design of the scaled-up treatment system (1987); (4) well-pumping test (1987). A summary of the results of each task is presented. 6 refs., 8 figs., 4 tabs.

Berdan, G.L.; Nolan, B.T.; Barteaux, W.L.; Barrash, W.

1987-06-01T23:59:59.000Z

289

Pond Creek coal seam in eastern Kentucky - new look at an old resource  

SciTech Connect (OSTI)

The Middle Pennsylvania/Westphalian B Pond Creek Coal is an important low-sulfur resource in Pike and Martin Counties, Kentucky. The Breathitt Formation seam, also known as the lower Elkhorn coal, accounted for nearly 40% of Pike County's 1983 production of 22 million tons. Although the coal is nearly mined out through central Pike County, substantial reserves still exist in the northern part of the county. Past studies of the seam by the US Bureau of Mines concentrated on the utility of the seam as a coking blend, with additional consideration of the megascopic and microscopic coal petrology. The authors research has focused on the regional variations in the Pond Creek seam, with emphasis on the petrographic variations.

Hower, J.C.; Pollock, J.D.; Klapheke, J.G.

1986-05-01T23:59:59.000Z

290

Campbell Creek TVA 2010 First Year Performance Report July 1, 2009 August 31, 2010  

SciTech Connect (OSTI)

This research project was initiated by TVA in March 2008 and encompasses three houses that are of similar size, design and located within the same community - Campbell Creek, Farragut TN with simulated occupancy. This report covers the performance period from July 1, 2009 to August 31, 2010. It is the intent of TVA that this Valley Data will inform electric utilities future residential retrofit incentive program.

Christian, Jeffrey E [ORNL; Gehl, Anthony C [ORNL; Boudreaux, Philip R [ORNL; New, Joshua Ryan [ORNL

2010-10-01T23:59:59.000Z

291

Environmental assessment for the Hoe Creek underground, Coal Gasification Test Site Remediation, Campbell County, Wyoming  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has prepared this EA to assess environmental and human health Issues and to determine potential impacts associated with the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming. The Hoe Creek site is located south-southwest of the town of Gillette, Wyoming, and encompasses 71 acres of public land under the stewardship of the Bureau of Land Management. The proposed action identified in the EA is for the DOE to perform air sparging with bioremediation at the Hoe Creek site to remove contaminants resulting from underground coal gasification (UCG) experiments performed there by the DOE in the late 1970s. The proposed action would involve drilling additional wells at two of the UCG test sites to apply oxygen or hydrogen peroxide to the subsurface to volatilize benzene dissolved in the groundwater and enhance bioremediation of non-aqueous phase liquids present in the subsurface. Other alternatives considered are site excavation to remove contaminants, continuation of the annual pump and treat actions that have been used at the site over the last ten years to limit contaminant migration, and the no action alternative. Issues examined in detail in the EA are air quality, geology, human health and safety, noise, soils, solid and hazardous waste, threatened and endangered species, vegetation, water resources, and wildlife. Details of mitigative measures that could be used to limit any detrimental effects resulting from the proposed action or any of the alternatives are discussed, and information on anticipated effects identified by other government agencies is provided.

NONE

1997-10-01T23:59:59.000Z

292

Habitat Projects Completed within the Asotin Creek Watershed, 1999 Completion Report.  

SciTech Connect (OSTI)

The Asotin Creek Model Watershed Program (ACMWP) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The Asotin Creek watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington in WRIA 35. According to WDFW's Priority WRIA's by At-Risk Stock Significance Map, it is the highest priority in southeastern WA. Snake River spring chinook salmon, summer steelhead and bull trout, which are listed under the Endangered Species Act (ESA), are present in the watershed. The ACMWP began coordinating habitat projects in 1995. Approximately two hundred seventy-six projects have been implemented through the ACMWP as of 1999. Twenty of these projects were funded in part through Bonneville Power Administration's 1999 Columbia Basin Fish and Wildlife Program. These projects used a variety of methods to enhance and protect watershed conditions. In-stream work for fish habitat included construction of hard structures (e.g. vortex rock weirs), meander reconstruction, placement of large woody debris (LWD) and whole trees and improvements to off-channel rearing habitat; thirty-eight were created with these structures. Three miles of stream benefited from riparian improvements such as vegetative plantings (17,000 trees and shrubs) and noxious weed control. Two sediment basin constructions, 67 acres of grass seeding, and seven hundred forty-five acres of minimum till were implemented to reduce sediment production and delivery to streams in the watershed.

Johnson, Bradley J.

2000-01-01T23:59:59.000Z

293

Reservoir heterogeneity in Carter Sandstone, North Blowhorn Creek oil unit and vicinity, Black Warrior Basin, Alabama  

SciTech Connect (OSTI)

This report presents accomplishments made in completing Task 3 of this project which involves development of criteria for recognizing reservoir heterogeneity in the Black Warrior basin. The report focuses on characterization of the Upper Mississippian Carter sandstone reservoir in North Blowhorn Creek and adjacent oil units in Lamar County, Alabama. This oil unit has produced more than 60 percent of total oil extracted from the Black Warrior basin of Alabama. The Carter sandstone in North Blowhorn Creek oil unit is typical of the most productive Carter oil reservoirs in the Black Warrior basin of Alabama. The first part of the report synthesizes data derived from geophysical well logs and cores from North Blowhorn Creek oil unit to develop a depositional model for the Carter sandstone reservoir. The second part of the report describes the detrital and diagenetic character of Carter sandstone utilizing data from petrographic and scanning electron microscopes and the electron microprobe. The third part synthesizes porosity and pore-throat-size-distribution data determined by high-pressure mercury porosimetry and commercial core analyses with results of the sedimentologic and petrographic studies. The final section of the report discusses reservoir heterogeneity within the context of the five-fold classification of Moore and Kugler (1990).

Kugler, R.L.; Pashin, J.C.

1992-05-01T23:59:59.000Z

294

Hoe Creek experiments: LLNL's underground coal-gasification project in Wyoming  

SciTech Connect (OSTI)

Under the sponsorship of the US Department of Energy and predecessor organizations, the Lawrence Livermore National Laboratory carried out a laboratory program and three field, underground coal gasification tests near Gillette, Wyoming. This report summarizes that work. Three methods of linking or connecting injection and production wells were used for the UCG field tests: Hoe Creek No. 1 employed explosive fracturing, Hoe Creek No. 2 featured use of reverse combustion, and directional drilling was used for the Hoe Creek No. 3. The Gas Research Institute cosponsored the latter test. Laboratory experiments and modeling, together with a laboratory and field environment program, are necessary adjuncts to the field program. Explosive fracturing in coal was simulated using computer models and laboratory tests. We developed a relationship of total inelastic strains to permeability, which we used to design and interpret a coal outcrop, explosive fracturing experiment at Kemmerer, Wyoming. Coal gasification was also simulated in laboratory experiments and with computer models. The primary aim has been to predict and correlate reaction, thermal-front propagation rates, and product gas composition as a function of bed properties and process operating conditions. Energy recovery in the form of produced gas and liquids amounted to 73% of the energy in the consumed coal. There were essentially no losses to the subsurface formation. The greatest energy loss was in steam production.

Stephens, D.R.

1981-10-01T23:59:59.000Z

295

Hickory Creek, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:NetHealth DivisionHelioMotionisHesperia,Areas |

296

Depositional and diagenetic controls on reservoir quality and their petrophysical predictors within the Upper Cretaceous (Cenomanian) Doe Creek Member of the Kaskapau Formation at Valhalla Field, Northwest Alberta.  

E-Print Network [OSTI]

??Valhalla Field, discovered in 1979 and located in northwest Alberta, produces from the Upper Cretaceous Doe Creek Member of the Kaskapau Formation. Original reserves in (more)

Ball, Nathaniel H.

2009-01-01T23:59:59.000Z

297

Screening of contaminants in Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program  

SciTech Connect (OSTI)

Waste Area Grouping 2 (WAG 2) of the Oak Ridge National Laboratory (ORNL) is located in the White Oak Creek Watershed and is composed of White Oak Creek Embayment, White Oak Lake and associated floodplain, and portions of White Oak Creek (WOC) and Melton Branch downstream of ORNL facilities. Contaminants leaving other ORNL WAGs in the WOC watershed pass through WAG 2 before entering the Clinch River. Health and ecological risk screening analyses were conducted on contaminants in WAG 2 to determine which contaminants were of concern and would require immediate consideration for remedial action and which contaminants could be assigned a low priority or further study. For screening purposes, WAG 2 was divided into four geographic reaches: Reach 1, a portion of WOC; Reach 2, Melton Branch; Reach 3, White Oak Lake and the floodplain area to the weirs on WOC and Melton Branch; and Reach 4, the White Oak Creek Embayment, for which an independent screening analysis has been completed. Screening analyses were conducted using data bases compiled from existing data on carcinogenic and noncarcinogenic contaminants, which included organics, inorganics, and radionuclides. Contaminants for which at least one ample had a concentration above the level of detection were placed in a detectable contaminants data base. Those contaminants for which all samples were below the level of detection were placed in a nondetectable contaminants data base.

Blaylock, B.G.; Frank, M.L.; Hoffman, F.O.; Hook, L.A.; Suter, G.W.; Watts, J.A.

1992-07-01T23:59:59.000Z

298

Characterization of DOE reference oil shales: Mahogany Zone, Parachute Creek Member, Green River Formation Oil Shale, and Clegg Creek Member, New Albany Shale  

SciTech Connect (OSTI)

Measurements have been made on the chemical and physical properties of two oil shales designated as reference oil shales by the Department of Energy. One oil shale is a Green River Formation, Parachute Creek Member, Mahogany Zone Colorado oil shale from the Exxon Colony mine and the other is a Clegg Creek Member, New Albany shale from Kentucky. Material balance Fischer assays, carbon aromaticities, thermal properties, and bulk mineralogic properties have been determined for the oil shales. Kerogen concentrates were prepared from both shales. The measured properties of the reference shales are comparable to results obtained from previous studies on similar shales. The western reference shale has a low carbon aromaticity, high Fischer assay conversion to oil, and a dominant carbonate mineralogy. The eastern reference shale has a high carbon aromaticity, low Fischer assay conversion to oil, and a dominant silicate mineralogy. Chemical and physical properties, including ASTM distillations, have been determined for shale oils produced from the reference shales. The distillation data were used in conjunction with API correlations to calculate a large number of shale oil properties that are required for computer models such as ASPEN. There was poor agreement between measured and calculated molecular weights for the total shale oil produced from each shale. However, measured and calculated molecular weights agreed reasonably well for true boiling point distillate fractions in the temperature range of 204 to 399/sup 0/C (400 to 750/sup 0/F). Similarly, measured and calculated viscosities of the total shale oils were in disagreement, whereas good agreement was obtained on distillate fractions for a boiling range up to 315/sup 0/C (600/sup 0/F). Thermal and dielectric properties were determined for the shales and shale oils. The dielectric properties of the reference shales and shale oils decreased with increasing frequency of the applied frequency. 42 refs., 34 figs., 24 tabs.

Miknis, F. P.; Robertson, R. E.

1987-09-01T23:59:59.000Z

299

Fifteenmile Creek Riparian Buffers Project, Annual Report 2002-2003.  

SciTech Connect (OSTI)

This project implements riparian buffer systems in the Mid-Columbia, addressing limiting factors identified in the Fifteenmile Subbasin Summary, June 30, 2000. The project is providing the technical planning support needed to implement at least 36 riparian buffer system contracts on approximately 872 acres covering an estimated 40 miles of anadromous fish streams over a three year period. During this second year of the project, 11 buffer contracts were implemented on 10.9 miles of stream. Buffer widths averaged 132 ft. on each side of the stream. Implementation included prescribed plantings, fencing, and related practices. Actual implementation costs, lease payments, and maintenance costs are borne by existing USDA programs: Conservation Reserve and Conservation Reserve Enhancement Programs. The lease period of each contract may vary between 10 to 15 years. During this year the average was 14.6 years. The total value of contracts established this year is $666,121 compared with $71,115 in Bonneville Power Administration (BPA) contract costs to provide the technical support needed to get the contracts implemented. This project provides technical staffing to conduct assessments and develop plans to help keep pace with the growing backlog of potential riparian buffer projects. Word of mouth from satisfied customers has brought in many new sign-ups during the year. In addition, specific outreach efforts targeting the orchard areas of the county began to bear fruit with orchardists sign-ups as the project year ended. Progress this second year of project includes only work accomplished in the Fifteenmile subbasin. A similar but separate effort to implement buffers in the Columbia Plateau Province was initiated during the year under project number 2002-019-00. This project supports RPA 150 and 153 as required under the Federal Hydropower System biological opinion.

Graves, Ron

2004-02-01T23:59:59.000Z

300

Recent Approaches to Modeling Transport of Mercury in Surface Water and Groundwater - Case Study in Upper East Fork Poplar Creek, Oak Ridge, TN - 13349  

SciTech Connect (OSTI)

In this case study, groundwater/surface water modeling was used to determine efficacy of stabilization in place with hydrologic isolation for remediation of mercury contaminated areas in the Upper East Fork Poplar Creek (UEFPC) Watershed in Oak Ridge, TN. The modeling simulates the potential for mercury in soil to contaminate groundwater above industrial use risk standards and to contribute to surface water contamination. The modeling approach is unique in that it couples watershed hydrology with the total mercury transport and provides a tool for analysis of changes in mercury load related to daily precipitation, evaporation, and runoff from storms. The model also allows for simulation of colloidal transport of total mercury in surface water. Previous models for the watershed only simulated average yearly conditions and dissolved concentrations that are not sufficient for predicting mercury flux under variable flow conditions that control colloidal transport of mercury in the watershed. The transport of mercury from groundwater to surface water from mercury sources identified from information in the Oak Ridge Environmental Information System was simulated using a watershed scale model calibrated to match observed daily creek flow, total suspended solids and mercury fluxes. Mercury sources at the former Building 81-10 area, where mercury was previously retorted, were modeled using a telescopic refined mesh with boundary conditions extracted from the watershed model. Modeling on a watershed scale indicated that only source excavation for soils/sediment in the vicinity of UEFPC had any effect on mercury flux in surface water. The simulations showed that colloidal transport contributed 85 percent of the total mercury flux leaving the UEFPC watershed under high flow conditions. Simulation of dissolved mercury transport from liquid elemental mercury and adsorbed sources in soil at former Building 81-10 indicated that dissolved concentrations are orders of magnitude below a target industrial groundwater concentration beneath the source and would not influence concentrations in surface water at Station 17. This analysis addressed only shallow concentrations in soil and the shallow groundwater flow path in soil and unconsolidated sediments to UEFPC. Other mercury sources may occur in bedrock and transport though bedrock to UEFPC may contribute to the mercury flux at Station 17. Generally mercury in the source areas adjacent to the stream and in sediment that is eroding can contribute to the flux of mercury in surface water. Because colloidally adsorbed mercury can be transported in surface water, actions that trap colloids and or hydrologically isolate surface water runoff from source areas would reduce the flux of mercury in surface water. Mercury in soil is highly adsorbed and transport in the groundwater system is very limited under porous media conditions. (authors)

Bostick, Kent; Daniel, Anamary [Professional Project Services, Inc., Bethel Valley Road, Oak Ridge, TN, 37922 (United States)] [Professional Project Services, Inc., Bethel Valley Road, Oak Ridge, TN, 37922 (United States); Tachiev, Georgio [Florida International University, Applied Research Center 10555 W. Flagler St., EC 2100 Miami Florida 33174 (United States)] [Florida International University, Applied Research Center 10555 W. Flagler St., EC 2100 Miami Florida 33174 (United States); Malek-Mohammadi, Siamak [Bradley University, 413A Jobst Hall, Preoria, IL 61625 (United States)] [Bradley University, 413A Jobst Hall, Preoria, IL 61625 (United States)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "area crane creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Uranium in the Oatman Creek granite of Central Texas and its economic potential  

E-Print Network [OSTI]

, however, the need to explore for new materials containing uranium will incr ease as the high grade sedimentary uranium deposits become depleted. A logical place to begin this search lies with the source rock for many of the known sedimentary uranium... potential uranium source. Th1s study focuses on an 80 acre outcrop of the Oatman Creek granite known as Bear Mountain, in Gillespie County, Texas. The gran1te is a medium-grained, gray to pink rock. Nodal analysis indicates the composit1on 1s 35. 5...

Conrad, Curtis Paul

1982-01-01T23:59:59.000Z

302

Best management practices plan for the Lower East Fork Poplar Creek Operable Unit, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This plan was prepared in support of the Phase II Remedial Design Report (DOE/OR/01-1449&D1) and in accordance with requirements under CERCLA to present the plan for best management practices to be followed during the remediation. This document provides the Environmental Restoration Program with information about spill prevention and control, water quality monitoring, good housekeeping practices, sediment and erosion control measures, and inspections and environmental compliance practices to be used during Phase II of the remediation project for the Lower East Fork Poplar Creek Operable Unit.

NONE

1996-04-01T23:59:59.000Z

303

Water quality monitoring at the Hoe Creek test site: review and preliminary conclusions  

SciTech Connect (OSTI)

Post-burn monitoring of the ground water near to the Hoe creek underground coal gasification site showed that a broad range of gasification products had been introduced into the water system. Although many of these contaminants were eventually absorbed by the surrounding coal, some chemicals continued to appear in the water in concentrations higher than pre-test levels for several years after gasification. Possible mechanisms by which the contaminants entered the ground water include: (1) leakage of pyrolysis products; (2) post-burn leaching of coal ash and overburden rubble by returning ground water; and (3) dissolution of minerals outside the cavity by the CO/SUB/2 generated during gasification.

Wang, F.T.

1983-01-01T23:59:59.000Z

304

Changes in major organic contaminants in the groundwater at the Hoe Creek underground coal gasification site  

SciTech Connect (OSTI)

The results of groundwater analysis at the Hoe Creek underground coal gasification (UCG) site have indicated that, after gasification, the phenolic compounds and neutral aromatic hydrocarbons decrease more slowly than expected on the basis of our laboratory studies. The field data also fail to confirm the expected inverse relationship between a contaminant's water solubility and the extent to which it is sorbed by surrounding coal. The authors described a mechanism for the deposition of coal pyrolysis products that may help to elucidate the observed behavior of these organic contaminants. 7 refs., 7 figs.

Wang, F.; Mead, W.

1985-08-01T23:59:59.000Z

305

EA-1895: Lolo Creek Permanent Weir Construction near town of Weippe, Clearwater County, Idaho  

Broader source: Energy.gov [DOE]

DOEs Bonneville Power Administration is preparing this EA to evaluate the potential environmental impacts of replacing an existing seasonal fish weir with a permanent weir, which would be used to monitor federally-listed Snake River steelhead and collect spring Chinook salmon adults to support ongoing supplementation programs in the watershed. The Bureau of Land Management, a cooperating agency, preliminarily determined Lolo Creek to be suitable for Congressional designation into the Wild and Scenic River System. The EA includes a Wild and Scenic River Section 7 analysis.

306

Lower Watts Bar Reservoir Clinch River/Poplar Creek | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-Temperature Combustion DemonstratorEast Fork Poplar CreekWatts

307

Acquisition of Wildlife Habitat in the Calispell Creek Watershed - FACT SHEET- November 2006  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the Building Technologies OfficeAccountingGuide the Calispell Creek

308

Overview of GRI research at the Rock Creek Site, Black Warrior Basin. Overview of GRI research at Rock Creek: Eight years of cooperative research, coalbed methane shortcourse. Held in Abingdon, Virginia on October 23, 1992. Topical report  

SciTech Connect (OSTI)

The presentation slides from the October 23, 1992 workshop on coalbed methane exploration and production are assembled in this volume. They illustrate the following discussions: Overview of GRI Research at Rock Creek: Eight Years of Cooperative Research, Drilling and Completing Coalbed Methane Wells: Techniques for Fragile Formations, Connecting the Wellborne to the Formation: Perforations vs. Slotting, Coalbed Methane Well Testing in the Warrior Basin, Reservoir Engineering: A Case Study at Rock Creek, Fraccing of Multiple Thin Seams: Considerations and Constraints, Implementing Coal Seam Stimulations: Requirements for Successful Treatments, Coal-Fluid Interactions, Mine-Through Observations of Coal Seam Stimulations: Reality vs. Theory, and Recompleting Coalbed Methane Wells: The Second Try at Success.

Schraufnagel, R.

1992-10-01T23:59:59.000Z

309

Radionuclides in shallow groundwater at Solid Waste Storage Area 5 North, Oak Ridge National Laboratory  

SciTech Connect (OSTI)

This report presents a compilation of groundwater monitoring data from Solid Waste Storage Area (SWSA) 5 North at Oak Ridge National Laboratory (ORNL) between November 1989 and September 1993. Monitoring data were collected as part of the Active Sites Environmental Monitoring Program that was implemented in 1989 in response to DOE Order 5820.2A. SWSA 5 North was established for the retrievable storage of transuranic (TRU) wastes in 1970. Four types of storage have been used within SWSA 5 North: bunkers, vaults, wells, and trenches. The fenced portion of SWSA 5 North covers about 3.7 ha (9 acres) in the White Oak Creek watershed south of ORNL. The area is bounded by White Oak Creek and two ephemeral tributaries of White Oak Creek. Since 1989, groundwater has been monitored in wells around SWSA 5 North. During that time, elevated gross alpha contamination (reaching as high as 210 Bq/L) has consistently been detected in well 516. This well is adjacent to burial trenches in the southwest corner of the area. Water level measurements in wells 516 and 518 suggest that water periodically inundates the bottom of some of those trenches. Virtually all of the gross alpha contamination is generated by Curium 244 and Americium 241. A special geochemical investigation of well 516 suggests that nearly all of the Curium 44 and Americium 241 is dissolved or associated with dissolved organic matter. These are being transported at the rate of about 2 m/year from the burial trenches, through well 516, to White Oak Creek, where Curium 244 has been detected in a few bank seeps. Concentrations at these seeps are near detection levels (<1 Bq/L).

