Powered by Deep Web Technologies
Note: This page contains sample records for the topic "area clark ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Clark Ranch Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Ranch Geothermal Area Ranch Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Clark Ranch Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8569,"lon":-118.5453,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

2

Thermal Gradient Holes At Upper Hot Creek Ranch Area (Benoit...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) Exploration...

3

Cuttings Analysis At Bacca Ranch Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

Bacca Ranch Geothermal Area (1976) Bacca Ranch Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Bacca Ranch Geothermal Area (1976) Exploration Activity Details Location Bacca Ranch Geothermal Area Exploration Technique Cuttings Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the geologic environment of the geothermal area Notes The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters that help describe the reservoir and overlying cap rock. References Pratt, H. R.; Simonson, E. R. (1 January 1976) Geotechnical studies of geothermal reservoirs Retrieved from "http://en.openei.org/w/index.php?title=Cuttings_Analysis_At_Bacca_Ranch_Geothermal_Area_(1976)&oldid=473907"

4

Upper Hot Creek Ranch Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Upper Hot Creek Ranch Geothermal Area Upper Hot Creek Ranch Geothermal Area (Redirected from Upper Hot Creek Ranch Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Upper Hot Creek Ranch Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure

5

Geothermometry At Hot Springs Ranch Area (Szybinski, 2006) | Open Energy  

Open Energy Info (EERE)

Hot Springs Ranch Area (Szybinski, 2006) Hot Springs Ranch Area (Szybinski, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Hot Springs Ranch Area (Szybinski, 2006) Exploration Activity Details Location Hot Springs Ranch Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes The brine from the drill holes, hot springs, seepages, and irrigation wells was sampled, as well as water from two nearby creeks, (total of 13 samples) and sent for analysis to Thermochem Inc. For sample locations refer to Figure 35; the geochemical data are presented in Appendix C. Geochemical results indicate the presence of two distinct waters in this group of samples (Tom Powell of Thermochem Inc., personal communication, 2005).

6

Upper Hot Creek Ranch Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Upper Hot Creek Ranch Geothermal Area Upper Hot Creek Ranch Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Upper Hot Creek Ranch Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

7

Hot Springs Ranch Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hot Springs Ranch Geothermal Area Hot Springs Ranch Geothermal Area (Redirected from Hot Springs Ranch Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hot Springs Ranch Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (4) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.761,"lon":-117.492,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

8

Fly Ranch Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fly Ranch Hot Springs Geothermal Area Fly Ranch Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fly Ranch Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.86666667,"lon":-119.3483333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

9

Hot Springs Ranch Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hot Springs Ranch Geothermal Area Hot Springs Ranch Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hot Springs Ranch Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (4) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.761,"lon":-117.492,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

10

Dann Ranch Hot Spring Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dann Ranch Hot Spring Geothermal Area Dann Ranch Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dann Ranch Hot Spring Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.316,"lon":-116.433,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

11

Geothermal resource area 11, Clark County area development plan  

DOE Green Energy (OSTI)

Geothermal Resource Area 11 includes all of the land in Clark County, Nevada. Within this area are nine geothermal anomalies: Moapa Area, Las Vegas Valley, Black Canyon, Virgin River Narrows, Roger's Springs, Indian Springs, White Rock Springs, Brown's Spring, and Ash Creek Spring. All of the geothermal resources in Clark County have relatively low temperatures. The highest recorded temperature is 145{sup 0}F at Black Canyon. The temperatures of the other resources range from 70 to 90{sup 0}F. Because of the low temperature of the resources and, for the most part, the distance of the resources from any population base, the potential for the development of the resources are considered to be somewhat limited.

Pugsley, M.

1981-01-01T23:59:59.000Z

12

Thermal Gradient Holes At Upper Hot Creek Ranch Area (Benoit & Blackwell,  

Open Energy Info (EERE)

Hot Creek Ranch Area (Benoit & Blackwell, Hot Creek Ranch Area (Benoit & Blackwell, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) Exploration Activity Details Location Upper Hot Creek Ranch Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not useful DOE-funding Unknown Notes Ten temperature gradient holes up to 500' deep were initially planned but higher than anticipated drilling and permitting costs within a fixed budget reduced the number of holes to five. Four of the five holes drilled to depths of 300 to 400' encountered temperatures close to the expected regional thermal background conditions. These four holes failed to find any evidence of a large thermal anomaly surrounding the UHCR hot springs. The

13

Geothermometry At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) |  

Open Energy Info (EERE)

Geothermometry At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) Geothermometry At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) Exploration Activity Details Location Upper Hot Creek Ranch Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Ten water samples were collected for chemical analysis and interpretation. Analyses of three samples of the UHCR thermal give predicted subsurface temperatures ranging from 317 to 334 oF from the Na-K-Ca, silica (quartz), and Na-Li geothermometers. The fact that all three thermometers closely agree gives the predictions added credibility. References Dick Benoit, David Blackwell (2006) Exploration Of The Upper Hot

14

Thermal Gradient Holes At Hot Springs Ranch Area (Szybinski, 2006) | Open  

Open Energy Info (EERE)

Thermal Gradient Holes At Hot Springs Ranch Area (Szybinski, 2006) Thermal Gradient Holes At Hot Springs Ranch Area (Szybinski, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Hot Springs Ranch Area (Szybinski, 2006) Exploration Activity Details Location Hot Springs Ranch Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1, -2, -3, and -4, and all four encountered geothermal fluids. The holes provided valuable water geochemistry, supporting the geothermometry results obtained from the hot springs and Magma well. The temperature data gathered from all the wells clearly indicates the presence of a major plume of thermal water centered on the Pumpernickel Valley

15

Cuttings Analysis At Hot Springs Ranch Area (Szybinski, 2006) | Open Energy  

Open Energy Info (EERE)

Cuttings Analysis At Hot Springs Ranch Area Cuttings Analysis At Hot Springs Ranch Area (Szybinski, 2006) Exploration Activity Details Location Hot Springs Ranch Area Exploration Technique Cuttings Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes The author was on the site throughout the drilling operations to log the drill cuttings and coordinate with the drilling staff. Small representative samples of the gravel and/or chips were collected approximately every 3m, sieved and washed by the geological technician, and examined by the author. A preliminary written description of the cuttings was prepared. Afterwards, the samples were packed in small cotton bags, transported to the warehouse located at the Nevada Geothermal office in Winnemucca and dried. Dry samples were split and a portion of each sample was placed in chip trays

16

Compound and Elemental Analysis At Hot Springs Ranch Area (Szybinski, 2006)  

Open Energy Info (EERE)

Compound and Elemental Analysis At Hot Springs Ranch Compound and Elemental Analysis At Hot Springs Ranch Area (Szybinski, 2006) Exploration Activity Details Location Hot Springs Ranch Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness useful DOE-funding Unknown Notes The brine from the drill holes, hot springs, seepages, and irrigation wells was sampled, as well as water from two nearby creeks, (total of 13 samples) and sent for analysis to Thermochem Inc. For sample locations refer to Figure 35; the geochemical data are presented in Appendix C. Geochemical results indicate the presence of two distinct waters in this group of samples (Tom Powell of Thermochem Inc., personal communication, 2005). Powell found that MDH, TRS-1 and TRS-6 are the most prospective waters and tend to be more bicarbonate rich with much higher proportions of B, Li and

17

David Clark  

NLE Websites -- All DOE Office Websites (Extended Search)

Clark is a Senior Research Scientist at the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL). Since the mid 70s, Dr. Clark has been leading the development...

18

Principal facts for a gravity survey of the Fly Ranch Extension Known Geothermal Resource Area, Pershing County, Nevada  

DOE Green Energy (OSTI)

During July 1977, forty-four gravity stations were obtained in the Fly Ranch Extension Known Geothermal Resource Area and vicinity, northwestern Nevada. The gravity observations were made with a Worden gravimeter having a scale factor of about 0.5 milligal per division. No terrain corrections have been applied to these data. The earth tide correction was not used in drift reduction. The Geodetic Reference System 1967 formula (International Association of Geodesy, 1967) was used to compute theoretical gravity. Observed gravity is referenced to a base station in Gerlach, Nevada, having a value based on the Potsdam System of 1930 (fig. 1). A density of 2.67 g per cm/sup 3/ was used in computing the Bouguer anomaly.

Peterson, D.L.; Kaufmann, H.E.

1978-01-01T23:59:59.000Z

19

An aerial radiological survey of the Tonopah Test Range including Clean Slate 1,2,3, Roller Coaster, decontamination area, Cactus Springs Ranch target areas. Central Nevada  

SciTech Connect

An aerial radiological survey was conducted of major sections of the Tonopah Test Range (TTR) in central Nevada from August through October 1993. The survey consisted of aerial measurements of both natural and man-made gamma radiation emanating from the terrestrial surface. The initial purpose of the survey was to locate depleted uranium (detecting {sup 238}U) from projectiles which had impacted on the TTR. The examination of areas near Cactus Springs Ranch (located near the western boundary of the TTR) and an animal burial area near the Double Track site were secondary objectives. When more widespread than expected {sup 241}Am contamination was found around the Clean Slates sites, the survey was expanded to cover the area surrounding the Clean Slates and also the Double Track site. Results are reported as radiation isopleths superimposed on aerial photographs of the area.

Proctor, A.E.; Hendricks, T.J.

1995-08-01T23:59:59.000Z

20

Kyle Clark  

NLE Websites -- All DOE Office Websites (Extended Search)

Kyle Clark Electrochemical Technologies Group Lawrence Berkeley National Laboratory 1 Cyclotron Road MS 62R0203 Berkeley CA 94720 Office Location: 62-0309F (510) 486-6279...

Note: This page contains sample records for the topic "area clark ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Kyle Clark  

NLE Websites -- All DOE Office Websites (Extended Search)

He, Gi Suk Hwang, Zulima Martin, Kyle Clark, Adam Z. Weber, and Nana Zhao. "Bridge to Fuel Cell Molecular Catalysis: 3D Non-Platinum Group Metal Catalyst in MEAs." ECS...

22

Allison Ranch | Open Energy Information  

Open Energy Info (EERE)

Zip 79604 5451 Sector Wind energy Product Allison Ranch develops projects for wind energy industry. References Allison Ranch1 LinkedIn Connections CrunchBase Profile No...

23

RMOTC - Staff - Clark Turner  

NLE Websites -- All DOE Office Websites (Extended Search)

Clarke Turner, RMOTC Director Clarke Turner, Director Clarke Turner is the director of RMOTC and NPR-3. With offices located in Casper and at NPR-3 35 miles northeast of Casper,...

24

Shale mineralogy and burial diagenesis of Frio and Vicksburg Formations in two geopressured wells, McAllen Ranch area, Hidalgo County, Texas  

DOE Green Energy (OSTI)

Thirty-six shale samples ranging in depth from 1454 ft to 13,430 ft from Shell Oil Company No. 1 Dixie Mortage Loan well and 33 shale samples ranging in depth from 2183 ft to 13,632 ft from Shell Oil/Delhi-Taylor Oil Corporation No. 3 A.A. McAllen well were examined by x-ray techniques to determine the mineralogical parameters of the geopressured zone in the Vicksburg Fairway. Both wells have the same weight-percent trends with depth for the mineralogy: quartz, calcite, total clay, and potassium feldspar are constant; plagioclase feldspar gradually increases; kaolinite increases; discrete illite decreases; total mixed-layer illite-smectite (I/S) decreases; illite in mixed layer I/S increases; and smectite in mixed-layer I/S decreases. Chlorite is found only in the geopressured zone of each well. The Boles and Franks model is compatible with a steady supply of original mixed-layer I/S during the depositional history of the McAllen Ranch area. The constant content with depth of calcite, quartz, and potassium feldspar indicates that limited material, if any, is supplied by the shales to surrounding sands. The ions generated by changes within the clay minerals are involved in further clay mineral reactions as outlined above. In addition, magnesium and iron are involved in forming chlorite within the shales.

Freed, R.L.

1980-01-01T23:59:59.000Z

25

Environmental Assessment : Muddy Ranch Point of Delivery.  

Science Conference Proceedings (OSTI)

Bonneville Power Administration's (BPA's) proposed action is to provide a new pint-of-delivery while Wasco Electric Cooperative (WEC, a preference customer of BPA) will build a new substation and transmission tapline for this new point-of-delivery as connected actions. If the action is not taken, system reliability in the area will be threatened in the near future. The load of the Clarno Basin, served by the Antelope substation, exclusive of the Muddy Ranch Development, is approximately 1000 kW. The connected load on the Muddy Ranch at present is approximately 2000 kW and recently has been growing at the rate of 400 kW per month. The Clarno load and the Muddy Ranch load, when totaled, is approximately 3000 kW at the present time. In an effort to maintain voltage on the system, WEC has installed three banks of regulators between Antelope and the Muddy Ranch, each of which boosts the voltage approximately 10%. Electrical service has been kept within usable standards through operation of these regulators and by voluntary curtailment of major uses on portions of the Muddy Ranch Development. However, the present condition does not meet normal standards expected under th American National Standards Institute for electrical service. With the load growth on the Muddy Ranch, and continued growth in electrical demand from the ranchers in the Clarno area, an extremely unstable operating condition is projected as early as the winter of 1982-1983. At that time, the existing facilities could be heavily overtaxed and damage could be caused to electrical pumps and other electrical applicances. 10 refs., 14 figs., 3 tabs.

United States. Bonneville Power Administration.

1982-09-01T23:59:59.000Z

26

Linden Ranch | Open Energy Information  

Open Energy Info (EERE)

Linden Ranch Linden Ranch Jump to: navigation, search Name Linden Ranch Facility Linden Ranch Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner SCPPA Developer EnXco Location Klickitat County Coordinates 45.757°, -120.795998° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.757,"lon":-120.795998,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

27

Perrin Ranch | Open Energy Information  

Open Energy Info (EERE)

Perrin Ranch Perrin Ranch Jump to: navigation, search Name Perrin Ranch Facility Perrin Ranch Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Arizona Public Service Location Williams AZ Coordinates 35.39338814°, -112.2673988° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.39338814,"lon":-112.2673988,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

28

Busch Ranch | Open Energy Information  

Open Energy Info (EERE)

Busch Ranch Busch Ranch Jump to: navigation, search Name Busch Ranch Facility Busch Ranch Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Black Hills Colorado Electric (50%) - Altagas (50%) Developer EUI and Black Hills Colorado Electric Energy Purchaser Black Hills Energy Location Pueblo CO Coordinates 37.781886°, -104.471858° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.781886,"lon":-104.471858,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

29

Alexandria Clark | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alexandria Clark About Us Alexandria Clark - Rising Junior, Claflin University Most Recent Sending off our Summer Interns with Energy Literacy & Work Experience August 9 Spelman...

