Powered by Deep Web Technologies
Note: This page contains sample records for the topic "area clean tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Connecting with Clean Tech CEO's  

Broader source: Energy.gov [DOE]

Findings of CEO Roundtable discussions about how to drive economic development and job growth of the clean tech sector within the Sacramento Region.

2

#CleanTechNow  

SciTech Connect (OSTI)

Over the past four years, America's clean energy future has come into sharper focus. Yesterday's visionary goals are now hard data -- tangible evidence that our energy system is undergoing a transformation. The Energy Department's new paper "Revolution Now: The Future Arrives for Four Clean Energy Technologies" highlights these changes and shows how cost reductions and product improvements have sparked a surge in consumer demand for wind turbines, solar panels, electric cars and super efficient lighting.

Moniz, Ernest

2013-09-17T23:59:59.000Z

3

#CleanTechNow  

ScienceCinema (OSTI)

Over the past four years, America's clean energy future has come into sharper focus. Yesterday's visionary goals are now hard data -- tangible evidence that our energy system is undergoing a transformation. The Energy Department's new paper "Revolution Now: The Future Arrives for Four Clean Energy Technologies" highlights these changes and shows how cost reductions and product improvements have sparked a surge in consumer demand for wind turbines, solar panels, electric cars and super efficient lighting.

Moniz, Ernest

2014-01-10T23:59:59.000Z

4

Clean Tech LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPower Address: 13615 StoweCleanClean-Tech LLC

5

Clean Tech San Diego | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPower Address: 13615 StoweCleanClean-Tech LLCSan

6

#CleanTechNow | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars and Sense Committee) Page 1#CleanTechNow

7

Clean Tech Now | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

report, falling costs for four clean energy technologies -- land-based wind power, solar panels, electric cars and LED lighting -- have led to a surge in demand and...

8

Clean Tech Institute | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhioOglesby,Sullivan, MissouriWebsterElectric Coop Corp JumpCleanCost |

9

Clean Tech Los Angeles | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhioOglesby,Sullivan, MissouriWebsterElectric Coop Corp JumpCleanCost

10

Clean Tech Trade Alliance | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhioOglesby,Sullivan, MissouriWebsterElectric Coop Corp JumpCleanCostTrade

11

Clean Tech Now | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and Userof aChristina MartosLibraryClaytonClean

12

CleanTech Biofuels | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy Resources JumpSouthSolar Type TermenergyCleanStart

13

CleanTech Boston | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy Resources JumpSouthSolar Type TermenergyCleanStartBoston

14

Clean Cities: Detroit Area Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Clean Cities coalition Contact Information Sean Reed (Acting) 734-585-5720 x18 reed@cec-mi.org Coalition Website Clean Cities Coordinator Sean Reed (Acting) Sean Reed (Acting) is...

15

Clean Energy Research Areas | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and Userof aChristina MartosLibraryClaytonClean EnergyHorse

16

Clean Cities: Detroit Area Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York (Buffalo)Denver Metro

17

#CleanTechNow: America's Clean Energy Revolution | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | BlandinePrinceton Plasma PhysicsLED Lights#CleanTechNow:

18

Clean Cities: Chicago Area Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheirCheckInnovation,ClassroomArkansasCentralChicago Area

19

The Drivetrain of Sustainability Powering innovation in Clean teCh  

E-Print Network [OSTI]

The Drivetrain of Sustainability Powering innovation in Clean teCh iNSiDe: BUSiNeSS OF HeALTH CARe energy use, generation and storage, as well as other necessities of life, environmentally responsible of Management, I hope to participate in what many expect to be the next big chapter of the California Dream

California at Davis, University of

20

CleanEnergyPatentMapper: Visualization of the sources of clean tech inventions  

E-Print Network [OSTI]

CleanEnergyPatentMapper, a tool that visualizes clean energy patents by technology type, inventing organization, and geography. This tool maps all U.S. clean technology patents by rst inventor location across;Introduction* In#response#to#global#warming,#many#concerned#actors#have#initiated#or# increased#their#efforts#to#discover#better#clean#energy#technologies

Sekhon, Jasjeet S.

Note: This page contains sample records for the topic "area clean tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Silicon Valley Clean Tech Alliance | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerTypePonsa, Mallorca:up DataBus asShirley,Valley Clean

22

SciTech Connect: "clean coal"  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsisSchedules SchedulesSciPyaerogels"clean

23

Clean Cities: Connecticut Southwestern Area Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York (Buffalo) CoalitionConnecticut

24

Clean Cities: Greater Lansing Area Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York (Buffalo)DenverGraniteLansing

25

Consolidating N.J.'s clean-tech resources into database for Online center a one-stop center for incentives, assistance programs  

E-Print Network [OSTI]

Jersey Clean Energy Resource Network. Housed on Rutgers University's site and developed by the Rutgers Plan, which aims to develop more resources for clean energy business development. It also has createdConsolidating N.J.'s clean-tech resources into database for businesses Online center a one

Delgado, Mauricio

26

Los Angeles CleanTech Incubator to Host Event With Senior Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a non-profit organization working to accelerate the development of clean energy start-ups, and will include a discussion on next generation vehicle technologies, solar power,...

27

Advanced Offshore Wind Tech: Accelerating New Opportunities for...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Offshore Wind Tech: Accelerating New Opportunities for Clean Energy Advanced Offshore Wind Tech: Accelerating New Opportunities for Clean Energy May 7, 2014 - 12:11pm...

28

Manufacturing Tech Team | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing Tech Team Manufacturing Tech Team Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Industrial efficiency and low-cost energy...

29

Closure report for CAU 93: Area 6 steam cleaning effluent ponds, Nevada Test Site. Volume 1  

SciTech Connect (OSTI)

The Steam Cleaning Effluent Ponds (SCEP) waste unit is located in Area 6 at the Nevada Test Site. The SCEPs are evaporation basins formerly used for the disposal of untreated liquid effluent discharged from steam cleaning activities associated with Buildings 6-623 and 6-800. This closure report documents the strategy and analytical results that support the clean closure or closure in place of each of the components within CAU 93. In addition, the report documents all deviations from the approved closure plan and provides rationale for all deviations.

NONE

1997-12-01T23:59:59.000Z

30

Dynamic Decentralized Area Partitioning for Cooperating Cleaning Robots Markus Jager Bernhard Nebel  

E-Print Network [OSTI]

Dynamic Decentralized Area Partitioning for Cooperating Cleaning Robots Markus J¨ager Bernhard Nebel Corporate Technology Institut f¨ur Informatik Siemens AG Albert-Ludwigs-Universit¨at 81730 Munich, Germany 79100 Freiburg, Germany markus.jaeger@mchp.siemens.de nebel@informatik.uni-freiburg.de Abstract

Nebel, Bernhard

31

UESC and High Tech Facilities  

Broader source: Energy.gov (indexed) [DOE]

UESC program, new and growing * DOE FEMP programs for UESC and High-Tech Buildings * LBNL expertise in labs, data centers, clean rooms * LBNL support for UESC program * UESC...

32

Identification of Selected Areas to Support Federal Clean Energy Goals Using Small Modular Reactors  

SciTech Connect (OSTI)

This analysis identifies candidate locations, in a broad sense, where there are high concentrations of federal government agency use of electricity, which are also suitable areas for near-term SMRs. Near-term SMRs are based on light-water reactor (LWR) technology with compact design features that are expected to offer a host of safety, siting, construction, and economic benefits. These smaller plants are ideally suited for small electric grids and for locations that cannot support large reactors, thus providing utilities or governement entities with the flexibility to scale power production as demand changes by adding additional power by deploying more modules or reactors in phases. This research project is aimed at providing methodologies, information, and insights to assist the federal government in meeting federal clean energy goals.

Belles, Randy [ORNL; Mays, Gary T [ORNL; Omitaomu, Olufemi A [ORNL; Poore III, Willis P [ORNL

2013-12-01T23:59:59.000Z

33

THE 3R ANTHRACITE CLEAN COAL TECHNOLOGY Economical Conversion of Browncoal to Anthracite Type Clean  

E-Print Network [OSTI]

pac i ties. The 3R An thra cite Clean Coal end prod uct and tech nol ogy may ad van ta geously be in

Edward Someus

34

Sensors & Measurement | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Research Sustainable Electricity Systems Biology Transportation Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Sensors & Measurement...

35

National Clean Energy Business Plan Competition: Energy Internet...  

Office of Environmental Management (EM)

The company's technology was developed at Georgia Tech through an ARPA-e grant, under the Green Energy Network Integration program. After winning the ACC Clean Energy Challenge,...

36

TechLab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TechLab Inside the Museum Exhibitions Norris Bradbury Museum Lobby Defense Gallery Research Gallery History Gallery TechLab Virtual Exhibits invisible utility element TechLab...

37

Resource Conservation and Recovery Act industrial site environmental restoration site characterization report - area 6 steam cleaning effluent ponds  

SciTech Connect (OSTI)

The Area 6 North and South Steam Cleaning Effluent Ponds (SCEPs) are historic disposal units located at the Nevada Test Site (NTS) in Nye County, Nevada. The NTS is operated by the U.S. Department of Energy, Nevada Operations Office (DOE/NV) which has been required by the Nevada Division of Environmental Protection (NDEP) to characterize the site under the requirements of the Resource Conservation and Recovery Act (RCRA) Part B Permit for the NTS and Title 40 Code of Federal Regulations, Part 265.

NONE

1996-09-01T23:59:59.000Z

38

Maps depicting nonattainment areas pursuant to Section 107 of the Clean Air Act - 1985  

SciTech Connect (OSTI)

The report is a detailed mapping of the United States depicting those areas nonattaining the National Ambient Air Quality Standards for carbon monoxide, nitrogen dioxide, ozone, sulfur dioxide, and total suspended particulates. It includes nonattainment area maps and supporting lists from Federal Register publications for final actions through September 1, 1985.

Yarn, J.; Beal, W.; Tate, C.

1985-09-01T23:59:59.000Z

39

Maps depicting nonattainment areas pursuant to Section 107 of the Clean Air Act - 1982  

SciTech Connect (OSTI)

This report is a detailed mapping of the United States depicting those areas not attaining the National Ambient Air Quality Standards for carbon monoxide, nitrogen dioxide, ozone, sulfur dioxide and total suspended particulates. It includes nonattainment area maps and supporting lists from Federal Register publications for final actions through February 1, 1982.

Pearson, J.; Beal, W.; Duggan, G.

1982-02-01T23:59:59.000Z

40

Maps depicting nonattainment areas pursuant to Section 107 of the Clean Air Act - 1983  

SciTech Connect (OSTI)

This report is a detailed mapping of the United States Depicting those areas not attaining the National Ambient Air Quality Standards for carbon monoxide, nitrogen dioxide, ozone, sulfur dioxide and total suspended particulates. It includes nonattainment area maps and supporting lists from Federal Register publications for final actions through February 1, 1983.

Duggan, G.; Pearson, J.; Beal, W.

1983-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "area clean tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Maps depicting nonattainment areas pursuant to Section 107 of the Clean Air Act - 1984  

SciTech Connect (OSTI)

This report is a detailed mapping of the United States depicting those areas not attaining the National Ambient Air Quality Standards for carbon monoxide, nitrogen dioxide, ozone, sulfur dioxide and total suspended particulates. It includes non-attainment area maps and supporting lists from Federal Register publications for final actions through July 1, 1984.

Yarn, J.; Beal, W.; Tate, C.

1984-07-01T23:59:59.000Z

42

Cyclododecane as support material for clean and facile transfer of large-area few-layer graphene  

SciTech Connect (OSTI)

The transfer of chemical vapor deposited graphene is a crucial process, which can affect the quality of the transferred films and compromise their application in devices. Finding a robust and intrinsically clean material capable of easing the transfer of graphene without interfering with its properties remains a challenge. We here propose the use of an organic compound, cyclododecane, as a transfer material. This material can be easily spin coated on graphene and assist the transfer, leaving no residues and requiring no further removal processes. The effectiveness of this transfer method for few-layer graphene on a large area was evaluated and confirmed by microscopy, Raman spectroscopy, x-ray photoemission spectroscopy, and four-point probe measurements. Schottky-barrier solar cells with few-layer graphene were fabricated on silicon wafers by using the cyclododecane transfer method and outperformed reference cells made by standard methods.

Capasso, A.; Leoni, E.; Dikonimos, T.; Buonocore, F.; Lisi, N. [ENEA, Materials Technology Unit, Surface Technology Laboratory, Casaccia Research Centre, Via Anguillarese 301, 00060 Rome (Italy); De Francesco, M. [ENEA, Technical Unit for Renewable Energies Sources, Casaccia Research Center, Via Anguillarese 301, 00060 Rome (Italy); Lancellotti, L.; Bobeico, E. [ENEA, Portici Research Centre, P.le E. Fermi 1, 80055 Portici (Italy); Sarto, M. S.; Tamburrano, A.; De Bellis, G. [Research Center on Nanotechnology Applied to Engineering of Sapienza (CNIS), SSNLab, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome (Italy)

2014-09-15T23:59:59.000Z

43

Post-Closure Monitoring Report for Corrective Action Unit 339: Area 12 Fleet Operations Steam Cleaning Discharge Area Nevada Test Site, Nevada  

SciTech Connect (OSTI)

The Area 12 Fleet Operations Steam Cleaning site is located in the southeast portion of the Area 12 Camp at the Nevada Test Site (Figure 1). This site is identified in the Federal Facility Agreement and Consent Order (FFACO, 1996) as Corrective Action Site (CAS) 12-19-01 and is the only CAS assigned to Corrective Action Unit (CAU) 339. Post-closure sampling and inspection of the site were completed on March 23, 2001. Because of questionable representativeness and precision of the results, the site was resampled on June 12, 2001. Post-closure monitoring activities were scheduled biennially (every two years) in the Post-Closure Monitoring Plan provided in the December 1997 Closure Report for CAU 339: Area 12 Fleet Operations Steam Cleaning Discharge Area, Nevada Test Site (U.S. Department of Energy, Nevada Operations Office [DOE/NV], 1997). If after six years the rate of degradation appears to be so slow that the greatest concentration of total petroleum hydrocarbons (TPH) present at the site would not decay within 30 years of the site closure, the site will be reevaluated with consideration to enriching the impacted soil at the site to enhance the degradation process. A baseline for the site was established by sampling in 1997. Based on the recommendations from the 1999 post-closure monitoring report, samples were collected in 2000, earlier than originally proposed, because the 1999 sample results did not provide the expected decrease in TPH concentrations at the site. Sampling results from 2000 revealed favorable conditions for natural degradation at the CAU 339 site, but because of differing sample methods and heterogeneity of the soil, the data results from 2000 were not directly correlated with previous results. Post-closure monitoring activities for 2001 consisted of the following: Soil sample collection from three undisturbed plots (Plots A, B, and C, Figure 2); Sample analysis for TPH as oil and bio-characterization parameters (Comparative Enumeration Assay [CEA] and Standard Nutrient Panel [SNP]); Site inspection to evaluate the condition of the fencing and signs; and Preparation and submittal of the Post-Closure Monitoring Report.

A. T. Urbon

2001-08-01T23:59:59.000Z

44

Converting Waste into Clean Renewable Fuel  

E-Print Network [OSTI]

Converting Waste into Clean Renewable Fuel Presented at TechRealization August 27th, 2008 #12;2 Outline Introduction to InEnTec InEnTec's Waste-to-Fuels Technology Richland Project #12;In conversion options Conversion of waste into clean transportation fuels (i.e. ethanol, methanol, DME, etc

45

Identification of Selected Areas to Support Federal Clean Energy Goals Using Small Modular Reactors  

SciTech Connect (OSTI)

Beginning in late 2008, Oak Ridge National Laboratory (ORNL) responded to ongoing internal and external studies addressing key questions related to our national electrical energy supply. This effort has led to the development and refinement of Oak Ridge Siting Analysis for power Generation Expansion (OR-SAGE), a tool to support power plant siting evaluations. The objective in developing OR-SAGE was to use industry-accepted approaches and/or develop appropriate criteria for screening sites and employ an array of geographic information systems (GIS) data sources at ORNL to identify candidate areas for a power generation technology application. The basic premise requires the development of exclusionary, avoidance, and suitability criteria for evaluating sites for a given siting application, such as siting small modular reactors (SMRs). For specific applications of the tool, it is necessary to develop site selection and evaluation criteria (SSEC) that encompass a number of key benchmarks that essentially form the site environmental characterization for that application. These SSEC might include population density, seismic activity, proximity to water sources, proximity to hazardous facilities, avoidance of protected lands and floodplains, susceptibility to landslide hazards, and others.

Belles, R. J. [ORNL; Mays, G. T. [ORNL; Omitaomu, O. A. [ORNL; Poore, W. P. [ORNL

2013-12-30T23:59:59.000Z

46

High-Tech Halloween  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High-Tech Halloween Catch an Event Events Happening Now Events Calendar High-Tech Halloween Lifelong Learning Mailing List 70th Events Lectures invisible utility element High-Tech...

47

CleanTech Meets BioTech August 25, 2009  

E-Print Network [OSTI]

. · Cleantech is driven by productivity-based purchasing, and therefore enjoys broader market economics, withj y ti i· Green Marketing & Advertising · Biological Solutions · Renewable Energy · Carbon Markets covering key regulators of plant genetic pathways Building a BioEnergy Seed business for the biofuels d bl

Puglisi, Joseph

48

Addendum to the Closure Report for Corrective Action Unit 339: Area 12 Fleet Operations Steam Cleaning Discharge Area, Nevada Test Site, Revision 0  

SciTech Connect (OSTI)

This document constitutes an addendum to the Closure Report for CAU 339: Area 12 Fleet Operations Steam Cleaning Discharge Area Nevada Test Site, December 1997 as described in the document Supplemental Investigation Report for FFACO Use Restrictions, Nevada Test Site, Nevada (SIR) dated November 2008. The SIR document was approved by NDEP on December 5, 2008. The approval of the SIR document constituted approval of each of the recommended UR removals. In conformance with the SIR document, this addendum consists of: This page that refers the reader to the SIR document for additional information The cover, title, and signature pages of the SIR document The NDEP approval letter The corresponding section of the SIR document This addendum provides the documentation justifying the cancellation of the UR for CAS 12-19-01, A12 Fleet Ops Steam Cleaning Efflu. This UR was established as part of a Federal Facility Agreement and Consent Order (FFACO) corrective action and is based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996). Since this UR was established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, this UR was reevaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006). This re-evaluation consisted of comparing the original data (used to define the need for the UR) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove the UR because contamination is not present at the site above the risk-based FALs. Requirements for inspecting and maintaining this UR will be canceled, and the postings and signage at this site will be removed. Fencing and posting may be present at this site that are unrelated to the FFACO UR such as for radiological control purposes as required by the NV/YMP Radiological Control Manual (NNSA/NSO, 2004). This modification will not affect or modify any non-FFACO requirements for fencing, posting, or monitoring at this site.

Grant Evenson

2009-05-01T23:59:59.000Z

49

TechOnLine Welcome, Tech Groups  

E-Print Network [OSTI]

Technical Papers Forums Tech Topics: Bluetooth CSoC Design Services Internet/Network Security Java Linux

LaMeres, Brock J.

50

The Clean Tech Revolution: Why It's Real  

E-Print Network [OSTI]

(GW) 0 1 2 3 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 Total Installed Solar Capacity(GW) 0 Irvine, California The problem is huge #12;4/1/2011 2 The problem is getting worse * Harvard Public 10 20 30 40 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 Total Installed Wind Capacity

Loudon, Catherine

51

Duke, China's Huaneng to 'explore' clean tech  

SciTech Connect (OSTI)

A vaguely worded press release said the two companies will focus on carbon capture and sequestration (CCS) and coal gasification.

NONE

2009-10-15T23:59:59.000Z

52

California Clean Tech Open | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis a city inCCSE Jump to: navigation, searchCalifornia City

53

CleanTech Boulder | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPower Address: 13615Boulder Jump to: navigation,

54

CleanTech Partners | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy Resources JumpSouthSolar Type

55

2013 Green Tech 1 TECO Technology Foundation  

E-Print Network [OSTI]

2013 Green Tech 1 TECO Technology Foundation #12;2013 Green Tech 2 #12;2013 Green Tech 3 Green Tech #12;2013 Green Tech 4 Green Tech #12;2013 Green Tech 5 Green Tech #12;2013 Green Tech 6 #12;2013 Green Tech 7 02/01 02/01-07/15 07/15 - 07

Kasahara, Hironori

56

Appalachian Clean Coal Technology Consortium. Technical progress report, January 1--March 31, 1996  

SciTech Connect (OSTI)

The Appalachian Clean Coal Technology Consortium has been established to help U.S. Coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. In keeping with the recommendations of the Advisory Committee, first-year R&D activities are focused on two areas of research: fine coal dewatering and modeling of spirals. The industry representatives to the Consortium identified fine coal dewatering as the most needed area of technology development. Dewatering studies are conducted by Virginia Tech`s Center for Coal and Minerals Processing. A spiral model will be developed by West Virginia University. The research to be performed by the University of Kentucky has recently been defined as: A Study of Novel Approaches for Destabilization of Flotation Froth. Accomplishments to date of these three projects are presented in this report.

NONE

1996-05-23T23:59:59.000Z

57

Georgia Tech Dangerous Gas  

E-Print Network [OSTI]

1 Georgia Tech Dangerous Gas Safety Program March 2011 #12;Georgia Tech Dangerous Gas Safety.......................................................................................................... 5 6. DANGEROUS GAS USAGE REQUIREMENTS................................................. 7 6.1. RESTRICTED PURCHASE/ACQUISITION RULES: ................................................ 7 7. FLAMMABLE GAS

Sherrill, David

58

Post-Closure Monitoring Report for Corrective Action Unit 339: Area 12 Fleet Operations Steam Cleaning Effluent Nevada Test Site, Nevada  

SciTech Connect (OSTI)

The Area 12 Fleet Operations Steam Cleaning Effluent site is located in the southeastern portion of the Area 12 Camp at the Nevada Test Site. This site is identified in the Federal Facility Agreement and Consent Order (1996) as Corrective Action Site (CAS) 12-19-01 and is the only CAS assigned to Corrective Action Unit (CAU) 339. Post-closure sampling and inspection of the site were completed on March 27, 2002. Post-closure monitoring activities were scheduled biennially (every two years) in the Post-Closure Monitoring Plan provided in the Closure Report for CAU 339: Area 12 Fleet Operations Steam Cleaning Effluent, Nevada Test Site (U.S. Department of Energy, Nevada Operations Office [DOEN], 1997). A baseline for the site was established by sampling in 1997. Based on the recommendations from the 1999 post-closure monitoring report (DOE/NV, 1999), samples were collected in 2000, earlier than originally proposed, because the 1999 sample results did not provide the expected decrease in total petroleum hydrocarbon (TPH) concentrations at the site. Sampling results from 2000 (DOE/NV, 2000) and 2001 (DOE/NV, 2001) revealed favorable conditions for natural degradation at the CAU 339 site, but because of differing sample methods and heterogeneity of the soil, data results from 2000 and later were not directly correlated with previous results. Post-closure monitoring activities for 2002 consisted of the following: (1) Soil sample collection from three undisturbed plots (Plots A, B, and C, Figure 2). (2) Sample analysis for TPH as oil and bio-characterization parameters (Comparative Enumeration Assay [CEA] and Standard Nutrient Panel [SNP]). (3) Site inspection to evaluate the condition of the fencing and signs. (4) Preparation and submittal of the Post-Closure Monitoring Report.

K. B. Campbell

2002-09-01T23:59:59.000Z

59

Clean Cities  

Broader source: Energy.gov [DOE]

Clean Cities works to reduce U.S. reliance on petroleum in transportation by establishing local coalitions of public- and private-sector stakeholders across the country.

