Sample records for area crane creek

  1. Crane Creek Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentratingEnergyCoosaPage Edit with

  2. ASSESSMENT OF LIVESTOCK WINTERING AREAS IN BRIDGE CREEK BASIN, 1996

    E-Print Network [OSTI]

    #12;ASSESSMENT OF LIVESTOCK WINTERING AREAS IN BRIDGE CREEK BASIN, 1996 DOE FRAP 1996-03 Prepared-96.............................................. 22 LIST OF FIGURES Figure 1. Bridge Creek basin livestock wintering area back assessment, 1996 quality in the Bridge Creek basin are assessed. These sites had been inspected in the winter and spring

  3. Crane Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCp Holdings Llc Jump to:Cranbury, New Jersey:Crane

  4. Decontamination of Savannah River Plant H-Area hot-canyon crane

    SciTech Connect (OSTI)

    Rankin, W N; Sims, J R

    1985-01-01T23:59:59.000Z

    Decontamination techniques applicable to the remotely operated bridge cranes in canyon buildings at the Savannah River Plant (SRP) were identified and were evaluated in laboratory-scale tests. High pressure Freon blasting was found to be the most attractive process available for this application. Strippable coatings were selected as an alternative technique in selected applications. The ability of high pressure Freon blasting plus two strippable coatings (Quadcoat 100 and Alara 1146) to remove the type of contamination expected on SRP cranes was demonstrated in laboratory-scale tests. Quadrex HPS was given a contract to decontaminate the H-Area hot canyon crane. Decontamination operations were successfully carried out within the specified time-frame window. The radiation level goals specified by SRP were met and decontamination was accomplished with 85% less personnel exposure than estimated by SRP before the job started. This reduction is attributed to the increased efficiency of the new decontamination techniques used. 6 refs., 1 tab.

  5. Mitigation of light rail transit construction on jurisdictional areas in the White Rock Creek floodplain, Dallas, Texas

    E-Print Network [OSTI]

    Schieffer, Emily; Smiley, Jerry

    2001-01-01T23:59:59.000Z

    AREAS IN THE WHITE ROCK CREEK FLOODPLAIN, DALLAS, TEXAS1.2-miles of the White Rock Creek floodplain near theconfluence of three creeks and adjacent to approximately

  6. Scotch Creek Wildlife Area 2007-2008 Annual Report.

    SciTech Connect (OSTI)

    Olson, Jim [Washington Department of Fish and Wildlife

    2008-11-03T23:59:59.000Z

    The Scotch Creek Wildlife Area is a complex of 6 separate management units located in Okanogan County in North-central Washington State. The project is located within the Columbia Cascade Province (Okanogan sub-basin) and partially addresses adverse impacts caused by the construction of Chief Joseph and Grand Coulee hydroelectric dams. With the acquisition of the Eder unit in 2007, the total size of the wildlife area is now 19,860 acres. The Scotch Creek Wildlife Area was approved as a wildlife mitigation project in 1996 and habitat enhancement efforts to meet mitigation objectives have been underway since the spring of 1997 on Scotch Creek. Continuing efforts to monitor the threatened Sharp-tailed grouse population on the Scotch Creek unit are encouraging. The past two spring seasons were unseasonably cold and wet, a dangerous time for the young of the year. This past spring, Scotch Creek had a cold snap with snow on June 10th, a critical period for young chicks just hatched. Still, adult numbers on the leks have remained stable the past two years. Maintenance of BPA funded enhancements is necessary to protect and enhance shrub-steppe and to recover and sustain populations of Sharp-tailed grouse and other obligate species.

  7. The feasibility of residential development in the newly master planned Ship Creek area of Anchorage, Alaska

    E-Print Network [OSTI]

    Debenham, Shaun T. (Shaun Todd), 1973-

    2004-01-01T23:59:59.000Z

    The aim of this thesis is to determine if a 40 unit condominium complex located in the Ship Creek area in Anchorage, Alaska, is financially feasible. Historically, Ship Creek has been an industrial area but recently the ...

  8. Ichnotaxonomic assessment of Mazon Creek area trace fossils, Illinois, USA

    E-Print Network [OSTI]

    LoBue, David J.

    2010-08-12T23:59:59.000Z

    The Francis Creek Shale Member (FCSM) of the Mid-Pennsylvanian Carbondale Formation along Mazon Creek in northern Illinois is known for soft-bodied organisms preserved within siderite concretions. Trace fossils, though ...

  9. Geology of the Middle Beaver Creek area, Mason and Gillespie Counties, Texas

    E-Print Network [OSTI]

    Peterson, Don Hamilton

    1959-01-01T23:59:59.000Z

    AREA, NASGR AEG GILhNPIR COGRTIES, TEIAB ABSTRACT The Middle Beaver Creek area is situated on the soutlwsst flank of the Llano ?plift region in Mason and Gillespie Counties, Texas Hooks of Presa?brian, Psleosoie, Mesosois, and Genosois age... ' Figure 1. ? Map of' part of Mason and Gillespie Counties, Texass showing location of' the Middle Beaver Creek Area, on aoetats oosered aerial photographs. In order to aoourateIp locate and plot the oontaots asd faults, the photographs vere studies...

  10. Geology of the Salt Creek area, Mason County, Texas

    E-Print Network [OSTI]

    Harwood, William Eugene

    1959-01-01T23:59:59.000Z

    USRARy A $ M COLLEQE PP 7DAg GEOIAKY OF THE SALT CREEK ARRA, NASON COUIII'Y, TEXAS A Thesis By WILLI All EOGENE EAR%GOD Subsitted to the Graduate School of the Agricultural asd Nechasical College of Texas is partial iulfillsest... Fornation . ~ . e ~ ~ ~ ~ ~ ~ 19 Hiclrory sandstone nenbsr, Cap Hountain linestone nosher ~. . . 19 Lian Ilountain sandstone nenber . ~ . . ~ . . 19 W libel'ns Forsslt ion . . . ~ ~ ~, ~, ~ Welge sandstone nenbeF . ~ ~ ~ gorgon Creek linestone nsnber...

  11. Evaluation of dredged material proposed for ocean disposal from Westchester Creek project area, New York

    SciTech Connect (OSTI)

    Pinza, M.R.; Gardiner, W.W.; Barrows, E.S.; Borde, A.B.

    1996-11-01T23:59:59.000Z

    The objective of the Westchester Creek project was to evaluate proposed dredged material from this area to determine its suitability for unconfined ocean disposal at the Mud Dump Site. Westchester Creek was one of five waterways that the US Army Corps of Engineers- New York District (USACE-NYD) requested the Battelle/Marine Sciences Laboratory (MSL) to sample and evaluate for dredging and disposal in May 1995. The evaluation of proposed dredged material from the Westchester Creek project area consisted of bulk sediment chemical analyses, chemical analyses of dredging site water and elutriate, benthic acute and water-column toxicity tests, and bioaccumulation studies. Thirteen individual sediment core samples were collected from this area and analyzed for grain size, moisture content, and total organic carbon (TOC). One composite sediment sample representing the Westchester Creek area to be dredged, was analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAHs), and 1,4-dichlorobenzene. Dredging site water and elutriate water, which is prepared from the suspended- particulate phase (SPP) of the Westchester Creek sediment composite, was analyzed for metals, pesticides, and PCBS.

  12. Crane Test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution4 Department of Energy CarlsbadWinter (PartCraneCrane

  13. Smith Creek Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |RippeyInformation SlimSloughCreek Geothermal

  14. Big Creek Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher Homes JumpMaintenance |Big Creek Hot Springs

  15. Deer Creek Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision hasda62829c05b NoCounty, Nevada | OpenDeepiDeer Creek

  16. Comparative breeding ecology of Lesser Sandhill Cranes (Grus canadensis canadensis) and Siberian cranes (G. leucogeranus) in Eastern Siberia

    E-Print Network [OSTI]

    Watanabe, Tsuyoshi

    2007-04-25T23:59:59.000Z

    Populations of Lesser Sandhill Crane (Grus canadensis canadensis) have been increasing during the last decades in Eastern Siberia, an area historically known as breeding grounds of endangered Siberian Cranes (G. leucogeranus). Significant overlap...

  17. Geology of the Little Bluff Creek Area, Mason County, Texas

    E-Print Network [OSTI]

    Mangum, Charles Roland

    1960-01-01T23:59:59.000Z

    of the reseax'ch ax ea. A ccaxprehensive report on the Elle~ger gx'oup cx centxal Texas was written by Cloud and Pernea in 1+S~ the Canbrian, Devonian, and Pennsylvanian strata were discussed briefly. Plucxxer (lg$0) prepared a detailed xepOxt coverin...'ea range in age froa Precasbrian to Recent. Along the eastern extreaitiea of this area, Precaub! ian schist and gxanite are exposed. Upper Caabrian aandatonea, lijaeatonea, and shalea occur in seventy-five per cent of the research area. Cretaceous...

  18. Geology of the Upper Schep Creek area, Mason County, Texas

    E-Print Network [OSTI]

    Marshall, Hollis Dale

    1959-01-01T23:59:59.000Z

    ?od the stratigraphy of Texas and encoded tho definition of the Trinity group of tho Lo?or Cretaceous. (ln 1934), Sellards reported on the structure and paleogeography of tho Llano region. This evidenoe indicated a lfississippian age for the beginning of structural... study of the Elleaburger group of central Texas. This report also inoludes stratigraphio studies of the Cretaceous rooks of this region. plunnea" ~ (1900) report on the Carboniferous rocks of this area also included stratigraphy and geologic history...

  19. Geology of the Upper Schep Creek area, Mason County, Texas 

    E-Print Network [OSTI]

    Marshall, Hollis Dale

    1959-01-01T23:59:59.000Z

    'adatio&u&1 between the un(erlyin~. " thin"bedded shales and siitstones and the overlying thick-bedded limestonss, and the contac+ is places at the base of the first thick-bedded limestone. At those places where (he uppex bioherm zone is present... that are littered with characteristic thin slabs of weathered limestone. These outcrops have less brushy and more grassy vegetation that shows as Lighter colored areas on the aerial photo- Btt~t~h ~A&~il: fhs lower contac+ with the . 'sn labs limestone is placed...

  20. Evaluation of dredged material proposed for ocean Disposal from Shoal Harbor/Compton Creek Project Area

    SciTech Connect (OSTI)

    Gardiner, W.W.; Borde, A.B.; Nieukirk, S.L.; Barrows, E.S.; Gruendell, B.D.; Word, J.Q.

    1996-10-01T23:59:59.000Z

    The objective of the Shoal Harbor/Compton Creek Project was to evaluate proposed dredged material from the Shoal harbor/Compton Creek Project Area in Belford and Monmouth, New Jersey to determine its suitability for unconfined ocean disposal at the Mud Dump Site. This was one of five waterways that the US Army Corps of Engineers- New York District requested the Battelle Marine Sciences Laboratory (MSL) to sample and evaluate for dredging and disposal in May 1995. The evaluation of proposed dredged material from the Shoal Harbor/Compton Creek Project area consisted of bulk chemical analyses, chemical analyses of dredging site water and elutriate, benthic and water-column acute toxicity tests and bioaccumulation studies. Eleven core samples were analyzed or grain size, moisture content, and total organic carbon. Other sediments were evaluated for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congers, polynuclear aromatic hydrocarbons, and 1,4- dichlorobenzene. Dredging site water and elutriate water were analyzed for metals, pesticides, and PCBs.

  1. SWPF Crane Lift Operation

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    A multiple vview shot of the SWPF crane lift operation at the Savannah River Site. Funded by the Recovery Act.

  2. Post-Fire Debris-Flow Hazard Assessment of the Area Burned by the 2013 Beaver Creek Fire near Hailey, Central Idaho

    E-Print Network [OSTI]

    Torgersen, Christian

    Post-Fire Debris-Flow Hazard Assessment of the Area Burned by the 2013 Beaver Creek Fire near-flow hazard assessment of the area burned by the 2013 Beaver Creek Fire near Hailey, central Idaho: U­1273 Prepared in cooperation with Blaine County, Idaho #12;#12;Post-Fire Debris-Flow Hazard Assessment

  3. Crane Creek Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs and Heat Islands2007) |of LosPublisher NotWind Farm

  4. Evolution of a Compound Channel: Tassajara Creek, Dublin, California

    E-Print Network [OSTI]

    Butler, Nathaniel L.; Nolan, Lindsey

    2007-01-01T23:59:59.000Z

    Morphology in the Tassajara Creek Restoration Project Area:Back: Monitoring the Tassajara Creek Restoration Project. UCBed Elevation Tassajara Creek. UC Berkeley Water Resources

  5. Continued monitoring of the Tassajara Creek restoration project 2004

    E-Print Network [OSTI]

    Oden, Matt; DeHollan, Aurel

    2004-01-01T23:59:59.000Z

    Morphology in the Tassajara Creek Restoration Project Area:Back: Monitoring the Tassajara Creek Restoration Project. UCBed Elevation Tassajara Creek. UC Berkeley Water Resources

  6. Tassajara Creek restoration project: Continued riparian habitat monitoring

    E-Print Network [OSTI]

    Trinh, Michelle; Percelay, Julie

    2008-01-01T23:59:59.000Z

    Consulting. 2001. Tassajara Creek Restoration Project AnnualMorphology in the Tassajara Creek Restoration Project Area:back: Monitoring the Tassajara Creek Restoration Project. UC

  7. Looking forward, looking back : monitoring the Tassajara Creek Restoration Project

    E-Print Network [OSTI]

    Krofta, Chad; Novotney, Michael

    2003-01-01T23:59:59.000Z

    Station Elev. Tassajara Creek Long Profile Compiled SurveyImprovement Plans for Tassajara Creek Restoration. Downs, P.Morphology in the Tassajara Creek Restoration Project Area:

  8. The Dry Susie Creek Site: Site Structure of Middle Archaic Habitation Features from the Upper Humboldt River Area, Nevada

    E-Print Network [OSTI]

    Smith, Craig S; Reust, Thomas P

    1995-01-01T23:59:59.000Z

    The Archaeology of James Creek Shelter. University of UtahIn: The Archaeology of James Creek Shelter, Robert G. Elston244-266 (1995). The Dry Susie Creek Site: Site Structure of

  9. White Oak Creek watershed: Melton Valley area Remedial Investigation report, at the Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 2, Appendixes A and B

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    This document contains Appendixes A ``Source Inventory Information for the Subbasins Evaluated for the White Oak Creek Watershed`` and B ``Human Health Risk Assessment for White Oak Creek / Melton Valley Area`` for the remedial investigation report for the White Oak Creek Watershed and Melton Valley Area. Appendix A identifies the waste types and contaminants for each subbasin in addition to the disposal methods. Appendix B identifies potential human health risks and hazards that may result from contaminants present in the different media within Oak Ridge National Laboratory sites.

  10. Geology of the Schep-Panther Creek Area, Mason County, Texas

    E-Print Network [OSTI]

    Bryant, George Frank

    1959-01-01T23:59:59.000Z

    Psiat Posh shale asahor QsrSsa Crash liosstoos asahsr salSs eass&t~ osahsr Rilar f~tiaa CJQOR14N SEMI All of the reoogafssd aaEwrs of the Upper Caabrisa fa the L)?ae uplift oro repreeeated is tho Bebop - yuatber Creek ense lUddle ~ a4 Loser...

  11. Geology of the Bee Branch-Mill Creek area, Mason County, Texas 

    E-Print Network [OSTI]

    Miller, George Howard

    1957-01-01T23:59:59.000Z

    . andstcns member. ?organ Creek lmesrcne res?er . Pomrt Ie rn shale m, . mber . Bio? '", . one ct' th . "oint Peck . hale '&au Saba limestcno member . Ordoeician sy;tem . 12 13 14 15 15 16 16 17 19 Ellen? urger group. Mississippian system..., Chappel '"creation. Barnet t shale. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 4 ~ ~ 25 26 Pennsylvanian system. ~ ~ ~ ~ ~ ~ 28 N*rble Falls group 'I ~ ~ ~ ~ ~ ~ ~ ~ ~ &mithsick 'c rr, . * Lic n. \\ ~ Cretaceous system . Quaternarr sy ten...

  12. Camas Creek.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would connect two separate protect- ed areas owned by the Idaho Department of Fish and Game, creating a contiguous wildlife area of almost 5,000 acres. Camas Creek and...

  13. Columbia River Wildlife Mitigation Habitat Evaluation Procedures Report / Scotch Creek Wildlife Area, Berg Brothers, and Douglas County Pygmy Rabbit Projects.

    SciTech Connect (OSTI)

    Ashley, Paul R.

    1997-01-01T23:59:59.000Z

    This Habitat Evaluation Procedure study was conducted to determine baseline habitat units (HUs) on the Scotch Creek, Mineral Hill, Pogue Mountain, Chesaw and Tunk Valley Habitat Areas (collectively known as the Scotch Creek Wildlife Area) in Okanogan County, Sagebrush Flat and the Dormaler property in Douglas County, and the Berg Brothers ranch located in Okanogan County within the Colville Reservation. A HEP team comprised of individuals from the Washington Department of Fish and Wildlife, the Confederated Tribes of the Colville Reservation, and the Natural Resources Conservation Service (Appendix A) conducted baseline habitat surveys using the following HEP evaluation species: mule deer (Odocoileus hemionus), sharp-tailed grouse (Tympanuchus phasianellus), pygmy rabbit (Brachylagus idahoensis), white-tailed deer (Odocoileus virginiana), mink (Mustela vison), Canada goose (Branta canadensis), downy woodpecker (Picoides pubescens), Lewis woodpecker (Melanerpes lewis), and Yellow warbler (Dendroica petechia). Results of the HEP analysis are listed below. General ratings (poor, marginal, fair, etc.,) are described in Appendix B. Mule deer habitat was marginal lacking diversity and quantify of suitable browse species. Sharp-tailed grouse habitat was marginal lacking residual nesting cover and suitable winter habitat Pygmy rabbit habitat was in fair condition except for the Dormaier property which was rated marginal due to excessive shrub canopy closure at some sites. This report is an analysis of baseline habitat conditions on mitigation project lands and provides estimated habitat units for mitigation crediting purposes. In addition, information from this document could be used by wildlife habitat managers to develop management strategies for specific project sites.

  14. Hydrocarbon trapping mechanisms in the Miller Creek area of the Powder River Basin, Wyoming

    E-Print Network [OSTI]

    Armstrong, Jennifer Ann

    1975-01-01T23:59:59.000Z

    production comes from Lower Cretaceous and Lower Permian sandstones. The horison studied, the Lower Cretaceous Dakota Sandstone, is a thin clastic wedge deposited during the initial Cretaceous transgression oi' the Artie Ocean - Gulf of Mexico seaway over... for the channels end orobable Recerwoir Trigood Lucerne 3 32-AN-66W Regional Pet Inc Corda%1 F-1 9-AN-68M SP -10~ 0 oem-m 50 0 oh'-m SP -10+ 6' 5900 Figure 3, Rlectric Log Profiles of Regional and Reservoir Dakota Sandstones. 10 I Q MILLER CREEK...

  15. Spatial and temporal winter territory use and behavioral responses of whooping cranes to human activities

    E-Print Network [OSTI]

    LaFever, Kristin E.

    2009-06-02T23:59:59.000Z

    cranes during winter 2003-2004 and 2004-2005 at ANWR, Texas, USA? 20 3 Percent time spent in locomotion and flight by territorial whooping crane families throughout winter 2003-2004 and 2004-2005 at ANWR, Texas, USA...????????????????????????? 22 4 Mean movement velocity (meters traveled/min) of 5 whooping crane families during winter 2003-2004 and 2004-2005 at ANWR, Texas, USA?. 34 5 Area (ha) of each habitat type within the winter territory of 5 whooping...

  16. Crane Operation Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution4 Department of Energy CarlsbadWinter (PartCrane

  17. Codornices Creek Corridor: Land Use Regulation, Creek Restoration, and their Impacts on the Residents’ Perceptions

    E-Print Network [OSTI]

    Stokenberga, Aiga; Sen, Arijit

    2013-01-01T23:59:59.000Z

    and perception of biodiversity and ecology is their activecommunity and perception of area ecology: individual-levelOutcomes 2 & 3: Perception of Area Ecology & Creek’s Role in

  18. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 3 Appendix C

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    This report provides details on the baseline ecological risk assessment conducted in support of the Remedial Investigation (RI) Report for the Melton Valley areas of the White Oak Creek watershed (WOCW). The RI presents an analysis meant to enable the US Department of Energy (DOE) to pursue a series of remedial actions resulting in site cleanup and stabilization. The ecological risk assessment builds off of the WOCW screening ecological risk assessment. All information available for contaminated sites under the jurisdiction of the US Department of Energy`s Comprehensive Environmental Response, Compensation, and Liability Act Federal Facilities Agreement within the White Oak Creek (WOC) RI area has been used to identify areas of potential concern with respect to the presence of contamination posing a potential risk to ecological receptors within the Melton Valley area of the White Oak Creek watershed. The risk assessment report evaluates the potential risks to receptors within each subbasin of the watershed as well as at a watershed-wide scale. The WOC system has been exposed to contaminant releases from Oak Ridge National Laboratory and associated operations since 1943 and continues to receive contaminants from adjacent waste area groupings.

  19. Structural geology of the Irons Fork - North Fork Creek area, Lake Ouachita, Arkansas 

    E-Print Network [OSTI]

    White, Marjorie Ann

    1980-01-01T23:59:59.000Z

    shale marks an abrupt increase in depo- sitional rate for Carboniferous rocks; Morris (1974) calculates a rate of 333 m/m. y. Cline (1966) believes this is the beginning of flysch sedimentation within the Ouachita trough. A southeastern source has.... The stratigraphic units in the area can be divided into three structural packages with different mechanical responses based on their observed style of deformation. The Mazarn-Womble shale units behaved as one macroscopically ductile package. Flexural flow folds...

  20. Structural geology of the Irons Fork - North Fork Creek area, Lake Ouachita, Arkansas

    E-Print Network [OSTI]

    White, Marjorie Ann

    1980-01-01T23:59:59.000Z

    shale marks an abrupt increase in depo- sitional rate for Carboniferous rocks; Morris (1974) calculates a rate of 333 m/m. y. Cline (1966) believes this is the beginning of flysch sedimentation within the Ouachita trough. A southeastern source has.... The stratigraphic units in the area can be divided into three structural packages with different mechanical responses based on their observed style of deformation. The Mazarn-Womble shale units behaved as one macroscopically ductile package. Flexural flow folds...

  1. Closure certification report for the Bear Creek burial grounds B area and walk-in pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    On July 5, 1993, the revised RCRA Closure Plan for the Bear Creek Burial Grounds B Area and Walk-In Pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, DOE/OR/01-1100&D3 and Y/ER-53&D3, was approved by the Tennessee Department of Environment and Conservation (TDEC). The closure activities described in that closure plan have been performed. The purpose of this document is to summarize the closure activities for B Area and Walk-In Pits (WIPs), including placement of the Kerr Hollow Quarry debris at the WIPs.

  2. Scheduling co-operating stacking cranes with predetermined ...

    E-Print Network [OSTI]

    2011-11-19T23:59:59.000Z

    Nov 7, 2011 ... This reduces the size of the search space (in comparison to the first option), .... In terms of the graphical model, the means to find a minimum ..... under the assumption that both cranes enter the area of conflict as late as ...

  3. The perfect storm : flow through a restored compound channel : Tassajara Creek, Dublin, CA : assessment of the roughness, flow, floodplain conveyance, and compound channel capacity of the restoration of Tassajara Creek from the high-water marks of a 20-year storm

    E-Print Network [OSTI]

    Chan, Andre; Heard, Sarah K

    2006-01-01T23:59:59.000Z

    Morphology in the Tassajara Creek Restoration Project Area:Compound Channel, Tassajara Creek, Dublin, CA Andre Chan andBack: Monitoring the Tassajara Creek Restoration Project. UC

  4. RCRA closure plan for the Bear Creek Burial Grounds B Area and Walk- In Pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    In June 1987, the RCRA Closure/Postclosure Plan for the Bear Creek Burial Grounds (BCBG) was submitted to the Tennessee Department of Environment and Conservation (TDEC) for review and approval. TDEC modified and issued the plan approved on September 30, 1987. Subsequently, this plan was modified again and approved as Y/TS-395, Revised RCRA Closure Plan for the Bear Creek Burial Grounds (February 29, 1988). Y/TS-395 was initially intended to apply to A Area, C-West, B Area, and the Walk-In Pits of BCBG. However, a concept was developed to include the B Area (non-RCRA regulated) in the Walk-In Pits so that both areas would be closed under one cap. This approach included a tremendous amount of site preparation with an underlying stabilization base of 16 ft of sand for blast protection. The plan was presented to the state of Tennessee on March 8, 1990, and the Department of Energy was requested to review other unique alternatives to close the site. This amended closure plan goes further to include inspection and maintenance criteria along with other details.

  5. Waste area grouping 2 Phase I task data report: Ecological risk assessment and White Oak Creek watershed screening ecological risk assessment

    SciTech Connect (OSTI)

    Efroymson, R.A.; Jackson, B.L.; Jones, D.S. [and others] [and others

    1996-05-01T23:59:59.000Z

    This report presents an ecological risk assessment for Waste Area Grouping (WAG) 2 based on the data collected in the Phase I remedial investigation (RI). It serves as an update to the WAG 2 screening ecological risk assessment that was performed using historic data. In addition to identifying potential ecological risks in WAG 2 that may require additional data collection, this report serves to determine whether there are ecological risks of sufficient magnitude to require a removal action or some other expedited remedial process. WAG 2 consists of White Oak Creek (WOC) and its tributaries downstream of the Oak Ridge National Laboratory (ORNL) main plant area, White Oak Lake (WOL), the White Oak Creek Embayment of the Clinch River, associated flood plains, and the associated groundwater. The WOC system drains the WOC watershed, an area of approximately 16.8 km{sup 2} that includes ORNL and associated WAGs. The WOC system has been exposed to contaminants released from ORNL and associated operations since 1943 and continues to receive contaminants from adjacent WAGs.

  6. Geomorphic, vegetation and flooding characteristics for lower San Pablo Creek : a baseline study

    E-Print Network [OSTI]

    Anderson, Shannah; Balazs, Carolina

    2004-01-01T23:59:59.000Z

    of California at Berkeley. Urban Creeks Council.2002.San Pablo Creek at Kennedy Plaza Park Bank Restoration.Upper Alluvial Valley. The creek in this area was incised 25

  7. Biological monitoring of Upper Three Runs Creek, Savannah River Plant, Aiken County, South Carolina. Final report on macroinvertebrate stream assessments for F/H area ETF effluent discharge, July 1987--February 1990

    SciTech Connect (OSTI)

    Specht, W.L.

    1991-10-01T23:59:59.000Z

    In anticipation of the fall 1988 start up of effluent discharges into Upper Three Creek by the F/H Area Effluent Treatment Facility of the Savannah River Site, Aiken, SC, a two and one half year biological study was initiated in June 1987. Upper Three Runs Creek is an intensively studied fourth order stream known for its high species richness. Designed to assess the potential impact of F?H area effluent on the creek, the study includes qualitative and quantitative macroinvertebrate stream surveys at five sites, chronic toxicity testing of the effluent, water chemistry and bioaccumulation analysis. This final report presents the results of both pre-operational and post-operational qualitative and quantitative (artificial substrate) macroinvertebrate studies. Six quantitative and three qualitative studies were conducted prior to the initial release of the F/H ETF effluent and five quantitative and two qualitative studies were conducted post-operationally.

  8. Camel Creek Minnamoolka

    E-Print Network [OSTI]

    Greenslade, Diana

    Creek Tr ebonne California Ly nd Hellhole Pac ksad dle Little Star River Ella M ic hael Davidson M eunga Echo Mid dle Leich hardt Blund er NobCreek Stony Barron Martin Deception Paddys Creek Broken River

  9. Platte River flow in relation to crane foraging habits Crane numbers in relation to time (year and date)

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    Platte River flow in relation to crane foraging habits Crane numbers in relation to time (year in the Central Platte River Valley (CPRV) each spring Individual cranes spend 3-4 weeks in the CPRV building fat Factors Influencing Distribution and Abundance of Sandhill Cranes (Grus canadensis) in the Central Platte

  10. 18 years of restoration on Codornices Creek

    E-Print Network [OSTI]

    Fullmer, Chris

    2008-01-01T23:59:59.000Z

    Friends of Five Creeks Projects."  Friends of Five Creeks.  Friends of Five Creeks.  25 Nov.   2008 Creeks  Council.  Urban Creeks 

  11. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 1 Main Text

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    The purpose of this Remedial Investigation (RI) report is to present an analysis of the Melton Valley portion of the White Oak Creek (WOC) watershed, which will enable the US Department of Energy (DOE) to pursue a series of cost-effective remedial actions resulting in site cleanup and stabilization. In this RI existing levels of contamination and radiological exposure are compared to levels acceptable for future industrial and potential recreational use levels at the site. This comparison provides a perspective for the magnitude of remedial actions required to achieve a site condition compatible with relaxed access restrictions over existing conditions. Ecological risk will be assessed to evaluate measures required for ecological receptor protection. For each subbasin, this report will provide site-specific analyses of the physical setting including identification of contaminant source areas, description of contaminant transport pathways, identification of release mechanisms, analysis of contaminant source interactions with groundwater, identification of secondary contaminated media associated with the source and seepage pathways, assessment of potential human health and ecological risks from exposure to contaminants, ranking of each source area within the subwatershed, and outline the conditions that remedial technologies must address to stop present and future contaminant releases, prevent the spread of contamination and achieve the goal of limiting environmental contamination to be consistent with a potential recreational use of the site.

  12. POST CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 417: CENTRAL NEVADA TEST AREA - SURFACE, HOT CREEK VALLEY, NEVADA, FOR CALENDAR YEAR 2004

    SciTech Connect (OSTI)

    BECHTEL NEVADA; NNSA NEVADA SITE OFFICE

    2005-04-01T23:59:59.000Z

    This post-closure inspection and monitoring report has been prepared according to the stipulations laid out in the Closure Report (CR) for Corrective Action Unit (CAU) 417, Central Nevada Test Area (CNTA)--Surface (U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office [NNSA/NV], 2001), and the Federal Facility Agreement and Consent Order (FFACO, 1996). This report provides an analysis and summary of site inspections, subsidence surveys, meteorological information, and soil moisture monitoring data for CAU 417, which is located in Hot Creek Valley, Nye County, Nevada. This report covers Calendar Year 2004. Inspections at CAU 417 are conducted quarterly to document the physical condition of the UC-1, UC-3, and UC-4 soil covers, monuments, signs, fencing, and use restricted areas. The physical condition of fencing, monuments, and signs is noted, and any unusual conditions that could impact the integrity of the covers are reported. The objective of the soil moisture monitoring program is to monitor the stability of soil moisture conditions within the upper 1.2 meters (m) (4 feet [ft]) of the UC-1 Central Mud Pit (CMP) cover and detect changes that may be indicative of moisture movement exceeding the cover design performance expectations.

  13. Post-Closure Inspection and Monitoring Report for Corrective Action Unit 417: Central Nevada Test Area Surface, Hot Creek Valley, Nevada For Calendar Year 2006

    SciTech Connect (OSTI)

    None

    2007-06-01T23:59:59.000Z

    Corrective Action Unit (CAU) 417, Central Nevada Test Area - Surface, is located in Hot Creek Valley in northern Nye County, Nevada, and consists of three areas commonly referred to as UC-1, UC-3, and UC-4. CAU 417 consists of 34 Corrective Action Sites (CASs) which were closed in 2000 (U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office, 2001). Three CASs at UC-1 were closed in place with administrative controls. At CAS 58-09-01, Central Mud Pit (CMP), a vegetated soil cover was constructed over the mud pit. At the remaining two sites, CAS 58-09-02, Mud Pit, and CAS 58-09-05, Mud Pits (3), aboveground monuments and warning signs were installed to mark the CAS boundaries. Three CASs at UC-3 were closed in place with administrative controls. Aboveground monuments and warning signs were installed to mark the site boundaries at CAS 58-09-06, Mud Pits (5), CAS 58-25-01, Spill, and CAS 58-10-01, Shaker Pad Area. Two CASs that consist of five sites at UC-4 were closed in place with administrative controls. At CAS 58-09-03, Mud Pits (5), an engineered soil cover was constructed over Mud Pit C. At the remaining three sites in CAS 58-09-03 and at CAS 58-10-05, Shaker Pad Area, aboveground monuments and warning signs were installed to mark the site boundaries. The remaining 26 CASs at CAU 417 were either clean-closed or closed by taking no further action.

  14. Mantle Helium And Carbon Isotopes In Separation Creek Geothermal...

    Open Energy Info (EERE)

    Mantle Helium And Carbon Isotopes In Separation Creek Geothermal Springs, Three Sisters Area, Central Oregon- Evidence For Renewed Volcanic Activity Or A Long Term Steady State...

  15. Squeezer Creek.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    critical habitat for bull trout and westslope cutthroat trout in a reach of Squeezer Creek in Lake County. Squeezer Creek provides high-quality cold water habitat for native fi...

  16. CRANE/HOIST SAFETY PROGRAM Texas Tech University

    E-Print Network [OSTI]

    Zhang, Yuanlin

    HOLDING BRAKE..........................................................................................6) are protected from potential hazards associated with the movement of equipment and material. The Crane

  17. Forest fires, explosions, and random trees Edward Crane

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    Forest fires, explosions, and random trees Edward Crane HIMR, UoB 13th January 2014 #12 and James Martin at the University of Oxford. Edward Crane (HIMR, UoB) Forest fires, explosions, and random process and the Brownian CRT. Edward Crane (HIMR, UoB) Forest fires, explosions, and random trees 13th

  18. Site characterization summary report for dry weather surface water sampling upper East Fork Poplar Creek characterization area Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    This report describes activities associated with conducting dry weather surface water sampling of Upper East Fork Poplar Creek (UEFPC) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. This activity is a portion of the work to be performed at UEFPC Operable Unit (OU) 1 [now known as the UEFPC Characterization Area (CA)], as described in the RCRA Facility Investigation Plan for Group 4 at the Oak- Ridge Y-12 Plant, Oak Ridge, Tennessee and in the Response to Comments and Recommendations on RCRA Facility Investigation Plan for Group 4 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Volume 1, Operable Unit 1. Because these documents contained sensitive information, they were labeled as unclassified controlled nuclear information and as such are not readily available for public review. To address this issue the U.S. Department of Energy (DOE) published an unclassified, nonsensitive version of the initial plan, text and appendixes, of this Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) Plan in early 1994. These documents describe a program for collecting four rounds of wet weather and dry weather surface water samples and one round of sediment samples from UEFPC. They provide the strategy for the overall sample collection program including dry weather sampling, wet weather sampling, and sediment sampling. Figure 1.1 is a schematic flowchart of the overall sampling strategy and other associated activities. A Quality Assurance Project Plan (QAPJP) was prepared to specifically address four rounds of dry weather surface water sampling and one round of sediment sampling. For a variety of reasons, sediment sampling has not been conducted and has been deferred to the UEFPC CA Remedial Investigation (RI), as has wet weather sampling.

  19. Analysis of crane and lifting accidents in North America from 2004 to 2010

    E-Print Network [OSTI]

    King, Ray Addison

    2012-01-01T23:59:59.000Z

    Cranes are the fundamental machinery used during lifting operations, and are crucial to the construction industry. Several key construction processes would be impossible without cranes and the benefits they provide. Cranes ...

  20. Waller Creek Urban Redevelopment

    E-Print Network [OSTI]

    McDonald, S.

    2013-01-01T23:59:59.000Z

    ;#8;#29; Marie Crane#0;#8;#29; Russell Douglass#0;#8;#29; Sue Edwards#0;#8;#29; Gary Farmer#0;#8;#29; Jeanne Klein#0;#8;#29; Teresa Long Eduardo Margain#0;#8;#29; Chris Mattsson Tom Meredith#0;#8;#29; Leslie Moore#0;#8;#29; Eva Muńoz#0;#8;#29; Erin Nelson#0...

  1. Collaborative Monitoring in Walnut Creek, California1

    E-Print Network [OSTI]

    Standiford, Richard B.

    that they gained insight into priorities of Preserve users and knowledge of areas that might require new management regeneration and native grass populations in target management areas in the four Open Space Preserves and had to re-examine some of their own assumptions. The City of Walnut Creek managers stated

  2. Thompson Creek, Poway, California THOMPSON CREEK GROUNDWATER SUSTAINABILITY STUDY

    E-Print Network [OSTI]

    Ponce, V. Miguel

    Thompson Creek, Poway, California THOMPSON CREEK GROUNDWATER SUSTAINABILITY STUDY Victor M. Ponce 07 May 2012 #12;EXECUTIVE SUMMARY The groundwater resources of Thompson Creek, in Poway, California. Significantly, a spring in Lower Thompson Creek, documented by USGS in the 1980s, is no longer there. Aquifer

  3. POST CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 417: CENTRAL NEVADA TEST AREA - SURFACE, HOT CREEK VALLEY, NEVADA; FOR CALENDAR YEAR 2005

    SciTech Connect (OSTI)

    NONE

    2006-04-01T23:59:59.000Z

    Corrective Action Unit (CAU) 417, Central Nevada Test Area - Surface, is located in Hot Creek Valley in northern Nye County, Nevada, and consists of three areas commonly referred to as UC-1, UC-3, and UC-4. CAU 417 consists of 34 Corrective Action Sites (CASs) which were closed in 2000 (U. S. Department of Energy, National Nuclear Security Administration Nevada Operations Office, 2001). Three CASs at UC-1 were closed in place with administrative controls. At CAS 58-09-01, Central Mud Pit (CMP), a vegetated soil cover was constructed over the mud pit. At the remaining two sites CAS 58-09-02, Mud Pit and 58-09-05, Mud Pits (3), aboveground monuments and warning signs were installed to mark the CAS boundaries. Three CASs at UC-3 were closed in place with administrative controls. Aboveground monuments and warning signs were installed to mark the site boundaries at CAS 58-09-06, Mud Pits (5), CAS 58-25-01, Spill and CAS 58-10-01, Shaker Pad Area. Two CASs that consist of five sites at UC-4 were closed in place with administrative controls. At CAS 58-09-03, Mud Pits 9, an engineered soil cover was constructed over Mud Pit C. At the remaining three sites in CAS 58-09-03 and at CAS 58-10-05, Shaker Pad Area, aboveground monuments and warning signs were installed to mark the site boundaries. The remaining 26 CASs at CAU 417 were either clean-closed or closed by taking no further action. Quarterly post-closure inspections are performed at the CASs that were closed in place at UC-I, UC-3, and UC-4. During calendar year 2005, site inspections were performed on March 15, June 16, September 22, and December 7. The inspections conducted at the UC-1 CMP documented that the site was in good condition and continued to show integrity of the cover unit. No new cracks or fractures were observed until the December inspection. A crack on the west portion of the cover showed evidence of lateral expansion; however, it is not at an actionable level. The crack will be sealed by filling with bentonite during the first quarter of 2006 and monitored during subsequent inspections. The cover vegetation was healthy and well established. No issues were identified with the CMP fence, gate, or subsidence monuments. No issues were identified with the warning signs and monuments at the other two UC-1 locations. The inspections at UC-3 indicated that the sites are in excellent condition. All monuments and signs showed no displacement, damage, or removal. A small erosion gully from spring rain runoff was observed during the June inspection, but it did not grow to an actionable level during 2005. No other issues or concerns were identified. Inspections performed at UC-4 Mud Pit C cover revealed that erosion rills were formed during March and September exposing the geosynthetic clay liner. Both erosion rills were repaired within 90 days of reporting. Sparse vegetation is present on the cover. The overall condition of the monuments, fence, and gate are in good condition. No issues were identified with the warning signs and monuments at the other four UC-4 locations. Subsidence surveys were conducted at UC-1 CMP and UC-4 Mud Pit C in March and September of 2005. The results of the subsidence surveys indicate that the covers are performing as expected, and no unusual subsidence was observed. The June vegetation survey of the UC-1 CMP cover and adjacent areas indicated that the revegetation has been very successful. The vegetation should continue to be monitored to document any changes in the plant community and identify conditions that could potentially require remedial action in order to maintain a viable vegetative cover on the site. Vegetation surveys should be conducted only as required. Precipitation during 2005 was above average, with an annual rainfall total of 21.79 centimeters (8.58 inches). Soil moisture content data show that the UC-1 CMP cover is performing as designed, with evapotranspiration effectively removing water from the cover. It is recommended to continue quarterly site inspections and the collection of soil moisture data for the UC-1 CMP cove

  4. Canasawacta Creek Project: Chenango County, New York

    E-Print Network [OSTI]

    O’Reilly, Mary; MacEwan, David; Greco, Brandon; Nelson, Debra; Long, George; Rowen, John

    2007-01-01T23:59:59.000Z

    Abstract: The Canasawacta Creek Watershed Initiative grewthe inhabitants of the creek valley. Rather than continuefour mile stretch of the creek was performed in early June,

  5. Spooner creek restoration and fish ladder

    E-Print Network [OSTI]

    Moore, Tom

    2003-01-01T23:59:59.000Z

    SPOONER CREEK RESTORATION AND FISH LADDER Tom Moore (Phone:847-3132 Abstract Spooner Creek is a dendritic second orderflows into Cattaraugus Creek, a tributary of Lake Erie.

  6. Biodiversity Corridors in Alamo Creek, Vacaville, California

    E-Print Network [OSTI]

    Urrechaga, Jose; Wei, Xinghan

    2012-01-01T23:59:59.000Z

    Horn, Oct, 2003 4.   Alamo Creek final report, 2005 5.  Biodiversity Corridors in Alamo Creek, Vacaville, Californiabiodiversity corridors along the creek in the city and uses

  7. Daylighting Islais Creek : a feasibility study

    E-Print Network [OSTI]

    Jencks, Rosey; Leonardson, Rebecca

    2004-01-01T23:59:59.000Z

    for daylighting the creek and other green infrastructure.Daylighting Islais Creek for stormwater conveyance wouldGlen Park Cayuga Islais Creek Runoff Elev. Slope coeff.

  8. Microsoft Word - XX 13 Coyote Creek land acquisition provides...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wildlife Area and the city of Eugene's Coyote Prairie wetland mitigation site, Coyote Creek provides a mix of rare wet prairie and riparian forest. Purchased through a closed-bid...