30

EA-1960: Townsite Solar Project Transmission Line, Clark County, Nevada |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

60: Townsite Solar Project Transmission Line, Clark County, 60: Townsite Solar Project Transmission Line, Clark County, Nevada EA-1960: Townsite Solar Project Transmission Line, Clark County, Nevada SUMMARY The Bureau of Land Management, with Western Area Power Administration as a cooperating agency, prepared an EA to evaluate potential impacts of a proposal to build and operate a 180-MW photovoltaic facility; a 220, 230, or 500 kV transmission line; and associated facilities in Clark County, Nevada. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD October 28, 2013 EA-1960: Finding of No Significant Impact Townsite Solar Project Transmission Line, Clark County, Nevada June 28, 2013 EA-1960: Final Environmental Assessment Townsite Solar Project Transmission Line, Clark County, Nevada

31

Exploration Of The Upper Hot Creek Ranch Geothermal Resource, Nye County,  

Open Energy Info (EERE)

Of The Upper Hot Creek Ranch Geothermal Resource, Nye County, Of The Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Exploration Of The Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada Details Activities (2) Areas (1) Regions (0) Abstract: The Upper Hot Creek Ranch (UHCR) geothermal system had seen no significant exploration activity prior to initiation of this GRED III project. Geochemical geothermometers calculated from previously available but questionable quality analyses of the UHCR hot spring waters indicated possible subsurface temperatures of +320 oF. A complex Quaternary and Holocene faulting pattern associated with a six mile step over of the Hot Creek Range near the UHCR also indicated that this area was worthy of some

32

NREL: Learning - Photovoltaics for Farms and Ranches  

NLE Websites -- All DOE Office Websites (Extended Search)

Farms and Ranches Farms and Ranches Photo of cows and a photovoltaic powered water pump. Photovoltaic power can be used to pump water for livestock. The following resources will provide you with more information on the uses of solar photovoltaic (PV) systems on farms and ranches, as well as guides to buying and installing a solar energy system. If you are unfamiliar with this technology, see the introduction to PV systems. General Information Energy Savers: Solar Energy Applications for Farms and Ranches Basic information about using solar energy on farms and ranches from the U.S. Department of Energy (DOE). Own Your Power! A Consumer Guide to Solar Electricity This 16-page booklet from the U.S. Department of Energy provides information about how you can use solar energy at home.

33

Caldwell Ranch Exploration and Confirmation Project, Northwest Geysers, CA  

SciTech Connect

The purpose of the Caldwell Ranch Exploration and Confirmation Project was to drill, test, and confirm the present economic viability of the undeveloped geothermal reservoir in the 870 acre Caldwell Ranch area of the Northwest Geysers that included the CCPA No.1 steam field. All of the drilling, logging, and sampling challenges were met. ? Three abandoned wells, Prati 5, Prati 14 and Prati 38 were re-opened and recompleted to nominal depths of 10,000 feet in 2010. Two of the wells required sidetracking. ? The flow tests indicated Prati 5 Sidetrack 1 (P-5 St1), Prati 14 (P-14) and Prati 38 Sidetrack 2 (P-38 St2) were collectively capable of initially producing an equivalent of 12 megawatts (MWe) of steam using a conversion rate of 19,000 pounds of steam/hour

Walters, Mark A.

2013-04-25T23:59:59.000Z

34

Charlton I. Clark | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Charlton I. Clark About Us Charlton I. Clark - Integration Team Lead, Wind and Water Power Program Most Recent New Report: Integrating Variable Wind Energy into the Grid December...

35

Sheep Valley Ranch | Open Energy Information  

Open Energy Info (EERE)

Sheep Valley Ranch Sheep Valley Ranch Jump to: navigation, search Name Sheep Valley Ranch Facility Sheep Valley Ranch Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Two Dot Wind LLC Location Wheatland MT Coordinates 46.45°, -110.07° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.45,"lon":-110.07,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

36

Lubbock Wind Ranch | Open Energy Information  

Open Energy Info (EERE)

Ranch Ranch Jump to: navigation, search Name Lubbock Wind Ranch Facility Lubbock Wind Ranch Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Cielo Energy Purchaser Merchant Location Lubbock TX Coordinates 33.56932604°, -101.7623663° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.56932604,"lon":-101.7623663,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

37

Spinning Spur Wind Ranch | Open Energy Information  

Open Energy Info (EERE)

Spur Wind Ranch Spur Wind Ranch Jump to: navigation, search Name Spinning Spur Wind Ranch Facility Spinning Spur Wind Ranch Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner enXco Developer Cielo Energy Purchaser Xcel Energy Location Vega TX Coordinates 35.28707069°, -102.3208666° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.28707069,"lon":-102.3208666,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

38

Caprock Wind Ranch | Open Energy Information  

Open Energy Info (EERE)

Ranch Ranch Jump to: navigation, search Name Caprock Wind Ranch Facility Caprock Wind Ranch Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Babcock & Brown Developer Cielo Wind Power Energy Purchaser Xcel Energy Location Quay County NM Coordinates 35.043532°, -103.583422° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.043532,"lon":-103.583422,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

39

Pages that link to "Clark County, Idaho" | Open Energy Information  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Pages that link to "Clark County, Idaho" Clark County, Idaho Jump to: navigation, search What links here Page: Clark...

40

Hueco Mountain Wind Ranch | Open Energy Information  

Open Energy Info (EERE)

Hueco Mountain Wind Ranch Hueco Mountain Wind Ranch Jump to: navigation, search Name Hueco Mountain Wind Ranch Facility Hueco Mountain Wind Ranch Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner El Paso Electric Co Developer Cielo Wind Power Energy Purchaser El Paso Electric Co Location El Paso County TX Coordinates 31.6966°, -106.295° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.6966,"lon":-106.295,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "area clark ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Clark Energy Group LLC | Open Energy Information  

Open Energy Info (EERE)

Clark Energy Group LLC Clark Energy Group LLC Jump to: navigation, search Name Clark Energy Group LLC Place Arlington, Virginia Zip 22203 Sector Efficiency, Renewable Energy Product Virginia-based energy efficiency and renewable energy project developer. References Clark Energy Group LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Clark Energy Group LLC is a company located in Arlington, Virginia . References ↑ "Clark Energy Group LLC" Retrieved from "http://en.openei.org/w/index.php?title=Clark_Energy_Group_LLC&oldid=343635" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

42

A Hydrostratigraphic System for Modeling Groundwater Flow and Radionuclide Migration at the Corrective Action Unit Scale, Nevada Test Site and Surrounding Areas, Clark, Lincoln, and Nye Counties, Nevada  

SciTech Connect

Underground Test Area (UGTA) corrective action unit (CAU) groundwater flow and contaminant transport models of the Nevada Test Site (NTS) and vicinity are built upon hydrostratigraphic framework models (HFMs) that utilize the hydrostratigraphic unit (HSU) as the fundamental modeling component. The delineation and three-dimensional (3-D) modeling of HSUs within the highly complex geologic terrain that is the NTS requires a hydrostratigraphic system that is internally consistent, yet flexible enough to account for overlapping model areas, varied geologic terrain, and the development of multiple alternative HFMs. The UGTA CAU-scale hydrostratigraphic system builds on more than 50 years of geologic and hydrologic work in the NTS region. It includes 76 HSUs developed from nearly 300 stratigraphic units that span more than 570 million years of geologic time, and includes rock units as diverse as marine carbonate and siliciclastic rocks, granitic intrusives, rhyolitic lavas and ash-flow tuffs, and alluvial valley-fill deposits. The UGTA CAU-scale hydrostratigraphic system uses a geology-based approach and two-level classification scheme. The first, or lowest, level of the hydrostratigraphic system is the hydrogeologic unit (HGU). Rocks in a model area are first classified as one of ten HGUs based on the rocks ability to transmit groundwater (i.e., nature of their porosity and permeability), which at the NTS is mainly a function of the rocks primary lithology, type and degree of postdepositional alteration, and propensity to fracture. The second, or highest, level within the UGTA CAU-scale hydrostratigraphic system is the HSU, which is the fundamental mapping/modeling unit within UGTA CAU-scale HFMs. HSUs are 3-D bodies that are represented in the finite element mesh for the UGTA groundwater modeling process. HSUs are defined systematically by stratigraphically organizing HGUs of similar character into larger HSUs designations. The careful integration of stratigraphic information in the development of HSUs is important to assure individual HSUs are internally consistent, correlatable, and mappable throughout all the model areas.

Lance Prothro, Sigmund Drellack Jr., Jennifer Mercadante

2009-01-31T23:59:59.000Z

43

Economic viability of rangeland based ranching enterprises  

E-Print Network (OSTI)

Ranch management's ability to cope with climate variability, especially drought, critically impacts the economic viability of rangeland based ranching enterprise alternatives. In rangeland ecosystems, drought is not uncommon and has become expected, but ranchers' management practices tend to be reactive to weather conditions rather than proactive. With increased availability and technological advancements of seasonal forecasts, this study investigates the potential for ranchers to increase the profitability of their enterprises by becoming more proactive in their management practices. An annual economic model is used to analyze the effects of using seasonal climate forecasts in cattle ranching enterprises in Sutton County, Texas. Unique to this study, is the use of stocking rate decision rules elicited from a focus group of ranchers, rather than decision rules derived from a modeling exercise. Decision rules from a previous focus group are used as the prior information scenario. A reconvened focus group was presented forecasts of forage deviations from a long-term average. Their input provided decision rules for the "with forecast" information scenario. Using an economic model and PHYGROW, a forage simulation model, the "with" and "without" forecast information scenarios are compared to evaluate the use of climate forecasts on net returns of a ranching enterprise. Results were then presented to the panel for their response. The focus group responded positively to participating in the study and to the study results. Results suggest in a market in which stocker cows are bought or sold at the same price, overall expected net returns from using seasonal climate forecasts are negative. A decrease in net returns does not necessarily imply the value of climate forecasts are negative. The single year model fails to capture improved long-term ecological conditions associated with the use of climate forecasts. If cattle prices differ for buying and selling cows (by 7-43% lower selling price depending on the scenario), the seasonal climate forecasts show a positive value. Generally, variability in expected net returns increases with the use of seasonal climate forecasts.

Jochec, Kristi Gayle

2000-01-01T23:59:59.000Z

44

Geothermal: Sponsored by OSTI -- Caldwell Ranch Exploration and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Caldwell Ranch Exploration and Confirmation Project, Northwest Geysers, CA Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic...

45

Exploration Of The Upper Hot Creek Ranch Geothermal Resource...  

Open Energy Info (EERE)

Nye County, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Exploration Of The Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada...

46

AV Solar Ranch AV Solar Ranch One Site One Site P A C I F I  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

58 58 AV Solar Ranch AV Solar Ranch One Site One Site P A C I F I C O C E A N E d w a r d s A F B E d w a r d s A F B K e r n C o u n t y L o s A n g e l e s C o u n t y Ve n t u r a C o u n t y S a n B e r n a r d i n o C o u n t y S a n t a B a r b a r a C o u n t y S . L . O . Red Rock Red Rock Canyon Canyon State Rec Area State Rec Area P i t M St t P k T St t P k H e s p e r i H e s p e r i C a m a r i l l o C a m a r i l l o V i c t o r v i l l V i c t o r v i l l A r v i n A r v i n A g o u r a A g o u r a M o o r p a r k M o o r p a r k A d e l a n t o A d e l a n t o F i l l m o r e F i l l m o r e C a l a b a s a s C a l a b a s a s T e h a c h a p i T e h a c h a p i C a r p i n t e r i a C a r p i n t e r i a S a n t a S a n t a P a u l a P a u l a S i e r r a S i e r r a M a d r e M a d r e P o r t P o r t H u e n e m e H u e n e m e L a L a C a n a d a C a n a d a F l i n t r i d g e F l i n t r i d g e Piru Taft Somis Boron Lebec Keene Muscoy Devore Summit Saugus Gorman Mojave Atolia Cantil Lamont Edison El Rio Saticoy Garlock Montalvo Rosamond Monolith Maricopa Caliente Rosedale De Verdemont Crestline Helendale Oak View Wrightwood Littlerock Val Verde ummerland

47

Del Ranch (Hoch) Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Ranch (Hoch) Geothermal Facility Ranch (Hoch) Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Del Ranch (Hoch) Geothermal Facility General Information Name Del Ranch (Hoch) Geothermal Facility Facility Del Ranch (Hoch) Sector Geothermal energy Location Information Address 7029 Gentry Road Location Calipatria, California Zip 92233 Coordinates 33.164175446318°, -115.61438798904° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.164175446318,"lon":-115.61438798904,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

48

EA-1959: Eightmile Ranch Coho Acclimation Site, Okanogan County, Washington  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Eightmile Ranch Coho Acclimation Site, Okanogan County, 9: Eightmile Ranch Coho Acclimation Site, Okanogan County, Washington EA-1959: Eightmile Ranch Coho Acclimation Site, Okanogan County, Washington SUMMARY Bonneville Power Administration and USDA Forest Service, Okanogan-Wenatchee National Forest, are jointly preparing an EA to assess the potential environmental impacts of funding a proposal by the Confederated Tribes and Bands of the Yakama Nation to construct and operate a coho salmon acclimation pond at Eightmile Ranch, which is owned and operated by the Forest Service. BPA's Mid-Columbia Coho Restoration Program EIS (DOE/EIS-0425) addressed the overall coho restoration program, with 11 acclimation sites. Some of these sites proved infeasible, so the Yakama Nation is proposing a new site at Eightmile Ranch. Young coho would be held

49

EA-1960: Townsite Solar Project Transmission Line, Clark County...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

60: Townsite Solar Project Transmission Line, Clark County, Nevada EA-1960: Townsite Solar Project Transmission Line, Clark County, Nevada SUMMARY The Bureau of Land Management,...