60

New Mexico Tech 20062007 Catalog  

E-Print Network [OSTI]

New Mexico Tech 2006­2007 Catalog For information on undergraduate admission, contact: Director of Admission New Mexico Tech 801 Leroy Place Socorro, New Mexico 87801 505.835.5424 1.800.428.TECH admission.nmt.edu For information on graduate admission, contact: Dean of Graduate Studies New Mexico Tech 801 Leroy Place Socorro

Aitbayev, Rakhim

Note: This page contains sample records for the topic "area clean tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Virginia Tech Shenandoah Valley Agricultural  

E-Print Network [OSTI]

and Environment, Virginia Tech, Dr. John Fike, Crop and Soil Environmental Sciences, Virginia Tech and Patti Fescue-based Pastures ­ Dr. Ben Tracy, Crop and Soil Environmental Sciences, Virginia Tech and Gordon Jones, Graduate Student, Crop and Soil Environmental Sciences, Virginia Tech 3:25 ­ 3:40 Early Weaning

Liskiewicz, Maciej

62

It is a unique programme of its kind not only in this country but also in the whole of South East Asian region. Besides offering M.Tech and Ph.D degrees in the area of Nuclear Engineering & Technology, the programme provides research and development exper  

E-Print Network [OSTI]

Asian region. Besides offering M.Tech and Ph.D degrees in the area of Nuclear Engineering & TechnologyDepartmentofAtomicEnergy. Contact Head Nuclear Engineering & Technology Programme Indian Institute of Technology Kanpur Kanpur - 208.iitk.ac.in/net/ Nuclear Engineering & Technology Programme IITK Indian Institute of Technology Kanpur 3D Tomographic

Srivastava, Kumar Vaibhav

63

TECH SAVVY! Tech Savvy Girls without Limits...  

E-Print Network [OSTI]

is grateful for significant funding from Praxair, Inc. through the Praxair Foundation. The Buffalo Branch for Tech Savvy was provided by our major sponsor for six years... the Praxair Foundation. The Buffalo. AAUW is partnering with Praxair, UB's School of Engineering, WTS, Inc., and many others in Western New

Krovi, Venkat

64

Clean and Renewable Energy | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPower Address: 13615 StoweCleanClean-Tech

65

CLEAN AIR | FEDEX | NATIONAL CLEAN ENERGY SUMMIT | CLEAN ENERGY...  

Open Energy Info (EERE)

| NATIONAL CLEAN ENERGY SUMMIT | CLEAN ENERGY ACT | ENERGY INDEPENDENCE | FREDRICK SMITH | OIL | RENEWABLE ENERGY Home There are currently no posts in this category. Syndicate...

66

GEAR Tech-21 Hello World  

E-Print Network [OSTI]

GEAR Tech-21 Hello World Throughout the activity, look for and record the definitions - Important Terms #12;GEAR Tech-21 Hello World Share what you did! What did you learn? Process what

Farritor, Shane

67

Clean Cities Internships  

Broader source: Energy.gov [DOE]

Clean Cities offers internships through the Clean Cities University Workforce Development Program, which unites Clean Cities coalitions with students interested in changing the future of onroad...

68

BERKELEY LAW CERTIFICATE OF SPECIALIZATION IN ENERGY AND CLEAN TECHNOLOGY LAW (LLM) 2010-2011  

E-Print Network [OSTI]

BERKELEY LAW CERTIFICATE OF SPECIALIZATION IN ENERGY AND CLEAN TECHNOLOGY LAW (LLM) 2010 and a description of any major papers you have authored involving any aspect of energy or clean technology law & Energy Science / Technology ("TECH"); and Finance & Energy Business ("BIZ") you have completed and passed

Kammen, Daniel M.

69

GEAR Tech-21 Hello World  

E-Print Network [OSTI]

GEAR Tech-21 Hello World 1 Established Goals Activity Outline Activity Timeline Equipment Needs and predictions that are based on data. At a Glance #12;GEAR Tech-21 Hello World 2 Key Knowledge and Skills;GEAR Tech-21 Hello World 3 Before the Session You must complete this activity before working with your

Farritor, Shane

70

New Request for Information (RFI) on Clean Energy Manufacturing...  

Broader source: Energy.gov (indexed) [DOE]

(RFI) on Clean Energy Manufacturing Topic Areas New Request for Information (RFI) on Clean Energy Manufacturing Topic Areas September 3, 2014 - 10:07am Addthis Save the Date -...

71

Dry-cleaning of graphene  

SciTech Connect (OSTI)

Studies of the structural and electronic properties of graphene in its pristine state are hindered by hydrocarbon contamination on the surfaces. Also, in many applications, contamination reduces the performance of graphene. Contamination is introduced during sample preparation and is adsorbed also directly from air. Here, we report on the development of a simple dry-cleaning method for producing large atomically clean areas in free-standing graphene. The cleanness of graphene is proven using aberration-corrected high-resolution transmission electron microscopy and electron spectroscopy.

Algara-Siller, Gerardo [Central Facility for Electron Microscopy, Group of Electron Microscopy of Materials Science, Ulm University, Albert-Einstein-Allee 11, Ulm 89081 (Germany); Department of Chemistry, Technical University Ilmenau, Weimarer Strasse 25, Ilmenau 98693 (Germany); Lehtinen, Ossi; Kaiser, Ute, E-mail: ute.kaiser@uni-ulm.de [Central Facility for Electron Microscopy, Group of Electron Microscopy of Materials Science, Ulm University, Albert-Einstein-Allee 11, Ulm 89081 (Germany); Turchanin, Andrey [Faculty of Physics, University of Bielefeld, Universittsstr. 25, Bielefeld 33615 (Germany)

2014-04-14T23:59:59.000Z

72

Joint China-United States Report for Year 1 Insulation Materials and Systems Project Area Clean Energy Research Center Building Energy Efficiency (CERC-BEE)  

SciTech Connect (OSTI)

In November of 2009, the presidents of China and the U.S. announced the establishment of the Clean Energy Research Center (CERC). This broad research effort is co-funded by both countries and involves a large number of research centers and universities in both countries. One part of this program is focused on improving the energy efficiency of buildings. One portion of the CERC-BEE was focused on building insulation systems. The research objective of this effort was to Identify and investigate candidate high performance fire resistant building insulation technologies that meet the goal of building code compliance for exterior wall applications in green buildings in multiple climate zones. A Joint Work Plan was established between researchers at the China Academy of Building Research and Oak Ridge National Laboratory. Efforts in the first year under this plan focused on information gathering. The objective of this research program is to reduce building energy use in China via improved building insulation technology. In cold regions in China, residents often use inefficient heating systems to provide a minimal comfort level within inefficient buildings. In warmer regions, air conditioning has not been commonly used. As living standards rise, energy consumption in these regions will increase dramatically unless significant improvements are made in building energy performance. Previous efforts that defined the current state of the built environment in China and in the U.S. will be used in this research. In countries around the world, building improvements have typically followed the implementation of more stringent building codes. There have been several changes in building codes in both the U.S. and China within the last few years. New U.S. building codes have increased the amount of wall insulation required in new buildings. New government statements from multiple agencies in China have recently changed the requirements for buildings in terms of energy efficiency and fire safety. A related issue is the degree to which new standards are adopted and enforced. In the U.S., standards are developed using a consensus process, and local government agencies are free to implement these standards or to ignore them. For example, some U.S. states are still using 2003 versions of the building efficiency standards. There is also a great variation in the degree to which the locally adopted standards are enforced in different U.S. cities and states. With a more central process in China, these issues are different, but possible impacts of variable enforcement efficacy may also exist. Therefore, current building codes in China will be compared to the current state of building fire-safety and energy-efficiency codes in the U.S. and areas for possible improvements in both countries will be explored. In particular, the focus of the applications in China will be on green buildings. The terminology of 'green buildings' has different meanings to different audiences. The U.S. research is interested in both new, green buildings, and on retrofitting existing inefficient buildings. An initial effort will be made to clarify the scope of the pertinent wall insulation systems for these applications.

Stovall, Therese K [ORNL; Biswas, Kaushik [ORNL; Song, Bo [China Academy of Building Research; Zhang, Sisi [China Academy of Building Research

2012-08-01T23:59:59.000Z

73

Clean Energy Policy Analysis: Impact Analysis of Potential Clean...  

Energy Savers [EERE]

Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative Clean Energy Policy Analysis: Impact Analysis of...

74

Energy Matters: An Invitation to Chat About Clean Tech Markets  

ScienceCinema (OSTI)

Do you have questions or ideas about how the U.S. Department of Energy can better move renewable energy technologies from labs to the market, to successful full-scale deployment? Richard Kauffman, newly appointed Senior Advisor to Energy Secretary Steven Chu, and former CEO of Good Energies would like to hear them. **LIVE CHAT EXPIRED**

Kauffman, Richard

2013-05-29T23:59:59.000Z

75

Advanced Offshore Wind Tech: Accelerating New Opportunities for Clean Energy  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced the selection of three projects that aim to advance the offshore wind industry and lower the cost of offshore wind technologies. Learn more about these technological innovations.

76

Energy Matters: An Invitation to Chat About Clean Tech Markets  

SciTech Connect (OSTI)

Do you have questions or ideas about how the U.S. Department of Energy can better move renewable energy technologies from labs to the market, to successful full-scale deployment? Richard Kauffman, newly appointed Senior Advisor to Energy Secretary Steven Chu, and former CEO of Good Energies would like to hear them. **LIVE CHAT EXPIRED**

Kauffman, Richard

2011-01-01T23:59:59.000Z

77

Growing a Solar Industry in the Sacramento Clean Tech Zone  

Broader source: Energy.gov [DOE]

This summary report documents the assessment and evaluation process and results, with conclusions that can be used as guidelines for solar and solar supply chain focused investments.

78

A List of Clean Tech Patents Guan-Cheng Li  

E-Print Network [OSTI]

(Figure 1)- lone inventor, venture backed firm, small & medium firm, academic, biofuel, geothermal, hydro, and nuclear. Figure 1. Screenshot of companies IP Checkups, Inc. For the solar, wind, biofuel, geothermal, and hydro

Sekhon, Jasjeet S.

79

System/Building Tech Integration | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SystemBuilding Integration SHARE System Building Technologies Integration The buildings industry encompasses numerous designers, builders, construction materials and components...

80

DP CleanTech Company Limited | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA0021-EADP

Note: This page contains sample records for the topic "area clean tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

CleanTech Partners Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPower Address: 13615Boulder Jump to:

82

Students' Clean Tech Projects: Driving Commercial Success | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate Characterization| DepartmentDepartment|Department

83

System/Building Tech Integration | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign Object Damage 3Nationalmimic keyProcessing -

84

Clean coal  

SciTech Connect (OSTI)

The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

Liang-Shih Fan; Fanxing Li [Ohio State University, OH (United States). Dept. of Chemical and Biomolecular Engineering

2006-07-15T23:59:59.000Z

85

Clean Cities Fact Sheet  

SciTech Connect (OSTI)

This is a routine revision of a general fact sheet that describes the Clean Cities partnership efforts and includes a list of Clean Cities coordinators.

Not Available

2005-09-01T23:59:59.000Z

86

CT Clean Energy Communities  

Broader source: Energy.gov [DOE]

The Clean Energy Communities program, offered by the Clean Energy Finance & Investment Authority and the Connecticut Energy Efficiency Fund, offers incentives for communities that pledge their...

87

CT Clean Energy Communities  

Broader source: Energy.gov [DOE]

The Clean Energy Communities program, offered by the Clean Energy Finance and Investment Authority and the Connecticut Energy Efficiency Fund, offers incentives for communities that pledge their...

88

Wireless@Virginia Tech Telecommunications  

E-Print Network [OSTI]

Wireless@Virginia Tech SWIM VLSI for Telecommunications The Institute for Critical Technology Whittemore Hall Bradley Department of Electrical and Computer Engineering Virginia Tech Blacksburg, VA 24061 units Power-line communications for vehicles, ships and airplanes Power conditioning circuits for energy

Beex, A. A. "Louis"

89

FACT SHEET: U.S.-China Clean Energy Cooperation Announcements  

Broader source: Energy.gov (indexed) [DOE]

years in each of the three areas of the Center's work: buildings energy efficiency, clean coal and clean vehicles. An official CERC logo was unveiled and the website was launched...

90

High Energy Physics Research at Louisiana Tech  

SciTech Connect (OSTI)

The goal of this project was to create, maintain, and strengthen a world-class, nationally and internationally recognized experimental high energy physics group at Louisiana Tech University, focusing on research at the energy frontier of collider-based particle physics, first on the D? experiment and then with the ATLAS experiment, and providing leadership within the US high energy physics community in the areas of jet physics, top quark and charged Higgs decays involving tau leptons, as well as developing leadership in high performance computing.

Sawyer, Lee; Greenwood, Zeno; Wobisch, Marcus

2013-06-28T23:59:59.000Z

91

Clemson Tech ConnectDay - Day 2 | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of WesternVail Global Energy Forum Dr.2SitesA.Tech

92

LOUISIANA TECH UNIVERSITY PURCHASING OFFICE  

E-Print Network [OSTI]

LOUISIANA TECH UNIVERSITY PURCHASING OFFICE REQUEST FOR NON COMPETITIVE BID PROCESS OF LABORATORY: ___________________________________________________________________________________ ___________________________________________________________________________________ ___________________________________________________________________________________ 3. Relevance of purchase of items listed above to YOUR MISSION, PURPOSE, RESEARCH OR STUDY_______________________________________ Purchasing Dept _________________ Date 04/08/09 #12;

Selmic, Sandra

93

Clean and Renewable Energy - Q & A | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPower Address: 13615 StoweCleanClean-Tech LLCSan-

94

Roadmap: Technology Bachelor of Science [AT-BS-TECH  

E-Print Network [OSTI]

Reasoning TECH 10001 Information Technology 3 TECH 13580 Engineering Graphics I 3 TECH 20002 Materials] MATH 11022 Trigonometry 3 Fulfills Kent Core Additional TECH 23581 Computer-Aided Engineering Graphics offered on Regional Campuses only Semester Four: [14-16 Credit Hours] TECH 20001 Energy/Power 3 TECH

Sheridan, Scott

95

#CleanTechNow: Your Best Clean Energy Photos | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars and Sense Committee) Page

96

AREA  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South Valley ResponsibleSubmissionofDepartmentNo.7-052 ofFocusAREA FAQ #

97

Clean Energy Portfolio Goal  

Broader source: Energy.gov [DOE]

In May 2011, Indiana enacted SB 251, creating the Clean Energy Portfolio Standard (CPS). The program sets a voluntary goal of 10% clean energy by 2025, based on the amount of electricity supplied...

98

What Is Clean Cities?  

SciTech Connect (OSTI)

This Clean Cities Program fact sheet describes the purpose and scope of this DOE program. Clean Cities facilitates the use of alternative and advanced fuels and vehicles to displace petroleum in the transportation sector.

Not Available

2007-08-01T23:59:59.000Z

99

What Is Clean Cities?  

SciTech Connect (OSTI)

Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

Not Available

2008-04-01T23:59:59.000Z

100

What is Clean Cities?  

SciTech Connect (OSTI)

Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

Not Available

2008-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "area clean tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Clean Cities: Alamo Area Clean Cities (San Antonio) coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheirCheckInnovation,Classroom VisitsPropane4Cities1Alamo

102

Revegetation Plan for Areas of the Fitzner-Eberhardt Arid Lands Ecology Reserve Affected by Decommissioning of Buildings and Infrastructure and Debris Clean-up Actions  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Richland Operations Office is working to remove a number of facilities on the Fitzner Eberhardt Arid Lands Ecology Reserve (ALE), which is part of the Hanford Reach National Monument. Decommissioning and removal of buildings and debris on ALE will leave bare soils and excavated areas that need to be revegetated to prevent erosion and weed invasion. Four main areas within ALE are affected by these activities (DOE 2009;DOE/EA-1660F): 1) facilities along the ridgeline of Rattlesnake Mountain, 2) the former Nike missile base and ALE HQ laboratory buildings, 3) the aquatic research laboratory at Rattlesnake Springs area, and 4) a number of small sites across ALE where various types of debris remain from previous uses. This revegetation plan addresses the revegetation and restoration of those land areas disturbed by decommissioning and removal of buildings, facilities and associated infrastructure or debris removal. The primary objective of the revegetation efforts on ALE is to establish native vegetation at each of the sites that will enhance and accelerate the recovery of the native plant community that naturally persists at that location. Revegetation is intended to meet the direction specified by the Environmental Assessment (DOE 2009; DOE/EA-1660F) and by Stipulation C.7 of the Memorandum of Agreement (MOA) for the Rattlesnake Mountain Combined Community Communication Facility and InfrastructureCleanup on the Fitzner/Eberhardt Arid Lands Ecology Reserve, Hanford Site, Richland Washington(DOE 2009; Appendix B). Pacific Northwest National Laboratory (PNNL) under contract with CH2M Hill Plateau Remediation Company (CPRC) and in consultation with the tribes and DOE-RL developed a site-specific strategy for each of the revegetation units identified within this document. The strategy and implementation approach for each revegetation unit identifies an appropriate native species mix and outlines the necessary site preparation activities and specific methods for seeding and planting at each area. evegetation work is scheduled to commence during the first quarter of FY 2011 to minimize the amount of time that sites are unvegetated and more susceptible to invasion by non-native weedy annual species.

Downs, Janelle L.; Durham, Robin E.; Larson, Kyle B.

2011-01-01T23:59:59.000Z

103

Clean Cities: St. Louis Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth Shore CleanSt. Louis Clean Cities

104

Clean Cities: Tucson Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth Shore CleanSt.Tucson Clean Cities

105

Clean Cities: Twin Cities Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth Shore CleanSt.Tucson CleanTwin

106

Conference Registration Form Wireless at Virginia Tech  

E-Print Network [OSTI]

Virginia Tech, Mail Code 0272 702 University City Blvd. Blacksburg, VA 24061 phone: 540/231­5182 fax: 540

Beex, A. A. "Louis"

107

Cleaning on a Shoestring.  

E-Print Network [OSTI]

or copper object is cleaned, a thin coat of tung oil may be applied to give it a soft luster. 4 BUTCHER BLOCK Most butcher blocks are made of solid hard maple and are, therefore, relatively easy to care for. Clean when necessary with warm water..., but fortunately, it can be cleaned with water and a sponge. If a build up of soap scum occurs, add one teaspoon washing soda or packaged water softener to the cleaning solution. Nonabrasive cleaning powders may also be used. Be sure to remove all traces...

McCutcheon, Linda Flowers

1982-01-01T23:59:59.000Z

108

Clean Energy Infrastructure Educational Initiative  

SciTech Connect (OSTI)

The Clean Energy Infrastructure Educational Initiative represents a collaborative effort by the University of Dayton, Wright State University and Sinclair Community College. This effort above all aimed to establish energy related programs at each of the universities while also providing outreach to the local, state-wide, and national communities. At the University of Dayton, the grant has aimed at: solidfying a newly created Master??s program in Renewable and Clean Energy; helping to establish and staff a regional sustainability organization for SW Ohio. As well, as the prime grantee, the University of Dayton was responsible for insuring curricular sharing between WSU and the University of Dayton. Finally, the grant, through its support of graduate students, and through cooperation with the largest utilities in SW Ohio enabled a region-wide evaluation of over 10,000 commercial building buildings in order to identify the priority buildings in the region for energy reduction. In each, the grant has achieved success. The main focus of Wright State was to continue the development of graduate education in renewable and clean energy. Wright State has done this in a number of ways. First and foremost this was done by continuing the development of the new Renewable and Clean Energy Master??s Degree program at Wright State . Development tasks included: continuing development of courses for the Renewable and Clean Energy Master??s Degree, increasing the student enrollment, and increasing renewable and clean energy research work. The grant has enabled development and/or improvement of 7 courses. Collectively, the University of Dayton and WSU offer perhaps the most comprehensive list of courses in the renewable and clean energy area in the country. Because of this development, enrollment at WSU has increased from 4 students to 23. Secondly, the grant has helped to support student research aimed in the renewable and clean energy program. The grant helped to solidify new research in the renewable and clean energy area. The educational outreach provided as a result of the grant included activities to introduce renewable and clean energy design projects into the Mechanical and Materials Engineering senior design class, the development of a geothermal energy demonstration unit, and the development of renewable energy learning modules for high school students. Finally, this grant supported curriculum development by Sinclair Community College for seven new courses and acquisition of necessary related instrumentation and laboratory equipment. These new courses, EGV 1201 Weatherization Training, EGV 1251 Introduction to Energy Management Principles, EGV 2301 Commercial and Industrial Assessment, EGV 2351 LEED Green Associate Exam Preparation, EGV 2251 Energy Control Strategies, EGV Solar Photovoltaic Design and Installation, and EGV Solar Thermal Systems, enable Sinclair to offer complete Energy Technology Certificate and an Energy Management Degree programs. To date, 151 students have completed or are currently registered in one of the seven courses developed through this grant. With the increasing interest in the Energy Management Degree program, Sinclair has begun the procedure to have the program approved by the Ohio Board of Regents.

Hallinan, Kevin; Menart, James; Gilbert, Robert

2012-08-31T23:59:59.000Z

109

Clean Cities Overview  

Broader source: Energy.gov (indexed) [DOE]

were funded to increase availability and awareness of alternative fuels and advanced technology vehicles. Clean Cities 11 * Tucson Coalition - moves Christmas tree across US...

110

What is Clean Cities?  

SciTech Connect (OSTI)

Clean Cities fact sheet describe this DOE program, which deploys alternative and advanced fuels and vehicles to displace petroleum in the transportation sector.

Not Available

2006-07-01T23:59:59.000Z

111

Clean Coal Projects (Virginia)  

Broader source: Energy.gov [DOE]

This legislation directs the Virginia Air Pollution Control Board to facilitate the construction and implementation of clean coal projects by expediting the permitting process for such projects.

112

TITAN TECH TALK INFORMATION TECHNOLOGY  

E-Print Network [OSTI]

TITAN TECH TALK INFORMATION TECHNOLOGY VOLUME I, ISSUE II AUGUST 2013 INSIDE THIS ISSUE Pg. 6 Mobile Yes Yes Yes PC Yes TOP 4 REASONS to use iFullerton: With more than 20 features, you may be asking management system, powered by Moodle, gives you access to your classes. 2. MAPS First day at Cal State

de Lijser, Peter

113

Georgia Tech Vehicle Acquisition and  

E-Print Network [OSTI]

1 2012 Georgia Tech 10/10/2012 Vehicle Acquisition and Disposition Manual #12;2 Vehicle Procedures Regardless of value, all vehicles should be included in this process. Acquisition of a Vehicle 1. Contact Fleet Coordinator to guide the departments in the purchasing process for all vehicles. 2. Fill out

114

GEAR Tech-21 Geographic Coordinates  

E-Print Network [OSTI]

and two others on the grid below: Important Terms #12;GEAR Tech-21 Geographic Coordinates How Far Are They on the grid below. You will need to label your grid. Using the data you collected, relate the points to one Coordinates Map Challenge Lincoln, Nebraska: Two cities with the same latitude: Two cities with the same

Farritor, Shane

115

Clean Cities: Denver Metro Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York (Buffalo)Denver Metro Clean

116

Clean Cities: Greater Philadelphia Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreater New Haven Clean

117

Clean Cities: Kentucky Clean Cities Partnership coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreater NewKentucky Clean Cities

118

Clean Cities: Maine Clean Communities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreater NewKentuckyLosMaine Clean

119

Clean Cities: Northern Colorado Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreaterNorth Dakota CleanNorthern

120

Clean Cities: South Shore Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth Shore Clean Cities Coalition The

Note: This page contains sample records for the topic "area clean tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Clean Cities: Treasure Valley Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth Shore CleanSt. LouisTampa

122

Clean Cities: Utah Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth Shore CleanSt.Tucson

123

Clean Cities: Virginia Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth Shore CleanSt.TucsonValley

124

Clean Cities: Wisconsin Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth ShoreWashington Clean

125

Clean Cities: Southern California Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue Valley CleanCalifornia Clean

126

2013 Second Quarter Clean Energy/Clean Transportation Jobs Report  

Broader source: Energy.gov [DOE]

Enivronmental Entrepreneurs (E2) Clean Energy/Clean Transportation Jobs Report tracks clean energy job announcements from companies, elected officials, the media and other sources, to show how how...