Ashwood, T.L.; Marsh, J.D. Jr.

1994-04-01T23:59:59.000Z

310

Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 2: Appendix A -- Waste sites, source terms, and waste inventory report; Appendix B -- Description of the field activities and report database; Appendix C -- Characterization of hydrogeologic setting report  

SciTech Connect (OSTI)

This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix A includes descriptions of waste areas and estimates of the current compositions of the wastes. Appendix B contains an extensive database of environmental data for the Bear Creek Valley Characterization Area. Information is also presented about the number and location of samples collected, the analytes examined, and the extent of data validation. Appendix C describes the hydrogeologic conceptual model for Bear Creek Valley. This model is one of the principal components of the conceptual site models for contaminant transport in BCV.

NONE

1996-09-01T23:59:59.000Z

311

Research Areas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome toResearch Areas Our Vision National User Facilities

312

Research Areas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome toResearch Areas Our Vision National User

313

Deposition and diagenesis of a cratonic Silurian platform reef, Pipe Creek Jr. , Indiana  

SciTech Connect (OSTI)

Petrographic and geochemical characteristics of the Pipe Creek Jr. paragenesis record the stratigraphic and burial evolution of the cratonic Silurian platform of Indiana during Late Silurian to Pennsylvanian. A variety of several diagenetic fluids acting over geological time affected the reef. The paragenetic sequence is as follows: (1) precipitation of turbid, fibrous, blotchy cathodoluminescent (CL) cement; (2) dolomitization of mud-rich facies; (3) precipitation of clear, zoned CL equant calcite cements; (4) fracturing and karst formation, partially filled by geopetal silt and sandstone; (5) precipitation of clear, dull CL, ferroan to nonferroan equant calcite cement, ferroan dolomite overgrowth and equant dolomite cement in moldic porosity, caves and fractures; (6) microdissolution and hydrocarbon emplacement; and (7) stylolitization. The New Albany Shale was both the hydrocarbon source and top seal to the fossil Pipe Creek Jr. oil field with original oil in place estimated at 11 million bbl. The level of organic metamorphism of the New Albany Shale, the oil residue, and the two-phase fluid inclusions in the burial cements suggest that sediments accumulated on the platform throughout Mississippian time.

Simo, A.; Lehmann, P.

1988-02-01T23:59:59.000Z

314

Burn cavity growth during the Hoe Creek No. 3 underground coal gasification experiment  

SciTech Connect (OSTI)

A detailed history is given of the growth of the burn cavity during the first month of the Hoe Creek No. 3 underground coal gasification experiment near Gillette, Wyoming, in 1979. The changing shape of the cavity with time is inferred from data from three types of instruments installed throughout the experimental zone: (1) thermocouples at various levels in a number of holes, to map temperatures; (2) extensometers at various levels in other holes, to detect motions of the overburden material; and (3) high-frequency electromagnetic (HFEM) scans made between various pairs of holes, to detect cavities and zones of burning coal. Additional data on the final shape of the underground cavity are derived from the results of a core drilling program carried out from the surface after the burn had ended. This study of cavity growth history has contributed significantly to our understanding of how the in situ coal gasification process operates in sites like Hoe Creek. The diagnostic system provided invaluable information on cavity growth and on the interaction between the two coal seams. Some new problems with injection well survival and slag production in oxygen-steam burns were brought out, and the importance of understanding and controlling heat loss mechanisms was amply demonstrated. Although no one system of underground diagnostics can give all of the information needed to fully describe the in situ process, a combination of several diagnostic systems can be used to deduce a self-consistent description.

Hill, R.W.

1981-01-14T23:59:59.000Z

315

Burn cavity growth during the Hoe Creek No. 3 underground-coal-gasification experiment  

SciTech Connect (OSTI)

A detailed history is given of the growth of the burn cavity during the first month of the Hoe Creek No. 3 underground coal gasification experiment near Gillette, Wyoming, in 1979. The changing shape of the cavity with time is inferred from data from three types of instruments installed throughout the experimental zone: (1) thermocouples at various levels in a number of holes, to map temperatures; (2) extensometers at various levels in other holes, to detect motions of the overburden material; and (3) high-frequency electromagnetic scans made between various pairs of holes, to detect cavities and zones of burning coal. Additional data on the final shape of the underground cavity is derived from the results of a core drilling program carried out from the surface after the burn had ended. This study of cavity growth history has contributed significantly to our understanding of how the in-situ coal gasification process operates in sites like Hoe Creek. The diagnostic system provided invaluable information on cavity growth and on the interaction between the two coal seams. Some new problems with injection well survival and slag production in oxygen-steam burns were brought out, and the importance of understanding and controlling heat loss mechanisms was amply demonstrated. Although no one system of underground diagnostics can give all of the information needed to fully describe the in-situ process, a combination of several diagnostic systems can be used to deduce a self-consistent description.

Hill, R.W.

1981-06-08T23:59:59.000Z

316

Analysis of water and soil from the wetlands of Upper Three Runs Creek. Volume 2A, Analytical data packages September--October 1991 sampling  

SciTech Connect (OSTI)

Shallow water and soils along Upper Three Runs Creek (UTRC) and associated wetlands between SRS Road F and Cato Road were sampled for nonradioactive and radioactive constituents. The sampling program is associated with risk evaluations being performed for various regulatory documents in these areas of the Savannah River Site (SRS). WSRC selected fifty sampling sites bordering the Mixed Waste Management Facility (MWMF), F- and H-Area Seepage Basins (FHSB), and the Sanitary Landfill (SL). The analytical results from this study provided information on the water and soil quality in UTRC and its associated wetlands. The analytical results from this investigation indicated that the primary constituents and radiological indicators detected in the shallow water and soils were tritium, gross alpha, radium 226, total radium and strontium 90. This investigation involved the collection of shallow water samples during the Fall of 1991 and the Spring of 1992 at fifty (50) sampling locations. Sampling was performed during these periods to incorporate high and low water table periods. Samples were collected from three sections along UTRC denoted as Phase I (MWMF), Phase II (FHSB) and Phase III (SL). One vibracored soil sample was also collected in each phase during the Fall of 1991. This document is compiled solely of experimental data obtained from the sampling procedures.

Haselow, L.A.; Rogers, V.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Riordan, C.J. [Metcalf and Eddy, Inc. (United States); Eidson, G.W.; Herring, M.K. [Normandeau Associates, Inc. (United States)

1992-08-01T23:59:59.000Z

317

Remedial Investigation Work Plan for Upper East Fork Poplar Creek Operable Unit 3 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Environmental Restoration Program  

SciTech Connect (OSTI)

Upper East Fork Popular Creek Operable Unit 3 (UEFPC OU 3) is a source term OU composed of seven sites, and is located in the western portion of the Y-12 Plant. For the most part, the UEFPC OU 3 sites served unrelated purposes and are geographically removed from one another. The seven sites include the following: Building 81-10, the S-2 Site, Salvage Yard oil storage tanks, the Salvage Yard oil/solvent drum storage area, Tank Site 2063-U, the Salvage Yard drum deheader, and the Salvage Yard scrap metal storage area. All of these sites are contaminated with at least one or more hazardous and/or radioactive chemicals. All sites have had some previous investigation under the Y-12 Plant RCRA Program. The work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to each OU 3 site. The potential for release of contaminants to receptors through various media is addressed, and a sampling and analysis plan is presented to obtain objectives for the remedial investigation. Proposed sampling activities are contingent upon the screening level risk assessment, which includes shallow soil sampling, soil borings, monitoring well installation, groundwater sampling, and surface water sampling. Data from the site characterization activities will be used to meet the above objectives. A Field Sampling Investigation Plan, Health and Safety Plan, and Waste Management Plan are also included in this work plan.

Not Available

1993-08-01T23:59:59.000Z

318

Twenty-Five Years of Ecological Recovery of East Fork Poplar Creek: Review of Environmental Problems and Remedial Actions  

SciTech Connect (OSTI)

In May 1985, a National Pollutant Discharge Elimination System permit was issued for the Department of Energy s Y-12 National Security Complex (Y-12 Complex) in Oak Ridge, Tennessee, USA, allowing discharge of effluents to East Fork Poplar Creek (EFPC). The effluents ranged from large volumes of chlorinated oncethrough cooling water and cooling tower blow-down to smaller discharges of treated and untreated process wastewaters, which contained a mixture of heavy metals, organics, and nutrients, especially nitrates. As a condition of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed to meet two major objectives: demonstrate that the established effluent limitations were protecting the classified uses of EFPC, and document the ecological effects resulting from implementing a Water Pollution Control Program at the Y-12 Complex. The second objective is the primary focus of the other papers in this special series. This paper provides a history of pollution and the remedial actions that were implemented; describes the geographic setting of the study area; and characterizes the physicochemical attributes of the sampling sites, including changes in stream flow and temperature that occurred during implementation of the BMAP. Most of the actions taken under the Water Pollution Control Program were completed between 1986 and 1998, with as many as four years elapsing between some of the most significant actions. The Water Pollution Control Program included constructing nine new wastewater treatment facilities and implementation of several other pollution-reducing measures, such as a best management practices plan; area-source pollution control management; and various spill-prevention projects. Many of the major actions had readily discernable effects on the chemical and physical conditions of EFPC. As controls on effluents entering the stream were implemented, pollutant concentrations generally declined and, at least initially, the volume of water discharged from the Y-12 Complex declined. This reduction in discharge was of ecological concern and led to implementation of a flow management program for EFPC. Implementing flow management, in turn, led to substantial changes in chemical and physical conditions of the stream: stream discharge nearly doubled and stream temperatures decreased, becoming more similar to those in reference streams. While water quality clearly improved, meeting water quality standards alone does not guarantee protection of a waterbody s biological integrity. Results from studies on the ecological changes stemming from pollution-reduction actions, such as those presented in this series, also are needed to understand how best to restore or protect biological integrity and enhance ecological recovery in stream ecosystems. With a better knowledge of the ecological consequences of their decisions, environmental managers can better evaluate alternative actions and more accurately predict their effects.

Smith, John G [ORNL; Loar, James M [ORNL; Stewart, Arthur J [ORNL

2011-01-01T23:59:59.000Z

319

The development of an aquatic spill model for the White Oak Creek watershed, Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This study develops an aquatic spill model applicable to the White Oak Creek watershed draining the Oak Ridge National Laboratory. Hazardous, toxic, and radioactive chemicals are handled and stored on the laboratory reservation. An accidental spill into the White Oak Creek watershed could contaminate downstream water supplies if insufficient dilution did not occur. White Oak Creek empties into the Clinch River, which flows into the Tennessee River. Both rivers serve as municipal water supplies. The aquatic spill model provides estimates of the dilution at sequential downstream locations along White Oak creek and the Clinch River after an accidental spill of a liquid containing a radioactively decaying constituent. The location of the spill on the laboratory is arbitrary, while hydrologic conditions range from drought to extreme flood are simulated. The aquatic spill model provides quantitative estimates with which to assess water quality downstream from the site of the accidental spill, allowing an informed decision to be made whether to perform mitigating measures so that the integrity of affected water supplies is not jeopardized.

Johnson, R.O.

1996-05-01T23:59:59.000Z

320

Re-Introduction of Lower Columbia River Chum Salmon into Duncan Creek, 2003-2004 Annual Report.  

SciTech Connect (OSTI)

Currently, two methods of reintroduction are being simultaneously evaluated at Duncan Creek. Recolonization is occurring by introducing adult chum salmon from the Lower Gorge (LG) population into Duncan Creek and allowing them to naturally reproduce. The supplementation strategy required adults to be collected and artificially spawned, incubated, reared, and released at the mouth of Duncan Creek. All eggs from the artificial crossings at Washougal Hatchery were incubated and the fry reared to release size at the hatchery. The Duncan Creek chum salmon project was very successful in 2003-04, providing knowledge and experience that will improve program execution in future years. The gear used to collect adult brood stock was changed from tangle nets to beach seines. This increased efficiency and the speed at which adults could be processed in the field, and most likely reduced stress on the adults handled. Certain weaknesses exposed in past seasons still exist and new ones were exposed (e.g. inadequate incubation and rearing space at Washougal Hatchery for any large salvage operation and having to move the rearing troughs outside the raceway in 2004). Egg-to-fry survival rates of 64% and 58% showed that the channels are functioning at the upper end of what can be expected from them. Possibly the most important event this season was the ability to strontium mark and release all naturally-produced fry from the spawning channels. Channel and floodplain modifications reduced the likelihood that floods will damage the channels and negatively impact survival rates.

Hillson, Todd D. (Washington Department of Fish and Wildlife, Olympia, WA)

2004-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "area crane creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Pipeline corridors through wetlands - impact on plant communities: Mill Creek Tributary Crossing, Jefferson County, New York, 1991 survey. Topical report, June 1991--April 1993  

SciTech Connect (OSTI)

The goal of the Gas Research Institute Wetland Corridors Program is to document impacts of existing pipelines on the wetlands they traverse. To accomplish this goal, 12 existing wetland crossings were surveyed. These sites varied in elapsed time since pipeline construction, wetland type, pipeline installation techniques, and right-of-way (ROW) management practices. This report presents the results of a survey conducted in June 1991 at the Mill Creek tributary crossing, Jefferson County, New York. One pipeline had been installed through the wetland in 1966, and another was scheduled to be installed later in 1991. Data were collected along the existing pipeline ROW and also along the planned ROW for use as baseline data in future studies. Four separate communities were surveyed. A scrub-shrub wetland and a forested wetland were sampled along the existing ROW where the planned pipeline was to be installed. A mixed vegetation community was sampled along the existing ROW, west of where the planned pipeline would joint the ROW. A marsh community was sampled along the route of the planned pipeline. All plant species found on the ROW of the scrub-shrub community were also present in the adjacent natural areas. The vegetation on the ROW of the forested wetland community also consisted mostly of species found in the adjacent natural areas. In the mixed vegetation community, a small drainage channel present on the ROW, possibly resulting from the pipeline construction, provided habitat for a number of obligate species not found in other areas of this community. Differences noted among different areas of this community were also attributed to slight variations in elevation.

Van Dyke, G.D. [Argonne National Lab., IL (United States)]|[Trinity Christian College, Palos Heights, IL (United States); Shem, L.M.; Zimmerman, R.E. [Argonne National Lab., IL (United States)

1994-12-01T23:59:59.000Z

322

Southeast Idaho Area Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Area Attractions and Events Area Geography Area History Area Links Driving Directions Idaho Falls Attractions and Events INL History INL Today Research Park Sagebrush Steppe...

323

Risk based optimization of the frequency of EDG on-line maintenance at Hope Creek  

SciTech Connect (OSTI)

This paper presents a study to optimize the frequency of on-line maintenance of the emergency diesel generators at Hope Creek. This study was directed towards identifying, analyzing, and modifying maintenance planning and scheduling practices to assure the high availability of emergency diesel generators. Input from application of a recently developed reliability model, from considerations of probabilistic safety assessment, plant-specific experience, insights from personnel involved in EDG maintenance, and other practical issues were used to define a maintenance schedule that balances its beneficial and adverse impacts. Conclusions resulted in feasible recommendations to optimize and reduce the frequency of diesel on-line maintenance, allowing additional resources to better maintain other equipment important to safety.

Knoll, A. [Public Service Electric & Gas, Hancocks Bridge, NJ (United States); Samanta, P.K. [Brookhaven National Lab., Upton, NY (United States); Vesely, W.E. [Science Applications International, Dublin, OH (United States)

1996-09-01T23:59:59.000Z

324

Results of long term ground surface measurements at the Hoe Creek III site  

SciTech Connect (OSTI)

Ground surface subsidence was first observed over the Hoe Creek III burn cavity 21 days after gasification ceased. It manifested itself as a small circular depression or sink and was followed five days later by the formation of a second collapse structure. Concurrently, a single large elliptically shaped depression, whose major axis parallels the experimental axis, slowly formed over the burn cavity. These features appear to represent two distinctly different deformation modes. The first mode includes discrete voids that propagate rapidly upward. The second mode is represented by the elliptically shaped classical subsidence depression that forms slowly by a strata bending. Seventeen isolation type survey monuments have been used to track both the horizontal (one dimensional) and vertical motion components intermittently over a 54 month span. The resulting data set is combined with ground surface sketches and post-burn core drilling results and provides an important case study against which numerical and centrifugation model results can be compared. 5 references, 13 figures.

Ganow, H.C.

1984-08-10T23:59:59.000Z

325

Ground-water effects of the UCG experiments at the Hoe Creek site in northeastern Wyoming  

SciTech Connect (OSTI)

Ground-water changes and subsidence effects associated with three underground coal gasification (UCG) experiments have been monitored at the Hoe Creek site in northeastern Wyoming. Ground-water quality measurements have extended over a period of four years and have been supplemented by laboratory studies of contaminant sorption by coal. It was found that a broad range of residual gasification products are introduced into the ground-water system. These contaminants may be of environmental significance if they find their way, in sufficient concentrations, into surface waters, or into aquifers from which water is extracted for drinking or agricultural purposes. Fortunately, the concentrations of these contaminants are substantially reduced by sorption on the surrounding coal. However, recent field measurements indicate that there may be significant limitations on this natural cleansing process. The contaminants of potential concern, and the mechanisms that affect their deposition and persistence have been identified.

Mead, S.W.; Wang, F.T.; Stuermer, D.H.

1981-06-01T23:59:59.000Z

326

Two-dimensional water quality modeling of Town Creek embayment on Guntersville Reservoir  

SciTech Connect (OSTI)

TVA investigated water quality of Town Creek embayment using a branched two-dimensional model of Guntersville Reservoir. Simulation results were compared in terms of algal biomass, nutrient concentrations, and volume of embayment with depleted dissolved oxygen. Stratification and flushing play a significant role in the embayment water quality. Storms introduce large loadings of organics, nutrients, and suspended solids. Dissolved oxygen depletion is most severe after storms followed by low flow that fails to flush the embayment. Embayment water quality responses to potential animal waste and erosion controls were explored. Modeling indicated animal waste controls were much more cost-effective than erosion controls. Erosion controls will decrease embayment suspended solids and thereby increase algal biomass due to greater light penetration. 29 refs., 16 figs., 4 tabs.

Bender, M.D.; Shiao, Ming C.; Hauser, G.E. (Tennessee Valley Authority, Norris, TN (USA). Engineering Lab.); Butkus, S.R. (Tennessee Valley Authority, Norris, TN (USA). Water Quality Dept.)

1990-09-01T23:59:59.000Z

327

Examination of eastern oil shale disposal problems - the Hope Creek field study  

SciTech Connect (OSTI)

A field-based study of problems associated with the disposal of processed Eastern oil shale was initiated in mid-1983 at a private research site in Montgomery County, Kentucky. The study (known as the Hope Creek Spent Oil Shale Disposal Project) is designed to provide information on the geotechnical, revegetation/reclamation, and leachate generation and composition characteristics of processed Kentucky oil shales. The study utilizes processed oil shale materials (retorted oil shale and reject raw oil shale fines) obtained from a pilot plant run of Kentucky oil shale using the travelling grate retort technology. Approximately 1000 tons of processed oil shale were returned to Kentucky for the purpose of the study. The study, composed of three components, is described. The effort to date has concentrated on site preparation and the construction and implementation of the field study research facilities. These endeavors are described and the project direction in the future years is defined.

Koppenaal, D.W.; Kruspe, R.R.; Robl, T.L.; Cisler, K.; Allen, D.L.

1985-02-01T23:59:59.000Z

328

Structural characterization of terrestrial microbial Mn oxides from Pinal Creek, AZ  

SciTech Connect (OSTI)

The microbial catalysis of Mn(II) oxidation is believed to be a dominant source of abundant sorption- and redox-active Mn oxides in marine, freshwater, and subsurface aquatic environments. In spite of their importance, environmental oxides of known biogenic origin have generally not been characterized in detail from a structural perspective. Hyporheic zone Mn oxide grain coatings at Pinal Creek, Arizona, a metals-contaminated stream, have been identified as being dominantly microbial in origin and are well studied from bulk chemistry and contaminant hydrology perspectives. This site thus presents an excellent opportunity to study the structures of terrestrial microbial Mn oxides in detail. XRD and EXAFS measurements performed in this study indicate that the hydrated Pinal Creek Mn oxide grain coatings are layer-type Mn oxides with dominantly hexagonal or pseudo-hexagonal layer symmetry. XRD and TEM measurements suggest the oxides to be nanoparticulate plates with average dimensions on the order of 11 nm thick x 35 nm diameter, but with individual particles exhibiting thickness as small as a single layer and sheets as wide as 500 nm. The hydrated oxides exhibit a 10-A basal-plane spacing and turbostratic disorder. EXAFS analyses suggest the oxides contain layer Mn(IV) site vacancy defects, and layer Mn(III) is inferred to be present, as deduced from Jahn-Teller distortion of the local structure. The physical geometry and structural details of the coatings suggest formation within microbial biofilms. The biogenic Mnoxides are stable with respect to transformation into thermodynamically more stable phases over a time scale of at least 5 months. The nanoparticulate layered structural motif, also observed in pure culture laboratory studies, appears to be characteristic of biogenic Mn oxides and may explain the common occurrence of this mineral habit in soils and sediments.