50

Clark Atlanta Universities (CAU) Energy Related Research Capabilities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clark Atlanta Universities (CAU) Energy Related Research Capabilities Clark Atlanta Universities (CAU) Energy Related Research Capabilities How energy related research has helped...

51

EA-1969: Clark Fork River Delta Restoration Project, Bonner County...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1969: Clark Fork River Delta Restoration Project, Bonner County, Idaho EA-1969: Clark Fork River Delta Restoration Project, Bonner County, Idaho Summary Bonneville Power...

52

Commodity Flow Study - Clark County, Nevada, USA  

Science Conference Proceedings (OSTI)

The United States Department of Energy has designated Clark County, Nevada as an 'Affected Unit of Local Government' due to the potential for impacts by activities associated with the Yucca Mountain High Level Nuclear Waste Repository project. Urban Transit, LLC has led a project team of transportation including experts from the University of Nevada Las Vegas Transportation Research Center to conduct a hazardous materials community flow study along Clark County's rail and truck corridors. In addition, a critical infrastructure analysis has also been carried out in order to assess the potential impacts of transportation within Clark County of high level nuclear waste and spent nuclear fuel to a proposed repository 90 miles away in an adjacent county on the critical infrastructure in Clark County. These studies were designed to obtain information relating to the transportation, identification and routing of hazardous materials through Clark County. Coordinating with the United States Department of Energy, the U.S. Department of Agriculture, the U. S. Federal Highway Administration, the Nevada Department of Transportation, and various other stakeholders, these studies and future research will examine the risk factors along the entire transportation corridor within Clark County and provide a context for understanding the additional vulnerability associated with shipping spent fuel through Clark County. (authors)

Conway, S.Ph.D. [Urban Environmental Research LLC, Las Vegas, NV (United States); Navis, I. [AICP Planning Manager, Clark County Nuclear Waste Division, Department of Comprehensive Planning, Las Vegas, NV (United States)

2008-07-01T23:59:59.000Z

53

Hudson Ranch Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Geothermal Project Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Hudson Ranch Geothermal Project Project Location Information Coordinates 33.333055555556°, -115.83416666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.333055555556,"lon":-115.83416666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

54

Clark County - Energy Conservation Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clark County - Energy Conservation Code Clark County - Energy Conservation Code Clark County - Energy Conservation Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Nevada Program Type Building Energy Code Provider Clark County In September 2010, Clark County adopted Ordinance 3897, implementing the Southern Nevada version of the 2009 International Energy Conservation Code for both residential and commercial buildings located within Clark County. The code was developed by the Southern Nevada Building Officials' International Energy Conservation Committee, comprised of seven municipalities throughout Nevada (including Clark County, Las Vegas, North

55

Golden Spread Panhandle Wind Ranch | Open Energy Information  

Open Energy Info (EERE)

Spread Panhandle Wind Ranch Spread Panhandle Wind Ranch Jump to: navigation, search Name Golden Spread Panhandle Wind Ranch Facility Golden Spread Panhandle Wind Ranch Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Golden Spread Electric Cooperative Developer Cielo Energy Purchaser Golden Spread Electric Cooperative Location Wildarado TX Coordinates 35.22770741°, -102.2323751° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.22770741,"lon":-102.2323751,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

56

High Plains Ranch Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

High Plains Ranch Solar Power Plant High Plains Ranch Solar Power Plant Jump to: navigation, search Name High Plains Ranch Solar Power Plant Facility High Plains Ranch Sector Solar Facility Type Photovoltaic Developer Sun Power Location Carizzo Plain, California Coordinates 35.1913858°, -119.7260983° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.1913858,"lon":-119.7260983,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

57

Warner Springs Ranch Resort Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Warner Springs Ranch Resort Space Heating Low Temperature Geothermal Warner Springs Ranch Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warner Springs Ranch Resort Space Heating Low Temperature Geothermal Facility Facility Warner Springs Ranch Resort Sector Geothermal energy Type Space Heating Location San Diego, California Coordinates 32.7153292°, -117.1572551° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

58

Donlay Ranch Hot Spring Greenhouse Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Donlay Ranch Hot Spring Greenhouse Low Temperature Geothermal Facility Donlay Ranch Hot Spring Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Donlay Ranch Hot Spring Greenhouse Low Temperature Geothermal Facility Facility Donlay Ranch Hot Spring Sector Geothermal energy Type Greenhouse Location Boise County, Idaho Coordinates 43.9604787°, -115.8563106° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

59

AV Solar Ranch I Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

AV Solar Ranch I Solar Power Plant AV Solar Ranch I Solar Power Plant Jump to: navigation, search Name AV Solar Ranch I Solar Power Plant Facility AV Solar Ranch I Sector Solar Facility Type Photovoltaic Developer NextLight Renewable Power Location Antelope Valley, California Coordinates 38.70833°, -121.32889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.70833,"lon":-121.32889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

60

Taking stock of renewables: NREL teaches farm and ranch appliations  

Science Conference Proceedings (OSTI)

NREL workshop leaders find a receptive audience for renewable energy technologies among farmers and ranchers. As an exhibitor/participant in Denver`s National Western Stock Show, the National Renewable Energy Laboratory (NREL) of Golden, Colorado sponsored an educational workshop to demonstrate applications of solar and wind energy on the farm and ranch, offering a very non-traditional energy approach to people who pride themselves in tradition. This article describes solar and wind energy applications to farms and ranches.

Marsh, M.G. [NREL, Golden, CO (United States)

1996-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "area clark ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Clark Energy Group ESCO Qualification Sheet  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Introduction to Clark Energy Group Introduction to Clark Energy Group Clark Energy Group offers comprehensive, turn-key energy and water solutions with a focus on renewable energy and building efficiency. We partner with public and private clients to deliver projects that enhance energy security, protect the environment, and save our customers money. Our $5 billion Super ESPC contract with the U.S. Department of Energy allows us to contract with any federal agency for energy-related projects. On the private side, we work on a wide variety of institutional facilities such as data centers, laboratories, multi-family housing, campuses, and high-performance office buildings. Clark's long history of success on complex projects allow us to

62

Clark Energy- Residential Energy Efficiency Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE))

Clark Energy offers a free energy audit to provide residential customers with suggestions on ways to improve the energy efficiency of participating homes. Rebates are available for customers who...

63

Effects of rainbow trout fry of a metals-contaminated diet of benthic invertebrates from the Clark Fork River, Montana  

Science Conference Proceedings (OSTI)

The upper Clark Fork River in northwestern Montana has received mining wastes from the Butte and Anaconda areas since 1880. These wastes have contaminated areas of the river bed and floodplain with tailings and heavy metal sludge, resulting in elevated concentration of metals in surface water, sediments, and biota. Rainbow trout Oncorhynchus mykiss were exposed immediately after hatching for 91 d to cadmium, copper, lead, and zinc in water at concentrations simulating those in Clark Fork River. From exogenous feeding (21 d posthatch) through 91 d, fry were also fed benthic invertebrates from the Clark Fork River that contained elevated concentrations of arsenic, cadmium, copper, and lead. Evaluations of different combinations of diet and water exposure indicated diet-borne metals were more important than water-borne metals - at the concentrations we tested - in reducing survival and growth of rainbow trout. Whole-body metal concentrations ([mu]g/g, wet weight) at 91 d in fish fed Clark Fork invertebrates without exposure to Clark Fork water were arsenic, 1.4; cadmium, 0.16; and copper, 6.7. These were similar to concentrations found in Clark Fork River fishes. Livers from fish on the high-metals diets exhibited degenerative changes and generally lacked glycogen vacuolation. Indigenous Clark Fork River invertebrates provide a concentrated source of metals for accumulation into young fishes, and probably were the cause of decreased survival and growth of age-0 rainbow trout in our laboratory exposures. 30 refs., 8 figs., 4 tabs.

Woodward, D.F. (National Fisheries Contaminant Research Center, Jackson, WY (United States)); Brumbaugh, W.G.; DeLonay, A.J.; Little, E.E. (National Fisheries Contaminant Research Center, Columbia, MO (United States)); Smith, C.E. (Bozeman Fish Technology Center, MT (United States))

1994-01-01T23:59:59.000Z

64

Solar Goes Big: Launching the California Valley Solar Ranch | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Goes Big: Launching the California Valley Solar Ranch Goes Big: Launching the California Valley Solar Ranch Solar Goes Big: Launching the California Valley Solar Ranch October 31, 2013 - 4:14pm Addthis The California Valley Solar Ranch produces clean, renewable electricity at the scale of traditional power plants. | Photo courtesy of SunPower. The California Valley Solar Ranch produces clean, renewable electricity at the scale of traditional power plants. | Photo courtesy of SunPower. Aerial shot of the California Valley Solar Ranch in San Luis Obispo County, California. | Photo courtesy of SunPower. Aerial shot of the California Valley Solar Ranch in San Luis Obispo County, California. | Photo courtesy of SunPower. According to NRG Energy, the California Solar Valley Ranch project has created thousands of jobs and put an estimated $315 million into the local economy. | Photo courtesy of SunPower.

65

Clark Public Utilities - Residential Weatherization Loan Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Weatherization Loan Program Weatherization Loan Program Clark Public Utilities - Residential Weatherization Loan Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Windows, Doors, & Skylights Maximum Rebate $15,000 Program Info State District of Columbia Program Type Utility Loan Program Rebate Amount up to $15,000 Provider Clark Public Utilities Loans of up to $15,000 at a 5.25% interest are available through Clark Public Utilities' Weatherization Loan Program. The loans can pay for the average local cost of eligible measures, based on recently completed projects. Customers have up to seven years to repay the loans, but monthly payments will be at least $25. The utility charges a $225 or $350 loan set-up fee, depending on the loan amount, which can be paid up front or

66

Archaeological survey of the McGee Ranch vicinity, Hanford Site, Washington  

SciTech Connect

In response to a request for a cultural resources review from Westinghouse Hanford Company for the Action Plan for Characterization of McGee Ranch Soil, Pacific Northwest Laboratory's Hanford Cultural Resources Laboratory (HCRL) conducted an archaeological survey of the McGee Ranch vicinity, located in the northwest portion of the Hanford Site. Staff members covered 8.4 km{sup 2} and recorded 42 cultural resources; 22 sites, and 20 isolated artifacts. Only 2 sites and 3 isolates were attributed to a prehistoric Native American occupation. The historic sites date from the turn of the century to the 1940s and are representative of the settlement patterns that occurred throughout the Columbia Basin. In addition to an archaeological pedestrian survey of the project area, we conducted literature and records searches and examined available aerial photographs. Records kept at HCRL were reviewed to determine if any archaeological survey had been conducted previously within the project area. Although no survey had been conducted, portions of the area adjacent to project boundaries were surveyed in 1988 and 1990. During those surveys, historic and prehistoric cultural resources were observed, increasing the possibility that similar land usage had taken place within the current project boundaries. Literature searches established a general historical sequence for this area. Aerial photographs alerted researchers to homesteads and linear features, such as roads and irrigation ditches, that might not be apparent from ground level.

Gard, H.A.; Poet, R.M.

1992-09-01T23:59:59.000Z

67

Clark County REMC- Clark County REMC- Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Clark County REMC provides incentives for residential members to upgrade to more efficient household equipment. Rebates are available for air-source heat pumps, geothermal heat pumps, central air...

68

Preliminary Assessment for CAU 485: Cactus Spring Ranch Pu and DU Site CAS No. TA-39-001-TAGR: Soil Contamination, Tonopah Test Range, Nevada  

SciTech Connect

Corrective Action Unit 485, Corrective Action Site TA-39-001-TAGR, the Cactus Spring Ranch Soil Contamination Area, is located approximately six miles southwest of the Area 3 Compound at the eastern mouth of Sleeping Column Canyon in the Cactus Range on the Tonopah Test Range. This site was used in conjunction with animal studies involving the biological effects of radionuclides (specifically plutonium) associated with Operation Roofer Coaster. The location had been used as a ranch by private citizens prior to government control of the area. According to historical records, Operation Roofer Coaster activities involved assessing the inhalation uptake of plutonium in animals from the nonnuclear detonation of nuclear weapons. Operation Roofer Coaster consisted of four nonnuclear destruction tests of a nuclear device. The four tests all took place during May and June 1963 and consisted of Double Tracks and Clean Slate 1, 11, and 111. Eighty-four dogs, 84 burros, and 136 sheep were used for the Double Tracks test, and ten sheep and ten dogs were used for Clean Slate 11. These animals were housed at Cactus Spring Ranch. Before detonation, all animals were placed in cages and transported to the field. After the shot, they were taken to the decontamination area where some may have been sacrificed immediately. All animals, including those sacrificed, were returned to Cactus Spring Ranch at this point to have autopsies performed or to await being sacrificed at a later date. A description of the Cactus Spring Ranch activities found in project files indicates the ranch was used solely for the purpose of the Roofer Coaster tests and bioaccumulation studies and was never used for any other project. No decontamination or cleanup had been conducted at Cactus Spring Ranch prior to the start of the project. When the project was complete, the pits at Cactus Spring Ranch were filled with soil, and trailers where dogs were housed and animal autopsies had been performed were removed. Additional pens and sheds were built to house and manage livestock involved with the Operation Roofer Coaster activities in 1963.

NONE

1998-07-01T23:59:59.000Z

69

Compound and Elemental Analysis At Hot Springs Ranch Area (Szybinski...  

Open Energy Info (EERE)

vary in the other constituents. References Z. Adam Szybinski (2006) Pumpernickel Valley Geothermal Project Thermal Gradient Wells Retrieved from "http:en.openei.orgw...