127

Virginia Tech Shines Light on Home Efficiency | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Virginia Tech Shines Light on Home Efficiency Virginia Tech Shines Light on Home Efficiency July 9, 2010 - 10:54am Addthis Virginia Tech's solar-powered Lumenhaus was designed for...

128

Summer ICE@Tech Computing Camps  

E-Print Network [OSTI]

Summer ICE@Tech Computing Camps Session I: June 5th - June 9th Session II: July 10th July 14th (404) 385-2273 Fax (404) 385-0965 http://www.cc.gatech.edu/campice 1 #12;2 Summer ICE@Tech Program Handbook #12;3 Summer ICE@Tech is a computing and technology program for students entering 10th , 11th

Guzdial, Mark

129

Fuel Cell Technologies Office Launches National Laboratory Tech...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Office Launches National Laboratory Tech-to-Market Activities Fuel Cell Technologies Office Launches National Laboratory Tech-to-Market Activities November 3, 2014 -...

130

Mentoring and Educating to Increase Diversity in Science, Tech...  

Broader source: Energy.gov (indexed) [DOE]

Mentoring and Educating to Increase Diversity in Science, Tech, Engineering and Math Mentoring and Educating to Increase Diversity in Science, Tech, Engineering and Math October...

131

Virginia Tech Selected to Continue Development of Innovative...  

Office of Environmental Management (EM)

Virginia Tech Selected to Continue Development of Innovative Building Automation System Virginia Tech Selected to Continue Development of Innovative Building Automation System...

132

Clean Cities Education & Outreach Activities  

Broader source: Energy.gov (indexed) [DOE]

information. Project ID: TI002 Clean Cities Education & Outreach Activities Kay L. Kelly U.S. Department of Energy Golden Field Office June 8, 2010 Clean Cities Education &...

133

Clean Energy Resource Teams (Minnesota)  

Broader source: Energy.gov [DOE]

Clean Energy Resource Teams (CERTs) are community-based groups stemming from a state, university, and nonprofit partnership to encourage community energy planning and clean energy project...

134

Keeping condensers clean  

SciTech Connect (OSTI)

The humble condenser is among the biggest contributors to a steam power plant's efficiency. But although a clean condenser can provide great economic benefit, a dirty one can raise plant heat rate, resulting in large losses of generation revenue and/or unnecessarily high fuel bills. Conventional methods for cleaning fouled tubes range form chemicals to scrapers to brushes and hydro-blasters. This article compares the available options and describes how one power station, Omaha Public Power District's 600 MW North Omaha coal-fired power station, cleaned up its act. The makeup and cooling water of all its five units comes from the Missouri River. 6 figs.

Wicker, K.

2006-04-15T23:59:59.000Z

135

Cleaning method and apparatus  

DOE Patents [OSTI]

A method of very thoroughly and quikcly cleaning a guaze electrode used in chemical analyses is given, as well as an automobile cleaning apparatus which makes use of the method. The method generates very little waste solution, and this is very important in analyzing radioactive materials, especially in aqueous solutions. The cleaning apparatus can be used in a larger, fully automated controlled potential coulometric apparatus. About 99.98% of a 5 mg plutonium sample was removed in less than 3 minutes, using only about 60 ml of rinse solution and two main rinse steps.

Jackson, D.D.; Hollen, R.M.

1981-02-27T23:59:59.000Z

136

Cleaning on a Shoestring.  

E-Print Network [OSTI]

DOC , TA24S.7 873 0.1293 CLEANING ON A SHOESTRING Extension Home Management Specialists The Texas A&M University System Cleaning on a shoestring can be approached two ways - from the standpoint of time or money. It is possible to create your... own home-care products or to purchase commercial products. Home-created products often are less expensive but require more time to make. Many cleaning products available today are basic ingredients that have been premixed, perfumed and packaged...

Anonymous,

1980-01-01T23:59:59.000Z

137

Clean Cities: Rogue Valley Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue Valley Clean Cities Coalition

138

Clean Cities: Sacramento Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue Valley Clean Cities

139

Clean Cities: Southeast Florida Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue Valley Clean

140

Clean Cities: Southern Colorado Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue Valley CleanCalifornia

Note: This page contains sample records for the topic "area clean tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Breathing rust -and new life into bug science | csmonitor.com WORLD USA COMMENTARY WORK & MONEY LEARNING LIVING SCI / TECH ARTS & LEISURE BOOKS THE HOME FORUM  

E-Print Network [OSTI]

LEARNING LIVING SCI / TECH ARTS & LEISURE BOOKS THE HOME FORUM Home About Us/Help | Archive | Subscribe, the demand for new energy sources, the mystery of Earth's earliest life, and the search for life in space predict its behavior in other applications. If the US today were to try to clean all its nuclear sites

Lovley, Derek

142

Clean Energy Works (Oregon)  

Broader source: Energy.gov [DOE]

Clean Energy Works began in 2009 as a pilot program run by the City of Portland. In 2010, the US department of Energy awarded $20 million to create a statewide nonprofit to expand the program...

143

Clean Coal Research  

Broader source: Energy.gov [DOE]

DOE's clean coal R&D isfocused on developing and demonstrating advanced power generation and carbon capture, utilization and storage technologies for existing facilities and new fossil-fueled...

144

Clean Coal Technology (Indiana)  

Broader source: Energy.gov [DOE]

A public utility may not use clean coal technology at a new or existing electric generating facility without first applying for and obtaining from the Utility Regulatory Commission a certificate...

145

High-Tech Means High-Efficiency: The Business Case for EnergyManagement in High-Tech Industries  

SciTech Connect (OSTI)

In the race to apply new technologies in ''high-tech'' facilities such as data centers, laboratories, and clean rooms, much emphasis has been placed on improving service, building capacity, and increasing speed. These facilities are socially and economically important, as part of the critical infrastructure for pharmaceuticals,electronics, communications, and many other sectors. With a singular focus on throughput, some important design issues can be overlooked, such as the energy efficiency of individual equipment (e.g., lasers, routers and switches) as well as the integration of high-tech equipment into the power distribution system and the building envelope. Among technology-based businesses, improving energy efficiency presents an often untapped opportunity to increase profits, enhance process control,maximize asset value, improve the work place environment, and manage a variety of business risks. Oddly enough, the adoption of energy efficiency improvements in this sector lags behind many others. As a result, millions of dollars are left on the table with each year ofoperation.

Shanshoian, Gary; Blazek, Michele; Naughton, Phil; Seese, RobertS.; Mills, Evan; Tschudi, William

2005-11-15T23:59:59.000Z

146

What is Clean Cities? (Brochure)  

SciTech Connect (OSTI)

Fact sheet describes the Clean Cities program and includes the contact information for its 87 coalitions.

Not Available

2011-03-01T23:59:59.000Z

147

Texas Tech University Report on Laboratory Safety  

E-Print Network [OSTI]

to become exemplary in our campus climate and culture around laboratory safety. OBJECTIVES AND METHOLODOLOGYTexas Tech University Report on Laboratory Safety February 14, 2014 Project #2014027 #12;February and Dr. Schovanec: We have completed our audit of laboratory safety at Texas Tech University (University

Rock, Chris

148

E-Print Network 3.0 - area determines forest Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Virginia Tech Collection: Environmental Sciences and Ecology 3 Linking STATSGO and FIA data for spatial and temporal analyses of carbon storage in forested land areas Summary:...

149

E-Print Network 3.0 - area specific studies Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage, Conversion and Utilization 7 Virginia Tech General Education Survey State Council of Higher Education for Virginia Summary: AREA 6 Y Y BLST 1714 Introduction to...

150

Cleaning Membranes with Focused Ultrasound Beams for Drinking Water Treatment  

E-Print Network [OSTI]

Cleaning Membranes with Focused Ultrasound Beams for Drinking Water Treatment Jian-yu Lu1 , Xi Du2: jilu@eng.utoledo.edu Abstract ­ Traditional methods for water treatment are not effective to remove to clean a large membrane area needed for a typical water treatment plant. In this paper, a focused

Lu, Jian-yu

151

Clean Cities: Arkansas Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheirCheckInnovation,ClassroomArkansas Clean Cities

152

Clean Cities: Central Coast Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheirCheckInnovation,ClassroomArkansas CleanCapitol

153

Clean Cities: Clean Cities-Georgia coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheirCheckInnovation,ClassroomArkansasCentralChicagoClean

154

Clean Cities: Clean Fuels Ohio coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York (Buffalo) Coalition The

155

Clean Cities: East Tennessee Clean Fuels coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York (Buffalo)Denver MetroBay

156

Clean Cities: Empire Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York (Buffalo)Denver MetroBayEmpire

157

Clean Cities: Granite State Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York (Buffalo)DenverGranite State

158

Clean Cities: Greater Indiana Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York (Buffalo)DenverGranite

159

Clean Cities: Los Angeles Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreater NewKentuckyLos Angeles

160

Clean Cities: New Jersey Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreater

Note: This page contains sample records for the topic "area clean tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Clean Cities: Norwich Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreaterNorth Dakota

162

Clean Cities: Ocean State Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreaterNorth DakotaOcean State

163

Clean Cities: Pittsburgh Region Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreaterNorth DakotaOceanPittsburgh

164

Clean Cities: Iowa Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4 VehicleGeneseeIowa Clean Cities

165

Clean Cities: Long Beach Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4 VehicleGeneseeIowa CleanLong Beach

166

Clean Cities: Louisiana Clean Fuels coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4 VehicleGeneseeIowa CleanLong

167

Clean Cities: San Francisco Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue Valley Clean CitiesSan

168

Clean Cities: Tampa Bay Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue Valley CleanCaliforniaTampa Bay

169

Clean Energy Manufacturing: U.S. Competitiveness and State Policy Strategies (Presentation)  

SciTech Connect (OSTI)

The capital intensive nature of clean energy technologies suggests that manufacturing clean energy equipment has the potential to support state and local economic development efforts. However, manufacturing siting decisions tend to be complex and multi-variable decision processes that require in-depth knowledge of specific markets, the logistical requirements of a given technology, and insight into global clean tech trends. This presentation highlights the potential of manufacturing in supporting economic development opportunities while also providing examples of the financial considerations affecting manufacturing facility siting decisions for wind turbine blades and solar PV. The presentation also includes discussion of other more qualitative drivers of facility siting decisions as gleaned from NREL industry interviews and discusses strategies state and local policymakers may employee to bolster their chances of successfully attracting clean energy manufacturers to their localities.

Lantz, E.

2014-02-01T23:59:59.000Z

170

Fermilab Today | Texas Tech University  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall Works:Oklahoma StateBuffalo May 30,Tech

171

Bekk Tech | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass Facility JumpBedford RuralOpenBekk Tech Jump to:

172

Enerkem Tech | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSan Leandro, California Zip: EnergyEnergySolutions IncTech

173

Clean Coal Power Initiative  

SciTech Connect (OSTI)

This report is the fifth quarterly Technical Progress Report submitted by NeuCo, Incorporated, under Award Identification Number, DE-FC26-04NT41768. This award is part of the Clean Coal Power Initiative (''CCPI''), the ten-year, $2B initiative to demonstrate new clean coal technologies in the field. This report is one of the required reports listed in Attachment B Federal Assistance Reporting Checklist, part of the Cooperative Agreement. The report covers the award period January 1, 2006 - March 31, 2006 and NeuCo's efforts within design, development, and deployment of on-line optimization systems during that period.

Doug Bartlett; Rob James; John McDermott; Neel Parikh; Sanjay Patnaik; Camilla Podowski

2006-03-31T23:59:59.000Z

174

Clean the Past  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and Userof aChristina MartosLibraryClaytonCleanClean the

175

Clean Energy Application Center  

SciTech Connect (OSTI)

The Mid Atlantic Clean Energy Application Center (MACEAC), managed by The Penn State College of Engineering, serves the six states in the Mid-Atlantic region (Pennsylvania, New Jersey, Delaware, Maryland, Virginia and West Virginia) plus the District of Columbia. The goals of the Mid-Atlantic CEAC are to promote the adoption of Combined Heat and Power (CHP), Waste Heat Recovery (WHR) and District Energy Systems (DES) in the Mid Atlantic area through education and technical support to more than 1,200 regional industry and government representatives in the region. The successful promotion of these technologies by the MACEAC was accomplished through the following efforts; (1)The MACEAC developed a series of technology transfer networks with State energy and environmental offices, Association of Energy Engineers local chapters, local community development organizations, utilities and, Penn State Department of Architectural Engineering alumni and their firms to effectively educate local practitioners about the energy utilization, environmental and economic advantages of CHP, WHR and DES; (2) Completed assessments of the regional technical and market potential for CHP, WHR and DE technologies application in the context of state specific energy prices, state energy and efficiency portfolio development. The studies were completed for Pennsylvania, New Jersey and Maryland and included a set of incentive adoption probability models used as a to guide during implementation discussions with State energy policy makers; (3) Using the technical and market assessments and adoption incentive models, the Mid Atlantic CEAC developed regional strategic action plans for the promotion of CHP Application technology for Pennsylvania, New Jersey and Maryland; (4) The CHP market assessment and incentive adoption model information was discussed, on a continuing basis, with relevant state agencies, policy makers and Public Utility Commission organizations resulting in CHP favorable incentive programs in New Jersey, Pennsylvania, Maryland and Delaware; (5) Developed and maintained a MACEAC website to provide technical information and regional CHP, WHR and DE case studies and site profiles for use by interested stakeholders in information transfer and policy discussions; (6) Provided Technical Assistance through feasibility studies and on site evaluations. The MACEAC completed 28 technical evaluations and 9 Level 1 CHP analyses ; and (7) the MACEAC provided Technical Education to the region through a series of 29 workshops and webinars, 37 technical presentations, 14 seminars and participation in 13 CHP conferences.

Freihaut, Jim

2013-09-30T23:59:59.000Z

176

What is Clean Cities? Clean Cities, March 2010 (Brochure)  

SciTech Connect (OSTI)

Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

Not Available

2010-03-01T23:59:59.000Z

177

What Is Clean Cities? Clean Cities, November 2009 (Revised) (Brochure)  

SciTech Connect (OSTI)

Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

Not Available

2009-11-01T23:59:59.000Z

178

Clean Coal Program Research Activities  

SciTech Connect (OSTI)

Although remarkable progress has been made in developing technologies for the clean and efficient utilization of coal, the biggest challenge in the utilization of coal is still the protection of the environment. Specifically, electric utilities face increasingly stringent restriction on the emissions of NO{sub x} and SO{sub x}, new mercury emission standards, and mounting pressure for the mitigation of CO{sub 2} emissions, an environmental challenge that is greater than any they have previously faced. The Utah Clean Coal Program addressed issues related to innovations for existing power plants including retrofit technologies for carbon capture and sequestration (CCS) or green field plants with CCS. The Program focused on the following areas: simulation, mercury control, oxycoal combustion, gasification, sequestration, chemical looping combustion, materials investigations and student research experiences. The goal of this program was to begin to integrate the experimental and simulation activities and to partner with NETL researchers to integrate the Program's results with those at NETL, using simulation as the vehicle for integration and innovation. The investigators also committed to training students in coal utilization technology tuned to the environmental constraints that we face in the future; to this end the Program supported approximately 12 graduate students toward the completion of their graduate degree in addition to numerous undergraduate students. With the increased importance of coal for energy independence, training of graduate and undergraduate students in the development of new technologies is critical.

Larry Baxter; Eric Eddings; Thomas Fletcher; Kerry Kelly; JoAnn Lighty; Ronald Pugmire; Adel Sarofim; Geoffrey Silcox; Phillip Smith; Jeremy Thornock; Jost Wendt; Kevin Whitty

2009-03-31T23:59:59.000Z

179

Clean Cities: Pittsburgh Region Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Population: 4,142,700 Area: 24,855 sq. mi. Boundaries: Counties: Allegheny, Armstrong, Beaver, Bedford, Blair, Butler, Cambria, Cameron, Centre, Clairon, Clearfield,...

180

Clean Energy Policy Analyses: Analysis of the Status and Impact of Clean Energy Policies at the Local Level  

Office of Energy Efficiency and Renewable Energy (EERE)

This report aims to provide an initial overview of the current local clean energy policy landscape to develop a better understanding of the current policy environment and identify areas for further research.

Note: This page contains sample records for the topic "area clean tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Virginia Tech Department of Chemistry Faculty Position in Theoretical/Computational Chemistry  

E-Print Network [OSTI]

Virginia Tech Department of Chemistry Faculty Position in Theoretical/Computational Chemistry The Department of Chemistry announces a tenure-track opening in the area of Theoretical/Computational Chemistry have a Ph.D. in chemistry or a related field by time of appointment and 1 year of postdoctoral

Beex, A. A. "Louis"

182

USCAR FUEL CELL TECH TEAM CELL COMPONENT ACCELERATED STRESS TEST PROTOCOLS  

E-Print Network [OSTI]

USCAR FUEL CELL TECH TEAM CELL COMPONENT ACCELERATED STRESS TEST PROTOCOLS FOR PEM FUEL CELLS of polymer electrolyte membrane (PEM) fuel cell components under simulated automotive drive cycle conditions of PEM fuel cells. Corrosion of high-surface area carbon supports poses significant concerns at high

183

Transcript: Biomass Clean Cities Webinar - Workforce Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transcript: Biomass Clean Cities Webinar - Workforce Development Transcript: Biomass Clean Cities Webinar - Workforce Development Transcript of the BiomassClean Cities Workforce...

184

Clean Coal Power Initiative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Clean Coal Power Initiative Clean Coal Power Initiative "Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other...

185

IDEA Clean Energy Application Center  

SciTech Connect (OSTI)

The DOE Clean Energy Application Centers were launched with a goal of focusing on important aspects of our nations energy supply including Efficiency, Reliability and Resiliency. Clean Energy solutions based on Combined Heat & Power (CHP), District Energy and Waste Heat Recovery are at the core of ensuring a reliable and efficient energy infrastructure for campuses, communities, and industry and public enterprises across the country. IDEA members which include colleges and universities, hospitals, airports, downtown utilities as well as manufacturers, suppliers and service providers have long-standing expertise in the planning, design, construction and operations of Clean Energy systems. They represent an established base of successful projects and systems at scale and serve important and critical energy loads. They also offer experience, lessons learned and best practices which are of immense value to the sustained growth of the Clean Energy sector. IDEA has been able to leverage the funds from the project award to raise the visibility, improve the understanding and increase deployment CHP, District Energy and Waste Heat Recovery solutions across the regions of our nation, in collaboration with the regional CEACs. On August 30, 2012, President Obama signed an Executive Order to accelerate investments in industrial energy efficiency (EE), including CHP and set a national goal of 40 GW of new CHP installation over the next decade IDEA is pleased to have been able to support this Executive Order in a variety of ways including raising awareness of the goal through educational workshops and Conferences and recognizing the installation of large scale CHP and district energy systems A supporting key area of collaboration has involved IDEA providing technical assistance on District Energy/CHP project screenings and feasibility to the CEACs for multi building, multi-use projects. The award was instrumental in the development of a first-order screening/feasibility tool for these types of community energy projects. The Excel based tool incorporates hourly climate based building loads data to arrive at the composite energy demand for the district and compares the Net Present Value (NPV) of the costs of CHP/DE alternatives. This tool has been used to provide assistance to several projects in the Northeast, Mid-Atlantic, Intermountain and Pacific Regions. The tool was disseminated to the CEACs and supplemented by a Training Webinar and a How to Guide IDEA produced a US Community Energy Development Guide to support mayors, planners, community leaders, real estate developers and economic development officials who are interested in planning more sustainable urban energy infrastructure, creating community energy master plans and implementing CHP/ District Energy systems in cities, communities and towns. IDEA has collected industry data and provided a comprehensive data set containing information on District Energy installations in the US. District energy systems are present in 49 states and the District of Columbia. Of the 597 systems 55% were DE alone while the remainder was some combination of CHP, district heating, and district cooling. District energy systems that do not currently involve electric generation are strong near-term candidates for the adoption of CHP due to the magnitude of their aggregated thermal load. This data has helped inform specific and targeted initiatives including technical assistance provided by the CEACs for EPAs Boiler MACT Compliance by large District Heating System boilers. These outcomes have been greatly enabled by the close coordination and collaboration with DOE CEAC leadership and with the eight regional US DOE Clean Energy Application Centers and the awards incremental funding has allowed IDEA to leverage our resources to be an effective champion for Clean Energy.

Thornton, Robert

2013-09-30T23:59:59.000Z

186

Broadwind Energy Formerly Tower Tech Holdings | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Area SolarConnecticut:659243°Broadwind Energy Formerly Tower Tech

187

CLEAN ENERGY WORKFORCE TRAINING PROGRAM  

E-Print Network [OSTI]

installation and product manufacturing Clean transportation #12;CALIFORNIA SOLAR WORKFORCE PARTNERSHIP $3 energy workforce needs Build regional capacity in clean energy sector development Deliver industry and Workforce Development Agency, Economic Strategy Panel, California Workforce Investment Board, Air Resources

188

Sustainable development with clean coal  

SciTech Connect (OSTI)

This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

NONE

1997-08-01T23:59:59.000Z

189

What's Possible for Clean Energy  

E-Print Network [OSTI]

recognize a similar economic opportunity in clean energy technology. And this prospect isn't just about and a stable climate, which clean technology can ensure. FoR thE FIRSt tImE, WE hAvE A RoADmAP oF hoW to SCAl for clean energy technologies, and entrepreneurs can starting building the leading clean energy companies

Kammen, Daniel M.

190

CENTER FOR GEOSPATIAL TECHNOLOGY TEXAS TECH UNIVERSITY  

E-Print Network [OSTI]

1 CENTER FOR GEOSPATIAL TECHNOLOGY TEXAS TECH UNIVERSITY STRATEGIC PLAN MISSION STATEMENT The mission of the Center for Geospatial Technology is to promote, facilitate and support the application of geospatial technologies in interdisciplinary research, education and community service. VISION STATEMENT

Rock, Chris

191

Max Tech and Beyond Design Competition  

Broader source: Energy.gov [DOE]

The Max Tech and Beyond Design Competition is an annual competition run by the Department of Energy (DOE) and the Lawrence Berkeley National Laboratory (LBNL) that challenges students to design...

192

Energy Positioning Statement Texas Tech University  

E-Print Network [OSTI]

Energy Positioning Statement Texas Tech University Whitacre College of Engineering The Whitacre sufficient and sustainable energy sources to power its future. The college is committed to conducting cutting edge research and providing educational programs related to traditional and unconventional energy

Zhang, Yuanlin

193

TEXAS TECH UNIVERSITY MEDIA AND COMMUNICATION BUILDING  

E-Print Network [OSTI]

, a division of the Texas Tech University Physical Plant. Power for the building is provided by Lubbock Power: Fire Bomb Threat Flood Tornado Suspicious Shooter Active Shooter/Armed Subject I. General

Rock, Chris

194

Cleaning of Free Machining Brass  

SciTech Connect (OSTI)

We have investigated four brightening treatments proposed by two cleaning vendors for cleaning free machining brass. The experimental results showed that none of the proposed brightening treatments passed the swipe test. Thus, we maintain the recommendation of not using the brightening process in the cleaning of free machining brass for NIF application.

Shen, T

2005-12-29T23:59:59.000Z

195

CONSORTIUM FOR CLEAN COAL UTILIZATION  

E-Print Network [OSTI]

CONSORTIUM FOR CLEAN COAL UTILIZATION Call for Proposals Date of Issue: July 29, 2013 The Consortium for Clean Coal Utilization (CCCU) at Washington University in St. Louis was established in January of Clean Coal Utilization. The format may be a conference or workshop, or a seminar given by a leading

Subramanian, Venkat

196

EcoCAR Challenge Profile: Virginia Tech  

ScienceCinema (OSTI)

Since childhood, Lynn Gantt has had a deep seeded passion for cars and the mechanics that drive them. The Virginia native spent his weekends rebuilding antique tractors with his dad to race at tractor pulls across the state, and now the Virginia Tech graduate student is the proud team co-leader of Virginia Tech's EcoCAR Challenge team -- the winners of the three-year long competition, as announced last night at an awards ceremony in Washington, D.C..