Bargar, John; Fuller, Christopher; Marcus, Matthew A.; Brearley, Adrian J.; Perez De la Rosa, M.; Webb, Samuel M.; Caldwell, Wendel A.

2008-03-19T23:59:59.000Z

329

Discrete Quantum Gravity: I. Zonal spherical functions of the representationsof the SO(4,R) group with respect to the SU(2) subgroup and their application to the Barrett-Crane model  

E-Print Network [OSTI]

Starting from the defining transformations of complex matrices for the $SO(4,R)$ group, we construct the fundamental representation and the tensor and spinor representations of the group $SO(4,R)$. Given the commutation relations for the corresponding algebra, the unitary representations of the group in terms of the generalized Euler angles are constructed. The crucial step for the Barrett-Crane model in Quantum Gravity is the description of the amplitude for the quantum 4-simplex that is used in the state sum partition function. We obtain the zonal spherical functions for the construction of the SO(4,R) invariant weight and associate them to the triangular faces of the 4-simplices.

P. Kramer; M. Lorente

2008-04-28T23:59:59.000Z

330

The effect of fractures, faults, and sheared shale zones on the hydrology of Bear Creek Burial Grounds A-South, Oak Ridge, Tennessee  

E-Print Network [OSTI]

Previous hydrologic models of flow in Bear Creek Valley have presented lateral flow as occurring through the Nolichucky Shale in parallel to strike fractures within thin carbonate beds; the effects of faults were not considered. This study presents...

Hollon, Dwight Mitchell

1997-01-01T23:59:59.000Z

331

Reservoir Simulation and Evaluation of the Upper Jurassic Smackover Microbial Carbonate and Grainstone-Packstone Reservoirs in Little Cedar Creek Field, Conecuh County, Alabama  

E-Print Network [OSTI]

This thesis presents an integrated study of mature carbonate oil reservoirs (Upper Jurassic Smackover Formation) undergoing gas injection in the Little Cedar Creek Field located in Conecuh County, Alabama. This field produces from two reservoirs...

Mostafa, Moetaz Y

2013-04-25T23:59:59.000Z

332

Status and Monitoring of Natural and Supplemented Chinook Salmon in Johnson Creek, Idaho, 2006-2007 Annual Report.  

SciTech Connect (OSTI)

The Nez Perce Tribe Johnson Creek Artificial Propagation Enhancement Project (JCAPE) has conducted juvenile and adult monitoring and evaluation studies for its 10th consecutive year. Completion of adult and juvenile Chinook salmon studies were conducted for the purpose of evaluating a small-scale production initiative designed to increase the survival of a weak but recoverable spawning aggregate of summer Chinook salmon Oncorhynchus tshawytscha. The JCAPE program evaluates the life cycle of natural origin (NOR) and hatchery origin (HOR) supplementation fish to quantify the key performance measures: abundance, survival-productivity, distribution, genetics, life history, habitat, and in-hatchery metrics. Operation of a picket style weir and intensive multiple spawning ground surveys were completed to monitor adult Chinook salmon and a rotary screw trap was used to monitor migrating juvenile Chinook salmon in Johnson Creek. In 2007, spawning ground surveys were conducted on all available spawning habitat in Johnson Creek and one of its tributaries. A total of 63 redds were observed in the index reach and 11 redds for all other reaches for a combined count of 74 redds. Utilization of carcass recovery surveys and adult captures at an adult picket weir yielded a total estimated adult escapement to Johnson Creek of 438 Chinook salmon. Upon deducting fish removed for broodstock (n=52), weir mortality/ known strays (n=12), and prespawning mortality (n=15), an estimated 359 summer Chinook salmon were available to spawn. Estimated total migration of brood year 2005 NOR juvenile Chinook salmon at the rotary screw trap was calculated for three seasons (summer, fall, and spring). The total estimated migration was 34,194 fish; 26,671 of the NOR migrants left in the summer (July 1 to August 31, 2005) as fry/parr, 5,852 left in the fall (September 1 to November 21, 2005) as presmolt, and only 1,671 NOR fish left in the spring (March 1 to June 30, 2006) as smolt. In addition, there were 120,415 HOR supplementation smolts released into Johnson Creek during the week of March 12, 2007. Life stage-specific juvenile survival from Johnson Creek to Lower Granite and McNary dams was calculated for brood year 2005 NOR and HOR supplementation juvenile Chinook salmon. Survival of NOR parr Chinook salmon migrating from Johnson Creek to Lower Granite and McNary dams was 28.2% and 16.2%. Survival of NOR presmolt Chinook salmon migrating from Johnson Creek to Lower Granite and McNary dams was 28.2% and 22.3%. Survival of NOR smolt Chinook salmon migrating from Johnson Creek to Lower Granite and McNary dams was 44.7% and 32.9%. Survival of HOR smolt Chinook salmon migrating from Johnson Creek to Lower Granite and McNary dams was 31.9% and 26.2%. Multi-year analysis on smolt to adult return rate's (SAR's) and progeny to parent ratio's (P:P's) were calculated for NOR and HOR supplementation Brood Year 2002 Chinook salmon. SAR's were calculated from Johnson Creek to Johnson Creek (JC to JC), Lower Granite Dam to Lower Granite (LGD to LGD), and Lower Granite Dam to Johnson Creek (LGD to JC); for NOR fish SAR's were 0.16%, 1.16% and 1.12%, while HOR supplementation SAR's from JC to JC, LGD to LGD and LGD to JC were 0.04%, 0.19% and 0.13%. P:P's for all returning NOR and HOR supplemented adults were under replacement levels at 0.13 and 0.65, respectively. Recruit per spawner estimates (R/S) for Brood Year 2005 adult Chinook salmon were also calculated for NOR and HOR supplemented Chinook salmon at JC and LGD. R/S estimates for NOR and HOR supplemented fish at JC were 231 and 1,745, while R/S estimates at LGD were 67 and 557. Management recommendations address (1) effectiveness of data collection methods, (2) sufficiency of data quality (statistical power) to enable management recommendations, (3) removal of uncertainty and subsequent cessation of M&E activities, and (4) sufficiency of findings for program modifications prior to five-year review.

Rabe, Craig D.; Nelson, Douglas D. [Nez Perce Tribe

2008-11-17T23:59:59.000Z

333

Assessment of water resources in lead-zinc mined areas in Cherokee County, Kansas, and adjacent areas  

SciTech Connect (OSTI)

A study was conducted to evaluate water-resources problems related to abandoned lead and zinc mines in Cherokee County, Kansas, and adjacent areas in Missouri and Oklahoma. Past mining activities have caused changes in the hydrogeology of the area. Lead and zinc mining has caused discontinuities and perforations in the confining shale west of the Pennsylvanian-Mississippian geologic contact (referred to as the western area), which have created artificial ground-water recharge and discharge areas. Recharge to the shallow aquifer (rocks of Mississippian age) through collapses, shafts, and drill holes in the shale has caused the formation of a groundwater ''mound'' in the vicinity of the Picher Field in Kansas and Oklahoma. Discharge of mine-contaminated ground water to Tar Creek occurs in Oklahoma from drill holes and shafts where the potentiometric surface of the shallow aquifer is above the land surface. Mining of ore in the shallow aquifer has resulted in extensive fracturing and removal of material, which has created highly transmissive zones and voids and increased ground-water storage properties of the aquifer. In the area east of the Pennsylvanian-Mississippian geologic contact (referred to as the eastern area), fractured rock and tailings on the land surface increased the amount of water available for infiltration to the shallow aquifer; in the western area, tailings on the impermeable shale created artificial, perched aquifer systems that slowly drain to surface streams. 45 refs., 23 figs., 21 tabs.

Spruill, T.B.

1984-01-01T23:59:59.000Z

334

Sediment and radionuclide transport in rivers. Phase 2. Field sampling program for Cattaraugus and Buttermilk Creeks, New York  

SciTech Connect (OSTI)

As part of a study on sediment and radionuclide transport in rivers, Pacific Northwest Laboratory (PNL) is investigating the effect of sediment on the transport of radionuclides in Cattaraugus and Buttermilk Creeks, New York. A source of radioactivity in these creeks is the Western New York Nuclear Service Center which consists of a low-level waste disposal site and a nuclear fuel reprocessing plant. Other sources of radioactivity include fallout from worldwide weapons testing and natural background radioactivity. The major objective of the PNL Field Sampling Program is to provide data on sediment and radionuclide characteristics in Cattaraugus and Buttermilk Creeks to verify the use of the Sediment and Radionuclide Transport model, SERATRA, for nontidal rivers. This report covers the results of field data collection conducted during September 1978. Radiological analysis of sand, silt, and clay size fractions of suspended and bed sediment, and water were performed. Results of these analyses indicate that the principal radionuclides occurring in these two water courses, with levels significantly higher than background levels, during the Phase 2 sampling program were Cesium-137 and Strontium-90. These radionuclides had significantly higher activity levels above background in the bed sediment, suspended sediment, and water samples. Other radionuclides that are possibly being released into the surface water environment by the Nuclear Fuel Services facilities are Plutonium-238, 239, and 240, Americium-241, Curium-244, and Tritium. More radionuclides were consistently found in the bed sediment as compared to suspended sediment. The fewest radionuclides were found in the water of Buttermilk and Cattaraugus Creeks. The higher levels were found in the bed sediments for the gamma-emitters and in the suspended sediment for the alpha and beta-emitters (not including Tritium).

Walters, W.H.; Ecker, R.M.; Onishi, Y.

1982-04-01T23:59:59.000Z

335

Sediment and radionuclide transport in rivers. Phase 3. Field sampling program for Cattaraugus and Buttermilk Creeks, New York  

SciTech Connect (OSTI)

A field sampling program was conducted on Cattaraugus and Buttermilk Creeks, New York during April 1979 to investigate the transport of radionuclides in surface waters as part of a continuing program to provide data for application and verification of Pacific Northwest Laboratory's (PNL) sediment and radionuclide transport model, SERATRA. Bed sediment, suspended sediment and water samples were collected during unsteady flow conditions over a 45 mile reach of stream channel. Radiological analysis of these samples included gamma ray spectrometry analysis, and radiochemical separation and analysis of Sr-90, Pu-238, Pu-239, 240, Am-241 and Cm-244. Tritium analysis was also performed on water samples. Based on the evaluation of radionuclide levels in Cattaraugus and Buttermilk Creeks, the Nuclear Fuel Services facility at West Valley, New York, may be the source of Cs-137, Sr-90, Cs-134, Co-60, Pu-238, Pu-239, 240, Am-241, Cm-244 and tritium found in the bed sediment, suspended sediment and water of Buttermilk and Cattaraugus Creeks. This field sampling effort was the last of a three phase program to collect hydrologic and radiologic data at different flow conditions.

Ecker, R.M.; Walters, W.H.; Onishi, Y.

1982-08-01T23:59:59.000Z

336

Analysis of dust samples collected from spent nuclear fuel interim storage containers at Hope Creek, Delaware, and Diablo Canyon, California.  

SciTech Connect (OSTI)

Potentially corrosive environments may form on the surface of spent nuclear fuel dry storage canisters by deliquescence of deposited dusts. To assess this, samples of dust were collected from in-service dry storage canisters at two near-marine sites, the Hope Creek and Diablo Canyon storage installations, and have been characterized with respect to mineralogy, chemistry, and texture. At both sites, terrestrially-derived silicate minerals, including quartz, feldspars, micas, and clays, comprise the largest fraction of the dust. Also significant at both sites were particles of iron and iron-chromium metal and oxides generated by the manufacturing process. Soluble salt phases were minor component of the Hope Creek dusts, and were compositionally similar to inland salt aerosols, rich in calcium, sulfate, and nitrate. At Diablo Canyon, however, sea-salt aerosols, occurring as aggregates of NaCl and Mg-sulfate, were a major component of the dust samples. The seasalt aerosols commonly occurred as hollow spheres, which may have formed by evaporation of suspended aerosol seawater droplets, possibly while rising through the heated annulus between the canister and the overpack. The differences in salt composition and abundance for the two sites are attributed to differences in proximity to the open ocean and wave action. The Diablo Canyon facility is on the shores of the Pacific Ocean, while the Hope Creek facility is on the shores of the Delaware River, several miles from the open ocean.

Bryan, Charles R.; Enos, David George

2014-07-01T23:59:59.000Z

337

Site Monitoring Area Maps  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to the Site Monitoring Area (SMA) The Site Monitoring Area sampler Control measures (best management practices) installed at the Site Monitoring Area Structures such as...

338

Wildlife Management Areas (Minnesota)  

Broader source: Energy.gov [DOE]

Certain areas of the State are designated as wildlife protection areas and refuges; new construction and development is restricted in these areas.

339

Deposition and diagenesis of a cratonic Silurian platform reef, Pipe Creek Jr. , Indiana  

SciTech Connect (OSTI)

Petrographic and geochemical characteristics of the Pipe Creek Jr. paragenesis record the stratigraphic and burial evolution of the cratonic Silurian platform of Indiana during Late Silurian to Pennsylvanian. A variety of several diagenetic fluids acting over geological time affected the reef. The paragenetic sequence is as follows: (1) precipitation of turbid, fibrous, blotchy cathodoluminescent (CL) cement; (2) dolomitization of mud-rich facies; (3) precipitation of clear, zoned CL equant calcite cements; (4) fracturing and karst formation, partially filled by geopetal silt and sandstone; (5) precipitation of clear, dull CL, ferroan to nonferroan equant calcite cement, ferroan dolomite overgrowth and equant dolomite cement in moldic porosity, caves and fractures; (6) microdissolution and hydrocarbon emplacement; and (7) stylolitization. Carbonate grew and fibrous cements precipitated in an open marine environment. During Late Silurian an increasingly restricted environment stopped reef growth and dolomite replaced mud-rich faces. The reefs were then subaerially exposed and two meteoric cement sequences, non-luminescent to bright luminescent, precipitated prior to Mid-Devonian fracture-controlled karsting. Caves and fractures crosscut former cement stages and were filled by sandstones. Later, the platform was buried by the late Mid-Devonian organic-rich New Albany Shale, and clear, dull CL calcite cement and ferroan dolomite precipitated. Hydrocarbon migration postdates all cements and created minor moldic porosity and predates stylolitization.

Simo, A.; Lehmann, P.

1988-01-01T23:59:59.000Z

340

Mechanisms for groundwater contamination by UCG: preliminary conclusions from the Hoe Creek study  

SciTech Connect (OSTI)

We have monitored groundwater quality changes in approximately 60 wells constructed near the 3 underground coal gasification (UCG) experiments carried out at our Hoe Creek site in northeastern Wyoming. A broad range of residual gasification products are introduced into the groundwater system as a result of the UCG process. These groundwater contaminants may be of environmental significance if they find their way, in sufficient concentrations, into surface waters or aquifers from which water is extracted for drinking or agricultural purposes. In seeking to identify effective control technologies or mitigation measures, we have found it important to investigate the mechanisms responsible for the formation and dispersal of the contaminants. For example, an important mechanism for the production of organic contaminants may be pyrolysis reactions along the surfaces of cracks through which hot product gases escape from the cavity during gasification. As gasification continues, these pyrolysis products will be distilled further out in the surrounding coal and deposited on the coal surfaces. Other mechanisms that are believed to be important are post-burn pyrolysis as a result of residual cavity heat and the liberation of minerals from the coal by the action of dissolved CO/sub 2/.

Wang, F.T.; Mead, S.W.; Stuermer, D.H.

1982-08-03T23:59:59.000Z

Note: This page contains sample records for the topic "area crane creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Results from the third LLL underground coal gasification experiment at Hoe Creek  

SciTech Connect (OSTI)

A major objective of the US Energy Program is the development of processes to produce clean fuels from coal. Underground coal gasification is one of the most promising of these processes. If successful, underground coal gasification (UCG) would quadruple the proven reserves of the US coal. Cost for products produced from UCG are projected to be 65 to 75% of those from conventional coal conversion. Finally, UCG appears to possess environmental advantages since no mining is involved and there are less solid wastes produced. In this paper we describe results from the Hoe Creek No. 3 underground coal gasification test. The experiment employed a drilled channel between process wells spaced 130' apart. The drilled channel was enlarged by reverse combustion prior to forward gasification. The first week of forward gasification was carried out using air injection, during which 250 tons of coal were consumed yielding an average dry product gas heating value of 114 Btu/scf. Following this phase, steam and oxygen were injected (generally a 50-50 mixture) for 47 days, during which 3945 tons of coal were consumed at an average rate of 84 tons of coal per day and an average dry gas heating value of 217 Btu/scf. The average gas composition during the steam-oxygen phase was 37% H/sub 2/, 5% CH/sub 4/, 11% CO, and 44% CO/sub 2/. Gas recovery was approximately 82% during the test, and the average thermochemical efficiency was near 65%.

Hill, R.W.; Thorsness, C.B.; Cena, R.J.; Aiman, W.R.; Stephens, D.R.

1980-05-20T23:59:59.000Z

342

Wildlife Management Areas (Florida)  

Broader source: Energy.gov [DOE]

Certain sites in Florida are designated as wildlife management areas, and construction and development is heavily restricted in these areas.

343

Geologic map of the South Sierra Wilderness and South Sierra Roadless area, southern Sierra Nevada, California  

SciTech Connect (OSTI)

The study area is underlain predominantly by granitoid rocks of the Sierra Nevada batholith. Metamorphic rocks are present in roof pendants mainly in the southwest corner of the study area and consist of quartz-biotite schist, phyllite, quartzite, marble, calc-silicate hornfels, and meta-dacite. Among the seven Triassic and (or) Jurassic plutons are three newly described units that consist of the gabbro of Deer Mountain, the tonalite of Falls Creek, and the quartz diorite of Round Mountain. The map shows one newly described unit that intrudes Triassic rocks: the granodiorite of Monache Creek which is a leucocratic, medium-grained, equi-granular, locally porphyritic biotite hornblende granodiorite. Among the seven Cretaceous plutons are two newly described units. The Cretaceous rocks are generally medium- to coarse-grained, potassium-feldspar porphyritic granite with biotite and minor hornblende; it includes abundant pods of alaskite. The granite of Haiwee Creek is similar but only locally potassium-feldspar porphyritic and with only minor hornblende. Major-element data plotted on Harker diagrams show the older rocks to be higher in iron and magnesium and lower in silica than the younger rocks. There are abundant local pods of alaskite throughout the study area that consist of medium- to coarse-grained, leucocratic granite, alkali-feldspar granite and associated aplite and pegmatite bodies occurring as small pods and highly leucocratic border phases of nearby plutons. Tertiary and Quaternary volcanic rock include the rhyolite of Monache Mountain and Quaternary surficial deposits: fan, stream-channel, colluvium, talus, meadow-filling, rock-glacier, and glacial-moraine deposits. Important structures include the Sierran front fault and a possible extensional feature along which Bacon (1978) suggests Monache Mountain erupted.

Diggles, M.F. (Geological Survey, Menlo Park, CA (United States)); Carter, K.E. (Los Alamos National Lab., Albuquerque, NM (United States))

1993-04-01T23:59:59.000Z

344

Geology of the Voca-North area, McCulloch County, Texas  

E-Print Network [OSTI]

-North area. Overlying the Riley Formation is the Wilberns Formation which is composed of the Welge Sandstone, Morgan Creek Limestone, Point Peak and San Saba members. The Ordov1cian System is represented by rocks of the Ellenburger Group. In the Voca... of the San Saba River in NcCulloch County' Texas ~ Dake and Bridge (1932), with the help of E. 0. Ulrich, studied the contact between the Wilberns and Ellen- burger formations in the eastern and western parts of the Llano region. They concluded...

Sealy, Brian Edmund

1963-01-01T23:59:59.000Z

345

The geology of North Fredonia area, McCulloch and San Saba Counties, Texas  

E-Print Network [OSTI]

for the degree of RASTER (g SCIEICK Au~st 1957 Rajor Subject ~ THE GM. OGY OF NORTH FREOONIA ARFJL, NcCUILOCH AND SAN SABA COUNTIES, TEXAS A Thesfs &unjust 1957 Approved as to style aad coateat hyi Cha1 rasa Coaal t tee Head of Departaeat of Geology aad... eastward for 4, S ni)es. The ares is 4. 5 wiles loag in a north-south direction, aad tbe southern boundary 1s oa east~st liae located about 3 wiles north of the town of Fredonis. Deer Creek skirts the casters border of the area sad tbe west boundary...