  9. Addendum to the remedial investigation report on Bear Creek Valley Operable Unit 2 (Rust Spoil Area, Spoil Area 1, and SY-200 Yard) at the Oak Ridge Y-12 Plant Oak Ridge, Tennessee. Volume 1: Main text

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    This addendum to the Remedial Investigation (RI) Report on Bear Creek Valley Operable Unit (OU) 2 at the Oak Ridge Y-12 Plant was prepared in accordance with requirements under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for reporting the results of a site characterization for public review. This addendum is a supplement to a document that was previously issued in January 1995 and that provided the Environmental Restoration Program with information about the results of the 1993 investigation performed at OU 2. The January 1995 D2 version of the RI Report on Bear Creek Valley OU 2 included information on risk assessments that have evaluated impacts to human health and the environment. Information provided in the document formed the basis for the development of the Feasibility Study Report. This addendum includes revisions to four chapters of information that were a part of the document issued in January 1995. Specifically, it includes revisions to Chaps. 2, 3, 4, and 9. Volume 1 of this document is not being reissued in its entirety as a D3 version because only the four chapters just mentioned have been affected by requested changes. Note also that Volume 2 of this RI Report on Bear Creek Valley OU 2 is not being reissued in conjunction with Volume 1 of this document because there have been no changes requested or made to the previously issued version of Volume 2 of this document.

  10. CRADIT FARM DRIVE CREEK DRIVE

    E-Print Network [OSTI]

    Davis, H. Floyd

    CRADIT FARM DRIVE THURSTON CREEK DRIVE CENTRALAVENUE ENUE UNIVERSITY AVENUE EASTAVENUE FOREST HOME CREEK DRIVE CENTRALAVENUE ENUE UNIVERSITY AVENUE EASTAVENUE FOREST HOME DRIVE HIGHLAND ROBERTS PLACE GARDEN DEANS ARTS QUAD RAWLINGS GREEN R. URIS GARDEN AG QUAD BIOLOGY BEEBE LAK FALL CREEK Clark Hall Olin

  11. Historical narratives of Big Chico Creek Watershed Alliance and Butte Creek Watershed Conservancy

    E-Print Network [OSTI]

    King, Mary Ann; Matz, Mike

    2003-01-01T23:59:59.000Z

    Passage on Upper Butte Creek: An Assessment of the NaturalHistorical Narratives of Big Chico Creek Watershed Allianceand Butte Creek Watershed Conservancy Mary Ann King and Mike

  12. Codornices Creek Corridor: Land Use Regulation, Creek Restoration, and their Impacts on the Residents’ Perceptions

    E-Print Network [OSTI]

    Stokenberga, Aiga; Sen, Arijit

    2013-01-01T23:59:59.000Z

    Restoration on Codornices Creek. Restoration of Rivers andHarper Colophon. Cordonices Creek Corridor Haggerty, L.Associates. 2003. Codornices Creek Watershed Restoration

  13. Along Sausal Creek : an assessment of vegetation, habitat, and morphology of an adopted urban creek

    E-Print Network [OSTI]

    Chanse, Vikki; Herron, Christy

    2003-01-01T23:59:59.000Z

    Lower Reaches of Sausal Creek, Oakland, California." ReportInstitute and Friends of Sausal Creek. Paulsell, Karen.2003. “Sausal Creek Revegetation Project Understory

  14. Decontamination of a canyon crane at the Savannah River Plant

    SciTech Connect (OSTI)

    Stevenson, D A; Moore, D B; Bowers, J W; Brown, D L

    1985-01-01T23:59:59.000Z

    Decontamination of the crane is reviewed in terms of the health physics aspects, controls during decontamination efforts, and the resultant radiation exposure rates for decontamination efforts. 17 figs., (ACR)

  15. Winging it : a bold step toward the whooping crane's return

    E-Print Network [OSTI]

    McKenna, Philip Rood

    2006-01-01T23:59:59.000Z

    Since the fall of 2001, biologists have taught endangered whooping cranes how to migrate over a once-lost course stretching from the wetlands of central Wisconsin to the mud flats of Florida's Gulf Coast. Wildlife biologists ...

  16. Crane Leadership Scholars 2010-2011 Agni Chandora

    E-Print Network [OSTI]

    Arnold, Jonathan

    Crane Leadership Scholars 2010-2011 Agni Chandora Agni Chandora, a junior from Snellville, GA-year Marketing major and Theatre and Film Studies minor from Macon, GA. Brianna is a Leonard Leadership Scholar

  17. Manufacturing Battle Creek

    E-Print Network [OSTI]

    de Doncker, Elise

    to the manufacturing sector in Western Michigan. In addition to serving as director of the MRC, Dr. Patten is alsoManufacturing Research Center Kalamazoo Battle Creek The College of Engineering and Applied Sciences The Supporting manufacturing industries by providing opportunities for collaboration with faculty

  18. Hydrology and channel form of an urban creek : Rheem Creek in the context of restoration efforts

    E-Print Network [OSTI]

    Balazs, Carolina; Lang, Micah

    2005-01-01T23:59:59.000Z

    of Reach 3 Hydrology and Channel Form of an Urban Creek:Rheem Creek in the Context of Restoration Efforts CarolinaChannel Form of an Urban Creek: Rheem Creek in the Context

  19. Remedial investigation work plan for Bear Creek Valley Operable Unit 2 (Rust Spoil Area, SY-200 Yard, Spoil Area 1) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    The enactment of the Resource Conservation and Recovery Act (RCRA) in 1976 and the Hazardous and Solid Waste Amendments (HSWA) to RCRA in 1984 created management requirements for hazardous waste facilities. The facilities within the Oak Ridge Reservation (ORR) were in the process of meeting the RCRA requirements when ORR was placed on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) National Priorities List (NPL) on November 21, 1989. Under RCRA, the actions typically follow the RCRA Facility Assessment (RFA)/RCRA Facility Investigation (RFI)/Corrective Measures Study (CMS)/Corrective Measures implementation process. Under CERCLA the actions follow the PA/SI/Remedial Investigation (RI)/Feasibility Study (FS)/Remedial Design/Remedial Action process. The development of this document will incorporate requirements under both RCRA and CERCLA into an RI work plan for the characterization of Bear Creek Valley (BCV) Operable Unit (OU) 2.

  20. Channel incision in Rodeo Creek, Marin County

    E-Print Network [OSTI]

    Bass, Phoebe; Choy, Min

    2004-01-01T23:59:59.000Z

    on the Wetlands of Rodeo Creek in the Marin Headlands,channel. Cross Section 3 Rodeo Creek is 5 ft wide at Cross1.55 ft deep. Here, Rodeo Creek is a small channel running

  1. Willow Creek - Sept 2009.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Willow Creek land acquisition protects habitat in Willamette Valley The Bonneville Power Administration is working with The Nature Conservancy to acquire and manage a 10-acre...

  2. Crane Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCp Holdings Llc Jump to:Cranbury, New

  3. Post-Closure Inspection and Monitoring Report for Corrective Action Unit 417: Central Nevada Test Area Surface, Hot Creek Valley, Nevada

    SciTech Connect (OSTI)

    None

    2009-10-01T23:59:59.000Z

    This report presents results of data collected during the annual post-closure site inspection conducted at the Central Nevada Test Area, surface Corrective Action Unit (CAU) 417 in June 2009. The annual post-closure site inspection included inspections of the UC-1, UC-3, and UC-4 sites in accordance with the Post-Closure Monitoring Plan provided in the CAU 417 Closure Report (NNSA/NV 2001). The annual inspection conducted at the UC-1 Central Mud Pit (CMP) indicated that the site and soil cover were in good condition. Three new fractures were identified in the soil cover and were filled with bentonite chips during the inspection. The vegetation on the soil cover was adequate but showed signs of the area's ongoing drought. No issues were identified with the CMP fence, gate, or subsidence monuments. No issues were identified with the warning signs and monuments at the other two UC-1 locations

  4. Ventilation planning at Energy West's Deer Creek mine

    SciTech Connect (OSTI)

    Tonc, L.; Prosser, B.; Gamble, G. [Pacific Corp., Huntington, UT (United States)

    2009-08-15T23:59:59.000Z

    In 2004 ventilation planning was initiated to exploit a remote area of Deer Creek mine's reserve (near Huntington, Utah), the Mill Fork Area, located under a mountain. A push-pull ventilation system was selected. This article details the design process of the ventilation system upgrade, the procurement process for the new fans, and the new fan startup testing. 5 figs., 1 photo.

  5. Road-crossing restoration on alluvial creeks in the Klamath National Forest, California

    E-Print Network [OSTI]

    Lawrence, Justin E

    2008-01-01T23:59:59.000Z

    National Forest of northern California. Upper Elk CreekBishop CreekStanza Creek Upper Boulder Creek Lower Boulder Creek Cecil

  6. Idaho_ColdwaterCreek

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT | NationalMentoringWind PowerColdwater Creek

  7. An analysis of energy expenditure in Goodwin Creek Peter Molnar and Jorge A. Ramirez

    E-Print Network [OSTI]

    RamĂ­rez, Jorge A.

    An analysis of energy expenditure in Goodwin Creek Peter Molna´r and Jorge A. Rami´rez Department with recent observations of channel change in Goodwin Creek. This energy expenditure analysis suggests of energy dissipation per unit channel area, Pa, is constant throughout the river network is explored

  8. Post-Closure Inspection and Monitoring Report for Corrective Action Unit 417: Central Nevada Test Area Surface, Hot Creek Valley, Nevada

    SciTech Connect (OSTI)

    None

    2013-03-01T23:59:59.000Z

    This report presents results of data collected during the annual post-closure site inspections conducted at the Central Nevada Test Area surface Corrective Action Unit (CAU) 417 in May 2011 and July 2012. The annual post-closure site inspections included inspections of the UC-1, UC-3, and UC-4 sites in accordance with the Post-Closure Monitoring Plan provided in the CAU 417 Closure Report (NNSA/NV 2001). The annual inspections conducted at the UC-1 Central Mud Pit (CMP) indicated that the site and soil cover were in good condition. No new fractures or extension of existing fractures were observed and no issues with the fence or gate were identified. The vegetation on the cover continues to look healthy, but the biennial vegetation survey conducted during the 2012 inspection indicated that the total foliar cover was slightly higher in 2009 than in 2012. This may be indicative of a decrease in precipitation observed during the 2-year monitoring period. The precipitation totaled 9.9 inches from July 1, 2010, through June 30, 2011, and 5 inches from July 1, 2011, through June 30, 2012. This decrease in precipitation is also evident in the soil moisture data obtained from the time domain reflectometry sensors. Soil moisture content data show that the UC-1 cover is performing as designed, and evapotranspiration is effectively removing water from the cover.

  9. Sway control method and system for rotary cranes

    DOE Patents [OSTI]

    Robinett, Rush D. (Tijeras, NM); Parker, Gordon G. (Houghton, MI); Feddema, John T. (Albuquerque, NM); Dohrmann, Clark R. (Albuquerque, NM); Petterson, Ben J. (Albuquerque, NM)

    1999-01-01T23:59:59.000Z

    Methods and apparatuses for reducing the oscillatory motion of rotary crane payloads during operator-commanded or computer-controlled maneuvers. An Input-shaping filter receives input signals from multiple operator input devices and converts them into output signals readable by the crane controller to dampen the payload tangential and radial sway associated with rotation of the jib. The input signals are characterized by a hub rotation trajectory .gamma.(t), which includes a jib angular acceleration .gamma., a trolley acceleration x, and a load-line length velocity L. The system state variables are characterized by a tangential rotation angle .theta.(t) and a radial rotation angle .phi.(t) of the load-line. The coupled equations of motion governing the filter are non-linear and configuration-dependent. In one embodiment, a filter is provided between the operator and the crane for filtering undesired frequencies from the angular .gamma. and trolley x velocities to suppress payload oscillation. In another embodiment, crane commands are computer generated and controlled to suppress vibration of the payload using a postulated asymmetrical shape for the acceleration profiles of the jib, which profiles are uniquely determined by a set of parameters (including the acceleration pulse amplitude and the duration and coast time between pulses), or a dynamic programming approach.

  10. Sway control method and system for rotary cranes

    DOE Patents [OSTI]

    Robinett, R.D.; Parker, G.G.; Feddema, J.T.; Dohrmann, C.R.; Petterson, B.J.

    1999-06-01T23:59:59.000Z

    Methods and apparatuses are disclosed for reducing the oscillatory motion of rotary crane payloads during operator-commanded or computer-controlled maneuvers. An Input-shaping filter receives input signals from multiple operator input devices and converts them into output signals readable by the crane controller to dampen the payload tangential and radial sway associated with rotation of the jib. The input signals are characterized by a hub rotation trajectory [gamma](t), which includes a jib angular acceleration [gamma], a trolley acceleration x, and a load-line length velocity L. The system state variables are characterized by a tangential rotation angle [theta](t) and a radial rotation angle [phi](t) of the load-line. The coupled equations of motion governing the filter are non-linear and configuration-dependent. In one embodiment, a filter is provided between the operator and the crane for filtering undesired frequencies from the angular [gamma] and trolley x velocities to suppress payload oscillation. In another embodiment, crane commands are computer generated and controlled to suppress vibration of the payload using a postulated asymmetrical shape for the acceleration profiles of the jib, which profiles are uniquely determined by a set of parameters (including the acceleration pulse amplitude and the duration and coast time between pulses), or a dynamic programming approach. 25 figs.

  11. Ecological effects of contaminants and remedial actions in Bear Creek

    SciTech Connect (OSTI)

    Southworth, G.R.; Loar, J.M.; Ryon, M.G.; Smith, J.G.; Stewart, A.J. (Oak Ridge National Lab., TN (United States)); Burris, J.A. (C. E. Environmental, Inc., Tallahassee, FL (United States))

    1992-01-01T23:59:59.000Z

    Ecological studies of the Bear Creek watershed, which drains the area surrounding several Oak Ridge Y-12 Plant waste disposal facilities, were initiated in May 1984 and are continuing at present. These studies consisted of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek, and they were followed by a presently ongoing monitoring phase that involves reduced sampling intensities. The characterization phase utilized two approaches: (1) instream sampling of benthic invertebrate and fish communities in Bear Creek to identify spatial and temporal patterns in distribution and abundance and (2) laboratory bioassays on water samples from Bear Creek and selected tributaries to identify potential sources of toxicity to biota. The monitoring phase of the ecological program relates to the long-term goals of identifying and prioritizing contaminant sources and assessing the effectiveness of remedial actions. It continues activities of the characterization phase at less frequent intervals. The Bear Greek Valley is a watershed that drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in Bear Creek Valley resulted in contamination of Bear Creek and consequent ecological damage. Extensive remedial actions have been proposed at waste sites, and some of the have been implemented or are now underway. The proposed study plan consists of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek in the first year followed by a reduction in sampling intensity during the monitoring phase of the plan. The results of sampling conducted from May 1984 through early 1989 are presented in this report.

  12. The implementation of the Lower Silver Creek watershed project

    E-Print Network [OSTI]

    Keenan, Christina; McPherson, Mariah

    2003-01-01T23:59:59.000Z

    Measures on Lower Silver Creek Interim Project. San Jose,Valley Water District. May 1978. Lower Silver Creek, LakeCunningham, Thompson Creek Planning Survey consisting of

  13. Restoration With Reference: Rediscovering Cerrito Creek in Blake Garden

    E-Print Network [OSTI]

    Ludy, Jessica; Podolak, Kristen

    2007-01-01T23:59:59.000Z

    W10301. Figure 1: Historical Map of Cerrito Creek (Friendsof Five Creeks). Figure 2:and watershed contribution to creek reach in Blake garden

  14. Post-project appraisal of Martin Canyon Creek restoration

    E-Print Network [OSTI]

    Wagner, Wayne; Roseman, Jesse

    2006-01-01T23:59:59.000Z

    Ltd. 1999. Martin Canyon Creek Stream Restoration Owner’sAppraisal of Martin Canyon Creek Restoration Final ProjectDublin, California, Martin Canyon Creek is a small tributary

  15. Post Project Appraisal of Cerrito Creek at El Cerrito Plaza

    E-Print Network [OSTI]

    Berndt, Sarah; Smith, Fran

    2005-01-01T23:59:59.000Z

    Project Appraisal of Cerrito Creek at El Cerrito Plaza FINALAppraisal (PPA) of the Cerrito Creek Restoration Project atlighted section of Cerrito Creek (approximately 700 feet in

  16. Post Project Analysis of a Restored Reach of Redwood Creek

    E-Print Network [OSTI]

    Docto, Mia; Corvillon, Daniela Pena

    2012-01-01T23:59:59.000Z

    Inventory  Report  of  Redwood   Creek   Post ProjectAssessment of Redwood Creek Figures Figure 1. Watershed MapFan Conceptual Model Redwood Creek Stream Crossing Removal

  17. Optimal Nonpoint Source Monitoring: An Application to Redwood Creek

    E-Print Network [OSTI]

    Howitt, Richard E

    2000-01-01T23:59:59.000Z

    Application to Redwood Creek By Richard E. Howitt Departmentloading data for Redwood Creek, which flows into and throughcontrol model for Redwood Creek. We simulate the sediment

  18. Archaeological Investigations in Northern San Diego County, California: Frey Creek

    E-Print Network [OSTI]

    True, D. L; Waugh, G.

    1981-01-01T23:59:59.000Z

    and material. FREY CREEK Fig. 14. Artifacts recovered fromCounty, California: Frey Creek D. L. TRUE G. WAUGH S URVEYSand material. FREY CREEK Table 11 ARTIFACT DISTRIBUTION,

  19. The removal of Saeltzer Dam on Clear Creek : an update

    E-Print Network [OSTI]

    Ferry, Mike; Miller, Peter

    2003-01-01T23:59:59.000Z

    Fish Passage Project: Clear Creek, Shasta County. Norman S.Management 1996 Lower Clear Creek Watershed Analysis, BureauMatthews &Associates 1999 Clear Creek Rehabilitation Project

  20. Comparative breeding ecology of Lesser Sandhill Cranes (Grus canadensis canadensis) and Siberian cranes (G. leucogeranus) in Eastern Siberia 

    E-Print Network [OSTI]

    Watanabe, Tsuyoshi

    2007-04-25T23:59:59.000Z

    August 2000, I studied Lesser Sandhill and Siberian cranes within a 30,000-ha part of Kytalyk Resource Reserve in the Republic of Sakha (Yakutia), Russia. My main objective was to compare dispersion patterns and resource use of breeding Lesser Sandhill...

  1. Assessing the Feasibility of Creek Daylighting in San Francisco, Part II: A Preliminary Analysis of Yosemite Creek

    E-Print Network [OSTI]

    Smith, Brooke Ray

    2007-01-01T23:59:59.000Z

    Lucas. 2006. Islais Creek reinterpreted: An exploration ofwould be triggered? If the creek conveys stormwater runoff,2004. Daylighting Islais Creek: a feasibility study.

  2. Hoe Creek groundwater restoration, 1989

    SciTech Connect (OSTI)

    Renk, R.R.; Crader, S.E.; Lindblom, S.R.; Covell, J.R.

    1990-01-01T23:59:59.000Z

    During the summer of 1989, approximately 6.5 million gallons of contaminated groundwater were pumped from 23 wells at the Hoe Creek underground coal gasification site, near Gillette, Wyoming. The organic contaminants were removed using activated carbon before the water was sprayed on 15.4 acres at the sites. Approximately 2647 g (5.8 lb) of phenols and 10,714 g (23.6 lb) of benzene were removed from the site aquifers. Phenols, benzene, toluene, ethylbenzene, and naphthalene concentrations were measured in 43 wells. Benzene is the only contaminant at the site exceeds the federal standard for drinking water (5 {mu}g/L). Benzene leaches into the groundwater and is slow to biologically degrade; therefore, the benzene concentration has remained high in the groundwater at the site. The pumping operation affected groundwater elevations across the entire 80-acre site. The water levels rebounded quickly when the pumping operation was stopped on October 1, 1989. Removing contaminated groundwater by pumping is not an effective way to clean up the site because the continuous release of benzene from coal tars is slow. Benzene will continue to leach of the tars for a long time unless its source is removed or the leaching rate retarded through mitigation techniques. The application of the treated groundwater to the surface stimulated plant growth. No adverse effects were noted or recorded from some 60 soil samples taken from twenty locations in the spray field area. 20 refs., 52 figs., 8 tabs.

  3. Case Study: Goose Creek CISD

    E-Print Network [OSTI]

    White, D.

    2014-01-01T23:59:59.000Z

    GOOSE CREEK CISD FINANCIALS • $4,866,124 project • $600k annual savings • 5,954,383 kWh annual savings IMPROVEMENTS • Lighting and water efficiency, computer power management, HVAC, controls redesign case study McKinstry first worked with Goose... Creek CISD performing retro-commissioning through the Centerpoint/Nexant RCx rebate program. McKinstry found additional projects with good returns on investment, warranting a performance contract. Working with the district to apply for the State...

  4. Lava Creek Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano,Lakefront Tow Tank JumpLatvia: Energy

  5. Separation Creek Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey JumpAir JumpCalifornia

  6. Cherry Creek Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER es unaChelmsford,Volcanic National

  7. Clear Creek Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCity ofClarkEnergy - Q &14SanClear

  8. Trout Creek Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, Indiana (UtilityTri-State ElectricSolar JumpTroupsburg, NewTrout

  9. Big Canyon Creek Ecological Restoration Strategy.

    SciTech Connect (OSTI)

    Rasmussen, Lynn; Richardson, Shannon

    2007-10-01T23:59:59.000Z

    He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe then used data collected from the District's stream assessment and inventory, utilizing the Stream Visual Assessment Protocol (SVAP), to determine treatment necessary to bring 90% of reaches ranked Poor or Fair through the SVAP up to good or excellent. In 10 year's time, all reaches that were previously evaluated with SVAP will be reevaluated to determine progress and to adapt methods for continued success. Over 400 miles of stream need treatment in order to meet identified restoration goals. Treatments include practices which result in riparian habitat improvements, nutrient reductions, channel condition improvements, fish habitat improvements, invasive species control, water withdrawal reductions, improved hydrologic alterations, upland sediment reductions, and passage barrier removal. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resource Management Watershed Division (Tribe) developed this document to guide restoration activities within the Big Canyon Creek watershed for the period of 2008-2018. This plan was created to demonstrate the ongoing need and potential for anadromous fish habitat restoration within the watershed and to ensure continued implementation of restoration actions and activities. It was developed not only to guide the District and the Tribe, but also to encourage cooperation among all stakeholders, including landowners, government agencies, private organizations, tribal governments, and elected officials. Through sharing information, skills, and resources in an active, cooperative relationships, all concerned parties will have the opportunity to join together to strengthen and maintain a sustainable natural resource base for present and future generations within the watershed. The primary goal of the strategy is to address aquatic habitat restoration needs on a watershed level for resident and anadromous fish species, promoting quality habitat within a self-sustaining watershed. Seven objectives have been developed to support this goal: (1) Identify factors limiting quality

  10. Evidence of Streamflow and Sediment Effects on Juvenile Coho and Benthic Macroinvertebrates of Lagunitas Creek and San Geronimo Creek, Marin County, California

    E-Print Network [OSTI]

    Ball, Joanie; Diver, Sibyl; Hwan, Jason

    2009-01-01T23:59:59.000Z

    at Big Bend Upstream Trib at Big Bend Devil's Gulch CreekDeadman's Creek Left Bank Trib from GroupWildcat & Pioneer Trail Creek Barnabe Creek Smaller Barnabe

  11. Big Bayou Creek and Little Bayou Creek Watershed Monitoring Program

    SciTech Connect (OSTI)

    Kszos, L.A.; Peterson, M.J.; Ryon; Smith, J.G.

    1999-03-01T23:59:59.000Z

    Biological monitoring of Little Bayou and Big Bayou creeks, which border the Paducah Site, has been conducted since 1987. Biological monitoring was conducted by University of Kentucky from 1987 to 1991 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 through March 1999. In March 1998, renewed Kentucky Pollutant Discharge Elimination System (KPDES) permits were issued to the US Department of Energy (DOE) and US Enrichment Corporation. The renewed DOE permit requires that a watershed monitoring program be developed for the Paducah Site within 90 days of the effective date of the renewed permit. This plan outlines the sampling and analysis that will be conducted for the watershed monitoring program. The objectives of the watershed monitoring are to (1) determine whether discharges from the Paducah Site and the Solid Waste Management Units (SWMUs) associated with the Paducah Site are adversely affecting instream fauna, (2) assess the ecological health of Little Bayou and Big Bayou creeks, (3) assess the degree to which abatement actions ecologically benefit Big Bayou Creek and Little Bayou Creek, (4) provide guidance for remediation, (5) provide an evaluation of changes in potential human health concerns, and (6) provide data which could be used to assess the impact of inadvertent spills or fish kill. According to the cleanup will result in these watersheds [Big Bayou and Little Bayou creeks] achieving compliance with the applicable water quality criteria.

  12. Results of the radiological survey at Two Mile Creek, Tonawanda, New York (TNY002)

    SciTech Connect (OSTI)

    Murray, M.E.; Rodriguez, R.E.; Uziel, M.S.

    1997-08-01T23:59:59.000Z

    At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at Two Mile Creek, Tonawanda, New York. The survey was performed in November 1991 and May 1996. The purpose of the survey was to determine if radioactive materials from work performed under government contract at the Linde Air Products Division of Union Carbide Corporation, Tonawanda, New York, had been transported into the creek. The survey included a surface gamma scan in accessible areas near the creek and the collection of soil, sediment, and core samples for radionuclide analyses. Survey results indicate that no significant material originating at the Linde plant is presently in the creek. Three of the 1991 soil sample locations on the creek bank and one near the lake contained slightly elevated concentrations of {sup 238}U with radionuclide distributions similar to that found in materials resulting from former processing activities at the Linde site.

  13. Report on the biological monitoring program for Bear Creek at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, 1989-1994

    SciTech Connect (OSTI)

    Hinzman, R.L. [ed.] [ed.; Beauchamp, J.J.; Cada, G.F.; Peterson, M.J. [and others] [and others

    1996-04-01T23:59:59.000Z

    The Bear Creek Valley watershed drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in the Bear Creek Valley resulted in the contamination of Bear Creek and consequent ecological damage. Ecological monitoring by the Biological Monitoring and Abatement Program (BMAP) was initiated in the Bear Creek watershed in May 1984 and continues at present. Studies conducted during the first year provided a detailed characterization of the benthic invertebrate and fish communities in Bear Creek. The initial characterization was followed by a biological monitoring phase in which studies were conducted at reduced intensities.

  14. Remedial Investigation Report on Bear Creek Valley Operable Unit 2 (Rust Spoil Area, Spoil Area 1, and SY-200 Yard) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1, Main text

    SciTech Connect (OSTI)

    NONE

    1995-01-01T23:59:59.000Z

    This report on the BCV OU 2 at the Y-12 Plant, was prepared in accordance with requirements under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for reporting the results of a site characterization for public review. It provides the Environmental Restoration Program with information about the results of the 1993 investigation. It includes information on risk assessments that have evaluated impacts to human health and the environment. Field activities included collection of subsurface soil samples, groundwater and surface water samples, and sediments and seep at the Rust Spoil Area (RSA), SY-200 Yard, and SA-1.

  15. Evaluating the Effects of Vortex Rock Weir Stability on Physical Complexity: Penitencia and Wildcat Creeks

    E-Print Network [OSTI]

    Corwin, Emily; Jagt, Katie; Neary, Leigh

    2007-01-01T23:59:59.000Z

    curves for Wildcat Creek. Evaluating the effects of vortexmap of Penitencia Creek………………………………………………………………10 Figure 6.Penitencia Creek site location………………………………………………………………….10

  16. Bacterial Monitoring for the Buck Creek Watershed

    E-Print Network [OSTI]

    The “Bacterial Monitoring for the Buck Creek Watershed” project was developed in response to the creek’s listing on the Texas Water Quality Inventory and 303(d) List due to a bacterial impairment and subsequent total maximum daily load (TMDL...

  17. FIELD EVALUATION OF THE MYRTLE CREEK ADVANCED

    E-Print Network [OSTI]

    Bertini, Robert L.

    FIELD EVALUATION OF THE MYRTLE CREEK ADVANCED CURVE WARNING SYSTEM Final Report SPR 352 #12;#12;FIELD EVALUATION OF THE MYRTLE CREEK ADVANCED CURVE WARNING SYSTEM SPR 352 Final Report by Robert L's Catalog No. 5. Report Date June 2006 4. Title and Subtitle Field Evaluation of the Myrtle Creek Advanced

  18. Water Conservation Study for Manastash Creek Water Users, Kittias County, Washington, Final Report 2002.

    SciTech Connect (OSTI)

    Montgomery Watson Harza (Firm)

    2002-12-31T23:59:59.000Z

    Manastash Creek is tributary of the Yakima River and is located southwest and across the Yakima River from the City of Ellensburg. The creek drains mountainous terrain that ranges in elevation from 2,000 feet to over 5,500 feet and is primarily snowmelt fed, with largest flows occurring in spring and early summer. The creek flows through a narrow canyon until reaching a large, open plain that slopes gently toward the Yakima River and enters the main stem of the Yakima River at river mile 154.5. This area, formed by the alluvial fan of the Creek as it leaves the canyon, is the subject of this study. The area is presently dominated by irrigated agriculture, but development pressures are evident as Ellensburg grows and develops as an urban center. Since the mid to late nineteenth century when irrigated agriculture was established in a significant manner in the Yakima River Basin, Manastash Creek has been used to supply irrigation water for farming in the area. Adjudicated water rights dating back to 1871 for 4,465 acres adjacent to Manastash Creek allow appropriation of up to 26,273 acre-feet of creek water for agricultural irrigation and stock water. The diversion of water from Manastash Creek for irrigation has created two main problems for fisheries. They are low flows or dewatered reaches of Manastash Creek and fish passage barriers at the irrigation diversion dams. The primary goal of this study, as expressed by Yakama Nation and BPA, is to reestablish safe access in tributaries of the Yakima River by removing physical barriers and unscreened diversions and by adding instream flow where needed for fisheries. The goal expressed by irrigators who would be affected by these projects is to support sustainable and profitable agricultural use of land that currently uses Manastash Creek water for irrigation. This study provides preliminary costs and recommendations for a range of alternative projects that will partially or fully meet the goal of establishing safe access for fisheries in Manastash Creek by reducing or eliminating diversions and eliminating fish passage barriers. Further study and design will be necessary to more fully develop the alternatives, evaluate their environmental benefits and impacts and determine the effect on Manastash Creek water users. Those studies will be needed to determine which alternative has the best combination of benefits and costs, and meets the goal of the Manastash Creek water users.

  19. Couse/Tenmile Creeks Watershed Project Implementation : 2007 Conservtion Projects. [2007 Habitat Projects Completed].

    SciTech Connect (OSTI)

    Asotin County Conservation District

    2008-12-10T23:59:59.000Z

    The Asotin County Conservation District (ACCD) is the primary entity coordinating habitat projects on private lands within Asotin County watersheds. The Tenmile Creek watershed is a 42 square mile tributary to the Snake River, located between Asotin Creek and the Grande Ronde River. Couse Creek watershed is a 24 square mile tributary to the Snake River, located between Tenmile Creek and the Grande Ronde River. Both watersheds are almost exclusively under private ownership. The Washington Department of Fish and Wildlife has documented wild steelhead and rainbow/redband trout spawning and rearing in Tenmile Creek and Couse Creek. The project also provides Best Management Practice (BMP) implementation throughout Asotin County, but the primary focus is for the Couse and Tenmile Creek watersheds. The ACCD has been working with landowners, Bonneville Power Administration (BPA), Washington State Conservation Commission (WCC), Natural Resource Conservation Service (NRCS), Farm Service Agency (FSA), Salmon Recovery Funding Board (SRFB), Washington Department of Fish and Wildlife (WDFW), U.S. Forest Service, Pomeroy Ranger District (USFS), Nez Perce Tribe (NPT), Washington Department of Ecology (DOE), National Marine Fisheries Service (NOAA Fisheries), and U.S. Fish and Wildlife Service (USFWS) to address habitat projects in Asotin County. The Asotin Subbasin Plan identified priority areas and actions for ESA listed streams within Asotin County. Couse Creek and Tenmile Creek are identified as protection areas in the plan. The Conservation Reserve Enhancement Program (CREP) has been successful in working with landowners to protect riparian areas throughout Asotin County. Funding from BPA and other agencies has also been instrumental in protecting streams throughout Asotin County by utilizing the ridge top to ridge top approach.

  20. Restoration Potential of a Mining-Impacted Urban Stream: Horseshoe Branch of Lion Creek, Oakland, CA

    E-Print Network [OSTI]

    Hackenjos, Bethany; Woelfle-Erskine, Cleo; Wood, Jacob

    2010-01-01T23:59:59.000Z

    Level Biotic Index Score, 0= low, 10= high Horseshoe CreekWater Quality in an Urban Creek Watershed, Oakland, CA. AGUHydraulics. 2010. Codornices Creek Gage: Codornices Creek,

  1. The triggering of subglacial lake drainage during rapid glacier drawdown: Crane Glacier, Antarctic Peninsula

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    The triggering of subglacial lake drainage during rapid glacier drawdown: Crane Glacier, Antarctic Glacier, Antarctic Peninsula, shows an unusual temporal pattern of elevation loss: a period of very rapid is not seen. Bathymetry in Crane Glacier fjord reveals a series of flat-lying, formerly subglacial deeps

  2. EA-1978: Sand Creek Winds, McCone County, Montana

    Broader source: Energy.gov [DOE]

    Western Area Power Administration (Western) is preparing an EA to analyze the potential environmental impacts of the proposed Sand Creek Winds Project, a 75-MW wind farm between the towns of Circle and Wolf Point in McCone County, Montana. The proposed wind farm would interconnect to Western’s existing Wolf Point to Circle 115-kV transmission line approximately 18 miles north of Wolf Point.

  3. Case Study: Goose Creek CISD 

    E-Print Network [OSTI]

    White, D.

    2014-01-01T23:59:59.000Z

    GOOSE CREEK CISD FINANCIALS • $4,866,124 project • $600k annual savings • 5,954,383 kWh annual savings IMPROVEMENTS • Lighting and water efficiency, computer power management, HVAC, controls redesign case study McKinstry first worked with Goose... • $693,866 project • $87k annual savings • 682,228 kWh annual savings IMPROVEMENTS • HVAC, lighting and water efficiency, computer power management case study Lake Dallas ISD was interested in improving the energy efficiency and aging infrastructure...

  4. Post Project Appraisal of Village Creek Restoration, Albany, CA

    E-Print Network [OSTI]

    Asher, Melissa; Atapattu, Kaumudi

    2005-01-01T23:59:59.000Z

    11/20/05 Schwartz, Susan. Creek mouths along the Bay TrailOakland Museum of California Creek and Watershed InformationSource. “Codornices Creek Watershed”. Guide to San Francisco

  5. Channel response to Dam Removal, Clear Creek, California

    E-Print Network [OSTI]

    Miller, Peter; Vizcaino, Pilar

    2004-01-01T23:59:59.000Z

    to Dam Removal, Clear Creek, California Peter Miller and9, 2004 Abstract Clear Creek drains 720 km 2 , joining the2002) Saeltzer Dam on Clear Creek was a good candidate for

  6. Gully incision in Gerbode Creek, Rodeo Lagoon watershed

    E-Print Network [OSTI]

    Costantino, Raymond L

    2003-01-01T23:59:59.000Z

    and a bridge over Gerbode Creek's main stem. Remnants of thefound on the banks of the creek. North Tributary 1 GerbodeD Distance (ft) GERBODE CREEK: NORTHERN TRIBUTARY 2 Depth (

  7. The Copper Creek Clovis Point from Hells Canyon, Northeastern Oregon

    E-Print Network [OSTI]

    Reid, Kenneth C.; Root, Matthew J.; Hughes, Richard E.

    2008-01-01T23:59:59.000Z

    2008) | pp. 75-84 The Copper Creek Clovis Point from HellsSnake River to the Copper Creek point discovery location.5 cm Figure 4. The Copper Creek Clovis point (tick marks

  8. NAME: Salt Creek Estuary Restoration LOCATION: Salt Creek Watershed, Clallam County, Washington

    E-Print Network [OSTI]

    US Army Corps of Engineers

    NAME: Salt Creek Estuary Restoration LOCATION: Salt Creek Watershed, Clallam County, Washington Federal funds $0 PROJECT DESCRIPTION: The Salt Creek Estuary Reconnection project will significantly enhance tidal and fluvial hydrology to 22.5 acres of salt marsh, which will return the salt marsh to its

  9. Lagrangian Sampling of Wastewater Treatment Plant Effluent in Boulder Creek, Colorado, and Fourmile Creek,

    E-Print Network [OSTI]

    Lagrangian Sampling of Wastewater Treatment Plant Effluent in Boulder Creek, Colorado, and Fourmile of wastewater treatment plant effluent in Boulder Creek, Colorado, and Fourmile Creek, Iowa, during the summer........................................................................................................................................................... 5 Field Measurements, Nutrients, Carbon, Major Ions, Trace Elements, and Biological Components

  10. Kansas Nuclear Profile - Wolf Creek Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    April 2012" "Next Release Date: February 2013" "Wolf Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor...

  11. New Jersey Nuclear Profile - Oyster Creek

    U.S. Energy Information Administration (EIA) Indexed Site

    Oyster Creek" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  12. Microsoft Word - Ninemile_Creek_CX.doc

    Broader source: Energy.gov (indexed) [DOE]

    Tribes of the Colville Reservation for purchase of the Ninemile Creek property Fish and Wildlife Project No.: 2008-104-00, BPA-005670 Categorical Exclusion Applied (from...

  13. Microsoft Word - CoyoteCreekNE_CX

    Broader source: Energy.gov (indexed) [DOE]

    Project Manager - KEWM-4 Proposed Action: Coyote Creek Property Acquisition Funding Fish and Wildlife Project No.: 2011-003-00, Contract BPA-007521 Categorical Exclusion...

  14. Microsoft Word - Coyote Creek CX.docx

    Broader source: Energy.gov (indexed) [DOE]

    of funds to acquire a conservation easement over the 310-acre Coyote Creek property. Fish and Wildlife Project No.: 2011-003-00, Contract BPA-006468 Categorical Exclusion...

  15. Omak Creek acquisition protects endangered salmonid habitat ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to protect habitat for endangered salmon and steelhead along Omak Creek in Okano- gan County. This acquisition would protect spawning, rearing and migratory habitat of...

  16. DOE - Office of Legacy Management -- Hoe Creek Underground Coal...

    Office of Legacy Management (LM)

    Hoe Creek Underground Coal Gasification Site - 045 FUSRAP Considered Sites Site: Hoe Creek Underground Coal Gasification Site (045) Designated Name: Alternate Name: Location:...

  17. Cougar Creek land acquisition Fact Sheet.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of wildlife habitat along Cougar Creek The Bonneville Power Administration proposes to fund the acquisition of wildlife mitigation lands in the Cougar Creek watershed in Shoshone...

  18. Post-project appraisal of Martin Canyon Creek restoration

    E-Print Network [OSTI]

    Wagner, Wayne; Roseman, Jesse

    2006-01-01T23:59:59.000Z

    Martin Canyon Creek Stream Restoration Owner’s Manual: FinalMartin Canyon Creek Stream Restoration in project documents,important component of stream restoration projects to assess

  19. allens creek nuclear: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science Websites Summary: International Workshop on Interfaces at Bear Creek October 20 - 24, 2009 Bear Creek Mountain Resort of Community and Economic Development...

  20. Whooping crane (Grus americana) demography and environmental factors in a population growth simulation model

    E-Print Network [OSTI]

    Gil de Weir, Karine

    2006-08-16T23:59:59.000Z

    The Whooping Crane (Grus americana) is among North AmericaÂ?s most charismatic species. Between 1938 and 2004, the population that migrates between Aransas National Wildlife Refuge (ANWR) and Wood Buffalo National Park (WBNP), grew from 18 to 217...

  1. Food habits, habitat, distribution, numbers, and subspecies of sandhill cranes wintering in southern Texas

    E-Print Network [OSTI]

    Guthery, Frederick Stewart

    1972-01-01T23:59:59.000Z

    officers freely extended the1r aid and I found their reports con- cerning sandhill crane distribution to be high in accuracy. National wildlife refuge personnel, including R. J. Fleetwocd, R, W, Clapper, WE E, Jackson, L, Marlatt, W. Metsen, G ~ Unland... sandhill cranes on the ranch and to conduct analyses at the wildlife laboratory. I wish to thank the Caesar Kleberg Research Program in Wildlife Ecology for making this study possible. vii TABLE OF CONTENTS Paape INTRODUCTION...

  2. EIS-0134: Charlie Creek-Belfield Transmission Line Project, North Dakota

    Broader source: Energy.gov [DOE]

    The Western Area Power Administration developed this EIS to assess the environmental impact of constructing a high voltage transmission line between Charlie Creek and Belfield, North Dakota, and a new substation near Belfield to as a means of adding transmission capacity to the area.

  3. The Lyons Creek boat remains

    E-Print Network [OSTI]

    Neyland, Robert Stephen

    1990-01-01T23:59:59.000Z

    transportation. Only a few other American colonial-era small craft have as yet been studied, some of which are the Brown's P*y 1 'S*thC1', thEm'Lk Champlain, the Hart's Cove wzeck in New Hampshire, the J R' b t 1 V' g' ', d tl* ~Sk Massachusetts (Albright..., beginning at its mouth, is 9ust over a mile, while the drainage system extends for several miles east of Maryland Route 4. Near the mouth of Lyons Creek, the northern shore is a wetland that is reduced to a grassy mudflat at ebb tide. Only a slender...

  4. Biomonitoring of fish communities, using the index of Biotic Integrity, as an indicator of the success of soil conservation measures in the Rabbit Creek and Middle Creek watersheds, Macon County, North Carolina

    SciTech Connect (OSTI)

    Not Available

    1993-08-01T23:59:59.000Z

    Fish communities in two upper Little Tennessee River tributaries, Rabbit Creek and Middle Creek, both located in Macon County, North Carolina, were monitored using IBI methods in 1990 and again in 1992. A single site, each on the lower reaches of its respective creek, was chosen to reflect the influence of conditions throughout the watershed and to provide a measure of water quality exiting the watershed. The Rabbit Creek watershed (Holly Springs community) has a long history of settlement and agricultural use. Dominant land uses today are pasture in the bottom lands and residential development at higher elevations. Much of the upper portion of the Middle Creek watershed on the slopes of Scaly Mountain is devoted to cabbage farming, often on steep slopes and highly erodible soils. From the cabbage growing area, the creek drops 400 feet to the lower valley. Other common land uses include residential, livestock, and forest. Both streams are characterized by heavy sedimentation and frequent high turbidity. Both streams showed marked improvement between 1990 and 1992. In 1990, Rabbit Creek`s IBI score was 31.0, for a bioclass rating of ``poor.`` In 1992, the IBI score was 42.1 for a bioclass rating of ``fair.`` For Middle Creek, the corresponding figures and ratings are 42.1 (fair) and 54.5 (good). Examination of the data for Rabbit Creek shows a reduction in the proportion of pollution-tolerant species, a higher proportion of specialized insectivores, a higher catch rate (reflecting higher total numbers of fish), and an additional intolerant species. In both cases, the data (supported by visual observation) suggests the causative factor is reduced sedimentation.