Gantt, Lynn

2013-05-29T23:59:59.000Z

197

Healy Clean Coal Project  

SciTech Connect (OSTI)

The Healy Clean Coal Project, selected by the U.S. Department of Energy under Round 111 of the Clean Coal Technology Program, has been constructed and is currently in the Phase 111 Demonstration Testing. The project is owned and financed by the Alaska Industrial Development and Export Authority (AIDEA), and is cofunded by the U.S. Department of Energy. Construction was 100% completed in mid-November of 1997, with coal firing trials starting in early 1998. Demonstration testing and reporting of the results will take place in 1998, followed by commercial operation of the facility. The emission levels of nitrogen oxides (NOx), sulfur dioxide (S02), and particulate from this 50-megawatt plant are expected to be significantly lower than current standards.

None

1997-12-31T23:59:59.000Z

198

Clean steels for fusion  

SciTech Connect (OSTI)

Fusion energy production has an inherent advantage over fission: a fuel supply with reduced long term radioactivity. One of the leading candidate materials for structural applications in a fusion reactor is a tungsten stabilized 9% chromium Martensitic steel. This alloy class is being considered because it offers the opportunity to maintain that advantage in the reactor structure as well as provide good high temperature strength and radiation induced swelling and embrittlement resistance. However, calculations indicate that to obtain acceptable radioactivity levels within 500 years after service, clean steel will be required because the niobium impurity levels must be kept below about 2 appm and nickel, molybdenum, nitrogen, copper, and aluminum must be intentionally restricted. International efforts are addressing the problems of clean steel production. Recently, a 5,000 kg heat was vacuum induction melted in Japan using high purity commercial raw materials giving niobium levels less than 0.7 appm. This paper reviews the need for reduced long term radioactivity, defines the advantageous properties of the tungsten stabilized Martensitic steel class, and describes the international efforts to produce acceptable clean steels.

Gelles, D.S.

1995-03-01T23:59:59.000Z

199

Gas cleaning system and method  

SciTech Connect (OSTI)

A gas cleaning system for removing at least a portion of contaminants, such as halides, sulfur, particulates, mercury, and others, from a synthesis gas (syngas). The gas cleaning system may include one or more filter vessels coupled in series for removing halides, particulates, and sulfur from the syngas. The gas cleaning system may be operated by receiving gas at a first temperature and pressure and dropping the temperature of the syngas as the gas flows through the system. The gas cleaning system may be used for an application requiring clean syngas, such as, but not limited to, fuel cell power generation, IGCC power generation, and chemical synthesis.

Newby, Richard Allen

2006-06-06T23:59:59.000Z

200

File Sharing at Louisiana Tech Louisiana Tech University strives to protect the privacy of students,  

E-Print Network [OSTI]

on your computer. 2. Do not share your Tech account password with anyone. Ever. Change it at Tech's Help Desk website. 3. Do not let others use your computer without knowing what they are doing. Your dorm computer with a spyware removal tool. When you install file #12;sharing applications, many times you

Selmic, Sandra

Note: This page contains sample records for the topic "area clean tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Accelerating Clean Energy Adoption (Fact Sheet), Weatherization...  

Broader source: Energy.gov (indexed) [DOE]

Accelerating Clean Energy Adoption (Fact Sheet), Weatherization and Intergovernmental Program (WIP) Accelerating Clean Energy Adoption (Fact Sheet), Weatherization and...

202

National Clean Fleets Partnership (Fact Sheet)  

SciTech Connect (OSTI)

Describes Clean Cities' National Clean Fleets Partnership, an initiative that helps large private fleets reduce petroleum use.

Not Available

2011-03-01T23:59:59.000Z

203

Clean Slate 1 revegetation and monitoring plan  

SciTech Connect (OSTI)

This document is a reclamation plan for short-term and long-term stabilization of land disturbed by activities associated with interim cleanup of radionuclide-contaminated surface soil at the Clean Slate 1 site (located on the Tonopah Test Range). This document has been prepared to provide general reclamation practices and procedures that will be followed during restoration of the cleanup site. Reclamation demonstration plots were established near the Double Tracks cleanup site in the fall of 1994 to evaluate the performance of several native plant species and to evaluate different irrigation strategies. Results of that study, and the results from numerous other studies conducted at other sites (Area 11 and Area 19 of the Nevada Test Site), have been summarized and incorporated into this final reclamation plan for the cleanup of the Clean Slate 1 site. The plan also contains procedures for monitoring both short-term and long-term reclamation.

NONE

1996-09-01T23:59:59.000Z

204

Virginia Tech Climate Action Commitment and Sustainability Plan  

E-Print Network [OSTI]

of Architecture & Urban Studies Angella De Soto * Undergraduate Student Sustainability Intern, Environmental 0 Virginia Tech Climate Action Commitment and Sustainability Plan Energy & Sustainability Committee April 22, 2009 #12; 1 ACKNOWLEDGEMENTS VIRGINIA TECH CLIMATE ACTION COMMITMENT

Buehrer, R. Michael

205

1st Women-VetsinTech Hackathon @ Facebook  

Broader source: Energy.gov [DOE]

The 1st EVER Women-VetsinTech hackathon @ Facebook will be a shortened version of the VetsinTech popular weekend event but will be action packed with goal of getting to a MVP (minimum viable...

206

Steam vacuum cleaning. Innovative technology summary report  

SciTech Connect (OSTI)

The US Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the decontamination and decommissioning (D and D) of nuclear facilities. The baseline technology currently used for washing debris is a high-pressure water cleaning (HPWC) system. The system used at the FEMP is the Hotsy{reg_sign} Model 550B HPWC. Although the HPWC technology has functioned satisfactorily, improvements are being sought in areas related to reduced liquid waste volume, increased productivity, increased washing effectiveness, and decreased airborne contamination. An innovative technology that offers potential improvements in these areas is a steam vacuum cleaning (SVC) system that integrates high-pressure steam cleaning with a vacuum recovery sub-system that simultaneously collects dislodged contaminants thereby reducing airborne contamination. The SVC system selected for demonstration at the FEMP was the Kelly{trademark} Decontamination System shown. This report provides comparative performance and cost analyses between the Hotsy HPWC system and the Kelly Decontamination System. Both technologies were demonstrated at the FEMP site located at Fernald, Ohio from July 29, 1996 through August 15, 1996. The demonstrations were conducted at the FEMP Plant 1 as part of the LSTD project sponsored by the Deactivation and Decommissioning Focus Area (DDFA) of the US DOE`s Office of Science and Technology.

NONE

1999-05-01T23:59:59.000Z

207

Enhanced Chemical Cleaning  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOEElectricalon Clean DevelopmentCorporation -| DepartmentEarnedEnhanced

208

Clean Energy Finance Guide (Chapter 5: Basic Concepts for Clean...  

Energy Savers [EERE]

Lending and Loan Loss Reserve Funds More Documents & Publications Path to Self-Sustainability Chapter 5. Basic Concepts for Clean Energy Unsecured Lending and Loan Loss Reserve...

209

Texas Tech University Energy Savings Program February 2008 Update  

E-Print Network [OSTI]

consumption for the same time period from the previous year normalized to current energy costs and campusTexas Tech University Energy Savings Program February 2008 Update The Texas Tech Energy Savings by State Agencies. Energy numbers come from the Energy Report filed with SECO semi-annually. Texas Tech

Gelfond, Michael

210

Texas Tech University Energy Savings Program October 2012 Update  

E-Print Network [OSTI]

on energy consumption for the same time period from the previous year normalized to current energy costs,727 Cogeneration Steam 20.06 20.83 Up 3.8% NA Total 165.84 161.01 Down 2.9% $ 194,851 Texas Tech University EnergyTexas Tech University Energy Savings Program October 2012 Update The Texas Tech Energy Savings

Zhuang, Yu

211

Texas Tech University Energy Savings Program July 2007 Update  

E-Print Network [OSTI]

Texas Tech University Energy Savings Program July 2007 Update The Texas Tech Energy Savings Update Performance Contract - $560,000 with a 6 year payback. c. Perform a minimum of 1 detailed energy audit per Agencies. Energy numbers come from the Energy Report filed with SECO semi-annually. Texas Tech may

Gelfond, Michael

212

Texas Tech University Energy Savings Program April 2007 Update  

E-Print Network [OSTI]

Texas Tech University Energy Savings Program April 2007 Update The Texas Tech Energy Savings Update detailed energy audit per month beginning with the largest consumers of energy. 2. Fleet Management Agencies. Energy numbers come from the Energy Report filed with SECO semi-annually. Texas Tech is currently

Gelfond, Michael

213

Texas Tech University Energy Savings Program April 2007 Update  

E-Print Network [OSTI]

Texas Tech University Energy Savings Program April 2007 Update The Texas Tech Energy Savings Update a minimum of 1 detailed energy audit per month beginning with the largest consumers of energy. 2. Fleet Agencies. Energy numbers come from the Energy Report filed with SECO semi-annually. Texas Tech is currently

Zhuang, Yu

214

Texas Tech University Energy Savings Program October 2007 Update  

E-Print Network [OSTI]

Texas Tech University Energy Savings Program October 2007 Update The Texas Tech Energy Savings,000 with a 6 year payback. b. Perform a minimum of 1 detailed energy audit per month beginning with the largest consumers of energy. 1) To date we have completed 10 detailed audits. 2. Fleet Management a. The Texas Tech

Gelfond, Michael

215

Roadmap: Technology Bachelor of Science [AT-BS-TECH  

E-Print Network [OSTI]

Engineering Graphics I 3 TECH 20002 Materials and Processes 3 US 10097 Destination Kent State: FYE 1-Aided Engineering Graphics 3 ECON 22060 Principles of Microeconomics 3 Fulfills Kent Core Social Sciences PSYC; fulfills Kent Core Basic Science TECH 20001 Energy/Power 3 TECH 31015 Construction Technology 3 COMM

Sheridan, Scott

216

Virginia Tech College of Science Faculty Position in Computational Science  

E-Print Network [OSTI]

Virginia Tech College of Science Faculty Position in Computational Science The College of Science at Virginia Tech ( http://science.vt.edu) is expanding its research presence in the interdisciplinary field of Computational Science and Data Analytics. Thus, Virginia Tech has a tenure- track opening in Computational

Virginia Tech

217

International Clean Energy Coalition  

SciTech Connect (OSTI)

In 2003, the National Association of Regulatory Utility Commissioners (NARUC) and National Energy Technology Laboratories (NETL) collaboratively established the International Clean Energy Coalition (ICEC). The coalition consisting of energy policy-makers, technologists, and financial institutions was designed to assist developing countries in forming and supporting local approaches to greenhouse gas mitigation within the energy sector. ICEC's work focused on capacity building and clean energy deployment in countries that rely heavily on fossil-based electric generation. Under ICEC, the coalition formed a steering committee consisting of NARUC members and held a series of meetings to develop and manage the workplan and define successful outcomes for the projects. ICEC identified India as a target country for their work and completed a country assessment that helped ICEC build a framework for discussion with Indian energy decisionmakers including two follow-on in-country workshops. As of the conclusion of the project in 2010, ICEC had also conducted outreach activities conducted during United Nations Framework Convention on Climate Change (UNFCCC) Ninth Conference of Parties (COP 9) and COP 10. The broad goal of this project was to develop a coalition of decision-makers, technologists, and financial institutions to assist developing countries in implementing affordable, effective and resource appropriate technology and policy strategies to mitigate greenhouse gas emissions. Project goals were met through international forums, a country assessment, and in-country workshops. This project focused on countries that rely heavily on fossil-based electric generation.

Erin Skootsky; Matt Gardner; Bevan Flansburgh

2010-09-28T23:59:59.000Z

218

Clean coal technology applications  

SciTech Connect (OSTI)

{open_quotes}Coal is a stratified rock formed of the more or less altered remains of plants (together with associated mineral matter) which flourished in past ages{hor_ellipsis} The problem of the origin and maturing of coal is complicated by the fact that every coal contains, in addition to carbon, hydrogen and oxygen, variable proportions of nitrogen and sulfur which are combined in unknown ways in the organic molecules...{close_quotes}. The challenge with coal has always been the management of its mineral matter, sulfur and nitrogen contents during use. The carbon content of fuels, including coal, is a more recent concern. With clean coal technologies, there are opportunities for ensuring the sustained use of coal for a very long time. The clean coal technologies of today are already capable of reducing, if not eliminating, harmful emissions. The technologies of the future will allow coal to be burned with greatly reduced emissions, thus eliminating the necessity to treat them after they occur.

Bharucha, N.

1993-12-31T23:59:59.000Z

219

High Efficiency, Clean Combustion  

SciTech Connect (OSTI)

Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with numerous challenges to reduce oil consumption and greenhouse gases, meet stringent emissions regulations, provide customer value, and improve safety. The HECC program successfully reduced engine fuel consumption and greenhouse gases while providing greater customer valve. The US EPA 2010 emissions standard poses a significant challenge for developing clean diesel powertrains that meet the DoE Vehicle Technologies Multi-Year Program Plan (MYPP) for fuel efficiency improvement while remaining affordable. Along with exhaust emissions, an emphasis on heavy duty vehicle fuel efficiency is being driven by increased energy costs as well as the potential regulation of greenhouse gases. An important element of the success of meeting emissions while significantly improving efficiency is leveraging Cummins component technologies such as fuel injection equipment, aftertreatment, turbomahcinery, electronic controls, and combustion systems. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 55% peak brake thermal efficiency for the engine plus aftertreatment system. The first step in developing high efficiency clean products has been supported by the DoE co-sponsored HECC program. The objectives of the HECC program are: (1) To design and develop advanced diesel engine architectures capable of achieving US EPA 2010 emission regulations while improving the brake thermal efficiency by 10% compared to the baseline (a state of the art 2007 production diesel engine). (2) To design and develop components and subsystems (fuel systems, air handling, controls, etc) to enable construction and development of multi-cylinder engines. (3) To perform an assessment of the commercial viability of the newly developed engine technology. (4) To specify fuel properties conducive to improvements in emissions, reliability, and fuel efficiency for engines using high-efficiency clean combustion (HECC) technologies. To demonstrate the technology is compatible with B2

Donald Stanton

2010-03-31T23:59:59.000Z

220

Optimization of Heat Exchanger Cleaning  

E-Print Network [OSTI]

decrease models of the heat recovery decay. A mathematical comparison of mechanical and chemical cleaning of heat exchangers has identified the most significant parameters which affect the choice between the two methods. INTRODUCTION In most... can be somewhat mitigated by periodic chemical or mechanical cleaning of the exchanger surface, and by the addition of antifoul ants. The typical decay in heat recovery capabil ity due to fou 1i ng and restoration afte r heat exchanger cleaning...

Siegell, J. H.

Note: This page contains sample records for the topic "area clean tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Clean Energy Development Fund (CEDF)  

Broader source: Energy.gov [DOE]

NOTE: The Vermont Clean Energy Development Fund has issued its [http://publicservicedept.vermont.gov/sites/psd/files/Topics/Renewable_En... Five Year Strategic Plan]. See the [http:/...

222

Sustainable Electricity | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Analysis Advanced Components and Materials Systems Integration Energy Security Wind Geothermal Solar Energy-Water Resource Systems Systems Biology Transportation Clean Energy...

223

Self-Cleaning CSP Collectors  

Broader source: Energy.gov [DOE]

This fact sheet details the efforts of a Boston University-led team which is working on a DOE SunShot Initative project. The concentrated solar power industry needs an automated, efficient cleaning process that requires neither water nor moving parts to keep the solar collectors clean for maximum reflectance and energy output. This project team is working to develop a transparent electrodynamic screen as a self-cleaning technology for solar concentrators; cleaning is achieved without water, moving parts, or manual labor. Because of these features, it has a strong potential for worldwide deployment.

224

Clean coal technologies market potential  

SciTech Connect (OSTI)

Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

Drazga, B. (ed.)

2007-01-30T23:59:59.000Z

225

Limonene and tetrahydrofurfurly alcohol cleaning agent  

DOE Patents [OSTI]

The present invention is a tetrahydrofurfuryl alcohol and limonene cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

Bohnert, George W. (Harrisonville, MO); Carter, Richard D. (Lee's Summit, MO); Hand, Thomas E. (Lee's Summit, MO); Powers, Michael T. (Santa Rosa, CA)

1997-10-21T23:59:59.000Z

226

Limonene and tetrahydrofurfuryl alcohol cleaning agent  

DOE Patents [OSTI]

The present invention is a tetrahydrofurfuryl alcohol and limonene or terpineol cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

Bohnert, G.W.; Carter, R.D.; Hand, T.E.; Powers, M.T.

1996-05-07T23:59:59.000Z

227

Limonene and tetrahydrofurfuryl alcohol cleaning agent  

DOE Patents [OSTI]

The present invention is a tetrahydrofurfuryl alcohol and limonene cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

Bohnert, G.W.; Carter, R.D.; Hand, T.E.; Powers, M.T.

1997-10-21T23:59:59.000Z

228

THE 3R ANTHRACITE CLEAN COAL TECHNOLOGY Economical Conversion of Browncoal to Anthracite Type Clean Coal by Low Temperature Carbonization Pre-Treatment Process  

E-Print Network [OSTI]

The pre ven tive pre-treat ment of low grade solid fu els is safer, faster, better, and less costly vs. the end-of-the-pipe post treat ment so lu tions. The 3R (Re cy cle-Re duce-Re use) in te grated en vi ron-ment con trol tech nol ogy pro vides pre ven tive pre-treat ment of low grade solid fu els, such as brown coal and con tam i nated solid fu els to achieve high grade cleansed fu els with an thra cite and coke com-pa ra ble qual ity. The goal of the 3R tech nol ogy is to pro vide cost ef fi cient and en vi ron men tally sus-tain able so lu tions by pre ven tive pre-treat ment means for ex tended op er a tions of the solid fuel com-bus tion power plants with ca pac ity up to 300 MWe power ca pac i ties. The 3R An thra cite Clean Coal end prod uct and tech nol ogy may ad van ta geously be in te grated to the oxyfuel oxy-fir ing, Fos ter Wheeler an thra cite arc-fired util ity type boiler and Heat Pipe Re former tech nol o gies in com bi na tion with CO2 cap ture and stor age pro grams. The 3R tech nol ogy is pat ented orig i nal so lu tion. Ad van tages. Feedstock flex i bil ity: ap pli ca tion of pre-treated multi fu els from wider fuel se lec tion and avail abil ity. Im proved burn ing ef fi ciency. Tech nol ogy flex i bil ity: ef fi cient and ad van ta geous inter-link to proven boiler tech nol o gies, such as oxyfuel and arc-fired boil ers. Near zero pol lut ants for haz ard ous-air-pol lut ants: pre ven tive sep a ra tion of halo gens and heavy met als into small vol ume streams prior uti li za tion of cleansed fu els. ?97 % or ganic sul phur re moval achieved by the 3R ther-

Edward Someus

229

Texas Tech University Energy Savings Program October 2012 Update Page 1 of 4 Texas Tech University Energy Savings Program  

E-Print Network [OSTI]

time period from the previous year normalized to current energy costs and campus square footage.06 20.83 Up 3.8% NA Total 165.84 161.01 Down 2.9% $ 194,851 #12;Texas Tech University Energy SavingsTexas Tech University Energy Savings Program ­ October 2012 Update Page 1 of 4 Texas Tech

Gelfond, Michael

230

Clean Energy Business Plan Competition  

ScienceCinema (OSTI)

Top Students Pitch Clean Energy Business Plans The six regional finalists of the National Clean Energy Business Plan Competition pitched their business plans to a panel of judges June 13 in Washington, D.C. The expert judges announced NuMat Technologies from Northwestern University as the grand prize winner.

Maxted, Sara Jane; Lojewski, Brandon; Scherson, Yaniv;

2013-05-29T23:59:59.000Z

231

Commercialization of clean coal technologies  

SciTech Connect (OSTI)

The steps to commercialization are reviewed in respect of their relative costs, the roles of the government and business sectors, and the need for scientific, technological, and economic viability. The status of commercialization of selected clean coal technologies is discussed. Case studies related to a clean coal technology are reviewed and conclusions are drawn on the factors that determine commercialization.

Bharucha, N. [Dept. of Primary Industries and Energy, Canberra (Australia)

1994-12-31T23:59:59.000Z

232

Clean Energy Jobs Plan Introduction  

E-Print Network [OSTI]

times as many jobs per dollar as gas, oil or coal. And dollars invested in clean energy tend to stayClean Energy Jobs Plan Introduction When I was governor, California was the world leader capacity. That has changed-- China is now the worlds top renewable energy producer, and Texas and Iowa

233

Atmos. Meas. Tech., 7, 20472059, 2014 www.atmos-meas-tech.net/7/2047/2014/  

E-Print Network [OSTI]

Atmos. Meas. Tech., 7, 2047­2059, 2014 www.atmos-meas-tech.net/7/2047/2014/ doi:10.5194/amt-7 of the polarisation from cloud-free scenes with radiative transfer calculations for a number of cases. We find good that normally lead to near-zero Q/I. The GOME-2 polarisation spectra indeed show this behaviour and confirm

Tilstra, Gijsbert

234

EV Community Readiness projects: Clean Energy Coalition (MI)...  

Broader source: Energy.gov (indexed) [DOE]

Clean Energy Coalition (MI); Clean Fuels Ohio EV Community Readiness projects: Clean Energy Coalition (MI); Clean Fuels Ohio 2013 DOE Hydrogen and Fuel Cells Program and Vehicle...

235

South Korea: Hi-Tech Mecca  

E-Print Network [OSTI]

Broadcast Transcript: Greetings from South Korea, hi-tech Mecca. According to the San Francisco Chronicle, practically the entire country now has access to broadband speeds of up to 20 megabits per second. Compare that to a paltry 4 megabits per...

Hacker, Randi; Tsutsui, William

2005-10-12T23:59:59.000Z

236

CONTRACT ROUTING FORM LOUISIANA TECH UNIVERSITY  

E-Print Network [OSTI]

CONTRACT ROUTING FORM LOUISIANA TECH UNIVERSITY This form is designed for use in routing contracts Services Contracts or contracts administered through the Office of University Research. Name of Person initiating the Routing Process Name of Department Other Party (on contract) Purpose of contract or work

Selmic, Sandra

237

Safety Statement Virginia Tech Chemistry Department  

E-Print Network [OSTI]

Safety Statement Virginia Tech Chemistry Department This safety statement was prepared by the Chemistry Department Safety Committee and approved by the Department Chairperson on October 24, 2006. 1. Laboratory safety, chemical hygiene, and environmental responsibility are central objectives of the Chemistry

Crawford, T. Daniel

238

Safety Training Policy Virginia Tech Chemistry Department  

E-Print Network [OSTI]

Safety Training Policy Virginia Tech Chemistry Department Approved by the Executive Committee on 06 those working in laboratories of prudent and legally required laboratory safety practices, attendance research are exempt, as their safety training is incorporated into their laboratory courses. The first step

Crawford, T. Daniel

239

HonorsConvocation TexasTechUniversity  

E-Print Network [OSTI]

and Environmental Engineering Dr. Sindee Simon Horn Professor Chemical Engineering Dr. Al Sacco Jr. Todd Knowlton Tech University International Cultural Center Auditorium Edward E.WhitacreJr. College of Engineering Dr. Al Sacco Jr. Dean,Whitacre College of Engineering RECOGNITION OF SCHOLARS Honorary Engineering

Gelfond, Michael

240

Energy Initiatives at Virginia Tech presented to  

E-Print Network [OSTI]

Energy Initiatives at Virginia Tech ­ A Snapshot presented to COE Administrative Committee Satish V and new initiatives · What are the missing pieces? · Benchmarking #12;US energy flow in 2009 #12;Important findings of the DOE Quadrennial Technology Review (QTR) #12;The 3Ms of energy technologies #12;The QTR has

Crawford, T. Daniel

Note: This page contains sample records for the topic "area clean tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Tesla TechFair Call for Proposals  

E-Print Network [OSTI]

are celebrating Nikola Tesla, in conjunction with Tesla in New York, an opera by filmmaker Jim Jarmusch & composer | 4:00-6:00 PM | Spanos Auditorium/Great Hall, Thayer | Free Discover how Nikola Tesla's inventionsTesla TechFair Call for Proposals Thayer School of Engineering and the Hopkins Center

242

Chemical Transport Policy Virginia Tech Chemistry Department  

E-Print Network [OSTI]

Chemical Transport Policy Virginia Tech Chemistry Department This policy was enacted. The purpose of this policy is to ensure the safety of personnel transporting chemicals and anyone who might from undue liability. No exceptions to this policy will be tolerated. 2. All chemicals transported

Crawford, T. Daniel

243

TEXAS TECH UNIVERSITY Purchasing and Contracting Office  

E-Print Network [OSTI]

TEXAS TECH UNIVERSITY Purchasing and Contracting Office Justification of Property Purchases This form w designed to assist faculty and staff in justifying a proprietary or sole source purchase. A proprietary purchase is justifies only when equivalent limits consideration to one manufacturer, one product

Westfall, Peter H.