70

Clark Energy - Residential Energy Efficiency Rebate Programs | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clark Energy - Residential Energy Efficiency Rebate Programs Clark Energy - Residential Energy Efficiency Rebate Programs Clark Energy - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Sealing Your Home Windows, Doors, & Skylights Heat Pumps Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Geothermal Heat Pumps: $500 - $1000 Air-Source Heat Pumps: $500 - $1000 Weatherization Measures: Varies Touchstone Energy Home with Air-Source/Geothermal Heat Pump: $250 - $750 Provider Clark Energy Clark Energy offers a free energy audit to provide residential customers with suggestions on ways to improve the energy efficiency of participating

71

Brazos Wind Ranch Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Ranch Wind Farm Wind Ranch Wind Farm Jump to: navigation, search Name Brazos Wind Ranch Wind Farm Facility Brazos Wind Ranch Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Shell Wind Energy/Mitsui Developer Cielo Wind Power/Orion Energy Energy Purchaser Green Mountain Power/ TXU Location Near Fluvanna TX Coordinates 32.94914°, -101.144357° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.94914,"lon":-101.144357,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

72

King Mountain Wind Ranch I | Open Energy Information  

Open Energy Info (EERE)

Ranch I Ranch I Jump to: navigation, search Name King Mountain Wind Ranch I Facility King Mountain Wind Ranch Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Cielo Wind Power/Renewable Energy Systems Energy Purchaser Texas-New Mexico Power- Reliant Energy- Austin Energy Location Upton County TX Coordinates 31.280873°, -102.195861° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.280873,"lon":-102.195861,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

73

Llano Estacado Wind Ranch at White Deer | Open Energy Information  

Open Energy Info (EERE)

Estacado Wind Ranch at White Deer Estacado Wind Ranch at White Deer Jump to: navigation, search Name Llano Estacado Wind Ranch at White Deer Facility Llano Estacado Wind Ranch at White Deer Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Shell Wind Energy Developer Cielo Wind Power Energy Purchaser Xcel Energy Location White Deer TX Coordinates 35.4613°, -101.238° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.4613,"lon":-101.238,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

74

JOHN WALTER CLARK CURRICULUM VITAE  

E-Print Network (OSTI)

. Nuclear structure and dynamics. Dense matter astrophysics. Quantum Control Theory. Neural Networks Committee, 17th Workshop (Nathiagali, Pakistan, 1993), Program Committee & External Coordinator, 20th CMT Studies in Nuclear Physics and Related Areas, Trento, Italy Member & Chair, Selection Committee for APS

75

Clark Energy Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Clark Energy Coop Inc Clark Energy Coop Inc Place Kentucky Utility Id 3687 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Power Service - Single Phase Commercial General Power Service - Three Phase Commercial General Power Service Industrial Time-of-Day Industrial NET METERING Commercial Outdoor lighting - 175 watt mercury vapor lamp Lighting Outdoor lighting - 400 watt sodium Lighting Public Facilities Commercial Renewable Resource Power Service Commercial Residential Residential Schedule L: General Power Service Industrial

76

Clark County, Nevada RECORD OF CATEGORICAL EXCLUSION DETERMINATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basic (BAS) Basic (BAS) Phase" Soil Remediation located in Clark County, Nevada RECORD OF CATEGORICAL EXCLUSION DETERMINATION A. Proposed Action: Western proposes to excavate PCB and TPH contaminated soils within the Basic Substation yards 1, 2 and 3 as well as the T9 and T10 areas as well as remove asbestos wrapped pipe and conduit. Western will also be removing creosote-contaminated railroad ties. We will use existing access roads and vehicles such as pickup trucks, crew trucks, backhoes and dump trucks. This work is necessary to maintain sanitary and safe working conditions. The attached map shows the project area location northwest of Henderson, Nevada. The legal description is Section 13 Township 22 South Range 62 East & Section 18 Township 22 South Range 63 East on the Mt. Diablo Baseline and Meridian (USGS Las

77

Caprock Wind Ranch phase II | Open Energy Information  

Open Energy Info (EERE)

phase II phase II Jump to: navigation, search Name Caprock Wind Ranch phase II Facility Caprock Wind Ranch phase II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Babcock & Brown Developer Cielo Wind Power Energy Purchaser Xcel Energy Location Quay County NM Coordinates 35.043532°, -103.583422° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.043532,"lon":-103.583422,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

78

Hillsboro Ranches, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ranches, Florida: Energy Resources Ranches, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.3218881°, -80.181578° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.3218881,"lon":-80.181578,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

79

Rafter J Ranch, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rafter J Ranch, Wyoming: Energy Resources Rafter J Ranch, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.426248°, -110.79844° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.426248,"lon":-110.79844,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

80

Cinco Ranch, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ranch, Texas: Energy Resources Ranch, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 29.7388418°, -95.7580048° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.7388418,"lon":-95.7580048,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "area clark ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Hyder Ranch Aquaculture Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Aquaculture Low Temperature Geothermal Facility Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Hyder Ranch Aquaculture Low Temperature Geothermal Facility Facility Hyder Ranch Sector Geothermal energy Type Aquaculture Location Gila Bend & Yuma, Arizona Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

82

Llano Estacado Wind Ranch at Texico | Open Energy Information  

Open Energy Info (EERE)

Texico Texico Jump to: navigation, search Name Llano Estacado Wind Ranch at Texico Facility Llano Estacado Wind Ranch at Texico Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Cielo Wind Power Developer Cielo Wind Power- RES Energy Purchaser Xcel Energy Location Curry County NM Coordinates 34.6283°, -103.387° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.6283,"lon":-103.387,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

83

EA-1959: Eightmile Ranch Coho Acclimation Site, Okanogan County, Washington  

Energy.gov (U.S. Department of Energy (DOE))

Bonneville Power Administration and USDA Forest Service, Okanogan-Wenatchee National Forest, are jointly preparing an EA to assess the potential environmental impacts of funding a proposal by the Confederated Tribes and Bands of the Yakama Nation to construct and operate a coho salmon acclimation pond at Eightmile Ranch, which is owned and operated by the Forest Service. BPA's Mid-Columbia Coho Restoration Program EIS (DOE/EIS-0425) addressed the overall coho restoration program, with 11 acclimation sites. Some of these sites proved infeasible, so the Yakama Nation is proposing a new site at Eightmile Ranch. Young coho would be held in the pond from March to May and then released into the Chewuch River approximately 10 miles above its confluence with the Methow River.

84

Clark Public Utilities - Solar Water Heater Rebate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clark Public Utilities - Solar Water Heater Rebate Clark Public Utilities - Solar Water Heater Rebate Clark Public Utilities - Solar Water Heater Rebate < Back Eligibility Commercial Residential Savings Category Heating & Cooling Solar Water Heating Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount $500 Provider Clark PUD Clark Public Utilities offers a rebate of $500 to customers who install a solar water heating system. Customers must own the residence or business where the solar water heating system is installed and must have an electric water heater. In addition, Clark Public Utilities offers a [http://dsireusa.org/incentives/incentive.cfm?Incentive_Code=WA29F&re=1&ee=1 loan program] for eligible solar water heater equipment. For additional information, call Energy Services at (360) 992-3355.

85

Clark Public Utilities - Solar Energy Equipment Loan (Washington...  

Open Energy Info (EERE)

form History Share this page on Facebook icon Twitter icon Clark Public Utilities - Solar Energy Equipment Loan (Washington) This is the approved revision of this page, as...

86

Clark Fork, Idaho: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Edit with form History Share this page on Facebook icon Twitter icon Clark Fork, Idaho: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

87

Clark County- Solar and Wind Building Permit Guides  

Energy.gov (U.S. Department of Energy (DOE))

Clark County, Nevada has established guides for obtaining building permits for wind and solar photovoltaic (PV) systems for both residential and commercial purposes. The guides outline applicable...

88

Betty Van Dyke: The Van Dyke Ranch  

E-Print Network (OSTI)

s not work. Yes. Younger Apprentice Organic Farmers I admirein the area, when they were young apprentice farmers.When they were young, apprentice farmers. Jim picked all the

Rabkin, Sarah

2010-01-01T23:59:59.000Z

89

Microsoft Word - FONSI_CalValleySolarRanch_Final For Silver Sig_8-2-11  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FINDING OF NO SIGNIFICANT IMPACT DEPARTMENT OF ENERGY LOAN GUARANTEE TO HIGH PLAINS RANCH II, LLC FOR THE CALIFORNIA VALLEY SOLAR RANCH PROJECT IN SAN LUIS OBISPO COUNTY, CALIFORNIA AGENCY: U.S. Department of Energy, Loan Programs Office ACTION: Finding of No Significant Impact SUMMARY: The U.S. Department of Energy (DOE) conducted an environmental assessment (EA) that analyzed the potential environmental impacts associated with the California Valley Solar Ranch (CVSR) project, a 250-megawatt (MW) gross output commercial solar photovoltaic (PV) power plant project proposed by High Plains Ranch II, LLC (HPR II) in southeastern San Luis Obispo County, California. The CVSR Project would include the construction, operation, maintenance, and

90

Substation in Clark County, Nevada RECORD OF CATEGORICAL EXCLUSION DETERMINATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Substation for soil remediation. Substation for soil remediation. The attached map shows the borrow area which is situated in Sections 18, 19,20 Township 18 South Range 64 East, Mount Diablo Meridian, Clark County, Nevada. The corresponding U.S.G.S. 7.S-minute topographic maps are Apex, Dry Lake, Dry Lake NW, and Dry Lake SE, Nevada. B. Categorical Exclusion Applied: 10 CFR, Part 1021, Subpart D, Appendix B, B4.11: "Construction of electric power substations with power delivery at 230kV or below or modification of existing sUbstations." C. Regulatory Requirements in 10 CFR 1021.410 Ib): 1. The proposed action fits within a class of actions that is listed in Appendix B to Subpart D. a. The proposed action was reviewed for the requirements of the Endangered Species Act, the National Environmental Policy Act (NEPA), the National

91

Substation in Clark County, Nevada RECORD OF CATEGORICAL EXCLUSION DETERMINATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SUbstation for soil remediation. SUbstation for soil remediation. The attached map shows the borrow area which is situated in Sections 18, 19,20 Township 18 South Range 64 East, Mount Diablo Meridian, Clark County, Nevada. The corresponding U.S.G.S. 7.5-minute topographic maps are Apex, Dry Lake, Dry Lake NW, and Dry Lake SE, Nevada. B. Categorical Exclusion Applied: 10 CFR, Part 1021, Subpart D, Appendix B, B4.11: "Construction of electric power substations with power delivery at 230kV or below or modification of existing SUbstations." C. Regulatory Requirements in 10 CFR 1021.410 (b): 1. The proposed action fits within a class of actions that is listed in Appendix B to Subpart D. a. The proposed action was reviewed for the requirements of the Endangered Species Act, the National Environmental Policy Act (NEPA), the National

92

Clark County Develops On-the-Job Weatherization Training Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clark County Develops On-the-Job Weatherization Training Program Clark County Develops On-the-Job Weatherization Training Program Clark County Develops On-the-Job Weatherization Training Program June 9, 2010 - 11:02am Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE What are the key facts? Southwest Washington Workforce Development Council and the State Board of Community and Technical Colleges received over $200,000 under the American Recovery and Reinvestment Act to fund the weatherization training at Clark College There was a classic chicken-or-the-egg moment in Washington State's Clark County last year when officials learned about the million dollars heading their way for additional home energy upgrades. What comes first, weatherization training or jobs? "We knew the Stimulus funds were coming...but there was not a huge

93

Forrest Ranch Management and Implementation, Annual Report 2002-2003.  

DOE Green Energy (OSTI)

Through their John Day Basin Office, the Confederated Tribes of Warm Springs Reservation of Oregon (Tribes) acquired the Forrest Ranch during July of 2002. The property consists of two parcels located in the John Day subbasin within the Columbia basin. The mainstem parcel consists of 3,503 acres and is located 1/2 mile to the east of Prairie City, Oregon on the mainstem of the John Day River. The middle fork parcel consists of 820 acres and is located one mile to the west of the town of Austin, OR on the middle fork John Day River. The Forrest Ranch Project is under a memorandum of agreement with the Bonneville Power Administration (BPA) to provide an annual written report generally describing the real property interests of the project and management activities undertaken or in progress. The Forrest Ranch acquisition was funded by BPA as part of their program to protect, mitigate, and enhance fish and wildlife habitat affected by the operation of their hydroelectric facilities on the Columbia River and its tributaries. Following lengthy negotiations with the BPA and property owner, the Tribes were able to conclude the acquisition of the Forrest Ranch in July of 2002. The intent of the acquisition project was to partially mitigate fish and wildlife impacts for the John Day Dam on the Columbia River as outlined in the Northwest Power Planning Council's Wildlife Program (NPPC 1994, section 11.1, section 7.6). While the Tribes hold fee-title to the property, the BPA has assured a level of program funding through a memorandum of agreement and annual statement of work. As early as 1997, the Tribes identified this property as a priority for restoration in the John Day basin. In 2000, the Tribes arranged an agreement with the landowner to seek funds for the acquisition of both the Middle Fork and upper Mainstem John Day River holdings of Mr. John Forrest. This property had been a priority of not only the Tribes, but of many other basin natural resource agencies. The contract period was the first year of the program with December 2001 through July 2nd 2002 being previous to acquisition of the property. The majority of the activities conducted under the contract period were spent on O&M and pre acquisition activities.

Smith, Brent

2004-01-01T23:59:59.000Z

94

Forrest Ranch Acquisition, Annual Report 2001-2002.  

DOE Green Energy (OSTI)

Through their John Day Basin Office, the Confederated Tribes of Warm Springs Reservation of Oregon (Tribes) acquired the Forrest Ranch during July of 2002. The property consists of two parcels located in the John Day subbasin within the Columbia basin. The mainstem parcel consists of 3,503 acres and is located 1/2 mile to the east of Prairie City, Oregon on the mainstem of the John Day River. The middle fork parcel consists of 820 acres and is located one mile to the west of the town of Austin, OR on the middle fork John Day River. The Forrest Ranch Project is under a memorandum of agreement with the Bonneville Power Administration (BPA) to provide an annual written report generally describing the real property interests of the project and management activities undertaken or in progress. The Forrest Ranch acquisition was funded by BPA as part of their program to protect, mitigate, and enhance fish and wildlife habitat affected by the operation of their hydroelectric facilities on the Columbia River and its tributaries. Following lengthy negotiations with the BPA and property owner, the Tribes were able to conclude the acquisition of the Forrest Ranch in July of 2002. The intent of the acquisition project was to partially mitigate fish and wildlife impacts for the John Day Dam on the Columbia River as outlined in the Northwest Power Planning Council's Wildlife Program (NPPC 1994, section 11.1, section 7.6). While the Tribes hold fee-title to the property, the BPA has assured a level of program funding through a memorandum of agreement and annual statement of work. As early as 1997, the Tribes identified this property as a priority for restoration in the John Day basin. In 2000, the Tribes arranged an agreement with the landowner to seek funds for the acquisition of both the Middle Fork and upper Mainstem John Day River holdings of Mr. John Forrest. This property had been a priority of not only the Tribes, but of many other basin natural resource agencies. The contract period was the first year of the program with December 2001 through July 2nd 2002 being previous to acquisition of the property. The majority of the activities conducted under the contract period were spent on O&M and pre acquisition activities.