  5. Post-project appraisal of year one Re-vegetation performance at the Nathanson Creek Restoration Project, Sonoma County, CA

    E-Print Network [OSTI]

    Blough, Alanna; Brandt, Reuben; Brady, Sarah

    2010-01-01T23:59:59.000Z

    performance at the Nathanson Creek Restoration Project,1. Abstract The Nathanson Creek Parkway and Preserve projectfoot reach of Nathanson Creek, a tributary to Sonoma Creek

  6. Development and chemical quality of a ground-water system in cast overburden as the Gibbons Creek Lignite Mine

    E-Print Network [OSTI]

    Borbely, Evelyn Susanna

    1988-01-01T23:59:59.000Z

    -water conditions which develop in response to surface mining. TMPA has supported research at the Gibbons Creek Lignite Mine in order to meet the needs of mine develop- ment and permitting, Most of the data on ground-water conditions 1n reclaimed spoil has been... on the west by the Navasota River, on the south by Gibbons Creek, and on the north by State Highway 30 (Figure 1). This area includes the Gibbons Creek Steam Electric Station. Lignite is extracted from two pits within the permit boundary, termed the A...

  7. Dry Creek salt dome, Mississippi Interior Salt basin

    SciTech Connect (OSTI)

    Montgomery, S.L.; Ericksen, R.L.

    1997-03-01T23:59:59.000Z

    Recent drilling of salt dome flanks in the Mississippi Salt basin has resulted in important new discoveries and the opening of a frontier play. This play is focused on gas/condensate reserves in several Cretaceous formations, most notably the Upper Cretaceous Eutaw and lower Tuscaloosa intervals and Lower Cretaceous Paluxy and Hosston formations. As many as eight domes have been drilled thus far; sandstones in the upper Hosston Formation comprise the primary target. Production has been as high as 3-5 Mcf and 500-1200 bbl of condensate per day, with estimated ultimate reserves in the range of 0.2 to 1.5 MBOE (million barrels oil equivalent) per well. As typified by discovery at Dry Creek salt dome, traps are related to faulting, unconformities, and updip loss of permeability. Previous drilling at Dry Creek, and in the basin generally, avoided the flank areas of most domes, due to geologic models that predicted latestage (Tertiary) piercement and breached accumulations. Recent data from Dry Creek and other productive domes suggest that growth was episodic and that piercement of Tertiary strata did not affect deeper reservoirs charged with hydrocarbons in the Late Cretaceous.

  8. Reintroduction of Native FishReintroduction of Native Fish Species to Coal CreekSpecies to Coal Creek

    E-Print Network [OSTI]

    Gray, Matthew

    1 Reintroduction of Native FishReintroduction of Native Fish Species to Coal CreekSpecies to Coal Control and Reclamation ActSurface Mining Control and Reclamation Act of 1977of 1977 Coal Creek Watershed Foundation (2000)Coal Creek Watershed Foundation (2000) BackgroundBackground Fish populations in Coal Creek

  9. Biological monitoring of Upper Three Runs Creek, Savannah River Plant, Aiken County, South Carolina

    SciTech Connect (OSTI)

    Specht, W.L.

    1991-10-01T23:59:59.000Z

    In anticipation of the fall 1988 start up of effluent discharges into Upper Three Creek by the F/H Area Effluent Treatment Facility of the Savannah River Site, Aiken, SC, a two and one half year biological study was initiated in June 1987. Upper Three Runs Creek is an intensively studied fourth order stream known for its high species richness. Designed to assess the potential impact of F H area effluent on the creek, the study includes qualitative and quantitative macroinvertebrate stream surveys at five sites, chronic toxicity testing of the effluent, water chemistry and bioaccumulation analysis. This final report presents the results of both pre-operational and post-operational qualitative and quantitative (artificial substrate) macroinvertebrate studies. Six quantitative and three qualitative studies were conducted prior to the initial release of the F/H ETF effluent and five quantitative and two qualitative studies were conducted post-operationally.

  10. Barriers for steelhead (Oncorhynchus mykiss) smolt migration through the lower flood channel of Alameda Creek

    E-Print Network [OSTI]

    Cervantes-Yoshida, Kristina

    2009-01-01T23:59:59.000Z

    of fish die in Alameda Creek. Oakland Tribune, Oakland.trout. Arcata, CA. Miller, J. 2006. Alameda Creek steelheaddocumentation, Alameda Creek Alliance, www.alamedacreek.org.

  11. A post project appraisal of the restoration/rehabilitation of Alamo Creek

    E-Print Network [OSTI]

    Smolko, Darrell

    2003-01-01T23:59:59.000Z

    Associates, Ltd. , Alamo Creek: Conceptual Restoration Plan/Basis of Design Summary Alamo Creek Restoration, Phase 1aRehabilitation of Alamo Creek Darrell Smolko UC Berkeley

  12. Structural characterization of terrestrial microbial Mn oxides from Pinal Creek, AZ

    E-Print Network [OSTI]

    Bargar, John

    2009-01-01T23:59:59.000Z

    Contami- nated Stream, Pinal Creek, Arizona. Masters Thesis,contaminated stream, Pinal Creek, Arizona. Environ. Sci.forming sediment in Pinal Creek, Globe Mining District,

  13. Redesigning Marsh Creek Dam to allow Chinook salmon passage, flood protection, and mercury sedimentation

    E-Print Network [OSTI]

    McNulty, M. Eliza; Wickland, Matthew

    2003-01-01T23:59:59.000Z

    J. E. , 1998. Marsh Creek Watershed Mercury Assessmentbe possible for all of Marsh Creek to be an accessible andD. , unpublished. Marsh Creek mercury assessment and

  14. A Watershed Approach to Urban River Restoration: A Conceptual Restoration Plan for Sausal Creek

    E-Print Network [OSTI]

    Ippolito, Teresa; Podolak, Kristen

    2008-01-01T23:59:59.000Z

    appraisal of the Sausal Creek restoration project, Oakland,Assessment of Sausal Creek: Physical Setting, Habitatmorphology of Sausal Creek, Oakland, California. Water

  15. Post-fire channel changes of Muddy Hollow Creek, Point Reyes National Seashore

    E-Print Network [OSTI]

    Skripnik, Steve; Moshier, Emily

    2004-01-01T23:59:59.000Z

    Changes of Muddy Hollow Creek, Point Reyes National Seashorewatershed of Muddy Hollow Creek was almost entirely burnedchanges to Muddy Hollow Creek and the watershed. They

  16. Hydrologic diversity in Santa Cruz mountain creeks and implications for steelhead population survival

    E-Print Network [OSTI]

    Peterson, Michael

    2012-01-01T23:59:59.000Z

    richardson, in San Gregorio Creek and lagoon, San Mateoalternatives for the Redwood Creek estuary. Redwood NationalWaddell, and Pomponio Creek estuary/lagoon systems, 1985-

  17. Islais Creek reinterpreted: An exploration of restoration designs in the urbanized context of San Francisco

    E-Print Network [OSTI]

    Griffith, Lucas A

    2006-01-01T23:59:59.000Z

    Survey Figure – 1869 Islais Creek Watershed Figure – 1013Soil Map Figure – Islais Creek Watershed (Dot is projectFigures Figure – Islais Creek Historic Profile Figure – 1904

  18. A Decade of Changes in the Wildcat Creek Flood Control Channel, North Richmond

    E-Print Network [OSTI]

    Ginsberg, Ben

    2008-01-01T23:59:59.000Z

    of Changes in the Wildcat Creek Flood Control Channel, NorthAbstract: The lower Wildcat Creek flood control and ripariancontinue. Introduction Wildcat Creek Watershed is located in

  19. Assessing channel morphology following a floodplain restoration project : Wildcat Creek, Richmond, CA

    E-Print Network [OSTI]

    Holt, Ashley; Battaglia, Charles F.

    2004-01-01T23:59:59.000Z

    restore a portion of the Creek without planning for theand White, M. Lower Wildcat Creek flood control project: aProject on Lower Wildcat Creek. UC Berkeley Hydrology

  20. Hydrogeologic Assessment of the East Bear Creek Unit, San Luis National Wildlife Refuge

    E-Print Network [OSTI]

    Quinn, Nigel W.T.

    2007-01-01T23:59:59.000Z

    Addendum to East Bear Creek Design Data Report, Centraltest wells in East Bear Creek Unit ……………. 41 Appendix B :C : East Bear Creek Refuge Water Supply ……………………………………. 64

  1. Post project evaluation, Miller Creek, California : assessment of stream bed morphology, and recommendations for future study

    E-Print Network [OSTI]

    Yin, Wan-chih; Pope-Daum, Caitilin

    2004-01-01T23:59:59.000Z

    1989) Grading Plan, Miller Creek Phases 5 and 6. PreparedValley Units 3-6, Miller Creek Stabilization/Restorationchannel restoration: Miller Creek, Marin County, California.

  2. Development of a Discharge-Stage Rating Curve for Strawberry Creek

    E-Print Network [OSTI]

    Hunt, Lisa

    2011-01-01T23:59:59.000Z

    Curve for Strawberry Creek Lisa Hunt References Charbonneau,R. 1987. Strawberry Creek Management Plan, Office ofand V.H. Resh. 1992. Strawberry Creek on the University of

  3. Towards a Stable Future: A Design Proposal for Cerrito Creek in Blake Garden, Kensington, California

    E-Print Network [OSTI]

    Greenberg, Karuna; Pinto, Pedro; Sherraden, Catherine

    2010-01-01T23:59:59.000Z

    unprotected banks and the creek bed. The rationale behindconnectivity 4. integrate the creek with the garden: a.Rediscovering Cerrito Creek in Blake Garden. eScholarshi,

  4. Post-restoration changes in bed material and channel features, Redwood Creek, Marin County

    E-Print Network [OSTI]

    Matz, Mike; Purcell, Alison

    2004-01-01T23:59:59.000Z

    for salmonid fish in Redwood Creek. References Cited Cherry,of Water: Life in Redwood Creek. Golden Gate National Parksthe Banducci site, Redwood Creek. Prepared for the National

  5. Post project appraisal of Green Valley Creek, Solano County, California : design and management review

    E-Print Network [OSTI]

    Martin, Maureen; Fortin, Alex

    2003-01-01T23:59:59.000Z

    Associates, 1991. Green Valley Creek Restoration Plan. Beck,1996. Green Valley Creek Post-Construction Monitoring 3 Year1998. Green Valley Creek Post-Construction Monitoring 5

  6. Fall-run chinook salmon habitat assessment : lower Marsh Creek, Contra Costa, CA

    E-Print Network [OSTI]

    Levine, Jessie; Stewart, Rosalyn

    2004-01-01T23:59:59.000Z

    mean streamflow data, Marsh Creek near Brentwood CA, Marchmean streamflow data, Marsh Creek near Byron CA, 1952-1983.condition of the Marsh Creek watershed. Natural Heritage

  7. Blackberry Creek Daylighting Project, Berkeley : Ten-Year Post-Project Appraisal

    E-Print Network [OSTI]

    Gerson, Stephanie Karla; Wardani, Jane; Niazi, Shiva

    2005-01-01T23:59:59.000Z

    manager. Personal Communication. December Creek Currents.1994. Blackberry Creek restoration project.Creek Currents. Berkeley, California. Spring/Summer 1994. p.

  8. Cerrito Creek step-pools: An opportunity for restoration and education at Blake Garden

    E-Print Network [OSTI]

    Behrends, Nathaniel

    2008-01-01T23:59:59.000Z

    Assessment of the Alamo Creek Restoration (East Branch).Vincent H. Resh. 1992. Strawberry Creek on the University ofRediscovering Cerrito Creek in Blake Garden. LA227

  9. Distribution of bed sediment on Clear Creek after removal of Saeltzer Dam

    E-Print Network [OSTI]

    Clayton-Niederman, Z; Gilbreath, Alicia

    2005-01-01T23:59:59.000Z

    of Saeltzer Dam on Clear Creek: An Update, Water Resources83-138. Brown, Matt. 2004. Clear Creek anadromous salmonidto Dam Removal, Clear Creek, California, Water Resources

  10. Post project evaluation of Miller Creek (Marin, CA) restoration : vegetation survival

    E-Print Network [OSTI]

    Ting, Jantrue; Pope-Daum, Caitilin

    2004-01-01T23:59:59.000Z

    Valley Units 3-6 Miller Creek Stabilization/RestorationProject Evaluation, Miller Creek, California: Assessment oftoe of bank grade change creek channel water surface LEGEND

  11. A Re-design Proposal: Connecting Whole Foods Market and Codornices Creek

    E-Print Network [OSTI]

    Crampton, Matthew; Martin, John

    2007-01-01T23:59:59.000Z

    of San Pablo Avenue entrance along Codornices Creek corridorNovember 2003. Codornices Creek Watershed Restoration Actiongarage next to Codornices Creek. Monroe Avenue 10th Street

  12. Post-Project Assessment of the 2003 Cerrito Creek Restoration and Recommendations for Additional Stormwater Management

    E-Print Network [OSTI]

    Adlong, Michelle; Cook, Michael; Kennedy, Matthew

    2011-01-01T23:59:59.000Z

    Design. 2011. Cerrito Creek Bay Trail Connector Feasibilitywww.altaplanning.com/cerrito+creek+bay+trail+connector+Baxter and Cerrito Creeks." El Cerrito, CA - Official

  13. Upland groundwater pumping and stream flow, San Jose Creek, Monterey County

    E-Print Network [OSTI]

    Ford, Alexander

    2004-01-01T23:59:59.000Z

    of Field Meeting, Las Garzas Creek Water Rights, Balanceand 23, 1991 San Jose Creek, Williams Canyon, Van Winkleysunnamed tributary to San Jose Creek. Monterey County General

  14. A preliminary assessment of potential steelhead habitat in Sinbad Creek, Alameda County

    E-Print Network [OSTI]

    Herron, Christy; King, Mary Ann; McDonald, Kristen

    2004-01-01T23:59:59.000Z

    Frequency Curve for Alameda Creek 1911-1990. Handout forMichael. 2001. Stonybrook Creek Fish Passage Assessment.trout caught in Sinbad Creek, Sunol, CA. ” credit: Alameda

  15. Panther Creek, Idaho, Habitat Rehabilitation, Final Report.

    SciTech Connect (OSTI)

    Reiser, Dudley W.

    1986-01-01T23:59:59.000Z

    The purpose of the project was to achieve full chinook salmon and steelhead trout production in the Panther Creek, Idaho, basin. Plans were developed to eliminate the sources of toxic effluent entering Panther Creek. Operation of a cobalt-copper mine since the 1930's has resulted in acid, metal-bearing drainage entering the watershed from underground workings and tailings piles. The report discusses plans for eliminating and/or treating the effluent to rehabilitate the water quality of Panther Creek and allow the reestablishment of salmon and trout spawning runs. (ACR)

  16. Archaeological investigations at the Kent Creek site (41HL66): evidence of Mogollon influence on the Southern Plains

    E-Print Network [OSTI]

    Cruse, Jimmy Brett

    1989-01-01T23:59:59.000Z

    in Hall County, Texas. . . . . 4 2. Contour map of the Kent Creek site. 3. Relief map of the Llano Estacado and surrounding areas. . . , 10 4. Cultural chronology chart of the Southern Plains and eastern New Mexico. 19 5. Map of the Llano Estacado... ideas about houses and horticulture. Evidence which may support Hughes' suggestion comes from archaeological excavations recently conducted at the Kent Creek site (41HL66) located in Hall County of the southeastern Texas panhandle (Figure 1...

  17. Hepatics of the Turkey Creek Unit of the Big Thicket National Preserve: a floristic and ecological study

    E-Print Network [OSTI]

    Bazan, Evangelina

    1980-01-01T23:59:59.000Z

    Botanically, The Turkey Creek Unit is of particular interest be- cause it includes 10 distinct vascular plant associations, according to a recent vegetation analysis of the Big Thicket National Preserve by Harcombe and Marks (1979). The unit was selected... in the Turkey Creek Unit of the Big Thicket National Preserve with approximate acreage and corres- ponding percent area occuppied. Asterisks indicate associations not sampled. (After Harcombe & Marks, 1979. ) Association Acreage Percent * Upland pine (UP...

  18. Steel Creek fish, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    SciTech Connect (OSTI)

    Sayers, R.E. Jr.; Mealing, H.G. III [Normandeau Associates, Inc., New Ellenton, SC (United States)

    1992-04-01T23:59:59.000Z

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal plain in west-central South Carolina. The Savannah River forms the western boundary of the site. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. All but Upper Three Runs Creek receive, or in the past received, thermal effluents from nuclear production reactors. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor, and protect the lower reaches from thermal impacts. The lake has an average width of approximately 600 m and extends along the Steel Creek valley approximately 7000 m from the dam to the headwaters. Water level is maintained at a normal pool elevation of 58 m above mean sea level by overflow into a vertical intake tower that has multilevel discharge gates. The intake tower is connected to a horizontal conduit that passes through the dam and releases water into Steel Creek. The Steel Creek Biological Monitoring Program was designed to meet environmental regulatory requirements associated with the restart of L-Reactor and complements the Biological Monitoring Program for L Lake. This extensive program was implemented to address portions of Section 316(a) of the Clean Water Act. The Department of Energy (DOE) must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems.

  19. Toms Creek IGCC Demonstration Project

    SciTech Connect (OSTI)

    Virr, M.J.

    1992-01-01T23:59:59.000Z

    The Toms Creek Integrated Gasification Combined Cycle (IGCC) Demonstration Project was selected by DOE in September 1991 to participate in Round Four of the Clean Coal Technology Demonstration Program. The project will demonstrate a simplified IGCC process consisting of an air-blown, fluidized-bed gasifier (Tampella U-Gas), a gas cooler/steam generator, and a hot gas cleanup system in combination with a gas turbine modified for use with a low-Btu content fuel and a conventional steam bottoming cycle. The demonstration plant will be located at the Toms Creek coal mine near Coeburn, Wise County, Virginia. Participants in the project are Tampella Power Corporation and Coastal Power Production Company. The plant will use 430 tons per day of locally mined bituminous coal to produce 55 MW of power from the gasification section of the project. A modern pulverized coal fired unit will be located adjacent to the Demonstration Project producing an additional 150 MW. A total 190 MW of power will be delivered to the electric grid at the completion of the project. In addition, 50,000 pounds per hour of steam will be exported to be used in the nearby coal preparation plant. Dolomite is used for in-bed gasifier sulfur capture and downs cleanup is accomplished in a fluidized-bed of regenerative zinc titanate. Particulate clean-up, before the gas turbine, will be performed by high temperature candle filters (1020[degree]F). The demonstration plant heat rate is estimated to be 8,700 Btu/kWh. The design of the project goes through mid 1995, with site construction activities commencing late in 1995 and leading to commissioning and start-up by the end of 1997. This is followed by a three year demonstration period.

  20. Toms Creek IGCC Demonstration Project

    SciTech Connect (OSTI)

    Virr, M.J.

    1992-11-01T23:59:59.000Z

    The Toms Creek Integrated Gasification Combined Cycle (IGCC) Demonstration Project was selected by DOE in September 1991 to participate in Round Four of the Clean Coal Technology Demonstration Program. The project will demonstrate a simplified IGCC process consisting of an air-blown, fluidized-bed gasifier (Tampella U-Gas), a gas cooler/steam generator, and a hot gas cleanup system in combination with a gas turbine modified for use with a low-Btu content fuel and a conventional steam bottoming cycle. The demonstration plant will be located at the Toms Creek coal mine near Coeburn, Wise County, Virginia. Participants in the project are Tampella Power Corporation and Coastal Power Production Company. The plant will use 430 tons per day of locally mined bituminous coal to produce 55 MW of power from the gasification section of the project. A modern pulverized coal fired unit will be located adjacent to the Demonstration Project producing an additional 150 MW. A total 190 MW of power will be delivered to the electric grid at the completion of the project. In addition, 50,000 pounds per hour of steam will be exported to be used in the nearby coal preparation plant. Dolomite is used for in-bed gasifier sulfur capture and downs cleanup is accomplished in a fluidized-bed of regenerative zinc titanate. Particulate clean-up, before the gas turbine, will be performed by high temperature candle filters (1020{degree}F). The demonstration plant heat rate is estimated to be 8,700 Btu/kWh. The design of the project goes through mid 1995, with site construction activities commencing late in 1995 and leading to commissioning and start-up by the end of 1997. This is followed by a three year demonstration period.

  1. EIS-0346: Salmon Creek Project, WA

    Broader source: Energy.gov [DOE]

    This EIS analyzes BPA's proposal to fund activities that would restore sufficient water flows to Salmon Creek and rehabilitate its streambed as necessary to provide adequate passage for summer steelhead (Oncorhynchus mykiss) and possibly spring chinook (O. tshawytscha).

  2. SALT CREEK ROADWI-80North STADIUMDRIVE

    E-Print Network [OSTI]

    Powers, Robert

    thSt. 0thSt. 1thSt. 2thSt. 3thSt. 4thSt. . t. 10 SALT CREEK ROADWI-80North 10THSTREET 14THSTREET W STADIUM DRIVE PARKING GARAGE 9thSt. 10thSt. 11thSt. 12thSt. 13thSt. 14thSt. 16thSt. 10thSt. SALT CREEK

  3. Bacterial Monitoring for the Buck Creek Watershed 

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    aquifer drawdown from vegetation and irrigation often reduce stream flow; however, several large pools and stretches of the stream retain water throughout the year, except during extreme drought. Base flow in the stream is typically sustained by small... map of the Buck Creek watershed 7 Major aquifers in Texas (Source: Texas Water Development Board) Groundwater Two aquifers, the Seymour and Blaine, underlie the Buck Creek watershed and supply the bulk of available groundwater. The Seymour...

  4. Swift Creek Hydroelectric Project rehabilitation, Swift Creek Power Company, Inc

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    The purpose of this report is to re-evaluate and update the original environmental analysis of the Swift Crook Hydroelectric Project rehabilitation. That analysis and the decision to allow the proponent toproceed with the project as described in the EA alternatives 3, 4, and 5 was completed an May 8, 1981. Since that decision, no action has been taken and no special-use permit has ever been issued. The Bridger-Trton National Forest completed a Forest Plan in March of 1990 which sets current direction for all lands within the Forest and new and significant issues pertaining to the amount of water to be bypassed have been raised by the public in response to this proposed project. The original proponent, Lower Valley Power and Light, sold the project and existing facilities to Swift Crack Power Company Inc. in 1984. Swift Crock Power Company has submitted a proposal to rehabilitate the existing power generation facility in Swift Creek Canyon, which will involve some significant construction and alteration of the river corridor. Theyhave also submitted an application for relicense to the Federal Energy Regulatory Commission who has asked for the Forest Service to comment on the application and to submit recommended conditions for approval (4e requirements). The proposed rehabilitation of existing facilities includes replacement of the existing damaged penstock (pipe) with a new, larger one; dredging two existing reservoirs and removal, refurbishment, and reinstallation of the turbines and generators in the two powerhouses with relocation and reconstruction of the lower powerhouse that is located on privately owned land below the Forest boundary.

  5. Final Independent External Peer Review Report Bubbly Creek Ecosystem Restoration

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Final Independent External Peer Review Report Bubbly Creek Ecosystem Restoration Feasibility Study National Planning Center of Expertise for Ecosystem Restoration Mississippi Valley Division Contract No. W Report Bubbly Creek Ecosystem Restoration Feasibility Study Prepared by Battelle 505 King Avenue Columbus

  6. Groundwater contamination near the Hoe Creek UCG experiments

    SciTech Connect (OSTI)

    Wang, F.T.; Mead, S.W.; Stuermer, D.H.

    1981-01-01T23:59:59.000Z

    It has been shown that underground coal gasification (UCG) may introduce a broad range of residual gasification products into the groundwater of a coal aquifer. Sorption of many contaminants by the coal itself is an important factor in restricting the migration of these contaminants in the groundwater. However, our field studies, conducted at Lawrence Livermore National Laboratory's Hoe Creek site, have shown that sorption of organic compounds by coal is not as effective as expected, perhaps because the coal surface area is limited. Furthermore, if severe roof collapse has taken place during gasification, non-coal aquifers located above the gasified coal seam may be interconnected with the coal aquifer, and contaminants may enter these non-coal aquifers, in which sorption is even less effective. The Hoe Creek II and III experiments have provided us with opportunities to study the contamination of a sand aquifer located above a gasified coal seam in a hydrological recharge area. Our preliminary results indicate that the water in the overlying sand aquifer is much less contaminated with organic compounds than the water in the gasified coal aquifer. In conducting these field investigations, we have also learned valuable lessons concerning groundwater monitoring. A suggested monitoring strategy will be discussed.

  7. Recommendation 195: Mitigation of Contamination in Bear Creek Burial Grounds

    Broader source: Energy.gov [DOE]

    The ORSSAB requests DOE provide possible remedial actions to mitigate releases of contamination from Bear Creek Burial Grounds.

  8. Steel Creek fish: L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1987

    SciTech Connect (OSTI)

    Paller, M.H.; Heuer, J.H.; Kissick, L.A.

    1988-03-01T23:59:59.000Z

    Fish samples were collected from Steel Creek during 1986 and 1987 following the impoundment of the headwaters of the stream to form L-Lake, a cooling reservoir for L-Reactor which began operating late in 1985. Electrofishing and ichthyoplankton sample stations were located throughout the creek. Fykenetting sample stations were located in the creek mouth and just above the Steel Creek swamp. Larval fish and fish eggs were collected with 0.5 m plankton nets. Multivariate analysis of the electrofishing data suggested that the fish assemblages in Steel Creek exhibited structural differences associated with proximity to L-Lake, and habitat gradients of current velocity, depth, and canopy cover. The Steel Creek corridor, a lotic reach beginning at the base of the L-Lake embankment was dominated by stream species and bluegill. The delta/swamp, formed where Steel Creek enters the Savannah River floodplain, was dominated by fishes characteristic of slow flowing waters and heavily vegetated habitats. The large channel draining the swamp supported many of the species found in the swamp plus riverine and anadromous forms.

  9. Level 1: Incidental crane operator`s and incidental rigger`s manual. Revision

    SciTech Connect (OSTI)

    Neubauer, P. [ed.

    1992-11-01T23:59:59.000Z

    This document is a safety manual for incidental crane operators and incidental riggers. The information contained in this manual includes: Terminology and definitions, safety orientation, general operating procedures, high-consequence/high value lifts, sling safety, basic rules of hitching and rigging, and common errors in hitching.

  10. Clear Creek Athletic Complex Marv Kay Stadium at Campbell Field

    E-Print Network [OSTI]

    Clear Creek Athletic Complex Marv Kay Stadium at Campbell Field Mines Athletic Center #12;· Site Creek Athletic Complex Marv Kay Stadium at Campbell Field Mines Athletic Center #12;Mines Master Plan 2010 #12;Clear Creek Athletic Complex Site Plan #12;Site Plan #12;Pedestrian Circulation #12;Vehicular

  11. Bridge Creek Watershed Volunteer Lake Secchi Disk Monitoring Program

    E-Print Network [OSTI]

    #12;Bridge Creek Watershed Volunteer Lake Secchi Disk Monitoring Program 1996 DOE FRAP 1996-13 Ryan Creek Watershed Volunteer Lake Monitoring Program. Using a Secchi disk, volunteers collected water transparency data from 22 lakes in the Bridge Creek watershed. Secchi depth readings were collected between May

  12. State of the Watershed: Water Quality of Boulder Creek, Colorado

    E-Print Network [OSTI]

    State of the Watershed: Water Quality of Boulder Creek, Colorado By Sheila F. Murphy Prepared of the watershed : water quality of Boulder Creek, Colorado / by Sheila Murphy. p. cm. ­(USGS Circular ; 1284) Includes bibliographic references. 1. Water quality -- Colorado -- Boulder Creek Watershed (Boulder

  13. The dynamics of subadult flocks of whooping cranes wintering in Texas, 1978-79 through 1982-83

    E-Print Network [OSTI]

    Bishop, Mary Anne

    1984-01-01T23:59:59.000Z

    Behavior Flock Stability Seasonal and Age Class Distribution of FOA's Spatial Proximity Within Flocks Pair Formation in Subadult Flocks Age of Pairing Factors in Pair Formation 12 12 12 15 15 18 23 23 23 26 35 39 59 59 64 68 74 78... found with the typical subadult whooping crane 67 11 Distribution of FOA's for all subadult whooping crane dyads at ANWR, 1980-81; N = 14 individuals, 91 dyads 88 12 Distribution of FOA's for all subadult whooping crane dyads at ANWR. (a) 1981...

  14. The dynamics of subadult flocks of whooping cranes wintering in Texas, 1978-79 through 1982-83 

    E-Print Network [OSTI]

    Bishop, Mary Anne

    1984-01-01T23:59:59.000Z

    Behavior Flock Stability Seasonal and Age Class Distribution of FOA's Spatial Proximity Within Flocks Pair Formation in Subadult Flocks Age of Pairing Factors in Pair Formation 12 12 12 15 15 18 23 23 23 26 35 39 59 59 64 68 74 78... found with the typical subadult whooping crane 67 11 Distribution of FOA's for all subadult whooping crane dyads at ANWR, 1980-81; N = 14 individuals, 91 dyads 88 12 Distribution of FOA's for all subadult whooping crane dyads at ANWR. (a) 1981...

  15. Geology of the Squaw Creek-Marshall Creek area, Mason County, Texas

    E-Print Network [OSTI]

    Woolsey, Isaac Wayne

    1958-01-01T23:59:59.000Z

    =huntxxxgxsessoa - . ?. '. . ?, . -:;. -=, . ==, ---. -"='=;. -. -'=:; ?. . . . ";-' P. , 8 T 8 X''. d'6 R. A P 8 Y ''uesteen ?;~ of the 'Llano"uplift, , ' The; Lcm . rection is . structural)y. a. great Boric& bu0 topographically' a broad'. basin. Precav. brian anjl Palso- :-soic rocks have been exposea bp erosion uithin. the... the biotite schiz@ is coxxyo'se6 chiefly ofbio tits with a conei6erable nzomt, . of nile q~, The xxuarta occurs in. thin la9em in ixxxe yerbs of ths schist. buC 'nor'e oonmes3g occuri scattere6 Mcoughout. . %he:, rock, The flskssief tJ&e biet4te sre arrange...

  16. Unpaving the Way to Creek Restoration in Lower Sausal Creek Watershed: Applying the EU Water Framework Directive to a US Urban Watershed

    E-Print Network [OSTI]

    Li, Hong; Wardani, Jane

    2008-01-01T23:59:59.000Z

    per 10,000 sq ft $0.8 per 10,000 sq ft Creek restoration***Daylighting culverted creeks Open channel Engineered channelbased on cost of Peralta Creek restoration project in lower

  17. Vegetation survey of Pen Branch and Four Mile Creek wetlands

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    One hundred-fifty plots were recently sampled (vegetational sampling study) at the Savannah River Site (SRS). An extensive characterization of the vascular flora, in four predetermined strata (overstory, Understory, shrub layer, and ground cover), was undertaken to determine dominance, co-dominance, and the importance value (I.V.) of each species. These results will be used by the Savannah River Laboratory (SRL) to evaluate the environmental status of Four Mile Creek, Pen Branch, and two upland pine stands. Objectives of this study were to: Describe in detail the plant communities previously mapped with reference to the topography and drainage, including species of plants present: Examine the successional trends within each sampling area and describe the extent to which current vegetation communities have resulted from specific earlier vegetation disturbances (e.g., logging and grazing); describe in detail the botanical field techniques used to sample the flora; describe the habitat and location of protected and/or rare species of plants; and collect and prepare plant species as herbarium quality specimens. Sampling was conducted at Four Mile Creek and Pen Branch, and in two upland pine plantations of different age growth.

  18. Vegetation survey of Pen Branch and Four Mile Creek wetlands

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    One hundred-fifty plots were recently sampled (vegetational sampling study) at the Savannah River Site (SRS). An extensive characterization of the vascular flora, in four predetermined strata (overstory, Understory, shrub layer, and ground cover), was undertaken to determine dominance, co-dominance, and the importance value (I.V.) of each species. These results will be used by the Savannah River Laboratory (SRL) to evaluate the environmental status of Four Mile Creek, Pen Branch, and two upland pine stands. Objectives of this study were to: Describe in detail the plant communities previously mapped with reference to the topography and drainage, including species of plants present: Examine the successional trends within each sampling area and describe the extent to which current vegetation communities have resulted from specific earlier vegetation disturbances (e.g., logging and grazing); describe in detail the botanical field techniques used to sample the flora; describe the habitat and location of protected and/or rare species of plants; and collect and prepare plant species as herbarium quality specimens. Sampling was conducted at Four Mile Creek and Pen Branch, and in two upland pine plantations of different age growth.

  19. Co-relation of Variables Involved in the Occurrence of Crane Accidents in U.S. through Logit Modeling.

    E-Print Network [OSTI]

    Bains, Amrit Anoop Singh

    2010-10-12T23:59:59.000Z

    One of the primary reasons of the escalating rates of injuries and fatalities in the construction industry is the ever so complex, dynamic and continually changing nature of construction work. Use of cranes has become imperative to overcome...

  20. Landowners lead successful Buck Creek restoration

    E-Print Network [OSTI]

    Boutwell, Kathryn S.

    2012-01-01T23:59:59.000Z

    of the watershed, according to Dr. John Sij, retired agronomist and former project leader at the Vernon center. ?#31;is e#27;ort veri#25;ed that bacteria levels periodi- cally reach problematic levels,? he said. Landowners lead successful Buck Creek...

  1. Clear Creek, Texas Flood Risk Management Project

    E-Print Network [OSTI]

    US Army Corps of Engineers

    ) of 1996 requires four distinct steps for an evaluation of economic benefits and costs for projects for an evaluation of economic benefits and costs for projects were conducted and displayed in the Economic Appendix ­ Economic Evaluation. The non-Federal projects (FEMA buyout and detention on Marys Creek) augments

  2. Range Creek Calibrated Dates Beta-202190

    E-Print Network [OSTI]

    Provancher, William

    Range Creek Calibrated Dates 0 200 400 600 800 1000 1200 1400 Beta-202190 Beta-175753 Beta-175755 Beta-235067 Beta-202189 Beta-214831 Beta-202188 Beta-202191 Beta-203630 Beta-214832 Beta-175754 Beta a Carbon-14 calibrated date (95% CI) between 1000 and 1200 C.E. (Figure 5: Beta-235067). The calibrated

  3. Buck CreekWatershed Protection Plan

    E-Print Network [OSTI]

    State Soil and Water Conservation Board (Project 06-11) U.S. Environmental Protection Agency Developed Conservation Board (Project 06-11) U.S. Environmental Protection Agency Investigating Agencies: Texas A&M Agri the Texas State Soil and Water Conservation Board and U.S. Environmental Protection Agency. Buck Creek

  4. Carneros Creek: Assessing restoration implications for a sinuous stream using 1-dimensional and 2-dimensional simulation models

    E-Print Network [OSTI]

    Beagle, Julie; Marzion, Rachael; Matella, Mary

    2008-01-01T23:59:59.000Z

    Use History of the Carneros Creek watershed: A component ofplan for the Carneros Creek watershed, Napa County,Lower San Francisquito Creek Watershed Aquatic Habitat

  5. C(re)ek-storation Community Collaboration Site: North Fork of Strawberry Creek by La Loma and Le Conte Avenues

    E-Print Network [OSTI]

    Tannenbaum, Sara Rose

    2011-01-01T23:59:59.000Z

    berkeley_landmarks/theta-xi.html. Urban Creeks Council.2007. Codornices Creek Watershed Restoration Action Plan (336-361. NRPI. Codornices Creek at Ohlone Greenway. Accessed

  6. A long-term post-project evaluation of an urban stream restoration project (Baxter Creek, El Cerrito, California)

    E-Print Network [OSTI]

    Purcell, Alison

    2004-01-01T23:59:59.000Z

    and V. H. Resh. 1992. Strawberry Creek on the University of1995. Biography of an urban creek. Terrain. Berkeley Ecologythe restoration project at Baxter Creek improved habitat and

  7. Effects of a livestock exclosure on channel morphology and vegetation along Long Creek in Lake County, Oregon

    E-Print Network [OSTI]

    Doehring, Carolyn; Rubin, Zan; Sahai, Rashmi

    2011-01-01T23:59:59.000Z

    reaches of Wickiup Creek in Eastern Oregon. Physicalof beaver dams in Bridge Creek, an incised stream channel inavailable data from Long Creek Cross Sections Sites Reach1

  8. Improvement of Anadromous Fish Habitat and Passage in Omak Creek, 2008 Annual Report : February 1, 2008 to January 31, 2009.

    SciTech Connect (OSTI)

    Dasher, Rhonda; Fisher, Christopher [Colville Confederated Tribes

    2009-06-09T23:59:59.000Z

    During the 2008 season, projects completed under BPA project 2000-100-00 included installation of riparian fencing, maintenance of existing riparian fencing, monitoring of at-risk culverts and installation of riparian vegetation along impacted sections of Omak Creek. Redd and snorkel surveys were conducted in Omak Creek to determine steelhead production. Canopy closure surveys were conducted to monitor riparian vegetation recovery after exclusion of cattle since 2000 from a study area commonly known as the Moomaw property. Additional redd and fry surveys were conducted above Mission Falls and in the lower portion of Stapaloop Creek to try and determine whether there has been successful passage at Mission Falls. Monitoring adult steelhead trying to navigate the falls resulted in the discovery of shallow pool depth at an upper pool that is preventing many fish from successfully navigating the entire falls. The Omak Creek Habitat and Passage Project has worked with NRCS to obtain additional funds to implement projects in 2009 that will address passage at Mission Falls, culvert replacement, as well as additional riparian planting. The Omak Creek Technical Advisory Group (TAG) is currently revising the Omak Creek Watershed Assessment. In addition, the group is revising strategy to focus efforts in targeted areas to provide a greater positive impact within the watershed. In 2008 the NRCS Riparian Technical Team was supposed to assess areas within the watershed that have unique problems and require special treatments to successfully resolve the issues involved. The technical team will be scheduled for 2009 to assist the TAG in developing strategies for these special areas.

  9. Water Sampling At Crane Hot Springs Area (Wood, 2002) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, search

  10. Compound and Elemental Analysis At Crane Hot Springs Area (Wood, 2002) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew York:GovernorCommons Capital*CompetitionCompSolar|

  11. Scotch Creek Wildlife Area BPA Project #1996-094-01

    E-Print Network [OSTI]

    Complex. · 1991-2009: 11,117 additional acres purchased with WWRP and BPA funds, total of 23,770 acres-steppe · 107,900 trees and shrubs planted to restore critical riparian habitat · Weed control on 7,435 acres Suplementation #12;Immediate Management Needs ·Continue Maintenance on previous enhancements to ensure quality

  12. area battle creek: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Medicine Websites Summary: ITHACA RD DRYDEN RD GAMEFARMRD East Lawn Cemetery Ellis Hollow Athletic Complex R PROPOSED ROAD PROPOSED ROAD PROPOSEDROAD MAPLE AVENUE EXTENSION...

  13. area battlement creek: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Medicine Websites Summary: ITHACA RD DRYDEN RD GAMEFARMRD East Lawn Cemetery Ellis Hollow Athletic Complex R PROPOSED ROAD PROPOSED ROAD PROPOSEDROAD MAPLE AVENUE EXTENSION...

  14. Thermal Gradient Holes At Upper Hot Creek Ranch Area (Benoit...

    Open Energy Info (EERE)

    planned but higher than anticipated drilling and permitting costs within a fixed budget reduced the number of holes to five. Four of the five holes drilled to depths of 300...

  15. Indian Creek Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP WindSatelliteInSAR JumpRenewableChange | OpenIndian

  16. Owl Creek Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany OilInformationPre-TaxShelf LandsOpenCorningOwl

  17. Slate Creek Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey JumpAirPowerSilcioEthanolSkyline High

  18. East Basin Creek Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South,Earlsboro, Oklahoma:Turbines IncAurora, NewBasin

  19. Upper Hot Creek Ranch Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtleCooperativeCROSS-VALIDATION OF SWERA'sUpperUpper Hot

  20. Upper Hot Creek Ranch Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtleCooperativeCROSS-VALIDATION OF SWERA'sUpperUpper

  1. High Seastate Container Transfer System/Auxillary Crane Ship vertical relative motion analysis

    E-Print Network [OSTI]

    Ottens, Michael James

    1992-01-01T23:59:59.000Z

    ) Michael James Ottens, B. S. ; U. S. Military Academy Chairman of Advisory Committee: Dr. Cheung H. Kim The transfer of cargo by crane from ship to lighter outside of sheltered ports can be adversely affected by the sea environment, Wave... of vertical relative motions exceed prescribed safety factors. Additionally, there is a continuing need to develop improved seakeeping designs of ships/lighterage. This paper calculates theoretically the vertical relative motions between a cargo ship...

  2. Development of remote crane system for use inside small argon hot-cell

    SciTech Connect (OSTI)

    Lee, Jong Kwang; Park, Byung Suk; Yu, Seung-Nam; Kim, Kiho; Cho, Ilje [Nuclear Fuel Cycle Process Technology Development Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-07-01T23:59:59.000Z

    In this paper, we describe the design of a novel crane system for the use in a small argon hot-cell where only a pair of master-slave manipulators (MSM) is available for the remote maintenance of the crane. To increase the remote maintainability in the space-limited environment, we devised a remote actuation mechanism in which electrical parts consisting of a servo-motor, a position sensor, and two limit switches located inside the workspace of the MSM transmit power to the mechanical parts located in the ceiling. Even though the design concept does not provide thoroughly sufficient solution because the mechanical parts are placed out of the MSM's workspace, the durability of mechanical parts can be easily increased if they have a high safety margin. Therefore, the concept may be one of the best solutions for our special crane system. In addition, we developed a servo-control system based on absolute positioning technology; therefore, it is possible for us to perform the given tasks more safely through an automatic operation. (authors)

  3. Steel Creek primary producers: Periphyton and seston, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    SciTech Connect (OSTI)

    Bowers, J.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Toole, M.A.; van Duyn, Y. [Normandeau Associates Inc., New Ellenton, SC (United States)

    1992-02-01T23:59:59.000Z

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor and to protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to assess various components of the system and identify and changes due to the operation of L-Reactor or discharge from L Lake. An intensive ecological assessment program prior to the construction of the lake provided baseline data with which to compare data accumulated after the lake was filled and began discharging into the creek. The Department of Energy must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems. This report summarizes the results of six years` data from Steel Creek under the L-Lake/Steel Creek Monitoring Program. L Lake is discussed separately from Steel Creek in Volumes NAI-SR-138 through NAI-SR-143.