244

The College of Engineering at Virginia Tech  

E-Print Network [OSTI]

and Engineering* · Mechanical · Mining and Minerals · Ocean 2102 427 112 345 605 91 244 384 410 123 482 118 1018 · Dual degree with Ocean Engineering with 3-5 additional credit hours · Job Types: Structural AnalysisWelcome to The College of Engineering at Virginia Tech Information Session #12;· Creativity · Plan

Virginia Tech

245

Tech Job Connection Connecting employers and potential  

E-Print Network [OSTI]

professional, etc. · be seeking a non-Hanford job · be seeking work at a firm within a 50-mile radius of PNNL, such as an executive, manager, engineer, technician, etc. · not primarily be a Hanford contractor · be located within level of growth and profitability. How does the Tech Job Connection work? Employers and individuals

246

Clean Cities: State of Delaware Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth Shore CleanSt. Louis Clean

247

Clean Cities: State of Maryland Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth Shore CleanSt. Louis CleanState

248

Nanoscience Faculty Position Virginia Tech is conducting an open-rank search in support of its new Nanoscience degree program  

E-Print Network [OSTI]

Nanoscience Faculty Position Virginia Tech is conducting an open-rank search in support of its new Nanoscience degree program (www.science.vt.edu/ais/nano), with the appointment to begin Fall 2014 at our focus in nanoscience; and teaching experience. Research areas of interest include, but are not limited

Virginia Tech

249

199USDAForestServiceGen.Tech.Rep.PSW-GTR-160.1997. Efficacy of HerbicideApplication Methods  

E-Print Network [OSTI]

version of this paper was presented at the Symposium on Oak Woodlands: Ecology,Management,andUrban199USDAForestServiceGen.Tech.Rep.PSW-GTR-160.1997. Efficacy of HerbicideApplication Methods Used tanoak (although tanoak is presently useful for fuelwood in the Santa Cruz area). Finding an effective

Standiford, Richard B.

250

Clean Metal Casting  

SciTech Connect (OSTI)

The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

Makhlouf M. Makhlouf; Diran Apelian

2002-02-05T23:59:59.000Z

251

National Alternative Fuels Training Consortium (NAFTC) Clean...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ti017ebron2012o.pdf More Documents & Publications National Alternative Fuels Training Consortium (NAFTC) Clean Cities Learning Program Clean Cities Education & Outreach...

252

National Alternative Fuels Training Consortium (NAFTC) Clean...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ti017ebron2011p.pdf More Documents & Publications National Alternative Fuels Training Consortium (NAFTC) Clean Cities Learning Program Clean Cities Education & Outreach...

253

Bioenergy & Clean Cities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bioenergy Technologies Office and the Clean Cities program regularly conduct a joint Web conference for state energy office representatives and Clean Cities coordinators. The...

254

Clean Cities Regional Support & Petroleum Displacement Awards...  

Broader source: Energy.gov (indexed) [DOE]

Clean Cities Regional Support & Petroleum Displacement Awards Clean Cities Regional Support & Petroleum Displacement Awards 2009 DOE Hydrogen Program and Vehicle Technologies...

255

baepgig-clean | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Industrial Carbon Capture and Storage Clean Coal Power Initiative Power Plant Improvement Initiative Clean Coal Technology Demonstration Program FutureGen Kentucky Pioneer IGCC...

256

The Cleaning of Mechanically Harvested Cotton.  

E-Print Network [OSTI]

The Cleaning of. Mechanically Harvested Cotton H. P. SMITH, D. L. JONES and H. F. MILLER, JR. 3lank Page in Original Bulletin] Preface For many years cotton growers in the High Plains area have found that cotton harvested late in the season... contained an excessive amount of foreign matter, and that the quality of the cotton was much lower than that of cotton harvested early in the season. This bulletin gives the results of a study conducted at Lubbock and College Station to determine...

Miller, H. F. (Herbert F.); Jones, D. L. (Don. L.); Smith, H. P. (Harris Pearson)

1950-01-01T23:59:59.000Z

257

Dr. Majumdar Takes ARPA-E Clean Tech Talk to TEDxMidAtlantic Conference |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTanklessDOJ Title StandardsEngineersExportsDomesticEllenDepartment

258

President Obama Awards $2.3 Billion for New Clean-Tech Manufacturing Jobs |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 | Department of EnergyPrepareEnergyGeothermal

259

Hyliion Wins U.S. Department of Energy Clean Tech Prize at 2015 Rice  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable ProjectsHistory HistoryEducationHydropowerBusiness

260

SciTech Connect: The Mesaba Energy Project: Clean Coal Power Initiative,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) Sr (2) Cawith EXO-200 SearchGalaxyFaster,Round 2 The

Note: This page contains sample records for the topic "area clean tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Los Angeles CleanTech Incubator to Host Event With Senior Energy Department  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJared Temanson -of EnergyEqual JusticeShipping Goal

262

LiveChat Thurs, 10/20, 2pm ET: Clean Tech Markets | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011LiisaInnovation Portal

263

DOE Awards $11 Million to Small Clean-Tech Businesses | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebratePartners withofEnergyDepartmentEnergy 11 Million to

264

Microsoft Word - NNMREC-OSU-WaveTechEA_06252012_CLEAN.doc  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOE Tribalthe Nativeof theCODEMichael W.11 ClauseOn6 Notice of

265

Alternative and Clean Energy Program  

Broader source: Energy.gov [DOE]

It is important to note that some applicants are only eligible to apply under some aspects of the program. Political subdivisions are only permitted to apply for loans or grants for Clean Energy...

266

Connecticut Clean Energy Fund (CCEF)  

Broader source: Energy.gov [DOE]

'''''Note: Connecticut's 2013 Budget Bill, enacted in June 2013, transfers a total of $25.4 million out of the Clean Energy Finance and Investment Authority into the General Fund - $6.2 million in...

267

Clean Energy Tax Credit (Maryland)  

Broader source: Energy.gov [DOE]

The Clean Energy Tax Credit is 0.85 cents for each kilowatt hour of electricity sold that was produced from a Maryland qualified energy resource during the 5-year period specified in the initial...

268

Foam Cleaning of Steam Turbines  

E-Print Network [OSTI]

The efficiency and power output of a steam turbine can be dramatically reduced when deposits form on the turbine blades. Disassembly and mechanical cleaning of the turbine is very time consuming and costly. Deposits can be removed from the turbine...

Foster, C.; Curtis, G.; Horvath, J. W.

269

Clean Water Partnership Law (Minnesota)  

Broader source: Energy.gov [DOE]

The main purpose of the Clean Water Partnership Law is to provide financial and technical assistance to local governments for the protection, enhancement, and restoration of surface waters. However...

270

Clean Energy Tax Credit (Personal)  

Broader source: Energy.gov [DOE]

'''''NOTE: Due to a high level of interest, the Clean Energy Tax Credit annual funding of $5 million for years 2012, 2013 and 2014 has been fully allocated to compensate applicants wait listed from...

271

Clean Energy-Environment State  

E-Print Network [OSTI]

As states pursue their clean energy policies and programs, they can obtain assistance from a variety of federal programs, as described below. Cross-Cutting Programs Cross-cutting federal programs support planning, program development, and initiatives for both energy efficiency and clean energy supply measures. The U.S. Environmental Protection Agency (EPA) and U.S. Department of Energy (DOE) offer a variety of crosscutting programs, described below.

unknown authors

272

Clean Energy Solutions Center (Presentation)  

SciTech Connect (OSTI)

The Clean Energy Ministerial launched the Clean Energy Solutions Center in April, 2011 for major economy countries, led by Australia and U.S. with other CEM partners. Partnership with UN-Energy is extending scope to support all developing countries: 1. Enhance resources on policies relating to energy access, small to medium enterprises (SMEs), and financing programs; 2. Offer expert policy assistance to all countries; 3. Expand peer to peer learning, training, and deployment and policy data for developing countries.

Reategui, S.

2012-07-01T23:59:59.000Z

273

Building Name Street Number Street Prefix Direction Street Name Suffix Street Direction Community 1901 1901 INNOVATION DR VIRGINIA TECH  

E-Print Network [OSTI]

Hall 240 KENT ST VIRGINIA TECH Battery House 2507 GLADE RD VIRGINIA TECH Battery House 677 RESEARCH And Laying House 2507 GLADE RD VIRGINIA TECH Brick Building at Airport 1601 RESEARCH CENTER DR VIRGINIA TECH Brodie Hall 310 ALUMNI MALL VIRGINIA TECH Brooder And Hatchery 2507 GLADE RD VIRGINIA TECH Brooder House

Buehrer, R. Michael

274

LBNL-PG&E High Tech Building Initiative  

Broader source: Energy.gov (indexed) [DOE]

www.femp.energy.govtraining Federal Energy Management Program Labs, Data Centers, and High Tech Facilities Dale Sartor, Lawrence Berkeley National Laboratory 2 | FUPWG April 2012...

275

Jefferson Lab Tech Associate Invents Lockout Device for Equipment...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tech Associate Invents Lockout Device for Equipment with Removable Power Cords April 22, 2002 It was the early 1990s and building Jefferson Lab's Continuous Electron Beam...

276

2015 INL TECH BASED ECONOMIC DEVELOPMENT DONATION REQUEST FORM  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

INL TECH BASED ECONOMIC DEVELOPMENT DONATION REQUEST FORM Regional Economic Development, Entrepreneurship, Technology-Based Economic Development & Innovation Return form to...

277

Sandia National Laboratories: AIAA SciTech/American Society of...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AIAA SciTechAmerican Society of Mechanical Engineers Wind Energy Symposium National Rotor Testbed Functional Scaling Presented at American Institute of Aeronautics and...

278

Grid Interaction Tech Team, and International Smart Grid Collaboration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Team, and International Smart Grid Collaboration Grid Interaction Tech Team, and International Smart Grid Collaboration 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

279

Poster Session--Predicting Patterns of Alien Plant Invasion--Underwood, Klinger, Moore USDA Forest Service Gen. Tech. Rep. PSW-GTR-189. 2008. 361  

E-Print Network [OSTI]

Poster Session--Predicting Patterns of Alien Plant Invasion--Underwood, Klinger, Moore USDA Forest Service Gen. Tech. Rep. PSW-GTR-189. 2008. 361 Predicting Patterns of Alien Plant Invasions in Areas of alien plant species. This is particularly problematic in areas which have experienced disturbances

Standiford, Richard B.

280

Clean Cities Now, Vol. 10, No. 4  

SciTech Connect (OSTI)

Official Publication of Clean Cities and the Alternative Fuels Data Center (Newsletter) volume 10, number 4

Not Available

2006-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "area clean tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

What is Clean Cities? May 2011 (Brochure)  

SciTech Connect (OSTI)

Fact sheet describes the Clean Cities program and includes the contact information for its 87 coalitions.

Not Available

2011-05-01T23:59:59.000Z

282

Plugging Vehicles into Clean Energy October, 2012  

E-Print Network [OSTI]

Plugging Vehicles into Clean Energy 1 October, 2012 Plugging Vehicles into Clean Energy Max-in electric vehicles and clean energy. Giving consumers options to offset energy and emissions associated briefly summarizes the relationship between clean energy and vehicle electrification and describes five

California at Davis, University of

283

Clean Energy and Bond Finance Initiative  

Broader source: Energy.gov [DOE]

Provides information on Clean Energy and Bond Finance Initiative (CE+BFI). CE+BFI brings together public infrastructure finance agencies, clean energy public fund managers and institutional investors across the country to explore how to raise capital at scale for clean energy development through bond financing. Author: Clean Energy and Bond Finance Initiative

284

ReflecTech, Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosourceRausWyoming:Reeves County, Texas:ReflecTech, Inc

285

Texas Tech University Staff Senate  

E-Print Network [OSTI]

President Bruce Bills called to order the regular meeting of the Staff Senate at 4 p.m. on September 7, 2011 officers were present: Bruce Bills, president; Adrien Bennings, President Elect; Sarah Obenhaus, Secretary issues a) A special election will be held for 6 positions for the service area and 2 positions for crafts

Rock, Chris

286

Clean coal technologies: A business report  

SciTech Connect (OSTI)

The book contains four sections as follows: (1) Industry trends: US energy supply and demand; The clean coal industry; Opportunities in clean coal technologies; International market for clean coal technologies; and Clean Coal Technology Program, US Energy Department; (2) Environmental policy: Clean Air Act; Midwestern states' coal policy; European Community policy; and R D in the United Kingdom; (3) Clean coal technologies: Pre-combustion technologies; Combustion technologies; and Post-combustion technologies; (4) Clean coal companies. Separate abstracts have been prepared for several sections or subsections for inclusion on the data base.

Not Available

1993-01-01T23:59:59.000Z

287

Clean Slate 1 revegetation and monitoring plan  

SciTech Connect (OSTI)

This document constitutes a reclamation plan for the short-term and long-term stabilization of land disturbed by activities associated with the cleanup of radionuclide contaminated surface soil at the Clean Slate 1 site. This document has been prepared to provide general reclamation practices and procedures that will be followed during restoration of the cleanup site. The results of reclamation trials at Area 11, Area 19 and more recently the reclamation demonstration plots at the Double Tracks cleanup site, have been summarized and incorporated into this reclamation and monitoring plan. The plan also contains procedures for monitoring both the effectiveness and success of short-term and long-term soil stabilization. The Clean Slate 1 site is located on the Tonopah Test Range. The surface soils were contaminated as a result of the detonation of a device containing plutonium and depleted uranium using chemical explosives. Short-term stabilization consists of the application of a chemical soil stabilizer that is applied immediately following excavation of the contaminated soils to minimize Pu resuspension. Long-term stabilization is accomplished by the establishment of a permanent vegetation.

Anderson, D.C.; Hall, D.B.

1997-07-01T23:59:59.000Z

288

Microbial Janitors: Enabling natural microbes to clean up uranium contamination  

E-Print Network [OSTI]

Microbial Janitors: Enabling natural microbes to clean up uranium contamination Oak Ridge to the development of the atomic bomb. Uranium enrichment activities on the Oak Ridge Reservation in the 1940s until then the uranium and nitrate contamination has spread through the ground and now covers an area of about 7 km

289

Cleaning with Environmentally Responsible Cleaning Solutions at Dalhousie University 1 Case Study  

E-Print Network [OSTI]

Cleaning with Environmentally Responsible Cleaning Solutions at Dalhousie University 1 Case Study: Usage of Environmentally Responsible Cleaning Solutions at Dalhousie University Summary Each year, Dalhousie University uses approximately 950,000 litres of cleaning solutions to clean 4.8 million square

Brownstone, Rob

290

2 WHO'S WINNING THE CLEAN ENERGY RACE? WHO'S WINNING THE CLEAN ENERGY RACE?  

E-Print Network [OSTI]

2 WHO'S WINNING THE CLEAN ENERGY RACE? WHO'S WINNING THE CLEAN ENERGY RACE? Growth, Competition and Opportunity in the World's Largest Economies G-20 CLEAN ENERGY FACTBOOK #12;3 WHO'S WINNING THE CLEAN ENERGY the Clean Energy Race? was developed for public informational and educational purposes. It reviews

291

Proceedings of the 21st DOE/NRC Nuclear Air Cleaning Conference; Sessions 1--8  

SciTech Connect (OSTI)

Separate abstracts have been prepared for the papers presented at the meeting on nuclear facility air cleaning technology in the following specific areas of interest: air cleaning technologies for the management and disposal of radioactive wastes; Canadian waste management program; radiological health effects models for nuclear power plant accident consequence analysis; filter testing; US standard codes on nuclear air and gas treatment; European community nuclear codes and standards; chemical processing off-gas cleaning; incineration and vitrification; adsorbents; nuclear codes and standards; mathematical modeling techniques; filter technology; safety; containment system venting; and nuclear air cleaning programs around the world. (MB)

First, M.W. [ed.] [Harvard Univ., Boston, MA (United States). Harvard Air Cleaning Lab.

1991-02-01T23:59:59.000Z

292

Light Duty Efficient, Clean Combustion  

SciTech Connect (OSTI)

Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy's Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: (1) Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today's state-of-the-art diesel engine on the FTP city drive cycle; (2) Develop and design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements; (3) Maintain power density comparable to that of current conventional engines for the applicable vehicle class; and (4) Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: (1) A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target; (2) An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system; (3) Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system; (4) Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle - Additional technical barriers exist for the no NOx aftertreatment engine; (5) Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated; (6) The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing; (7) The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment; (8) The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment; (9) Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines); and (10) Key subsystems developed include - sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system. An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light-Duty Vehicles (ATP-LD) started in 2010.

Donald Stanton

2010-12-31T23:59:59.000Z

293

Light Duty Efficient, Clean Combustion  

SciTech Connect (OSTI)

Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energys Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: 1. Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over todays state-ofthe- art diesel engine on the FTP city drive cycle 2. Develop & design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements. 3. Maintain power density comparable to that of current conventional engines for the applicable vehicle class. 4. Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: ? A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target ? An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system ? Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system ? Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle Additional technical barriers exist for the no NOx aftertreatment engine ? Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated. ? The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing. ? The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment. ? The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment ? Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines) ? Key subsystems developed include sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light- Duty Vehicles (ATP-LD) started in 2010.

Stanton, Donald W

2011-06-03T23:59:59.000Z

294

Clean Cities: Capitol Clean Cities of Connecticut coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheirCheckInnovation,ClassroomArkansas CleanCapitol Clean

295

Clean Cities: Clean Communities of Western New York (Buffalo) coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York (Buffalo) Coalition The Clean

296

Clean Cities: East Bay Clean Cities coalition (Oakland)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York (Buffalo)Denver MetroBay Clean

297

Clean Cities: Greater New Haven Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreater New Haven Clean Cities

298

Clean Cities: Greater Washington Region Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreater New Haven CleanWashington

299

Clean Cities: Lone Star Clean Fuels Alliance (Central Texas) coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreater NewKentucky CleanLandLone

300

Clean Cities: San Diego Regional Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreaterNorthSacramento CleanDiego

Note: This page contains sample records for the topic "area clean tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Clean Cities: Southeast Louisiana Clean Fuels Partnership coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth Shore Clean Cities

302

Clean Cities: State of West Virginia Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth Shore CleanSt. Louis

303

Clean Cities: Western Washington Clean Cities (Seattle) coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth ShoreWashington Clean Cities

304

4th Annual Clean Coal  

E-Print Network [OSTI]

Proceedings he emphasis of the Fourth Clean Coal Technology Conference wm the marketability of clean coal projects both domestically and abroad. The success rate of clean coal projects in the U.S. for coalfired electricity generation is a beacon to foreign governments that are working toward effectively using advanced NO, and SO2 technology to substantially reduce flue-gas emissions for a cleaner environment. There is a continuing dialogue between U.S. Government, North American private industry, and the electricity producing governmental ministries and the private sector abroad. The international community was well represented at this conference. The Administration is determined to move promising, near-term technologies from the public to the private sector a ~ well a8 into the international marketplace.

Ferriter John P

305

Clean Coal Diesel Demonstration Project  

SciTech Connect (OSTI)

A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

Robert Wilson

2006-10-31T23:59:59.000Z

306

Apparatus for attaching a cleaning tool to a robotic manipulator  

DOE Patents [OSTI]

An apparatus is described for connecting a cleaning tool to a robotic manipulator so that the tool can be used in contaminated areas on horizontal, vertical and sloped surfaces. The apparatus comprises a frame and a handle, with casters on the frame to facilitate movement. The handle is pivotally and releasibly attached to the frame at a preselected position of a plurality of attachment positions. The apparatus is specifically configured for the Kelly Vacuum System but can be modified for use with any standard mobile robot and cleaning tool. 14 figs.

Killian, M.A.; Zollinger, W.T.

1992-09-22T23:59:59.000Z

307

Apparatus for attaching a cleaning tool to a robotic manipulator  

DOE Patents [OSTI]

An apparatus for connecting a cleaning tool to a robotic manipulator so that the tool can be used in contaminated areas on horizontal, vertical and sloped surfaces. The apparatus comprises a frame and a handle, with casters on the frame to facilitate movement. The handle is pivotally and releasibly attached to the frame at a preselected position of a plurality of attachment positions. The apparatus is specifically configured for the KELLY VACUUM SYSTEM but can be modified for use with any standard mobile robot and cleaning tool.

Killian, Mark A. (102 Foxhunt Dr., North Augusta, SC 29841); Zollinger, W. Thor (3927 Almon Dr., Martinez, GA 30907)

1992-01-01T23:59:59.000Z

308

Apparatus for attaching a cleaning tool to a robotic manipulator  

DOE Patents [OSTI]

This invention is comprised of an apparatus for connecting a cleaning tool to a robotic manipulator so that the tool can be used in contaminated areas on horizontal, vertical and sloped surfaces. The apparatus comprises a frame and a handle, with casters on the frame to facilitate movement. The handle is pivotally and releasibly attached to the frame at a preselected position of a plurality of attachment positions. The apparatus is specifically configured for the KELLY VACUUM SYSTEM but can be modified for use with any standard mobile robot and cleaning tool.

Killian, M.A.; Zollinger, W.T.

1991-01-01T23:59:59.000Z

309

A study of clean wool production in performance tested sheep  

E-Print Network [OSTI]

length ovei the body tend to support this theory. Schnickel (1957) also showed that the correlation between follicle density and clean wool production per unit area was so small as to be of dubious biological significance. In fact, there were... of birth on the weight of lambs was very notice- able when they entered the test, but there is no justification for ap- plying correction factors for this small group. The polled lamb born as a triplet, but reared as a single had the heaviest clean...

Williams, Gwynn Lloyd

1960-01-01T23:59:59.000Z

310

CleanFleet. Final report: Volume 1, summary  

SciTech Connect (OSTI)

The South Coast Alternative Fuels Demonstration, called CleanFleet, was conducted in the Los Angeles area from April 1992 through September 1994. The demonstration consisted of 111 package delivery vans operating on five alternative fuels and the control fuel, unleaded gasoline. The alternative fuels were propane gas, compressed natural gas, California Phase 2 reformulated gasoline (RFG), methanol with 15 percent RFG (called M-85), and electricity. This volume of the eight volume CleanFleet final report is a summary of the project design and results of the analysis of data collected during the demonstration on vehicle maintenance and durability, fuel economy, employee attitudes, safety and occupational hygiene, emissions, and fleet economics.

NONE

1995-12-01T23:59:59.000Z

311

Clean Energy | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of WesternVail Global Energy Forum Dr. DanMediaClean

312

Clean Markets | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy Resources JumpSouth Dakota:Clean AirGroupRanchoHomeClean

313

Clean Vita | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy Resources JumpSouth Dakota:CleanCleanVita Jump to:

314

TEXAS TECH UNIVERSITY JERRY S. RAWLS COLLEGE OF BUSINESS ADMINISTRATION  

E-Print Network [OSTI]

TEXAS TECH UNIVERSITY JERRY S. RAWLS COLLEGE OF BUSINESS ADMINISTRATION ENERGY COMMERCE MAJOR Upper of the Laboratory Science requirements. A minimum of 60 hours must be earned at Texas Tech University to qualify ISQS 3344 Introduction to Production and Operations Management. Prerequisite: ISQS 2340, MATH 2345

Westfall, Peter H.