Smith, Brent

2003-08-01T23:59:59.000Z

95

Clarke Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Electric Coop Inc Electric Coop Inc Jump to: navigation, search Name Clarke Electric Coop Inc Place Iowa Utility Id 3722 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Commercial* Commercial Electric Industrial Industrial Large Commercial Commercial Large Commercial* Commercial Large Power* Industrial Off Peak Outdoor Lighting HPS General Lighting Residential Single Phase < 250 kWh Residential Residential Single Phase Service > 250 kWh Residential Urban Single Phase > 250 kWh Residential

96

Notices Disabled, 1401 S. Clark Street, Suite  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13 Federal Register 13 Federal Register / Vol. 78, No. 240 / Friday, December 13, 2013 / Notices Disabled, 1401 S. Clark Street, Suite 10800, Arlington, Virginia 22202-4149. FOR FURTHER INFORMATION CONTACT: Barry S. Lineback, Telephone: (703) 603-7740, Fax: (703) 603-0655, or email CMTEFedReg@AbilityOne.gov. SUPPLEMENTARY INFORMATION: Addition On 6/28/2013 (78 FR 38952-38953), the Committee for Purchase From People Who Are Blind or Severely Disabled published notice of proposed addition to the Procurement List. After consideration of the material presented to it concerning capability of qualified nonprofit agency to provide the service and impact of the addition on the current or most recent contractors, the Committee has determined that the service listed below is suitable for procurement by the

97

DOE EM-67 FRSTL ~-+-+ B CLARK  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ofi·/20198 THU 16:26 FAX 202 586 5256 Ofi·/20198 THU 16:26 FAX 202 586 5256 DOE EM-67 FRSTL ~-+-+ B CLARK r r ( DOE/EIS-0218-SA .. l SUPPLEMENT ANALYSIS OF ACCEPTANCE OF FOREIGN RESEARCH REACTOR SPENT NUCLEAR FUEL UNDER SCENARIOS NOT SPECIFICALLY MENTIONED IN THE EIS Introduction The Dep~ent of Energy is proposing to transport spent nuclear fuel by ship from forty-one ( 41) eligible countries that host research reactors using, or that have used, United States-enriched uranium as fuel for the reactors. The decision to transport by ship and accept foreign research reactor spent nuclear fuel {FRR SNF) frOm foreign research reactors was based on an analysis of potential environmental impacts in the Final Environmental Impact Statement on a Proposed Nuclear Weapons Nonproliforation Policy Concerning Foreign Research Reactor Spent Nuclear

98

Clarke-Washington E M C | Open Energy Information  

Open Energy Info (EERE)

Clarke-Washington E M C Clarke-Washington E M C Jump to: navigation, search Name Clarke-Washington E M C Place Alabama Utility Id 40127 Utility Location Yes Ownership C NERC Location SERC Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Security Light: 100 watt w/ pole addition Lighting Security Light: 100 watt without pole Lighting Average Rates Residential: $0.1260/kWh Commercial: $0.1250/kWh Industrial: $0.1130/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Clarke-Washington_E_M_C&oldid=410462

99

Athens-Clarke County- Green Business Revolving Loan Fund  

Energy.gov (U.S. Department of Energy (DOE))

Athens-Clarke County has created a Green Business Revolving Loan Fund for new or existing businesses. Funding is available for implementing eco-friendly products or services into a business or...

100

Lewis and Clark: Pioneering Meteorological Observers in the American West  

Science Conference Proceedings (OSTI)

The technical achievements of Lewis and Clark have been celebrated in fields ranging from cartography to zoology. As America commemorates the bicentennial of their historic journey across the continent, this paper shows that their meteorological ...

Susan Solomon; John S. Daniel

2004-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "area clark ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Hudson Ranch Power I LLC | Open Energy Information  

Open Energy Info (EERE)

I LLC I LLC Jump to: navigation, search Name Hudson Ranch Power I, LLC Place Dallas, Texas Zip 75204 Sector Geothermal energy Product A company proposing to build a 49.9MW geothermal energy plant in southern California. Coordinates 32.778155°, -96.795404° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.778155,"lon":-96.795404,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

102

Fairbanks Ranch, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Fairbanks Ranch, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.9939331°, -117.1872572° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.9939331,"lon":-117.1872572,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

103

Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Guest Ranch Pool & Spa Low Temperature Geothermal Guest Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature Geothermal Facility Facility Blue Mountain Hot Spring Guest Ranch Sector Geothermal energy Type Pool and Spa Location Prairie City, Oregon Coordinates 44.4632135°, -118.7099477° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

104

Drakesbad Guest Ranch Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Drakesbad Guest Ranch Pool & Spa Low Temperature Geothermal Facility Drakesbad Guest Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Drakesbad Guest Ranch Pool & Spa Low Temperature Geothermal Facility Facility Drakesbad Guest Ranch Sector Geothermal energy Type Pool and Spa Location Mineral, California Coordinates 40.3476588°, -121.5949804° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

105

4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility Facility 4 UR Guest Ranch Sector Geothermal energy Type Pool and Spa Location Creede, Colorado Coordinates 37.8491662°, -106.9264345° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

106

Cement Creek Ranch Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Cement Creek Ranch Pool & Spa Low Temperature Geothermal Facility Cement Creek Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Cement Creek Ranch Pool & Spa Low Temperature Geothermal Facility Facility Cement Creek Ranch Sector Geothermal energy Type Pool and Spa Location Crested Butte, Colorado Coordinates 38.8697146°, -106.9878231° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

107

Waunita Hot Springs Ranch Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Waunita Hot Springs Ranch Pool & Spa Low Temperature Geothermal Facility Waunita Hot Springs Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Waunita Hot Springs Ranch Pool & Spa Low Temperature Geothermal Facility Facility Waunita Hot Springs Ranch Sector Geothermal energy Type Pool and Spa Location Gunnison, Colorado Coordinates 38.5458246°, -106.9253207° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

108

Free-flow variability on the Jess and Souza Ranches, Altamont Pass  

DOE Green Energy (OSTI)

A central monitoring computer was installed on each ranch. The computers were connected by communication cables to 50 turbines on the Souza Ranch and 150 turbines on the Jess Ranch. Anemometers were installed on every other turbine on 12-foot booms at 35 feet above ground level (AGL). Spacing between anemometers was approximately 200 feet in the crosswind direction by 500 feet in the parallel direction. A total of 23 turbines on the Souza Ranch was instrumented in this fashion, as well as two multi-level meteorological towers. On the Jess Ranch, 77 turbines were instrumented; about half at 35 feet AGL and half at 50 feet AGL, plus four additional towers. Wind data were collected for approximately a 100 hour period on each ranch. All turbines were shut down during these periods so that no turbine wakes would be present. The data periods were selected by the meteorologist to insure that they occurred during typical spring-summer flow regimes. The terrain features upwind of the site appear to play as significant a role in the flow variability as terrain features within the site.

Nierenberg, R.

1988-04-25T23:59:59.000Z

109

Free-flow variability on the Jess and Souza Ranches, Altamont Pass. [Final report  

DOE Green Energy (OSTI)

A central monitoring computer was installed on each ranch. The computers were connected by communication cables to 50 turbines on the Souza Ranch and 150 turbines on the Jess Ranch. Anemometers were installed on every other turbine on 12-foot booms at 35 feet above ground level (AGL). Spacing between anemometers was approximately 200 feet in the crosswind direction by 500 feet in the parallel direction. A total of 23 turbines on the Souza Ranch was instrumented in this fashion, as well as two multi-level meteorological towers. On the Jess Ranch, 77 turbines were instrumented; about half at 35 feet AGL and half at 50 feet AGL, plus four additional towers. Wind data were collected for approximately a 100 hour period on each ranch. All turbines were shut down during these periods so that no turbine wakes would be present. The data periods were selected by the meteorologist to insure that they occurred during typical spring-summer flow regimes. The terrain features upwind of the site appear to play as significant a role in the flow variability as terrain features within the site.

Nierenberg, R.

1988-04-25T23:59:59.000Z

110

EA-1693: Transmission Services Facility, Clark County, Washington |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Transmission Services Facility, Clark County, Washington 3: Transmission Services Facility, Clark County, Washington EA-1693: Transmission Services Facility, Clark County, Washington Summary DOE will prepare an EA to evaluate the potential environmental impacts from the proposed three-to-five story office building that would be constructed to meet the Leadership in Energy and Environmental Design (LEED) Gold standard in energy efficiency and sustainability, near Bonneville Power Administration's (BPA) existing Dittmer Building. BPA website: http://efw.bpa.gov/environmental_services/Document_Library/TSF_Project/ For more information, contact: Stephanie Breeden Environmental Project Manager Bonneville Power Administration - KEC-4 P.O. Box 3621 Portland, Oregon, 97208-3621 Direct telephone number 503-230-5192 Toll-free telephone number 1-800-282-3713

111

Clark Public Utilities - Solar Energy Equipment Loan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Equipment Loan Energy Equipment Loan Clark Public Utilities - Solar Energy Equipment Loan < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Swimming Pool Heaters Water Heating Maximum Rebate Solar PV: $30,000 Solar Pool Heaters and Solar Water Heaters: $10,000 Program Info State District of Columbia Program Type Utility Loan Program Rebate Amount Solar PV: up to $30,000 Solar Pool Heaters and Solar Water Heaters: up to $10,000 Provider Clark PUD Clark Public Utilities offers financing available to its customers for the purchase and installation of residential solar equipment. Loans up to $10,000 are available for solar pool heaters and solar water heaters and up to $30,000 for photovoltaic systems. Solar water heater loans, solar pool heater loans and solar PV loans under

112

Clark Public Utilities - Residential Heat Pump Loan Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pump Loan Program Heat Pump Loan Program Clark Public Utilities - Residential Heat Pump Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate Air-Source Heat Pumps: $20,000 Geothermal Heat Pumps: $30,000 Program Info State District of Columbia Program Type Utility Loan Program Rebate Amount Air-Source Heat Pump: up to $20,000 Geothermal Heat Pumps: up to $30,000 Provider Clark Public Utilities Clark Public Utilities offers loans of up to $20,000 for air-source heat pumps and $30,000 for geothermal heat pumps. Loans will help customers cover the up-front cost of installing a highly efficient heat pump in a residence. All electrically heated homes, including manufactured homes, are eligible for the heat pump financing program, as long as the home has been

113

PUD No 1 of Clark County | Open Energy Information  

Open Energy Info (EERE)

Clark County Clark County (Redirected from Connect Utilities) Jump to: navigation, search Name PUD No 1 of Clark County Place Washington Utility Id 3660 Utility Location Yes Ownership P NERC Location WECC Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial First Tier Schedule 34 Commercial Commercial Second Tier Schedule 134 primary point-of-delivery Commercial Commercial Second Tier Schedule 134 secondary point-of-delivery Commercial

114

Codington-Clark Elec Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Codington-Clark Elec Coop, Inc Codington-Clark Elec Coop, Inc Jump to: navigation, search Name Codington-Clark Elec Coop, Inc Place South Dakota Utility Id 3850 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 3 PH Large Industrial 5/7 Large Power Industrial Irrigation Industrial Residential Residential Residential - Electric Heat(Separate Meter) Residential Security Lights Lighting Average Rates Residential: $0.0828/kWh Commercial: $0.0827/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

115

Clark Public Utilities - Commercial Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clark Public Utilities - Commercial Energy Efficiency Rebate Clark Public Utilities - Commercial Energy Efficiency Rebate Programs Clark Public Utilities - Commercial Energy Efficiency Rebate Programs < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Manufacturing Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Windows, Doors, & Skylights Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Commercial/Industrial Lighting: Up to 50% project costs Custom Industrial Retrofit: $0.25/kWh up to 50% of cost Custom Industrial New Construction: $0.20 - $0.27/kWh up to 50% of cost

116

Simulation of the ghost ranch greenhouse-residence  

DOE Green Energy (OSTI)

The greenhouse-residence unit of the Sundwellings Demonstration Center at Ghost Ranch, Abiguice, New Mexico, has been studied by computer modeling and simulation techniques. A thermal network model of the building has been developed in the framework of PASOLE, the Los Alamos passive solar energy simulation program. Simulation studied based on hourly weather data recorded during the 1977--78 heating season leave been done. Model validation was done by hourly comparisons of simulation predicted temperatures in the building with measured values of corresponding temperatures. The building model was used to predict a 12-month performance with the 1976--77 Los Alamos weather data. A solar fraction, the ratio of the solar portion of the residence heat input to the total heating load, was computed to be 60%. Other performance and design questions studies with 12-month Los Alamos simulation runs include the importance of the thermocirculation vents, the effect of external insulation on the residence walls, and the effect of nighttime insulation on the greenhouse glazing.

Jones, R.W.; McFarland, R.D.

1979-01-01T23:59:59.000Z

117

Irving Gill and rediscovery of concrete in California the Marie and Chauncey Clark, 1919-22  

E-Print Network (OSTI)

The thesis focuses on a large residence by architect Irving Gill: the house for Marie and Chauncey Dwight Clarke in Santa Fe Springs, California (1919-22). The Clarke House was only discovered as a Gill building in 1981; ...

Scensor, Sean

1995-01-01T23:59:59.000Z

118

Jordan F. Clark Ira Leifer Libe Washburn Bruce P. Luyendyk  

E-Print Network (OSTI)

in natural gas bubble plumes: observations from the Coal Oil Point marine hydrocarbon seep field Received: 22 Detailed measurements of bubble composition, dissolved gas concentrations, and plume dynamics wereORIGINAL Jordan F. Clark ? Ira Leifer ? Libe Washburn Bruce P. Luyendyk Compositional changes

Luyendyk, Bruce

119

Lewis & Clark in Shrub Steppe Habitat  

NLE Websites -- All DOE Office Websites (Extended Search)

journal entries of this area. Grade Level: Second, fourth and fifth grades at three schools will participate. Abstract: The students at two schools will research the natural...