  4. Wetland Survey of Selected Areas in the Oak Ridge Y-12 Plant Area of Responsibilty, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Rosensteel

    1997-01-01T23:59:59.000Z

    This document was prepared to summarize wetland surveys performed in the Y- 1 2 Plant area of responsibility in June and July 1994. Wetland surveys were conducted in three areas within the Oak Ridge Y- 12 Plant area of responsibility in June and July 1994: the Upper East Fork Poplar Creek (UEFPC) Operable Unit (OU), part of the Bear Creek Valley OU (the upper watershed of Bear Creek from the culvert under Bear Creek Road upstream through the Y-12 West End Environmental Management Area, and the catchment of Bear Creek North Tributary 1), and part of Chestnut Ridge OU 2 (the McCoy Branch area south of Bethel Valley Road). Using the criteria and methods set forth in the Wetlands Delineation Manual, 18 wetland areas were identified in the 3 areas surveyed; these areas were classified according to the system developed by Cowardin. Fourteen wetlands and one wetland/pond area that are associated with disturbed or remnant stream channels and seeps were identified in the UEFPC OU. Three wetlands were identified in the Bear Creek Valley OU portion of the survey area. One wetland was identified in the riparian zone of McCoy Branch in the southern portion of Chestnut Ridge OU 2.

  5. Hydrogeology and tritium transport in Chicken Creek Canyon, Lawrence Berkeley National Laboratory, Berkeley, California

    E-Print Network [OSTI]

    Jordan, Preston D.; Javandel, Iraj

    2007-01-01T23:59:59.000Z

    exposures in upper Chicken Creek Canyon. Figure 3-2a.Borings and test pits in Chicken Creek Canyon. Figure 3-2b.portion of upper Chicken Creek Canyon. Figure 3-2c. Borings

  6. Post-Project Appraisal of Arroyo Viejo Creek Improvement Project, Oakland, California

    E-Print Network [OSTI]

    Cousins, Mary; Storesund, Rune

    2005-01-01T23:59:59.000Z

    Appraisal of the Arroyo Viejo Creek Restoration Project. 26Cross Sections of Arroyo Viejo Creek at Arroyo Viejo Park (Sowers, J. M. 2000. Creek & Watershed Map of Oakland and

  7. Post-project appraisal of a channel reconstruction on Cuneo Creek, California

    E-Print Network [OSTI]

    Hansen, Aren

    2003-01-01T23:59:59.000Z

    a case study at Bull Creek, Humboldt Redwoods State Park.Rosgen, D. 1991. Bull Creek Watershed Restoration Plan,the South Fork of Cuneo Creek and contributes large amounts

  8. Post-project appraisal of lower Ritchie Creek dam removal, Napa County

    E-Print Network [OSTI]

    Daniels, Jubilee; Pagano, Laura

    2004-01-01T23:59:59.000Z

    Appraisal of Lower Ritchie Creek Dam Removal, Napa CountyApril 2004 Abstract Ritchie Creek drains 2.6 square milesdam was built in 1912 on Ritchie Creek to facilitate water

  9. The influence of large woody debris on channel form, upper Scott Creek, Santa Cruz County

    E-Print Network [OSTI]

    Garcia, Luis; Orduna, Rodrigo

    2004-01-01T23:59:59.000Z

    Introduction The Scott Creek Watershed (Cal Water versionto the Pacific Ocean. Scott Creek hosts runs of Steelhead (O. mykiss) do inhabit the creek. We studied a reach of Scott

  10. Post-Project Appraisal for the Winter Creek Restoration Redwood Grove, UC Botanical Gardens at Berkeley

    E-Print Network [OSTI]

    Fiala, Shannon; Janes, Kelly; Sousa, Ricardo

    2010-01-01T23:59:59.000Z

    in this reach of Winter Creek? 3. How did construction4. Pre-restoration. Winter Creek, looking upstream. 2005.5. Pre-restoration. Winter Creek, looking downstream. 2005.

  11. AN INVESTIGATION OF DEWATERING FOR THE MODIFIED IN-SITU RETORTING PROCESS, PICEANCE CREEK BASIN, COLORADO

    E-Print Network [OSTI]

    Mehran, M.

    2013-01-01T23:59:59.000Z

    J:''-~orraation v Piceance Creek Basin v Colorado r and 9 p'C~b Tract, Piceance Creek Basin, Colorado," Report to Oc~for Piceance and Yellow Creek Watersheds," Environmental

  12. Hydrology of Deer Creek and its tributaries : a contribution to planning a restoration project

    E-Print Network [OSTI]

    Skrtic, Lana

    2005-01-01T23:59:59.000Z

    in text) Table 2: Deer Creek – Chronology of Peak Flows,Return Periods, extrapolated from Oregon Creek data Table 3:Flow Estimates on Deer Creek and its Tributaries Table 4:

  13. Post-Project Appraisal of Crocker Creek Dam Removal Project, Sonoma Co., California

    E-Print Network [OSTI]

    Downing-Kunz, Maureen; Dudley, Colin; Gilbreath, Alicia

    2005-01-01T23:59:59.000Z

    at 1030. CDFG, Crocker Creek (Russian River tributary)on 12/6/05 at CDFG, Crocker Creek (Russian River tributary)Agency (SCWA), “ Crocker Creek Instream Habitat Restoration

  14. Post-project appraisal of the Sausal Creek restoration project, Oakland, California

    E-Print Network [OSTI]

    Eagon, Elizabeth; Largent, Jonathan

    2005-01-01T23:59:59.000Z

    at El Centro Friends of Sausal Creek mobilizing for macro-28: Erosion due to informal creek crossing at rock weirhttp://www.oaklandpw.com/creeks/sausal_complete.htm. Downs,

  15. Baxter Creek Gateway Park: assessment of an urban stream restoration project

    E-Print Network [OSTI]

    Goodman, Judd; Lunde, Kevin B; Zaro, Theresa

    2006-01-01T23:59:59.000Z

    Viani L. 2004. The Baxter Creek Watershed: a cultural andCity of El Cerrito, Friends of Baxter Creek, The WatershedProject, Urban Creeks Council, Restoration Design Group.

  16. Perspectives on Dam Removal: York Creek Dam and the Water Framework Directive

    E-Print Network [OSTI]

    Lawrence, Justin E; Pollak, Josh D; Richmond, Sarah F

    2008-01-01T23:59:59.000Z

    3. Long-profile of York Creek (figure adapted from report byFigure 5. Facies map for York Creek about 100 ft downstreamon Dam Removal: York Creek Dam and the Water Framework

  17. Spatial and temporal ecology of native and introduced fish larvae in Lower Putah Creek, California

    E-Print Network [OSTI]

    Marchetti, Michael P; Moyle, Peter B

    1999-01-01T23:59:59.000Z

    fish in Lower Putah Creek (Yolo Co. CA). Environmentaland non-native taxa totals. Dry Creek drift light PedricRoad drift light Dry Creek drift light Russell drift ligh

  18. White Creek and Nine Canyon wind farms Fact Sheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    additional wind storage and shaping services. Since these White Creek and Nine Canyon wind farms December 2006 2 Bonne ville Power Administration DOEBP-3770 November 2006...

  19. AVTA: Clipper Creek AC Level 2 Charging System Testing Results...

    Broader source: Energy.gov (indexed) [DOE]

    electric vehicles. This research was conducted by Idaho National Laboratory. Clipper Creek AC Level 2 - February 2012 More Documents & Publications AVTA: Aerovironment AC Level...

  20. Omak Creek land acquisition Fact Sheet.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    factsheet factsheet Omak Creek acquisition to protect summer steelhead habitat The Bonneville Power Administration is proposing to fund the purchase of two adjacent land parcels to...

  1. Acquisition of Wildlife Habitat in the Calispell Creek Watershed...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Calispell Creek watershed in Pend Oreille County, Wash. BPA funds the Albeni Falls Wildlife Mitigation Program, which is tasked with the acquisition and restoration of key...

  2. New Jersey Nuclear Profile - PSEG Hope Creek Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    PSEG Hope Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

  3. Microsoft Word - Trimble_Creek_Acquisition_CX.doc

    Broader source: Energy.gov (indexed) [DOE]

    funds to the Kalispel Tribe (Kalispel) for purchase of Trimble Creek (Doramus) Property Fish and Wildlife Project No.: 1992-061-00, Contract BPA-004991 Categorical Exclusion...

  4. Microsoft Word - CX_ThorneCreek_Final.doc

    Broader source: Energy.gov (indexed) [DOE]

    the Confederated Salish and Kootenai Tribes for purchase of the Thorne Creek Property. Fish and Wildlife Project No.: 2002-003-00, Contract CR-201269 Categorical Exclusion Applied...

  5. Microsoft Word - CX_Beaver Creek.doc

    Broader source: Energy.gov (indexed) [DOE]

    (BPA) funding to acquire the Beaver Creek property and to maintain this property for fish and wildlife habitat protection. Budget Information: Work Order 00225478 Fish and...

  6. E-Print Network 3.0 - asotin creek fencing Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Plants 10 Volunteers removing sandbags Completed project site Summary: Campbell Creek Restoration Anchorage, Alaska Campbell Creek is an anadromous fish stream that flows...

  7. E-Print Network 3.0 - asotin creek instream Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Watershed Council Water Quality Monitoring Program Summary: is of interest. To improve in-stream flow restoration effectiveness, implementation of the Whychus Creek... Creek...

  8. Assessing the Feasibility of Creek Daylighting in San Francisco, Part II: A Preliminary Analysis of Yosemite Creek

    E-Print Network [OSTI]

    Smith, Brooke Ray

    2007-01-01T23:59:59.000Z

    or purchased properties) to daylight the stream? Or is itrestoration (Smith 2007). Why Daylight in San Francisco? Inof San Francisco to daylight Yosemite Creek, how and where

  9. Biological monitoring of Upper Three Runs Creek, Savannah River Site, Aiken County, South Carolina, March 1990--July 1991

    SciTech Connect (OSTI)

    Not Available

    1991-12-01T23:59:59.000Z

    In anticipation of the fall 1988 start up of effluent discharges into Upper Three Runs Creek by the F/H Area Effluent Treatment Facility of the Savannah River Site, Aiken, SC, a two and one half year biological study was initiated in June 1987. Upper Three Runs Creek is an intensively studied fourth order stream known for its high species richness. Designed to assess the potential impact of F/H area effluent on the creek, the study included qualitative and quantitative macroinvertebrate stream surveys at five sites (see map), chronic toxicity testing of the effluent, water chemistry and bioaccumulation analysis. In a March 1990 study of the potential impact of F/H Area effluent on the macroinvertebrate communities of Upper Three Runs Creek was extended, with reductions in the number of sites to be sampled and in the frequency of water chemistry sampling. This report presents the results of macroinvertebrate stream surveys at three sites, chronic toxicity testing of the effluent and water chemistry analysis of the three stream sites and the effluent from March 1990 to July 1991.

  10. area bell county: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: GEOLOGY OF THE UPPER SCHEP CREEK AREA, MASOH COUHTY, TEXAS A Thesis HOLL1S UA1Z MARSHALL Subaitted to tbe oraduate Sohool of the Agrioultural and Meohanioal College of...

  11. area north island: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stanley Alfred 1957-01-01 37 Structural geology of the Irons Fork - North Fork Creek area, Lake Ouachita, Arkansas Texas A&M University - TxSpace Summary: STRUCTURAL...

  12. area central iran: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    report of cercarial dermatitis from this region of Iran. A Farahnak; M Essalat 64 Post-Fire Debris-Flow Hazard Assessment of the Area Burned by the 2013 Beaver Creek Fire near...

  13. Sandhill Crane Roost Site Characteristics in the North Platte River Valley Author(s): Martin J. Folk and Thomas C. Tacha

    E-Print Network [OSTI]

    Sandhill Crane Roost Site Characteristics in the North Platte River Valley Author(s): Martin J the North Platte River Valley (NPRV) of Nebraska in riverine and semipermanent palustrine wetlands from late in the Platte River. Cranes roosted in semipermanent wetlands where widths were >12 m, water depths were 5

  14. DRAFT ENVIRONMENTAL ASSESSMENT1 PINE CREEK DAM, OKLAHOMA2

    E-Print Network [OSTI]

    US Army Corps of Engineers

    #12;#12;DRAFT ENVIRONMENTAL ASSESSMENT1 PINE CREEK DAM, OKLAHOMA2 DAM SAFETY MODIFICATION3 &4 Environmental Assessment Pine Creek Dam, Oklahoma Dam Safety Modification & Interim Risk Reduction Measure of Federal Regulations, Part 230, the Tulsa District has assessed the environmental impacts of modifications

  15. Bear Creek Valley Watershed | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromofBatteries from Brine Batteries fromThermalBe aBear Creek

  16. Forest Creek Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information HydroFontana, California:Group JumpHighCreek Wind

  17. Papalote Creek Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompanyPCN Technology Jump2011) |PanasonicPapalote Creek Wind

  18. Smith Creek Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |RippeyInformation SlimSloughCreek Geothermal Project

  19. Fermilab | Tritium at Fermilab | Kress Creek Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13, 2013FocusreceivesTraffic SafetyKress Creek

  20. Cobb Creek Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCityFundCo-benefitsCoalogix IncCobb Creek

  1. NAME: Green Gulch Creek Stream Restoration Project LOCATION: Redwood Creek Watershed in Marin County, CA (closest town is Muir Beach)

    E-Print Network [OSTI]

    US Army Corps of Engineers

    NAME: Green Gulch Creek Stream Restoration Project LOCATION: Redwood Creek Watershed in Marin County, CA (closest town is Muir Beach) ACRES: 1.5 acres riparian habitat; 0.3 miles of stream channel-modified, straightened, and downcut channel; relocate the farm road and fences paralleling the stream to provide

  2. Superfund Record of Decision (EPA Region 8): Anaconda Smelter Site, Mill Creek, Montana (first remedial action), October 1988

    SciTech Connect (OSTI)

    Not Available

    1988-10-02T23:59:59.000Z

    The 160-acre community of Mill Creek is located in Deerlodge County, Montana, immediately adjacent to the Anaconda Smelter NPL site. The community of Mill Creek has been contaminated for over 100 years with smelter emissions, fugitive emissions of flu dust at the smelter, and continued fugitive emissions emanating from adjacent highly contaminated soils. Settled flue emissions in the community of Mill Creek, from the now-defunct copper-smelting operation, contain arsenic, cadmium, and lead. Environmental siting of the community and biological testing of pre-school children, led EPA to conclude that contamination in the Mill Creek area poses an imminent and substantial endangerment to the health of individuals residing there. The primary contaminant of concern at this site is arsenic. Cadmium and lead are secondary contaminants of concern. The selected remedial action for the site includes: permanent relocation of all residents (8 homes) with temporary erosional stabilization of disturbed areas by establishing and maintaining a vegetative cover; demolition, consolidation, and storage.

  3. Hoe Creek 1990 quarterly sampling cumulative report

    SciTech Connect (OSTI)

    Crader, S.E.; Huntington, G.S.

    1991-03-01T23:59:59.000Z

    Groundwater samples were collected and analyzed for benzene and for total phenols three times during 1990. This report summarizes the results of these sampling events and compares the results with those obtained in previous years. Possible further options for remediation of the Hoe Creek site was addressed. Three underground coal gasification (UCG) burns were performed by Lawrence Livermore National Laboratory for the US Department of Energy in 1976, 1977, and 1979 at the Hoe Creek site, which is about 20 miles south of Gillette, Wyoming. As a result of these burns, there has been considerable contamination of groundwater by various organic compounds. There have been three efforts at remediating this situation. In 1986 and again in 1987, contaminated water was pumped out, treated, and reinjected. In 1989, the water was pumped, treated, and sprayed into the atmosphere. Benzene and total phenols have been monitored at various monitoring wells as the site during 1990. The highest detected benzene concentration in 1990 was 220 {mu}g/L, and the highest total phenols concentration was 430 {mu}g/L. It is apparent that contamination is still above baseline levels, although the concentration of total phenols is far less than immediately after the burns. The burned coal seams are still releasing organic compounds into the groundwater that passes through them.

  4. Reintroduction of Lower Columbia River Chum Salmon into Duncan Creek, 2007 Annual Report.

    SciTech Connect (OSTI)

    Hillson, Todd D. [Washington Department of Fish and Wildlife

    2009-06-12T23:59:59.000Z

    The National Marine Fisheries Service (NMFS) listed Lower Columbia River (LCR) chum salmon as threatened under the Endangered Species Act (ESA) in March, 1999 (64 FR 14508, March 25, 1999). The listing was in response to the reduction in abundance from historical levels of more than one-half million returning adults to fewer than 10,000 present-day spawners. Harvest, habitat degradation, changes in flow regimes, riverbed movement and heavy siltation have been largely responsible for this decline. The timing of seasonal changes in river flow and water temperatures is perhaps the most critical factor in structuring the freshwater life history of this species. This is especially true of the population located directly below Bonneville Dam, where hydropower operations can block access to spawning sites, dewater redds, strand fry, cause scour or fill of redds and increase sedimentation of spawning gravels. Prior to 1997, only two chum salmon populations were recognized as genetically distinct in the Columbia River, although spawning had been documented in many Lower Columbia River tributaries. The first population was in the Grays River (RKm 34), a tributary of the Columbia River, and the second was a group of spawners utilizing the mainstem Columbia River just below Bonneville Dam (RKm 235) adjacent to Ives Island and in Hardy and Hamilton creeks. Using additional DNA samples, Small et al. (2006) grouped chum salmon spawning in the mainstem Columbia River and the Washington State tributaries into three groups: the Coastal, the Cascade and the Gorge. The Coastal group comprises those spawning in the Grays River, Skamokawa Creek and the broodstock used at the Sea Resources facility on the Chinook River. The Cascade group comprises those spawning in the Cowlitz (both summer and fall stocks), Kalama, Lewis, and East Fork Lewis rivers, with most supporting unique populations. The Gorge group comprises those spawning in the mainstem Columbia River from the I-205 Bridge up to Bonneville Dam and those spawning in Hamilton and Hardy creeks. Response to the federal ESA listing has been primarily through direct-recovery actions: reducing harvest, hatchery supplementation using local broodstock for populations at catastrophic risk, habitat restoration (including construction of spawning channels) and flow agreements to protect spawning and rearing areas. Both state and federal agencies have built controlled spawning areas. In 1998, the Washington Department of Fish and Wildlife (WDFW) began a chum salmon supplementation program using native stock on the Grays River. This program was expanded during 1999 - 2001 to include reintroduction into the Chinook River using eggs from the Grays River Supplementation Program. These eggs are incubated at the Grays River Hatchery, reared to release size at the Sea Resources Hatchery on the Chinook River, and the fry are released at the mouth of the Chinook River. Native steelhead, chum, and coho salmon are present in Duncan Creek, and are recognized as subpopulations of the Lower Gorge population, and are focal species in the Lower Columbia Fish Recovery Board (LCFRB) plan. Steelhead, chum and coho salmon that spawn in Duncan Creek are listed as Threatened under the ESA. Duncan Creek is classified by the LCFRB plan as a watershed for intensive monitoring (LCFRB 2004). This project was identified in the 2004 Federal Columbia River Power System (FCRPS) revised Biological Opinion (revised BiOp) to increase survival of chum salmon, 'BPA will continue to fund the program to re-introduce Columbia River chum salmon into Duncan Creek as long as NOAA Fisheries determines it to be an essential and effective contribution to reducing the risk of extinction for this ESU'. (USACE et al. 2004, page 85-86). The Governors Forum on Monitoring and Salmon Recovery and Watershed Health recommends one major population from each ESU have adult and juvenile monitoring. Duncan Creek chum salmon are identified in this plan to be intensively monitored. Planners recommended that a combination of natural and hatchery production

  5. Unique Chernobyl Cranes for Deconstruction Activities in the New Safe Confinement - 13542

    SciTech Connect (OSTI)

    Parameswaran, N.A. Vijay [Bechtel Systems and Infrastructure, Inc. (United States)] [Bechtel Systems and Infrastructure, Inc. (United States); Chornyy, Igor [Chernobyl NPP-SIP-PMU (Ukraine)] [Chernobyl NPP-SIP-PMU (Ukraine); Owen, Rob [PaR Systems, Inc. (United States)] [PaR Systems, Inc. (United States); Schmieman, Eric [Battelle Memorial Institute (United States)] [Battelle Memorial Institute (United States); Kedrowski, Dan

    2013-07-01T23:59:59.000Z

    The devastation left behind from the Chernobyl nuclear power plant (ChNPP) Unit 4 accident which occurred on April 26, 1986 presented unparalleled technical challenges to the world engineering and scientific community. One of the largest tasks that are in progress is the design and construction of the New Safe Confinement (NSC). The NSC is an engineered enclosure for the entire object shelter (OS) that includes a suite of process equipment. The process equipment will be used for the dismantling of the destroyed Chernobyl Nuclear Power Plant (ChNPP) Unit. One of the major mechanical handling systems to be installed in the NSC is the Main Cranes System (MCS). The planned decontamination and decommissioning or dismantling (D and D) activities will require the handling of heavily shielded waste disposal casks containing nuclear fuel as well as lifting and transporting extremely large structural elements. These activities, to be performed within the NSC, will require large and sophisticated cranes. The article will focus on the unique design features of the MCS for the D and D activities. (authors)

  6. Improving Remedial Planning Performance: The Rattlesnake Creek Experience

    SciTech Connect (OSTI)

    Rieman, C.R.; Spector, H.L.; Andrews, S.M. [U.S. Army Corps of Engineers, Buffalo District, 1776 Niagara St., Buffalo, NY 14207 (United States); Durham, L. A.; Johnson, R. L. [Argonne National Laboratory, 9700 S. Cass Ave., EVS 900, Argonne, IL 60439 (United States); Racino, R. R. [Cabrera Services, Inc., 29 Railroad Avenue, Middletown, NY 10940 (United States)

    2006-07-01T23:59:59.000Z

    The U.S. Army Corps of Engineers (USACE), Buffalo District, has responsibility for characterizing and remediating radiologically contaminated properties under the Formerly Utilized Sites Remedial Action Program (FUSRAP). Most of these FUSRAP sites include radionuclide contamination in soils where excavation and offsite disposal is the selected remedial action. For many FUSRAP soil remediation projects completed to date, the excavated contaminated soil volumes have significantly exceeded the pre-excavation volume estimates that were developed for project planning purposes. The exceedances are often attributed to limited and sparse datasets that are used to calculate the initial volume estimates. These volume exceedances complicate project budgeting and planning. Building on these experiences, the USACE took a different approach in the remediation of Rattlesnake Creek, located adjacent to the Ashland 2 site, in Tonawanda, New York. This approach included a more extensive pre-design data collection effort to improve and reduce the uncertainty in the pre-excavation volume estimates, in addition to formalizing final status survey data collection strategies prior to excavation. The final status survey sampling was fully integrated with the pre-design data collection, allowing dual use of the pre-design data that was collected (i.e., using the data to close out areas where contamination was not found, and feeding the data into volume estimates when contamination was encountered). The use of real-time measurement techniques (e.g., X-ray fluorescence [XRF] and gamma walkover surveys) during pre-excavation data collection allowed the USACE to identify and respond to unexpected contamination by allocating additional data collection to characterizing new areas of concern. The final result was an estimated soil volume and excavation footprint with a firm technical foundation and a reduction in uncertainty. However, even with extensive pre-design data collection, additional contamination was found during the excavation that led to an increase in the soil volume requiring offsite disposal. This paper describes the lessons learned regarding improving remedial planning performance from the Rattlesnake Creek experience and evaluates the level of project uncertainty reduction achieved through pre-design data collection. (authors)

  7. Characterization of sediment movement in tidal creeks adjacent to the gulf intracoastal waterway at Aransas National Wildlife Refuge, Austwell, TX: study of natural factors and effects of barge-induced drawdown currents

    E-Print Network [OSTI]

    Allison, John Bryan

    2005-08-29T23:59:59.000Z

    at Aransas National Wildlife Refuge (ANWR) near Austwell, Texas, are no exception as they support the last migrating population of whooping cranes during the winter months (October through April). With a population currently at 216 individuals... Antonio metropolitan area located 200 km to the northwest of the river?s mouth (The Lower Guadalupe Supply Project, 2003). This interest has helped launch an ecological study at ANWR that will gather data pertaining to many aspects of the marsh...

  8. Assessing the Feasibility of Creek Daylighting in San Francisco, Part I: A Synthesis of Lessons Learned from Existing Urban Daylighting Projects

    E-Print Network [OSTI]

    Smith, Brooke Ray

    2007-01-01T23:59:59.000Z

    Factors in Environmental Restoration: Strawberry Creek andBaxter Creek. Water Resource Center Archives, University ofNiazi. 2005. Blackberry Creek Daylighting Project, Berkeley:

  9. A Tidal Hydrology Assessment for Reconnecting Spring Branch Creek to Suisun Marsh, Solano County CA: Predicting the Impact to the Federally Listed Plant Soft Bird's Beak

    E-Print Network [OSTI]

    Olson, Jessica J.

    2011-01-01T23:59:59.000Z

    population in Spring Branch Creek has experienced decline inand up the Spring Branch Creek gradient on its own. Withor up the Spring Branch Creek gradient is necessary. 12

  10. Post-Project Evaluation of Channel Morphology, Invasive Plant Species, and Native Fish Habitat in Putah Creek in Winters, CA Six Years After Channel Relocation

    E-Print Network [OSTI]

    Blackledge, Gina; Boisrame, Gabrielle

    2011-01-01T23:59:59.000Z

    Resources Association 46(2):211-226. Putah Creek Council.2007. Putah Creek Explorer Book. Accessed November 2011. creek- watershed>. StreamWise.

  11. Redwood Creek, Marin County 2010 Monitoring Study of a Salmonid Habitat Stream Restoration Project: Seven-­?Year Post-­?Project Evaluation

    E-Print Network [OSTI]

    Crockett, Richard; Cundy, Fiona; Hanley, Colin

    2010-01-01T23:59:59.000Z

    Trends  in  Lagunitas  and  Redwood  Creek  Mt.  Tamalpais  n.d.   "Lower  Redwood  Creek."   nps.gov.   Golden  Gate  J.  Toby.  "Redwood  Creek  Topographic  Change  Write-­?

  12. Alternative Perspectives on the Battle of Wolf Creek of 1938

    E-Print Network [OSTI]

    Warde, Mary Jane

    2001-09-01T23:59:59.000Z

    The Battle of Wolf Creek in northwestern Oklahoma in 1838 was highly significant to the Cheyenne, Arapaho, Kiowa, Comanche, and Plains Apache tribes, but little known beyond their mutual frontier. Their oral accounts of the battle allow us...

  13. TR-019 Hydrology March 2002 Roberts Creek Study Forest

    E-Print Network [OSTI]

    TR-019 Hydrology March 2002 Roberts Creek Study Forest: effects of partial retention harvesting, 250-751-7001 Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife Abstract

  14. Sediment dynamics of an impounded river: Yegua Creek, Texas

    E-Print Network [OSTI]

    Martinez, Adriana Elizabeth

    2009-05-15T23:59:59.000Z

    Dams have altered flow distributions in rivers everywhere, causing a host of changes in channel morphology and sediment dynamics. Although major changes in flow regime have occurred along Yegua Creek, Texas, since the closure of Somerville Dam...

  15. Microsoft Word - JockoSpringCreek_Scott_Acquisition_CX_Final...

    Broader source: Energy.gov (indexed) [DOE]

    purchase of Jocko Spring Creek Property. Fish and Wildlife Project No.: 2002-003-00, Contract BPA-44646 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021):...

  16. Microsoft Word - MissionCreek_Kingston_Acquisition_CX_final.doc

    Broader source: Energy.gov (indexed) [DOE]

    purchase of the Mission Creek Property. Fish and Wildlife Project No.: 2002-003-00, Contract BPA-44646 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25...

  17. Microsoft Word - CX_PistolCreek_Final.doc

    Broader source: Energy.gov (indexed) [DOE]

    the Confederated Salish and Kootenai Tribes for purchase of the Pistol Creek Property. Fish and Wildlife Project No.: 2002-003-00 Categorical Exclusion Applied (from Subpart D, 10...

  18. Willow Creek Wildlife Mitigation Project. Final Environmental Assessment.

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    Today`s notice announces BPA`s proposal to fund land acquisition or acquisition of a conservation easement and a wildlife management plan to protect and enhance wildlife habitat at the Willow Creek Natural Area in Eugene, Oregon. This action would provide partial mitigation for wildlife and wildlife habitat lost by the development of Federal hydroelectric projects in the Willamette River Basin. The project is consistent with BPA`s obligations under provisions of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 as outlined by the Northwest Power Planning Council`s 1994 Columbia River Basin Fish and Wildlife Program. BPA has prepared an environmental assessment (DOE/EA-1023) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required and BPA is issuing this FONSI.

  19. NORTH HILL CREEK 3-D SEISMIC EXPLORATION PROJECT

    SciTech Connect (OSTI)

    Marc T. Eckels; David H. Suek; Denise H. Harrison; Paul J. Harrison

    2004-05-06T23:59:59.000Z

    Wind River Resources Corporation (WRRC) received a DOE grant in support of its proposal to acquire, process and interpret fifteen square miles of high-quality 3-D seismic data on non-allotted trust lands of the Uintah and Ouray (Ute) Indian Reservation, northeastern Utah, in 2000. Subsequent to receiving notice that its proposal would be funded, WRRC was able to add ten square miles of adjacent state and federal mineral acreage underlying tribal surface lands by arrangement with the operator of the Flat Rock Field. The twenty-five square mile 3-D seismic survey was conducted during the fall of 2000. The data were processed through the winter of 2000-2001, and initial interpretation took place during the spring of 2001. The initial interpretation identified multiple attractive drilling prospects, two of which were staked and permitted during the summer of 2001. The two initial wells were drilled in September and October of 2001. A deeper test was drilled in June of 2002. Subsequently a ten-well deep drilling evaluation program was conducted from October of 2002 through March 2004. The present report discusses the background of the project; design and execution of the 3-D seismic survey; processing and interpretation of the data; and drilling, completion and production results of a sample of the wells drilled on the basis of the interpreted survey. Fifteen wells have been drilled to test targets identified on the North Hill Creek 3-D Seismic Survey. None of these wildcat exploratory wells has been a dry hole, and several are among the best gas producers in Utah. The quality of the data produced by this first significant exploratory 3-D survey in the Uinta Basin has encouraged other operators to employ this technology. At least two additional 3-D seismic surveys have been completed in the vicinity of the North Hill Creek Survey, and five additional surveys are being planned for the 2004 field season. This project was successful in finding commercial oil, natural gas and natural gas liquids production on a remote part of the Uintah & Ouray Reservation. Much of the natural gas and natural gas liquids are being produced from the Wingate Formation, which to our knowledge has never produced commercially anywhere. Another large percentage of the natural gas is being produced from the Entrada Formation which has not previously produced in this part of the Uinta Basin. In all, at least nine geologic formations are contributing hydrocarbons to these wells. This survey has clearly established the fact that high-quality data can be obtained in this area, despite the known obstacles.

  20. The geoarchaeology of Buttermilk Creek, Bell County, Texas

    E-Print Network [OSTI]

    Gibson, Brandy Deanne

    1997-01-01T23:59:59.000Z

    THE GEOARCHAEOLOGY OF BUTTERMILK CREEK, BELL COUNTY, TEXAS A Thesis by BRANDY DEANNE GIBSON Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF ARTS... December 1997 Major Subject; Anthropology THE GEOARCHAEOLOGY OF BUTTERMILK CREEK& BELL COUNTY, TEXAS A Thesis by BRANDY DEANNE GIBSON Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF ARTS...

  1. An economic evaluation of the Sulphur Creek Watershed Project

    E-Print Network [OSTI]

    Burns, Henry Taylor

    1967-01-01T23:59:59.000Z

    AN ECONOMIC EVALUATION OF THF. SULPHUR CREEK VIATERSHED PROJECT A Thesis by HENRY TAYLOR BURNS Submitted to the Graduate Colleoe of the Texas ARM University in partial fulfillmeni. of the requirements for the degree oi MASTER OF SC ENCE... August 1957 Major Subject: Agricultural Eco, . omics AN ECONOMIC EVALUATION OF THE SULPHUR CREEK 0/ATERSHED ?ROJFCT A Thesis by HENRY TAYLOR BURNS Approveo as to style and content by: /@~me::P~+' . J~'. ~&e. -' Read of Deparrner't, (Meeker j . 8...

  2. Types of Student Engagement and Commitment to Stream Stewardship: Strawberry Creek on University of California at Berkeley Campus

    E-Print Network [OSTI]

    Javier, Alexander; Jones, Darryl; Tannenbaum, Sara Rose

    2011-01-01T23:59:59.000Z

    participation in urban creek stewardship. p. 243-248. (Re)R. B. 1987. Strawberry Creek Management Plan, website.V.H. 1992. Strawberry Creek on the University of California,

  3. "Indian Rancherie on Dry Creek": An Early 1850s Indian Village on the Sacramento and San Joaquin County Line

    E-Print Network [OSTI]

    Farris, Glenn

    2008-01-01T23:59:59.000Z

    I "Indian Rancherie on Dry Creek": An Early 185Ds IndianIndian Rancherie on Dry Creek." Cahfomia Pictorial Letterimage of the rancheria on Dry Creek with a commentary relat-

  4. An assessment of stream flow and habitat quality for steelhead trout in San Pablo Creek, Contra Costa County

    E-Print Network [OSTI]

    Anderson, Shannah; Maldague, Lorraine

    2004-01-01T23:59:59.000Z

    conditions in lower hayfork creek. http://www.krisweb.com/Comparison of Peak Flow Values Creek Name Method U s e d ton i n g Equation Wildcat Creek Unit Runoff Index Q2=31.05cfs

  5. Alteration of the groundwater table due to construction of a floodplain bypass at Upper Pine Creek, Concord, California

    E-Print Network [OSTI]

    Williams, John L III

    2003-01-01T23:59:59.000Z

    66 Exploratory Boring 67 Natural Creek 72 Floodplain BypassChannel 78 Floodplain Bypass Channel 65 Natural Creek 69Natural Creek Table 2 Post-Project Groundwater Table Raw

  6. Saeltzer Dam Removal on Clear Creek 11 years later: An assessment of upstream channel changes since the dam's removal

    E-Print Network [OSTI]

    Simons, Crystal; Walker, Katelyn; Zimring, Mark

    2011-01-01T23:59:59.000Z

    pages. Brown, M. (n.d. ). Clear Creek—McCormick-Saeltzer DamBrown, M. (2011). 2011 Clear Creek Technical Team Report froAssessment: Lower Clear Creek Anadromous Fish Restoration &

  7. Changing Obsidian Sources at the Lost Dune and McCoy Creek Sites, Blitzen Valley, Southeast Oregon

    E-Print Network [OSTI]

    Lyons, William H; Thomas, Scott P; Skinner, Craig E

    2001-01-01T23:59:59.000Z

    Dune (35HA792); MC = McCoy Creek (35HA1263) Component ffl;sample. Provenience of McCoy Creek artifacts from Musil (AT THE LOST DUNE AND MCCOY CREEK SITES OREGON NEVADA Burns

  8. Post-Project Appraisal of Baxter Creek at Booker T. Anderson Park : Shopping Carts - The New Boulders

    E-Print Network [OSTI]

    Bronner, Colleen; McKeon, Maggie; Weston, Janel

    2005-01-01T23:59:59.000Z

    water deposition BAXTER CREEK X-SECTION V, NOVEMBER 2005Cross Section VI: BAXTER CREEK X-SECTION VI, JANUARY 2001water deposition BAXTER CREEK X-SECTION VI, NOVEMBER 2005

  9. A Conceptual Restoration Plan and Tidal Hydrology Assessment for Reconnecting Spring Branch Creek to Suisun Marsh, Solano County, California

    E-Print Network [OSTI]

    Olson, Jessica J.

    2012-01-01T23:59:59.000Z

    for Reconnecting Spring Branch Creek to Suisun Marsh, SolanoFramework CHAPTER 2. SPRING BRANCH CREEK SITE ASSESSMENT 2.1Model for Spring Branch Creek Following Reconnection CHAPTER

  10. Post-Project Performance Assessment of a Multi-Phase Urban Stream Restoration Project on Lower Codornices Creek

    E-Print Network [OSTI]

    Docto, Mia; Hoffman, Johanna; Walls, Scott

    2011-01-01T23:59:59.000Z

    1688.1990.tb01380.x. Codornices Creek Restoration, PHASE 11.Vol. 04-108. Urban Creeks Council, Berkeley, CA. 37 pp. + 4Engineering. 2010. Results of Creek Monitoring Codornices

  11. Exploration of the Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada

    SciTech Connect (OSTI)

    Dick Benoit; David Blackwell

    2006-01-01T23:59:59.000Z

    The Upper Hot Creek Ranch (UHCR) geothermal system had seen no significant exploration activity prior to initiation of this GRED III project. Geochemical geothermometers calculated from previously available but questionable quality analyses of the UHCR hot spring waters indicated possible subsurface temperatures of +320 oF. A complex Quaternary and Holocene faulting pattern associated with a six mile step over of the Hot Creek Range near the UHCR also indicated that this area was worthy of some exploration activity. Permitting activities began in Dec. 2004 for the temperature-gradient holes but took much longer than expected with all drilling permits finally being received in early August 2005. The drilling and geochemical sampling occurred in August 2005. Ten temperature gradient holes up to 500’ deep were initially planned but higher than anticipated drilling and permitting costs within a fixed budget reduced the number of holes to five. Four of the five holes drilled to depths of 300 to 400’ encountered temperatures close to the expected regional thermal background conditions. These four holes failed to find any evidence of a large thermal anomaly surrounding the UHCR hot springs. The fifth hole, located within a narrow part of Hot Creek Canyon, encountered a maximum temperature of 81 oF at a depth of 105’ but had cooler temperatures at greater depth. Temperature data from this hole can not be extrapolated to greater depths. Any thermal anomaly associated with the UHCR geothermal system is apparently confined to the immediate vicinity of Hot Creek Canyon where challenges such as topography, a wilderness study area, and wetlands issues will make further exploration time consuming and costly. Ten water samples were collected for chemical analysis and interpretation. Analyses of three samples of the UHCR thermal give predicted subsurface temperatures ranging from 317 to 334 oF from the Na-K-Ca, silica (quartz), and Na-Li geothermometers. The fact that all three thermometers closely agree gives the predictions added credibility. Unfortunately, the final result of this exploration is that a moderate temperature geothermal resource has been clearly identified but it appears to be restricted to a relatively small area that would be difficult to develop.

  12. Optimization Online - All Areas Submissions - November 2011

    E-Print Network [OSTI]

    Scheduling co-operating stacking cranes with predetermined container sequences ... Joint Spectral Radius and Path-Complete Graph Lyapunov Functions

  13. Rainwater in the Urban Landscape: The Garrison Creek Demonstration Project [Infrastructure as Landscape, Landscape as Infrastructure

    E-Print Network [OSTI]

    Brown, James; Storey, Kim

    1996-01-01T23:59:59.000Z

    ^7 ' g s PLACES BROWN AND ST O RE Y : G A RR I SO N CREEKspace. Toronto's Garrison Creek is a typical example of theits landscape. Today the creek flows through an elaborate,

  14. EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County, Wyoming

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming.

  15. Recurrent faulting and petroleum accumulation, Cat Creek Anticline, central Montana

    SciTech Connect (OSTI)

    Nelson, W.J. (Illinois State Geological Survey, Champaign (United States))

    1991-06-01T23:59:59.000Z

    The Cat Creek anticline, scene of central Montana's first significant oil discovery, is underlain by a south-dipping high-angle fault (Cat Creek fault) that has undergone several episodes of movement with opposite sense of displacement. Borehole data suggest that the Cat Creek fault originated as a normal fault during Proterozoic rifting concurrent with deposition of the Belt Supergroup. Reverse faulting took place in Late Cambrian time, and again near the end of the Devonian Period. The Devonian episode, coeval with the Antler orogeny, raised the southern block several hundred feet. The southern block remained high through Meramecian time, then began to subside. Post-Atokan, pre-Middle Jurassic normal faulting lowered the southern block as much as 1,500 ft. During the Laramide orogeny (latest Cretaceous-Eocene) the Cat Creek fault underwent as much as 4,000 ft of reverse displacement and a comparable amount of left-lateral displacement. The Cat Creek anticline is a fault-propagation fold; en echelon domes and listric normal faults developed along its crest in response to wrenching. Oil was generated mainly in organic-rich shales of the Heath Formation (upper Chesterian Series) and migrated upward along tectonic fractures into Pennsylvanian, Jurassic, and Cretaceous reservoir rocks in structural traps in en echelon domes. Production has been achieved only from those domes where structural closure was retained from Jurassic through Holocene time.

  16. Water-quality monitoring at the Hoe Creek test site: review and preliminary conclusions

    SciTech Connect (OSTI)

    Wang, F.T.; Mead, S.W.; Stuermer, D.H.

    1983-04-16T23:59:59.000Z

    It has been shown that underground coal gasification (UCG) may introduce a broad range of residual gasification products into the groundwater of a coal aquifer. Sorption of many contaminants by the coal itself is an important factor in restricting the migration of these contaminants in the groundwater. However, our field studies at the Lawrence Livermore National Laboratory (LLNL) Hoe Creek site in northeastern Wyoming have shown that sorption of organic compounds by coal is not as effective as expected, perhaps because the coal surface area is limited. Furthermore, if severe roof collapse has taken place during gasification, non-coal aquifers located above the gasified coal seam may be interconnected with the coal aquifer. Contaminants may enter these non-coal aquifers, in which sorption is even less effective. The Hoe Creek II and III experiments have enabled us to study the contamination of a sand aquifer located above a gasified coal seam in a hydrological recharge area. Our preliminary results indicate that the water in the overlying sand aquifer is much less contaminated with organic compounds than that in the gasified coal aquifer. In conducting these field investigations, we have also learned valuable lessons concerning a strategy for groundwater monitoring. 21 figures.

  17. Water quality monitoring at the Hoe Creek test site: review and preliminary conclusions

    SciTech Connect (OSTI)

    Wang, F.T.; Mead, S.W.; Sturmer, D.H.