315

Texas Tech University Energy Savings Program January 2010 Update  

E-Print Network [OSTI]

for the same time period from the previous year normalized to current energy costs and campus square footageTexas Tech University Energy Savings Program January 2010 Update The Texas Tech Energy Savings by State Agencies. A. Energy Goals 1. Campus Energy Use (E&G) Energy units are converted to thousands

Zhuang, Yu

316

Texas Tech University Energy Savings Program May 2008 Update  

E-Print Network [OSTI]

costs and campus square footage. Through the second quarter of FY08 the campus consumed 97.48 kbtu/sq ftTexas Tech University Energy Savings Program May 2008 Update The Texas Tech Energy Savings Update Agencies. Energy numbers come from the Energy Report filed with SECO semi-annually. Energy consumption

Gelfond, Michael

317

Texas Tech University Energy Savings Program October 2009 Update  

E-Print Network [OSTI]

for the same time period from the previous year normalized to current energy costs and campus square footageTexas Tech University Energy Savings Program October 2009 Update The Texas Tech Energy Savings by State Agencies. A. Energy Goals 1. Campus Energy Use (E&G) Energy units are converted to thousands

Gelfond, Michael

318

Texas Tech University Energy Savings Program April 2011 Update  

E-Print Network [OSTI]

from the previous year normalized to current energy costs and campus square footage. Through the SecondTexas Tech University Energy Savings Program April 2011 Update The Texas Tech Energy Savings Update Agencies. A. Energy Goals 1. University Energy Use Energy units are converted to thousands of BTUs per

Gelfond, Michael

319

Texas Tech University Energy Savings Program November 2008 Update  

E-Print Network [OSTI]

costs and campus square footage. For the fourth quarter of FY08 the campus consumed 42.36 kbtu/sq ft Program for four energy projects. 1) AHU VFD Project ­ Estimated cost of $600,000 with a payback of 2Texas Tech University Energy Savings Program November 2008 Update The Texas Tech Energy Savings

Gelfond, Michael

320

Texas Tech University Energy Savings Program April 2010 Update  

E-Print Network [OSTI]

from the previous year normalized to current energy costs and campus square footage. For first twoTexas Tech University Energy Savings Program April 2010 Update The Texas Tech Energy Savings Update Agencies. A. Energy Goals 1. Campus Energy Use (E&G) Energy units are converted to thousands of BTUs per

Zhuang, Yu

Note: This page contains sample records for the topic "area clean tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Texas Tech University Energy Savings Program July 2009 Update  

E-Print Network [OSTI]

from the previous year normalized to current energy costs and campus square footage. For the firstTexas Tech University Energy Savings Program July 2009 Update The Texas Tech Energy Savings Update Agencies. A. Energy Goals 1. Campus Energy Use (E&G) Energy units are converted to thousands of BTUs per

Gelfond, Michael

322

Texas Tech University Energy Savings Program July 2009 Update  

E-Print Network [OSTI]

from the previous year normalized to current energy costs and campus square footage. For the first Program for four energy projects. 1) AHU VFD Project ­ Final cost of $558,904 with a payback of 5.2 yearsTexas Tech University Energy Savings Program July 2009 Update The Texas Tech Energy Savings Update

Zhuang, Yu

323

Texas Tech University Energy Savings Program January 2011 Update  

E-Print Network [OSTI]

from the previous year normalized to current energy costs and campus square footage. For the firstTexas Tech University Energy Savings Program January 2011 Update The Texas Tech Energy Savings by State Agencies. A. Energy Goals 1. University Energy Use Energy units are converted to thousands of BTUs

Gelfond, Michael

324

Texas Tech University Energy Savings Program October 2011 Update  

E-Print Network [OSTI]

from the previous year normalized to current energy costs and campus square footage. Through fiscalTexas Tech University Energy Savings Program October 2011 Update The Texas Tech Energy Savings by State Agencies. A. Energy Goals 1. University Energy Use Energy units are converted to thousands of BTUs

Zhuang, Yu

325

Texas Tech University Energy Savings Program July 2010 Update  

E-Print Network [OSTI]

from the previous year normalized to current energy costs and campus square footage. For first threeTexas Tech University Energy Savings Program July 2010 Update The Texas Tech Energy Savings Update Agencies. A. Energy Goals 1. Campus Energy Use (E&G) Energy units are converted to thousands of BTUs per

Zhuang, Yu

326

Texas Tech University Energy Savings Program August 2008 Update  

E-Print Network [OSTI]

consumption for the same time period from the previous year normalized to current energy costs and campus.7% $(217,100) Total 144.13 142.25 Down 1.3% $163,200 Page 1 of 5 July 2008 Energy Report #12;Since RP 49Texas Tech University Energy Savings Program August 2008 Update The Texas Tech Energy Savings

Gelfond, Michael

327

Texas Tech University Energy Savings Program October 2010 Update  

E-Print Network [OSTI]

for the same time period from the previous year normalized to current energy costs and campus square footage Total 15.1357 14.7573 15.5852 3.0% Page 2 of 6 October 2010 Energy Report #12;3. Fleet Fuel ManagementTexas Tech University Energy Savings Program October 2010 Update The Texas Tech Energy Savings

Zhuang, Yu

328

Texas Tech University Energy Savings Program July 2011 Update  

E-Print Network [OSTI]

from the previous year normalized to current energy costs and campus square footage. Through the Third energy demand upon the university buildings. Cogeneration steam, provided at no cost to the universityTexas Tech University Energy Savings Program July 2011 Update The Texas Tech Energy Savings Update

Zhuang, Yu

329

Alternate cleaning methods for LCCAs. Final report  

SciTech Connect (OSTI)

The purpose of this project was to evaluate DI water followed by isopropyl alcohol (IPA) cleaning and no cleaning of leadless chip carriers (LCCs). Both environmentally safe methods were to be tested against the current chlorofluorocarbon (CFC) material cleaning baseline. Several experiments were run to compare production and electrical yields of LCCs cleaned by all three methods. The critical process steps most affected by cleaning were wire bonding, sealing, particle induced noise detection (PIND), moisture content, and electrical. Yields for the experimental lots cleaned by CFC, DI water plus IPA, and no cleaning were 56%, 72%, and 75%, respectively. The overall results indicated that vapor degreasing/ultrasonic cleaning in CFCs could be replaced by the aqueous method. No cleaning could also be considered if an effective dry method of particle removal could be developed.

Adams, B.E.

1993-04-01T23:59:59.000Z

330

Time series study of urban rainfall suppression during clean-up periods  

E-Print Network [OSTI]

The effect on urban rainfall of pollution aerosols is studied both by data analysis and computational simulation. Our study examines data for urban areas undergoing decadal clean-up. We compare the annual precipitation between polluted sites...

Geng, Jun

2009-05-15T23:59:59.000Z

331

Time series study of urban rainfall suppression during clean-up periods  

E-Print Network [OSTI]

The effect on urban rainfall of pollution aerosols is studied both by data analysis and computational simulation. Our study examines data for urban areas undergoing decadal clean-up. We compare the annual precipitation between polluted sites...

Geng, Jun

2008-10-10T23:59:59.000Z

332

Texas Tech University Energy Savings Program October 2013 Update Page 1 of 4 Texas Tech University Energy Savings Program  

E-Print Network [OSTI]

time period from the previous year normalized to current energy costs and campus square footage. During Gallons Consumed Percent Change 1st Quarter 68,022 64,621 60,885 Down 10.5% 2nd Quarter 51,763 49,175 50Texas Tech University Energy Savings Program ­ October 2013 Update Page 1 of 4 Texas Tech

Gelfond, Michael

333

Carbon smackdown: visualizing clean energy  

ScienceCinema (OSTI)

The final Carbon Smackdown match took place Aug. 9, 2010. Juan Meza of the Computational Research Division revealed how scientists use computer visualizations to accelerate climate research and discuss the development of next-generation clean energy technologies such as wind turbines and solar cells.

Juan Meza

2010-09-01T23:59:59.000Z

334

Carbon smackdown: visualizing clean energy  

SciTech Connect (OSTI)

The final Carbon Smackdown match took place Aug. 9, 2010. Juan Meza of the Computational Research Division revealed how scientists use computer visualizations to accelerate climate research and discuss the development of next-generation clean energy technologies such as wind turbines and solar cells.

Juan Meza

2010-08-11T23:59:59.000Z

335

Clean Power at Home  

E-Print Network [OSTI]

this report is to describe and analyze net metering as a mechanism to support the deployment of small-scale, distributed electricity technologies in British Columbia based on renewable energy sources. These are referred to as "distributed renewables" throughout the report. The deployment of distributed renewables offers several environmental, economic, and social benefits that are described in this paper. Net metering enables individual utility customers to connect on-site generation to the utility grid, feeding excess power back to the grid when it is not needed, and utilizing grid power when consumption exceeds local renewable energy supply. In most programs, a single meter measures the customer's net consumption of grid power in a billing period, and they are charged for that consumption under regular retail rates. If production exceeds consumption, the customer's bill is essentially zero. In some instances, utilities may refund customers for excess production in a billing period based on wholesale market prices or avoided production costs. Net metering programs can make self-generation more attractive for customers by eliminating the need to size systems to meet customers' exact power needs or install on-site storage and power conditioning devices. Utilities may, depending upon the type of systems installed, benefit from improvements in local area load factors, and receive credit for various social or environmental benefits of such resources (e.g., greenhouse gas reductions). However, utilities have raised concerns about worker safety (e.g., the possibility that net metering sites may continue to feed electricity into the local distribution grid when the rest of the network is down, putting line workers at risk) and possible financial cross-subsidies from other rate...

May Author Andrew; Andrew E. Pape

336

Tech Transfer - Innovations showcase | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR8, 2013Battelle: How to start27,InnovationTech

337

Working with SRNL - Technology Transfer - Tech Briefs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun1 Table 1.14WorkingPrimaryWasteTech

338

Arizona Solar Tech | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass FacilityArdica Technologies JumpArizonaOil andSolar Tech

339

BekkTech LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass Facility JumpBedford RuralOpenBekk Tech Jump

340

Renewable Energy Tech School | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginia Blue Ridge AndREII Jump to: navigation,Renewable Energy Tech

Note: This page contains sample records for the topic "area clean tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Alltronic Tech Investment Corporation | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil Jump to:Information332 UtilityAllicom Jump to:Alltronic Tech

342

Sandia National Laboratories: PV Tech Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-SaltReliability PV Systems Reliability SandiaTech Power

343

Sandia National Laboratories: PV-Tech magazine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-SaltReliability PVracks HelioVoltPV-Tech magazine

344

Sandia National Laboratories: Texas Tech University  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreakingStandardsTCES Sandia Researchers WinTVATestTexas Tech

345

ClimateTechWiki | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy ResourcesInformation istype ofdefinedClimateTechWiki

346

Swiss Solar Tech Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump to: navigation, search Name:STS3OID,Sweetwater,Tech Ltd Jump

347

Motor Repair Tech Brief | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugust 2012 Monthly ProjectEnterprisesRepair Tech Brief Motor

348

High Plains Tech Center | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:NetHealthHigganum, Connecticut: EnergyMesa JumpTech

349

TECHMRT The Center for Multidisciplinary Research in Transportation (TechMRT) at Texas Tech University is dedicated to serving as a focal point for communica-tion between Texas Tech University and various transportation research funding organizations and  

E-Print Network [OSTI]

TECHMRT The Center for Multidisciplinary Research in Transportation (TechMRT) at Texas Tech and various transportation research funding organizations and programs. A genuinely multidisciplinary facility, Department of Plant and Soil Science, Department of Landscape Architecture, the TTU Library

Gelfond, Michael

350

Property-Assessed Clean Energy Programs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Financing Financing Structures Property-Assessed Clean Energy Programs Property-Assessed Clean Energy Programs The property-assessed clean energy (PACE) model is an...

351

New Clean Renewable Energy Bonds | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

New Clean Renewable Energy Bonds New Clean Renewable Energy Bonds New clean renewable energy bonds (CREBs) are tax credit bonds, the proceeds of which are used for capital...

352

Clean Energy Finance Guide, Chapter 12: Commercial Property-Assessed...  

Broader source: Energy.gov (indexed) [DOE]

Guide, Chapter 12: Commercial Property-Assessed Clean Energy (PACE) Financing Clean Energy Finance Guide, Chapter 12: Commercial Property-Assessed Clean Energy (PACE) Financing...

353

Clean Energy Lending From the Financial Institution Perspective...  

Broader source: Energy.gov (indexed) [DOE]

Clean Energy Lending From the Financial Institution Perspective (Chapter 8 of the Clean Energy Finance Guide, 3rd Edition) Clean Energy Lending From the Financial Institution...

354

Advanced High Efficiency Clean Diesel Combustion with Low Cost...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Advanced High Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Clean, in-cylinder combustion...

355

Recovery Act: Clean Coal Power Initiative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act: Clean Coal Power Initiative Recovery Act: Clean Coal Power Initiative A report detailling the Clean Coal Power initiative funded under the American Recovery and...

356

Clean Cities Program Contacts (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides contact information for program staff of the U.S. Department of Energy's Clean Cities program, as well as contact information for the nearly 100 local Clean Cities coalitions across the country.

Not Available

2012-03-01T23:59:59.000Z

357

Clean Cities Program Contacts (Fact Sheet)  

SciTech Connect (OSTI)

Contact information for the U.S. Department of Energy's Clean Cities program staff and for the coordinators of the nearly 100 local Clean Cities coalitions across the country.

Not Available

2013-12-01T23:59:59.000Z

358

Clean Tennessee Energy Grant Program (Tennessee)  

Broader source: Energy.gov [DOE]

The purpose of the Clean Tennessee Energy Grant Program is to select and fund projects that best result in a reduction of emissions and pollutants identified below. The Clean Tennessee Energy...

359

Clean Cities Web Sites and Web Tools  

Broader source: Energy.gov (indexed) [DOE]

Clean Cities Web Sites and Web Tools Johanna Levene July 28, 2010 Innovation for Our Energy Future Fuel Economy fueleconomy.gov What vehicle? Clean Cities Web Site * Information...

360

Clean Coal Incentive Tax Credit (Kentucky)  

Broader source: Energy.gov [DOE]

Clean Coal Incentive Tax Credit provides for a property tax credit for new clean coal facilities constructed at a cost exceeding $150 million and used for the purposes of generating electricity....

Note: This page contains sample records for the topic "area clean tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Clean Air Act Amendments of 1990  

E-Print Network [OSTI]

Congress is currently debating amendments to the Clean Air Act which would strengthen and enhance the current Clean Air Act. The bill would guarantee a reduction of 10 million tons of sulfur dioxide from 1980 levels; would sharply reduce pollutants...

Hanneschlager, R. E.

362

Clean Cities: Las Vegas Regional Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4 VehicleGeneseeIowa Clean

363

Clean Energy Manufacturing Initiative Industrial Efficiency and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial...

364

What is Clean Cities? December 2010 (Brochure)  

SciTech Connect (OSTI)

Fact sheet describes the Clean Cities program and includes the contact information for its 87 active coalitions.

Not Available

2010-12-01T23:59:59.000Z

365

Heat pumps in industrial cleaning applications  

E-Print Network [OSTI]

Heat pumps in industrial cleaning applications Achema 2012 - Frankfurt Bjarke Paaske, bjpa consuming n Plants are often heated by electricity n No standard heat pump units available Project to promote heat pumps in industrial cleaning apps. #12;Cleaning plant, drum type Items enter here #12;Washing

Oak Ridge National Laboratory

366

Economic Impact of the American Clean Energy  

E-Print Network [OSTI]

Economic Impact of the American Clean Energy and Security Act of 2009 on the West Virginia Economy ........................................................................................................................ 1 American Clean Energy and Security Act of 2009 at reducing greenhouse gas emissions. This report examines the impact of the American Clean Energy

Mohaghegh, Shahab

367

Advanced Clean Cars Zero Emission Vehicle Regulation  

E-Print Network [OSTI]

Advanced Clean Cars Zero Emission Vehicle Regulation ZEV #12;Advanced Clean Cars ZEV Program 2020 2021 2022 2023 2024 2025 Current Regulation -ZEVs Current Regulation -PHEVs Projected: PHEVs 15Net ­ Blueprint Plan ­ Regional clusters, environmental and economic analysis · Clean Fuels Outlet

California at Davis, University of

368

Clean Energy Solutions Center Services (Fact Sheet)  

SciTech Connect (OSTI)

The Clean Energy Solutions Center (Solutions Center) helps governments, advisors and analysts create policies and programs that advance the deployment of clean energy technologies. The Solutions Center partners with international organizations to provide online training, expert assistance, and technical resources on clean energy policy.

Not Available

2014-04-01T23:59:59.000Z

369

The National Workshop on Clean Energy Education  

E-Print Network [OSTI]

The National Workshop on Clean Energy Education ENERGYLITERACY Recommendations and Strategies Full Report #12;THE NATIONAL WORKSHOP ON CLEAN ENERGY EDUCATION UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN OCTOBER 13, 2011 Full Report #12;#12;FOREWORD Clean energy education is an enabling foundation with far

Gilbert, Matthew

370

Analysis of chemical coal cleaning processes. Final report  

SciTech Connect (OSTI)

Six chemical coal cleaning processes were examined. Conceptual designs and costs were prepared for these processes and coal preparation facilities, including physical cleaning and size reduction. Transportation of fine coal in agglomerated and unagglomerated forms was also discussed. Chemical cleaning processes were: Pittsburgh Energy Technology Center, Ledgemont, Ames Laboratory, Jet Propulsion Laboratory (two versions), and Guth Process (KVB). Three of the chemical cleaning processes are similar in concept: PETC, Ledgemont, and Ames. Each of these is based on the reaction of sulfur with pressurized oxygen, with the controlling factor being the partial pressure of oxygen in the reactor. All of the processes appear technically feasible. Economic feasibility is less certain. The recovery of process chemicals is vital to the JPL and Guth processes. All of the processes consume significant amounts of energy in the form of electric power and coal. Energy recovery and increased efficiency are potential areas for study in future more detailed designs. The Guth process (formally designed KVB) appears to be the simplest of the systems evaluated. All of the processes require future engineering to better determine methods for scaling laboratory designs/results to commercial-scale operations. A major area for future engineering is to resolve problems related to handling, feeding, and flow control of the fine and often hot coal.

Not Available

1980-06-01T23:59:59.000Z

371

Green Clean Day Planning Guide A practical guide for creating a successful Green Clean Day  

E-Print Network [OSTI]

Green Clean Day Planning Guide A practical guide for creating a successful Green Clean Day A publication of U of M Waste Management Services July 2013 #12;Table of Contents What is a Green Clean Day? 2 Why have a Green Clean Day? 2 How Do We Get Started? 2 How Waste Management Services Can Help 2

Awtar, Shorya

372

Clean Cities Designation Guide: A Resource for Developing, Implementing, and Sustaining Your Clean Cities Coalition  

SciTech Connect (OSTI)

Document serves as an instruction manual for developing, implementing, and running a Clean Cities coalition.

Not Available

2008-04-01T23:59:59.000Z

373

Ultrasonic cleaning of interior surfaces  

DOE Patents [OSTI]

An ultrasonic cleaning apparatus is described for cleaning the interior surfaces of tubes. The apparatus includes an ultrasonic generator and reflector each coupled to opposing ends of the open-ended, fluid-filled tube. Fluid-tight couplings seal the reflector and generator to the tube, preventing leakage of fluid from the interior of the tube. The reflector and generator are operatively connected to actuators, whereby the distance between them can be varied. When the distance is changed, the frequency of the sound waves is simultaneously adjusted to maintain the resonant frequency of the tube so that a standing wave is formed in the tube, the nodes of which are moved axially to cause cavitation along the length of the tube. Cavitation maximizes mechanical disruption and agitation of the fluid, dislodging foreign material from the interior surface. 3 figures.

MacKenzie, D.; Odell, C.

1994-03-01T23:59:59.000Z

374

Ultrasonic cleaning of interior surfaces  

DOE Patents [OSTI]

An ultrasonic cleaning method for cleaning the interior surfaces of tubes. The method uses an ultrasonic generator and reflector each coupled to opposing ends of the open-ended, fluid-filled tube. Fluid-tight couplings seal the reflector and generator to the tube, preventing leakage of fluid from the interior of the tube. The reflector and generator are operatively connected to actuators, whereby the distance between them can be varied. When the distance is changed, the frequency of the sound waves is simultaneously adjusted to maintain the resonant frequency of the tube so that a standing wave is formed in the tube, the nodes of which are moved axially to cause cavitation along the length of the tube. Cavitation maximizes mechanical disruption and agitation of the fluid, dislodging foreign material from the interior surface.

Odell, D. MacKenzie C. (Aiken, SC)

1996-01-01T23:59:59.000Z

375

Ultrasonic cleaning of interior surfaces  

DOE Patents [OSTI]

An ultrasonic cleaning apparatus for cleaning the interior surfaces of tubes. The apparatus includes an ultrasonic generator and reflector each coupled to opposing ends of the open-ended, fluid-filled tube. Fluid-tight couplings seal the reflector and generator to the tube, preventing leakage of fluid from the interior of the tube. The reflector and generator are operatively connected to actuators, whereby the distance between them can be varied. When the distance is changed, the frequency of the sound waves is simultaneously adjusted to maintain the resonant frequency of the tube so that a standing wave is formed in the tube, the nodes of which are moved axially to cause cavitation along the length of the tube. Cavitation maximizes mechanical disruption and agitation of the fluid, dislodging foreign material from the interior surface.

Odell, D. MacKenzie C. (Aiken, SC)

1994-01-01T23:59:59.000Z

376

Clean Air Act. Revision 5  

SciTech Connect (OSTI)

This Reference Book contains a current copy of the Clean Air Act, as amended, and those regulations that implement the statute and appear to be most relevant to DOE activities. The document is provided to DOE and contractor staff for informational purposes only and should not be interpreted as legal guidance. This Reference Book has been completely revised and is current through February 15, 1994.

Not Available

1994-02-15T23:59:59.000Z

377

BFA IN STUDIO ART Area of Emphasis Suggested 4 Year Curriculum Art X: Expanded Forms  

E-Print Network [OSTI]

3000-level Art X M 3 ARST 2810 Hypermedia M* 3 Area ARST 3000-level Art X M 3 ARST 2000-level ElectiveBFA IN STUDIO ART Area of Emphasis Suggested 4 Year Curriculum Art X: Expanded Forms revised 09/11 SECOND YEAR First semester Area Hours Must Second semester Area Hours ARST 2800 Art & Tech VI 3 Pass ARST

Arnold, Jonathan

378

Heating the New Mexico Tech Campus with geothermal energy. Final report, July 1, 1978-October 31, 1979  

SciTech Connect (OSTI)

An area between the base of Socorro Peak and the New Mexico Tech Campus (located in central New Mexico) has been proposed as a site for geothermal exploratory drilling. The existing site environment is summarized, a program for site monitoring is proposed, impacts of geothermal production and reinjection are listed, and problems associated with geothermal development are examined. The most critical environmental impact is the increased seismic activity that may be associated with geothermal fluid migration resulting from geothermal production and reinjection.

LeFebre, V.; Miller, A.

1980-01-01T23:59:59.000Z

379

Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation Sector Petroleum...

380

GATE Center for Automotive Fuel Cell Systems at Virginia Tech  

SciTech Connect (OSTI)

The Virginia Tech GATE Center for Automotive Fuel Cell Systems (CAFCS) achieved the following objectives in support of the domestic automotive industry: ? Expanded and updated fuel cell and vehicle technologies education programs; ? Conducted industry directed research in three thrust areas ?? development and characterization of materials for PEM fuel cells; performance and durability modeling for PEM fuel cells; and fuel cell systems design and optimization, including hybrid and plug-in hybrid fuel cell vehicles; ? Developed MS and Ph.D. engineers and scientists who are pursuing careers related to fuel cells and automotive applications; ? Published research results that provide industry with new knowledge which contributes to the advancement of fuel cell and vehicle systems commercialization. With support from the Dept. of Energy, the CAFCS upgraded existing graduate course offerings; introduced a hands-on laboratory component that make use of Virginia Tech??s comprehensive laboratory facilities, funded 15 GATE Fellowships over a five year period; and expanded our program of industry interaction to improve student awareness of challenges and opportunities in the automotive industry. GATE Center graduate students have a state-of-the-art research experience preparing them for a career to contribute to the advancement fuel cell and vehicle technologies.