120

Furnace Creek Ranch Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Furnace Creek Ranch Pool & Spa Low Temperature Geothermal Facility Furnace Creek Ranch Pool & Spa Low Temperature Geothermal Facility Facility Furnace Creek Ranch Sector Geothermal energy Type Pool and Spa Location Death Valley, California Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "area clark ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

,"Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)" Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_irp_ygrt-nmx_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_irp_ygrt-nmx_mmcfa.htm" ,"Source:","Energy Information Administration"

122

ESS 2012 Peer Review - Tehachapi Wind Energy Storage Project Using Li-Ion Batteries - Christopher Clarke, SCE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tehachapi Storage Project (TSP) Tehachapi Storage Project (TSP) American Recovery and Reinvestment Act Funded Project Christopher R. Clarke - Southern California Edison (SCE) christopher.r.clarke@sce.com Examples of Wind Generation in the Tehachapi Wind Resource Area August 2012 June 2012 May 2012 February 2012 April 2012 Progress To Date * Facility construction expected to complete in September 2012 * First Power Conversion System installed September 13, 2012 * A123 to ship initial battery equipment for delivery week of September 24, 2012 Future Major Milestones * September 2012 - Completion of BESS facility * October 2012 - Initial installation * November 2012 - Installation of second Power Conversion Subsystem * Q1 2013 - Install balance of equipment and commissioning * Q2 2013 - Start of 2 year M&V testing and reporting

123

Llano Estacado Wind Ranch at Texico phase II | Open Energy Information  

Open Energy Info (EERE)

Estacado Wind Ranch at Texico phase II Estacado Wind Ranch at Texico phase II Jump to: navigation, search Name Llano Estacado Wind Ranch at Texico phase II Facility Llano Estacado Wind Ranch at Texico phase II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Cielo Wind Power Developer Cielo Wind Power Energy Purchaser Xcel Energy Location Curry County NM Coordinates 34.6283°, -103.387° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.6283,"lon":-103.387,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

124

Exploration of the Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada  

DOE Green Energy (OSTI)

The Upper Hot Creek Ranch (UHCR) geothermal system had seen no significant exploration activity prior to initiation of this GRED III project. Geochemical geothermometers calculated from previously available but questionable quality analyses of the UHCR hot spring waters indicated possible subsurface temperatures of +320 oF. A complex Quaternary and Holocene faulting pattern associated with a six mile step over of the Hot Creek Range near the UHCR also indicated that this area was worthy of some exploration activity. Permitting activities began in Dec. 2004 for the temperature-gradient holes but took much longer than expected with all drilling permits finally being received in early August 2005. The drilling and geochemical sampling occurred in August 2005. Ten temperature gradient holes up to 500 deep were initially planned but higher than anticipated drilling and permitting costs within a fixed budget reduced the number of holes to five. Four of the five holes drilled to depths of 300 to 400 encountered temperatures close to the expected regional thermal background conditions. These four holes failed to find any evidence of a large thermal anomaly surrounding the UHCR hot springs. The fifth hole, located within a narrow part of Hot Creek Canyon, encountered a maximum temperature of 81 oF at a depth of 105 but had cooler temperatures at greater depth. Temperature data from this hole can not be extrapolated to greater depths. Any thermal anomaly associated with the UHCR geothermal system is apparently confined to the immediate vicinity of Hot Creek Canyon where challenges such as topography, a wilderness study area, and wetlands issues will make further exploration time consuming and costly. Ten water samples were collected for chemical analysis and interpretation. Analyses of three samples of the UHCR thermal give predicted subsurface temperatures ranging from 317 to 334 oF from the Na-K-Ca, silica (quartz), and Na-Li geothermometers. The fact that all three thermometers closely agree gives the predictions added credibility. Unfortunately, the final result of this exploration is that a moderate temperature geothermal resource has been clearly identified but it appears to be restricted to a relatively small area that would be difficult to develop.

Dick Benoit; David Blackwell

2005-10-31T23:59:59.000Z

125

Exploration of the Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada  

DOE Green Energy (OSTI)

The Upper Hot Creek Ranch (UHCR) geothermal system had seen no significant exploration activity prior to initiation of this GRED III project. Geochemical geothermometers calculated from previously available but questionable quality analyses of the UHCR hot spring waters indicated possible subsurface temperatures of +320 oF. A complex Quaternary and Holocene faulting pattern associated with a six mile step over of the Hot Creek Range near the UHCR also indicated that this area was worthy of some exploration activity. Permitting activities began in Dec. 2004 for the temperature-gradient holes but took much longer than expected with all drilling permits finally being received in early August 2005. The drilling and geochemical sampling occurred in August 2005. Ten temperature gradient holes up to 500 deep were initially planned but higher than anticipated drilling and permitting costs within a fixed budget reduced the number of holes to five. Four of the five holes drilled to depths of 300 to 400 encountered temperatures close to the expected regional thermal background conditions. These four holes failed to find any evidence of a large thermal anomaly surrounding the UHCR hot springs. The fifth hole, located within a narrow part of Hot Creek Canyon, encountered a maximum temperature of 81 oF at a depth of 105 but had cooler temperatures at greater depth. Temperature data from this hole can not be extrapolated to greater depths. Any thermal anomaly associated with the UHCR geothermal system is apparently confined to the immediate vicinity of Hot Creek Canyon where challenges such as topography, a wilderness study area, and wetlands issues will make further exploration time consuming and costly. Ten water samples were collected for chemical analysis and interpretation. Analyses of three samples of the UHCR thermal give predicted subsurface temperatures ranging from 317 to 334 oF from the Na-K-Ca, silica (quartz), and Na-Li geothermometers. The fact that all three thermometers closely agree gives the predictions added credibility. Unfortunately, the final result of this exploration is that a moderate temperature geothermal resource has been clearly identified but it appears to be restricted to a relatively small area that would be difficult to develop.

Dick Benoit; David Blackwell

2006-01-01T23:59:59.000Z

126

Final environmental statement related to the United Nuclear Corporation, Morton Ranch, Wyoming Uranium Mill (Converse County, Wyoming)  

SciTech Connect

Impacts from Morton Ranch Uranium Mill will result in: alterations of up to 270 acres occupied by the mill facilities; increase in the existing background radiation levels; socioeconomic effects on Glenrock and Douglas, Wyoming. Solid waste material (tailings solids) from the mill will be deposited onsite in exhausted surface mine pits. Any license issued for the Morton Ranch mill will be subject to conditions for the protection of the environment.

1979-02-01T23:59:59.000Z

127

Microsoft Word - CX-HorseRanchTap_FY13_WEB.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2013 7, 2013 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Dustin Liebhaber Project Manager - TELP-TPP-3 Proposed Action: Capacity Increase on Bonneville Power Administration's (BPA) Horse Ranch Tap Line PP&A Project No.: 2,707 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.6 Additions and modifications to transmission facilities Location: Snohomish County, Washington Proposed by: BPA Description of the Proposed Action: BPA proposes to install a new disconnect switch and associated modifications on the Horse Ranch Tap line in Snohomish County, Washington. BPA owns and maintains the line disconnect switch and the first 0.34 miles of the Tap line, while Puget Sound Energy (PSE) owns and operates the remaining 3.48 miles of the H-frame, wood

128

A synthesis of the pithouse architectural sequence of the Nan Ranch Ruin, Grant County, New Mexico  

E-Print Network (OSTI)

Data from twenty-one pithouses recovered beneath a large surf ace pueblo, the NAN Ranch Ruin located in the middle Mimbres River Valley in Southwestern New Mexico, was analyzed to construct an architectural sequence. The architectural style of a round or oval shaped structure gradually evolved to structures that were rectangular or square. In addition to the evolution of the architecture there were other changes found to co-occur in the construction of hearths, ceramic styles, and mortuary customs. It was found that the chronological changes in architectural style and material culture that have been proposed for this region are supported by the documented changes found at the NAN Ranch Ruin. However, the abrupt change from pithouse structures to surface pueblos did not exist. The description of these structures and their contents document the gradual changes in form and material culture through time.

Wigington, Paula Jean

1994-01-01T23:59:59.000Z

129

Parallel view-dependent tessellation of Catmull-Clark subdivision surfaces  

Science Conference Proceedings (OSTI)

We present a strategy for performing view-adaptive, crack-free tessellation of Catmull-Clark subdivision surfaces entirely on programmable graphics hardware. Our scheme extends the concept of breadth-first subdivision, which up to this point has only ... Keywords: Catmull-Clark, GPGPU, adaptive surface subdivision, subdivision surfaces

Anjul Patney; Mohamed S. Ebeida; John D. Owens

2009-08-01T23:59:59.000Z

130

Categorical Exclusion Determinations: Western Area PowerAdministratio...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Antenna Re-alignment CX(s) Applied: B1.7 Date: 03162011 Location(s): Clark County, Nevada Office(s): Western Area Power Administration-Desert Southwest Region...

131

Use of benthic invertebrate community structure and the sediment quality triad to evaluate metal-contaminated sediment in the upper Clark Fork River, Montana  

SciTech Connect

The upper Clark Fork River, above Flathead River, is contaminated with large amounts of As, Cd, Cu, Pb, Mn, and Zn ores from past mining activities. The contaminated area extends from the Butte and Anaconda area to at least 230 km downstream to Milltown Reservoir. Both the upper Clark Fork River and Milltown Reservoir have been designated as US Environmental Protection Agency Superfund sites because of metal-contaminated bottom sediments. The authors evaluated the impacts of past mining activities on the Clark Fork River ecosystem using benthic invertebrate community assessment, residue chemistry, and toxicity testing. Oligochaeta and Chironomidae generally accounted for over 90% of the benthic invertebrate community in the soft sediment depositional areas. Taxa of Oligochaeta and Chironomidae were predominantly pollution tolerant. Higher numbers of Chironomidae genera were present at stations with higher concentrations of metals in sediment identified as toxic by the amphipod Hyalella azteca in 28-d exposures. Frequency of mouthpart deformities in genera of Chironomidae was low and did not correspond to concentrations of metals in sediment. Total abundance of organisms/m[sup 2] did not correspond to concentrations of metals in the sediment samples. Chemical analyses, laboratory toxicity tests, and benthic community evaluations all provide evidence of metal-induced degradation to aquatic communities in both the reservoir and the river. Using a weight-of-evidence approach--the Sediment Quality Triad--provided good concurrence among measures of benthic community structure, sediment chemistry, and laboratory toxicity.

Canfield, T.J.; Kemble, N.E.; Brumbaugh, W.G.; Dwyer, F.J.; Ingersoll, C.G.; Fairchild, J.F. (National Biological Survey, Columbia, MO (United States). Midwest Science Center)

1994-12-01T23:59:59.000Z

132

Clark County Rural E M C | Open Energy Information  

Open Energy Info (EERE)

County Rural E M C County Rural E M C Place Indiana Utility Id 22822 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Residential Time of Use Commercial Residential schedule Residential Small Commerical Single Phase Commercial Small Commericial Multi Phase Commercial Average Rates Residential: $0.1100/kWh Commercial: $0.0848/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Clark_County_Rural_E_M_C&oldid=41045

133

The Committee convened in the Clark Room, Holiday Inn Capitol,  

U.S. Energy Information Administration (EIA) Indexed Site

MEETING MEETING - - - Thursday, April 25, 1996 - - - The Committee convened in the Clark Room, Holiday Inn Capitol, 550 C Street, S.W., Washington, D.C., at 9:00 a.m., Dr. Timothy D. Mount, Chairman, presiding. PRESENT: TIMOTHY D. MOUNT, Chairman SAMPRIT CHATTERJEE BRENDA G. COX JOHN D. GRACE CALVIN KENT GRETA M. LJUNG RICHARD A. LOCKHART DANIEL A. RELLES PRESENT (Continued): BRADLEY O. SKARPNESS G. CAMPBELL WATKINS ALSO PRESENT: RENEE MILLER YVONNE BISHOP MARY HUTZLER JAY HAKES DOUGLAS HALE ART HOLLAND ARTHUR RYPINSKI LOUISE GUEY-LEE JOHN CYMBALSKY ERIN BOEDECKER JERRY COFFEY INDER KUNDRA C O N T E N T S PAGE Presentation by Jay Hakes 6 Presentation by Yvonne Bishop 34 Presentation by Art Rypinski 43 Presentation by Richard A. Lockhart 61 Presentation by Douglas Hale 84

134

PUD No 1 of Clark County | Open Energy Information  

Open Energy Info (EERE)

County County Jump to: navigation, search Name PUD No 1 of Clark County Place Washington Utility Id 3660 Utility Location Yes Ownership P NERC Location WECC Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial First Tier Schedule 34 Commercial Commercial Second Tier Schedule 134 primary point-of-delivery Commercial Commercial Second Tier Schedule 134 secondary point-of-delivery Commercial Industrial Primary Industrial

135

Grid-connected Integrated Community Energy System. Preliminary report, Phase II, August 9--November 8, 1977. [Clark Univ. , Worcester  

SciTech Connect

Clark University in the New England area represents an attractive site for demonstration of cogeneration. In Phase I of the program, the team reported: that the system of choice is a diesel generator sized at about Clark's peak electric demand; it should burn No. 6 fuel oil; the system can run at nearly full capacity the year round, sell 40 percent of its output, and receive backup as needed from Massachusetts Electric Company; the system should deliver a rate of return of 15 to 20 percent; and there appear to be no institutional or environmental problems. An update on a number of issues that were incompletely resolved in the Phase I report is provided. In Section 2 additional documentation on institutional issues involved in the proposed demonstration plant is provided. In Section 3 a preliminary design analysis that clearly defines the choice of engine and provides revised operating data in light of additional load profile studies is provided. In particular, it is found that: a Sulzer No. 6-oil-burning 1405-kW diesel is the system of choice; the engine should be housed in a separate building in close proximity to the existing central boiler and steam distribution points; and as a result of detailed summer load studies, the engine as specified can be operated with higher capacity factors than anticipated in Phase I. In Section 4 a revised cost estimate using information developed in Sections 2 and 3 is given. No significant change in net cash flow was found, and there was an internal rate of return of 15 percent. The overall conclusion is therefore that, though some details have changed, the Clark demonstration project continues to appear highly attractive. (MCW)