    1983-01-01T23:59:59.000Z

    It has been shown that underground coal gasification (UCG) may introduce a broad range of residual products into the groundwater of a coal aquifer. Sorption of many contaminants by the coal itself is an important factor in restricting the migration of these contaminants in the groundwater. However, our field studies at the Lawrence Livermore National Laboratory (LLNL) Hoe Creek site in northeastern Wyoming have shown that sorption of organic compounds by coal is not as effective as expected, perhaps because the coal surface area is limited. Furthermore, if severe roof collapse has taken place during gasification, non-coal aquifers located above the gasified coal seam may become interconnected with the cavity. Contaminants may enter these non-coal aquifers, in which sorption is even less effective. The Hoe Creek II and III experiments have enabled us to study the contamination of a sand aquifer located above a gasified coal seam in a hydrological recharge area. The preliminary results indicate that the water in the overlying sand aquifer is much less contaminated with organic compounds than that in the gasified

  18. Water-quality monitoring at the Hoe Creek test site: review and preliminary conclusions

    SciTech Connect (OSTI)

    Wang, F T; Mead, S W; Stuermer, D H

    1982-05-20T23:59:59.000Z

    It has been shown that underground coal gasification (UCG) may introduce a broad range of residual gasification products into the groundwater of a coal aquifer. Sorption of many contaminants by the coal itself is an important factor in restricting the migration of these contaminants in the ground water. However, field studies, conducted at Lawrence Livermore National Laboratory's Hoe Creek site, have shown that sorption of organic compounds by coal is not as effective as expected, perhaps because the coal surface area is limited. Furthermore, if severe roof collapse has taken place during gasification, non-coal aquifers located above the gasified coal seam may be interconnected with the coal aquifer, and contaminants may enter these non-coal aquifers, in which sorption is even less effective. The Hoe Creek II and III experiments have provided opportunities to study the contamination of a sand aquifer located above a gasified coal seam in a hydrological recharge area. Preliminary results indicate that the water in the overlying sand aquifer is much less contaminated with organic compounds than the water in the gasified coal aquifer. In conducting these field investigations, valuable lessons ere learned concerning groundwater monitoring. A suggested monitoring strategy is discussed.

  19. Analysis of geothermal electric-power generation at Big Creek Hot Springs, Lemhi County, Idaho

    SciTech Connect (OSTI)

    Struhsacker, D.W. (ed.)

    1981-01-01T23:59:59.000Z

    Big Creek Hot Springs was evaluated as a source of electrical power for the Blackbird Cobalt Mine, approximately 13 miles south of the hot spring. An evaluaton of the geothermal potential of Big Creek Hot Springs, a suggested exploration program and budget, an engineering feasibility study of power generation at Big Creek Hot Springs, an economic analysis of the modeled power generating system, and an appraisal of the institutional factors influencing development at Big Creek Hot Springs are included.

  20. Perspectives on Dam Removal: York Creek Dam and the Water Framework Directive

    E-Print Network [OSTI]

    Lawrence, Justin E; Pollak, Josh D; Richmond, Sarah F

    2008-01-01T23:59:59.000Z

    Environmental Impact Report, Upper York Creek Ecosystem Restoration Project on April 8, 2008 to learn more about the history

  1. Phase 2 confirmatory sampling data report, Lower East Fork Poplar Creek, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    A Remedial Investigation of East Fork Poplar Creek (EFPC) concluded that mercury is the principal contaminant of concern in the EFPC floodplain. The highest concentrations of mercury were found to be in a visually distinct black layer of soil that typically lies 15 to 30 cm (6 to 12 in.) below the surface. Mercury contamination was found to be situated in distinct areas along the floodplain, and generally at depths > 20 cm (8 in.) below the surface. In accordance with Comprehensive, Environmental Response, Compensation, and Liability Act (CERCLA), a feasibility study was prepared to assess alternatives for remediation, and a proposed plan was issued to the public in which a preferred alternative was identified. In response to public input, the plan was modified and US Department of Energy (DOE) issued a Record of Decision in 1995 committing to excavating all soil in the EFPC floodplain exceeding a concentration of 400 parts per million (ppm) of mercury. The Lower East Fork Poplar Creek (LEFPC) remedial action (RA) focuses on the stretch of EFPC flowing from Lake Reality at the Y-12 Plant, through the city of Oak Ridge, to Poplar Creek on the Oak Ridge Reservation (ORR) and its associated floodplain. Specific areas were identified that required remediation at the National Oceanographic and Atmospheric Administration (NOAA) Site along Illinois Avenue and at the Bruner Site along the Oak Ridge Turnpike. The RA was conducted in two separate phases. Phase 2, conducted from February to October 1997, completed the remediation efforts at the NOAA facility and fully remediated the Bruner Site. During both phases, data were collected to show that the remedial efforts performed at the NOAA and Bruner sites were successful in implementing the Record of Decision and had no adverse impact on the creek water quality or the city of Oak Ridge publicly owned treatment works.

  2. Sediment and radionuclide transport in rivers: radionuclide transport modeling for Cattaraugus and Buttermilk Creeks, New York

    SciTech Connect (OSTI)

    Onishi, Y.; Yabusaki, S.B.; Kincaid, C.T.; Skaggs, R.L.; Walters, W.H.

    1982-12-01T23:59:59.000Z

    SERATRA, a transient, two-dimensional (laterally-averaged) computer model of sediment-contaminant transport in rivers, satisfactorily resolved the distribution of sediment and radionuclide concentrations in the Cattaraugus Creek stream system in New York. By modeling the physical processes of advection, diffusion, erosion, deposition, and bed armoring, SERATRA routed three sediment size fractions, including cohesive soils, to simulate three dynamic flow events. In conjunction with the sediment transport, SERATRA computed radionuclide levels in dissolved, suspended sediment, and bed sediment forms for four radionuclides (/sup 137/Cs, /sup 90/Sr, /sup 239/ /sup 240/Pu, and /sup 3/H). By accounting for time-dependent sediment-radionuclide interaction in the water column and bed, SERATA is a physically explicit model of radionuclide fate and migration. Sediment and radionuclide concentrations calculated by SERATA in the Cattaraugus Creek stream system are in reasonable agreement with measured values. SERATRA is in the field performance phase of an extensive testing program designed to establish the utility of the model as a site assessment tool. The model handles not only radionuclides but other contaminants such as pesticides, heavy metals and other toxic chemicals. Now that the model has been applied to four field sites, including the latest study of the Cattaraugus Creek stream system, it is recommended that a final model be validated through comparison of predicted results with field data from a carefully controlled tracer test at a field site. It is also recommended that a detailed laboratory flume be tested to study cohesive sediment transport, deposition, and erosion characteristics. The lack of current understanding of these characteristics is one of the weakest areas hindering the accurate assessment of the migration of radionuclides sorbed by fine sediments of silt and clay.

  3. Inorganic water chemistry 71 Chapter 4 -Inorganic Water Chemistry of the Boulder Creek

    E-Print Network [OSTI]

    Inorganic water chemistry 71 Chapter 4 - Inorganic Water Chemistry of the Boulder Creek Watershed Creek Watershed, Colorado were determined on a suite of water samples collected during high and low flow sixteen stream sites, twelve tributaries/inflows, and Saint Vrain Creek. The most upstream site was above

  4. CHEMICAL AND HYDROLOGIC DATA FROM THE CEMENT CREEK AND UPPER ANIMAS RIVER CONFLUENCE AND

    E-Print Network [OSTI]

    CHEMICAL AND HYDROLOGIC DATA FROM THE CEMENT CREEK AND UPPER ANIMAS RIVER CONFLUENCE AND MIXING.S. Geological Survey #12;CHEMICAL AND HYDROLOGIC DATA FROM THE CEMENT CREEK AND UPPER ANIMAS RIVER CONFLUENCE.H., Schemel, L.E., 2007, Chemical and hydrologic data form the Cement Creek and upper Animas River confluence

  5. Roberts Creek Study Forest: the effects of shelterwood harvesting and blowdown

    E-Print Network [OSTI]

    is sediment produc- tion in domestic water supply creeks. The effects of timber harvesting on sedimentRoberts Creek Study Forest: the effects of shelterwood harvesting and blowdown on sediment production in a small zero-order creek by Robert O. Hudson and Brian D'Anjou KEYWORDS: Shelterwood harvest

  6. Fast-growing willow shrub named `Fish Creek`

    SciTech Connect (OSTI)

    Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

    2007-05-08T23:59:59.000Z

    A distinct male cultivar of Salix purpurea named `Fish Creek`, characterized by rapid stem growth producing greater than 30% more woody biomass than either of its parents (`94001` and `94006`) and 20% more biomass than a current production cultivar (`SV1`). `Fish Creek` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Fish Creek` displays a low incidence of rust disease or damage by beetles or sawflies.

  7. Fast-growing willow shrub named `Fish Creek`

    DOE Patents [OSTI]

    Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

    2007-05-08T23:59:59.000Z

    A distinct male cultivar of Salix purpurea named `Fish Creek`, characterized by rapid stem growth producing greater than 30% more woody biomass than either of its parents (`94001` and `94006`) and 20% more biomass than a current production cultivar (`SV1`). `Fish Creek` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Fish Creek` displays a low incidence of rust disease or damage by beetles or sawflies.

  8. Identification and characterization of wetlands in the Bear Creek watershed

    SciTech Connect (OSTI)

    Rosensteel, B.A. [JAYCOR, Oak Ridge, TN (United States); Trettin, C.C. [Oak Ridge National Lab., TN (United States)

    1993-10-01T23:59:59.000Z

    The primary objective of this study was to identify, characterize, and map the wetlands in the Bear Creek watershed. A preliminary wetland categorization system based on the Cowardin classification system (Cowardin et al. 1979) with additional site-specific topographic, vegetation, and disturbance characteristic modifiers was developed to characterize the type of wetlands that exist in the Bear Creek watershed. An additional objective was to detect possible relationships among site soils, hydrology, and the occurrence of wetlands in the watershed through a comparison of existing data with the field survey. Research needs are discussed in the context of wetland functions and values and regulatory requirements for wetland impact assessment and compensatory mitigation.

  9. Operator control systems and methods for swing-free gantry-style cranes

    DOE Patents [OSTI]

    Feddema, John T. (Albuquerque, NM); Petterson, Ben J. (Albuquerque, NM); Robinett, III, Rush D. (Albuquerque, NM)

    1998-01-01T23:59:59.000Z

    A system and method for eliminating swing motions in gantry-style cranes while subject to operator control is presented. The present invention comprises an infinite impulse response ("IIR") filter and a proportional-integral ("PI") feedback controller (50). The IIR filter receives input signals (46) (commanded velocity or acceleration) from an operator input device (45) and transforms them into output signals (47) in such a fashion that the resulting motion is swing free (i.e., end-point swinging prevented). The parameters of the IIR filter are updated in real time using measurements from a hoist cable length encoder (25). The PI feedback controller compensates for modeling errors and external disturbances, such as wind or perturbations caused by collision with objects. The PI feedback controller operates on cable swing angle measurements provided by a cable angle sensor (27). The present invention adjusts acceleration and deceleration to eliminate oscillations. An especially important feature of the present invention is that it compensates for variable-length cable motions from multiple cables attached to a suspended payload.

  10. Operator control systems and methods for swing-free gantry-style cranes

    DOE Patents [OSTI]

    Feddema, J.T.; Petterson, B.J.; Robinett, R.D. III

    1998-07-28T23:59:59.000Z

    A system and method are disclosed for eliminating swing motions in gantry-style cranes while subject to operator control. The present invention comprises an infinite impulse response (IIR) filter and a proportional-integral (PI) feedback controller. The IIR filter receives input signals (commanded velocity or acceleration) from an operator input device and transforms them into output signals in such a fashion that the resulting motion is swing free (i.e., end-point swinging prevented). The parameters of the IIR filter are updated in real time using measurements from a hoist cable length encoder. The PI feedback controller compensates for modeling errors and external disturbances, such as wind or perturbations caused by collision with objects. The PI feedback controller operates on cable swing angle measurements provided by a cable angle sensor. The present invention adjusts acceleration and deceleration to eliminate oscillations. An especially important feature of the present invention is that it compensates for variable-length cable motions from multiple cables attached to a suspended payload. 10 figs.

  11. Atmospheric Mercury Concentrations Near Salmon Falls Creek Reservoir - Phase 1

    SciTech Connect (OSTI)

    M. L. Abbott

    2005-10-01T23:59:59.000Z

    Elemental and reactive gaseous mercury (EGM/RGM) were measured in ambient air concentrations over a two-week period in July/August 2005 near Salmon Falls Creek Reservoir, a popular fishery located 50 km southwest of Twin Falls, Idaho. A fish consumption advisory for mercury was posted at the reservoir in 2002 by the Idaho Department of Health and Welfare. The air measurements were part of a multi-media (water, sediment, precipitation, air) study initiated by the Idaho Department of Environmental Quality and the U.S. Environmental Protection Agency (EPA) Region 10 to identify potential sources of mercury contamination to the reservoir. The sampling site is located about 150 km northeast of large gold mining operations in Nevada, which are known to emit large amounts of mercury to the atmosphere (est. 2,200 kg/y from EPA 2003 Toxic Release Inventory). The work was co-funded by the Idaho National Laboratory’s Community Assistance Program and has a secondary objective to better understand mercury inputs to the environment near the INL, which lies approximately 230 km to the northeast. Sampling results showed that both EGM and RGM concentrations were significantly elevated (~ 30 – 70%, P<0.05) compared to known regional background concentrations. Elevated short-term RGM concentrations (the primary form that deposits) were likely due to atmospheric oxidation of high EGM concentrations, which suggests that EGM loading from upwind sources could increase Hg deposition in the area. Back-trajectory analyses indicated that elevated EGM and RGM occurred when air parcels came out of north-central and northeastern Nevada. One EGM peak occurred when the air parcels came out of northwestern Utah. Background concentrations occurred when the air was from upwind locations in Idaho (both northwest and northeast). Based on 2003 EPA Toxic Release Inventory data, it is likely that most of the observed peaks were from Nevada gold mine sources. Emissions from known large natural mercury sources in that area cannot account for the observed EGM peaks due to their diffuse source geometry and the large (170 km) transport distance involved. The EGM peak originating from northwestern Utah air may be from three known mercury sources west of Salt Lake City (Kennecott, US Magnesium, Clean Harbors Aragonite) and/or the 1600 MW coal-fired Intermountain Power plant near Delta. However, the relative importance of these short-term peaks for long-term watershed mercury loading (critical factor affecting fish concentrations) is not known, and there is a need to better quantify the annual frequency and magnitude of these different inputs over a longer period of time.

  12. Atmospheric Mercury near Salmon Falls Creek Reservoir in Southern Idaho

    SciTech Connect (OSTI)

    Michael L. Abbott; Jeffrey J. Einerson

    2007-12-01T23:59:59.000Z

    Gaseous elemental mercury (GEM) and reactive gaseous mercury (RGM) were measured over two-week seasonal field campaigns near Salmon Falls Creek Reservoir in south-central Idaho from the summer of 2005 through the fall of 2006 and over the entire summer of 2006 using automated Tekran mercury analyzers. GEM, RGM, and particulate mercury (HgP) were also measured at a secondary site 90 km to the west in southwestern Idaho during the summer of 2006. The study was performed to characterize mercury air concentrations in the southern Idaho area for the first time, estimate mercury dry deposition rates, and investigate the source of observed elevated concentrations. High seasonal variability was observed with the highest GEM (1.91 ± 0.9 ng m-3) and RGM (8.1 ± 5.6 pg m-3) concentrations occurring in the summer and lower values in the winter (1.32 ± 0.3 ng m-3, 3.2 ± 2.9 pg m-3 for GEM, RGM respectively). The summer-average HgP concentrations were generally below detection limit (0.6 ± 1 pg m-3). Seasonally-averaged deposition velocities calculated using a resistance model were 0.034 ± 0.032, 0.043 ± 0.040, 0.00084 ± 0.0017 and 0.00036 ± 0.0011 cm s-1 for GEM (spring, summer, fall, and winter, respectively) and 0.50 ± 0.39, 0.40 ± 0.31, 0.51 ± 0.43 and 0.76 ± 0.57 cm s-1 for RGM. The total annual RGM + GEM dry deposition estimate was calculated to be 11.9 ± 3.3 µg m-2, or about 2/3 of the total (wet + dry) deposition estimate for the area. Periodic elevated short-term GEM (2.2 – 12 ng m-3) and RGM (50 - 150 pg m-3) events were observed primarily during the warm seasons. Back-trajectory modeling and PSCF analysis indicated predominant source directions from the southeast (western Utah, northeastern Nevada) through the southwest (north-central Nevada) with fewer inputs from the northwest (southeastern Oregon and southwestern Idaho).

  13. EIS-0415: Deer Creek Station Energy Facility Project, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS analyzes WAPA's decision to approve the interconnection request made by Basin Electric Power Cooperative (Basin Electric) with the USDA Rural Utilities Service (RUS) proposing to provide financial assistance, for the Deer Creek Station Project, a proposed 300-megawatt (MW) natural gas-fired generation facility.

  14. Tillman Creek Mitigation Site As-Build Report.

    SciTech Connect (OSTI)

    Gresham, Doug [Otak, Inc.

    2009-05-29T23:59:59.000Z

    This as-built report describes site conditions at the Tillman Creek mitigation site in South Cle Elum, Washington. This mitigation site was constructed in 2006-2007 to compensate for wetland impacts from the Yakama Nation hatchery. This as-built report provides information on the construction sequence, as-built survey, and establishment of baseline monitoring stations.

  15. sanfranciscoestuaryinstitute//finalreport Coyote Creek/Coyote Valley

    E-Print Network [OSTI]

    Laguna Seca Coyote Creek Fisher Cr. #12;III - 49 sanfranciscoestuaryinstitute//finalreport Map 4B-ca.1800, green; project boundary, white (scale 1:40,000; 1"~3300'; 1 square inch ~250 acres; original photographs, with historicaL Landscape features overLay. Historical fluvial features in blue; other features, green; project

  16. Okanogan Focus Watershed Salmon Creek : Annual Report 1999.

    SciTech Connect (OSTI)

    Lyman, Hilary

    1999-11-01T23:59:59.000Z

    During FY 1999 the Colville Tribes and the Okanogan Irrigation District (OID) agreed to study the feasibility of restoring and enhancing anadromous fish populations in Salmon Creek while maintaining the ability of the district to continue full water service delivery to it members.

  17. Assess Current and Potential Salmonid Production in Rattlesnake Creek in Association with Restoration Efforts, US Geological Survey Report, 2004-2005 Annual Report.

    SciTech Connect (OSTI)

    Allen, M. Brady; Connolly, Patrick J.; Jezorek, Ian G. (US Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, Cook, WA)

    2006-06-01T23:59:59.000Z

    This project was designed to document existing habitat conditions and fish populations within the Rattlesnake Creek watershed (White Salmon River subbasin, Washington) before major habitat restoration activities are implemented and prior to the reintroduction of salmon and steelhead above Condit Dam. Returning adult salmon Oncorhynchus spp. and steelhead O. mykiss have not had access to Rattlesnake Creek since 1913. An assessment of resident trout populations should serve as a good surrogate for evaluation of factors that would limit salmon and steelhead production in the watershed. Personnel from United States Geological Survey's Columbia River Research Laboratory (USGS-CRRL) attended to three main objectives of the Rattlesnake Creek project. The first objective was to characterize stream and riparian habitat conditions. This effort included measures of water quality, water quantity, stream habitat, and riparian conditions. The second objective was to determine the status of fish populations in the Rattlesnake Creek drainage. To accomplish this, we derived estimates of salmonid population abundance, determined fish species composition, assessed distribution and life history attributes, obtained tissue samples for genetic analysis, and assessed fish diseases in the watershed. The third objective was to use the collected habitat and fisheries information to help identify and prioritize areas in need of restoration. As this report covers the fourth year of a five-year study, it is largely restricted to describing our efforts and findings for the first two objectives.

  18. Early cavity growth during forward burn. [Hoe Creek III problems

    SciTech Connect (OSTI)

    Shannon, M.J.; Thorsness, C.B.; Hill, R.W.

    1980-07-03T23:59:59.000Z

    During the early portion of the forward burn phase of the Hoe Creek III field experiment, the cavity progagated rapidly down the deviated borehole and to the top of the coal seam. As a first step to understanding this phenomena we have conducted small scale coal block experiments. Drying as well as combustion tests were performed. This paper describes the test hardware and the experimental results.

  19. Rehabilitate Newsome Creek Watershed, 2007-2008 Annual Report.

    SciTech Connect (OSTI)

    Bransford, Stephanie [Nez Perce Tribe Fisheries/Watershed Program

    2009-05-01T23:59:59.000Z

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridgetop approach. The Nez Perce Tribe (NPT) and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Newsome Creek watershed of the South Fork Clearwater River in 1997. Progress has been made in restoring the watershed through road decommissioning and culvert replacement. Starting in FY 2001 and continuing into the present, a major stream restoration effort on the mainstem of Newsome Creek has been pursued. From completing a watershed assessment to a feasibility study of 4 miles of mainstem rehabilitation to carrying that forward into NEPA and a final design, we will begin the effort of restoring the mainstem channel of Newsome Creek to provide spawning and rearing habitat for anadromous and resident fish species. Roads have been surveyed and prioritized for removal or improvement as well as culverts being prioritized for replacement to accommodate fish passage throughout the watershed.

  20. Swift Creek Hydroelectric Project rehabilitation, Swift Creek Power Company, Inc. Final Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    The purpose of this report is to re-evaluate and update the original environmental analysis of the Swift Crook Hydroelectric Project rehabilitation. That analysis and the decision to allow the proponent toproceed with the project as described in the EA alternatives 3, 4, and 5 was completed an May 8, 1981. Since that decision, no action has been taken and no special-use permit has ever been issued. The Bridger-Trton National Forest completed a Forest Plan in March of 1990 which sets current direction for all lands within the Forest and new and significant issues pertaining to the amount of water to be bypassed have been raised by the public in response to this proposed project. The original proponent, Lower Valley Power and Light, sold the project and existing facilities to Swift Crack Power Company Inc. in 1984. Swift Crock Power Company has submitted a proposal to rehabilitate the existing power generation facility in Swift Creek Canyon, which will involve some significant construction and alteration of the river corridor. Theyhave also submitted an application for relicense to the Federal Energy Regulatory Commission who has asked for the Forest Service to comment on the application and to submit recommended conditions for approval (4e requirements). The proposed rehabilitation of existing facilities includes replacement of the existing damaged penstock (pipe) with a new, larger one; dredging two existing reservoirs and removal, refurbishment, and reinstallation of the turbines and generators in the two powerhouses with relocation and reconstruction of the lower powerhouse that is located on privately owned land below the Forest boundary.

  1. Assessment of Water Resources and Watershed Conditions in Moores Creek National Battlefield, North Carolina

    E-Print Network [OSTI]

    Mallin, Michael

    Assessment of Water Resources and Watershed Conditions in Moores Creek National Battlefield, North Assessment of Park Water Resources.......................................................................25 resources........................................................................15 Biological resources

  2. Hydrology of Deer Creek and its tributaries : a contribution to planning a restoration project

    E-Print Network [OSTI]

    Skrtic, Lana

    2005-01-01T23:59:59.000Z

    data is not useful in developing a flood frequency curve for Deer Creek because the gauge records discharge from the powerhouse. (

  3. Microsoft Word - Spring Creek Final Draft CX 7-15-2013.docx

    Broader source: Energy.gov (indexed) [DOE]

    Cecilia Brown Project Manager - KEWM-4 Proposed Action: Spring Creek Property funding Fish and Wildlife Project No. and Contract No.: 2002-003-00, BPA-007168 Categorical...

  4. Microsoft Word - CX_PerryCreek_4.29.11.doc

    Broader source: Energy.gov (indexed) [DOE]

    Cecilia Brown Project Manager - KEWM-4 Proposed Action: Provision of funds to Montana Fish, Wildlife and Parks for purchase of the Perry Creek Property. Fish and Wildlife Project...

  5. Microsoft Word - 2012_Rapid_Lightening_Creek_Easement_CX_Rev2...

    Broader source: Energy.gov (indexed) [DOE]

    Manager - KEWM-4 Proposed Action: AMENDED Provision of funds to the Idaho Department of Fish and Game (IDFG) to purchase the Rapid Lightning Creek Property. Fish and Wildlife...

  6. Natural Recharge to the Unconfined Aquifer System on the Hanford Site from the Greater Cold Creek Watershed: Progress Report 2004

    SciTech Connect (OSTI)

    Waichler, Scott R.; Wigmosta, Mark S.; Coleman, Andre M.

    2004-09-14T23:59:59.000Z

    Movement of contaminants in groundwater at the Hanford Site is heavily dependent on recharge to the unconfined aquifer. As the effects of past artificial discharges dissipate, the water table is expected to return to more natural conditions, and natural recharge will become the driving force when evaluating future groundwater flow conditions and related contaminant transport. Previous work on the relationship of natural recharge to groundwater movement at the Hanford Site has focused on direct recharge from infiltrating rainfall and snowmelt within the area represented by the Sitewide Groundwater Model (SGM) domain. However, part of the groundwater recharge at Hanford is provided by flow from Greater Cold Creek watershed (GCC), a large drainage area on the western boundary of the Hanford Site that includes Cold Creek Valley, Dry Creek Valley, and the Hanford side of Rattlesnake Mountain. This study was undertaken to estimate the recharge from GCC, which is believed to enter the unconfined aquifer as both infiltrating streamflow and shallow subsurface flow. To estimate recharge, the Distributed Hydrology-Soil-Vegetation Model (DHSVM) was used to simulate a detailed water balance of GCC from 1956 to 2001 at a spatial resolution of 200~m and a temporal resolution of one hour. For estimating natural recharge to Hanford from watersheds along its western and southwestern boundaries, the most important aspects that need to be considered are 1)~distribution and relative magnitude of precipitation and evapotranspiration over the watershed, 2)~streamflow generation at upper elevations and infiltration at lower elevations during rare runoff events, and 3)~permeability of the basalt bedrock surface underlying the soil mantle.

  7. Assessing the Feasibility of Creek Daylighting in San Francisco, Part I: A Synthesis of Lessons Learned from Existing Urban Daylighting Projects

    E-Print Network [OSTI]

    Smith, Brooke Ray

    2007-01-01T23:59:59.000Z

    and Leonardson 2004). Why Daylight? In San Francisco, creekof San Francisco to daylight historical urban creeks withincity governments to daylight urban creeks, with successful

  8. The geology of the Gus area, Burleson county, Texas

    E-Print Network [OSTI]

    Napp, Donald Edward

    1956-01-01T23:59:59.000Z

    of the 'eches for, , ition, The nortliern . :art of thc t ~osis urea borders on I ~c hiiiy tope raphy of the Inccn City I'or?ation ~ 'I'he al?33st featureless floodplain of Yegua Creek is in t33e south- western one-t33ird of the area. 333&OSI&dial. . 3hl...

  9. Abundance, Behavior, and Habitat Utilization by Coho Salmon and Steelhead Trout in Fish Creek, Oregon, as Influenced by Habitat Enhancement, 1985 Annual Report.

    SciTech Connect (OSTI)

    Wolfe, John (Mount Hood National Forest, Clackamas River Ranger District, Estacada, OR); Everest, Fred H. (Oregon State University, Pacific Northwest Forest and Range Experiment Station, Corvallis, OR); Heller, David A. (Mount Hood National Forest, Gresham, OR)

    1986-09-01T23:59:59.000Z

    Construction and evaluation of salmonid habitat improvements on Fish Creek, a tributary of the upper Clackamas River, was continued in fiscal year 1985 by the Estacada Ranger District, Mt. Hood National Forest, and the Anadromous Fish Habitat Research Unit of the Pacific Northwest Forest and Range Experiment Station (PNW), USDA Forest Service. The study began in 1982 when PNW entered into an agreement with the Mt. Hood National Forest to evaluate fish habitat improvements in the Fish Creek basin on the Estacada Ranger District. The project was initially conceived as a 5-year effort (19824986) to be financed by Forest Service funds. Several factors limiting production of salmonids in the basin were identified during the first year of the study, and the scope of the habitat improvement effort was subsequently enlarged. The habitat improvement program and the evaluation of improvements were both expanded in mid-1983 when the Bonneville Power Administration entered into an agreement with the Mt. Hood National Forest to provide additional funding for work on Fish Creek. Habitat improvement work in the basin is designed to increase the annual number of chinook and coho salmon, and steelhead trout smolt outmigrants. The primary objectives of the evaluation include the: (1) Evaluation and quantification of changes in salmonid spawning and rearing habitat resulting from a variety of habitat Improvements. (2) Evaluation and quantification of changes in fish populations and biomass resulting from habitat improvements. (3) Evaluation of the cost-effectiveness of habitat improvements developed with BPA and Forest Service funds on Fish Creek. Several prototype enhancement projects were constructed and tested during the first three years of the study. The Intention was to identify successful techniques that could then be broadly applied within the bash. This stepwise procedure has been largely successful in identifying the most promising enhancement techniques for the Fish Creek basin. To date, 7-10 percent of the habitat area in the basin has been treated. When work on Fish Creek is completed, it is estimated that 50-60 percent of the total habitat area used by anadromous salmonids will have received some form of treatment. This annual progress report will focus on the projects completed in the basin In 1983, 1984, and 1985, and their evaluation. Winter habitat use and coho salmon and steelhead trout smolt production will also be emphasized.

  10. A Probabilistic Water Resources Assessment of the Paradise Creek Watershed Presented in Partial Fulfillment of the Requirements for the

    E-Print Network [OSTI]

    Fiedler, Fritz R.

    A Probabilistic Water Resources Assessment of the Paradise Creek Watershed A Thesis Presented Probabilistic Water Resources Assessment of the Paradise Creek Watershed," has been reviewed in final form ____________________________________Date____________ Margrit von Braun #12;iii iii A Probabilistic Water Resources Assessment

  11. A SECOND LOOK AT THE SAFETY EFFECTIVENESS OF THE MYRTLE CREEK ADVANCED CURVE WARNING SYSTEM

    E-Print Network [OSTI]

    Bertini, Robert L.

    -1- A SECOND LOOK AT THE SAFETY EFFECTIVENESS OF THE MYRTLE CREEK ADVANCED CURVE WARNING SYSTEM as the "Myrtle Creek Curves." This location consists of a series of curves which have continually been a notable. The curves are located in a 50 mile per hour (mph) speed zone and are posted with an advisory speed of 45 mph

  12. Ice Climbing in Clear Creek Canyon A climbing trip report by Glenn Murray

    E-Print Network [OSTI]

    Ice Climbing in Clear Creek Canyon A climbing trip report by Glenn Murray SUMMARY: I climb ice in to ask about local climbing. The guys there told me there was ice nearby, in Clear Creek Canyon. I. Four pitches? Five? It was time to find a partner. The only ice climber I knew in Denver was a friend

  13. Explores Dam Removal Located in Southwest Ohio, Buck Creek and its

    E-Print Network [OSTI]

    Bogaerts, Steven

    OHIO Researcher Explores Dam Removal Located in Southwest Ohio, Buck Creek and its tributary, Beaver Creek, run through a series of low-head dams in Springfield, Ohio. Historically, the four dams of the four dams. This will help restore the natural flow of sediments and fish along the entire river

  14. Wildlife and Wildlife Habitat Loss Assessment at Hills Creek Dam and Reservoir Project, Middle Fork Willamette River, Oregon, 1985 Final Report.

    SciTech Connect (OSTI)

    Noyes, J.H.

    1985-09-01T23:59:59.000Z

    A habitat based assessment was conducted of the US Army Corps of Engineers' Hills Creek Dam and Reservoir Project on the Middle Fork Willamette River, Oregon, to determine losses or gains resulting from the development and operation of the hydroelectric related components of the project. Preconstruction, postconstruction, and recent vegetation cover types of the project site were mapped based on aerial photographs from 1944, 1964, and 1979, respectively. Vegetation cover types were identified within the affected area and acreages of each type at each period were determined. Fifteen wildlife target species were selected to represent a cross-section of species groups affected by the project. An interagency team evaluated the suitability of the habitat to support the target species at each time period. An evaluation procedure which accounted for both the quantity and quality of habitat was used to aid in assessing impacts resulting from the project. The Hills Creek Project extensively altered or affected 4662 acres of land and river in the Middle Fork Willamette River drainage. Impacts to wildlife centered around the loss of 2694 acres of old-growth forest and 207 acres of riparian habitat. Impacts resulting from the Hills Creek Project included the loss of winter range for Roosevelt elk, and the loss of year-round habitat for black-tailed deer, black bear, cougar, river otter, beaver, ruffed grouse, spotted owl, and other nongame species. Bald eagle and osprey were benefited by an increase in foraging habitat. The potential of the affected area to support wildlife was greatly altered as a result of the Hills Creek Project, losses or gains in the potential of the habitat to support wildlife will exist over the life of the project.

  15. Lost Creek, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners andLodgepole, Nebraska:LongboardLoretto,Los(RedirectedCreek, Texas:

  16. Brushy Creek, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable and InnovativeBrookmont,Florida: EnergyVirginia:Brushy Creek,

  17. Burnt Creek-Riverview, North Dakota: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda,Burke County,Information Burnt Creek-Riverview,

  18. White Creek Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to:Westwood Renewables Jump to:meaningWillow I WindCreek

  19. Hunters Creek, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas: Energy Resources Jump to:Hunter,Creek, Florida:

  20. Pebble Creek, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian,Parle Biscuits PvtPawPearland, Texas: EnergyPebble Creek,

  1. Pike Creek, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy ResourcesPicket Lake,Hampshire:Illinois:62363°,Ohio:Creek,

  2. Indian Creek, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump7 Varnish cacheTransport and BuildingCreek, Florida:

  3. Grape Creek, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGoveNebraska: Energy ResourcesSouth,Grape Creek,

  4. Swartz Creek, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:Holdings Co LtdLLC Place:Svartsengi GeothermalSwartz Creek,

  5. Birch Creek Village Elec Util | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher HomesLyonsBirch Creek Village Elec Util Jump to:

  6. LaCreek Electric Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea PartsLLNL Energy FlowLODLPKFLaLaCreek

  7. Workplace Charging Challenge Partner: ClipperCreek, Inc. | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department ofPartnershipsAngieTerriDepartment ofEnergy ClipperCreek, Inc.

  8. Barton Creek, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIMBarnard,Barrow County,Kansas: EnergyCreek, Texas:

  9. Bear Creek, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County, Florida:Tyngsboro, MassachusettsCreek, Alaska:

  10. Bear Creek, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County, Florida:Tyngsboro, MassachusettsCreek,

  11. Fourche Creek Wastewater Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbsSalonga, NewCorners InternationalFourche Creek

  12. Francis Creek, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbsSalonga,Francis Creek, Wisconsin: Energy

  13. Fritz Creek, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604° ShowCounty, California: Energyof theFrioCreek,

  14. Two Creeks, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtle Airships Jump to:Twiggs County,EnergyEnergyOpenCreeks,

  15. Coal Creek, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew York: Energy Resources JumpCloverCounty, Oklahoma:Creek,

  16. COLORADO SCHOOL OF MINES RESEARCH INSTITUTE (CSMRI) SITE FLOOD PLAIN AREA CLEANUP FACT SHEET & PROJECT SUMMARY

    E-Print Network [OSTI]

    . In 1992 a water main break at the Site flooded a tailings pond that overflowed into Clear Creek. The U.S. Environmental Protection Agency excavated and stockpiled soil from the tailings pond and surrounding area at the west end of the former tailings pond area previously cleaned up by EPA was found to contain

  17. Asotin Creek Model Watershed Plan: Asotin County, Washington, 1995.

    SciTech Connect (OSTI)

    Browne, Dave

    1995-04-01T23:59:59.000Z

    The Northwest Power Planning Council completed its ``Strategy for Salmon'' in 1992. This is a plan, composed of four specific elements,designed to double the present production of 2.5 million salmon in the Columbia River watershed. These elements have been called the ``four H's'': (1) improve harvest management; (2) improve hatcheries and their production practices; (3) improve survival at hydroelectric dams; and (4) improve and protect fish habitat. The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon''. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity.

  18. Remediation cleanup options for the Hoe Creek UCG site

    SciTech Connect (OSTI)

    Nordin, J.; Griffin, W.; Chatwin, T.; Lindblom, S.; Crader, S.

    1990-03-01T23:59:59.000Z

    The US Department of Energy must restore groundwater quality at the Hoe Creek, Wyoming, underground coal gasification site using the best proven practicable technology. Six alternative remediation methods are evaluated in this project: (1) excavation, (2) three variations of groundwater plume containment, (3) in situ vacuum extraction, (4) pump and treat using a defined pattern of pumping wells to obtain an effective matrix sweep, (5) in situ flushing using a surfactant, and (6) in situ bioremediation. Available site characterization data is insufficient to accurately project the cost of remediation. Several alternative hypothetical examples and associated costs are described in the text and in the appendices. However, not enough information is available to use these examples as a basis for comparison purposes. Before a cleanup method is selected, core borings should be taken to define the areal extent and depth of contaminated matrix material. Segments of these core borings should be analyzed for organic contaminants in the soil (e.g., benzene) and their relationship to the groundwater contamination. These analyses and subsequent treatability studies will show whether or not the contaminants can be effectively removed by surface on in situ volatilization, leached from the matrix using washing solutions, or removed by bioremediation. After this information is obtained, each technology should be evaluated with respect to cost and probability of success. A decision tree for implementing remediation cleanup at the Hoe Creek site is presented in this report. 26 refs., 11 figs., 3 tabs.

  19. Residual-oil-saturation-technology test, Bell Creek Field, Montana. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-06-01T23:59:59.000Z

    A field test was conducted of the technology available to measure residual oil saturation following waterflood secondary oil recovery processes. The test was conducted in a new well drilled solely for that purpose, located immediately northwest of the Bell Creek Micellar Polymer Pilot. The area where the test was conducted was originally drilled during 1968, produced by primary until late 1970, and was under line drive waterflood secondary recovery until early 1976, when the area was shut in at waterflood depletion. This report presents the results of tests conducted to determine waterflood residual oil saturation in the Muddy Sandstone reservoir. The engineering techniques used to determine the magnitude and distribution of the remaining oil saturation included both pressure and sidewall cores, conventional well logs (Dual Laterolog - Micro Spherically Focused Log, Dual Induction Log - Spherically Focused Log, Borehole Compensated Sonic Log, Formation Compensated Density-Compensated Neutron Log), Carbon-Oxygen Logs, Dielectric Logs, Nuclear Magnetism Log, Thermal Decay Time Logs, and a Partitioning Tracer Test.

  20. Chapter 3 -Basic Water Quality in the Boulder Creek Watershed, Colorado, During High-Flow and Low-Flow Conditions, 2000

    E-Print Network [OSTI]

    Chapter 3 - Basic Water Quality in the Boulder Creek Watershed, Colorado, During High-Flow and Low of the water quality of Boulder Creek, Colorado, during high-flow and low-flow conditions in the year 2000 constituents in Boulder Creek increased after the creek received wastewater effluent. INTRODUCTION Two programs

  1. Phase 1 report on the Bear Creek Valley treatability study, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    Bear Creek Valley (BCV) is located within the US Department of Energy (DOE) Oak Ridge Reservation and encompasses multiple waste units containing hazardous and radioactive wastes associated with past operations at the adjacent Oak Ridge Y-12 Plant. The BCV Remedial Investigation determined that disposal of wastes at the S-3 Site, Boneyard/Burnyard (BYBY), and Bear Creek Burial Grounds (BCBG) has caused contamination of both deep and shallow groundwater. The primary contaminants include uranium, nitrate, and VOCs, although other metals such as aluminum, magnesium, and cadmium persist. The BCV feasibility study will describe several remedial options for this area, including both in situ and ex situ treatment of groundwater. This Treatability Study Phase 1 Report describes the results of preliminary screening of treatment technologies that may be applied within BCV. Four activities were undertaken in Phase 1: field characterization, laboratory screening of potential sorbents, laboratory testing of zero valent iron products, and field screening of three biological treatment systems. Each of these activities is described fully in technical memos attached in Appendices A through G.

  2. Clinoptilolite and associated authigenic minerals in Miocene tuffaceous rocks in the Goose Creek Basin, Cassia County, Idaho

    SciTech Connect (OSTI)

    Brownfield, M.E.; Hildebrand, R.T.

    1985-01-01T23:59:59.000Z

    Miocene tuffaceous fluviolacustrine deposits in the southeastern part of the Goose Creek basin contain a variety of authigenic minerals, including clinoptilolite, smectite, pyrite, gypsum, and calcite. Clinoptilolite is the primary mineral in the diagenetically altered rhyolitic vitric tuffs in the study area. These zeolitic tuffs locally attain thicknesses of as much as 30 meters. Examinations of samples of the altered tuff beds using the scanning electron microscope reveal that the clinoptilolite usually occurs as clean, well-formed tabular crystals about 0.005 mm across in a matrix of smectite. Prismatic clinoptilolite crystals, as much as 0.06 mm long, are present in the larger vugs. During the Miocene, thick beds of air-fall rhyolitic vitric volcanic ash accumulated in the Goose Creek basin in a coalescing fluviolacustrine depositional setting. In the southeastern part of the basin, the volcanic ash was deposited in a lacustrine fan delta, where it was partly reworked and interbedded with sandstone and siltstone. Diagenetic alteration of the ash beds proceeded in an open hydrologic system. Solution and hydrolysis by ground water initially altered the glass shards to form smectite and silica gel. Clinoptilolite subsequently precipitated on the altered shard surfaces. The paragenesis of pyrite, gypsum, and calcite in the zeolitic tuffs is uncertain.

  3. Brood Year 2004: Johnson Creek Chinook Salmon Supplementation Report, June 2004 through March 2006.

    SciTech Connect (OSTI)

    Gebhards, John S.; Hill, Robert; Daniel, Mitch [Nez Perce Tribe

    2009-02-19T23:59:59.000Z

    The Nez Perce Tribe, through funding provided by the Bonneville Power Administration, has implemented a small scale chinook salmon supplementation program on Johnson Creek, a tributary in the South Fork of the Salmon River, Idaho. The Johnson Creek Artificial Propagation Enhancement project was established to enhance the number of threatened Snake River spring/summer chinook salmon (Oncorhynchus tshawytscha) returning to Johnson Creek to spawn through artificial propagation. This was the sixth season of adult chinook broodstock collection in Johnson Creek following collections in 1998, 2000, 2001, 2002, and 2003. Weir installation was completed on June 21, 2004 with the first chinook captured on June 22, 2004 and the last fish captured on September 6, 2004. The weir was removed on September 18, 2004. A total of 338 adult chinook, including jacks, were captured during the season. Of these, 211 were of natural origin, 111 were hatchery origin Johnson Creek supplementation fish, and 16 were adipose fin clipped fish from other hatchery operations and therefore strays into Johnson Creek. Over the course of the run, 57 natural origin Johnson Creek adult chinook were retained for broodstock, transported to the South Fork Salmon River adult holding and spawning facility and held until spawned. The remaining natural origin Johnson Creek fish along with all the Johnson Creek supplementation fish were released upstream of the weir to spawn naturally. Twenty-seven Johnson Creek females were artificially spawned with 25 Johnson Creek males. Four females were diagnosed with high bacterial kidney disease levels resulting in their eggs being culled. The 27 females produced 116,598 green eggs, 16,531 green eggs were culled, with an average eye-up rate of 90.6% resulting in 90,647 eyed eggs. Juvenile fish were reared indoors at the McCall Fish Hatchery until November 2005 and then transferred to the outdoor rearing facilities during the Visual Implant Elastomer tagging operation. These fish continued rearing in the outdoor collection basin until release in March 2006. All of these fish were marked with Coded Wire Tags and Visual Implant Elastomer tags. In addition 12,056 of the smolts released were also tagged with Passive Integrated Transponder tags. Hand counts provided by marking crews were used to amend the number of juvenile salmon released from the original egg count. A total of 90,450 smolts were released directly into Johnson Creek on March 13 through 15, 2006.