Douglas Nelson

2011-05-31T23:59:59.000Z

Note: This page contains sample records for the topic "area clean tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

SciTech Connect: Radioactive decay data tables  

Office of Scientific and Technical Information (OSTI)

Radioactive decay data tables Citation Details In-Document Search Title: Radioactive decay data tables You are accessing a document from the Department of Energy's (DOE) SciTech...

382

TechSpot on: Like Follow Most Popular  

E-Print Network [OSTI]

Could Be the Reason For Slow Networking (Tech Page One) First Completely 3D-Printed Working Loudspeaker to strong winds without sustaining any damage. A fabrication foundry in Taiwan has obtained exclusive rights

Chiao, Jung-Chih

383

Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuelsDepartmentPolicy Options for the Hawaii Clean

384

Clean Cities: Capital District Clean Communities coalition (Albany)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheirCheckInnovation,ClassroomArkansas Clean

385

Clean Cities: Columbia-Willamette Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York (Buffalo) Coalition

386

Clean Cities: Dallas-Fort Worth Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York (Buffalo)

387

Clean Cities: Genesee Region Clean Communities (Rochester) coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York (Buffalo)Denver

388

Clean Cities: Greater Long Island Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York

389

Clean Cities: San Joaquin Valley Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreaterNorthSacramentoJoaquin

390

Clean Cities: Yellowstone-Teton Clean Energy coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth ShoreWashington

391

Clean Cities: Land of Enchantment Clean Cities (New Mexico) coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4 VehicleGeneseeIowa Clean CitiesLand

392

Clean Cities: Silicon Valley Clean Cities (San Jose) coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue Valley Clean CitiesSanSilicon

393

Clean Cities: Triangle Clean Cities (Raleigh, Durham, Chapel Hill)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue Valley CleanCaliforniaTampa

394

Clean Cities: Valley of the Sun Clean Cities coalition (Phoenix)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue ValleyValley of the Sun Clean

395

Biomedical Engineering Bionanosystems Research at Louisiana Tech University  

SciTech Connect (OSTI)

The nature of this project is to equip and support research in nanoengineered systems for biomedical, bioenvironmental, and bioenergy applications. Funds provided by the Department of Energy (DoE) under this Congressional Directive were used to support two ongoing research projects at Louisiana Tech University in biomedical, bioenvironmental, and bioenergy applications. Two major projects (Enzyme Immobilization for Large Scale Reactors to Reduce Cellulosic Ethanol Costs, and Nanocatalysts for Coal and Biomass Conversion to Diesel Fuel) and to fund three to five additional seed projects were funded using the project budget. The project funds also allowed the purchase and repair of sophisticated research equipment that will support continued research in these areas for many years to come. Project funds also supported faculty, graduate students, and undergraduate students, contributing to the development of a technically sophisticated work force in the region and the State. Descriptions of the technical accomplishments for each funded project are provided. Biofuels are an important part of the solution for sustainable transportation fuel and energy production for the future. Unfortunately, the country's appetite for fuel cannot be satisfied with traditional sugar crops such as sugar cane or corn. Emerging technologies are allowing cellulosic biomass (wood, grass, stalks, etc.) to also be converted into ethanol. Cellulosic ethanol does not compete with food production and it has the potential to decrease greenhouse gas (GHG) emissions by 86% versus current fossil fuels (current techniques for corn ethanol only reduce greenhouse gases by 19%). Because of these advantages, the federal government has made cellulosic ethanol a high priority. The Energy Independence and Security Act of 2007 (EISA) requires a minimum production of at least 16 billion gallons of cellulosic ethanol by 2022. Indeed, the Obama administration has signaled an ambitious commitment of achieving 2 billion gallons of cellulosic ethanol by 2013. Louisiana is well positioned to become a national contributor in cellulosic ethanol, with an excellent growing season, a strong pulp/paper industry, and one of the nation's first cellulosic ethanol demonstration plants. Dr. Palmer in Chemical Engineering at Louisiana Tech University is collaborating with Drs. Lvov and Snow in Chemistry and Dr. Hegab in Mechanical Engineering to capitalize on these advantages by applying nanotechnology to improve the cellulosic ethanol processes. In many of these processes, expensive enzymes are used to convert the cellulose to sugars. The nanotechnology processes developed at Louisiana Tech University can immobilize these enzymes and therefore significantly reduce the overall costs of the process. Estimates of savings range from approximately $32 million at each cellulosic ethanol plant, to $7.5 billion total if the 16 billion gallons of cellulosic ethanol is achieved. This process has the advantage of being easy to apply in a large-scale commercial environment and can immobilize a wide variety or mixture of enzymes for production. Two primary objectives with any immobilization technique are to demonstrate reusability and catalytic activity (both reuse of the immobilized enzyme and reuse of the polymer substrate). The scale-up of the layering-by-layering process has been a focus this past year as some interesting challenges in the surface chemistry have become evident. Catalytic activity of cellulase is highly dependent upon how the feed material is pretreated to enhance digestion. Therefore, efforts this year have been performed this year to characterize our process on a few of the more prevalent pretreatment methods.

Palmer, James; Lvov, Yuri; Hegab, Hisham; Snow, Dale; Wilson, Chester; McDonald, John; Walker, Lynn; Pratt, Jon; Davis, Despina; Agarwal, Mangilal; DeCoster, Mark; Feng, June; Que, Long; O'Neal, Chad; Guilbeau, Eric; Zivanovic, Sandra; Dobbins, Tabbetha; Gold, Scott; Mainardi, Daniela; Gowda, Shathabish; Napper, Stan

2010-03-25T23:59:59.000Z

396

Virginia Tech Foundation Funding Requests Page 1 of 2 Virginia Polytechnic Institute and State University No. 12120 Rev.: 3  

E-Print Network [OSTI]

Virginia Tech Foundation Funding Requests Page 1 of 2 Virginia Polytechnic Institute and State __________________________________________________________________________________ Subject: Virginia Tech Foundation Funding Requests unrestricted funding from the Virginia Tech Foundation for programs of the University. 2. Policy The Vice

Virginia Tech

397

Exhaust gas clean up process  

DOE Patents [OSTI]

A method of cleaning an exhaust gas containing particulates, SO/sub 2/ and NO/sub x/ is described. The method involves prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO/sub x/ and SO/sub 2/, and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO/sub x/ is removed as N/sub 2/ gas or nitrogen sulfonate ions and the oxides of sulfur are removed as a valuable sulfate salt. 4 figs.

Walker, R.J.

1988-06-16T23:59:59.000Z

398

Cleaning Contaminated Water at Fukushima  

SciTech Connect (OSTI)

Crystalline Silico-Titanates (CSTs) are synthetic zeolites designed by Sandia National Laboratories scientists to selectively capture radioactive cesium and other group I metals. They are being used for cleanup of radiation-contaminated water at the Fukushima Daiichi nuclear power plant in Japan. Quick action by Sandia and its corporate partner UOP, A Honeywell Company, led to rapid licensing and deployment of the technology in Japan, where it continues to be used to clean up cesium contaminated water at the Fukushima power plant.

Rende, Dean; Nenoff, Tina

2013-11-21T23:59:59.000Z

399

Clean Air Act, Section 309  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuelsDepartment of EnergyClasses, Kits23CLEAN

400

Exhaust gas clean up process  

DOE Patents [OSTI]

A method of cleaning an exhaust gas containing particulates, SO.sub.2 and NO.sub.x includes prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO.sub.x and SO.sub.2, and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO.sub.x is removed as N.sub.2 or nitrogen-sulfonate ions and the oxides of sulfur are removed as a vaulable sulfate salt.

Walker, Richard J. (McMurray, PA)

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "area clean tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Clean Energy | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of WesternVail Global Energy Forum Dr.

402

Clean Fractionation - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of WesternVail Global Energy Forum Dr.2 P r o j e

403

Cleaning Contaminated Water at Fukushima  

ScienceCinema (OSTI)

Crystalline Silico-Titanates (CSTs) are synthetic zeolites designed by Sandia National Laboratories scientists to selectively capture radioactive cesium and other group I metals. They are being used for cleanup of radiation-contaminated water at the Fukushima Daiichi nuclear power plant in Japan. Quick action by Sandia and its corporate partner UOP, A Honeywell Company, led to rapid licensing and deployment of the technology in Japan, where it continues to be used to clean up cesium contaminated water at the Fukushima power plant.

Rende, Dean; Nenoff, Tina

2014-02-26T23:59:59.000Z

404

Materials Science Clean Room Facility at Tulane University (Final Technical Report)  

SciTech Connect (OSTI)

The project involves conversion of a 3,000 sq. ft. area into a clean room facility for materials science research. It will be accomplished in phases. Phase I will involve preparation of the existing space, acquisition and installation of clean room equipped with a pulsed laser deposition (PLD) processing system, and conversion of ancillary space to facilitate the interface with the clean room. From a capital perspective, Phases II and III will involve the acquisition of additional processing, fabrication, and characterization equipment and capabilities.

Altiero, Nicholas

2014-10-28T23:59:59.000Z

405

NREL Quickens its Tech Transfer Efforts  

SciTech Connect (OSTI)

Innovations and 'aha' movements in renewable energy and energy efficiency, while exciting in the lab, only truly live up to their promise once they find a place in homes or business. Late last year President Obama issued a directive to all federal agencies to increase their efforts to transfer technologies to the private sector in order to achieve greater societal and economic impacts of federal research investments. The president's call to action includes efforts to establish technology transfer goals and to measure progress, to engage in efforts to increase the speed of technology transfer and to enhance local and regional innovation partnerships. But, even before the White House began its initiative to restructure the commercialization process, the National Renewable Energy Laboratory had a major effort underway designed to increase the speed and impact of technology transfer activities and had already made sure its innovations had a streamlined path to the private sector. For the last three years, NREL has been actively setting commercialization goals and tracking progress against those goals. For example, NREL sought to triple the number of innovations over a five-year period that began in 2009. Through best practices associated with inventor engagement, education and collaboration, NREL quadrupled the number of innovations in just three years. Similar progress has been made in patenting, licensing transactions, income generation and rewards to inventors. 'NREL is known nationally for our cutting-edge research and companies know to call us when they are ready to collaborate,' William Farris, vice president for commercialization and technology transfer, said. 'Once a team is ready to dive in, they don't want be mired in paperwork. We've worked to make our process for licensing NREL technology faster; it now takes less than 60 days for us to come to an agreement and start work with a company interested in our research.' While NREL maintains a robust patent portfolio, often companies are looking to do more than just license a technology. These relationships are invaluable in successfully moving technologies from NREL to the marketplace. 'We may generate new and potentially valuable innovations, but our commercialization partners do the heavy work of building a successful business around our technology,' Farris said. Tools such as CRADAs (Cooperative Research and Development Agreements) allow NREL to continue working with companies to refine and develop technologies. And, working with businesses is an area where NREL excels. NREL is responsible for one quarter of the CRADAs in the DOE system. 'When you look at the results of our CRADA program, you can demonstrate that we are actively engaged with companies in collaborating on research and moving technologies to market,' Farris said. NREL is first among DOE labs with 186 active CRADAs. And last year, NREL also was first with the number of new CRADAs signed. 'Part of the success in our working with industry goes back to NREL's mission to grow and support new industries,' Farris added. 'NREL has basic research capabilities, but we are never going to be the ultimate producer of a commercial product. That is the role of the private sector.' Farris also credits the advocacy and support that the Office of Energy Efficiency and Renewable Energy at DOE provides for these technology transfer activities. 'EERE's support is critical to our success,' Farris said. To assist the private sector in moving a technology from the lab to the manufacturing line, NREL has a number of programs in place to give that first, or even final, nudge toward commercialization. For instance, the Commercialization Assistance Program helps startups overcome technical barriers by granting free access to 40 hours of work at the lab. Through the Innovation and Entrepreneurship Center, NREL also helps clean energy businesses develop strong links with the financial community, as well as other key stakeholders in the commercialization process. In March, NREL formally opened the Colorado Center for Renewable Ene

Lammers, H.

2012-02-01T23:59:59.000Z

406

National Clean Fleets Partnership (Fact Sheet)  

SciTech Connect (OSTI)

Provides an overview of Clean Cities National Clean Fleets Partnership (NCFP). The NCFP is open to large private-sector companies that have fleet operations in multiple states. Companies that join the partnership receive customized assistance to reduce petroleum use through increased efficiency and use of alternative fuels. This initiative provides fleets with specialized resources, expertise, and support to successfully incorporate alternative fuels and fuel-saving measures into their operations. The National Clean Fleets Partnership builds on the established success of DOE's Clean Cities program, which reduces petroleum consumption at the community level through a nationwide network of coalitions that work with local stakeholders. Developed with input from fleet managers, industry representatives, and Clean Cities coordinators, the National Clean Fleets Partnership goes one step further by working with large private-sector fleets.

Not Available

2012-01-01T23:59:59.000Z

407

Repowering with clean coal technologies  

SciTech Connect (OSTI)

Repowering with clean coal technology can offer significant advantages, including lower heat rates and production costs, environmental compliance, incremental capacity increases, and life extension of existing facilities. Significant savings of capital costs can result by refurbishing and reusing existing sites and infrastructure relative to a greenfield siting approach. This paper summarizes some key results of a study performed by Parsons Power Group, Inc., under a contract with DOE/METC, which investigates many of the promising advanced power generation technologies in a repowering application. The purpose of this study was to evaluate the technical and economic results of applying each of a menu of Clean Coal Technologies in a repowering of a hypothetical representative fossil fueled power station. Pittsburgh No. 8 coal is used as the fuel for most of the cases evaluated herein, as well as serving as the fuel for the original unrepowered station. The steam turbine-generator, condenser, and circulating water system are refurbished and reused in this study, as is most of the existing site infrastructure such as transmission lines, railroad, coal yard and coal handling equipment, etc. The technologies evaluated in this study consisted of an atmospheric fluidized bed combustor, several varieties of pressurized fluid bed combustors, several types of gasifiers, a refueling with a process derived fuel, and, for reference, a natural gas fired combustion turbine-combined cycle.

Freier, M.D. [USDOE Morgantown Energy Technology Center, WV (United States); Buchanan, T.L.; DeLallo, M.L.; Goldstein, H.N. [Parsons Power Group, Inc., Reading, PA (United States)

1996-02-01T23:59:59.000Z

408

Scaleable Clean Aluminum Melting Systems  

SciTech Connect (OSTI)

The project entitled 'Scaleable Clean Aluminum Melting Systems' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Secat Inc. The three-year project was initially funded for the first year and was then canceled due to funding cuts at the DOE headquarters. The limited funds allowed the research team to visit industrial sites and investigate the status of using immersion heaters for aluminum melting applications. Primary concepts were proposed on the design of furnaces using immersion heaters for melting. The proposed project can continue if the funding agency resumes the funds to this research. The objective of this project was to develop and demonstrate integrated, retrofitable technologies for clean melting systems for aluminum in both the Metal Casting and integrated aluminum processing industries. The scope focused on immersion heating coupled with metal circulation systems that provide significant opportunity for energy savings as well as reduction of melt loss in the form of dross. The project aimed at the development and integration of technologies that would enable significant reduction in the energy consumption and environmental impacts of melting aluminum through substitution of immersion heating for the conventional radiant burner methods used in reverberatory furnaces. Specifically, the program would couple heater improvements with furnace modeling that would enable cost-effective retrofits to a range of existing furnace sizes, reducing the economic barrier to application.

Han, Q.; Das, S.K. (Secat, Inc.)

2008-02-15T23:59:59.000Z

409

National Clean Fleets Partnership (Fact Sheet)  

SciTech Connect (OSTI)

Clean Cities' National Clean Fleets Partnership establishes strategic alliances with large fleets to help them explore and adopt alternative fuels and fuel economy measures to cut petroleum use. The initiative leverages the strength of nearly 100 Clean Cities coalitions, nearly 18,000 stakeholders, and more than 20 years of experience. It provides fleets with top-level support, technical assistance, robust tools and resources, and public acknowledgement to help meet and celebrate fleets' petroleum-use reductions.

Not Available

2014-01-01T23:59:59.000Z

410

Enact legislation supporting residential property assessed clean energy financing (PACE)  

SciTech Connect (OSTI)

Congress should enact legislation that supports residential property assessed clean energy (PACE) programs in the nations states and metropolitan areas. Such legislation should require the Federal Housing Finance Agency (FHFA) to allow Fannie Mae and Freddie Mac to purchase residential mortgages with PACE assessments while at the same time providing responsible underwriting standards and a set of benchmarks for residential PACE assessments in order to minimize financial risks to mortgage holders. Congressional support of residential PACE financing will improve energy efficiency, encourage job creation, and foster economic growth in the nations state and metropolitan areas.

Saha, Devashree

2012-11-15T23:59:59.000Z

411

Clean Cities Regional Support & Petroleum Displacement Awards  

Broader source: Energy.gov (indexed) [DOE]

Clean Cities Regional Support & Petroleum Displacement Awards Mike Scarpino & Kay Kelly National Energy Technology Laboratory 052009 This presentation does not contain any...

412

Clean Energy Manufacturing Initiative: Increasing American Competitive...  

Broader source: Energy.gov (indexed) [DOE]

for a Clean Energy Manufacturing Innovation Institute related to composite materials and structures. The Manufacturing Demonstration Facility at Oak Ridge National...

413

Clean Cities Program Contacts (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet contains contact information for program staff and coalition coordinators for the U.S. Department of Energy's Clean Cities program.

Not Available

2012-10-01T23:59:59.000Z

414

Clean Cities Program Contacts (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet contains contact information for program staff and coalition coordinators for the U.S. Department of Energy's Clean Cities program.

Not Available

2013-01-01T23:59:59.000Z

415

Clean Cities Program Contacts (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet contains contact information for program staff and coalition coordinators for the U.S. Department of Energy's Clean Cities program.

Not Available

2012-09-01T23:59:59.000Z

416

Transcript: Biomass Clean Cities Webinar ? Workforce Development  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transcript: Biomass Clean Cities Webinar - Workforce Development Page 1 of 12 Alicia Lindauer: My name is Alicia Lindauer. I work for the Department of Energy's Biomass Program....

417

Clean Cities Recovery Act: Vehicle & Infrastructure Deployment  

Broader source: Energy.gov (indexed) [DOE]

project through collection of vehicle, infrastructure and training information. RELEVANCE Alternative Fuel & Advance Technology Vehicles Pilot Program Clean Cities Recovery Act:...

418

Illinois Clean Energy Community Foundation Grants  

Broader source: Energy.gov [DOE]

The Illinois Clean Energy Community Foundation (ICECF) was established in December 1999 as an independent foundation with a $225 million endowment provided by Commonwealth Edison. The ICECF invests...

419

-UNIT NAME C-728 Motor Cleaning Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

UNIT NUMBER 33 -UNIT NAME C-728 Motor Cleaning Facility -REGULATORY STATUS--3:.:::.0:..04(--u) -LOCATION North of C-720 (Map...

420

Clean Cities & Transportation Tools | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

& Transportation Tools Clean Cities & Transportation Tools U.S. Department of Energy (DOE) Technical Assistance Project (TAP) for state and local officials Webinar presentation on...

Note: This page contains sample records for the topic "area clean tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Clean Cities Now, Vol. 10, No. 2  

SciTech Connect (OSTI)

Newsletter features articles on Clean Cities, such as coalition news, stakeholder success stories, and Technical Assistance projects. Industry news, EPAct updates, and new resources are also covered.

Not Available

2006-05-01T23:59:59.000Z

422

The Political Economy of Clean Coal .  

E-Print Network [OSTI]

??This dissertation investigates the nature of the political economy of Clean Coal. It begins by reviewing the literature of global warming and the current usage (more)

Wu, Hao Howard

2010-01-01T23:59:59.000Z

423

What is Clean Cities? 2007 Update  

SciTech Connect (OSTI)

Clean Cities fact sheet describing this DOE program that deploys alternative and advanced fuels and vehicles to displace petroleum in the transportation sector.

Not Available

2007-03-01T23:59:59.000Z

424

Clean Cities Fact Sheet: March 2006  

SciTech Connect (OSTI)

Clean Cities fact sheet describe this DOE program, which deploys alternative and advanced fuels and vehicles to displace petroleum in the transportation sector.

Not Available

2006-03-01T23:59:59.000Z

425

Exploring the Business Link Opportunity: Transmission & Clean...  

Energy Savers [EERE]

Jennifer Weddle, Greenberg Traurig LLP Rapid Response Team for Transmission: Laura Smith Morton, DOE Energy Storage: Michael Stosser, Day Pitney LLP Centennial West Clean...

426

Hawaii Clean Energy Initiative Scenario Analysis: Quantitative...  

Office of Environmental Management (EM)

Hawaii Clean Energy Initiative Scenario Analysis Quantitative Estimates Used to Facilitate Working Group Discussions (2008-2010) R. Braccio, P. Finch, and R. Frazier Booz Allen...

427

MiniCLEAN Dark Matter Experiment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

discrimination of the triplet-to-singlet light ratio. External backgrounds (surface radon progeny and fast neutrons) are rejected by self-shielding and fiducialization. MiniCLEAN...

428

Clean Cities 2009 Petroleum Displacement Awards  

Broader source: Energy.gov (indexed) [DOE]

confidential or otherwise restricted information. Project ID: TI004 Clean Cities 2009 Petroleum Displacement Awards (ARRA & non-ARRA) Mike Scarpino U.S. Department of Energy...

429

Puget Sound Clean Cities Petroleum Reduction Project  

Broader source: Energy.gov (indexed) [DOE]

3 universities, 9 private businesses Overview Puget Sound Clean Cities Coalition Petroleum Reduction Project - DE-EE0002020 Project Objectives: * Reduce petroleum use in the...

430

Clean Cities Now, Vol. 10, No. 3  

SciTech Connect (OSTI)

Newsletter features articles on Clean Cities, such as coalition news, stakeholder success stories, and Technical Assistance projects. Industry news, EPAct updates, and new resources are also covered.

Not Available

2006-07-01T23:59:59.000Z

431

Utility Generation and Clean Coal Technology (Indiana)  

Broader source: Energy.gov [DOE]

This statute establishes the state's support and incentives for the development of new energy production and generating facilities implementing advanced clean coal technology, such as coal...

432

clean energy manufacturing | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

efforts across the DOE Office of Energy Efficiency & Renewable Energy's (EERE's) clean energy technology offices and Advanced Manufacturing Office, focusing on American...

433

National Alternative Fuels Training Consortium (NAFTC) Clean...  

Broader source: Energy.gov (indexed) [DOE]

information. 12 Approach Strategy Clean Cities Coordinators Training - Year 1 Trains coordinators on how to promote first responder training. Presentation Guide provides...

434

Evaluation of SCR and DOC/CPF Tech in Diesel Exhaust Emission...  

Broader source: Energy.gov (indexed) [DOE]

Evaluation of SCR and DOCCPF Tech in Diesel Exhaust Emission Control to Meet U.S. Tier 2 Bin 5 Evaluation of SCR and DOCCPF Tech in Diesel Exhaust Emission Control to Meet U.S....

435

Evaluation of SCR and DOC/CPF Tech in Diesel Exhaust Emission...  

Broader source: Energy.gov (indexed) [DOE]

SCR and DOCCPF Tech in Diesel Evaluation of SCR and DOCCPF Tech in Diesel Exhaust Emission Control to Meet U.S. Tier 2 Bin 5 Exhaust Emission Control to Meet U.S. Tier 2 Bin 5...

436

E-Print Network 3.0 - advanced tech helped Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

tech helped Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced tech helped Page: << < 1 2 3 4 5 > >> 1 STAR Search STAR Search5 30 Summary:...