Mosteller, Stanley Alfred

1957-01-01T23:59:59.000Z

346

Hydrostratigraphy of the General Separations Area, Savannah River Site (SRS), South Carolina  

SciTech Connect (OSTI)

Detailed analysis and synthesis of geophysical, core, and hydrologic data from 230 wells were used to delineate the hydrostratigraphy and aquifer characteristics of the General Separations Area at SRS. The study area is hydrologically bounded on the north and northwest by Upper Three Runs Creek (UTRC) and on the south by Fourmile Branch (FB). The Cretaceous-Tertiary sedimentary sequence underlying the study area is divided into two Aquifer Systems; in ascending order, Aquifer Systems I and 11. The study concentrated on Aquifer System U, which includes all the Tertiary sediments above the Black Mingo Group (Paleocene) to the water table. This report includes a series of lithostratigraphic cross-sections, piezometric gradient profiles, head ratio contour maps, aquifer isopach maps, and potentiometric surface maps which illustrate the aquifer characteristics of the study area.

Aadland, R.K.; Harris, M.K.; Lewis, C.M.; Gaughan, T.F. (Westinghouse Savannah River Co., Aiken, SC (United States)); Westbrook, T.M. (Dames and Moore, Atlanta, GA (United States))

1991-01-01T23:59:59.000Z

347

Hart Crane's attitude toward technology  

E-Print Network [OSTI]

T~tGB & 8 LZ'll3 Zlh 'HL'fQ AB UZI sIA&J "'' 'j "~l. &d 7 '* , - . ;-, , =:; '. ::. ";, : ~gb&egii' M":Vie. , i"xi~ gate, :-~Jv~@i-'. ~f'. ihe, ", ;:?;"', ' T~'i. , :, " jhow, L'u'~. 'iei~ t 6p . &'::. " : "-wd~kgl";~ilfilk'im%~ yE. the... j, '~QQL+~ s' I" I i ($1'Iti l 2: $ -I tM) s' 3s 2 I. iossi '@Nb ', 1 ?2" CS JC' Eg)SQ" S . PQBS& low "7 s sl ~ z!s tEI in such "n scceptzchch and thct this less oz faith results in zI Jisinte zeta' poaKI. AccorJirv to zE)ese critics, uznno 1...

Abbott, Craig Stephens

1966-01-01T23:59:59.000Z

348

Stratigraphic variations and secondary porosity within the Maynardville Limestone in Bear Creek Valley, Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

To evaluate groundwater and surface water contamination and migration near the Oak Ridge Y-12 plant, a Comprehensive Groundwater Monitoring Plan was developed. As part of the Maynardville exit pathways monitoring program, monitoring well clusters were ii installed perpendicular to the strike of the Maynardville Limestone, that underlies the southern part of the Y-12 Plant and Bear Creek Valley (BCV). The Maynardville Project is designed to locate potential exit pathways of groundwater, study geochemical characteristics and factors affecting the occurrence and distribution of water-bearing intervals, and provide hydrogeologic information to be used to reduce the potential impacts of contaminants entering the Maynardville Limestone.

Goldstrand, P.M. [Univ. of Nevada, Reno, NV (United States)

1995-05-01T23:59:59.000Z

349

Archaeological investigations at the Kent Creek site (41HL66): evidence of Mogollon influence on the Southern Plains  

E-Print Network [OSTI]

panhandle and a number of other sites in the Panhandle Plains region allows for a redefinition of the Palo Duro complex and for its reassignment as a phase. The investigations at the Kent Creek site have revealed the remains of two functionally distinct... thanks goes to the members of the Panhandle Archaeological Society (PAS) who participated in the excavations at the site. Several of the PAS members gave up their weekends to help with the excavations and without their efforts the work could not have...

Cruse, Jimmy Brett

1989-01-01T23:59:59.000Z

350

Effects of Alder Mine on the Water, Sediments, and Benthic Macroinvertebrates of Alder Creek, 1998 Annual Report.  

SciTech Connect (OSTI)

The Alder Mine, an abandoned gold, silver, copper, and zinc mine in Okanogan County, Washington, produces heavy metal-laden effluent that affects the quality of water in a tributary of the Methow River. The annual mass loading of heavy metals from two audits at the Alder Mine was estimated to exceed 11,000 kg per year. In this study, water samples from stations along Alder Creek were assayed for heavy metals by ICP-AES and were found to exceed Washington State's acute freshwater criteria for cadmium (Cd), copper (Cu), selenium (Se), and zinc (Zn).

Peplow, Dan

1999-05-28T23:59:59.000Z

351

Characterization of sediment movement in tidal creeks adjacent to the gulf intracoastal waterway at Aransas National Wildlife Refuge, Austwell, TX: study of natural factors and effects of barge-induced drawdown currents  

E-Print Network [OSTI]

, these are the rarest cranes in the world. The wetlands in which they winter are a part of the San Antonio Bay system, a bay that receives constant fresh water flow from the Guadalupe River. Currently there is a plan for using water diverted from the Guadalupe River...

Allison, John Bryan

2005-08-29T23:59:59.000Z

352

Second report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River  

SciTech Connect (OSTI)

As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the second of a series of annual reports, described the results of BMAP studies conducted in 1987.

Loar, J.M. [ed.] [ed.; Adams, S.M.; Bailey, R.D.; Blaylock, B.G.; Boston, H.L.; Cox, D.K.; Huston, M.A.; Kimmel, B.L.; Loar, J.M.; Olsen, C.R.; Ryon, M.G.; Shugart, L.R.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Walton, B.T.; Talmage, S.S.; Murphy, J.B.; Valentine, C.K. [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States); Appellanis, S.M.; Jimenez, B.D. [Puerto Rico Univ., San Juan (Puerto Rico)] [Puerto Rico Univ., San Juan (Puerto Rico); Huq, M.V. [Connecticut Dept. of Environmental Protection, Hamden, CT (United States)] [Connecticut Dept. of Environmental Protection, Hamden, CT (United States); Meyers-Schone, L.J. [Frankfurter, Gross-Gerau (Germany)] [Frankfurter, Gross-Gerau (Germany); Mohrbacher, D.A. [Automated Sciences Group, Inc., Oak Ridge, TN (United States)] [Automated Sciences Group, Inc., Oak Ridge, TN (United States); Olsen, C.R. [USDOE Office of Energy Research, Washington, DC (United States). Environmental Sciences Div.] [USDOE Office of Energy Research, Washington, DC (United States). Environmental Sciences Div.; Stout, J.G. [Cincinnati Univ., OH (United States)] [Cincinnati Univ., OH (United States)

1992-12-01T23:59:59.000Z

353

Hydrologically Sensitive Areas: Variable Source Area Hydrology  

E-Print Network [OSTI]

Hydrologically Sensitive Areas: Variable Source Area Hydrology Implications for Water Quality Risk hydrology was developed and applied to the New York City (NYC) water supply watersheds. According and are therefore hydrologically sensitive with respect to their potential to transport contaminants to perennial

Walter, M.Todd

354

Advanced stimulation technology deployment program, Williston Basin Interstate Pipeline Company, Eagle Gas Sands, Cedar Creek Anticline, Southeastern Montana. Topical report, August-December 1996  

SciTech Connect (OSTI)

In 1996, Williston Basin Interstate Pipeline Company (WBI) implemented an AST pilot program to improve production from wells completed in the Eagle formation along the Cedar Creek Anticline in southeastern Montana. Extensive pre- and post-fracture Absolute Open Flow Testing was used to evaluate the benefits of stimulation. Additional, gas production doubled when compared to direct offsets completed in previous years. This report summarizes the documentation of AST methodologies applied by WBI to an infill drilling program in the Eagle formation along the Cedar Creek Anticline.

Green, T.W.; Zander, D.M.; Bessler, M.R.

1997-02-01T23:59:59.000Z

355

AREA COORDINATOR RESIDENTIAL EDUCATION  

E-Print Network [OSTI]

AREA COORDINATOR RESIDENTIAL EDUCATION VANDERBILT UNIVERSITY, NASHVILLE, TENNESSEE The Office of Housing and Residential Education at Vanderbilt University is seeking applicants for an Area Coordinator. The Area Coordinator is responsible for assisting in the management and operation of a residential area

Bordenstein, Seth

356

Water information bulletin No. 30 geothermal investigations in Idaho  

SciTech Connect (OSTI)

There are 899 thermal water occurrences known in Idaho, including 258 springs and 641 wells having temperatures ranging from 20 to 93/sup 0/C. Fifty-one cities or towns in Idaho containing 30% of the state's population are within 5 km of known geothermal springs or wells. These include several of Idaho's major cities such as Lewiston, Caldwell, Nampa, Boise, Twin Falls, Pocatello, and Idaho Falls. Fourteen sites appear to have subsurface temperatures of 140/sup 0/C or higher according to the several chemical geothermometers applied to thermal water discharges. These include Weiser, Big Creek, White Licks, Vulcan, Roystone, Bonneville, Crane Creek, Cove Creek, Indian Creek, and Deer Creek hot springs, and Raft River, Preston, and Magic Reservoir areas. These sites could be industrial sites, but several are in remote areas away from major transportation and, therefore, would probably be best utilized for electrical power generation using the binary cycle or Magma Max process. Present uses range from space heating to power generation. Six areas are known where commercial greenhouse operations are conducted for growing cut and potted flowers and vegetables. Space heating is substantial in only two places (Boise and Ketchum) although numerous individuals scattered throughout the state make use of thermal water for space heating and private swimming facilities. There are 22 operating resorts using thermal water and two commercial warm-water fish-rearing operations.

Mitchell, J.C.; Johnson, L.L.; Anderson, J.E.; Spencer, S.G.; Sullivan, J.F.

1980-06-01T23:59:59.000Z

357

Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 1: Main text  

SciTech Connect (OSTI)

This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the US Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

NONE

1996-06-01T23:59:59.000Z

358

Fisheries Enhancement on the Coeur d'Alene Indian Reservation; Hangman Creek, Annual Report 2001-2002.  

SciTech Connect (OSTI)

Historically, Hangman Creek produced Chinook salmon (Oncorhynchus tshawytscha) and Steelhead trout (Oncorhynchus mykiss) for the Upper Columbia Basin Tribes. One weir, located at the mouth of Hangman Creek was reported to catch 1,000 salmon a day for a period of 30 days a year (Scholz et al. 1985). The current town of Tekoa, Washington, near the state border with Idaho, was the location of one of the principle anadromous fisheries for the Coeur d'Alene Tribe (Scholz et al. 1985). The construction, in 1909, of Little Falls Dam, which was not equipped with a fish passage system, blocked anadromous fish access to the Hangman Watershed. The fisheries were further removed with the construction of Chief Joseph and Grand Coulee Dams. As a result, the Coeur d'Alene Indian Tribe was forced to rely more heavily on native fish stocks such as Redband trout (Oncorhynchus mykiss gairdneri), Westslope Cutthroat trout (O. clarki lewisii), Bull trout (Salvelinus confluentus) and other terrestrial wildlife. Historically, Redband and Cutthroat trout comprised a great deal of the Coeur d'Alene Tribe's diet (Power 1997).

Peters, Ronald; Kinkead, Bruce; Stanger, Mark

2003-07-01T23:59:59.000Z

359

Contamination source review for Building E3162, Edgewood Area, Aberdeen Proving Ground, Maryland  

SciTech Connect (OSTI)

This report was prepared by Argonne National Laboratory (ANL) to document the results of a contamination source review for Building E3162 at the Aberdeen Proving Ground (APG) in Maryland. The report may be used to assist the US Army in planning for the future use or disposition of this building. The review included a historical records search, physical inspection, photographic documentation, geophysical investigation, and collection of air samples. The field investigations were performed by ANL during 1994 and 1995. Building E3162 (APG designation) is part of the Medical Research Laboratories Building E3160 Complex. This research laboratory complex is located west of Kings Creek, east of the airfield and Ricketts Point Road, and south of Kings Creek Road in the Edgewood Area of APG. The original structures in the E3160 Complex were constructed during World War 2. The complex was originally used as a medical research laboratory. Much of the research involved wound assessment involving chemical warfare agents. Building E3162 was used as a holding and study area for animals involved in non-agent burns. The building was constructed in 1952, placed on inactive status in 1983, and remains unoccupied. Analytical results from these air samples revealed no distinguishable difference in hydrocarbon and chlorinated solvent levels between the two background samples and the sample taken inside Building E3162.

Miller, G.A.; Draugelis, A.K.; Rueda, J.; Zimmerman, R.E.

1995-09-01T23:59:59.000Z

360

Blue Creek WMA 895 acres Cottonwood WMA 1,640 acres  

E-Print Network [OSTI]

% to 1.5% of the project area). #12;High road densities: Currently WMA's have >5 miles per mi2; goal Noxious & invasive weeds: Past management has resulted in significant infestations on the project area per acre. Project funding for FY2010-2012 will be $51 per acre. #12;Manage, Administer, & Coordinate

Note: This page contains sample records for the topic "area crane creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Twenty-Plus Years of Environmental Change and Ecological Recovery of East Fork Poplar Creek: Background and Trends in Water Quality  

SciTech Connect (OSTI)

In May 1985, a National Pollutant Discharge Elimination System permit was issued for the Department of Energy's Y-12 National Security Complex (Y-12 Complex) in Oak Ridge, Tennessee, USA, allowing discharge of effluents to East Fork Poplar Creek (EFPC). The effluents ranged from large volumes of chlorinated once-through cooling water and cooling tower blow-down to smaller discharges of treated and untreated process wastewaters, which contained a mixture of heavy metals, organics, and nutrients, especially nitrates. As a condition of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed to meet two major objectives: demonstrate that the established effluent limitations were protecting the classified uses of EFPC, and document the ecological effects resulting from implementing a Water Pollution Control Program at the Y-12 Complex. The second objective is the primary focus of the other papers in this special series. This paper provides a history of pollution and the remedial actions that were implemented; describes the geographic setting of the study area; and characterizes the physicochemical attributes of the sampling sites, including changes in stream flow and temperature that occurred during implementation of the BMAP. Most of the actions taken under the Water Pollution Control Program were completed between 1986 and 1998, with as many as four years elapsing between some of the most significant actions. The Water Pollution Control Program included constructing nine new wastewater treatment facilities and implementation of several other pollution-reducing measures, such as a best management practices plan; area-source pollution control management; and various spill-prevention projects. Many of the major actions had readily discernable effects on the chemical and physical conditions of EFPC. As controls on effluents entering the stream were implemented, pollutant concentrations generally declined and, at least initially, the volume of water discharged from the Y-12 Complex declined. This reduction in discharge was of ecological concern and led to implementation of a flow management program for EFPC. Implementing flow management, in turn, led to substantial changes in chemical and physical conditions of the stream: stream discharge nearly doubled and stream temperatures decreased, becoming more similar to those in reference streams. While water quality clearly improved, meeting water quality standards alone does not guarantee protection of a waterbody's biological integrity. Results from studies on the ecological changes stemming from pollution-reduction actions, such as those presented in this series, also are needed to understand how best to restore or protect biological integrity and enhance ecological recovery in stream ecosystems. With a better knowledge of the ecological consequences of their decisions, environmental managers can better evaluate alternative actions and more accurately predict their effects.

Smith, John G [ORNL; Stewart, Arthur J [ORNL; Loar, James M [ORNL

2011-01-01T23:59:59.000Z

362

Class 1 overview of cultural resources for the Western Area Power Administration Salt Lake City Area Integrated Projects electric power marketing environmental impact statement  

SciTech Connect (OSTI)

Argonne National Laboratory conducted an inventory of known archaeological and historic sites in areas that could be affected by the hydropower operation alternatives under analysis in the power marketing environmental impact statement for the Western Area Power Administration`s Salt Lake City Area Integrated Projects. The study areas included portions of the Green River (Flaming Gorge Dam to Cub Creek) in Utah and Colorado and the Gunnison River (Blue Mesa Reservoir to Crystal Dam) in Colorado. All previous archaeological surveys and previously recorded prehistoric and historic sites, structures, and features were inventoried and plotted on maps (only survey area maps are included in this report). The surveys were classified by their level of intensity, and the sites were classified according to their age, type, and contents. These data (presented here in tabular form) permit a general assessment of the character and distribution of archaeological remains in the study areas, as well as an indication of the sampling basis for such an assessment. To provide an adequate context for the descriptions of the archaeological and historic sites, this report also presents overviews of the environmental setting and the regional prehistory, history, and ethnography for each study area.

Moeller, K.L.; Malinowski, L.M.; Hoffecker, J.F.; Walitschek, D.A.; Shogren, L.; Mathews, J.E.; Verhaaren, B.T.

1993-11-01T23:59:59.000Z

363

Geology of the Homer Martin Ranch Area, Mason County, Texas  

E-Print Network [OSTI]

Sandstone Nember. ~. . . ~ Cap Mountain Limestone Member ~. . . . ~ ~ ~ ~ Lion Mountain Sandstone Member. . . ~ ~ ~ . , ~ e ~ 36 WQberns Formation ~ 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 45 Welge Sandstone Member. Morgan Creek L1mestone Member... membered' the Hickory sandstone member, the Cap Mountain limestone member, and the Lion Nountain sandstone member. The Wilberns formation consists of four members: the Welge sandstone member, the Morgan Creek limestone member, the Point Peak shale...

Pool, Alexander Stuart

1960-01-01T23:59:59.000Z

364

Geothermal br Resource br Area Geothermal br Resource br Area...  

Open Energy Info (EERE)

Basalt K Eburru Geothermal Area Eburru Geothermal Area East African Rift System Kenya Rift Basalt Fukushima Geothermal Area Fukushima Geothermal Area Northeast Honshu Arc...

365

Pinole Creek Watershed Sediment Source Assessment: A sediment budget approach highlighting watershed-scale sediment-related processes and supply to the Bay  

E-Print Network [OSTI]

Pinole Creek Watershed Sediment Source Assessment: A sediment budget approach highlighting watershed-scale sediment-related processes and supply to the Bay Pearce,S.1 ,McKee,L.1 ,Arnold,C.2 ,and,landowners,stakeholders,agencies and regula- tors are facing many watershed-scale sediment-related issues such as erosion,degraded water

366

Final report from VFL Technologies for the pilot-scale thermal treatment of Lower East Fork Poplar Creek floodplain soils. LEFPC Appendices, Volume 3, Appendix V-B  

SciTech Connect (OSTI)

This report consists of appendix V-B which contains the final verification run data package. Validation of analytical data is presented for Ecotek LSI. Analytical results are included of both soil and creek bed samples for the following contaminants: metals; metals (TCLP); uranium; gross alpha/beta; and polychlorinated biphenyls.

NONE

1994-09-01T23:59:59.000Z

367

Modeling the effects of low flow augmentation by discharge from a wastewater treatment plant on dissolved oxygen concentration in Leon Creek, San Antonio, Texas  

E-Print Network [OSTI]

A GIS-based hydrological/water quality model called Non Point Source Model (NPSM) was used to simulate various physical, chemical and biological processes taking place in the Leon Creek Watershed, near San Antonio, Texas. The model was then used...

Gholkar, Tejal A

2000-01-01T23:59:59.000Z

368

Modeling the Effects of Low Flow Augmentation by Discharge from a Wastewater Treatment Plant on Dissolved Oxygen Concentration in Leon Creek, San Antonio, Texas.  

E-Print Network [OSTI]

A GIS-based hydrological/water quality model called Non Point Source Model (NPSM) was used to simulate various physical, chemical and biological processes taking place in the Leon Creek Watershed, near San Antonio, Texas. The model was then used...

Matlock, Dr. Marty D.; Hann, Dr. Roy W. Jr.; Gholkar, Tejal A.

369

METROPOLITAN STATISTICAL AREA  

E-Print Network [OSTI]

METROPOLITAN STATISTICAL AREA OUTLOOK MORGANTOWN COLLEGE OF BUSINESS AND ECONOMICS Bureau to be repeated over the next five years. The Morgantown Metropolitan Statistical Area (MSA) had an average annual

Mohaghegh, Shahab

370

Wetland Preservation Areas (Minnesota)  

Broader source: Energy.gov [DOE]

A wetland owner can apply to the host county for designation of a wetland preservation area. Once designated, the area remains designated until the owner initiates expiration, except where a state...

371

Wildlife Management Areas (Maryland)  

Broader source: Energy.gov [DOE]

Wildlife Management Areas exist in the State of Maryland as wildlife sanctuaries, and vehicles, tree removal, and construction are severely restricted in these areas. Some of these species are also...