  4. EA-1988: NFSC (Northwest Fisheries Science Center) Earthen Drainage Channel, Burley Creek Hatchery, Port Orchard, Washington

    Broader source: Energy.gov [DOE]

    The National Oceanic and Atmospheric Administration (NOAA), with DOE’s Bonneville Power Administration (BPA) as a cooperating agency, prepared an EA that assesses the potential environmental impacts of a NOAA Northwest Fisheries Science Center proposal to construct an earthen drainage channel at its Burley Creek Hatchery in Kitsap County, Washington. The project would facilitate increased discharge of treated effluent from the hatchery facility into the adjacent Burley Creek. BPA’s proposal is to fund the project. The project website is http://efw.bpa.gov/environmental_services/Document_Library/Burley_Creek/.

  5. Campbell Creek Research Homes FY 2012 Annual Performance Report

    SciTech Connect (OSTI)

    Gehl, Anthony C [ORNL; Munk, Jeffrey D [ORNL; Jackson, Roderick K [ORNL; Boudreaux, Philip R [ORNL; Khowailed, Gannate A [ORNL

    2013-01-01T23:59:59.000Z

    The Campbell Creek project is funded and managed by the Tennessee Valley Authority (TVA) Technology Innovation, Energy Efficiency, Power Delivery & and Utilization Office. Technical support is provided under contract by the Oak Ridge National Laboratory (ORNL) and the Electric Power Research Institute.The project was designed to determine the relative energy efficiency of typical new home construction, energy efficiency retrofitting of existing homes, and high -performance new homes built from the ground up for energy efficiency. This project will compare three houses that represented the current construction practice as a base case (Builder House CC1); a modified house that could represent a major energy- efficient retrofit (Retrofit House CC2); and a house constructed from the ground up to be a high- performance home (High Performance House CC3). In order tTo enablehave a valid comparison, it was necessary to simulate occupancy in all three houses and heavily monitor the structural components and the energy usage by component. All three houses are two story, slab on grade, framed construction. CC1 and CC2 are approximately 2,400 square feet2. CC3 has a pantry option, that is primarily used as a mechanical equipment room, that adds approximately 100 square feet2. All three houses are all-electric (with the exception of a gas log fireplace that is not used during the testing), and use air-source heat pumps for heating and cooling. The three homes are located in Knoxville in the Campbell Creek Subdivision. CC1 and CC2 are next door to each other and CC3 is across the street and a couple of houses down. The energy data collected will be used to determine the benefits of retrofit packages and high -performance new home packages. There are over 300 channels of continuous energy performance and thermal comfort data collection in the houses (100 for each house). The data will also be used to evaluate the impact of energy -efficient upgrades ton the envelope, mechanical equipment, or demand -response options. Each retrofit will be evaluated incrementally, by both short -term measurements and computer modeling, using a calibrated model. This report is intended to document the comprehensive testing, data analysis, research, and findings within the January 2011 through October 2012 timeframe at the Campbell Creek research houses. The following sections will provide an in-depth assessment of the technology progression in each of the three research houses. A detailed assessment and evaluation of the energy performance of technologies tested will also be provided. Finally, lessons learned and concluding remarks will be highlighted.

  6. Review of underground coal gasification field experiments at Hoe Creek

    SciTech Connect (OSTI)

    Thorsness, C.B.; Creighton, J.R.

    1983-01-01T23:59:59.000Z

    LLNL has conducted three underground coal gasification experiments at the Hoe Creek site near Gillette, WY. Three different linking methods were used: explosive fracturing, reverse burning and directional drilling. Air was injected on all three experiments and a steam/oxygen mixture during 2 days of the second and most of the third experiment. Comparison of results show that the linking method didn't influence gas quality. The heat of combustion of the product gas was higher with steam/oxygen injection, mainly because of reduced inert diluent. Gas quality was generally independent of other operating parameters, but declined from its initial value over a period of time. This was due to heat loss to the wet overburden and extensive roof collapse in the second and third experiments.

  7. Review of underground coal gasification field experiments at Hoe Creek

    SciTech Connect (OSTI)

    Thorsness, C.B.; Creighton, J.R.

    1983-01-01T23:59:59.000Z

    In three underground coal gasification experiments at the Hoe Creek site near Gillette, WY, LLNL applied three different linking methods: explosive fracture, reverse burning, and directional drilling. Air was injected in all three experiments; a steam/oxygen mixture, during 2 days of the second and most of the third experiment. Comparison of results show that the type of linking method did not influence gas quality. The heat of combustion of the product gas was higher with steam/oxygen injection, mainly because of reduced inert diluent. Gas quality was generally independent of other operating parameters but declined from its initial value over a period of time because of heat loss to the wet overburden and extensive roof collapse in the second and third experiments.

  8. The Elk Creek Carbonatite, Southeast Nebraska-An Overview

    SciTech Connect (OSTI)

    Carlson, M. P., E-mail: mcarlson1@unl.edu; Treves, S. B. [University of Nebraska, Nebraska Geological Survey (United States)

    2005-03-15T23:59:59.000Z

    A framework geophysical program in southeastern Nebraska during 1970 identified a near-circular feature having gravity relief of about 8 mgal and a magnetic anomaly of about 800 gammas. Analysis of the geophysical data provided a model of a cylindrical mass of indefinite length with a radius of 5500 ft (1676 m) and beveled at the basement surface at about 600 ft (183 m). At the approximate depth at which Precambrian rocks were expected, the initial test hole (2-B-71) encountered an iron-rich weathered zone overlying carbonate-rich rock. The carbonate rocks consist essentially of dolomite, calcite, and ankerite and lesser amounts of hematite, chlorite, phlogopite, barite, serpentine, pyrochlore, and quartz and contain barium, strontium, and rare earths. Total REE, P2O5, and 87Sr/86Sr ratios confirm the carbonatite identification. Texturally, the rocks range from fragmental to contorted to massive. Associated with the carbonatite are lesser amounts of basalt, lamprophyre, and syenite. Additional exploratory drilling has provided about 80,000 ft (24,384 m) of rock record and has penetrated about 3400 ft (1038 m) of carbonatite. The carbonatite is overlain by marine sediments of Pennsylvanian (Missourian) age. The surrounding Precambrian basement rocks are low-to medium-grade metamorphic gneiss and schist of island arc origin and granitic plutons. The Elk Creek carbonatite is located near the boundary between the Penokean orogen created at about 1.84 Ga (billion years) and the Dawes terrane (1.78 Ga) of the Central Plains orogen. This boundary strongly influenced the geometry of both the Midcontinent Rift System (1.1 Ga) and the Nemaha uplift (0.3 Ga). It is assumed that the emplacement of the Elk Creek carbonatite (0.5 Ga) was influenced similarly by the pre-existing tectonic sutures.

  9. Geology of the Schep-Panther Creek Area, Mason County, Texas 

    E-Print Network [OSTI]

    Bryant, George Frank

    1959-01-01T23:59:59.000Z

    ?stain send?tenn. . . . . . Se VII I . Teo oeaarroasee of the Tel go send?toss. IX. Biaberas in tbo Qergsa Crook line?toss. . . , . . . . , . SS Coataot botueoa tho Morgan Creak liaestoao snd tho Point Peek shale... thick biohera scms, yre- riousiJ iaoladed' hJ eoae ssccloBists Ba. the ysiat Posh shale sa4 bJ others ia the Saa SISS Xiaootuaec uos sopped ia the tboeis S?ea OS a separate uait sithia tbe Poiat Pash ssaber. Tbo ouyosed Riley faraaticuc uas ~ st...

  10. Geology of the Bee Branch-Mill Creek area, Mason County, Texas

    E-Print Network [OSTI]

    Miller, George Howard

    1957-01-01T23:59:59.000Z

    that originated on the Cretaceous ctr-te in Tertiary time in Csn tral Texas, Tarr brcu?ht cut +he fact that, since the Coloraoo in Cen- tral Texas flo -s with a ?en&. ral ccm: e at ri&ht an". les tc the strike of the Carboniferous reck, in an opposite direction... tc the d1p, the Cole- racc River sel. ected its course on a structure thaw is nc longer present. He believed that this earlier . ructure wes present cn Cretaceous strata because the Paleos& ic reyi& n of Central Texas is only partially unsovered...

  11. Structural geology of the Central Bluff Creek area, Mason County, Texas

    E-Print Network [OSTI]

    Grote, Fred Rankin

    1954-01-01T23:59:59.000Z

    -Central Texas, Soll? oner? dssoo? Petxol, Geol?? Vol. 24, pp. 6$-118. . Chessy? M. G. and Goso? LE p? (19$2) piotonios oi' Centxal Texas? Eolian kner? dssoo, Petrol. Geol . ? Veil 36? pp. 2237 226$? Cloud, P. S. ? Jr? Samos? V. S?? and Bridge?' Josiah, (194...

  12. Stratigraphy and structure of the Williams Creek area, Hinsdale, Mineral, and Archuleta counties, Colorado

    E-Print Network [OSTI]

    Moore, George Edwards

    1964-01-01T23:59:59.000Z

    Formation 35 38 Cenozoic Rocks 40 Tertiary System. Blanco Basin Formation. Conejos Quartz Latite. Quaternary System. STRUCTURE 40 40 44 47 50 Regional Structure General Statement San Juan Dome . Archuleta Arch. San Juan Basin. Local... Mountains of southwestern Colorado and this formation name was used in the geologic folios oi' the U. S. Geological Survey and other early geologic work in and adjacent to the San Juan Mountains. This name is no longer in current use, but is entrenched...

  13. Geology of an area between Bluff and Honey Creeks, Mason County, Texas

    E-Print Network [OSTI]

    Fritz, Joseph Francis

    1954-01-01T23:59:59.000Z

    , the proWambrian rooks oonaist ef two metsmorphio unite y tho mar'bl o and the gneiss y an4 'two tnt rus i vs bodies ~ the ooareo~rainsd granite and the fino~ained granite. The Cambrian reeks aro 4ivido4 into tho Riley snd Nil borne formations... of the marble outcrop are 1} in- trusive caxtacts with precambrian granites, 8) overlap by basal Palsoso1c bede, snd 5) fault ccntacts with lower Paleosoic beds. There are two different precambrian granites which have intrusive contaots w1th ths marble unit...

  14. B I OENV I RONMENTAL FEATURES OF THE OGOTORUK CREEK AREA, CAPE THOMPSON, ALASKA

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111A Lithologic and Monitor WellAshtabula,B I

  15. Isotopic Analysis At Separation Creek Area (Van Soest, Et Al., 2002) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar Energy JumpIremNot2007) | Open EnergyOpenEnergy

  16. Geothermometry At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005)EnergyAmatitlanGmbH undOpenInformation RegionOpen

  17. Thermal Gradient Holes At Upper Hot Creek Ranch Area (Benoit & Blackwell,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThe year openEnergy2003)Energy|2008) ||

  18. Tribal Decision-Making and Intercultural Relations: Crow Creek Agency, 1863-1885

    E-Print Network [OSTI]

    Galler, Robert

    2002-03-01T23:59:59.000Z

    Lower Yanktonai residents experienced great change during the first two decades at the Crow Creek agency in Dakota Territory. This essay traces the evolution of relations between tribal members, federal agents, and ...

  19. Rock creek multiple coal streams project. Final report, July 1984-November 1994

    SciTech Connect (OSTI)

    Saulsberry, J.L.; Lambert, S.W.; Wallace, J.A.; Spafford, S.D.; Steidl, P.F.

    1995-12-01T23:59:59.000Z

    The report summarizes the research conducted at the Rock Creek Project from 1984 to 1994. The Rock Creek Project was a field laboratory with the purpose of determining the best methods to produce methane from multiple coal seams. The site is located in the Oak Grove field of the Black Warrior Basin approximately 15 miles west of Birmingham, Alabama. The research performed under the Rock Creek Project involved: resource evaluation, reservoir testing, completion techniques, stimulation design and evaluation, operational methods, production forecasting, and remedial stimulations. Offsite cooperative research with other operators was also performed as part of the project. In addition to developing new technology, the work at Rock Creek demonstrated how existing technology from mining, groundwater hydrology, and the petroleum industry could be applied to coalbed methane production. The work also highlighted the pitfalls associated with some of the technology that was being used by certain operators.

  20. The investigation of the Caney Creek shipwreck archaeological site 41MG32 

    E-Print Network [OSTI]

    Hedrick, David Layne

    1998-01-01T23:59:59.000Z

    documentation exists concerning Caney Creek or its associated trade. Archaeological investigations, however, have revealed several aspects this steamer had in common with other western river steamboats. This thesis will help illustrate western river steamboat...

  1. HYDROGEOLOGIC CONSEQUENCES OF THE MODIFIED IN-SITU RETORTING PROCESS, PICEANCE CREEK BASIN, COLORADO

    E-Print Network [OSTI]

    Mehran, M.

    2014-01-01T23:59:59.000Z

    Water Management in Oil Shale Mining," Volumes I and II,and Technology of Oil Shale," Ann Arbor Science PublishersRequirements at an Oil Shale Surface Mine, Piceance Creek

  2. Microsoft Word - CX-SpringCreek-WineCountry-TowerRelocationFY13...

    Broader source: Energy.gov (indexed) [DOE]

    November 29, 2012 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Justin Estes Project Manager - TELM-TPP-3 Proposed Action: Spring Creek - Wine County No. 1...

  3. Review of underground coal-gasification field experiments at Hoe Creek. [Hoe Creek 1, 2, and 3

    SciTech Connect (OSTI)

    Thorsness, C.B.; Creighton, J.R.

    1982-05-26T23:59:59.000Z

    LLNL has conducted three underground coal gasification experiments at the Hoe Creek site near Gillette, Wyoming. Three different linking methods were used: explosive fracture, reverse burning and directional drilling. Air was injected on all three experiments and a steam/oxygen mixture during 2 days of the second and most of the third experiment. Comparison of results show that the linking method didn't influence gas quality. The heat of combustion of the product gas was higher with steam/oxygen injection, mainly because of reduced inert diluent. Gas quality was generally independent of other operating parameters, but declined from its initial value over a period of time. This was due to heat loss to the wet overburden and extensive roof collapse in the second and third experiments.

  4. Correlation of stratigraphy with revegetation conditions at the Gibbons Creek Lignite Mine, Grimes County, Texas

    E-Print Network [OSTI]

    Parisot, Laurence D.

    1991-01-01T23:59:59.000Z

    CORRELATION OF STRATIGRAPHY WITH REVEGETATION CONDITIONS AT THE GIBBONS CREEK LIGNITE MINE, GRIMES COUNTY, TEXAS A Thesis by LAURENCE D. PARISOT Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 1991 Major Subject: Geology CORRELATION OF STRATIGRAPHY WITH REVEGETATION CONDITIONS AT THE GIBBONS CREEK LIGNITE MINE, GRIMES COUNTY, TEXAS A Thesis by LAURENCE D. PARISOT ; Approved...

  5. Trout Creek, Oregon Watershed Assessment; Findings, Condition Evaluation and Action Opportunities, 2002 Technical Report.

    SciTech Connect (OSTI)

    Runyon, John

    2002-08-01T23:59:59.000Z

    The purpose of the assessment is to characterize historical and current watershed conditions in the Trout Creek Watershed. Information from the assessment is used to evaluate opportunities for improvements in watershed conditions, with particular reference to improvements in the aquatic environment. Existing information was used, to the extent practicable, to complete this work. The assessment will aid the Trout Creek Watershed Council in identifying opportunities and priorities for watershed restoration projects.

  6. Levels-of-growing-stock cooperative study in douglas-fir: Report No. 12. The Iron Creek study. 1966-89. Forest Service research paper

    SciTech Connect (OSTI)

    Curtis, R.O.; Clendenen, G.W.

    1994-12-01T23:59:59.000Z

    This progress report summarizes results of Iron Creek levels-of-growing-stock (LOGS) installation. To age 42, volume growth has been strongly related to growing stock and partially offsets the decrease in growth percent expected with increasing growing stock. Basal area growth-growing stock relations were much weaker. Marked differences in size distributions resulted from thinning. Periodic annual volume increments were two to three times greater than mean annual increment at age 42; this stand is far from culmination. Results are generally similar to those from other installations in the LOGS series.

  7. Association of coal metamorphism and hydrothermal mineralization in Rough Creek fault zone and Fluorspar District, Western Kentucky

    SciTech Connect (OSTI)

    Hower, J.C.; Fiene, F.L.; Trinkle, E.J.

    1983-09-01T23:59:59.000Z

    The ambient coal rank (metamorphism) of the Carboniferous coals in the Western Kentucky coalfield ranges from high volatile A bituminous (vitrinite maximum reflectance up to 0.75% R/sub max/) in the Webster syncline (Webster and southern Union Counties) to high volatile C bituminous (0.45 to 0.60% R/sub max/) over most of the remainder of the area. Anomalous patterns of metamorphism, however, have been noted in coals recovered from cores and mines in fault blocks of the Rough Creek fault zone and Fluorspar District. Coals in Gil-30 borehole (Rough Creek faults, Bordley Quadrangle, Union County) vary with no regard for vertical position, from high volatile C(0.55% R/sub max/) to high volatile A (0.89%R/sub max) bituminous. Examination of the upper Sturgis Formation (Missourian/Virgilian) coals revealed that the higher rank (generally above 0.75% R/sub max/) coals had vein mineral assemblages of sphalerite, twinned calcite, and ferroan dolomite. Lower rank coals had only untwinned calcite. Several sites in Webster County contain various coals (Well (No. 8) to Coiltwon (No. 14)) with vitrinite reflectances up to 0.83% R/sub max/ and associated sphalerite mineralization. Mississippian and Lower Pennsylvanian (Caseyville Formation Gentry coal) coals in the mineralized Fluorspar District have ranks to nearly medium volatile bituminous (1.03% R/sub max/). The regional rank trend exhibited by the fualt zones is generally higher rank than the surrounding areas. Sphalerite mineralization in itself is not unique within Illinois basin coals, but if it was partly responsible for the metamorphism of these coals, then the fluid temperature must have been higher within the above mentioned fault complexes.

  8. An Analysis of a Spreader Bar Crane Mounted Gamma-Ray Radiation Detection System 

    E-Print Network [OSTI]

    Grypp, Matthew D

    2013-04-08T23:59:59.000Z

    photoelectric effect PMT photomultiplier tube PNNL Pacific Northwest National Laboratory viii PoT Port of Tacoma PVT poly-vinyl toluene R resolution RT real time RPM radiation portal monitor s second SBC spreader.... LITERATURE REVIEW ......................................................................................... 9 3.1 Radiation Portal Monitors ............................................................................ 9 3.2 General Areas...

  9. Early post-restoration re-vegetation performance and critical social and institutional factors in a landowner-involved restoration project on lower Wooden Valley Creek, Napa County, CA

    E-Print Network [OSTI]

    Levy, Morgan; Post, Charles

    2010-01-01T23:59:59.000Z

    of the lower Wooden Valley Creek behind McQueeny’s house (Conditions in the Suisun Creek Watershed (Napa/Solano Co. ).Property - South Suisun Creek Watershed Program, Riparian

  10. Fish Bulletin No. 98. The Life Histories of the Steelhead Rainbow Trout (Salmo gairdneri gairdneri) and Silver Salmon (Oncorhynchus kisutch) with Special Reference to Waddell Creek, California, and Recommendations Regarding Their Management

    E-Print Network [OSTI]

    Shapovalov, Leo; Taft, Alan C

    1954-01-01T23:59:59.000Z

    on fish foods in Waddell Creek Lagoon. Amer. Fish. Soc. ,p. 248–251. 1936. The Waddell Creek Experimental Station forsilver salmon from Waddell Creek caught near Fort Bragg.

  11. A Conceptual Restoration Plan and Tidal Hydrology Assessment for Reconnecting Spring Branch Creek to Suisun Marsh, Solano County, California

    E-Print Network [OSTI]

    Olson, Jessica J.

    2012-01-01T23:59:59.000Z

    EDAW 2007. Potrero Hills Landfill FEIR Volume 1. Solanothe headwaters at Potrero Hills Landfill is the headwatersBranch Creek, Potrero Hills Landfill and a private rancher

  12. C(re)ek-storation Community Collaboration Site: North Fork of Strawberry Creek by La Loma and Le Conte Avenues

    E-Print Network [OSTI]

    Tannenbaum, Sara Rose

    2011-01-01T23:59:59.000Z

    history of urban stream restoration. Aquatic Conservation:on Codornices Creek”. Restoration of Rivers and Streams.Restoration of Rivers and Streams, Water Resources

  13. Reservoir characterization of Mary Lee and Black Creek coals at the Rock Creek field laboratory, Black Warrior basin. Topical report, May-December 1992

    SciTech Connect (OSTI)

    Young, G.B.C.; Paul, G.W.

    1993-08-01T23:59:59.000Z

    A three-dimensional multi-well simulation study was performed for the Rock Creek project site to better understand the relationships between coal reservoir properties, well completion practices, and actual well performance. The reservoir study provided insights on the efficacy of single versus multiple seam completions, the incremental gas recovery resulting from remedial stimulations, and the impact of well spacing on expected long-term gas recovery. The Mary Lee and Black Creek coal groups were characterized by matching production and pressure history for eight Rock Creek producing wells and their surrounding monitor wells. The simulation grid included the Oak Grove mine and degas field located south of the Rock Creek site. Results of well test analyses, corehole-based gas content measurements, and individual coal group gas production from zone isolation packer tests were used to validate the simulation results. Various hydraulic fracture and remedial stimulations were analyzed to compare the effectiveness of different stimulation designs used at the site. Alternative well spacing strategies were examined to assess the effects of interference on long-term gas recovery.

  14. West Foster Creek Expansion Project 2007 HEP Report.

    SciTech Connect (OSTI)

    Ashley, Paul R.

    2008-02-01T23:59:59.000Z

    During April and May 2007, the Columbia Basin Fish and Wildlife Authority's (CBFWA) Regional HEP Team (RHT) conducted baseline Habitat Evaluation Procedures (HEP) (USFWS 1980, 1980a) analyses on five parcels collectively designated the West Foster Creek Expansion Project (3,756.48 acres). The purpose of the HEP analyses was to document extant habitat conditions and to determine how many baseline/protection habitat units (HUs) to credit Bonneville Power Administration (BPA) for funding maintenance and enhancement activities on project lands as partial mitigation for habitat losses associated with construction of Grand Coulee and Chief Joseph Dams. HEP evaluation models included mule deer (Odocoileus hemionus), western meadowlark (Sturnella neglecta), sharp-tailed grouse, (Tympanuchus phasianellus), Bobcat (Lynx rufus), mink (Neovison vison), mallard (Anas platyrhynchos), and black-capped chickadee (Parus atricapillus). Combined 2007 baseline HEP results show that 4,946.44 habitat units were generated on 3,756.48 acres (1.32 HUs per acre). HEP results/habitat conditions were generally similar for like cover types at all sites. Unlike crediting of habitat units (HUs) on other WDFW owned lands, Bonneville Power Administration received full credit for HUs generated on these sites.

  15. Postburn core-drilling results from Hoe Creek 3

    SciTech Connect (OSTI)

    Ramirez, A.L.; Ganow, H.C.; Wilder, D.G.

    1981-10-08T23:59:59.000Z

    This paper presents interpretations derived from the analysis of the postburn drilling results from the Hoe Creek 3 experiment. Sixteen partially cored boreholes were drilled using an HQ triple-tube core barrel. The general objectives of this work were to establish the characteristics of the burn cavity and of the materials within and surrounding the cavity. The lateral extent of the burn and the characteristics of the collapsed region overlying the burn cavity were also to be investigated. Important conclusions derived from this study include the following: (1) The horizontally drilled link borehole strongly controlled burn cavity shape and location; no significant combustion occurred below the link; (2) the slag may have acted as an insulation blanket, protecting the coal below the horizontal link borehole; (3) significant roof collapse occurred during the course of the experiment, probably inducing substantial heat losses; (4) the lateral extent of the burn was greatest along the Felix 2 seam; the cavity outline in plan view is shaped like a teardrop; a vertical transverse cross section through the cavity shows a mushroom-shaped outline; (5) roof collapse after the end of the experiment filled much of the space within and above the cavity, producing a mechanically disturbed zone full of voids and weak materials. A zone of fractures or loosened material exists in the remaining (uncollapsed) roof and wall materials, surrounding and paralleling the upper margins of the collapsed region. A void zone was found near the bottom of the collapsed region.

  16. Site Environmental Report for 2012, Volumes 1 & 2

    E-Print Network [OSTI]

    Pauer, Ron

    2013-01-01T23:59:59.000Z

    and southern areas. Downstream from the monitoring station,Creek Creeks; Sediment Chicken Creek— Downstream ChickenCreek downstream of routine monitoring site Creeks Chicken

  17. LLNL underground coal gasification project. Quarterly progress report, July-Sep 1980. [Hoe Creek and Gorgas, Alabama tests

    SciTech Connect (OSTI)

    Olness, D.U. (ed.)

    1980-10-14T23:59:59.000Z

    Laboratory studies of forward gasification through drilled holes in blocks of coal have continued. Such studies give insight into cavity growth mechanisms and particulate production. In addition to obtaining a qualitative comparison of the forward burn characteristics of two coals, we obtained information on the influence of bedding plane/cleat structure orientation on the early-time shape of the burn cavity in the Roland coal. We have improved our model of the coal drying rate during underground coal gasification (UCG) by adding refinements to the model. To aid in analyzing and predicting the performance of UCG tests, we have developed a simple gas-compositional model. When the model was tested against experimental data from the three Hoe Creek experiments, it was able to match very closely the observed gas compositions, energy fractions, and water influxes. This model can be used to make performance predictions consistent with the material and energy balance constraints of the underground system. A postburn coring and wireline-logging study is under way at the Hoe Creek No. 3 site to investigate the overall effect of the directionally-drilled, horizontal linking hole to better estimate the amount of coal gasified and the shape of the combustion front, and to provide additional information on subsurface deformation and thermal effects. The site reclamation work was completed, including the dismantling of all surface equipment and piping and the plugging and sealing of process and diagnostics wells. Final grading of the reclaimed land has been completed, and the area is ready for disk-seeding. Our survey of the UCG literature has continued with a review of the extensive tests at Gorgas, Alabama, carried on by the US Bureau of Mines from 1947 to 1959.

  18. Dissolved Oxygen in Allen CreekDissolved Oxygen in Allen Creek Dissolved oxygen (DO) enters the water by diffusion from air, as a by-product of photosynthesis and

    E-Print Network [OSTI]

    Tyler, Christy

    Dissolved Oxygen in Allen CreekDissolved Oxygen in Allen Creek Dissolved oxygen (DO) enters and rapids. There is an inverse relationship between temperature and DO, i.e. colder water holds more oxygen it supplies oxygen to aquatic organisms. Higher DO levels also give the water a better taste. Figure 2. During

  19. Flow Characteristics Analysis of Widows' Creek Type Control Valve for Steam Turbine Control

    SciTech Connect (OSTI)

    Yoo, Yong H.; Sohn, Myoung S.; Suh, Kune Y. [PHILOSOPHIA, Inc., Seoul National University, San 56-1 Sillim-dong, Gwanak-gu, Seoul, 151-742 (Korea, Republic of)

    2006-07-01T23:59:59.000Z

    The steam turbine converts the kinetic energy of steam to mechanical energy of rotor blades in the power conversion system of fossil and nuclear power plants. The electric output from the generator of which the rotor is coupled with that of the steam turbine depends on the rotation velocity of the steam turbine bucket. The rotation velocity is proportional to the mass flow rate of steam entering the steam turbine through valves and nozzles. Thus, it is very important to control the steam mass flow rate for the load following operation of power plants. Among various valves that control the steam turbine, the control valve is most significant. The steam flow rate is determined by the area formed by the stem disk and the seat of the control valve. While the ideal control valve linearly controls the steam mass flow rate with its stem lift, the real control valve has various flow characteristic curves pursuant to the stem lift type. Thus, flow characteristic curves are needed to precisely design the control valves manufactured for the operating conditions of nuclear power plants. OMEGA (Optimized Multidimensional Experiment Geometric Apparatus) was built to experimentally study the flow characteristics of steam flowing inside the control valve. The Widows' Creek type control valve was selected for reference. Air was selected as the working fluid in the OMEGA loop to exclude the condensation effect in this simplified approach. Flow characteristic curves were plotted by calculating the ratio of the measured mass flow rate versus the theoretical mass flow rate of the air. The flow characteristic curves are expected to be utilized to accurately design and operate the control valve for fossil as well as nuclear plants. (authors)

  20. Boiling Water at Hot Creek--The Dangerous and Dynamic Thermal Springs in California's Long Valley Caldera

    E-Print Network [OSTI]

    Torgersen, Christian

    ). Conditions in Hot Creek can change very quickly. These fish--caught in a burst of high-temperature water" or intermittently spurting very hot, sediment-laden water as high as 6 feet (2 m) above the stream surface. At timesBoiling Water at Hot Creek--The Dangerous and Dynamic Thermal Springs in California's Long Valley

  1. Simulation of contaminated sediment transport in White Oak Creek basin

    SciTech Connect (OSTI)

    Bao, Y.; Clapp, R.B.; Brenkert, A.L. [Oak Ridge National Lab., TN (United States); Moore, T.D. [Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN (United States); Fontaine, T.A. [Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD (United States)

    1995-12-31T23:59:59.000Z

    This paper presents a systematic approach to management of the contaminated sediments in the White Oak Creek watershed at Oak Ridge National Laboratory near Oak Ridge, Tennessee. The primary contaminant of concern is radioactive cesium-137 ({sup 137}Cs), which binds to soil and sediment particles. The key components in the approach include an intensive sampling and monitoring system for flood events; modeling of hydrological processes, sediment transport, and contaminant flux movement; and a decision framework with a detailed human health risk analysis. Emphasis is placed on modeling of watershed rainfall-runoff and contaminated sediment transport during flooding periods using the Hydrologic Simulation Program- Fortran (HSPF) model. Because a large number of parameters are required in HSPF modeling, the major effort in the modeling process is the calibration of model parameters to make simulation results and measured values agree as closely as possible. An optimization model incorporating the concepts of an expert system was developed to improve calibration results and efficiency. Over a five-year simulation period, the simulated flows match the observed values well. Simulated total amount of sediment loads at various locations during storms match with the observed values within a factor of 1.5. Simulated annual releases of {sup 137}Cs off-site locations match the data within a factor of 2 for the five-year period. The comprehensive modeling approach can provide a valuable tool for decision makers to quantitatively analyze sediment erosion, deposition, and transport; exposure risk related to radionuclides in contaminated sediment; and various management strategies.

  2. Salt Creek Canyon, Canyonlands, Utah, May 2010 One week after the fact, at the tail-end of the weekend, I'm sitting down to write

    E-Print Network [OSTI]

    Bardsley, John

    Salt Creek Canyon, Canyonlands, Utah, May 2010 One week after the fact, at the tail the week following UM's graduation, and reserving backcountry camp sites in Canyonlands' Salt Creek Canyon. The itinerary would take us from the south end of Salt Creek Canyon to the Needles' District visitor center

  3. Diagenesis of sandstones from the Douglas Creek member of the Green River Formation (Eocene) at Red Wash field, Uintay County, Utah

    E-Print Network [OSTI]

    Ray, Earl Scott

    1985-01-01T23:59:59.000Z

    , sandstone and some limestone and dolomite beds. The Garden Creek Member at Red Wash Field is about 550 ft (168 m) thick. The Parachute Creek Member, overlying the Garden Creek, is largely oil shale, gray shale, and limestone and dolomite beds...

  4. Johnson Creek Artificial Propagation and Enhancement Project Operations and Maintenance Program; Brood Year 2000: Johnson Creek Chinook Salmon Supplementation, Biennial Report 2000-2002.

    SciTech Connect (OSTI)

    Daniel, Mitch; Gebhards, John; Hill, Robert

    2003-05-01T23:59:59.000Z

    The Nez Perce Tribe, through funding provided by the Bonneville Power Administration, has implemented a small scale chinook salmon supplementation program on Johnson Creek, a tributary in the South Fork of the Salmon River, Idaho. The Johnson Creek Artificial Propagation Enhancement project was established to enhance the number of threatened Snake River summer chinook salmon (Oncorhynchus tshawytscha) returning to Johnson Creek through artificial propagation. Adult chinook salmon trapping, broodstock selection, and spawning was first implemented in 1998, did not occur in 1999, and was resumed in 2000. A total of 152 salmon were trapped in Johnson Creek in 2000, of which 73 (25 males, 16 females, and 32 jacks) fish were transported to Idaho Fish and Game=s South Fork Salmon River adult holding and spawning facility for artificial propagation purposes. The remaining 79 (29 males, 16 females, and 24 jacks) fish were released above the weir to spawn naturally. A total of 65,060 green eggs were taken from 16 female salmon and transported to the McCall Fish Hatchery for incubation and rearing. Egg counts indicated an average eye-up rate of 86.0% for 55,971 eyed eggs. Average fecundity for Johnson Creek females was 4,066 eggs per female. Juvenile fish were reared indoors at the McCall Fish Hatchery through November 2001. These fish were transferred to outdoor rearing facilities in December 2001 where they remained until release in March 2002. All of these fish were marked with Coded Wire Tags and Visual Implant Elastomer tags. In addition 9,987 were also PIT tagged. Hand counts provided by marking crews were used to amend the number of juvenile salmon released from the original egg count. A total of 57,392 smolts were released into a temporary acclimation channel in Johnson Creek on March 18, 19, 20, 2002. These fish were held in this facility until a fish screen was removed on March 22, 2002 and the fish were allowed to emigrate.

  5. Uranium in the Oatman Creek granite of Central Texas and its economic potential

    E-Print Network [OSTI]

    Conrad, Curtis Paul

    1982-01-01T23:59:59.000Z

    OF SCIENCE December 1982 Major Subject: GEOLOGY URANIUM IN THE OATMAN CREEK GRANITE OF CENTRAL TEXAS AND ITS ECONOMIC POTENTIAL A Thesis by CURTIS PAUL CONRAD Approved as to sty1e and content by; C airman of Committee Member em er ep men December... 1982 ABSTRACT Uranium in the Datman Creek Granite of Central Texas and its Economic Potential . (December 1 982) Curtis Paul Conrad, B. S. , Texas ABN University Chairman of Adv1sory Comm1ttee: Dr. Thomas T. Tieh Recent studies indicate that many...

  6. Steam tracer experiment at the Hoe Creek No. 3 underground coal gasification field test

    SciTech Connect (OSTI)

    Thorsness, C.B.

    1980-11-26T23:59:59.000Z

    Water plays an important role in in-situ coal gasification. To better understand this role, we conducted a steam tracer test during the later stages of the Hoe Creek No. 3 underground coal gasification field test. Deuterium oxide was used as the tracer. This report describes the tracer test and the analysis of the data obtained. The analysis indicates that at Hoe Creek the injected steam interacts with a large volume of water as it passes through the underground system. We hypothesize that this water is undergoing continual reflux in the underground system, resulting in a tracer response typical of a well-stirred tank.

  7. Photographs on front cover (clockwise, from upper left): (upper left) Visible mercury at contact between alluvium and slate bedrock, Sailor Flat Mine, Greenhorn Creek drainage, Nevada County, California; total length of ruler is

    E-Print Network [OSTI]

    at contact between alluvium and slate bedrock, Sailor Flat Mine, Greenhorn Creek drainage, Nevada County

  8. Pipeline corridors through wetlands -- Impacts on plant communities: Little Timber Creek Crossing, Gloucester County, New Jersey. Topical report, August 1991--January 1993

    SciTech Connect (OSTI)

    Shem, L.M.; Zimmerman, R.E.; Alsum, S.K. [Argonne National Lab., IL (United States). Center for Environmental Restoration Systems; Van Dyke, G.D. [Argonne National Lab., IL (United States). Center for Environmental Restoration Systems]|[Trinity Christian Coll., Palos Heights, IL (United States). Dept. of Biology

    1994-12-01T23:59:59.000Z

    The goal of the Gas Research Institute Wetland Corridors Program is to document impacts of existing pipelines on the wetlands they traverse. To accomplish this goal, 12 existing wetland crossings were surveyed. These sites varied in elapsed time since pipeline construction, wetland type, pipeline installation techniques, and right-of-way (ROW) management practices. This report presents results of a survey conducted over the period of August 5--7, 1991, at the Little Timber Creek crossing in Gloucester County, New Jersey, where three pipelines, constructed in 1950, 1960, and 1990, cross the creek and associated wetlands. The old side of the ROW, created by the installation of the 1960 pipeline, was designed to contain a raised peat bed over the 1950 pipeline and an open-water ditch over the 1960 pipeline. The new portion of the ROW, created by installation of the 1990 pipeline, has an open-water ditch over the pipeline (resulting from settling of the backfill) and a raised peat bed (resulting from rebound of compacted peat). Both the old and new ROWs contain dense stands of herbs; the vegetation on the old ROW was more similar to that in the adjacent natural area than was vegetation in the new ROW. The ROW increased species and habitat diversity in the wetlands. It may contribute to the spread of purple loosestrife and affect species sensitive to habitat fragmentation.

  9. Screening of contaminants in Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Blaylock, B.G.; Frank, M.L.; Hoffman, F.O.; Hook, L.A.; Suter, G.W.; Watts, J.A.

    1992-07-01T23:59:59.000Z

    Waste Area Grouping 2 (WAG 2) of the Oak Ridge National Laboratory (ORNL) is located in the White Oak Creek Watershed and is composed of White Oak Creek Embayment, White Oak Lake and associated floodplain, and portions of White Oak Creek (WOC) and Melton Branch downstream of ORNL facilities. Contaminants leaving other ORNL WAGs in the WOC watershed pass through WAG 2 before entering the Clinch River. Health and ecological risk screening analyses were conducted on contaminants in WAG 2 to determine which contaminants were of concern and would require immediate consideration for remedial action and which contaminants could be assigned a low priority or further study. For screening purposes, WAG 2 was divided into four geographic reaches: Reach 1, a portion of WOC; Reach 2, Melton Branch; Reach 3, White Oak Lake and the floodplain area to the weirs on WOC and Melton Branch; and Reach 4, the White Oak Creek Embayment, for which an independent screening analysis has been completed. Screening analyses were conducted using data bases compiled from existing data on carcinogenic and noncarcinogenic contaminants, which included organics, inorganics, and radionuclides. Contaminants for which at least one ample had a concentration above the level of detection were placed in a detectable contaminants data base. Those contaminants for which all samples were below the level of detection were placed in a nondetectable contaminants data base.

  10. Evaluation of Calendar Year 1996 groundwater and surface water quality data for the Upper East Fork Poplar Creek Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    This report presents an evaluation of the groundwater monitoring data obtained in the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) during calendar year (CY) 1996. The East Fork Regime encompasses several confirmed and suspected sources of groundwater contamination within industrialized areas of the US Department of Energy (DOE) Y-12 Plant in Bear Creek Valley (BCV) southeast of Oak Ridge, Tennessee. The CY 1996 groundwater and surface water monitoring data are presented in Calendar Year 1996 Annual Groundwater Monitoring Report for the Upper East Fork Poplar Creek Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee, along with the required data evaluations specified in the Resource Conservation and Recovery Act (RCRA) post-closure permit for the East Fork Regime. This report provides additional evaluation of the CY 1996 groundwater and surface water monitoring data with an emphasis on regime-wide groundwater contamination and long-term concentration trends for regulated and non-regulated monitoring parameters.

  11. Groundwater Protection Program Calendar Year 1998 Evaluation of Groundwater and Surface Water Quality Data for the Bear Creek Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    None

    1999-09-01T23:59:59.000Z

    This report presents an evaluation of the water quality monitoring data obtained by the Y-12 Plant Groundwater Protection Program (GWPP) in the Bear Creek Hydrogeologic Regime (Bear Creek Regime) during calendar year (CY) 1998. The Bear Creek Regime contains many confirmed and potential sources of groundwater and surface water contamination associated with the U.S. Department of Energy (DOE) Oak Ridge Y-12 Plant. Applicable provisions of DOE Order 5400.1A - General Environmental Protection Program - require evaluation of groundwater and surface water quality near the Y-12 Plant to: (1) gauge groundwater quality in areas that are, or could be, affected by plant operations, (2) determine the quality of surface water and groundwater where contaminants are most likely to migrate beyond the DOE Oak Ridge Reservation (ORR) property line, and (3) identify and characterize long-term trends in groundwater quality. The following sections of this report contain relevant background information (Section 2.0); describe the results of the respective data evaluations required under DOE Order 5400.1A (Section 3.0); summarize significant findings of each evaluation (Section 4.0); and list the technical reports and regulatory documents cited for more detailed information (Section 5.0). All of the figures (maps and trend graphs) and data tables referenced in each section are presented in Appendix A and Appendix B, respectively.

  12. Spatial and temporal variation in fish assemblage structure at Village Creek

    E-Print Network [OSTI]

    Moriarty, Loren Joan

    1995-01-01T23:59:59.000Z

    . . . . . . . . . . . 50 22. Length frequency distributions mesohabitat and season. of Gambusia affinis by 59 23. Length frequency distributions mesohabitat and season. of Etheostoma vivax by . . 60 24. Length frequency distributions mesohabitat and season... COLLECTED AT VILLAGE CREEK, PRESENTED IN DESCENDING ORDER OF SITE OCCURRENCE. pecies ypnne a venusta Pimephales vigilax Gambusia affinis Fundulus olivaceus Notropis sabinae Notropis texanus Lepomis macrochirus Etheostoma vivax Labidesthes sicculus...

  13. The Republican, the Platte and Pumpkin Creek: Current Nebraska Water Policy Issues

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    1 The Republican, the Platte and Pumpkin Creek: Current Nebraska Water Policy Issues J. David Aiken-appropriated river basins, and has done so in much of the Republican, North Platte, and Central Platte river basins. However, the 1997 Platte River Cooperative Agreement and the 2002 settlement of the RRC litigation have

  14. Final Independent External Peer Review Report Cattaraugus Creek Watershed Ecosystem Restoration

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Final Independent External Peer Review Report Cattaraugus Creek Watershed Ecosystem Restoration of Expertise for Ecosystem Restoration Mississippi Valley Division Contract No. W912HQ-10-D-0002 Task Order Watershed Ecosystem Restoration at Springville Dam, Draft Detailed Project Report/Environmental Assessment

  15. EA-1967: Hills Creek-Lookout Point Transmission Line Rebuild, Lane County, Oregon

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration is preparing an EA to assess potential environmental impacts of the proposed rebuild of its 26-mile 115 kilovolt (kV) wood-pole Hills Creek-Lookout Point transmission line, which is generally located between Lowell and Oakridge, in Lane County, Oregon.