1977-01-01T23:59:59.000Z

136

Prehistoric jewelry of the NAN Ranch Ruin (LA15049), Grant County, New Mexico  

E-Print Network (OSTI)

Jewelry from the NAN Ranch Ruin (A.D. 600/650-1140), southwestern New Mexico, is analyzed with the following research goals: to describe the physical properties of the jewelry, to provide a contextual analysis in the form of mortuary and spatial patterning, and to interpret the social and ceremonial roles that jewelry played for the Mimbres at the NAN Ruin. Comparative data are provided, when available, from additional sites in the Mimbres Valley and the greater Southwest. The jewelry from the NAN Ruin is of two main material types, marine shell and stone. The most common jewelry types made from these materials are beads, pendants, and bracelets. In total, 1,970 individual pieces of marine shell jewelry, both whole and fragmentary, were recovered from the site. These materials include unidentified white shell, unidentified shell, Glycymeris, Nassarius, Pecten, Haliotis, Spondylus, Olivella, Conus, Coral, Strombus, Turritella, Architectonicidae, and Columbella. The majority of the marine shell originated in the Gulf of California. Shell jewelry was likely imported into the NAN Ranch Ruin from the Hohokam, who controlled the trade of marine shell throughout the region. In total, 10, 185 individual items of stone jewelry and materials, whole and fragmentary, were present at the NAN Ruin. These materials include talc, kaolinite, turquoise, galena, unidentified stone, quartz, slate, malachite, hematite, limestone, pumice, rhyolite, copper, jadeite, and basalt. All of these materials were available locally or within a short distance from the Mimbres Valley. A little over a quarter of the mortuary population (28.1%) at the NAN Ranch Ruin was associated with jewelry. Based on the application of two statistical tests, binomial distribution and factor analysis, there is no strong evidence that the presence of jewelry in the mortuary record is indicative of particular social categories, lineage affiliations, or vertical social stratification. The association of jewelry with specific architectural features, as well as cached deposits, indicate that jewelry was included in non-mortuary ceremonial contexts. Ethnographic data supports this archaeological inference.

Parks-Barrett, Maria Shannon

2001-01-01T23:59:59.000Z

137

AREA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AREA AREA FAQ # Question Response 316 vs DCAA FAQ 1 An inquiry from CH about an SBIR recipient asking if a DCAA audit is sufficient to comply with the regulation or if they need to add this to their audit they have performed yearly by a public accounting firm. 316 audits are essentially A-133 audits for for-profit entities. They DO NOT replace DCAA or other audits requested by DOE to look at indirect rates or incurred costs or closeouts. DCAA would never agree to perform A-133 or our 316 audits. They don't do A-133 audits for DOD awardees. The purpose of the audits are different, look at different things and in the few instances of overlap, from different perspectives. 316

138

Wake deficit measurements on the Jess and Souza Ranches, Altamont Pass  

DOE Green Energy (OSTI)

This report is ninth in a series of documents presenting the findings of field test under DOE's Cooperative Field Test Program (CFTP) with the wind industry. This report provides results of a project conducted by Altamont Energy Corp. (AEC) to measure wake deficits on the Jess and Sousa Ranches in Altamont Pass, CA. This research enhances and complements other DOE-funded projects to refine estimates of wind turbine array effects. This project will help explain turbine performance variability caused by wake effects. 4 refs., 28 figs., 106 tabs.

Nierenburg, R. (Altamont Energy Corp., San Rafael, CA (USA))

1990-04-01T23:59:59.000Z

139

"1. Mohave","Gas","Southern California Edison Co",1580 "2. Clark...  

U.S. Energy Information Administration (EIA) Indexed Site

Nevada" "1. Mohave","Gas","Southern California Edison Co",1580 "2. Clark","Gas","Nevada Power Co",1138 "3. Chuck Lenzie Generating Station","Gas","Nevada Power Co",1128 "4....

140

EA-1969: Clark Fork River Delta Restoration Project, Bonner County, Idaho  

Energy.gov (U.S. Department of Energy (DOE))

Bonneville Power Administration is preparing an environmental assessment to analyze the potential effects of a proposal to restore wetland and riparian (riverbank) habitat and to reduce erosion in the Clark Fork River delta located in Bonner County, Idaho.

Note: This page contains sample records for the topic "area clark ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Comment and response document for the long-term surveillance plan for the Collins Ranch Disposal Site, Lakeview, Oregon  

Science Conference Proceedings (OSTI)

This document contains comments made by the U.S. Nuclear Regulatory Commission addressing their concerns over the long-term monitoring program for the Collins Ranch Disposal Site, UMTRA project. Responses are included as well as plans for implementation of changes, if any are deemed necessary.

Not Available

1994-08-01T23:59:59.000Z

142

Final Systems Development Report for the Clark County Socioeconomic Impact Assessment of the Proposed High-Level Nuclear Waste Repository at Yucca Mountain, NV  

SciTech Connect

The Systems Development Report represents the third major step in the Clark County Socioeconomic Impact Assessment of the Proposed High-Level Nuclear Waste Repository at Yucca Mound Nevada. The first of these steps was to forge a Research Design that would serve as a guide for the overall research process. The second step was the construction of the Base Case, the purpose of which was to describe existing conditions in Clark County in the specified analytic areas of Economic-Demographic/Fiscal, Emergency Planning and Management, Transportation and Sociocultural analysis. The base case description will serve as a basis for assessing changes in these topic areas that might result from the Yucca Mountain project. These changes will be assessed by analyzing conditions with and without repository development in the county. Prior to performing such assessments, however, the snapshot type of data found in the base case must be operationalized or systematized to allow for more dynamic data utilization. In other words, a data system that can be used to analyze the consequences of the introduction of different variables (or variable values) in the Clark County context must be constructed. Such a system must be capable of being updated through subsequent data collection and monitoring efforts to both provide a rolling base case and supply information necessary to construct trend analyses. For example, during the Impact Assessment phase of the study process, the without repository analysis is accomplished by analyzing growth for the county given existing conditions and likely trends. These data are then compared to the with Yucca Mountain project conditions anticipated for the county. Similarly, once the emergency planning management and response needs associated with the repository are described, these needs will be juxtaposed against existing (and various future) capacity(ies) in order to determine the nature and magnitude of impacts in this analytic area. Analogous tasks will be performed for the other analytic areas detailed in the Base Case and outlined below.

NONE

1992-06-18T23:59:59.000Z

143

Adventures in Ichthyology: Pacific Northwest Fishes of the Lewis and Clark Expedition  

Science Conference Proceedings (OSTI)

Captains Meriwether Lewis and William Clark and other members of their expedition collected and identified nearly 400 species of plants and animals during the Voyage of Discovery. Of this total, 31 species of fish were included in Burroughs summary of the natural history of the Expedition, including 12 fishes considered unknown to science at that time. While there is little doubt of the identity of fish for which Lewis and Clark provided detailed descriptions in their daily logs, other species designations were largely conjecture based on later scholars interpretation of the Lewis and Clarks account. Unlike other biological specimens encountered during the Expedition, no fishes were brought back for study. As a result, the identity of some fishes was never resolved. Many other fishes were reclassified during the past century based on updated scientific methods.

Dauble, Dennis D.

2005-09-01T23:59:59.000Z

144

Microsoft PowerPoint - Clark Atlanta DOE MEI Small Business presentation August 2009 for pdf.ppt [Compatibility Mode]  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CLARK ATLANTA UNIVERSITY CLARK ATLANTA UNIVERSITY CLARK ATLANTA UNIVERSITY Presentation at the Presentation at the CLARK ATLANTA UNIVERSITY CLARK ATLANTA UNIVERSITY Presentation at the Presentation at the 10 10 th th Annual DOE MEI Small Business Conference Annual DOE MEI Small Business Conference CAU's Energy Related Research Capabilities CAU's Energy Related Research Capabilities 10 10 th th Annual DOE MEI Small Business Conference Annual DOE MEI Small Business Conference CAU's Energy Related Research Capabilities CAU's Energy Related Research Capabilities Ishrat M Khan Ph.D. Ishrat M Khan Ph.D. Ishrat M Khan Ph.D. Ishrat M Khan Ph.D. Director, Center for Functional Director, Center for Functional Nanoscale Nanoscale Materials Materials ikhan@cau.edu ikhan@cau.edu www cau edu/research www

145

the university of maryland the magazine of the a. james clark school of engineering  

E-Print Network (OSTI)

:· affordable systems for capturing solar thermal energy and converting it into electricity. See related story 26 students + alumni University Earns Coveted Spot in 2011 Solar Decathlon Clark School Baja and how to maximize this region's unique funding resources. With their help, TRX Systems developed from

Shapiro, Benjamin

146

Simulation of the Buxton-Clarke Model for Organic Photovoltaic Cells  

E-Print Network (OSTI)

Simulation of the Buxton-Clarke Model for Organic Photovoltaic Cells J.W. Jerome Department 02912 USA Abstract--Modeling of organic photovoltaic (OPV) cells can be achieved by adaptation of drift-V curves and carrier current densities. I. INTRODUCTION Organic solar cells are the topic of extensive

Jerome, Joseph W.

147

071 An LTCC Clark-Type Oxygen Sensor - Programmaster.org  

Science Conference Proceedings (OSTI)

Clark-type oxygen sensors are electrochemical devices consisting an oxygen- permeable ... 030 Tricalcium Phosphate System in Drug Delivery and Bone Graft ... 039 Effect of % Boron on the Tribological Performance of Alumina Matrix ... 094 Isotopic Enrichment Studies to Determine Elemental Diffusion Profiles Through an...

148

Volume 1, Issue 6 While conducting research in Indonesia, Associate Professor Amanda Clarke  

E-Print Network (OSTI)

Volume 1, Issue 6 While conducting research in Indonesia, Associate Professor Amanda Clarke, Indonesia that suddenly erupted on May 29, 2006. The world's fastest growing mud volcano was dubbed LUSI drama Mud Max that explores the impacts of natural disasters in Indonesia with a special emphasis

Shumway, John

149

Window of Opportunity: The Climatic Conditions of the Lewis and Clark Expedition of 18041806  

Science Conference Proceedings (OSTI)

Lewis and Clark's entry into to the American West in search of an inland Northwest Passage is considered among the greatest expeditions in American history. The Corps of Discovery were also lucky as their travels west of the 100th meridian ...

Paul A. Knapp

2004-09-01T23:59:59.000Z

150

Permian {open_quotes}Wolfcamp{close_quotes} limestone reservoirs: Powell Ranch field, Eastern Midland Basin  

SciTech Connect

Deep-water carbonate channel reservoirs form important oil reservoirs along the toe of the Eastern Shelf of the Permian basin in west Texas. In northwestern Glasscock County, these `Wolfcamp` reservoirs are Leonardian (Early Permian) in age and define high-energy channels incised into surrounding carbonate detritus and basinal shale. Porous grain-flow material filling these channels, along with encasing detritus, was derived from the shallow shelf located six miles to the east. Reservoirs are in packstone and grainstone facies and have significant interparticle and moldic porosity. Relevant exploration began in the 1960s, but expanded slowly thereafter due to lack of success caused by complex patterns of channel occurrence. Results of a three-dimensional (3-D) seismic survey conducted in 1990 have greatly enhanced the identification and mapping of productive channels in the Powell Ranch field complex. Wells in this complex are capable of flowing 400-1200 bbl of oil per day, and have reserves ranging from 0.2 to 1.3 MBO. The new 3-D data have improved the relevant geologic model and dramatically increased rates of drilling success. Application of such data to this setting offers a potential model for other parts of the Permian basin.

Montgomery, S.L. [Petroleum Consultant, Seattle, WA (United States)

1996-09-01T23:59:59.000Z

151

Reconstructing the past: architectural analysis of communal structures at the NAN Ranch ruin (LA2465), Grant County, New Mexico  

E-Print Network (OSTI)

Eleven seasons of field work at the NAN Ranch ruin (LA 2465), a multicomponent Mimbres site in Grant County, New Mexico, have allowed researchers to reconstruct a detailed sequence of architectural development stretching from the Three Circle phase (A.D. 750-900) to the Classic period (A.D. 1000-1130). During the course of excavation, investigators exposed a number of structures that are believed to have served in a communal or integrative capacity. This structure type served as the focus for this work. The purpose of this study was threefold: a) to present detailed descriptions of those structures believed to have served in a communal or integrative capacity; b) to trace the development of this structure type from its first known manifestations at the NAN Ranch ruin in the Three Circle phase to its latest forms at the end of the Classic period; and c) to analyze these structures as a distinct social space, both at the intramural and site level. Eleven structures are described in detail in this text. Six other spaces are also briefly described. Careful attention to detail has allowed this study to address whether previous judgements about the function of the rooms noted herein are in fact supportable. Scrutiny of architectural features also permitted a consideration of how well generally accepted indicators of communal space apply in the case of the NAN Ranch ruin. Finally, the structure provided by the architectural descriptions served as a foundation on which to base a number of inferences concerning population-guided socio-cultural change. Whereas architectural data suggest a shift away from a site-inclusive to a more privatized, lineage-based communal organization during the Late Pithouse/Classic period transition, the appearance of a new structure type at the end of the Classic period suggests that population pressures fostered social reorganization at the room block level around A.D. 1100.