372

Protected Areas Stacy Philpott  

E-Print Network [OSTI]

Convention of Biological Diversity, 1992 #12;IUCN Protected Area Management Categories Ia. Strict Nature. Protected Landscape/ Seascape VI. Managed Resource Protected Area #12;Ia. Strict Nature Preserves and Ib. Wilderness Areas Natural preservation Research No No #12;II. National Parks Ecosystem protection

Gottgens, Hans

373

RADIONUCLIDE INVENTORY AND DISTRIBUTION: FOURMILE BRANCH, PEN BRANCH, AND STEEL CREEK IOUS  

SciTech Connect (OSTI)

As a condition to the Department of Energy (DOE) Low Level Waste Disposal Federal Facility Review Group (LFRG) review team approving the Savannah River Site (SRS) Composite Analysis (CA), SRS agreed to follow up on a secondary issue, which consisted of the consolidation of several observations that the team concluded, when evaluated collectively, could potentially impact the integration of the CA results. This report addresses secondary issue observations 4 and 21, which identify the need to improve the CA sensitivity and uncertainty analysis specifically by improving the CA inventory and the estimate of its uncertainty. The purpose of the work described herein was to be responsive to these secondary issue observations by re-examining the radionuclide inventories of the Integrator Operable Units (IOUs), as documented in ERD 2001 and Hiergesell, et. al. 2008. The LFRG concern has been partially addressed already for the Lower Three Runs (LTR) IOU (Hiergesell and Phifer, 2012). The work described in this investigation is a continuation of the effort to address the LFRG concerns by re-examining the radionuclide inventories associated with Fourmile Branch (FMB) IOU, Pen Branch (PB) IOU and Steel Creek (SC) IOU. The overall approach to computing radionuclide inventories for each of the IOUs involved the following components: Defining contaminated reaches of sediments along the IOU waterways Identifying separate segments within each IOU waterway to evaluate individually Computing the volume and mass of contaminated soil associated with each segment, or compartment Obtaining the available and appropriate Sediment and Sediment/Soil analytical results associated with each IOU Standardizing all radionuclide activity by decay-correcting all sample analytical results from sample date to the current point in time, Computing representative concentrations for all radionuclides associated with each compartment in each of the IOUs Computing the radionuclide inventory of each DOE-added radionuclide for the compartments of each IOU by applying the representative, central value concentration to the mass of contaminated soil Totaling the inventory for all compartments associated with each of the IOUs Using this approach the 2013 radionuclide inventories for each sub-compartment associated with each of the three IOUs were computed, by radionuclide. The inventories from all IOU compartments were then rolled-up into a total inventory for each IOU. To put the computed estimate of radionuclide activities within FMB, PB, and SC IOUs into context, attention was drawn to Cs-137, which was the radionuclide with the largest contributor to the calculated dose to a member of the public at the perimeter of SRS within the 2010 SRS CA (SRNL 2010). The total Cs-137 activity in each of the IOUs was calculated to be 9.13, 1.5, and 17.4 Ci for FMB, PB, and SC IOUs, respectively. Another objective of this investigation was to address the degree of uncertainty associated with the estimated residual radionuclide activity that is calculated for the FMB, PB, and SC IOUs. Two primary contributing factors to overall uncertainty of inventory estimates were identified and evaluated. The first related to the computation of the mass of contaminated material in a particular IOU compartment and the second to the uncertainty associated with analytical counting errors. The error ranges for the mass of contaminated material in each IOU compartment were all calculated to be approximately +/- 9.6%, or a nominal +/-10%. This nominal value was added to the uncertainty associated with the analytical counting errors that were associated with each radionuclide, individually. This total uncertainty was then used to calculate a maximum and minimum estimated radionuclide inventories for each IOU.

Hiergesell, R.; Phifer, M.

2014-04-29T23:59:59.000Z

374

Kraut Creek: A summary of results from a scientific study during the Summer of 2006.  

E-Print Network [OSTI]

and wetland areas. · "Daylight" the stream where possible. · More pervious surfaces, green roofs, rainfall are highly erosive to exposed soils such as stream banks, in many cases, the final solution is to divert

Thaxton, Christopher S.

375

Hoe Creek No. 3 - First long-term underground coal gasification experiment with oxygen-steam injection  

SciTech Connect (OSTI)

The paper describes the first long-term underground coal gasification experiment with oxygen-steam injection. In the Hoe Creek No. 3 underground experiment, linkage paths were established between the injection and production wells by drilling a horizontal borehole between them near the bottom of the coal seam. The drilled linkage hole was enlarged by reverse burning, and then the forward gasification process was started - first with air injection for one week, then with oxygen-steam injection for the remainder of the experiment. During the oxygen-steam injection period, about 3900 tons of coal were gasified in 47 days, at an average rate of 83 tons per day. The heating value of the dry product gas averaged 218 Btu/scf, suitable for input to a processing plant for upgrading to pipeline quality, which is about 900 Btu/scf.

Not Available

1980-05-01T23:59:59.000Z

376

Laboratory studies on evaluation of in situ biodegradation at the Hoe Creek UCG (underground coal gasification) site  

SciTech Connect (OSTI)

Laboratory experiments were conducted to evaluate the potential for in situ biodegradation in the contaminated groundwater aquifer at the Hoe Creek underground coal gasification site. Experiments were performed in electrolytic respirometric cells under simulated environmental conditions. An orthogonal, fractional factorial design was used to evaluate the effects of the following factors on phenol degradation: nutrient dose, amount of bacterial inoculum, temperature, light conditions, and substrate concentration. Microorganisms native to the environment were used as the inoculum, and phosphorus was used as the nutrient. The amount of inoculum introduced and the nutrient dose were found to have a positive effect on phenol degradation. Temperature changes from 15{degree}C (59{degree}F) to 25{degree}C (77{degree}F) had no significant effect. The light conditions (fluorescent or dark) also had no significant effect on phenol degradation. Higher concentrations of substrate required increased amounts of oxygen for biodegradation. 24 refs., 1 fig., 4 tabs.

Nolan, B.T.; Suthersan, S.

1987-09-01T23:59:59.000Z

377

Remedial Investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

To effectively evaluate the cumulative impact of releases from multiple sources of contamination, a structured approach has been adopted for Oak Ridge Reservation (ORR) based on studies of the groundwater and surface water separate from studies of the sources. Based on the realization of the complexity of the hydrogeologic regime of the ORR, together with the fact that there are numerous sources contributing to groundwater contamination within a geographical area, it was agreed that more timely investigations, at perhaps less cost, could be achieved by separating the sources of contamination from the groundwater and surface water for investigation and remediation. The result will be more immediate attention [Records of Decision (RODS) for interim measures or removal actions] for the source Operable Units (OUs) while longer-term remediation investigations continue for the hydrogeologic regime`s, which are labeled as integrator OUs. This Remedial Investigation work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to the unit. Taking advantage of the historical data base and ongoing monitoring activities and applying the observational approach to focus data gathering activities will allow the Feasibility Study to evaluate all probable or likely alternatives.

Not Available

1993-09-01T23:59:59.000Z

378

Remedial investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

To effectively evaluate the cumulative impact of releases from multiple sources of contamination, a structured approach has been adopted for Oak Ridge Reservation (ORR) based on studies of the groundwater and surface water separate from studies of the sources. Based on the realization of the complexity of the hydrogeologic regime of the ORR, together with the fact that there are numerous sources contributing to groundwater contamination within a geographical area, it was agreed that more timely investigations, at perhaps less cost, could be achieved by separating the sources of contamination from the groundwater and surface water for investigation and remediation. The result will be more immediate attention [Records of Decision (RODs) for interim measures or removal actions] for the source Operable Units (OUs) while longer-term remediation investigations continue for the hydrogeologic regimes, which are labeled as integrator OUs. This remedial investigation work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to the unit. Taking advantage of the historical data base and ongoing monitoring activities and applying the observational approach to focus data gathering activities will allow the feasibility study to evaluate all probable or likely alternatives.

Not Available

1993-07-01T23:59:59.000Z

379

Assessing environmental risk of the retired filter bed area, Battelle West Jefferson  

SciTech Connect (OSTI)

Initial investigations conducted by the U.S. Department of Energy, Chicago Operations Office, and by Argonne National Laboratory used seismic refraction profiling, electrical resistivity depth sounding, conductivity profiling, magnetic gradiometry, and ground-penetrating radar to study environmental geophysics in the area of the Battelle West Jefferson site`s radiologically contaminated retired filter beds. The investigators used a combination of nonintrusive technologies and innovative drilling techniques to assess environmental risk at the filter beds and to improve understanding of the geology of the Big Darby Creek floodplain. The geophysical investigation, which showed that the preferred groundwater pathway is associated with a laterally extensive deposit of silty sand to sand that is less than 12 ft deep in the floodplain area, also guided the location of cone penetrometer test sites and piezometer installation. Cone penetrometer testing was useful for comparing continuous logging data with surface geophysical data in establishing correlations among unconsolidated materials.

Miller, S.F.; Thompson, M.D.; Glennon, M.A. [and others

1997-04-01T23:59:59.000Z

380

Remedial investigation/feasibility study for the Clinch River/Poplar Creek operable unit. Volume 1. Main text  

SciTech Connect (OSTI)

This is the combined Remedial Investigation/Feasibility Study Report for the Clinch River/Poplar Crack (CR/PC) Operable Unit (OU). The CR/PC OU is located in Anderson and Roane Counties, Tennessee and consists of the Clinch River and several of its embayments in Melton Hill and Watts Bar Reservoirs. These waters have received hazardous substances released over a period of 50 years from the US Department of Energy`s Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act. A remedial investigation has been conducted to determine the current nature and extent of any contamination and to assess the resulting risk to human health and the environment. The feasibility study evaluates remedial action alternatives to identify any that are feasible for implementation and that would effectively reduce risk. Historical studies had indicated that current problems would likely include {sup 137}Cs in sediment of the Clinch River, mercury in sediment and fish of Poplar Creek and PCBs and pesticides in fish from throughout the OU. Peak releases of mercury and {sup 137}Cs occurred over 35 years ago, and current releases are low. Past releases of PCBs from the ORR are poorly quantified, and current releases are difficult to quantify because levels are so low. The site characterization focused on contaminants in surface water, sediment, and biota. Contaminants in surface water were all found to be below Ambient Water Quality Criteria. Other findings included the following: elevated metals including cesium 137 and mercury in McCoy Branch sediments; PCBs and chlordane elevated in several fish species, presenting the only major human health risk, significant ecological risks in Poplar Creek but not in the Clinch River.

NONE

1995-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "area crane creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Verification of geological/engineering model in waterflood areas  

SciTech Connect (OSTI)

The construction of a detailed geological/engineering model is the basis for development of the methodology for characterizing reservoir heterogeneity. The NIPER geological/engineering model is the subject of this report. The area selected for geological and production performance studies is a four-section area within the Powder River Basin which includes the Tertiary Incentive Project (TIP) pilot. Log, well test, production, and core data were acquired for construction of the geological model of a barrier island reservoir. In this investigation, emphasis was on the synthesis and quantification of the abundant geological information acquired from the literature and field studies (subsurface and outcrop) by mapping the geological heterogeneities that influence fluid flow. The geological model was verified by comparing it with the exceptionally complete production data available for Bell Creek field. This integration of new and existing information from various geological, geophysical, and engineering disciplines has enabled better definition of the heterogeneities that influence production during different recovery operations. 16 refs., 26 figs., 6 tabs.

Sharma, B.; Szpakiewicz, M.; Honarpour, M.; Schatzinger, R.A.; Tillman, R.

1988-12-01T23:59:59.000Z

382

Contamination source review for Building E3180, Edgewood Area, Aberdeen Proving Ground, Maryland  

SciTech Connect (OSTI)

This report was prepared by Argonne National Laboratory (ANL) to document the results of a contamination source review of Building E3180 at the Aberdeen Proving Ground (APG) in Maryland. The report may be used to assist the US Army in planning for the future use or disposition of this building. The review included a historical records search, physical inspection, photographic documentation, geophysical investigation, collection of air samples, and review of available records regarding underground storage tanks associated with Building E3180. The field investigations were performed by ANL during 1994. Building,E3180 (current APG designation) is located near the eastern end of Kings Creek Road, north of Kings Creek, and about 0.5 miles east of the airstrip within APG`s Edgewood Area. The building was constructed in 1944 as a facsimile of a Japanese pillbox and used for the development of flame weapons systems until 1957 (EAI Corporation 1989). The building was not used from 1957 until 1965, when it was converted and used as a flame and incendiary laboratory. During the 1970s, the building was converted to a machine (metal) shop and used for that purpose until 1988.

Zellmer, S.D.; Smits, M.P.; Rueda, J.; Zimmerman, R.E.

1995-09-01T23:59:59.000Z

383

Contamination source review for Building E3163, Edgewood Area, Aberdeen Proving Ground, Maryland  

SciTech Connect (OSTI)

This report was prepared by Argonne National Laboratory (ANL) to document the results of a contamination source review for Building E3163 at the Aberdeen Proving Ground (APG) in Maryland. This report may be used to assist the US Army in planning for the future use or disposition of this building. The review included a historical records search, physical inspection, photographic documentation, and geophysical investigation. The field investigations were performed by ANL during 1994 and 1995. Building E3163 (APG designation) is part of the Medical Research Laboratories E3160 Complex. This research laboratory complex is located west of Kings Creek, east of the airfield and Ricketts Point Road, and south of Kings Creek Road in the Edgewood Area of APG. The original structures in the E3160 Complex were constructed during World War II. The complex was originally used as a medical research laboratory. Much of the research involved wound assessment. Building E3163, constructed in 1946, was used for toxicological studies on animals until 1965. All agent testing was done using laboratory-scale quantities of agents. All operational data were destroyed; total quantities and types of agents used during the testing are unknown. No experimentation has been conducted in the building since 1965. However, the building was used as overflow office space until the late 1980s. Since that time, the building has been unoccupied.

Draugelis, A.K.; Muir-Ploense, K.L.; Glennon, M.A.; Zimmerman, R.E.

1995-09-01T23:59:59.000Z

384

AREA 5 RWMS CLOSURE  

National Nuclear Security Administration (NNSA)

TRU material in the trench because there is no groundwater pathway under foreseeable climate conditions. The Area 5 RWMS probabilistic PA model can be modified and used to...

385

Groundwater Management Areas (Texas)  

Broader source: Energy.gov [DOE]

This legislation authorizes the Texas Commission on Environmental Quality and the Texas Water Development Board to establish Groundwater Management Areas to provide for the conservation,...

386

Minthorn Springs Creek Summer Juvenile Release and Adult Collection Facility; 1992 Annual Report.  

SciTech Connect (OSTI)

The Confederated Tribes of the Umatilla Indian Reservation (CT'UIR) and Oregon Department of Fish and Wildlife (ODFW) are cooperating in a joint effort to supplement steelhead and re-establish salmon runs in the Umatilla River Basin. As an integral part of this program, Bonifer and Minthorn Acclimation Facilities are operated for holding and spawning adult steelhead and fall chinook salmon and acclimation and release of juvenile salmon and steelhead. Acclimation of 109,101 spring chinook salmon and 19,977 summer steelhead was completed at Bonifer in the spring of 1992. At Minthorn, 47,458 summer steelhead were acclimated and released. Control groups of spring chinook salmon were released instream concurrent with the acclimated releases to evaluate the effects of acclimation on adult returns to the Umatilla River. Acclimation studies with summer steelhead were not conducted in 1992. A total of 237 unmarked adult steelhead were collected for broodstock at Three Mile Dam from October 18, 1991 through April 24, 1992 and held at Minthorn. Utilizing a 3 x 3 spawning matrix, a total of 476,871 green eggs were taken from 86 females. The eggs were transferred to Umatilla Hatchery for incubation, rearing, and later release into the Umatilla River. A total of 211 fall chinook salmon were also collected for broodstock at Three Mile Dam and held at Minthorn. Using a 1:1 spawning ratio, a total of 195,637 green eggs were taken from 58 females. They were also transferred to Umatilla Hatchery for incubation, rearing, and later release into the Umatilla River. Personnel from the ODFW Eastern Oregon Fish Pathology Laboratory in La Grande took samples of tissues and reproductive fluids from Umatilla River summer steelhead and fall chinook salmon broodstock for monitoring and evaluation purposes. Cell culture assays for replicating agents, including IHNV virus, on all spawned fish were negative. One of 60 summer steelhead tested positive for EIBS virus, while all fall chinook tested we re negative for inclusions. One of 73 summer steelhead sampled for BKD had a high level of antigen, while all others had very low or negative antigen levels. All fall chinook tested had low or negative antigen levels. Regularly-scheduled maintenance of pumps, equipment and facilities was performed in 1992. The progress of outmigration for juvenile releases was monitored at the Westland Canal fish trapping facility by CTUIR and ODFW personnel. Coho and spring chinook yearlings were released in mid-March at Umatilla rivermile (RM) 56 and 60. The peak outmigration period past Westland (RM 27) was mid-April to early May, approximately four to seven weeks after release. Groups of summer steelhead were released from Minthorn (RM 63) and Bonifer (RM 81) in late March and into Meacham Creek near Bonifer in late April. The peak outmigration period past Westland for all groups appeared to be the first two to three weeks in May. Spring chinook yearlings released in mid-April from Bonifer and at Umatilla RM 89, migrated rapidly downriver and the peak outmigration period past Westland appeared to be within a week or two after release. Fall and spring chinook subyearlings released in mid-May at RM 42 and 60, respectively, also migrated rapidly downriver and the peak outmigration period was within days after release. Coded-wire tag recovery information was accessed to determine the contribution of Umatilla River releases to the ocean, Columbia River and Umatilla River fisheries. Total estimated summer steelhead survival have ranged from 0.03 to 0.61% for releases in which recovery information is complete. Coho survival rates have ranged from 0.15 to 4.14%, and spring chinook yearling survival rates from spring releases have ranged from 0.72 to 0.74%. Survival rates of fall chinook yearlings have ranged from 0.08 to 3.01%, while fall chinook subyearling survival rates have ranged from 0.25 to 0.87% for spring released groups.

Rowan, Gerald D.

1993-08-01T23:59:59.000Z

387

Pine Creek Lake Dam Safety Modification Study U.S. Army Corps of Engineers Response to  

E-Print Network [OSTI]

the area of potential hydraulic fracturing or embankment defects. This comment includes two recommendations that hydraulic fracturing has occurred and to define the zone of fracturing. The limits of the analysis should be sufficient to define the limits of any potential hydraulic fracturing and thereby #12;2 provide a basis

US Army Corps of Engineers

388

Evaluation Of Calendar Year 1997 Groundwater and surface Water Quality Data For the Bear Creek Hydrogeologic regime At The U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This report presents an evaluation of the groundwater and surface water monitoring data obtained in the Bear Creek Hydrogeologic Regime (Bear Creek Regime) during calendar year (CY) 1997. The monitoring data were obtained in compliance with the Resource Conservation and Recovery Act (RCRA) post-closure permit for the Bear Creek Regime and U.S. Department of Energy (DOE) Order 5400.1, and are reported ixx Calendar Year 1997 Annual Groundwater A40nitoringReport for the Bear Creek Hydrogeolo@"c Regime at the US. Department ofEnergy Y-12 Plant, Oak Ridge, Tennessee (AJA Technical Services, Inc. 1998a). This report provides an evaluation of the monitoring data with respect to historical results for each sampling location, the regime-wide extent of groundwater and surface water contamination, and long-term concentration trends for selected groundwater and surface water contaminants.

Jones, S.B.

1998-09-01T23:59:59.000Z

389

An Assessment of health risk associated with mercury in soil and sediment from East Fork Poplar Creek, Oak Ridge, Tennessee. Final report  

SciTech Connect (OSTI)

This report presents results from a study conducted to determine the toxicity of Mercury in soils sediments samples. Mice were fed via diet, soils and sediment, from various locations along the East Fork Poplar creek. Tissue distribution of pollutants was determined at various intervals. The tissue level relative to toxicity was used to determine the effect of a complex matrix on the gastrointestinal absorption and tissue distribution of the pollutants (other pollutants included cadmium and selenium).

Revis, N.; Holdsworth, G.; Bingham, G.; King, A.; Elmore, J.

1989-04-01T23:59:59.000Z

390

Proposed modifications to the RCRA post-closure permit for the Bear Creek Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This report presents proposed modifications to several conditions of the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit (PCP) for the Bear Creek Hydrogeologic Regime (BCHR). These permit conditions define the requirements for RCRA post-closure corrective action groundwater monitoring at the S-3 Ponds, the Oil Landfarm, and the Bear Creek Burial Grounds (units A, C-West, and Walk-in Pits). Modification of these PCP conditions is requested to: (1) clarify the planned integration of RCRA post-closure corrective action groundwater monitoring with the monitoring program to be established in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Record of Decision (ROD) for the Bear Creek Valley (BCV) Watershed, (2) revise several of the current technical requirements for groundwater monitoring based on implementation of the RCRA post-closure corrective action monitoring program during 1996, and (3) update applicable technical procedures with revised versions recently issued by the Y-12 Plant Groundwater Protection Program (GWPP). With these modifications, the Y-12 Plant will continue to meet the full intent of all regulatory obligations for post-closure care of these facilities. Section 2.0 provides the technical justification for each proposed permit modification. The proposed changes to permit language are provided in Section 3.0 (S-3 Ponds), Section 4.0 (Oil Landfarm), and Section 5.0 (Bear Creek Burial Grounds). Sections 6.0 and 7.0 reference updated and revised procedures for groundwater sampling, and monitoring well plugging and abandonment, respectively. Appendix A includes all proposed revisions to the PCP Attachments.

NONE

1997-05-01T23:59:59.000Z

391

Propane tank explosion (2 deaths, 7 injuries) at Herrig Brothers Feather Creek Farm, Albert City, Iowa, April 9, 1998. Investigation report  

SciTech Connect (OSTI)

This report explains the explosion/BLEVE that took place on April 9, 1998, at the Herrig Brothers Feather Creek Farm, located in Albert City, Iowa. Two volunteer fire fighters were killed and seven other emergency response personnel were injured. Safety issues covered in the report include protection of propane storage tanks and piping, state regulatory oversight of such installations, and fire fighter response to propane storage tank fires.