  16. Proceedings of the Conference on Coastal Watersheds:The Caspar Creek Story

    E-Print Network [OSTI]

    Standiford, Richard B.

    Proceedings of the Conference on Coastal Watersheds:The Caspar Creek Story May 6, 1998 Ukiah. 1998. Proceedings of the conference on coastal watersheds: theProceedings of the conference on coastal watersheds: theProceedings of the conference on coastal watersheds: theProceedings of the conference

  17. Storm water control plan for the Lower East Fork Poplar Creek Operable Unit, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    This document provides the Environmental Restoration Program with information about the erosion and sediment control, storm water management, maintenance, and reporting and record keeping practices to be employed during Phase II of the remediation project for the Lower East Fork Poplar Creek (LEFPC) Operable Unit.

  18. Influence of the Blue Mesa Reservoir on the Red Creek Landslide, Colorado

    E-Print Network [OSTI]

    Influence of the Blue Mesa Reservoir on the Red Creek Landslide, Colorado SCOTT R. WALKER URS of the Blue Mesa Reservoir submerged approximately 50 percent of the paleolandslide. Some clay layers within of the paleolandslide. Seasonal rapid drawdown of the Blue Mesa Reservoir acts as the trigger for movement, and large

  19. OCEANOGRAPHY Stratigraphic Distribution of Amino Acids in Peats from Cedar Creek

    E-Print Network [OSTI]

    Minnesota, University of

    in Peats from Cedar Creek Bog, Minnesota, and Dismal Swamp, Virginia' F. M. SWAIN, A. BLUMENTALS, AND R the bog waters and waters squeezed from the peats. Attempts to detect proteins in these substances by means of paper electrophoresis were unsuccessful. Fibrous proteins may be present, however. In both peat

  20. Environmental evaluation and restoration plan of the Hoe Creek Underground Coal Gasification Site, Wyoming: Topical report

    SciTech Connect (OSTI)

    Barteaux, W.L.; Berdan, G.L.; Lawrence, J.

    1986-09-01T23:59:59.000Z

    Three underground coal gasification (UCG) experiments were conducted by Lawrence Livermore National Laboratory (LLNL) at the Hoe Creek Site, Wyoming; the Hoe Creek I experiment was conducted in 1976, the Hoe Creek II experiment in 1977, and the Hoe Creek III experiment in 1979. These experiments have had an impact on the land and groundwater quality at the site, and the Department of Energy (DOE) has requested that Western Research Institute (WRI) develop and implement a site restoration plan. The purpose of the plan is to restore the site to conditions being negotiated with the Wyoming Department of Environmental Quality (WDEQ). To prepare for developing a plan, WRI compiled background information on the site. The geologic and hydrologic characteristics of the site were determined, and the water quality data were analyzed. Modelling the site was considered and possible restoration methods were examined. Samples were collected and laboratory tests were conducted. WRI then developed and began implementing a field-scale restoration test. 41 refs, 46 figs., 13 tabs.

  1. Groundwater restoration field test at the Hoe Creek underground coal gasification site

    SciTech Connect (OSTI)

    Nordin, J.S.; Barrash, W.; Nolan, B.T.

    1988-02-01T23:59:59.000Z

    Three underground coal gasification burns were conducted at the Hoe Creek Site in the Powder River Basin. Some contaminants were released in the groundwater. The Department of Energy (DOE) analyzed the water from a network of wells. Two million gallons of groundwater were pumped from wells adjacent to the Hoe Creek II underground coal gasification cavity, passed through filters and carbon adsorbers, and reinjected into the cavity. Phenol was the target compound of the water treatment system. The phenol concentration pumped from well WS-10 decreased from 974 parts per billion (ppB) when treatment began on July 2, 1987, to about 200 ppB when treatment ceased on August 29, 1987. Phenol concentrations pumped from well WS-22 fluctuated during the tests, but they decreased to the 150 to 200 ppB range by the time treatment was terminated. The phenol concentration of treated water reinjected into the Hoe Creek II cavity was below detectable limits (less than 20 ppB). Pumping rates were about 18 gallons per minute (gpm) from well WS-10 and 6 to 8 gpm from well WS-22. Hoe Creek is located approximately 20 miles southwest of Gillette, Wyoming. 12 refs., 5 figs., 8 tabs.

  2. Seneca Creek Associates, LLC Wood Resources International, LLC "Illegal" Logging and Global Wood Markets

    E-Print Network [OSTI]

    Seneca Creek Associates, LLC Wood Resources International, LLC "Illegal" Logging and Global Wood@aol.com; hekstrom@wri-ltd.com October, 2004 #12;Page ES - 1 Illegal Logging and Global Wood Markets: The Competitive, LLC Executive Summary Illegal logging has been high on the agenda, if not directly at the center

  3. Seneca Creek Associates, LLC Wood Resources International, LLC "Illegal" Logging and Global Wood Markets

    E-Print Network [OSTI]

    Seneca Creek Associates, LLC Wood Resources International, LLC SUMMARY "Illegal" Logging and Global Resources International, LLC Illegal Logging and Global Wood Markets: The Competitive Impacts on the U.S. Wood Products Industry1 Summary Study Objectives Illegal logging and illegal forest activities, in one

  4. An economic evaluation of the Green Creek Watershed Project

    E-Print Network [OSTI]

    Gray, Roy Mack

    1968-01-01T23:59:59.000Z

    diversified operations. There are many small dairies which scil milk to processor, : and distributors outside the area. Because of the 14 predominance of livestocl enterprises, about 75 percent of the crop- land is used for production of feed and orazing...

  5. Geomorphic structure of tidal hydrodynamics in salt marsh creeks

    E-Print Network [OSTI]

    Fagherazzi, Sergio

    of the tidal signal within the marsh area. Citation: Fagherazzi, S., M. Hannion, and P. D'Odorico (2008 by elegant hydrological and geomorphological theories [Gupta et al., 1980; Rodriguez-Iturbe and Valdes, 1979

  6. Geothermal resource assessment of Canon City, Colorado Area

    SciTech Connect (OSTI)

    Zacharakis, Ted G.; Pearl, Richard Howard

    1982-01-01T23:59:59.000Z

    In 1979 a program was initiated to fully define the geothermal conditions of an area east of Canon City, bounded by the mountains on the north and west, the Arkansas River on the south and Colorado Highway 115 on the east. Within this area are a number of thermal springs and wells in two distinct groups. The eastern group consists of 5 thermal artesian wells located within one mile of Colorado Highway 115 from Penrose on the north to the Arkansas river on the south. The western group, located in and adjacent to Canon City, consists of one thermal spring on the south bank of the Arkansas River on the west side of Canon City, a thermal well in the northeast corner of Canon City, another well along the banks of Four Mile Creek east of Canon City and a well north of Canon City on Four Mile Creek. All the thermal waters in the Canon City Embayment, of which the study area is part of, are found in the study area. The thermal waters unlike the cold ground waters of the Canon City Embayment, are a calcium-bicarbonate type and range in temperature from 79 F (26 C) to a high of 108 F (42 C). The total combined surface discharge o fall the thermal water in the study area is in excess of 532 acre feet (A.F.) per year.

  7. Abstract At the time of this study Fossil Creek was being considered as a site for the restoration

    E-Print Network [OSTI]

    . This study was conducted prior to a hydroelectric dam decommissioning project in Fossil Creek where full limitation Ă? Phosphorous Ă? Nitrogen Ă? Invertebrate Ă? Dam Ă? Hydroelectric Ă? Native fish Ă? Food base

  8. ARCHAEOLOGY, LATE-QUATERNARY LANDSCAPE EVOLUTION, AND ENVIRONMENTAL CHANGE IN THE UPPER DRIFTWOOD CREEK BASIN, BARBER COUNTY, KANSAS

    E-Print Network [OSTI]

    Kessler, Nicholas Victor

    2010-12-09T23:59:59.000Z

    This study focused on valley fills in the upper Driftwood Creek basin, a 3rd order drainage network in south-central Kansas to determine the geologic potential for stratified cultural material and to reconstruct a record of Late...

  9. Lateral Continuity of the Eagle Ford Group Strata in Lozier Canyon and Antonio Creek, Terrell County, Texas

    E-Print Network [OSTI]

    Gardner, Rand D

    2013-09-24T23:59:59.000Z

    simplistic assumptions about relevant horizontal reservoir heterogeneities can lead to sub-optimal or uneconomical exploitation. High-resolution correlation of individual beds in the Eagle Ford Group over several miles in Lozier Canyon and Antonio Creek...

  10. Spring Creek Project for Ideas, Nature, and the Written Word Call for Nominations: Graduate Student Research and Writing Retreat

    E-Print Network [OSTI]

    GrĂĽnwald, Niklaus J.

    Spring Creek Project for Ideas, Nature, and the Written Word Call for Nominations: Graduate Student on a collaborative project or two graduate students who each have individual projects are invited to nominate graduate students in the humanities or environmental sciences

  11. Saeltzer Dam Removal on Clear Creek 11 years later: An assessment of upstream channel changes since the dam's removal

    E-Print Network [OSTI]

    Simons, Crystal; Walker, Katelyn; Zimring, Mark

    2011-01-01T23:59:59.000Z

    Boulder BLDR Bedrock BDRK Dam Rubble DMRB Table B1. 2011pages. Brown, M. (n.d. ). Clear Creek—McCormick-Saeltzer DamRemoval: Dam removal re-opens spring run salmon habitat. US

  12. MESOHABITAT USE AND COMMUNITY STRUCTURE OF BRAZOS RIVER FISHES IN THE VICINITY OF THE PROPOSED ALLENS CREEK RESERVOIR 

    E-Print Network [OSTI]

    Gelwick, Frances P.; Li, Raymond Y.

    2003-01-01T23:59:59.000Z

    MESOHABITAT USE AND COMMUNITY STRUCTURE OF BRAZOS RIVER FISHES IN THE VICINITY OF THE PROPOSED ALLENS CREEK RESERVOIR Submitted to: Texas Water Development Board P.O. Box 13231, Capitol Station 1700 N. Congress Avenue Austin...

  13. Water quality and chemistry of an alpine stream: a case study of Sneffels Creek, Yankee Boy Basin, Colorado

    E-Print Network [OSTI]

    Heggie, Tracey Michelle

    2002-01-01T23:59:59.000Z

    reduction potential (orp) were measured at forty-one study sites along Sneffels Creek. Temperature, tds, conductivity, and orp are positively correlated and show an inverse relationship with elevation and channel width. Turbidity is highly variable along...

  14. LLL in situ coal gasification project. Quarterly progress report, October-December 1979. [Hoe Creek No. 3 and planning

    SciTech Connect (OSTI)

    Cena, R.J.; Strack, B.S. (eds.)

    1980-04-23T23:59:59.000Z

    The major effort this quarter has been postexperiment analysis of Hoe Creek No. 3 and planning for future gasification experiments. Hoe Creek No. 3: Thermal data have been analyzed to determine the performance of the drilled horizontal channel during forward gasification. Thermal and material balance data are combined to determine late-time burn boundaries for the experiment. Surface subsidence after the experiment was completed is described. Process wells were inspected to determine failure characteristics and pinpoint late-time injection location. Ground-water quality before and after Hoe Creek No. 3 and the effects of aquifer interconnection on hydraulic measurements at the Hoe Creek No. 2 and No. 3 sites are discussed. Future experiments: Potential UCG sites are being characterized for future tests. Two sites in the Powder River Basin near Gillette, Wyoming are discussed. Preliminary plans for a deep site gasification experiment and a new method for in situ gasification of thick seams are presented.

  15. Addendum to the post-closure permit application for the Bear Creek Hydrogeologic Regime at the Y-12 Plant: Walk-in pits. Revision 2

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    The revised Closure Plan was initially intended to apply to A Area, C-West, B Area, and the Walk-In Pits (WIPs) of the Bear Creek Burial Grounds (BCBG). However, a strategy was developed to include the B Area [a solid waste management unit (SWMU)] with the WIPs so that both areas would be closed under one cap. The plan was presented to the State of Tennessee on March 8, 1990, and the Department of Energy was requested to review other unique alternatives to close the site. Therefore, in November 1992, the Closure Plan for B Area and the WIPs was prepared separately from that of the other sites associated with the BCBG and was presented in a RCRA Closure Plan. The Closure Plan revision issued April 1993 was intended to reflect the placement of the Kerr Hollow Quarry debris at the WIPs, revise the closure data, and acknowledge that the disposition of a monitoring well within the closure site could not be verified. A Post-Closure Permit Application (PCPA) was to include the WIPs; however, at the time of submittal, closure of the WIPs had not been certified. This addendum contains information on the WIPs to accompany the BCBG PCPA. The purpose of this document is to supplement the information provided in the BCBG PCPA. This document is not intended to be a stand-alone document. Only additional information regarding the WIPs is included in the sections of this document, which correspond to sections of the PCPA submitted in June 1994.

  16. Pond Creek coal seam in eastern Kentucky - new look at an old resource

    SciTech Connect (OSTI)

    Hower, J.C.; Pollock, J.D.; Klapheke, J.G.

    1986-05-01T23:59:59.000Z

    The Middle Pennsylvania/Westphalian B Pond Creek Coal is an important low-sulfur resource in Pike and Martin Counties, Kentucky. The Breathitt Formation seam, also known as the lower Elkhorn coal, accounted for nearly 40% of Pike County's 1983 production of 22 million tons. Although the coal is nearly mined out through central Pike County, substantial reserves still exist in the northern part of the county. Past studies of the seam by the US Bureau of Mines concentrated on the utility of the seam as a coking blend, with additional consideration of the megascopic and microscopic coal petrology. The authors research has focused on the regional variations in the Pond Creek seam, with emphasis on the petrographic variations.

  17. The Hanna and Hoe Creek underground coal gasification test sites: Status report, (June 1986-June 1987)

    SciTech Connect (OSTI)

    Berdan, G.L.; Nolan, B.T.; Barteaux, W.L.; Barrash, W.

    1987-06-01T23:59:59.000Z

    To comply with a cooperative agreement with the U.S. Department of Energy (DOE), the Western Research Institute (WRI) is required to submit an annual report summarizing the status of environmentally related work performed by WRI at the Hanna and Hoe Creek underground coal gasification (UCG) sites. The following is a summary of work performed at these two sites from June 1986 to June 1987. Several tasks for restoring the water quailty at Hoe Creek were: (1) groundwater treatment demonstration (1986); (2) bench-scale carbon adsorption experiments (1987); (3) design of the scaled-up treatment system (1987); (4) well-pumping test (1987). A summary of the results of each task is presented. 6 refs., 8 figs., 4 tabs.

  18. Campbell Creek TVA 2010 First Year Performance Report July 1, 2009 August 31, 2010

    SciTech Connect (OSTI)

    Christian, Jeffrey E [ORNL; Gehl, Anthony C [ORNL; Boudreaux, Philip R [ORNL; New, Joshua Ryan [ORNL

    2010-10-01T23:59:59.000Z

    This research project was initiated by TVA in March 2008 and encompasses three houses that are of similar size, design and located within the same community - Campbell Creek, Farragut TN with simulated occupancy. This report covers the performance period from July 1, 2009 to August 31, 2010. It is the intent of TVA that this Valley Data will inform electric utilities future residential retrofit incentive program.

  19. Contribution of valley-side erosion to sedimentation problems in Wolf Pen Creek, College Station, Texas

    E-Print Network [OSTI]

    Wilson, Rachel Suzanne

    2000-01-01T23:59:59.000Z

    exist all along the Gulf Coast and in many other regions of the country. Therefore, the problems associated with Wolf Pen Creek are extremely important and are of national significance. Time and time again, the geology is neglected in urban river... hardwoods can be found along the Navasota River lowland. An open stand of postjack oaks (guercus stellata) and blackjack oaks (Quercus rnarilandica) and a ground cover of tall grasses characterize the post-oak savannah. 16 The Lufkin, Edge, and Tabor...

  20. Environmental assessment for the Hoe Creek underground, Coal Gasification Test Site Remediation, Campbell County, Wyoming

    SciTech Connect (OSTI)

    NONE

    1997-10-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) has prepared this EA to assess environmental and human health Issues and to determine potential impacts associated with the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming. The Hoe Creek site is located south-southwest of the town of Gillette, Wyoming, and encompasses 71 acres of public land under the stewardship of the Bureau of Land Management. The proposed action identified in the EA is for the DOE to perform air sparging with bioremediation at the Hoe Creek site to remove contaminants resulting from underground coal gasification (UCG) experiments performed there by the DOE in the late 1970s. The proposed action would involve drilling additional wells at two of the UCG test sites to apply oxygen or hydrogen peroxide to the subsurface to volatilize benzene dissolved in the groundwater and enhance bioremediation of non-aqueous phase liquids present in the subsurface. Other alternatives considered are site excavation to remove contaminants, continuation of the annual pump and treat actions that have been used at the site over the last ten years to limit contaminant migration, and the no action alternative. Issues examined in detail in the EA are air quality, geology, human health and safety, noise, soils, solid and hazardous waste, threatened and endangered species, vegetation, water resources, and wildlife. Details of mitigative measures that could be used to limit any detrimental effects resulting from the proposed action or any of the alternatives are discussed, and information on anticipated effects identified by other government agencies is provided.

  1. Habitat Projects Completed within the Asotin Creek Watershed, 1999 Completion Report.

    SciTech Connect (OSTI)

    Johnson, Bradley J.

    2000-01-01T23:59:59.000Z

    The Asotin Creek Model Watershed Program (ACMWP) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The Asotin Creek watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington in WRIA 35. According to WDFW's Priority WRIA's by At-Risk Stock Significance Map, it is the highest priority in southeastern WA. Snake River spring chinook salmon, summer steelhead and bull trout, which are listed under the Endangered Species Act (ESA), are present in the watershed. The ACMWP began coordinating habitat projects in 1995. Approximately two hundred seventy-six projects have been implemented through the ACMWP as of 1999. Twenty of these projects were funded in part through Bonneville Power Administration's 1999 Columbia Basin Fish and Wildlife Program. These projects used a variety of methods to enhance and protect watershed conditions. In-stream work for fish habitat included construction of hard structures (e.g. vortex rock weirs), meander reconstruction, placement of large woody debris (LWD) and whole trees and improvements to off-channel rearing habitat; thirty-eight were created with these structures. Three miles of stream benefited from riparian improvements such as vegetative plantings (17,000 trees and shrubs) and noxious weed control. Two sediment basin constructions, 67 acres of grass seeding, and seven hundred forty-five acres of minimum till were implemented to reduce sediment production and delivery to streams in the watershed.

  2. Reservoir heterogeneity in Carter Sandstone, North Blowhorn Creek oil unit and vicinity, Black Warrior Basin, Alabama

    SciTech Connect (OSTI)

    Kugler, R.L.; Pashin, J.C.

    1992-05-01T23:59:59.000Z

    This report presents accomplishments made in completing Task 3 of this project which involves development of criteria for recognizing reservoir heterogeneity in the Black Warrior basin. The report focuses on characterization of the Upper Mississippian Carter sandstone reservoir in North Blowhorn Creek and adjacent oil units in Lamar County, Alabama. This oil unit has produced more than 60 percent of total oil extracted from the Black Warrior basin of Alabama. The Carter sandstone in North Blowhorn Creek oil unit is typical of the most productive Carter oil reservoirs in the Black Warrior basin of Alabama. The first part of the report synthesizes data derived from geophysical well logs and cores from North Blowhorn Creek oil unit to develop a depositional model for the Carter sandstone reservoir. The second part of the report describes the detrital and diagenetic character of Carter sandstone utilizing data from petrographic and scanning electron microscopes and the electron microprobe. The third part synthesizes porosity and pore-throat-size-distribution data determined by high-pressure mercury porosimetry and commercial core analyses with results of the sedimentologic and petrographic studies. The final section of the report discusses reservoir heterogeneity within the context of the five-fold classification of Moore and Kugler (1990).

  3. Hoe Creek experiments: LLNL's underground coal-gasification project in Wyoming

    SciTech Connect (OSTI)

    Stephens, D.R.

    1981-10-01T23:59:59.000Z

    Under the sponsorship of the US Department of Energy and predecessor organizations, the Lawrence Livermore National Laboratory carried out a laboratory program and three field, underground coal gasification tests near Gillette, Wyoming. This report summarizes that work. Three methods of linking or connecting injection and production wells were used for the UCG field tests: Hoe Creek No. 1 employed explosive fracturing, Hoe Creek No. 2 featured use of reverse combustion, and directional drilling was used for the Hoe Creek No. 3. The Gas Research Institute cosponsored the latter test. Laboratory experiments and modeling, together with a laboratory and field environment program, are necessary adjuncts to the field program. Explosive fracturing in coal was simulated using computer models and laboratory tests. We developed a relationship of total inelastic strains to permeability, which we used to design and interpret a coal outcrop, explosive fracturing experiment at Kemmerer, Wyoming. Coal gasification was also simulated in laboratory experiments and with computer models. The primary aim has been to predict and correlate reaction, thermal-front propagation rates, and product gas composition as a function of bed properties and process operating conditions. Energy recovery in the form of produced gas and liquids amounted to 73% of the energy in the consumed coal. There were essentially no losses to the subsurface formation. The greatest energy loss was in steam production.

  4. Annual hydrologic data summary for the White Oak Creek Watershed: Water Year 1990 (October 1989--September 1990)

    SciTech Connect (OSTI)

    Borders, D.M.; Gregory, S.M.; Clapp, R.B.; Frederick, B.J.; Moore, G.K.; Watts, J.A.; Broders, C.C.; Bednarek, A.T.

    1991-09-01T23:59:59.000Z

    This report summarizes, for the Water Year 1990 (October 1989-- September 1990), the dynamic hydrologic data collected on the Whiteoak Creek (WOC) Watershed's surface and subsurface flow systems. These systems affect the quality or quantity of surface water and groundwater. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to 1. characterize the quantity and quality of water in the flow system, 2. plan and assess remedial action activities, and 3. provide long-term availability of data and assure quality. Characterizing the hydrology of the WOC watershed provides a better understanding of the processes which drive contaminant transport in the watershed. Identifying of spatial and temporal trends in hydrologic parameters and mechanisms that affect the movement of contaminants supports the development of interim corrective measures and remedial restoration alternatives. Hydrologic monitoring supports long-term assessment of the effectiveness of remedial actions in limiting the transport of contaminants across Waste Area Grouping boundaries and ultimately to the off-site environment. The majority of the data summarized in this report are available from the Remedial Action Programs Data and Information Management System data base. Surface water data available within the WOC flow system include discharge and runoff, surface water quality, radiological and chemical contamination of sediments, and descriptions of the outfalls to the WOC flow system. Climatological data available for the Oak Ridge area include precipitation, temperature, humidity, wind speed, and wind direction. Information on groundwater levels, aquifer characteristics, and groundwater quality are presented. Anomalies in the data and problems with monitoring and accuracy are discussed. 58 refs., 54 figs., 15 tabs.

  5. Screening of contaminants in Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Blaylock, B.G.; Frank, M.L.; Hoffman, F.O.; Hook, L.A.; Suter, G.W.; Watts, J.A.

    1992-07-01T23:59:59.000Z

    Waste Area Grouping 2 (WAG 2) of the Oak Ridge National Laboratory (ORNL) is located in the White Oak Creek Watershed and is composed of White Oak Creek Embayment, White Oak Lake and associated floodplain, and portions of White Oak Creek (WOC) and Melton Branch downstream of ORNL facilities. Contaminants leaving other ORNL WAGs in the WOC watershed pass through WAG 2 before entering the Clinch River. Health and ecological risk screening analyses were conducted on contaminants in WAG 2 to determine which contaminants were of concern and would require immediate consideration for remedial action and which contaminants could be assigned a low priority or further study. For screening purposes, WAG 2 was divided into four geographic reaches: Reach 1, a portion of WOC; Reach 2, Melton Branch; Reach 3, White Oak Lake and the floodplain area to the weirs on WOC and Melton Branch; and Reach 4, the White Oak Creek Embayment, for which an independent screening analysis has been completed. Screening analyses were conducted using data bases compiled from existing data on carcinogenic and noncarcinogenic contaminants, which included organics, inorganics, and radionuclides. Contaminants for which at least one ample had a concentration above the level of detection were placed in a detectable contaminants data base. Those contaminants for which all samples were below the level of detection were placed in a nondetectable contaminants data base.

  6. Hickory Creek, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California: Energy Resources Jump to: navigation,Areas

  7. Foote Creek Rim Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs Valley Area(Sasada, 1988)PevafersaType

  8. Recent Approaches to Modeling Transport of Mercury in Surface Water and Groundwater - Case Study in Upper East Fork Poplar Creek, Oak Ridge, TN - 13349

    SciTech Connect (OSTI)

    Bostick, Kent; Daniel, Anamary [Professional Project Services, Inc., Bethel Valley Road, Oak Ridge, TN, 37922 (United States)] [Professional Project Services, Inc., Bethel Valley Road, Oak Ridge, TN, 37922 (United States); Tachiev, Georgio [Florida International University, Applied Research Center 10555 W. Flagler St., EC 2100 Miami Florida 33174 (United States)] [Florida International University, Applied Research Center 10555 W. Flagler St., EC 2100 Miami Florida 33174 (United States); Malek-Mohammadi, Siamak [Bradley University, 413A Jobst Hall, Preoria, IL 61625 (United States)] [Bradley University, 413A Jobst Hall, Preoria, IL 61625 (United States)

    2013-07-01T23:59:59.000Z

    In this case study, groundwater/surface water modeling was used to determine efficacy of stabilization in place with hydrologic isolation for remediation of mercury contaminated areas in the Upper East Fork Poplar Creek (UEFPC) Watershed in Oak Ridge, TN. The modeling simulates the potential for mercury in soil to contaminate groundwater above industrial use risk standards and to contribute to surface water contamination. The modeling approach is unique in that it couples watershed hydrology with the total mercury transport and provides a tool for analysis of changes in mercury load related to daily precipitation, evaporation, and runoff from storms. The model also allows for simulation of colloidal transport of total mercury in surface water. Previous models for the watershed only simulated average yearly conditions and dissolved concentrations that are not sufficient for predicting mercury flux under variable flow conditions that control colloidal transport of mercury in the watershed. The transport of mercury from groundwater to surface water from mercury sources identified from information in the Oak Ridge Environmental Information System was simulated using a watershed scale model calibrated to match observed daily creek flow, total suspended solids and mercury fluxes. Mercury sources at the former Building 81-10 area, where mercury was previously retorted, were modeled using a telescopic refined mesh with boundary conditions extracted from the watershed model. Modeling on a watershed scale indicated that only source excavation for soils/sediment in the vicinity of UEFPC had any effect on mercury flux in surface water. The simulations showed that colloidal transport contributed 85 percent of the total mercury flux leaving the UEFPC watershed under high flow conditions. Simulation of dissolved mercury transport from liquid elemental mercury and adsorbed sources in soil at former Building 81-10 indicated that dissolved concentrations are orders of magnitude below a target industrial groundwater concentration beneath the source and would not influence concentrations in surface water at Station 17. This analysis addressed only shallow concentrations in soil and the shallow groundwater flow path in soil and unconsolidated sediments to UEFPC. Other mercury sources may occur in bedrock and transport though bedrock to UEFPC may contribute to the mercury flux at Station 17. Generally mercury in the source areas adjacent to the stream and in sediment that is eroding can contribute to the flux of mercury in surface water. Because colloidally adsorbed mercury can be transported in surface water, actions that trap colloids and or hydrologically isolate surface water runoff from source areas would reduce the flux of mercury in surface water. Mercury in soil is highly adsorbed and transport in the groundwater system is very limited under porous media conditions. (authors)

  9. Sources of Mercury to East Fork Poplar Creek Downstream from the Y-12 National Security Complex: Inventories and Export Rates

    SciTech Connect (OSTI)

    Southworth, George R [ORNL; Greeley Jr, Mark Stephen [ORNL; Peterson, Mark J [ORNL; Lowe, Kenneth Alan [ORNL; Ketelle, Richard H [ORNL; Floyd, Stephanie B [ORNL

    2010-02-01T23:59:59.000Z

    East Fork Poplar Creek (EFPC) in Oak Ridge, Tennessee, has been heavily contaminated with mercury (also referred to as Hg) since the 1950s as a result of historical activities at the U.S. Department of Energy (DOE) Y-12 National Security Complex (formerly the Oak Ridge Y-12 Plant and hereinafter referred to as Y-12). During the period from 1950 to 1963, spills and leaks of elemental mercury (Hg{sup 0}) contaminated soil, building foundations, and subsurface drainage pathways at the site, while intentional discharges of mercury-laden wastewater added 100 metric tons of mercury directly to the creek (Turner and Southworth 1999). The inventory of mercury estimated to be lost to soil and rock within the facility was 194 metric tons, with another estimated 70 metric tons deposited in floodplain soils along the 25 km length of EFPC (Turner and Southworth 1999). Remedial actions within the facility reduced mercury concentrations in EFPC water at the Y-12 boundary from > 2500 ng/L to about 600 ng/L by 1999 (Southworth et al. 2000). Further actions have reduced average total mercury concentration at that site to {approx}300 ng/L (2009 RER). Additional source control measures planned for future implementation within the facility include sediment/soil removal, storm drain relining, and restriction of rainfall infiltration within mercury-contaminated areas. Recent plans to demolish contaminated buildings within the former mercury-use areas provide an opportunity to reconstruct the storm drain system to prevent the entry of mercury-contaminated water into the flow of EFPC. Such actions have the potential to reduce mercury inputs from the industrial complex by perhaps as much as another 80%. The transformation and bioaccumulation of mercury in the EFPC ecosystem has been a perplexing subject since intensive investigation of the issue began in the mid 1980s. Although EFPC was highly contaminated with mercury (waterborne mercury exceeded background levels by 1000-fold, mercury in sediments by more than 2000-fold) in the 1980s, mercury concentrations in EFPC fish exceeded those in fish from regional reference sites by only a little more than 10-fold. This apparent low bioavailability of mercury in EFPC, coupled with a downstream pattern of mercury in fish in which mercury decreased in proportion to dilution of the upstream source, lead to the assumption that mercury in fish would respond to decreased inputs of dissolved mercury to the stream's headwaters. However, during the past two decades when mercury inputs were decreasing, mercury concentrations in fish in Lower EFPC (LEFPC) downstream of Y-12 increased while those in Upper EFPC (UEFPC) decreased. The key assumption of the ongoing cleanup efforts, and concentration goal for waterborne mercury were both called into question by the long-term monitoring data. The large inventory of mercury within the watershed downstream presents a concern that the successful treatment of sources in the headwaters may not be sufficient to reduce mercury bioaccumulation within the system to desired levels. The relative importance of headwater versus floodplain mercury sources in contributing to mercury bioaccumulation in EFPC is unknown. A mercury transport study conducted by the Tennessee Valley Authority (TVA) in 1984 estimated that floodplain sources contributed about 80% of the total annual mercury export from the EFPC system (ORTF 1985). Most of the floodplain inputs were associated with wet weather, high flow events, while much of the headwater flux occurred under baseflow conditions. Thus, day-to-day exposure of biota to waterborne mercury was assumed to be primarily determined by the Y-12 source. The objective of this study was to evaluate the results of recent studies and monitoring within the EFPC drainage with a focus on discerning the magnitude of floodplain mercury sources and how long these sources might continue to contaminate the system after headwater sources are eliminated or greatly reduced.

  10. The area of North King County was once forested with deep woods and braided with creeks, where wild-

    E-Print Network [OSTI]

    Yetisgen-Yildiz, Meliha

    occurring. Explorers, logging companies, railroads and specu- lators awaited the United States government's okay to claim the timber, shores and rich land. Surveyors laid the framework, and the 1860's brought

  11. Biostratigraphy and Depositional Environments of Calcareous Microfossils in the Lower Monterey Formation (Lower to Middle Miocene), Graves Creek Area,

    E-Print Network [OSTI]

    Finger, Kenneth L.

    literature, and has become an important reference section for the Miocene of California and the Salinas Basin that an oxygen-mimimum zone persisted in the Salinas Basin during the early and middle Miocene. INTRODUCTION

  12. The Pumpkin Creek Watershed Limited Irrigation and No-Till Demonstration Gary L. Stone, Gary W. Hergert, Dean Yonts, Jim Schild, Rex A. Nielson and James Margheim

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    in the Panhandle can fit into limited irrigation cropping systems in the Pumpkin Creek Watershed. The NPNRD allowsThe Pumpkin Creek Watershed Limited Irrigation and No-Till Demonstration Gary L. Stone, Gary W irrigation applies less water than is required to meet full evapotranspiration (ET) or irrigation demand

  13. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 2: Appendix A -- Waste sites, source terms, and waste inventory report; Appendix B -- Description of the field activities and report database; Appendix C -- Characterization of hydrogeologic setting report

    SciTech Connect (OSTI)

    NONE

    1996-09-01T23:59:59.000Z

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix A includes descriptions of waste areas and estimates of the current compositions of the wastes. Appendix B contains an extensive database of environmental data for the Bear Creek Valley Characterization Area. Information is also presented about the number and location of samples collected, the analytes examined, and the extent of data validation. Appendix C describes the hydrogeologic conceptual model for Bear Creek Valley. This model is one of the principal components of the conceptual site models for contaminant transport in BCV.

  14. Overview of GRI research at the Rock Creek Site, Black Warrior Basin. Overview of GRI research at Rock Creek: Eight years of cooperative research, coalbed methane shortcourse. Held in Birmingham, Alabama on October 21, 1992. Topical report

    SciTech Connect (OSTI)

    Schraufnagel, R.

    1992-10-01T23:59:59.000Z

    The presentation slides from the October 21, 1992 workshop on coalbed methane exploration and production are assembled in this volume. They illustrate the following discussions Overview of GRI Research at Rock Creek: Eight Years of Cooperative Research, Drilling and Completing Coalbed to the Formation: Perforations vs. Slotting, Coalbed Methane Well Testing in the Warrior Basin, Reservoir Engineering: A Case Study at Rock Creek, Fraccing of Multiple Thin Seams: Considerations and Constraints, Implementing Coal Seam Stimulations: Requirements for Successful Treatments, Coal-Fluid Interactions, Mine-Through Observations of Coal Seam Stimulations: Reality vs. Theory, and Improving Gas Production: Techniques of Operations.

  15. Overview of GRI research at the Rock Creek Site, Black Warrior Basin. Overview of GRI research at Rock Creek: Eight years of cooperative research, coalbed methane shortcourse. Held in Abingdon, Virginia on October 23, 1992. Topical report

    SciTech Connect (OSTI)

    Schraufnagel, R.

    1992-10-01T23:59:59.000Z

    The presentation slides from the October 23, 1992 workshop on coalbed methane exploration and production are assembled in this volume. They illustrate the following discussions: Overview of GRI Research at Rock Creek: Eight Years of Cooperative Research, Drilling and Completing Coalbed Methane Wells: Techniques for Fragile Formations, Connecting the Wellborne to the Formation: Perforations vs. Slotting, Coalbed Methane Well Testing in the Warrior Basin, Reservoir Engineering: A Case Study at Rock Creek, Fraccing of Multiple Thin Seams: Considerations and Constraints, Implementing Coal Seam Stimulations: Requirements for Successful Treatments, Coal-Fluid Interactions, Mine-Through Observations of Coal Seam Stimulations: Reality vs. Theory, and Recompleting Coalbed Methane Wells: The Second Try at Success.

  16. Fifteenmile Creek Riparian Buffers Project, Annual Report 2002-2003.

    SciTech Connect (OSTI)

    Graves, Ron

    2004-02-01T23:59:59.000Z

    This project implements riparian buffer systems in the Mid-Columbia, addressing limiting factors identified in the Fifteenmile Subbasin Summary, June 30, 2000. The project is providing the technical planning support needed to implement at least 36 riparian buffer system contracts on approximately 872 acres covering an estimated 40 miles of anadromous fish streams over a three year period. During this second year of the project, 11 buffer contracts were implemented on 10.9 miles of stream. Buffer widths averaged 132 ft. on each side of the stream. Implementation included prescribed plantings, fencing, and related practices. Actual implementation costs, lease payments, and maintenance costs are borne by existing USDA programs: Conservation Reserve and Conservation Reserve Enhancement Programs. The lease period of each contract may vary between 10 to 15 years. During this year the average was 14.6 years. The total value of contracts established this year is $666,121 compared with $71,115 in Bonneville Power Administration (BPA) contract costs to provide the technical support needed to get the contracts implemented. This project provides technical staffing to conduct assessments and develop plans to help keep pace with the growing backlog of potential riparian buffer projects. Word of mouth from satisfied customers has brought in many new sign-ups during the year. In addition, specific outreach efforts targeting the orchard areas of the county began to bear fruit with orchardists sign-ups as the project year ended. Progress this second year of project includes only work accomplished in the Fifteenmile subbasin. A similar but separate effort to implement buffers in the Columbia Plateau Province was initiated during the year under project number 2002-019-00. This project supports RPA 150 and 153 as required under the Federal Hydropower System biological opinion.

  17. Uranium in the Oatman Creek granite of Central Texas and its economic potential 

    E-Print Network [OSTI]

    Conrad, Curtis Paul

    1982-01-01T23:59:59.000Z

    potential uranium source. Th1s study focuses on an 80 acre outcrop of the Oatman Creek granite known as Bear Mountain, in Gillespie County, Texas. The gran1te is a medium-grained, gray to pink rock. Nodal analysis indicates the composit1on 1s 35. 5... economically feasible because of the relatively low concentration of uranium in most igneous rocks. Recent studies ot uranium have been confined largely to the origin and development of uranium deposits in sedimentary rocks, namely sandstones. In the futur e...

  18. The investigation of the Caney Creek shipwreck archaeological site 41MG32

    E-Print Network [OSTI]

    Hedrick, David Layne

    1998-01-01T23:59:59.000Z

    Tribune [MCT], I ~ aeea I. LAKE CHARLES- SERNAR D 2. EDNA-TELFERNER S. PLEDGER 4. 8 RAZORIA-NORWOOD 5. SURFSIDE-VELASCO 6. LIVIA- FRANCI TAG 7, VESTON-PLACEDO S. GALVESTON- ADAMSVILLE e ann I a ukean f SAY c t ro ~ kara aeonn L e... (~aragorda County Tnbune [MCT], August 23, 1945, Section 2:2). Because of the production coming out of Caney Creek, local farmers and plantation owners soon began to pressure the Texas government for improvements to facilitate navigation. Sugar, cotton...

  19. EA-1895: Lolo Creek Permanent Weir Construction near town of Weippe, Clearwater County, Idaho

    Broader source: Energy.gov [DOE]

    DOE’s Bonneville Power Administration was preparing this EA to evaluate the potential environmental impacts of replacing an existing seasonal fish weir with a permanent weir, which would have been used to monitor federally-listed Snake River steelhead and collect spring Chinook salmon adults to support ongoing supplementation programs in the watershed. The Bureau of Land Management, a cooperating agency, preliminarily determined Lolo Creek to be suitable for Congressional designation into the Wild and Scenic River System. The EA included a Wild and Scenic River Section 7 analysis. This project was canceled.

  20. Water quality monitoring at the Hoe Creek test site: review and preliminary conclusions

    SciTech Connect (OSTI)

    Wang, F.T.

    1983-01-01T23:59:59.000Z

    Post-burn monitoring of the ground water near to the Hoe creek underground coal gasification site showed that a broad range of gasification products had been introduced into the water system. Although many of these contaminants were eventually absorbed by the surrounding coal, some chemicals continued to appear in the water in concentrations higher than pre-test levels for several years after gasification. Possible mechanisms by which the contaminants entered the ground water include: (1) leakage of pyrolysis products; (2) post-burn leaching of coal ash and overburden rubble by returning ground water; and (3) dissolution of minerals outside the cavity by the CO/SUB/2 generated during gasification.

  1. Changes in major organic contaminants in the groundwater at the Hoe Creek underground coal gasification site

    SciTech Connect (OSTI)

    Wang, F.; Mead, W.

    1985-08-01T23:59:59.000Z

    The results of groundwater analysis at the Hoe Creek underground coal gasification (UCG) site have indicated that, after gasification, the phenolic compounds and neutral aromatic hydrocarbons decrease more slowly than expected on the basis of our laboratory studies. The field data also fail to confirm the expected inverse relationship between a contaminant's water solubility and the extent to which it is sorbed by surrounding coal. The authors described a mechanism for the deposition of coal pyrolysis products that may help to elucidate the observed behavior of these organic contaminants. 7 refs., 7 figs.

  2. Best management practices plan for the Lower East Fork Poplar Creek Operable Unit, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    This plan was prepared in support of the Phase II Remedial Design Report (DOE/OR/01-1449&D1) and in accordance with requirements under CERCLA to present the plan for best management practices to be followed during the remediation. This document provides the Environmental Restoration Program with information about spill prevention and control, water quality monitoring, good housekeeping practices, sediment and erosion control measures, and inspections and environmental compliance practices to be used during Phase II of the remediation project for the Lower East Fork Poplar Creek Operable Unit.

  3. The cow creek anticline: an example of disharmonic folding along the front of the Big Horn Mountains

    E-Print Network [OSTI]

    Dransfield, Betsy Jo

    1983-01-01T23:59:59.000Z

    . g. shale). Bucn a config- A 7000 7000 6000 Jm Js Jgs P Pa 6000 5000' 5000 0bI1 4000 C99f 4000 3000 0 Figure 17 ~ Cross-section A-A' i The nose of the Cow Creek Anti- cline shows no volume problems in the subsurface 45 Figure &8... Creek Anticline csr. best be solved. by bedding plane slip in the interbedded shales and limestones oi' the Devonian Jei'ferson Formation, Layer-parallel slip also rel~ ev a ' ocal volume problem in tne synclinal trough at the base oi' the monocline...