437

Potatoes, Peppers and Eggplant Diane Relf, Extension Specialist, Horticulture, Virginia Tech  

E-Print Network [OSTI]

Potatoes, Peppers and Eggplant Diane Relf, Extension Specialist, Horticulture, Virginia Tech Alan McDaniel, Extension Specialist, Horticulture, Virginia Tech Potatoes Environmental Preferences LIGHT- skinned potatoes can be grown asanearlycropfornewpotatoes and as a late crop for storage. Choose an early

Liskiewicz, Maciej

438

What Is Clean Cities? Clean Cities Fact Sheet April 2009 (Brochure)  

SciTech Connect (OSTI)

Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

Not Available

2009-04-01T23:59:59.000Z

439

Volume 130, Number 6 tech.mit.edu Friday, February 19, 2010 Oldest and Largest  

E-Print Network [OSTI]

from Matisse and getting approval from the MBTA. Next,JaSmine floRentine--the tech "Pythagoras" is one

Ishii, Hiroshi

440

Evaluating suspect sites {open_quotes}to clean or not to clean?{close_quotes}  

SciTech Connect (OSTI)

Within many large government reservations are many sites that are potentially contaminated from various uses such as experiments, material storage, or material processes. There also exist many smaller areas that, by proximity to contaminated sites, or due to work contracts, are likely to be contaminated. The party responsible for such sites must evaluate if remediation is required, based on current guidelines and future uses. The Departments of Defense and Energy have many sites and properties that are suspected of being contaminated or associated with operations that could cause contamination. In some cases the contaminants may have been adequately cleaned up, then decayed away, biodegraded, or dispersed to a nondetectable level. The decision to remove these sites from any further consideration of remediation or control must be based on historical data, potential contaminants, current analytical data, future uses, and the cost associated with managing the sites. This paper deals with the methodology for evaluating small sites and gives some case studies.

Murray, M.E.; Coleman, R.L.; Tiner, P.F.

1996-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "area clean tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

CleanFleet. Final report: Volume 5, employee attitude assessment  

SciTech Connect (OSTI)

The experiences of couriers, operations managers, vehicle handlers (refuelers), and mechanics who drove and/or worked with alternative fuel vehicles, and the attitudes and perceptions of people with these experiences, are examined. Five alternative fuels studied in the CleanFleet project are considers& compressed natural gas, propane gas, California Phase 2 reformulated gasoline, M-85, and electricity. The three major areas of interest include comparative analysis of issues such as health, safety and vehicle performance, business issues encompassing several facets of station operations, and personal commentary and opinions about the CleanFleet project and the alterative fuels. Results of the employee attitude assessment are presented as both statistical and qualitative analysis.

NONE

1995-12-01T23:59:59.000Z

442

Ash reduction in clean coal spiral product circuits  

SciTech Connect (OSTI)

The article describes the Derrick Corporation's Stack Sizer{trademark} technology for high capacity fine wet cleaning with long-lasting high open-area urethane screen panels. After field trials, a Stack Sizer fitted with a 100-micron urethane panel is currently processing approximately 40 stph of clean coal spiral product having about 20% ash at McCoy-Elkhorn's Bevin Branch coal preparation plant in Kentucky, USA. Product yield is about 32.5 short tons per hour with 10% ash. The material is then fed to screen bowl centrifuges for further processing. At Blue Diamond Coal's Leatherwood preparation plant similar Stacker Sizers are achieving the same results. 2 figs., 3 tabs., 2 photo.

Brodzik, P.

2007-04-15T23:59:59.000Z

443

SCHOOL PSYCHOLOGY SPECIALIZATION 2013-2014 Handbook 1 Texas Tech University  

E-Print Network [OSTI]

SCHOOL PSYCHOLOGY SPECIALIZATION 2013-2014 Handbook 1 Texas Tech University Texas Tech University Educational Psychology Program School Psychology Specialization 2013--2014 DOCTORAL STUDENT HANDBOOK #12;SCHOOL PSYCHOLOGY SPECIALIZATION 2013-2014 Handbook 2 Texas Tech University School Psychology in Texas

Rock, Chris

444

VIRGINIA TECH WILL BE A LEADER IN CAMPUS SUSTAINABILITY We define sustainability as the  

E-Print Network [OSTI]

VIRGINIA TECH WILL BE A LEADER IN CAMPUS SUSTAINABILITY We define sustainability of future generations. History of Sustainability at Virginia Tech Virginia Tech is committed to being a leader in campus sustainability. In June, 2009, the Board of Visitors unanimously approved the Virginia

Buehrer, R. Michael

445

building tech office | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture and Storage Clean Coal Power Initiative PowerBuilding

446

New Jersey Clean Energy Resource Network  

E-Print Network [OSTI]

New Jersey Clean Energy Resource Network njcern.rutgers.edu Environment Solid Waste Management (RDF) ·Leachate treatment Brownfield Redevelopment Soil/Water Remediation Technologies Alternative / Clean Energy Technology Development, Demonstration and Verification ·Anaerobic digestion ·Gasification

Garfunkel, Eric

447

The Sixth Power Plan: Toward a Clean  

E-Print Network [OSTI]

The Sixth Power Plan: Toward a Clean Energy Future Council Document 2010-01 February 2010 Apub is eco- nomical and reliable. The Sixth Northwest Power Plan: Toward a Clean Energy Future Improved energy efficiency potential, wind gen- eration is the leading resource in the near term to meet renewable

448

Clean Air Act Requirements: Uranium Mill Tailings  

E-Print Network [OSTI]

EPA'S Clean Air Act Requirements: Uranium Mill Tailings Radon Emissions Rulemaking Reid J. Rosnick requirements for operating uranium mill tailings (Subpart W) Status update on Subpart W activities Outreach/Communications #12;3 EPA Regulatory Requirements for Operating Uranium Mill Tailings (Clean Air Act) · 40 CFR 61

449

Inside this Issue Clean Sweep 1  

E-Print Network [OSTI]

(coal, aggregate, ore, etc.) are involved in commercial transactions where current weighing technologyInside this Issue Page Clean Sweep 1 This Month in History 1 Calendar 2 This Month in History on page 4) 1 Volume 2 Issue 5 August 29, 2011 Clean Sweep By John Barton Vast amounts of bulk materials

Perkins, Richard A.

450

Clean Cities 2010 Annual Metrics Report  

SciTech Connect (OSTI)

This report details the petroleum savings and vehicle emissions reductions achieved by the U.S. Department of Energy's Clean Cities program in 2010. The report also details other performance metrics, including the number of stakeholders in Clean Cities coalitions, outreach activities by coalitions and national laboratories, and alternative fuel vehicles deployed.

Johnson, C.

2012-10-01T23:59:59.000Z

451

Clean Cities 2011 Annual Metrics Report  

SciTech Connect (OSTI)

This report details the petroleum savings and vehicle emissions reductions achieved by the U.S. Department of Energy's Clean Cities program in 2011. The report also details other performance metrics, including the number of stakeholders in Clean Cities coalitions, outreach activities by coalitions and national laboratories, and alternative fuel vehicles deployed.

Johnson, C.

2012-12-01T23:59:59.000Z

452

Plasma discharge self-cleaning filtration system  

DOE Patents [OSTI]

The present invention is directed to a novel method for cleaning a filter surface using a plasma discharge self-cleaning filtration system. The method involves utilizing plasma discharges to induce short electric pulses of nanoseconds duration at high voltages. These electrical pulses generate strong Shockwaves that disintegrate and dislodge particulate matter located on the surface of the filter.

Cho, Young I.; Fridman, Alexander; Gutsol, Alexander F.; Yang, Yong

2014-07-22T23:59:59.000Z

453

Clean coal technology programs: program update 2006  

SciTech Connect (OSTI)

The purpose of the Clean Coal Technology Programs: Program Update 2006 is to provide an updated status of the DOE commercial-scale demonstrations of clean coal technologies (CCTs). These demonstrations are performed under the Clean Coal Technology Demonstration Program (CCTDP), the Power Plant Improvement Initiative (PPII) and the Clean Coal Power Initiative (CCPI). Program Update 2006 provides 1) a discussion of the role of clean coal technology demonstrations in improving the nation's energy security and reliability, while protecting the environment using the nation's most abundant energy resource - coal; 2) a summary of the funding and costs of the demonstrations; and 3) an overview of the technologies being demonstrated, with fact sheets for demonstration projects that are active, recently completed, withdrawn or ended, including status as of June 30 2006. 4 apps.

NONE

2006-09-15T23:59:59.000Z

454

Clean Coal Technology Programs: Program Update 2009  

SciTech Connect (OSTI)

The purpose of the Clean Coal Technology Programs: Program Update 2009 is to provide an updated status of the U.S. Department of Energy (DOE) commercial-scale demonstrations of clean coal technologies (CCT). These demonstrations have been performed under the Clean Coal Technology Demonstration Program (CCTDP), the Power Plant Improvement Initiative (PPII), and the Clean Coal Power Initiative (CCPI). Program Update 2009 provides: (1) a discussion of the role of clean coal technology demonstrations in improving the nations energy security and reliability, while protecting the environment using the nations most abundant energy resourcecoal; (2) a summary of the funding and costs of the demonstrations; and (3) an overview of the technologies being demonstrated, along with fact sheets for projects that are active, recently completed, or recently discontinued.

None

2009-10-01T23:59:59.000Z

455

Northeast Clean Energy Application Center  

SciTech Connect (OSTI)

From October 1, 2009 through September 30, 2013 (contract period), the Northeast Clean Energy Application Center (NE-CEAC) worked in New York and New England (Connecticut, Rhode Island, Vermont, Massachusetts, New Hampshire, and Maine) to create a more robust market for the deployment of clean energy technologies (CETs) including combined heat and power (CHP), district energy systems (DES), and waste heat recovery (WHR) systems through the provision of technical assistance, education and outreach, and strategic market analysis and support for decision-makers. CHP, DES, and WHR can help reduce greenhouse gas emissions, reduce electrical and thermal energy costs, and provide more reliable energy for users throughout the United States. The NE-CEACs efforts in the provision of technical assistance, education and outreach, and strategic market analysis and support for decision-makers helped advance the market for CETs in the Northeast thereby helping the region move towards the following outcomes: Reduction of greenhouse gas emissions and criteria pollutants Improvements in energy efficiency resulting in lower costs of doing business Productivity gains in industry and efficiency gains in buildings Lower regional energy costs Strengthened energy security Enhanced consumer choice Reduced price risks for end-users Economic development effects keeping more jobs and more income in our regional economy Over the contract period, NE-CEAC provided technical assistance to approximately 56 different potential end-users that were interested in CHP and other CETs for their facility or facilities. Of these 56 potential end-users, five new CHP projects totaling over 60 MW of install capacity became operational during the contract period. The NE-CEAC helped host numerous target market workshops, trainings, and webinars; and NE-CEAC staff delivered presentations at many other workshops and conferences. In total, over 60 different workshops, conferences, webinars, and presentation were hosted or delivered during the contract period. The NE-CEAC also produced publically available educational materials such as CHP project profiles. Finally, the NE-CEAC worked closely with the relevant state agencies involved with CHP development. In New York, the NE-CEAC played an important role in securing and maintaining funding for CHP incentive programs administered by the New York State Energy Research Development Authority. NE-CEAC was also involved in the NYC Mayor's Office DG Collaborative. The NECEAC was also named a strategic resource for the Connecticut Department of Energy and Environmental Protections innovative Microgrid Pilot Program.

Bourgeois, Tom

2013-09-30T23:59:59.000Z

456

Clean Energy Finance Guide, Chapter 12: Commercial Property-Assessed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Clean Energy Finance Guide 12-1 March 2013 U.S. DEPARTMENT OF ENERGY CLEAN ENERGY FINANCE GUIDE Chapter 12. Commercial Property-Assessed Clean Energy (PACE) Financing Third Edition...

457

Clean-Burning Wood Stove Grant Program (Maryland)  

Broader source: Energy.gov [DOE]

The Maryland Energy Administration (MEA) now offers the Clean Burning Wood Stove Grant program as part of its Residential Clean Energy Grant Program. The Clean Burning Wood Stove Grant program...

458

Biomass/Clean Cities State Web Conference - Green Racing | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

BiomassClean Cities State Web Conference - Green Racing BiomassClean Cities State Web Conference - Green Racing Transcript of the September 13 BiomassClean Cities Webinar on...

459

Do You Buy Clean Electricity From Your Utility? | Department...  

Broader source: Energy.gov (indexed) [DOE]

Do You Buy Clean Electricity From Your Utility? Do You Buy Clean Electricity From Your Utility? November 19, 2009 - 7:00am Addthis This week, John discussed buying clean...

460

National Clean Energy Business Plan Competition: Unified Solar...  

Energy Savers [EERE]

Unified Solar Wins at MIT Clean Energy Prize National Clean Energy Business Plan Competition: Unified Solar Wins at MIT Clean Energy Prize May 2, 2014 - 11:01am Addthis Unified...

Note: This page contains sample records for the topic "area clean tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Moving to a Clean Energy Economy:Opportunities for Colorado ...  

Broader source: Energy.gov (indexed) [DOE]

Moving to a Clean Energy Economy:Opportunities for Colorado Moving to a Clean Energy Economy:Opportunities for Colorado A report on the ways in which moving towards a clean energy...

462

Midwest Clean Energy Application Center  

SciTech Connect (OSTI)

The Midwest Clean Energy Application Center (CEAC) was one of eight regional centers that promoted and assisted in transforming the market for combined heat and power (CHP), waste heat to power (WHP), and district energy (DE) technologies and concepts throughout the United States between October 1, 2009 and December 31, 2013. The key services the CEACs provided included: ? Market Opportunity Analyses Supporting analyses of CHP market opportunities in diverse markets including industrial, federal, institutional, and commercial sectors. ? Education and Outreach Providing information on the energy and non-energy benefits and applications of CHP to state and local policy makers, regulators, energy end-users, trade associations and others. Information was shared on the Midwest CEAC website: www.midwestcleanergy.org. ? Technical Assistance Providing technical assistance to end-users and stakeholders to help them consider CHP, waste heat to power, and/or district energy with CHP in their facility and to help them through the project development process from initial CHP screening to installation. The Midwest CEAC provided services to the Midwest Region that included the states of Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin.

Cuttica, John; Haefke, Cliff

2013-12-31T23:59:59.000Z

463

Diversity in Science and Technology Advances National Clean Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Diversity in Science and Technology Advances National Clean Energy in Solar Diversity in Science and Technology Advances National Clean Energy in Solar The SunShot Diversity in...

464

Dilute Clean Diesel Combustion Achieves Low Emissions and High...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Dilute Clean Diesel Combustion Achieves Low Emissions and High Efficiency While Avoiding Control Problems of HCCI Dilute Clean Diesel Combustion Achieves Low Emissions and High...

465

Unregulated Emissions from High-Efficiency Clean Combustion Modes...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Unregulated Emissions from High-Efficiency Clean Combustion Modes - ORNL-FEERC Unregulated Emissions from High-Efficiency Clean Combustion Modes - ORNL-FEERC Poster presentation at...

466

Energy Department Report Finds Major Potential to Increase Clean...  

Energy Savers [EERE]

Department Report Finds Major Potential to Increase Clean Hydroelectric Power Energy Department Report Finds Major Potential to Increase Clean Hydroelectric Power April 17, 2012 -...

467

Commercial Property Assessed Clean Energy (PACE) Primer | Department...  

Broader source: Energy.gov (indexed) [DOE]

Commercial Property Assessed Clean Energy (PACE) Primer Commercial Property Assessed Clean Energy (PACE) Primer An overview of Commercial PACE programs, featuring an explanation of...

468

Introduction to Property-Assessed Clean Energy (PACE) Financing...  

Broader source: Energy.gov (indexed) [DOE]

Introduction to Property-Assessed Clean Energy (PACE) Financing Programs Introduction to Property-Assessed Clean Energy (PACE) Financing Programs Provides information on financing...

469

Making it Easier to Complete Clean Energy Projects with Qualified...  

Broader source: Energy.gov (indexed) [DOE]

Making it Easier to Complete Clean Energy Projects with Qualified Energy Conservation Bonds (QECBs) Making it Easier to Complete Clean Energy Projects with Qualified Energy...

470

Switch on Clean Energy Activity Book | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Switch on Clean Energy Activity Book Switch on Clean Energy Activity Book Games and activity book about energy efficiency and renewable energy technologies for kids....

471

Clean Air Act General Conformity Requirements and the National...  

Broader source: Energy.gov (indexed) [DOE]

Clean Air Act General Conformity Requirements and the National Environmental Policy Act Process Clean Air Act General Conformity Requirements and the National Environmental Policy...

472

Clean Cities Now, Vol. 12, No. 2 - May 2008  

SciTech Connect (OSTI)

Clean Cities Now is the official newsletter of DOE's Clean Cities program. It includes articles on coalition activities, fleet and stakeholder success stories, and helpful resources.

Not Available

2008-05-01T23:59:59.000Z

473

Qualified Energy Conservation Bonds (QECBs) & New Clean Renewable...  

Energy Savers [EERE]

Qualified Energy Conservation Bonds (QECBs) & New Clean Renewable Energy Bonds (New CREBs) Qualified Energy Conservation Bonds (QECBs) & New Clean Renewable Energy Bonds (New...

474

Clean Cities Now, Vol. 13, No.1 - February 2009 (Brochure)  

SciTech Connect (OSTI)

Clean Cities Now is the official newsletter of DOE's Clean Cities program. It includes articles on coalition activities, fleet and stakeholder success stories, and helpful resources.

Not Available

2009-02-01T23:59:59.000Z

475

Structuring Credit Enhancements for Clean Energy Finance Programs...  

Broader source: Energy.gov (indexed) [DOE]

Structuring Credit Enhancements for Clean Energy Finance Programs (Text Version) Structuring Credit Enhancements for Clean Energy Finance Programs (Text Version) Below is a text...

476

Application Periods Open for 2014 National Clean Energy Business...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Application Periods Open for 2014 National Clean Energy Business Plan Competition's Regional Contests Application Periods Open for 2014 National Clean Energy Business Plan...

477

National Clean Energy Business Plan Competition - EERE Commercializati...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Clean Energy Business Plan Competition Learn more about the Department of Energy's National Clean Energy Business Plan Competition structure, past finalists, and past...

478

Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency...  

Office of Environmental Management (EM)

Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency & Renewable Energy (EERE) Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency & Renewable...

479

State of Washington Clean Energy Opportunity: Technical Market...  

Broader source: Energy.gov (indexed) [DOE]

potential including clean heat and power (CHP)cogeneration, waste heat recovery for power and heat, and district energy. This brief white paper by the Northwest Clean Energy...

480

ITP Distributed Energy: State of Washington Clean Energy Opportunity...  

Broader source: Energy.gov (indexed) [DOE]

potential including clean heat and power (CHP)cogeneration, waste heat recovery for power and heat, and district energy. This brief white paper by the Northwest Clean Energy...

Note: This page contains sample records for the topic "area clean tech" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Guide to Federal Financing for Energy Efficiency and Clean Energy...  

Energy Savers [EERE]

Guide to Federal Financing for Energy Efficiency and Clean Energy Deployment Guide to Federal Financing for Energy Efficiency and Clean Energy Deployment Editor's note: This guide...

482

High Efficiency Clean Combustion Engine Designs for Gasoline...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines 2009 DOE Hydrogen Program...

483

EIS-0444: Texas Clean Energy Project (TCEP), Ector County, Texas...  

Office of Environmental Management (EM)

Clean Energy, LLC for the proposed Texas Clean Energy Project. The Project would use coal-based integrated gasification combined-cycle technology to generate electricity and...

484

Special Delivery for Sustainability: Clean Cities Supports UPS...  

Broader source: Energy.gov (indexed) [DOE]

Special Delivery for Sustainability: Clean Cities Supports UPS in Expanding Natural Gas Operations Special Delivery for Sustainability: Clean Cities Supports UPS in Expanding...

485

Ultra Clean and Efficient Natural Gas Reciprocating Engine for...  

Broader source: Energy.gov (indexed) [DOE]

Ultra Clean and Efficient Natural Gas Reciprocating Engine for CHP - Presentation by Dresser Waukesha, June 2011 Ultra Clean and Efficient Natural Gas Reciprocating Engine for CHP...

486

How This Administration's Clean Energy Tax Policies are Improving...  

Broader source: Energy.gov (indexed) [DOE]

How This Administration's Clean Energy Tax Policies are Improving the Markets How This Administration's Clean Energy Tax Policies are Improving the Markets October 19, 2010 -...

487

Funding: Future Clean Cities Solicitation and EISA Section 244  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Funding: Funding: Future Clean Cities Solicitation and Future Clean Cities Solicitation and EISA Section 244 EISA Section 244 Linda Bluestein Linda Bluestein Co Co - - Director...

488

States Biomass/Clean Cities Information Exchange: Food and Fuel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Clean Cities Information Exchange: Food and Fuel At the August 7, 2008 joint quarterly Web conference of DOE's Biomass and Clean Cities programs, Roya Stanley (Iowa Office of...

489

Energy Department Announces $3 Million to Support Clean Energy...  

Energy Savers [EERE]

Energy Department Announces 3 Million to Support Clean Energy Businesses and Entrepreneurs Energy Department Announces 3 Million to Support Clean Energy Businesses and...

490

Challenging Conventional Wisdom: A Clean and Highly Efficient...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Challenging Conventional Wisdom: A Clean and Highly Efficient Opposed-Piston Two-Stroke Engine Challenging Conventional Wisdom: A Clean and Highly Efficient Opposed-Piston...

491

Department of Energy Quadrennial Technology Review Clean Electricity...  

Energy Savers [EERE]

Department of Energy Quadrennial Technology Review Clean Electricity Workshop Department of Energy Quadrennial Technology Review Clean Electricity Workshop Public release of the...

492

Nevada's Beowawe Geothermal Plant Begins Generating Clean Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nevada's Beowawe Geothermal Plant Begins Generating Clean Energy Nevada's Beowawe Geothermal Plant Begins Generating Clean Energy April 20, 2011 - 1:45pm Addthis U.S. Energy...

493

Clean Cities Now, Vol. 11, No. 2 - April 2007  

SciTech Connect (OSTI)

Clean Cities Now is the official publication of the Clean Cities initiative. Articles include program-specific news, coalition news, industry news, and more.

Not Available

2007-04-01T23:59:59.000Z

494

Clean Cities Now, Vol. 12, No. 3 - July 2008  

SciTech Connect (OSTI)

Clean Cities Now is the official newsletter of DOE's Clean Cities program. It includes articles on coalition activities, fleet and stakeholder success stories, and helpful resources.

Not Available

2008-07-01T23:59:59.000Z

495

Investing in Clean, Safe Nuclear Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Investing in Clean, Safe Nuclear Energy Investing in Clean, Safe Nuclear Energy Addthis Description President Obama announces more than 8 billion in loan guarantees for two new...

496

American Recovery & Reinvestment Act, ARRA, clean energy projects...  

Energy Savers [EERE]

Recovery & Reinvestment Act, ARRA, clean energy projects, energy efficiency, smart grid, alternative fuels, geothermal energy American Recovery & Reinvestment Act, ARRA, clean...

497

Heavy Truck Clean Diesel (HTCD) Program: 2007 Demonstration Truck...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Clean Diesel (HTCD) Program: 2007 Demonstration Truck Heavy Truck Clean Diesel (HTCD) Program: 2007 Demonstration Truck 2003 DEER Conference Presentation: Caterpillar Incorporated...

498

SEP Success Story: "Green Launching Pad" Supports Clean Energy...  

Office of Environmental Management (EM)

SEP Success Story: "Green Launching Pad" Supports Clean Energy Small Businesses SEP Success Story: "Green Launching Pad" Supports Clean Energy Small Businesses May 24, 2012 -...

499

RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle...

500

Promoting a Green Economy through Clean Transportation Alternatives...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Promoting a Green Economy through Clean Transportation Alternatives Promoting a Green Economy through Clean Transportation Alternatives Town of Hempstead: Project Energy,...