NONE

1999-09-01T23:59:59.000Z

392

Decontamination & decommissioning focus area  

SciTech Connect (OSTI)

In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

NONE

1996-08-01T23:59:59.000Z

393

Geographic Area Month  

U.S. Energy Information Administration (EIA) Indexed Site

Fuels by PAD District and State (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month No. 1 Distillate No. 2 Distillate a No. 4 Fuel b Sales to End Users Sales for...

394

Techniques and equipment used in contaminant detection at Hoe Creek underground coal gasification experimental site  

SciTech Connect (OSTI)

Data obtained from existing monitoring wells at an experimental coal gasification site indicated that local groundwater supplies were under risk from organic contaminants, particularly phenols. A more extensive monitoring system was installed. A drilling and open-hole sampling programme was devised to locate the edge of the contaminated area and indicate where additional monitoring wells were required. Geophysical logging was employed to determine the optimal position of gas-driven groundwater samplers/piezometers. The system successfully delineated the extent of the contaminant plume on 3 sides, but further work is required on the fourth side.

Davidson, S.C.

1984-01-01T23:59:59.000Z

395

Pollen from Laguna Verde, Blue Creek, Belize: Implications for Paleoecology, Paleoethnobotany, Agriculture, and Human Settlement  

E-Print Network [OSTI]

, and parts of the Mexican states of Chiapas and Tabasco (Coe 2005:11). In this area, there is a good fit between the Maya language and Mayan cultural elements (such as shared dietary staples, and the location of Mayan ruins; Coe 2005:11). Mayanist... lowlands? by preferring the term ?southern lowlands? to indicate all parts of the Maya Lowlands except northern Yucatan. The southern lowlands are thus considered to include Tabasco, the Lacand?n Forest of Chiapas, the Pet?n, and Belize. Definition...

Morse, Mckenzie

2010-10-12T23:59:59.000Z

396

300 Area Disturbance Report  

SciTech Connect (OSTI)

The objective of this study was to define areas of previous disturbance in the 300 Area of the U.S. Department of Energy (DOE) Hanford Site to eliminate these areas from the cultural resource review process, reduce cultural resource monitoring costs, and allow cultural resource specialists to focus on areas where subsurface disturbance is minimal or nonexistent. Research into available sources suggests that impacts from excavations have been significant wherever the following construction activities have occurred: building basements and pits, waste ponds, burial grounds, trenches, installation of subsurface pipelines, power poles, water hydrants, and well construction. Beyond the areas just mentioned, substrates in the' 300 Area consist of a complex, multidimen- sional mosaic composed of undisturbed stratigraphy, backfill, and disturbed sediments; Four Geographic Information System (GIS) maps were created to display known areas of disturbance in the 300 Area. These maps contain information gleaned from a variety of sources, but the primary sources include the Hanford GIS database system, engineer drawings, and historic maps. In addition to these maps, several assumptions can be made about areas of disturbance in the 300 Area as a result of this study: o o Buried pipelines are not always located where they are mapped. As a result, cultural resource monitors or specialists should not depend on maps depicting subsurface pipelines for accurate locations of previous disturbance. Temporary roads built in the early 1940s were placed on layers of sand and gravel 8 to 12 in. thick. Given this information, it is likely that substrates beneath these early roads are only minimally disturbed. Building foundations ranged from concrete slabs no more than 6 to 8 in. thick to deeply excavated pits and basements. Buildings constructed with slab foundations are more numerous than may be expected, and minimally disturbed substrates may be expected in these locations. Historic black and white photographs provide a partial record of some excavations, including trenches, building basements, and material lay-down yards. Estimates of excavation depth and width can be made, but these estimates are not accurate enough to pinpoint the exact location where the disturbedhmdisturbed interface is located (e.g., camera angles were such that depths and/or widths of excavations could not be accurately determined or estimated). In spite of these limitations, these photographs provide essential information. Aerial and historic low-level photographs have captured what appears to be backfill throughout much of the eastern portion of the 300 Area-near the Columbia River shoreline. This layer of fill has likely afforded some protection for the natural landscape buried beneath the fill. This assumption fits nicely with the intermittent and inadvertent discoveries of hearths and stone tools documented through the years in this part of the 300 Area. Conversely, leveling of sand dunes appears to be substantial in the northwestern portion of the 300 Area during the early stages of development. o Project files and engineer drawings do not contain information on any impromptu but necessary adjustments made on the ground during project implementation-after the design phase. Further, many projects are planned and mapped but never implemented-this information is also not often placed in project files. Specific recommendations for a 300 Area cultural resource monitoring strategy are contained in the final section of this document. In general, it is recommended that monitoring continue for all projects located within 400 m of the Columbia River. The 400-m zone is culturally sensitive and likely retains some of the most intact buried substrates in the 300 Area.

LL Hale; MK Wright; NA Cadoret

1999-01-07T23:59:59.000Z

397

Characterization and inventory of contaminants in WAG 2 floodplain soils of White Oak Creek  

SciTech Connect (OSTI)

A remedial investigation was conducted to determine the extent and type of contamination in the floodplain soils of Waste Area Grouping (WAG) 2, in conjunction with environmental restoration activities at the US Department of Energy (DOE) Oak Ridge Reservation (ORR). WAG 2 is located downstream from the main Oak Ridge National Laboratory (ORNL) plant area. As a result of past, present, and potential future releases of hazardous substances to the environment, the ORR was placed on the National Priorities List in December 1989. Sites on this list must be investigated to determine if remedial actions are possible. This report documents the findings of the remedial investigation of the WAG 2 floodplain soils by (1) presenting the characterization and inventory of contaminants, (2) comparing the walkover survey data to quantitative gamma-emitting radionuclide data, and (3) presenting an assessment of human health risk from exposure to these soils. Contaminant characterization results indicated that the primary contaminants in the WAG 2 floodplain are the gamma-emitting radionuclides {sup 137}Cs and {sup 60}Co, although cobalt activity levels are 1/25th or less than those of cesium. Inorganic contaminants discussed in this report were limited to those contributing significantly to human exposure: antimony, barium, chromium(IV), manganese, mercury, and nickel.

Ford, C.J.; Nyquist, J.E.; Purucker, S.T. [Oak Ridge National Lab., TN (United States); Burgoa, B.B. [CDM Federal Programs Corp., Oak Ridge, TN (United States); Winterfield, R.F. [STEP Environmental, Inc., Oak Ridge, TN (United States)

1997-01-01T23:59:59.000Z

398

Microsoft Word - Omak-Area-3G-CX.doc  

Broader source: Energy.gov (indexed) [DOE]

visual value. The new tower at Foster Creek RS is 60' tall and surrounded by similar transmission infrastructure and larger towers, and the EG building at Fox Mt is one of...

399

Final report for the pilot-scale thermal treatment of Lower East Fork Poplar Creek floodplain soils  

SciTech Connect (OSTI)

IT Corporation (IT) was contracted by Martin Marietta Energy Systems, Inc. (Energy Systems) to perform a pilot-scale demonstration of the effectiveness of thermal desorption as a remedial technology for removing mercury from the Lower East Fork Poplar Creek (LEFPC) floodplain soil. Previous laboratory studies by Energy Systems suggested that this technology could reduce mercury to very low levels. This pilot-scale demonstration study was initiated to verify on an engineering scale the performance of thermal desorption. This report includes the details of the demonstration study, including descriptions of experimental equipment and procedures, test conditions, sampling and analysis, quality assurance (QA), detailed test results, and an engineering assessment of a conceptual full-scale treatment facility. The specific project tasks addressed in this report were performed between October 1993 and June 1994. These tasks include soil receipt, preparation, and characterization; prepilot (bench-scale) desorption tests; front-end materials handling tests; pilot tests; back-end materials handling tests; residuals treatment; and engineering scale-up assessment.

NONE

1994-09-01T23:59:59.000Z

400

First report on the Oak Ridge Y-12 Plant Biological Monitoring and Abatement Program for East Fork Poplar Creek  

SciTech Connect (OSTI)

As stipulated in the National Pollutant Discharge Elimination System (NPDES) permit issued to the Oak Ridge Y-12 Plant on May 24, 1985, a Biological Monitoring and Abatement Program (BMAP) was developed for the receiving stream, East Fork Poplar Creek (EFPC). The objectives of the BMAP are (1) to demonstrate that the current effluent limitations established for the Oak Ridge Y-12 Plant protect the uses of EFPC (e.g., the growth and propagation of fish and aquatic life), as designated by the Tennessee Department of Environment and Conservation (TDEC) [formerly the Tennessee Department of Health and Environment (TDHE)], and (2) to document the ecological effects resulting from implementation of a water pollution control program that includes construction of several large wastewater treatment facilities. The BMAP consists of four major tasks: (1) ambient toxicity testing, (2) bioaccumulation studies, (3) biological indicator studies, and (4) ecological surveys of stream communities, including periphyton (attached algae), benthic macroinvertebrates, and fish. This document, the first in a series of reports on the results of the Y-12 Plant BMAP, describes studies that were conducted from May 1985 through September 1986.

Loar, J.M.; Adams, S.M.; Allison, L.J.; Boston, H.L.; Huston, M.A.; McCarthy, J.F.; Smith, J.G.; Southworth, G.R.; Stewart, A.J. (Oak Ridge National Lab., TN (United States)); Black, M.C. (Oklahoma State Univ., Stillwater, OK (United States)); Gatz, A.J. Jr. (Ohio Wesleyan Univ., Delaware, OH (United States)); Hinzman, R.L. (Oak Ridge Research Inst., TN (United States)); Jimenez, B.D. (Puerto Rico Univ.,

1992-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "area crane creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Second report on the Oak Ridge Y-12 Plant Biological Monitoring and Abatement Program for East Fork Poplar Creek  

SciTech Connect (OSTI)

As stipulated in the National Pollutant Discharge Elimination System (NDPES) permit issued to the Oak Ridge Y-12 Plant on May 24, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for the receiving stream, East Fork Poplar Creek (EFPC). The objectives of BMAP are (1) to demonstrate that the current effluent limitations established for the Y-12 Plant protect the classified uses of EFPC (e.g., the growth and propagation of fish and aquatic life), as designated by the Tennessee Department of Environment and Conservation (TDEC) and (2) to document the ecological effects resulting from implementation of a Water Pollution Control Program that includes construction of several large wastewater treatment facilities. BMAP consists of four major tasks: (1) ambient toxicity testing; (2) bioaccumulation studies; (3) biological indicator studies; and (4) ecological surveys of stream communities, including periphyton (attached algae), benthic (bottom-dwelling) macroinvertebrates, and fish. This document, the second in a series of reports on the results of the Y-12 Plant BMAP, describes studies that were conducted between July 1986 and July 1988, although additional data collected outside this time period are included, as appropriate.

Hinzman, R.L. [ed.; Adams, S.M. [Oak Ridge National Lab., TN (United States); Black, M.C. [Oklahoma State Univ., Stillwater, OK (United States)] [and others

1993-06-01T23:59:59.000Z

402

Hoe Creek No. 3: first long-term underground coal gasification experiment with oxygen-steam injection  

SciTech Connect (OSTI)

There are compelling reasons for pursuing underground coal gasification. The resource that could be exploited is huge - enough to quadruple present proved coal reserves - if the process is successful. Cost estimates indicate that substitute natural gas or gasoline may be producible at reasonable prices by the technique. In the Hoe Creek No. 3 underground coal gasification experiment linkage paths were established between the injection and production wells by drilling a horizontal borehole between them near the bottom of the coal seam. The drilled linkage hole was enlarged by reverse burning, then the forward gasification process began - first with air injection for one week, then with oxygen-steam injection for the remainder of the experiment. During the oxygen-steam injection period, approximately 3900 tons of coal was gasified in 47 days, at an average rate of 83 tons/day. The heating value of the dry product gas averaged 218 Btu/SCF (194 kj/mol), suitable for input to a processing plant for upgrading to pipeline quality, which is approximately 900 Btu/SCF (800 kj/mol).

Not Available

1980-05-01T23:59:59.000Z

403

Geology of the South Mason-Llano River area, Texas  

E-Print Network [OSTI]

VIII. Fig. 1: Pebbles in basal Hickory sand- stone. Fig. 2: Intraformational conglomerate in upper Hickory. following page 23 IX. Fig. 1: Shale xone in middle Hickory. . . Fig. 2: Cross-bedding in Hickory sand- stone. following page 24 X. Fig. 1... XVII. Fig. l. ' Fig. 2: XVIII. Point Peak shale. XIX. Point Peak bioherms. Morgan Creek limestone. . . . . . Bioherms near top of Morgan Creek. . following page 34 following page 35 following page 36 XX. Fig. 1 Fig. Z Intraformational...

Duvall, Victor Martin

1953-01-01T23:59:59.000Z

404

Monitoring equipment environment during nuclear plant operation at Salem and Hope Creek generating stations  

SciTech Connect (OSTI)

Monitoring of environmental parameters has become a significant issue for operating nuclear power plants. While the long-term benefits of plant life extension programs are being pursued with comprehensive environmental monitoring programs, the potential effect of local hot spots at various plant locations needs to be evaluated for its effect on equipment degradation and shortening of equipment qualified life. A significant benefit can be experienced from temperature monitoring when a margin exists between the design versus actual operating temperature. This margin can be translated into longer equipment qualified life and significant reduction in maintenance activities. At PSE and G, the immediate need for monitoring environmental parameters is being accomplished via the use of a Logic Beach Bitlogger. The Bitlogger is a portable data loggings system consisting of a system base, input modules and a communication software package. Thermocouples are installed on selected electrical equipment and cables are run from the thermocouples to the input module of the Bitlogger. Temperature readings are taken at selected intervals, stored in memory, and downloaded periodically to a PC software program, i.e., Lotus. The data is formatted into tabular or graphical documents. Because of their versatility, Bitloggers are being used differently at the authors Nuclear facility. At the Salem Station (2 Units-4 loop Westinghouse PWR), a battery powered, fully portable, calibrated Bitlogger is located in an accessible area inside Containment where it monitors the temperature of various electrical equipment within the Pressurizer Enclosure. It is planned that close monitoring of the local hot spot temperatures in this area will allow them to adjust and reconcile the environmental qualification of the equipment.

Blum, A.; Smith, R.J. [Public Service Electric and Gas Co., Hancocks Bridge, NJ (United States)

1991-06-01T23:59:59.000Z

405

OLED area illumination source  

DOE Patents [OSTI]

The present invention relates to an area illumination light source comprising a plurality of individual OLED panels. The individual OLED panels are configured in a physically modular fashion. Each OLED panel comprising a plurality of OLED devices. Each OLED panel comprises a first electrode and a second electrode such that the power being supplied to each individual OLED panel may be varied independently. A power supply unit capable of delivering varying levels of voltage simultaneously to the first and second electrodes of each of the individual OLED panels is also provided. The area illumination light source also comprises a mount within which the OLED panels are arrayed.

Foust, Donald Franklin (Scotia, NY); Duggal, Anil Raj (Niskayuna, NY); Shiang, Joseph John (Niskayuna, NY); Nealon, William Francis (Gloversville, NY); Bortscheller, Jacob Charles (Clifton Park, NY)

2008-03-25T23:59:59.000Z

406

MEASUREMENT OF BUILDING AREAS MEASUREMENT OF BUILDING AREAS  

E-Print Network [OSTI]

) Common Use Areas All floored areas in the building for circulation and standard facilities provided and the like. These are extracts of NWPC standard method of measurement of building areas with an addition fromSection S ANNEXURE 4 MEASUREMENT OF BUILDING AREAS MEASUREMENT OF BUILDING AREAS 1. GROSS BUILDING

Wang, Yan

407

Subsurface contaminants focus area  

SciTech Connect (OSTI)

The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

NONE

1996-08-01T23:59:59.000Z

408

MSL ENTERANCE REFERENCE AREA  

E-Print Network [OSTI]

MSL ENTERANCE LOBBY ELEV STAIRS SSL-019 REFERENCE AREA SSL-021 GROUP STUDY SSL-018 STUDY ROOM SSL-029 SSL-020 COPY ROOM SSL-022 GROUP STUDY SSL-026 STACKS SSL-023 GROUP STUDY SSL-024 GROUP STUDY SSL TBL-014 TBL-014A STAIRS SSL-007 GIS/ WORKROOM SSL-011 SSL-008 SSL-009 SSL-010 SSL-014 SSL-017 STAIRS

Aalberts, Daniel P.

409

Plutonium focus area  

SciTech Connect (OSTI)

To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this new approach, EM developed a management structure and principles that led to the creation of specific Focus Areas. These organizations were designed to focus the scientific and technical talent throughout DOE and the national scientific community on the major environmental restoration and waste management problems facing DOE. The Focus Area approach provides the framework for intersite cooperation and leveraging of resources on common problems. After the original establishment of five major Focus Areas within the Office of Technology Development (EM-50, now called the Office of Science and Technology), the Nuclear Materials Stabilization Task Group (EM-66) followed the structure already in place in EM-50 and chartered the Plutonium Focus Area (PFA). The following information outlines the scope and mission of the EM, EM-60, and EM-66 organizations as related to the PFA organizational structure.

NONE

1996-08-01T23:59:59.000Z

410

DOE Designates Southwest Area and Mid-Atlantic Area National...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Interest Electric Transmission Corridors DOE Designates Southwest Area and Mid-Atlantic Area National Interest Electric Transmission Corridors October 2, 2007 - 11:12am Addthis...

411

Evaluation of Calendar Year 1996 groundwater and surface water quality data for the Bear Creek Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This report presents an evaluation of the groundwater monitoring data obtained in the Bear Creek Hydrogeologic Regime (Bear Creek Regime) during calendar year (CY) 1996. The monitoring data were collected for the multiple programmatic purposes of the Y-12 Plant Groundwater Protection Program (GWPP) and have been reported in Calendar Year 1996 Annual Groundwater Monitoring Report for the Bear Creek Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee. The Annual Monitoring report presents only the results of the monitoring data evaluations required for waste management sites addressed under the Resource Conservation and Recovery Act (RCRA) post-closure permit for the Bear Creek Regime. The Annual Monitoring Report also serves as a consolidated reference for the groundwater and surface water monitoring data obtained throughout the Bear Creek Regime under the auspices of the Y-12 GWPP. This report provides an evaluation of the CY 1996 monitoring data with an emphasis on regime-wide groundwater and surface water quality and long-term concentration trends of regulated and non-regulated monitoring parameters.

NONE

1997-08-01T23:59:59.000Z

412

Water quality and chemistry of an alpine stream: a case study of Sneffels Creek, Yankee Boy Basin, Colorado  

E-Print Network [OSTI]

Mountain areas are sensitive ecosystems responsible for supplying and maintaining the streamflow in various regions of Earth. In the western mountain region of the United States, mountain areas supply more than three quarters of the streamflow...

Heggie, Tracey Michelle

2002-01-01T23:59:59.000Z

413

Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 1, main text  

SciTech Connect (OSTI)

This document is the combined Remedial Investigation/Feasibility Study (RI/FS) Report for the Clinch River/Poplar Creek Operable Unit (CR/PC OU), an off-site OU associated with environmental restoration activities at the U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR). As a result of past, present, and potential future releases of hazardous substances into the environment, the ORR was placed on the National Priorities List in December 1989 (54 FR 48184). Sites on this list must be investigated for possible remedial action, as required by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, 42 U.S.C. 9601, et seq.). This report documents the findings of the remedial investigation of this OU and the feasibility of potential remedial action alternatives. These studies are authorized by Sect. 117 of CERCLA and were conducted in accordance with the requirements of the National Contingency Plan (40 CFR Part 300). DOE, the U.S. Environmental Protection Agency (EPA), and the Tennessee Department of Environment and Conservation (TDEC) have entered into a Federal Facility Agreement (FFA), as authorized by Sect. 120 of CERCLA and Sects. 3008(h) and 6001 of the Resource Conservation and Recovery Act (RCRA) (42 U.S.C. 6901, et seq.). The purpose of this agreement is to ensure a coordinated and effective response for all environmental restoration activities occurring at the ORR. In addition to other responsibilities, the FFA parties mutually define the OU boundaries, set remediation priorities, establish remedial investigation priorities and strategies, and identify and select remedial actions. A copy of this FFA is available from the DOE Information Resource Center in Oak Ridge, Tennessee.

NONE

1996-03-01T23:59:59.000Z

414

E-Print Network 3.0 - area middle fork Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: Middle Fork Coyote Creek (8286 Acres) Santa Clara County 2205300104 Kelly Cabin Canyon (4283 Acres... Berryessa EastForkCoyote Cow Calera Penitencia LasAnimas Arroyo...

415

Scientific and Natural Areas (Minnesota)  

Broader source: Energy.gov [DOE]

Certain scientific and natural areas are established throughout the state for the purpose of preservation and protection. Construction and new development is prohibited in these areas.

416

Changes in Habitat and Populations of Steelhead Trout, Coho Salmon, and Chinook Salmon in Fish Creek, Oregon; Habitat Improvement, 1983-1987 Final Report.  