  4. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press Releases 2014References by WebsitehomeResearch Areas

  5. The Oak Ridge Y-12 Plant biological monitoring and abatement program for East Fork Poplar Creek

    SciTech Connect (OSTI)

    Loar, J.M.; Adams, S.M.; Allison, L.J.; Giddings, J.M.; McCarthy, J.F.; Southworth, G.R.; Smith, J.G.; Stewart, A.J. (Oak Ridge National Lab., TN (USA); Springborn Bionomics, Inc., Wareham, MA (USA); Oak Ridge National Lab., TN (USA))

    1989-10-01T23:59:59.000Z

    In May 1985, a National Pollutant Discharge Elimination System permit was issued for the Oak Ridge Y-12 Plant, a nuclear weapons components production facility located in Oak Ridge, Tennessee, and operated by Martin Marietta Energy Systems, Inc., for the US Department of Energy. As a condition of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed to demonstrate that the effluent limitations established for the Oak Ridge Y-12 Plant protect the classified uses of the receiving stream (East Fork Poplar Creek), in particular, the growth and propagation of fish and aquatic life, as designated by the Tennessee Department of Health and Environment. A second purpose for the BMAP is to document the ecological effects resulting from implementation of a water pollution control program that will include construction of nine new wastewater treatment facilities over the next 4 years. Because of the complex nature of the effluent discharged to East Fork Poplar Creek and the temporal and spatial variability in the composition of the effluent (i.e., temporal variability related to various pollution abatement measures that will be implemented over the next several years and spatial variability caused by pollutant inputs downstream of the Oak Ridge Y-12 Plant), a comprehensive, integrated approach to biological monitoring was developed for the BMAP. 39 refs., 5 figs., 8 tabs.

  6. Burn cavity growth during the Hoe Creek No. 3 underground coal gasification experiment

    SciTech Connect (OSTI)

    Hill, R.W.

    1981-01-14T23:59:59.000Z

    A detailed history is given of the growth of the burn cavity during the first month of the Hoe Creek No. 3 underground coal gasification experiment near Gillette, Wyoming, in 1979. The changing shape of the cavity with time is inferred from data from three types of instruments installed throughout the experimental zone: (1) thermocouples at various levels in a number of holes, to map temperatures; (2) extensometers at various levels in other holes, to detect motions of the overburden material; and (3) high-frequency electromagnetic (HFEM) scans made between various pairs of holes, to detect cavities and zones of burning coal. Additional data on the final shape of the underground cavity are derived from the results of a core drilling program carried out from the surface after the burn had ended. This study of cavity growth history has contributed significantly to our understanding of how the in situ coal gasification process operates in sites like Hoe Creek. The diagnostic system provided invaluable information on cavity growth and on the interaction between the two coal seams. Some new problems with injection well survival and slag production in oxygen-steam burns were brought out, and the importance of understanding and controlling heat loss mechanisms was amply demonstrated. Although no one system of underground diagnostics can give all of the information needed to fully describe the in situ process, a combination of several diagnostic systems can be used to deduce a self-consistent description.

  7. Burn cavity growth during the Hoe Creek No. 3 underground-coal-gasification experiment

    SciTech Connect (OSTI)

    Hill, R.W.

    1981-06-08T23:59:59.000Z

    A detailed history is given of the growth of the burn cavity during the first month of the Hoe Creek No. 3 underground coal gasification experiment near Gillette, Wyoming, in 1979. The changing shape of the cavity with time is inferred from data from three types of instruments installed throughout the experimental zone: (1) thermocouples at various levels in a number of holes, to map temperatures; (2) extensometers at various levels in other holes, to detect motions of the overburden material; and (3) high-frequency electromagnetic scans made between various pairs of holes, to detect cavities and zones of burning coal. Additional data on the final shape of the underground cavity is derived from the results of a core drilling program carried out from the surface after the burn had ended. This study of cavity growth history has contributed significantly to our understanding of how the in-situ coal gasification process operates in sites like Hoe Creek. The diagnostic system provided invaluable information on cavity growth and on the interaction between the two coal seams. Some new problems with injection well survival and slag production in oxygen-steam burns were brought out, and the importance of understanding and controlling heat loss mechanisms was amply demonstrated. Although no one system of underground diagnostics can give all of the information needed to fully describe the in-situ process, a combination of several diagnostic systems can be used to deduce a self-consistent description.

  8. Remedial Investigation Work Plan for Upper East Fork Poplar Creek Operable Unit 3 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1993-08-01T23:59:59.000Z

    Upper East Fork Popular Creek Operable Unit 3 (UEFPC OU 3) is a source term OU composed of seven sites, and is located in the western portion of the Y-12 Plant. For the most part, the UEFPC OU 3 sites served unrelated purposes and are geographically removed from one another. The seven sites include the following: Building 81-10, the S-2 Site, Salvage Yard oil storage tanks, the Salvage Yard oil/solvent drum storage area, Tank Site 2063-U, the Salvage Yard drum deheader, and the Salvage Yard scrap metal storage area. All of these sites are contaminated with at least one or more hazardous and/or radioactive chemicals. All sites have had some previous investigation under the Y-12 Plant RCRA Program. The work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to each OU 3 site. The potential for release of contaminants to receptors through various media is addressed, and a sampling and analysis plan is presented to obtain objectives for the remedial investigation. Proposed sampling activities are contingent upon the screening level risk assessment, which includes shallow soil sampling, soil borings, monitoring well installation, groundwater sampling, and surface water sampling. Data from the site characterization activities will be used to meet the above objectives. A Field Sampling Investigation Plan, Health and Safety Plan, and Waste Management Plan are also included in this work plan.

  9. Analysis of water and soil from the wetlands of Upper Three Runs Creek. Volume 2A, Analytical data packages September--October 1991 sampling

    SciTech Connect (OSTI)

    Haselow, L.A.; Rogers, V.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Riordan, C.J. [Metcalf and Eddy, Inc. (United States); Eidson, G.W.; Herring, M.K. [Normandeau Associates, Inc. (United States)

    1992-08-01T23:59:59.000Z

    Shallow water and soils along Upper Three Runs Creek (UTRC) and associated wetlands between SRS Road F and Cato Road were sampled for nonradioactive and radioactive constituents. The sampling program is associated with risk evaluations being performed for various regulatory documents in these areas of the Savannah River Site (SRS). WSRC selected fifty sampling sites bordering the Mixed Waste Management Facility (MWMF), F- and H-Area Seepage Basins (FHSB), and the Sanitary Landfill (SL). The analytical results from this study provided information on the water and soil quality in UTRC and its associated wetlands. The analytical results from this investigation indicated that the primary constituents and radiological indicators detected in the shallow water and soils were tritium, gross alpha, radium 226, total radium and strontium 90. This investigation involved the collection of shallow water samples during the Fall of 1991 and the Spring of 1992 at fifty (50) sampling locations. Sampling was performed during these periods to incorporate high and low water table periods. Samples were collected from three sections along UTRC denoted as Phase I (MWMF), Phase II (FHSB) and Phase III (SL). One vibracored soil sample was also collected in each phase during the Fall of 1991. This document is compiled solely of experimental data obtained from the sampling procedures.

  10. Discrete Quantum Gravity: I. Zonal spherical functions of the representationsof the SO(4,R) group with respect to the SU(2) subgroup and their application to the Barrett-Crane model

    E-Print Network [OSTI]

    P. Kramer; M. Lorente

    2008-04-28T23:59:59.000Z

    Starting from the defining transformations of complex matrices for the $SO(4,R)$ group, we construct the fundamental representation and the tensor and spinor representations of the group $SO(4,R)$. Given the commutation relations for the corresponding algebra, the unitary representations of the group in terms of the generalized Euler angles are constructed. The crucial step for the Barrett-Crane model in Quantum Gravity is the description of the amplitude for the quantum 4-simplex that is used in the state sum partition function. We obtain the zonal spherical functions for the construction of the SO(4,R) invariant weight and associate them to the triangular faces of the 4-simplices.

  11. Twenty-Five Years of Ecological Recovery of East Fork Poplar Creek: Review of Environmental Problems and Remedial Actions

    SciTech Connect (OSTI)

    Smith, John G [ORNL; Loar, James M [ORNL; Stewart, Arthur J [ORNL

    2011-01-01T23:59:59.000Z

    In May 1985, a National Pollutant Discharge Elimination System permit was issued for the Department of Energy s Y-12 National Security Complex (Y-12 Complex) in Oak Ridge, Tennessee, USA, allowing discharge of effluents to East Fork Poplar Creek (EFPC). The effluents ranged from large volumes of chlorinated oncethrough cooling water and cooling tower blow-down to smaller discharges of treated and untreated process wastewaters, which contained a mixture of heavy metals, organics, and nutrients, especially nitrates. As a condition of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed to meet two major objectives: demonstrate that the established effluent limitations were protecting the classified uses of EFPC, and document the ecological effects resulting from implementing a Water Pollution Control Program at the Y-12 Complex. The second objective is the primary focus of the other papers in this special series. This paper provides a history of pollution and the remedial actions that were implemented; describes the geographic setting of the study area; and characterizes the physicochemical attributes of the sampling sites, including changes in stream flow and temperature that occurred during implementation of the BMAP. Most of the actions taken under the Water Pollution Control Program were completed between 1986 and 1998, with as many as four years elapsing between some of the most significant actions. The Water Pollution Control Program included constructing nine new wastewater treatment facilities and implementation of several other pollution-reducing measures, such as a best management practices plan; area-source pollution control management; and various spill-prevention projects. Many of the major actions had readily discernable effects on the chemical and physical conditions of EFPC. As controls on effluents entering the stream were implemented, pollutant concentrations generally declined and, at least initially, the volume of water discharged from the Y-12 Complex declined. This reduction in discharge was of ecological concern and led to implementation of a flow management program for EFPC. Implementing flow management, in turn, led to substantial changes in chemical and physical conditions of the stream: stream discharge nearly doubled and stream temperatures decreased, becoming more similar to those in reference streams. While water quality clearly improved, meeting water quality standards alone does not guarantee protection of a waterbody s biological integrity. Results from studies on the ecological changes stemming from pollution-reduction actions, such as those presented in this series, also are needed to understand how best to restore or protect biological integrity and enhance ecological recovery in stream ecosystems. With a better knowledge of the ecological consequences of their decisions, environmental managers can better evaluate alternative actions and more accurately predict their effects.

  12. An Assessment of the Natural and Anthropogenic Geochemistry of the Red Mountain Creek Watershed: Ironton Mining District, Colorado

    E-Print Network [OSTI]

    Litt, Joshua

    2014-04-29T23:59:59.000Z

    Red Mountain Creek is located in the rich mineralized San Juan Mountains of Southwestern Colorado, where mining from the mid 1800s through the late 1970s occurred. Sampling of the Uncompahgre River in the late 1970s, which is downstream of the five...

  13. The development of an aquatic spill model for the White Oak Creek watershed, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Johnson, R.O.

    1996-05-01T23:59:59.000Z

    This study develops an aquatic spill model applicable to the White Oak Creek watershed draining the Oak Ridge National Laboratory. Hazardous, toxic, and radioactive chemicals are handled and stored on the laboratory reservation. An accidental spill into the White Oak Creek watershed could contaminate downstream water supplies if insufficient dilution did not occur. White Oak Creek empties into the Clinch River, which flows into the Tennessee River. Both rivers serve as municipal water supplies. The aquatic spill model provides estimates of the dilution at sequential downstream locations along White Oak creek and the Clinch River after an accidental spill of a liquid containing a radioactively decaying constituent. The location of the spill on the laboratory is arbitrary, while hydrologic conditions range from drought to extreme flood are simulated. The aquatic spill model provides quantitative estimates with which to assess water quality downstream from the site of the accidental spill, allowing an informed decision to be made whether to perform mitigating measures so that the integrity of affected water supplies is not jeopardized.

  14. Natural Propagation and Habitat Improvement, Volume I, Oregon, Supplement A: Habitat Enhancement Evaluation of Fish and Wash Creeks, 1983 Annual Report.

    SciTech Connect (OSTI)

    Everest, Fred

    1984-04-01T23:59:59.000Z

    Habitat improvements for anadromous salmonids on Fish Creek in the upper Clackamas Basin were evaluated. The primary objectives of the evaluation effort include: (1) evaluate and quantify the changes in salmonid spawning and rearing habitat resulting from a variety of habitat improvements; (2) evaluate and quantify the changes in fish populations and biomass resulting from habitat improvements; and (3) evaluate the cost-effectiveness of habitat improvements developed with BPA and KV funds on Fish Creek. This report integrates data for the evaluation efforts collected in the Fish Creek Basin in 1982 and 1983. 3 references, 34 figures, 23 tables.

  15. Handling of Highly Radioactive Radiation Sources in a Hot Cell Using a Mechanically Driven Cell Crane - 13452

    SciTech Connect (OSTI)

    Klute, Stefan; Huber, Wolfgang-Bruno [Siempelkamp Nukleartechnik GmbH, Am Taubenfeld 25/1, 69123 Heidelberg (Germany)] [Siempelkamp Nukleartechnik GmbH, Am Taubenfeld 25/1, 69123 Heidelberg (Germany); Meyer, Franz [Nuclear Engineering Seibersdorf GmbH, 2444 Seibersdorf (Austria)] [Nuclear Engineering Seibersdorf GmbH, 2444 Seibersdorf (Austria)

    2013-07-01T23:59:59.000Z

    In 2010, Siempelkamp Nukleartechnik GmbH was awarded the contract for design and erection of a Hot Cell for handling and storage of highly radioactive radiation sources. This Hot Cell is part of a new hot cell laboratory, constructed for the NHZ (Neues Handhabungszentrum = New Handling Center) of the Nuclear Engineering Seibersdorf GmbH (NES). All incurring radioactive materials from Austria are collected in the NHZ, where they are safely conditioned and stored temporarily until their final storage. The main tasks of the NES include, apart from the collection, conditioning and storage of radioactive waste, also the reprocessing and the decontamination of facilities and laboratories originating from 45 years of research and development at the Seibersdorf site as well as the operation of the Hot Cell Laboratory [1]. The new Hot Cell Laboratory inside the NHZ consists of the following room areas: - One hot cell, placed in the center, for remote controlled, radiation protected handling of radioactive materials, including an integrated floor storage for the long-term temporary storage of highly radioactive radiation sources; - An anteroom for the loading and unloading of the hot cell; - One control room for the remote controlling of the hot cell equipment; - One floor storage, placed laterally to the hot cell, for burial, interim storage and removal of fissionable radioactive material in leak-proof packed units in 100 l drums. The specific design activity of the hot cell of 1.85 Pbq relating to 1-Me-Radiator including the integrated floor storage influences realization and design of the components used in the cell significantly. (authors)

  16. Two-dimensional water quality modeling of Town Creek embayment on Guntersville Reservoir

    SciTech Connect (OSTI)

    Bender, M.D.; Shiao, Ming C.; Hauser, G.E. (Tennessee Valley Authority, Norris, TN (USA). Engineering Lab.); Butkus, S.R. (Tennessee Valley Authority, Norris, TN (USA). Water Quality Dept.)

    1990-09-01T23:59:59.000Z

    TVA investigated water quality of Town Creek embayment using a branched two-dimensional model of Guntersville Reservoir. Simulation results were compared in terms of algal biomass, nutrient concentrations, and volume of embayment with depleted dissolved oxygen. Stratification and flushing play a significant role in the embayment water quality. Storms introduce large loadings of organics, nutrients, and suspended solids. Dissolved oxygen depletion is most severe after storms followed by low flow that fails to flush the embayment. Embayment water quality responses to potential animal waste and erosion controls were explored. Modeling indicated animal waste controls were much more cost-effective than erosion controls. Erosion controls will decrease embayment suspended solids and thereby increase algal biomass due to greater light penetration. 29 refs., 16 figs., 4 tabs.

  17. Risk based optimization of the frequency of EDG on-line maintenance at Hope Creek

    SciTech Connect (OSTI)

    Knoll, A. [Public Service Electric & Gas, Hancocks Bridge, NJ (United States); Samanta, P.K. [Brookhaven National Lab., Upton, NY (United States); Vesely, W.E. [Science Applications International, Dublin, OH (United States)

    1996-09-01T23:59:59.000Z

    This paper presents a study to optimize the frequency of on-line maintenance of the emergency diesel generators at Hope Creek. This study was directed towards identifying, analyzing, and modifying maintenance planning and scheduling practices to assure the high availability of emergency diesel generators. Input from application of a recently developed reliability model, from considerations of probabilistic safety assessment, plant-specific experience, insights from personnel involved in EDG maintenance, and other practical issues were used to define a maintenance schedule that balances its beneficial and adverse impacts. Conclusions resulted in feasible recommendations to optimize and reduce the frequency of diesel on-line maintenance, allowing additional resources to better maintain other equipment important to safety.

  18. Refinement of the twinned structure of cymrite from the Ruby Creek deposit (Alaska)

    SciTech Connect (OSTI)

    Bolotina, N. B.; Rastsvetaeva, R. K., E-mail: rast@ns.crys.ras.ru; Kashaev, A. A. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2010-07-15T23:59:59.000Z

    The mineral cymrite from the Ruby Creek deposit (Alaska) was reinvestigated by X-ray diffraction in a pseudo-orthorhombic unit cell with a = 5.3350(1) A, b = 36.9258(8) A, c = 7.6934(1) A, {beta} = 90.00(1){sup o}. A twin law corresponding to a sixfold axis was revealed for the first time. The structure was refined in the monoclinic space group P12{sub 1}1 to the R factor of 5.4%. The Al and Si atoms are assumed to be ordered within a double layer. The rotation of the cation sublattice by 60{sup o} around the c axis leads to the disorder of the T sites in the crystal structure (T = Al, Si).

  19. Supplying LNG markets using nitrogen rejection units at Exxon Shute Creek Facility

    SciTech Connect (OSTI)

    Hanus, P.M.; Kimble, E.L. [Exxon Co. USA, Midland, TX (United States)

    1995-11-01T23:59:59.000Z

    Interest is growing in the United States for using Liquid Natural Gas (LNG) as an alternative transportation fuel for diesel and as a source of heating fuel. For gas producers, LNG offers a premium price opportunity versus conventional natural gas sales. To supply this developing market, two existing Nitrogen Rejection Units (NRU) at the Exxon Shute Creek Facility in Wyoming were modified allowing LNG extraction and truck loading for transport to customers. The modifications involved adding heat exchanger capacity to the NRUs to compensate for the refrigeration loss when LNG is removed. Besides allowing for LNG extraction, the modifications also debottlenecked the NRUs resulting in higher methane recovery and lower compression costs. With the modifications, the NRUs are capable of producing for sale 60,000 gpd (5 MMscfd gas equivalent) of high purity LNG. Total investment has been $5 million with initial sales of LNG occurring in September 1994.

  20. Examination of eastern oil shale disposal problems - the Hope Creek field study

    SciTech Connect (OSTI)

    Koppenaal, D.W.; Kruspe, R.R.; Robl, T.L.; Cisler, K.; Allen, D.L.

    1985-02-01T23:59:59.000Z

    A field-based study of problems associated with the disposal of processed Eastern oil shale was initiated in mid-1983 at a private research site in Montgomery County, Kentucky. The study (known as the Hope Creek Spent Oil Shale Disposal Project) is designed to provide information on the geotechnical, revegetation/reclamation, and leachate generation and composition characteristics of processed Kentucky oil shales. The study utilizes processed oil shale materials (retorted oil shale and reject raw oil shale fines) obtained from a pilot plant run of Kentucky oil shale using the travelling grate retort technology. Approximately 1000 tons of processed oil shale were returned to Kentucky for the purpose of the study. The study, composed of three components, is described. The effort to date has concentrated on site preparation and the construction and implementation of the field study research facilities. These endeavors are described and the project direction in the future years is defined.

  1. Results of long term ground surface measurements at the Hoe Creek III site

    SciTech Connect (OSTI)

    Ganow, H.C.

    1984-08-10T23:59:59.000Z

    Ground surface subsidence was first observed over the Hoe Creek III burn cavity 21 days after gasification ceased. It manifested itself as a small circular depression or sink and was followed five days later by the formation of a second collapse structure. Concurrently, a single large elliptically shaped depression, whose major axis parallels the experimental axis, slowly formed over the burn cavity. These features appear to represent two distinctly different deformation modes. The first mode includes discrete voids that propagate rapidly upward. The second mode is represented by the elliptically shaped classical subsidence depression that forms slowly by a strata bending. Seventeen isolation type survey monuments have been used to track both the horizontal (one dimensional) and vertical motion components intermittently over a 54 month span. The resulting data set is combined with ground surface sketches and post-burn core drilling results and provides an important case study against which numerical and centrifugation model results can be compared. 5 references, 13 figures.

  2. Ground-water effects of the UCG experiments at the Hoe Creek site in northeastern Wyoming

    SciTech Connect (OSTI)

    Mead, S.W.; Wang, F.T.; Stuermer, D.H.

    1981-06-01T23:59:59.000Z

    Ground-water changes and subsidence effects associated with three underground coal gasification (UCG) experiments have been monitored at the Hoe Creek site in northeastern Wyoming. Ground-water quality measurements have extended over a period of four years and have been supplemented by laboratory studies of contaminant sorption by coal. It was found that a broad range of residual gasification products are introduced into the ground-water system. These contaminants may be of environmental significance if they find their way, in sufficient concentrations, into surface waters, or into aquifers from which water is extracted for drinking or agricultural purposes. Fortunately, the concentrations of these contaminants are substantially reduced by sorption on the surrounding coal. However, recent field measurements indicate that there may be significant limitations on this natural cleansing process. The contaminants of potential concern, and the mechanisms that affect their deposition and persistence have been identified.

  3. Structural characterization of terrestrial microbial Mn oxides from Pinal Creek, AZ

    SciTech Connect (OSTI)

    Bargar, John; Fuller, Christopher; Marcus, Matthew A.; Brearley, Adrian J.; Perez De la Rosa, M.; Webb, Samuel M.; Caldwell, Wendel A.

    2008-03-19T23:59:59.000Z

    The microbial catalysis of Mn(II) oxidation is believed to be a dominant source of abundant sorption- and redox-active Mn oxides in marine, freshwater, and subsurface aquatic environments. In spite of their importance, environmental oxides of known biogenic origin have generally not been characterized in detail from a structural perspective. Hyporheic zone Mn oxide grain coatings at Pinal Creek, Arizona, a metals-contaminated stream, have been identified as being dominantly microbial in origin and are well studied from bulk chemistry and contaminant hydrology perspectives. This site thus presents an excellent opportunity to study the structures of terrestrial microbial Mn oxides in detail. XRD and EXAFS measurements performed in this study indicate that the hydrated Pinal Creek Mn oxide grain coatings are layer-type Mn oxides with dominantly hexagonal or pseudo-hexagonal layer symmetry. XRD and TEM measurements suggest the oxides to be nanoparticulate plates with average dimensions on the order of 11 nm thick x 35 nm diameter, but with individual particles exhibiting thickness as small as a single layer and sheets as wide as 500 nm. The hydrated oxides exhibit a 10-A basal-plane spacing and turbostratic disorder. EXAFS analyses suggest the oxides contain layer Mn(IV) site vacancy defects, and layer Mn(III) is inferred to be present, as deduced from Jahn-Teller distortion of the local structure. The physical geometry and structural details of the coatings suggest formation within microbial biofilms. The biogenic Mnoxides are stable with respect to transformation into thermodynamically more stable phases over a time scale of at least 5 months. The nanoparticulate layered structural motif, also observed in pure culture laboratory studies, appears to be characteristic of biogenic Mn oxides and may explain the common occurrence of this mineral habit in soils and sediments.

  4. The effect of fractures, faults, and sheared shale zones on the hydrology of Bear Creek Burial Grounds A-South, Oak Ridge, Tennessee

    E-Print Network [OSTI]

    Hollon, Dwight Mitchell

    1997-01-01T23:59:59.000Z

    Previous hydrologic models of flow in Bear Creek Valley have presented lateral flow as occurring through the Nolichucky Shale in parallel to strike fractures within thin carbonate beds; the effects of faults were not considered. This study presents...

  5. Reservoir Simulation and Evaluation of the Upper Jurassic Smackover Microbial Carbonate and Grainstone-Packstone Reservoirs in Little Cedar Creek Field, Conecuh County, Alabama

    E-Print Network [OSTI]

    Mostafa, Moetaz Y

    2013-04-25T23:59:59.000Z

    This thesis presents an integrated study of mature carbonate oil reservoirs (Upper Jurassic Smackover Formation) undergoing gas injection in the Little Cedar Creek Field located in Conecuh County, Alabama. This field produces from two reservoirs...

  6. The effect of fractures, faults, and sheared shale zones on the hydrology of Bear Creek Burial Grounds A-South, Oak Ridge, Tennessee 

    E-Print Network [OSTI]

    Hollon, Dwight Mitchell

    1997-01-01T23:59:59.000Z

    Previous hydrologic models of flow in Bear Creek Valley have presented lateral flow as occurring through the Nolichucky Shale in parallel to strike fractures within thin carbonate beds; the effects of faults were not considered. This study presents...

  7. Observation of induced fractures intercepted by mining in the Warrior Basin, Alabama. Topical report. Rock Creek methane from multiple coal seams completion project

    SciTech Connect (OSTI)

    Steidl, P.F.

    1991-12-01T23:59:59.000Z

    This report summarizes research and inspection of induced fractures that have been intercepted by mining. Induced fractures from 13 wells intercepted by mining were inspected at the Jim Walter Resources' (JWR) No. 4 and 5 Mines in Tuscaloosa County, and the Oak Grove Mine in Jefferson County, Alabama. In this area the Mary Lee and Blue Creek coalbeds average 1.3 ft and 4 to 5.5 ft, respectively at depths of about 2,000 ft at the JWR mines and 1,000 ft in the Oak Grove Mine. These seams are usually separated by 2 to 10 ft of rock parting. The wells were completed open hole from 1982 to 1986. Hydraulic fracture treatments were used to stimulate production. Some expected results include: in general, the fractures followed the coal face cleat direction; they were vertical, and were sandpacked close to the wall. Other observations include the following: (1) most of the fractures and proppant were present in the parting and roof rock, (2) results were similar in the JWR and Oak Grove Mines even though there is 1,000 ft less overburden at the Oake Grove Mine, and (3) no horizontal fractures were observed in the study; though other stimulations have propagated horizontal fractures at Oak Grove.

  8. Status and Monitoring of Natural and Supplemented Chinook Salmon in Johnson Creek, Idaho, 2006-2007 Annual Report.

    SciTech Connect (OSTI)

    Rabe, Craig D.; Nelson, Douglas D. [Nez Perce Tribe

    2008-11-17T23:59:59.000Z

    The Nez Perce Tribe Johnson Creek Artificial Propagation Enhancement Project (JCAPE) has conducted juvenile and adult monitoring and evaluation studies for its 10th consecutive year. Completion of adult and juvenile Chinook salmon studies were conducted for the purpose of evaluating a small-scale production initiative designed to increase the survival of a weak but recoverable spawning aggregate of summer Chinook salmon Oncorhynchus tshawytscha. The JCAPE program evaluates the life cycle of natural origin (NOR) and hatchery origin (HOR) supplementation fish to quantify the key performance measures: abundance, survival-productivity, distribution, genetics, life history, habitat, and in-hatchery metrics. Operation of a picket style weir and intensive multiple spawning ground surveys were completed to monitor adult Chinook salmon and a rotary screw trap was used to monitor migrating juvenile Chinook salmon in Johnson Creek. In 2007, spawning ground surveys were conducted on all available spawning habitat in Johnson Creek and one of its tributaries. A total of 63 redds were observed in the index reach and 11 redds for all other reaches for a combined count of 74 redds. Utilization of carcass recovery surveys and adult captures at an adult picket weir yielded a total estimated adult escapement to Johnson Creek of 438 Chinook salmon. Upon deducting fish removed for broodstock (n=52), weir mortality/ known strays (n=12), and prespawning mortality (n=15), an estimated 359 summer Chinook salmon were available to spawn. Estimated total migration of brood year 2005 NOR juvenile Chinook salmon at the rotary screw trap was calculated for three seasons (summer, fall, and spring). The total estimated migration was 34,194 fish; 26,671 of the NOR migrants left in the summer (July 1 to August 31, 2005) as fry/parr, 5,852 left in the fall (September 1 to November 21, 2005) as presmolt, and only 1,671 NOR fish left in the spring (March 1 to June 30, 2006) as smolt. In addition, there were 120,415 HOR supplementation smolts released into Johnson Creek during the week of March 12, 2007. Life stage-specific juvenile survival from Johnson Creek to Lower Granite and McNary dams was calculated for brood year 2005 NOR and HOR supplementation juvenile Chinook salmon. Survival of NOR parr Chinook salmon migrating from Johnson Creek to Lower Granite and McNary dams was 28.2% and 16.2%. Survival of NOR presmolt Chinook salmon migrating from Johnson Creek to Lower Granite and McNary dams was 28.2% and 22.3%. Survival of NOR smolt Chinook salmon migrating from Johnson Creek to Lower Granite and McNary dams was 44.7% and 32.9%. Survival of HOR smolt Chinook salmon migrating from Johnson Creek to Lower Granite and McNary dams was 31.9% and 26.2%. Multi-year analysis on smolt to adult return rate's (SAR's) and progeny to parent ratio's (P:P's) were calculated for NOR and HOR supplementation Brood Year 2002 Chinook salmon. SAR's were calculated from Johnson Creek to Johnson Creek (JC to JC), Lower Granite Dam to Lower Granite (LGD to LGD), and Lower Granite Dam to Johnson Creek (LGD to JC); for NOR fish SAR's were 0.16%, 1.16% and 1.12%, while HOR supplementation SAR's from JC to JC, LGD to LGD and LGD to JC were 0.04%, 0.19% and 0.13%. P:P's for all returning NOR and HOR supplemented adults were under replacement levels at 0.13 and 0.65, respectively. Recruit per spawner estimates (R/S) for Brood Year 2005 adult Chinook salmon were also calculated for NOR and HOR supplemented Chinook salmon at JC and LGD. R/S estimates for NOR and HOR supplemented fish at JC were 231 and 1,745, while R/S estimates at LGD were 67 and 557. Management recommendations address (1) effectiveness of data collection methods, (2) sufficiency of data quality (statistical power) to enable management recommendations, (3) removal of uncertainty and subsequent cessation of M&E activities, and (4) sufficiency of findings for program modifications prior to five-year review.

  9. Site Monitoring Area Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to the Site Monitoring Area (SMA) The Site Monitoring Area sampler Control measures (best management practices) installed at the Site Monitoring Area Structures such as...

  10. Wildlife Management Areas (Minnesota)

    Broader source: Energy.gov [DOE]

    Certain areas of the State are designated as wildlife protection areas and refuges; new construction and development is restricted in these areas.

  11. Geologic map of the South Sierra Wilderness and South Sierra Roadless area, southern Sierra Nevada, California

    SciTech Connect (OSTI)

    Diggles, M.F. (Geological Survey, Menlo Park, CA (United States)); Carter, K.E. (Los Alamos National Lab., Albuquerque, NM (United States))

    1993-04-01T23:59:59.000Z

    The study area is underlain predominantly by granitoid rocks of the Sierra Nevada batholith. Metamorphic rocks are present in roof pendants mainly in the southwest corner of the study area and consist of quartz-biotite schist, phyllite, quartzite, marble, calc-silicate hornfels, and meta-dacite. Among the seven Triassic and (or) Jurassic plutons are three newly described units that consist of the gabbro of Deer Mountain, the tonalite of Falls Creek, and the quartz diorite of Round Mountain. The map shows one newly described unit that intrudes Triassic rocks: the granodiorite of Monache Creek which is a leucocratic, medium-grained, equi-granular, locally porphyritic biotite hornblende granodiorite. Among the seven Cretaceous plutons are two newly described units. The Cretaceous rocks are generally medium- to coarse-grained, potassium-feldspar porphyritic granite with biotite and minor hornblende; it includes abundant pods of alaskite. The granite of Haiwee Creek is similar but only locally potassium-feldspar porphyritic and with only minor hornblende. Major-element data plotted on Harker diagrams show the older rocks to be higher in iron and magnesium and lower in silica than the younger rocks. There are abundant local pods of alaskite throughout the study area that consist of medium- to coarse-grained, leucocratic granite, alkali-feldspar granite and associated aplite and pegmatite bodies occurring as small pods and highly leucocratic border phases of nearby plutons. Tertiary and Quaternary volcanic rock include the rhyolite of Monache Mountain and Quaternary surficial deposits: fan, stream-channel, colluvium, talus, meadow-filling, rock-glacier, and glacial-moraine deposits. Important structures include the Sierran front fault and a possible extensional feature along which Bacon (1978) suggests Monache Mountain erupted.

  12. Sediment and radionuclide transport in rivers. Phase 2. Field sampling program for Cattaraugus and Buttermilk Creeks, New York

    SciTech Connect (OSTI)

    Walters, W.H.; Ecker, R.M.; Onishi, Y.

    1982-04-01T23:59:59.000Z

    As part of a study on sediment and radionuclide transport in rivers, Pacific Northwest Laboratory (PNL) is investigating the effect of sediment on the transport of radionuclides in Cattaraugus and Buttermilk Creeks, New York. A source of radioactivity in these creeks is the Western New York Nuclear Service Center which consists of a low-level waste disposal site and a nuclear fuel reprocessing plant. Other sources of radioactivity include fallout from worldwide weapons testing and natural background radioactivity. The major objective of the PNL Field Sampling Program is to provide data on sediment and radionuclide characteristics in Cattaraugus and Buttermilk Creeks to verify the use of the Sediment and Radionuclide Transport model, SERATRA, for nontidal rivers. This report covers the results of field data collection conducted during September 1978. Radiological analysis of sand, silt, and clay size fractions of suspended and bed sediment, and water were performed. Results of these analyses indicate that the principal radionuclides occurring in these two water courses, with levels significantly higher than background levels, during the Phase 2 sampling program were Cesium-137 and Strontium-90. These radionuclides had significantly higher activity levels above background in the bed sediment, suspended sediment, and water samples. Other radionuclides that are possibly being released into the surface water environment by the Nuclear Fuel Services facilities are Plutonium-238, 239, and 240, Americium-241, Curium-244, and Tritium. More radionuclides were consistently found in the bed sediment as compared to suspended sediment. The fewest radionuclides were found in the water of Buttermilk and Cattaraugus Creeks. The higher levels were found in the bed sediments for the gamma-emitters and in the suspended sediment for the alpha and beta-emitters (not including Tritium).

  13. Quaternary history of Red Mountain Creek Valley and its relation to the Rio Grande glacier system near Creede, CO

    SciTech Connect (OSTI)

    Kitchens, S. (Smith Coll., Northampton, MA (United States). Dept. of Geology)

    1993-03-01T23:59:59.000Z

    Interactions between the Rio Grande glacier system and the Red Mountain Creek glacier are more complex than previously believed. Although both glaciers were fed by the same ice cap along the continental divide, the timing and number of advances are different. Analysis of air photos and field relationships reveal a series of end moraines at the mouth of Red Mountain Creek. The presence of these moraines disproves the hypothesis of Atwood and Mather (1932) that the two were confluent during the last phase of glaciation. The degree of weathering rind development on mafic cobbles was used together with the degree of clay mineral development in the soils to determine relative ages and the number of advances in each system. The less than 2[mu]m material for X-ray diffraction analysis was separated from soil samples collected from pits excavated on the tops of end moraines. Both smectite and kaolinite were found within the soil profile thus indicating weathering of minerals in tills derived from the local biotite-sanadine-hornblende tuffs. The amount of post glacial weathering was estimated based on the relative intensity of the 17[angstrom] smectite peak after ethylene glycol solvation. Both the X-ray and weathering rind analysis show two separate glacial events in Red Mountain Creek valley. However, in the Rio Grande system the weathering rind data suggests two glacial events while the clay mineralogy suggests only one.

  14. Sediment and radionuclide transport in rivers. Phase 3. Field sampling program for Cattaraugus and Buttermilk Creeks, New York

    SciTech Connect (OSTI)

    Ecker, R.M.; Walters, W.H.; Onishi, Y.

    1982-08-01T23:59:59.000Z

    A field sampling program was conducted on Cattaraugus and Buttermilk Creeks, New York during April 1979 to investigate the transport of radionuclides in surface waters as part of a continuing program to provide data for application and verification of Pacific Northwest Laboratory's (PNL) sediment and radionuclide transport model, SERATRA. Bed sediment, suspended sediment and water samples were collected during unsteady flow conditions over a 45 mile reach of stream channel. Radiological analysis of these samples included gamma ray spectrometry analysis, and radiochemical separation and analysis of Sr-90, Pu-238, Pu-239, 240, Am-241 and Cm-244. Tritium analysis was also performed on water samples. Based on the evaluation of radionuclide levels in Cattaraugus and Buttermilk Creeks, the Nuclear Fuel Services facility at West Valley, New York, may be the source of Cs-137, Sr-90, Cs-134, Co-60, Pu-238, Pu-239, 240, Am-241, Cm-244 and tritium found in the bed sediment, suspended sediment and water of Buttermilk and Cattaraugus Creeks. This field sampling effort was the last of a three phase program to collect hydrologic and radiologic data at different flow conditions.

  15. Analysis of dust samples collected from spent nuclear fuel interim storage containers at Hope Creek, Delaware, and Diablo Canyon, California.

    SciTech Connect (OSTI)

    Bryan, Charles R.; Enos, David George

    2014-07-01T23:59:59.000Z

    Potentially corrosive environments may form on the surface of spent nuclear fuel dry storage canisters by deliquescence of deposited dusts. To assess this, samples of dust were collected from in-service dry storage canisters at two near-marine sites, the Hope Creek and Diablo Canyon storage installations, and have been characterized with respect to mineralogy, chemistry, and texture. At both sites, terrestrially-derived silicate minerals, including quartz, feldspars, micas, and clays, comprise the largest fraction of the dust. Also significant at both sites were particles of iron and iron-chromium metal and oxides generated by the manufacturing process. Soluble salt phases were minor component of the Hope Creek dusts, and were compositionally similar to inland salt aerosols, rich in calcium, sulfate, and nitrate. At Diablo Canyon, however, sea-salt aerosols, occurring as aggregates of NaCl and Mg-sulfate, were a major component of the dust samples. The seasalt aerosols commonly occurred as hollow spheres, which may have formed by evaporation of suspended aerosol seawater droplets, possibly while rising through the heated annulus between the canister and the overpack. The differences in salt composition and abundance for the two sites are attributed to differences in proximity to the open ocean and wave action. The Diablo Canyon facility is on the shores of the Pacific Ocean, while the Hope Creek facility is on the shores of the Delaware River, several miles from the open ocean.

  16. Evaluation of treatment, disposal, and managerial options for dredged sediments from Newark Bay, Arthur Kill, and Newton Creek of New York/New Jersey Harbor and proposed design

    SciTech Connect (OSTI)

    Goswami, A. [New York State Dept. of Energy Center, Albany, NY (United States); Clesceri, N.; Preiss, I. [Rensselaer Polytechnic Inst., Troy, NY (United States); Stern, E. [Environmental Protection Agency, New York, NY (United States); Jones, K. [Brookhaven National Lab., Upton, NY (United States); Donato, K. [NYD/USACE, New York, NY (United States)

    1996-11-01T23:59:59.000Z

    The bay areas surrounding New York/New Jersey Harbor are naturally shallow, acting as catchments for river-transported sediments and solids from surface point and nonpoint sources. Dredging is required to maintain navigability for large cargo ships. Annually more than 5 million yd{sup 3} of sediments has been dredged to maintain harbors and waterways for New York and New Jersey Harbor. Currently about 80% of dredge sediments are considered clean and ocean disposed of at the designated Mud Dump site, located approximately 6 nautical miles south of Rockaways. In order to be disposed of at the Mud Dump site, the Marine Protection, Research and Sanctuaries Act of 1972 (MPRSA) requires the evaluation of the environmental impact using criteria developed by the USEPA and published through 40 CFR Parts 220 to 228. Based on the results of the evaluation, the sediments are assigned one of three categories which defines their potential disposal method--Category 1 sediments (acceptable for ocean disposal), Category 2 sediments (acceptable for ocean disposal with specific mitigation), and Category 3 sediments (not permitted for ocean dumping). A growing public concern over the impacts of contaminated sediments, in addition to a more stringent set of criteria having been established, is expected to significantly increase the volume of sediments requiring special handling or disposal, due to the inability to dispose of Category 3 sediments at the Mud Dump Site. Hence, the objective of this project is to study the contaminant characteristics of sediments in the Newark Bay, Arthur Kill, and Newtown Creek area and identify and evaluate alternative methods for managing or decontaminating sediments that are practical, cost-effective, and protective of human health and the environment.

  17. Geology of the Voca-North area, McCulloch County, Texas

    E-Print Network [OSTI]

    Sealy, Brian Edmund

    1963-01-01T23:59:59.000Z

    -North area. Overlying the Riley Formation is the Wilberns Formation which is composed of the Welge Sandstone, Morgan Creek Limestone, Point Peak and San Saba members. The Ordov1cian System is represented by rocks of the Ellenburger Group. In the Voca... of the San Saba River in NcCulloch County' Texas ~ Dake and Bridge (1932), with the help of E. 0. Ulrich, studied the contact between the Wilberns and Ellen- burger formations in the eastern and western parts of the Llano region. They concluded...

  18. The geology of North Fredonia area, McCulloch and San Saba Counties, Texas

    E-Print Network [OSTI]

    Mosteller, Stanley Alfred

    1957-01-01T23:59:59.000Z

    for the degree of RASTER (g SCIEICK Au~st 1957 Rajor Subject ~ THE GM. OGY OF NORTH FREOONIA ARFJL, NcCUILOCH AND SAN SABA COUNTIES, TEXAS A Thesfs &unjust 1957 Approved as to style aad coateat hyi Cha1 rasa Coaal t tee Head of Departaeat of Geology aad... eastward for 4, S ni)es. The ares is 4. 5 wiles loag in a north-south direction, aad tbe southern boundary 1s oa east~st liae located about 3 wiles north of the town of Fredonis. Deer Creek skirts the casters border of the area sad tbe west boundary...

  19. Wildlife Management Areas (Florida)

    Broader source: Energy.gov [DOE]

    Certain sites in Florida are designated as wildlife management areas, and construction and development is heavily restricted in these areas.

  20. Hart Crane's attitude toward technology

    E-Print Network [OSTI]

    Abbott, Craig Stephens

    1966-01-01T23:59:59.000Z

    T~tGB & 8 LZ'll3 Zlh 'HL'fQ AB UZI sIA&J "'' 'j "~l. &d 7 '* , - . ;-, , =:; '. ::. ";, : ~gb&egii' M":Vie. , i"xi~ gate, :-~Jv~@i-'. ~f'. ihe, ", ;:?;"', ' T~'i. , :, " jhow, L'u'~. 'iei~ t 6p . &'::. " : "-wd~kgl";~ilfilk'im%~ yE. the... j, '~QQL+~ s' I" I i ($1'Iti l 2: $ -I tM) s' 3s 2 I. iossi '@Nb ', 1 ?2" CS JC' Eg)SQ" S . PQBS& low "7 s sl ~ z!s tEI in such "n scceptzchch and thct this less oz faith results in zI Jisinte zeta' poaKI. AccorJirv to zE)ese critics, uznno 1...