SciTech Connect (OSTI)

Construction and evaluation of salmonid habitat improvements on Fish Creek, a tributary of the upper Clackamas River, began in 1982 as a cooperative venture between the Estacada Ranger District, Mt. Hood National Forest, and the Anadromous Fish Habitat Research Unit of the Pacific Northwest Research Station (PNW), USDA Forest Service. The project was initially conceived as a 5-year effort (1982-1987) to be financed with Forest Service funds. The habitat improvement program and the evaluation of improvements were both expanded in mid-1983 when the Bonneville Power Administration (BPA) entered into an agreement with the Mt. Hood National Forest to cooperatively fund work on Fish Creek. Habitat improvement work in the basin is guided by the Fish Creek Habitat Rehabilitation-Enhancement Framework developed cooperatively by the Estacada Ranger District, the Oregon Department of Fish and Wildlife, and the Pacific Northwest Research Station. The framework examines potential factors limiting production of salmonids in the basin, and the appropriate habitat improvement measures needed to address the limiting factors. Habitat improvement work in the basin has been designed to: (1) improve quantity, quality, and distribution of spawning habitat for coho and spring chinook salmon and steelhead trout, (2) increase low flow rearing habitat for steelhead trout and coho salmon, (3) improve overwintering habitat for coho salmon and steelhead trout, (4) rehabilitate riparian vegetation to improve stream shading to benefit all species, and (5) evaluate improvement projects from a drainage wide perspective. The objectives of the evaluation include: (1) Drainage-wide evaluation and quantification of changes in salmonid spawning and rearing habitat resulting from a variety of habitat improvements. (2) Evaluation and quantification of changes in fish populations and biomass resulting from habitat improvements. (3) Benefit-cost analysis of habitat improvements.

Everest, Fred H. (Oregon State University, Pacific Northwest Forest and Range Experiment Station, Corvallis, OR); Hohler, David B.; Cain, Thomas C. (Mount Hood National Forest, Clackamas River Ranger District, Estacada, OR)

1988-03-01T23:59:59.000Z

417

The origin of the structural depression above Gulf coast salt domes with particular reference to Clay Creek dome, Washington County, Texas  

E-Print Network [OSTI]

Creek, indioatos that the ~ ouroe layer is at least 17, 000 feet below the surfaoe and is older than F. E. Heath, J. A. Waters, and W. B. Ferguson, op. oit. c p, A3. 8, C. W. Saith, "Gulf Coast Oil Fields", The World Oil, Vol. 130, Eo, 7 {June, 1950... information on salt dome geology published sinoe 1936. However, muoh of the pertinent literature since that date consists of field development data with little to no discussion of struotural prooesses ~ An impsrtant exoeption to this apparently diminished...

McDowell, Alfred Norman

1951-01-01T23:59:59.000Z

418

Large area bulk superconductors  

DOE Patents [OSTI]

A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

Miller, Dean J. (Darien, IL); Field, Michael B. (Jersey City, NJ)

2002-01-01T23:59:59.000Z

419

Western Area Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun Deng Associate ResearchWestern Area Power

420

700 Area - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011 Mon, Next2025Steps to MakingImportance of700 Area

Note: This page contains sample records for the topic "area crane creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

CEES - Focus Areas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASL Symposium: Celebrating the Past - VisualizingFocus Areas

422

100 Area - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | BlandinePrincetonOPT Optics MetrologyDepartment of00 Area

423

T-1 Training Area  

SciTech Connect (OSTI)

Another valuable homeland security asset at the NNSS is the T-1 training area, which covers more than 10 acres and includes more than 20 separate training venues. Local, County, and State first responders who train here encounter a variety of realistic disaster scenarios. A crashed 737 airliner lying in pieces across the desert, a helicopter and other small aircraft, trucks, buses, and derailed train cars are all part of the mock incident scene. After formal classroom education, first responders are trained to take immediate decisive action to prevent or mitigate the use of radiological or nuclear devices by terrorists. The Counterterrorism Operations Support Center for Radiological Nuclear Training conducts the courses and exercises providing first responders from across the nation with the tools they need to protect their communities. All of these elements provide a training experience that cannot be duplicated anywhere else in the country.

None

2014-11-07T23:59:59.000Z

424

T-1 Training Area  

ScienceCinema (OSTI)

Another valuable homeland security asset at the NNSS is the T-1 training area, which covers more than 10 acres and includes more than 20 separate training venues. Local, County, and State first responders who train here encounter a variety of realistic disaster scenarios. A crashed 737 airliner lying in pieces across the desert, a helicopter and other small aircraft, trucks, buses, and derailed train cars are all part of the mock incident scene. After formal classroom education, first responders are trained to take immediate decisive action to prevent or mitigate the use of radiological or nuclear devices by terrorists. The Counterterrorism Operations Support Center for Radiological Nuclear Training conducts the courses and exercises providing first responders from across the nation with the tools they need to protect their communities. All of these elements provide a training experience that cannot be duplicated anywhere else in the country.

None

2015-01-09T23:59:59.000Z

425

Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 6: Appendix G -- Baseline ecological risk assessment report  

SciTech Connect (OSTI)

This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix G contains ecological risks for fish, benthic invertebrates, soil invertebrates, plants, small mammals, deer, and predator/scavengers (hawks and fox). This risk assessment identified significant ecological risks from chemicals in water, sediment, soil, and shallow ground water. Metals and PCBs are the primary contaminants of concern.

NONE

1996-09-01T23:59:59.000Z

426

Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 4. Information related to the feasibility study and ARARs. Appendixes G, H, I  

SciTech Connect (OSTI)

This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

NONE

1996-03-01T23:59:59.000Z

427

Remedial investigation/feasibility study of the Clinch River/Poplar Creek Operable Unit. Volume 3. Risk assessment information. Appendixes E, F  

SciTech Connect (OSTI)

This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is Volume 3 of the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

NONE

1996-03-01T23:59:59.000Z

428

Numerical modeling of the Snowmass Creek paleoglacier, Colorado, and climate in the Rocky Mountains during the Bull Lake glaciation (MIS 6)  

SciTech Connect (OSTI)

Well-preserved moraines from the penultimate, or Bull Lake, glaciation of Snowmass Creek Valley in the Elk Range of Colorado present an opportunity to examine the character of the high-altitude climate in the Rocky Mountains during Marine Oxygen Isotope Stage 6. This study employs a 2-D coupled mass/energy balance and flow model to assess the magnitudes of temperature and precipitation change that could have sustained the glacier in mass-balance equilibrium at its maximum extent during the Bull Lake glaciation. Variable substrate effects on glacier flow and ice thickness make the modeling somewhat more complex than in geologically simpler settings. Model results indicate that a temperature depression of about 6.7C compared with the present (19712000 AD) would have been necessary to sustain the Snowmass Creek glacier in mass-balance equilibrium during the Bull Lake glaciation, assuming no change in precipitation amount or seasonality. A 50% increase or decrease from modern precipitation would have been coupled with 5.2C and 9.1C Bull Lake temperature depressions respectively. Uncertainty in these modeled temperature depressions is about 1C.

Eric M. Leonard; Mitchell A. Plummer; Paul E. Carrara

2014-04-01T23:59:59.000Z

429

Overburden characterization and post-burn study of the Hoe Creek, Wyoming underground coal gasification site and comparison with the Hanna, Wyoming site  

SciTech Connect (OSTI)

In 1978 the third test (Hoe Creek III) in a series of underground coal gasification (UCG) experiments was completed at a site south of Gillette, Wyoming. The post-burn study of the geology of the overburden and interlayered rock of the two coal seams affected by the experiment is based on the study of fifteen cores. The primary purpose of the study was to characterize the geology of the overburden and interlayered rock and to determine and evaluate the mineralogical and textural changes that were imposed by the experiment. Within the burn cavity the various sedimentary units have been brecciated and thermally altered to form several pyrometamorphic rock types of paralava rock, paralava breccia, buchite, buchite breccia and hornfels. High temperature minerals of mullite, cordierite, oligo-clase-andesine, tridymite, cristobalite, clinopyroxenes, and magnetite are common in the pyrometamorphic rocks. The habit of these minerals indicates that they crystallized from a melt. These minerals and textures suggest that the rocks were formed at temperatures between 1200/sup 0/ and 1400/sup 0/C. A comparison of geologic and geological-technological factors between the Hoe Creek III site, which experienced substantial roof collapse, and the Hanna II site, which had only moderate roof collapse, indicates that overburden thickness relative to coal seam thickness, degree of induration of overburden rock, injection-production well spacing, and ultimate cavity size are important controls of roof collapse in the structural setting of the two sites.

Ethridge, F.C.; Burns, L.K.; Alexander, W.G.; Craig, G.N. II; Youngberg, A.D.

1983-01-01T23:59:59.000Z

430

Instrumentation and process control development for in situ coal gasification. Twentieth quarterly report: September-November 1979. [Hanna IV and Hoe Creek III  

SciTech Connect (OSTI)

The second phase of the Hanna IV in situ coal gasification test, Hanna IV-B, which was initiated on April 20, 1979, was completed on October 4, 1979. Sandia National Laboratories provided support by fielding and monitoring diagnostic and remote monitoring instrumentation techniques. During the final gasification stage, 765 tons of coal were reacted involving 17,000 cubic feet. The Hoe Creek III experiment conducted by Lawrence Livermore Laboratories began on August 15, 1979, and was terminated on October 10, 1979. The purpose of the experiment was to test the drilled borehole linking concept. Sandia National Laboratories' involvement consisted of fielding and monitoring both an inverted thermocouple and a surface electrical resistivity network. The inverted thermocouple was successfully tested and provided thermal data from beneath the burn zone. A real time analysis procedure for the electrical resistivity technique was implemented at Hoe Creek III. Unfortunately, there was insufficient change in the data for this to have been a useful diagnostic. Efforts are continuing to identify the reason for this lack of response.

Glass, R.E.

1980-04-01T23:59:59.000Z

431

Sedimentological, mineralogical and geochemical definition of oil-shale facies in the lower Parachute Creek Member of Green River Formation, Colorado  

SciTech Connect (OSTI)

Sedimentological, mineralogical and geochemical studies of two drill cores penetrating the lower Saline zone of the Parachute Creek Member (middle L-4 oil-shale zone through upper R-2 zone) of the Green River Formation in north-central Piceance Creek basin, Colorado, indicate the presence of two distinct oil-shale facies. The most abundant facies has laminated stratification and frequently occurs in the L-4, L-3 and L-2 oil-shale zones. The second, and subordinate facies, has ''streaked and blebby'' stratification and is most abundant in the R-4, R-3 and R-2 zones. Laminated oil shale originated by slow, regular sedimentation during meromictic phases of ancient Lake Uinta, whereas streaked and blebby oil shale was deposited by episodic, non-channelized turbidity currents. Laminated oil shale has higher contents of nahcolite, dawsonite, quartz, K-feldspar and calcite, but less dolomite/ankerite and albite than streaked and blebby oil shale. Ca-Mg-Fe carbonate minerals in laminated oil shale have more variable compositions than those in streaked and blebby shales. Streaked and blebby oil shale has more kerogen and a greater diversity of kerogen particles than laminated oil shale. Such variations may produce different pyrolysis reactions when each shale type is retorted.

Cole, R.D.

1984-04-01T23:59:59.000Z

432

Geology and geochemistry of the Geyser Bight Geothermal Area, Umnak Island, Aleutian Islands, Alaska  

SciTech Connect (OSTI)

The Geyser Bight geothermal area is located on Umnak Island in the central Aleutian Islands. It contains one of the hottest and most extensive areas of thermal springs and fumaroles in Alaska, and is only documented site in Alaska with geysers. The zone of hot springs and fumaroles lies at the head of Geyser Creek, 5 km up a broad, flat, alluvial valley from Geyser Bight. At present central Umnak is remote and undeveloped. This report describes results of a combined program of geologic mapping, K-Ar dating, detailed description of hot springs, petrology and geochemistry of volcanic and plutonic rock units, and chemistry of geothermal fluids. Our mapping documents the presence of plutonic rock much closer to the area of hotsprings and fumaroles than previously known, thus increasing the probability that plutonic rock may host the geothermal system. K-Ar dating of 23 samples provides a time framework for the eruptive history of volcanic rocks as well as a plutonic cooling age.

Nye, C.J. (Alaska Univ., Fairbanks, AK (USA). Geophysical Inst. Alaska Dept. of Natural Resources, Fairbanks, AK (USA). Div. of Geological and Geophysical Surveys); Motyka, R.J. (Alaska Dept. of Natural Resources, Juneau, AK (USA). Div. of Geological and Geophysical Surveys); Turner, D.L. (Alaska Univ., Fairbanks, AK (USA). Geophysical Inst.); Liss, S.A. (Alaska Dept. of Natural Resources, Fairba

1990-10-01T23:59:59.000Z

433

Surface Water Management Areas (Virginia)  

Broader source: Energy.gov [DOE]

This legislation establishes surface water management areas, geographically defined surface water areas in which the State Water Control Board has deemed the levels or supply of surface water to be...

434

Falls Creek Hydroelectric Project  

SciTech Connect (OSTI)

This project was for planning and construction of a 700kW hydropower project on the Fall River near Gustavus, Alaska.

Gustavus Electric Company; Richard Levitt; DOE Project Officer - Keith Bennett

2007-06-12T23:59:59.000Z

435

QUEEN CREEK FOUNTAIN HILLS  

E-Print Network [OSTI]

Natural Resource Appreciation Air Pollution and Climate: Health Problems Population growth impacts differences in neighborhoods affect the enviro

Hall, Sharon J.

436

Waller Creek Urban Redevelopment  

E-Print Network [OSTI]

. 16-18 ESL-KT-13-12-51 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 ,)--#"+."##/+ .:%$#"B)%>*+ H:>)-+ V:B#"%K#%&+ .:")% !"2B)&#+ 85%(")2$2%S3+ !":S")KK2%S+ W:2...-12-51 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 20 Programming in Palm Park ESL-KT-13-12-51 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 7th Street4th Street I-35 21...

McDonald, S.

2013-01-01T23:59:59.000Z

437

Bear Creek Valley Watershed  

Broader source: Energy.gov (indexed) [DOE]

Highway 95 and the haul road are available to the public during the fall for deer and turkey hunts. All kills made during these hunts are checked for radiation levels prior to...

438

Camas Creek.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation Sites Proposed Route BTRICGEGR-N- Energy InnovationINT'L.

439

Idaho_ColdwaterCreek  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. | EMSLtheIndustryMitch Arkoosh

440

Squeezer Creek.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSiteNeutron Scattering4 By I. Tudosa,Spreading an Idea20-acre

Note: This page contains sample records for the topic "area crane creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Communication in Home Area Networks  

E-Print Network [OSTI]

used in area like smart buildings, street light controls andbuilding. This section focuses on HAN design to address two smart

Wang, Yubo

2012-01-01T23:59:59.000Z

442

Chapter 12 - HOISTS JIB CRANES AND MONORAILS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStanding FriedelIron-Sulfur

443

Chapter 13 - OVERHEAD AND GANTRY CRANES  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStanding FriedelIron-Sulfur3-1 November 2012 Words in bold and3.0

444

Categorical Exclusion 4568, Crane Removal Project  

Broader source: Energy.gov (indexed) [DOE]

material DB3.6 - R&D or pilot facility DB3.7 - New infill exploratory, experimental oilgasgeothermal constructionoperation DB3.8 - Outdoor ecologicalenvironmental research...

445

Natural Reproductive Success and Demographic Effects of Hatchery-Origin Steelhead in Abernathy Creek, Washington : Annual Report 2008.  

SciTech Connect (OSTI)

Many hatchery programs for steelhead pose genetic or ecological risks to natural populations because those programs release or outplant fish from non-native stocks. The goal of many steelhead programs has been to simply provide 'fishing opportunities' with little consideration given to conservation concerns. For example, the Washington Department of Fish and Wildlife (WDFW) has widely propagated and outplanted one stock of winter-run steelhead (Chambers Creek stock) and one stock of summer-run steelhead (Skamania stock) throughout western Washington. Biologists and managers now recognize potential negative effects can occur when non-native hatchery fish interact biologically with native populations. Not only do non-native stocks pose genetic and ecological risks to naturally spawning populations, but non-native fish stray as returning adults at a much higher rate than do native fish (Quinn 1993). Biologists and managers also recognize the need to (a) maintain the genetic resources associated with naturally spawning populations and (b) restore or recover natural populations wherever possible. As a consequence, the U.S. Fish & Wildlife Service (USFWS) and the NOAA Fisheries have been recommending a general policy that discourages the use of non-native hatchery stocks and encourages development of native broodstocks. There are two primary motivations for these recommendations: (1) reduce or minimize potential negative biological effects resulting from genetic or ecological interactions between hatchery-origin and native-origin fish and (2) use native broodstocks as genetic repositories to potentially assist with recovery of naturally spawning populations. A major motivation for the captive-rearing work described in this report resulted from NOAA's 1998 Biological Opinion on Artificial Propagation in the Columbia River Basin. In that biological opinion (BO), NOAA concluded that non-native hatchery stocks of steelhead jeopardize the continued existence of U.S. Endangered Species Act (ESA)-listed, naturally spawning populations in the Columbia River Basin. As a consequence of that BO, NOAA recommended - as a reasonable and prudent alternative (RPA) - that federal and state agencies phase out non-native broodstocks of steelhead and replace them with native broodstocks. However, NOAA provided no guidance on how to achieve that RPA. The development of native broodstocks of hatchery steelhead can potentially pose unacceptable biological risks to naturally spawning populations, particularly those that are already listed as threatened or endangered under the ESA. The traditional method of initiating new hatchery broodstocks of anadromous salmonid fishes is by trapping adults during their upstream, spawning migration. However, removing natural-origin adults from ESA listed populations may not be biologically acceptable because such activities may further depress those populations via 'broodstock mining'. In addition, trapping adult steelhead may be logistically unfeasible in many subbasins due to high water flows in the spring, when steelhead are moving upstream to spawn, that will often 'blow out' temporary weirs. Additional risks associated with trapping adults include genetic founder effects and difficulties meeting minimum, genetic effective number of breeders without 'mining' the wild population to potential extinction. As a result, alternative methods for developing native broodstocks are highly desired. One alternative for developing native broodstocks, particularly when the collection of adults is logistically unfeasible or biologically unacceptable, is captive rearing of natural-origin juveniles to sexual maturity. In this approach, pre-smolt juveniles are collected from the stream or watershed for which a native broodstock is desired, and those juveniles are raised to sexual maturity in a hatchery. Those hatchery-reared adults then become the broodstock source for gametes and initial progeny releases. Such a captive rearing program offers many genetic advantages over traditional adult-trapping programs for developing native

U.S. Fish & Wildlife Service, Abernathy Fish Technology Center

2008-12-01T23:59:59.000Z

446

Lateral Continuity of the Eagle Ford Group Strata in Lozier Canyon and Antonio Creek, Terrell County, Texas  

E-Print Network [OSTI]

%), suggesting higher accommodation in the southeast part of the study area. Moreover, sedimentary structures and bed morphology of skeletal packstone beds in unit B, the primary target of horizontal wells in the subsurface, vary over a 4-mi interval from...

Gardner, Rand D

2013-09-24T23:59:59.000Z

447

The cow creek anticline: an example of disharmonic folding along the front of the Big Horn Mountains  

E-Print Network [OSTI]

and Cretaceous rocks, overlain by Tertiary terrace gravely Topography is structurally controlled here, therefore mazy of the mountainsides are actually dip slopes of the Mississippian Madison Formation. Steep canyons which transect mountain i'lank folds... Mountain, just beyond the northern and eastern peripheries of the study area, resoectively. y3 44 hta ntana WZOInina 44 F' a. Spr;ad STUDY AREA~ Shandaa 45 MESOZOIC !L csftozala PALEOZOIC Shall ~ EIE 0& C ~~ 0 IP ~ Etary Suffala 45' P...

Dransfield, Betsy Jo

1983-01-01T23:59:59.000Z

448

Field-Derived Hydraulic Properties for Perched-Water Aquifer Wells 299-E33-350 and 299-E33-351, Hanford Site B-Complex Area  

SciTech Connect (OSTI)

During February and March 2014, Pacific Northwest National Laboratory conducted hydraulic (slug) tests at 200-DV-1 Operable Unit wells 299-E33-350 (C8914) and 299-E33-351 (C8915) as part of B-Complex Area Perched-Water characterization activities at the Hanford Site 200-East Area. During the construction/completion phase of each well, two overlapping depth intervals were tested within the unconfined perched-water aquifer contained in the silty-sand subunit of the Cold Creek Unit. The purpose of the slug-test characterization was to provide estimates of transmissivity and hydraulic conductivity for the perched-water aquifer at these selected well locations.

Newcomer, Darrell R.

2014-07-01T23:59:59.000Z

449

Fire Hazards Analysis for the 200 Area Interim Storage Area  

SciTech Connect (OSTI)

This documents the Fire Hazards Analysis (FHA) for the 200 Area Interim Storage Area. The Interim Storage Cask, Rad-Vault, and NAC-1 Cask are analyzed for fire hazards and the 200 Area Interim Storage Area is assessed according to HNF-PRO-350 and the objectives of DOE Order 5480 7A. This FHA addresses the potential fire hazards associated with the Interim Storage Area (ISA) facility in accordance with the requirements of DOE Order 5480 7A. It is intended to assess the risk from fire to ensure there are no undue fire hazards to site personnel and the public and to ensure property damage potential from fire is within acceptable limits. This FHA will be in the form of a graded approach commensurate with the complexity of the structure or area and the associated fire hazards.

JOHNSON, D.M.

2000-01-06T23:59:59.000Z

450

Fourth report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River  

SciTech Connect (OSTI)

In response to a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC) and selected tributaries. BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, and (6) radioecology of WOC and White Oak Lake. The ecological characterization of the WOC watershed will provide baseline data that can be used to document the ecological effects of the water pollution control program and the remedial action program. The long-term nature of BMAP ensures that the effectiveness of remedial measures will be properly evaluated.

Loar, J.M. [ed.] [ed.

1994-04-01T23:59:59.000Z

451

Hydrologic data summary for the White Oak Creek watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee, January--December 1994  

SciTech Connect (OSTI)

This report summarizes, for the 12-month period January through December 1994, the available dynamic hydrologic data collected on the White Oak Creek (WOC) watershed as well as information collected on surface flow systems in the surrounding vicinity that may affect the quality or quantity of surface water in the watershed. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to characterize the quantity and quality of water in the surface flow system, assist with the planning and assessment of remedial action activities, provide long-term availability of data and quality assurance of these data, and support long-term measures of contaminant fluxes at a spatial scale to provide a comprehensive picture of watershed performance that is commensurate with future remedial actions.

Borders, D.M.; Ziegler, K.S.; Reece, D.K.; Watts, J.A.; Frederick, B.J.; McCalla, W.L.; Pridmore, D.J.

1995-08-01T23:59:59.000Z

452

Addendum to the post-closure permit application for the Bear Creek hydrogeologic regime at the Y-12 plant: Walk-in pits  

SciTech Connect (OSTI)

In June 1987, the Resource Conservation and Recovery Act (RCRA) Closure/Post-Closure Plan for the Bear Creek Burial Grounds (BCBG) located at the Y-12 Plant on the Oak Ridge Reservation in Oak Ridge, Tennessee was submitted to the Tennessee Department of Environment and Conservation (TDEC) for review and approval.The Closure Plan has been modified and revised several times. This document is an addendum to the Post-Closure Permit Application submitted to TDEC in June, 1994. This addendum contains information on the Walk-In Pits of the BCBG which is meant to supplement the information provided in the Post-Closure Permit Application submitted for the BCBG. This document is not intended to be a stand-alone document.

NONE

1995-04-01T23:59:59.000Z

453

Western oil-shale development: a technology assessment. Volume 5: an investigation of dewatering for the modified in-situ retorting process, Piceance Creek Basin, Colorado  

SciTech Connect (OSTI)

The C-a and the C-b tracts in the Piceance Creek Basin are potential sites for the development of oil shale by the modified in-situ retorting (MIS) process. Proposed development plans for these tracts require the disturbance of over three billion m/sup 3/ of oil shale to a depth of about 400 m (1312 ft) or more below ground level. The study investigates the nature and impacts of dewatering and reinvasion that are likely to accompany the MIS process. The purpose is to extend earlier investigations through more refined mathematical analysis. Physical phenomena not adequately covered in previous studies, particularly the desaturation process, are investigated. The present study also seeks to identify, through a parametric approach, the key variables that are required to characterize systems such as those at the C-a and C-b tracts.

Not Available

1982-01-01T23:59:59.000Z

454

The temporal mapping of riparian vegetation at Leon Creek in Bexar County, Texas from 1987 to 1999  

E-Print Network [OSTI]

and urban zones. Results for both Image Difference Calculation and Percent Area Calculation suggest that for the total watershed, there are higher rates of decreases in vegetation occurring in rural and urban zones. Less vegetation overall in the 0.5 mi...

Cummins, Karen Leigh

2000-01-01T23:59:59.000Z

455

Northwest Area Foundation Horizons Program  

E-Print Network [OSTI]

Northwest Area Foundation Horizons Program Final Evaluation Report ­ Executive Summary Diane L by the Northwest Area Foundation in partnership with two national organizations and delivered by a number to remember that Horizons was not designed to reduce poverty, but instead to contribute to the Foundations

Amin, S. Massoud

456

Unscaled Scaled (% / km) Geographic Area /  

E-Print Network [OSTI]

226 Unscaled Scaled (% / km) Geographic Area / Assessment Unit DI Prod. N(eq) Sum Total Cumu subbasin, Washington. Geographic Area / Assessment Unit IntegratedPriorityRestoration Category Habitat% (unscaled results) of the combined protection benefit for summer steelhead within the Methow basin, and 51

457

tight environment high radiation area  

E-Print Network [OSTI]

#12;Irradiation Studies of Optical Components - II CERN, week of Oct. 24, 2005 1.4 GeV proton beam 4 x· tight environment · high radiation area · non-serviceable area · passive components · optics only, no active electronics · transmit image through flexible fiber bundle Optical Diagnostics 01-13-2006 1 #12

McDonald, Kirk

458

Field sampling and analysis plan for the remedial investigation of Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program  

SciTech Connect (OSTI)

This field sampling and analysis (S & A) plan has been developed as part of the Department of Energy`s (DOE`s) remedial investigation (RI) of Waste Area Grouping (WAG) 2 at Oak Ridge National Laboratory (ORNL) located in Oak Ridge, Tennessee. The S & A plan has been written in support of the remedial investigation (RI) plan for WAG 2 (ORNL 1990). WAG 2 consists of White Oak Creek (WOC) and its tributaries downstream of the ORNL main plant area, White Oak Lake (WOL), White Oak Creek embayment (WOCE) on the Clinch River, and the associated floodplain and subsurface environment (Fig. 1.1). The WOC system is the surface drainage for the major ORNL WAGs and has been exposed to a diversity of contaminants from operations and waste disposal activities in the WOC watershed. WAG 2 acts as a conduit through which hydrologic fluxes carry contaminants from upgradient areas to the Clinch River. Water, sediment, soil, and biota in WAG 2 are contaminated and continue to receive contaminants from upgradient WAGs. This document describes the following: an overview of the RI plan, background information for the WAG 2 system, and objectives of the S & A plan; the scope and implementation of the first 2 years of effort of the S & A plan and includes recent information about contaminants of concern, organization of S & A activities, interactions with other programs, and quality assurance specific to the S & A activities; provides details of the field sampling plans for sediment, surface water, groundwater, and biota, respectively; and describes the sample tracking and records management plan.

Boston, H.L.; Ashwood, T.L.; Borders, D.M.; Chidambariah, V.; Downing, D.J.; Fontaine, T.A.; Ketelle, R.H.; Lee, S.Y.; Miller, D.E.; Moore, G.K.; Suter, G.W.; Tardiff, M.F.; Watts, J.A.; Wickliff, D.S.

1992-02-01T23:59:59.000Z

459

Hanford 200 Areas Development Plan  

SciTech Connect (OSTI)

The purpose of the Hanford 200 Areas Development Plan (Development Plan) is to guide the physical development of the 200 Areas (which refers to the 200 East Area, 200 West Area, and 200 Area Corridor, located between the 200 East and 200 West Areas) in accordance with US Department of Energy (DOE) Order 4320.lB (DOE 1991a) by performing the following: Establishing a land-use plan and setting land-use categories that meet the needs of existing and proposed activities. Coordinating existing, 5-year, and long-range development plans and guiding growth in accordance with those plans. Establishing development guidelines to encourage cost-effective development and minimize conflicts between adjacent activities. Identifying site development issues that need further analysis. Integrating program plans with development plans to ensure a logical progression of development. Coordinate DOE plans with other agencies [(i.e., Washington State Department of Ecology (Ecology) and US Environmental Protection Agency (EPA)]. Being a support document to the Hanford Site Development Plan (DOE-RL 1990a) (parent document) and providing technical site information relative to the 200 Areas.

Rinne, C.A.; Daly, K.S.

1993-08-01T23:59:59.000Z

460

Research Areas | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

High Energy Density Laboratory Plasmas Research Areas Research Areas High Energy Density Laboratory Plasmas (HEDLP) Research Areas During open solicitations proposals are sought...

Note: This page contains sample records for the topic "area crane creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Progress Update: M Area Closure  

ScienceCinema (OSTI)

A progress update of the Recovery Act at work at the Savannah River Site. The celebration of the first area cleanup completion with the help of the Recovery Act.

Cody, Tom

2012-06-14T23:59:59.000Z

462

Wellhead Protection Area Act (Nebraska)  

Broader source: Energy.gov [DOE]

This section regulates activities which can occur on or below the land surface of the area surrounding a wellhead. The purpose of these regulations is to limit well contamination and preserve...

463

Controlling Bats in Urban Areas  

E-Print Network [OSTI]

to avoid obstacles and capture insects. Bats also emit audible sounds that may be used for communi- cation. L-1913 4-08 Controlling BATS Damage In urban areas, bats may become a nuisance becauseoftheirsqueaking,scratchingandcrawl- inginattics...

Texas Wildlife Services

2008-04-15T23:59:59.000Z

464

Protected Water Area System (Iowa)  

Broader source: Energy.gov [DOE]

The Natural Resource Commission maintains a state plan for the design and establishment of a protected water area system and those adjacent lands needed to protect the integrity of that system. A...

465

The Program Area Committee Chairperson.  

E-Print Network [OSTI]

worksheets and others. Prepared by Mary G. Marshall and Burl B. RichardsQ Extension program development specialists, The Texas A&M University System. THE PROGRAM AREA COMMITTEE CHAIRPERSON You Hold an Important Position! Whenever people gather...

Marshall, Mary; Richardson, Burl B.

1986-01-01T23:59:59.000Z

466

Security Area Vouching and Piggybacking  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes requirements for the Department of Energy (DOE) Security Area practice of "vouching" or "piggybacking" access by personnel. DOE N 251.40, dated 5-3-01, extends this directive until 12-31-01.

2000-06-05T23:59:59.000Z

467

Focus Area Tax Credits (Maryland)  

Broader source: Energy.gov [DOE]

Focus Area Tax Credits for businesses in Baltimore City or Prince Georges County enterprise zones include: (1) Ten-year, 80% credit against local real property taxes on a portion of real property...

468

Transforming Parks and Protected Areas  

E-Print Network [OSTI]

Transforming Parks and Protected Areas Policy and governance in a changing world Edited by Kevin S from the British Library Library of Congress Cataloging In Publication Data Transforming parks

Bolch, Tobias

469

Salt Lake City Area Integrated Projects Electric Power Marketing. Draft environmental impact statement: Volume 3, Appendix A  

SciTech Connect (OSTI)

The Salt Lake City Area Office of the Western Area Power Administration (Western) markets electricity produced at hydroelectric facilities operated by the Bureau of Reclamation. The facilities are known collectively as the Salt Lake City Area Integrated Projects (SLCA/IP) and include dams equipped for power generation on the Green, Gunnison, Rio Grande, and Colorado rivers and on Deer and Plateau creeks in the states of Wyoming, Utah, Colorado, Arizona, and New Mexico. Of these facilities, only the Glen Canyon Unit, the Flaming Gorge Unit, and the Aspinall Unit (which includes Blue Mesa, Morrow Point, and Crystal dams;) are influenced by Western power scheduling and transmission decisions. The EIS alternatives, called commitment-level alternatives, reflect combinations of capacity and energy that would feasibly and reasonably fulfill Westerns firm power marketing responsibilities, needs, and statutory obligations. The viability of these alternatives relates directly to the combination of generation capability of the SLCA/IP with energy purchases and interchange. The economic and natural resource assessments in this environmental impact statement (EIS) include an analysis of commitment-level alternatives. Impacts of the no-action alternative are also assessed. Supply options, which include combinations of electrical power purchases and hydropower operational scenarios reflecting different operations of the dams, are also assessed. The EIS evaluates the impacts of these scenarios relative to socioeconomics, air resources, water resources, ecological resources, cultural resources, land use, recreation, and visual resources.

Not Available

1994-02-01T23:59:59.000Z

470

Development and Testing of a Groundwater Management Model for the Faultless Underground Nuclear Test, Central Nevada Test Area  

SciTech Connect (OSTI)

This document describes the development and application of a user-friendly and efficient groundwater management model of the Central Nevada Test Area (CNTA) and surrounding areas that will allow the U.S. Department of Energy and state personnel to evaluate the impact of future proposed scenarios. The management model consists of a simple hydrologic model within an interactive groundwater management framework. This framework is based on an object user interface that was developed by the U.S. Geological Survey and has been used by the Desert Research Institute researchers and others to couple disparate environmental resource models, manage the necessary temporal and spatial data, and evaluate model results for management decision making. This framework was modified and applied to the CNTA and surrounding Hot Creek Valley. The utility of the management model was demonstrated through the application of hypothetical future scenarios including mineral mining, regional expansion of agriculture, geothermal energy production, and export of water to large urban areas outside the region. While the results from some of the scenarios indicated potential impacts to the region near CNTA and others did not, together they demonstrate the usefulness of the management tool for managers who need to evaluate the impact proposed changes in groundwater use in or near CNTA may have on radionuclide migration.

Douglas P. Boyle; Gregg Lamorey; Scott Bassett; Greg Pohll; Jenny Chapman

2006-01-25T23:59:59.000Z

471

Salt Lake City Area Integrated Projects Electric Power Marketing. Draft environmental impact statement: Volume 2, Sections 1-16  

SciTech Connect (OSTI)

The Salt Lake City Area Office of the Western Area Power Administration (Western) markets electricity produced at hydroelectric facilities operated by the Bureau of Reclamation. The facilities are known collectively as the Salt Lake City Area Integrated Projects (SLCA/IP) and include dams equipped for power generation on the Green, Gunnison, Rio Grande, and Colorado rivers and on Deer and Plateau creeks in the states of Wyoming, Utah, Colorado, Arizona, and New Mexico. Of these facilities, only the Glen Canyon Unit, the Flaming Gorge Unit, and the Aspinall Unit (which includes Blue Mesa, Morrow Point, and Crystal dams;) are influenced by Western power scheduling and transmission decisions. The EIS alternatives, called commitment-level alternatives, reflect combinations of capacity and energy that would feasibly and reasonably fulfill Westerns firm power marketing responsibilities, needs, and statutory obligations. The viability of these alternatives relates directly to the combination of generation capability of the SLCA/IP with energy purchases and interchange. The economic and natural resource assessments in this environmental impact statement (EIS) include an analysis of commitment-level alternatives. Impacts of the no-action alternative are also assessed. Supply options, which include combinations of electrical power purchases and hydropower operational scenarios reflecting different operations of the dams, are also assessed. The EIS evaluates the impacts of these scenarios relative to socioeconomics, air resources, water resources, ecological resources, cultural resources, land use, recreation, and visual resources.

Not Available

1994-02-01T23:59:59.000Z

472

Cuttings Analysis At International Geothermal Area, Philippines...  

Open Energy Info (EERE)

Cuttings Analysis At International Geothermal Area, Philippines (Laney, 2005) Exploration Activity Details Location International Geothermal Area Philippines Exploration Technique...

473

Biological Inventory Colorado Canyons National Conservation Area  

E-Print Network [OSTI]

Biological Inventory of the Colorado Canyons National Conservation Area Prepared by: Joe Stevens .............................. 12 Identify Targeted Inventory Areas

474

Idaho's Nitrate Areas of Concern R. L. Mahler and K. E. Keith  

E-Print Network [OSTI]

; (11) Bruneau; (12) Mountain Home; (13) Hammett; (14) Bliss; (15) Twin Falls; (16) Rupert; (17) Burley/Marsh Creek; (18) Pocatello; (19) Fort Hall; (20) Preston/Cache Valley; (21) Soda Springs/Bear River; (22) Mud

O'Laughlin, Jay

475

Geology of the Loyal Valley-West area, Mason County, Texas  

E-Print Network [OSTI]

Sandstone Member. Gap Mountain Limestone Member Lion Mountain Limestone Member . 31 A'ilberns Formation . 32 Welge Sandstone Mexnber. Morgan Creek Limestone Member . Point Peak Shale Member 33 36 San Saba Limestone Member . Ox dovician Systexn... Saadstone Member. 25 Weathered Surface of the Cap Mountain Limestone Member . VII. Sandstone Bed in the Cap Mountain Limestone Member 30 Contact Be~eon the Lion Mountain and Welge Members . IX. Weathered Morgan Creek Limestoae Member 38 Bioherms...

Kmiecik, Jerome Gregory

2012-06-07T23:59:59.000Z

476

100 Areas CERCLA ecological investigations  

SciTech Connect (OSTI)

This document reports the results of the field terrestrial ecological investigations conducted by Westinghouse Hanford Company during fiscal years 1991 and 1992 at operable units 100-FR-3, 100-HR-3, 100-NR-2, 100-KR-4, and 100-BC-5. The tasks reported here are part of the Remedial Investigations conducted in support of the Comprehensive Environmental Response, compensation, and Liability Act of 1980 studies for the 100 Areas. These ecological investigations provide (1) a description of the flora and fauna associated with the 100 Areas operable units, emphasizing potential pathways for contaminants and species that have been given special status under existing state and/or federal laws, and (2) an evaluation of existing concentrations of heavy metals and radionuclides in biota associated with the 100 Areas operable units.

Landeen, D.S.; Sackschewsky, M.R.; Weiss, S.

1993-09-01T23:59:59.000Z

477

Preliminary Thermal Modeling of Hi-Storm 100S-218 Version B Storage Modules at Hope Creek Nuclear Power Station ISFSI  

SciTech Connect (OSTI)

This report fulfills the M3 milestone M3FT-13PN0810022, Report on Inspection 1, under Work Package FT-13PN081002. Thermal analysis is being undertaken at Pacific Northwest National Laboratory (PNNL) in support of inspections of selected storage modules at various locations around the United States, as part of the Used Fuel Disposition Campaign of the U.S. Department of Energy, Office of Nuclear Energy (DOE-NE) Fuel Cycle Research and Development. This report documents pre-inspection predictions of temperatures for four modules at the Hope Creek Nuclear Generating Station ISFSI that have been identified as candidates for inspection in late summer or early fall/winter of 2013. These are HI-STORM 100S-218 Version B modules storing BWR 8x8 fuel in MPC-68 canisters. The temperature predictions reported in this document were obtained with detailed COBRA-SFS models of these four storage systems, with the following boundary conditions and assumptions.

Cuta, Judith M.; Adkins, Harold E.

2013-08-30T23:59:59.000Z

478

Preliminary Thermal Modeling of HI-Storm 100S-218 Version B Storage Modules at Hope Creek Cuclear Power Station ISFSI  

SciTech Connect (OSTI)

As part of the Used Fuel Disposition Campaign of the U. S. Department of Energy, Office of Nuclear Energy (DOE-NE) Fuel Cycle Research and Development, a consortium of national laboratories and industry is performing visual inspections and temperature measurements of selected storage modules at various locations around the United States. This report documents thermal analyses in in support of the inspections at the Hope Creek Nuclear Generating Station ISFSI. This site utilizes the HI-STORM100 vertical storage system developed by Holtec International. This is a vertical storage module design, and the thermal models are being developed using COBRA-SFS (Michener, et al., 1987), a code developed by PNNL for thermal-hydraulic analyses of multi assembly spent fuel storage and transportation systems. This report describes the COBRA-SFS model in detail, and presents pre-inspection predictions of component temperatures and temperature distributions. The final report will include evaluation of inspection results, and if required, additional post-test calculations, with appropriate discussion of results.

Cuta, Judith M.; Adkins, Harold E.

2013-08-30T23:59:59.000Z

479

Ground-water hydrologic effects resulting from underground coal gasification experiments at the Hoe Creek Site near Gillette, Wyoming. Interim report, October 1979-March 1980  

SciTech Connect (OSTI)

This technical note summarizes our activities, to date, on the research project: Ground-Water Hydrologic Effects Resulting from Underground Coal Gasification Experiments (EPA-IAG-79-D-X0795). The gasified coal seam (Felix No. 2 coal) and two overlying aquifers (Felix No. 1 coal and overlying sand) appear to have become interconnected as a result of roof collapse and subsidence at both Hoe Creek Sites II and III near Gillette, Wyoming. To evaluate changes in the ground-water flow regime at the two sites, completion of supplementary wells was necessary to define the distance versus head drawdown relationships in each of the three aquifers. Hydraulic head potentials have been measured at Site III since gasification ended on October 10, 1979. These data are presented in graphic format. Although hydraulic head measurements at Site II seemed to be approaching a steady-state condition 1.5 years after gasification, the subsequent gasification at Site III temporarily altered the ground-water flow patterns. These changes will have a definite effect on contaminant dispersal and will need to be taken into consideration.

Raber, E.; Stone, R.

1980-05-01T23:59:59.000Z

480

DOE Underground-Coal-Conversion-Program field-test activities for 1979 and 1980. [Pricetown 1, Hoe Creek 3, Hanna IV, and SDB 1  

SciTech Connect (OSTI)

Under the US Department of Energy's Underground-Coal-Conversion program, four field tests were completed in 1979 and preparations were begun in 1980 for two additional field tests to be operated in 1981. The Laramie Energy Technology Center (LETC) and Sandia National Laboratories (SNL) completed Hanna IV, an air gasification test in Wyoming subbituminous coal. The Morgantown Energy Technology Center (METC) completed Pricetown 1, an air gasification test in West Virginia bituminous coal. Lawrence Livermore National Laboratory (LLNL) completed Hoe Creek 3, a steam-oxygen gasification test in Wy