Burden, Damon Andrew

2001-01-01T23:59:59.000Z

152

Toxicity of metal-contaminated sediments from the upper Clark Fork River, Montana, to aquatic invertebrates and fish in laboratory exposures  

SciTech Connect

Sediments of the upper Clark Fork River, from the Butte and Anaconda area to Milltown Reservoir (230 km downstream), are contaminated with As, Cd, Cu, Pb, Mn, and Zn primarily from mining activities. The toxicity of pore water from these sediments was determined using Daphnia magna, rainbow trout, and Microtox[reg sign]. However, pore-water data from these exposures were questionable because of changes in the toxicity of pore-water samples after 5 to 7 d of storage. Whole-sediment tests were conducted with Hyalella azteca, Chironomus riparius, rainbow trout (Oncorhynchus mykiss) 21- to 28-d exposure and Daphnia magna. Sediment samples from Milltown Reservoir and the Clark Fork River were not generally lethal to test organisms. However, both reduced growth and delayed sexual maturation of amphipods were associated with exposure to elevated concentrations of metals in sediments from the reservoir and river. Relative sensitivity (most sensitive to least sensitive) of organisms in whole-sediment toxicity tests was: Hyalella azteca > Chironomus riparius > rainbow trout > Daphnia magna. Relative sensitivity (most sensitive to least sensitive) of the three end points evaluated with Hyalella azteca was: length > sexual maturation > survival. The lack of lethal effects on organisms may be related to temporal differences in sediment, acid-volatile sulfide, or organic carbon.

Kemble, N.E.; Brumbaugh, W.G.; Brunson, E.L.; Dwyer, F.J.; Ingersoll, C.G. (National Biological Survey, Columbia, MO (United States). Midwest Science Center); Monda, D.P. (Pyramid Lake Fisheries, Sutcliffe, NV (United States)); Woodward, D.F. (National Biological Survey, Jackson, WY (United States). Midwest Science Center)

1994-12-01T23:59:59.000Z

153

a J. C. Clarke, Contract FEOM 8 J. P. Morgan, Assist tor, Pznduction Division  

Office of Legacy Management (LM)

J. C. Clarke, Contract J. C. Clarke, Contract FEOM 8 J. P. Morgan, Assist tor, Pznduction Division SUBJECT: CONTRACT PROPCX3AL OF r) ELECTRO MXTALLURGICAL DIVISION SYMBOL: PADtJPM UNION CARBIDE & CAFLBON CORPORATION i' .:' CONTRACT NO. W-7405 EN&14 4. . A; BACKGROUND 18 The vacuum casting facilities at the Electra ~etallnrgical Division at Niagara Falls, New York, currently in standby, are needed for the vacuum casting of slrconium sponge to ingot for subsequent con- version to zirconium shapes for the Naval Critical hequiremento . The program has been approved by the &shington Division of heactor Development through the Washington Production Division, Monies are available from operations budget for FY 1950 and FY 1951 under the Titanium Alloy Manufacturing Division of National &ad Company

154

The Committee met in the Clark Room in the Holiday Inn Capitol,  

U.S. Energy Information Administration (EIA) Indexed Site

FRIDAY FRIDAY APRIL 24, 1998 - - - The Committee met in the Clark Room in the Holiday Inn Capitol, 550 C Street, S.W., Washington, D.C., at 9:00 a.m., Daniel Relles, Chair, presiding. PRESENT: DANIEL RELLES Chair CHARLES BISCHOFF Member CAROL CRAWFORD Member CALVIN KENT Member GRETA M. LJUNG Member POLLY PHIPPS Member SEYMOUR SUDMAN Member ROY WHITMORE Member JAMES HAMMITT Guest I N D E X Page Opening Comments from the Chair 3 Recognizing Previous Judges of the EIA Graphics 4 Contest and Announcing Winners, Jay Hakes EIA Survey Issues: Addressing Declining Budgets 12 Dwight French (EIA) Discussion: Seymour Sudman (ASA) 36 Questions from the Committee 45

155

Paul Clarke  

NLE Websites -- All DOE Office Websites (Extended Search)

active duty Air Force officer from 1987 to 2007. His service included a tour as an intelligence officer for G.H.W. Bush's National Security Council. Later, he was White House...

156

Books and book chapters (last 10 years only) 16. Clark, E. Ann. 2009. Ch. 5 (invited). Forages in Organic Crop-Livestock Systems. pp. 85-  

E-Print Network (OSTI)

Books and book chapters (last 10 years only) 16. Clark, E. Ann. 2009. Ch. 5 (invited). Forages, Agriculture, and Engineering Service, Cooperative Extension, Ithaca, N.Y. (Peer-reviewed book chapter) 12 Service, Cooperative Extension, Ithaca, N.Y. (Peer-reviewed book chapter) 11. Clark, E. Ann. 2004 . GM

Clark, E. Ann

157

Effects of the Cabinet Gorge Kokanee Hatchery on Wintering Bald Eagles in the Lower Clark Fork River and Lake Pend, Oreille, Idaho: 1986 Final Report.  

SciTech Connect

The abundance and distribution of bald eagles (Haliaeetus leucocephalus) on the lower Clark Fork River, Lake Pend Oreille, and the upper Pend Oreille River, Idaho, were documented during the winters of 1985--86 and 1986--87. Peak counts of bald eagles in weekly aerial censuses were higher in 1985--86 (274) and 1986--87 (429) than previously recorded in mid-winter surveys. Differences in eagle distribution within and between years were apparently responses to changes in prey availability. Eight bald eagles were captured and equipped with radio transmitters in the winter and spring of 1986. Residencies within the study area averaged 13.9 days in 1985--86 and 58.3 days for the four eagles that returned in 1986-87. The eagles exhibited considerable daily movement throughout the study area. After departing the area, one eagle was later sighted approximately 1185 km to the southwest in northern California. Eagle behavioral activity was recorded at time budget sessions at areas of heavy use. Perching in live trees was the most common behavior observed. 34 refs., 39 figs., 17 tabs.

Crenshaw, John G.

1987-12-01T23:59:59.000Z

158

Perturbation Growth at the Convective Scale G. Leoncini, R. S. Plant, S. L. Gray and P. A. Clark  

E-Print Network (OSTI)

Perturbation Growth at the Convective Scale G. Leoncini, R. S. Plant, S. L. Gray and P. A. Clark. Improvements in computational power mean that operational weather prediction models can now be run growth at the convective scale in response to model-state perturbations and to determine

Plant, Robert

159

The Committee convened in the Clark Room of the Holiday Inn  

U.S. Energy Information Administration (EIA) Indexed Site

- - - - - - - - - - COMMITTEE ON ENERGY STATISTICS - - - - - MEETING - - - - - FRIDAY, APRIL 26, 1996 The Committee convened in the Clark Room of the Holiday Inn Capitol, 550 C Street, S.W., Washington, D.C., at 9:00 a.m., DR. TIMOTHY D. MOUNT, Chair, presiding. PRESENT: TIMOTHY D. MOUNT, Chair SAMPRIT CHATTERJEE BRENDA G. COX JOHN D. GRACE CALVIN KENT GRETA M. LJUNG RICHARD A. LOCKHART DANIEL A. RELLES BRADLEY O. SKARPNESS G. CAMPBELL WATKINS ALSO PRESENT: RENEE MILLER YVONNE M. BISHOP DIANE LIQUE L.A. PETTIS JAY HAKES JOHN WOOD GORDON M. KAUFMAN ROY KASS NANCY LEACH I-N-D-E-X Introductory Remarks: Announcement of Winners of the Contest on Graphs and Visuals Displays 3 Restructuring the Oil and Gas Crude Reserves Program (Agenda Item 5) Presenter: John Wood, Office of Oil and Gas 8

160

The Committee met in the Clark Room, Holiday Inn Capitol at 550  

U.S. Energy Information Administration (EIA) Indexed Site

PUBLIC MEETING + + + THURSDAY, APRIL 10, 1997 + + + The Committee met in the Clark Room, Holiday Inn Capitol at 550 C Street, S.W., Washington, D.C., at 9:00 a.m., G. Campbell Watkins, Chairman, presiding. PRESENT: G. CAMPBELL WATKINS, Chairman DAVID R. BELLHOUSE CHARLES W. BISCHOFF BRENDA G. COX CAROL A. GOTWAY CRAWFORD CALVIN KENT GRETA M. LJUNG DANIEL A. RELLES BRADLEY O. SKARPNESS PRESENT (Continued): ROY WHITMORE C O N T E N T S PAGE Opening Remarks, Lynda Carlson 10 Update on 1997 Residential Energy Consumption Survey, Mike Laurence 16 The Use of a Variant of Poisson Sampling: Paula Weir 58, 85 David Bellhouse 72 Roy Whitmore 79 Presentation by Administrator Jay Hakes 112 Results of Customer Satisfaction Survey, Colleen Blessing 138 Annual Energy Outlook/Short-term Energy

Note: This page contains sample records for the topic "area clark ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The Senescent Mimbres Population: An Application of the Transition Analysis to the NAN Ranch Ruin Skeletal Sample  

E-Print Network (OSTI)

This study uses Transition Analysis on the Mimbres skeletal remains of the NAN Ranch Ruin to provide a more complete picture of its demography. Previous attempts to reconstruct the demographic structure of prehistoric populations have been hindered by aging methods that provide biased age distribution. Early methods had a tendency to produce age distribution similar to that of the reference sample that was used to create them. In addition, they often overlooked sexual dimorphism and left out the senescent portion of the population which in turns produced inaccurate population structures. Transition Analysis is a multifactorial approach to estimate the age-at-death of adult skeletons that focuses on the cranium, the pubic symphysis and the auricular surface of the ilium. The method relies heavily on the Bayesian probability that a given trait or a given combination of traits is displayed at a given age, it recognizes sexual dimorphism, performs well on fragmentary skeletons and allows for the age estimation of older individuals. The NAN Ranch Ruin sample consists of over 240 individuals, including 185 from the Classic Period. A previous study focused on the 81 individuals from the Classic period that were collected during the first five years of excavations. Following age estimation of adult skeleton I constructed composite abridged life tables. For the Classic Period, I found a high infant mortality rate (47%) and low life expectancy at birth (21.14 years) as expected. However, this analysis produced different mortality patterns than older demographic studies, where mid adult mortality increases only slightly, decreases in late adulthood (40-55 years old) and increases again in senescence (55-80 years old), instead of increasing steadily in adulthood to culminate at age 50. This difference is a consequence of the aging methods that have been used to analyze other southwestern prehistoric samples. Finally, while I was not able to confirm different mortality patterns between males and females, I found that people from the east roomblock enjoyed greater longevity than those from the south roomblock, though the difference is not statistically significant.

Lovings, Aline

2011-12-01T23:59:59.000Z

162

Categorical Exclusion Determinations: Western Area Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 29, 2012 March 29, 2012 CX-008407: Categorical Exclusion Determination Terry Ranch Road Substation CX(s) Applied: B1.24, B4.11 Date: 03/29/2012 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region March 29, 2012 CX-008403: Categorical Exclusion Determination Multiple Structure Replacement Flaming Gorge to Vernal No. 1 138 Kilovolt Transmission Line CX(s) Applied: B1.3 Date: 03/29/2012 Location(s): Utah Offices(s): Western Area Power Administration-Rocky Mountain Region March 29, 2012 CX-008399: Categorical Exclusion Determination Erosion Control Measures Structure No. 110-3 Dave Johnston to Stegall 230 Kilovolt Transmission Line CX(s) Applied: B1.3 Date: 03/29/2012 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

163

Permian `Wolfcamp` limestone reservoirs: Powell ranch field, eastern Midland basin: Discussion  

SciTech Connect

The {open_quotes}E&P Notes{close_quotes} paper by S.L. Montgomery (1996) on Wolfcamp resedimented carbonates in the Permian basin concerns an exploration play with the potential for significant reserves; however, its economic importance and geological complexity, and the question of whether his model can be extended to other areas in the Permian basin warrant this discussion.

Mazzullo, S.J. [Wichita State Univ., KS (United States)

1997-10-01T23:59:59.000Z

164

Diagenesis and cement fabric of gas reservoirs in the Oligocene Vicksburg Formation, McAllen Ranch Field, Hidalgo County, Texas  

SciTech Connect

McAllen Ranch field produces natural gas from 12 deep, overpressured sandstone packages, each interpreted to be the deposit of a prograding shelf-edge delta. One hundred and sixty thin sections from 350 ft of core were petrographically described. The sandstones are feldspathic litharenites containing subequal proportions of volcanic rock fragments (VRF), feldspar, and quartz grains. Grain size ranges from very fine to coarse sand. Porosity is mostly secondary, having formed through dissolution of VRF and feldspar grains. There are four major diagenetic facies (portions of core that can be grouped by the predominance of one diagenetic cement and similar appearance in hand specimen): (1) calcite cemented; (2) chlorite cemented, tight; (3) chlorite cemented, porous; and (4) quartz overgrowths, porous. The calcite-cemented facies predominates in very fine grained sandstones and siltstones and encroaches into adjoining sandstones irrespective of grain size. Sparry calcite filled all available pores and replaced some feldspar. Core permeabilities are generally less than 0.01 md, and porosities range from 7 to 15%. Authigenic clay (predominantly chlorite) generally cements sands intermediate in grain size between those cemented by calcite and those cemented by quartz. Two types of diagenetic clay fabric are interbedded, forming distinct alternating bands 0.1 in. to 3 ft thick. Gray, tightly chlorite-cemented bands are macroscopically and microscopically distinct from green, porous chlorite-cemented bands. In the tightly chlorite-cemented facies, permeabilities are less than 0.3 md, and porosities range from 8 to 16%. Small plates of chlorite fill interparticle pores, and secondary pores are rare. In the porous chlorite-cemented facies, dissolution of framework grains and chlorite cement increased porosity, and a second chlorite cement was precipitated. Core permeability ranges from 0.1 to 1 md, and porosities range from 15 to 20%.

Langford, R.P.; Lynch, F.L. (Univ. of Texas, Austin (USA))

1990-09-01T23:59:59.000Z

165

TEAMING AS A SMALL BUSINESS Brent L. Clark, Vice President Performance Results Corporation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TEAMING AS A SMALL BUSINESS TEAMING AS A SMALL BUSINESS Brent L. Clark, Vice President Performance Results Corporation 2 WHO IS PERFORMANCE RESULTS CORPORATION? * Incorporated i n A pril 2 000 * SBA C er4fied S mall, W oman---Owned C orpora4on * Kathy C linton O wner a nd P resident * Located a t 6 C anyon R oad, M organtown, W V * Employs o ver 2 30 p ersonnel l ocated a cross 1 6 ci4es a nd 1 3 s tates * 2010 r evenue w as $ 25M, p rojected t o e xceed $30M i n 2 011 * Primary c lients a re t he D OE, D OJ, C DC, a nd A rmy 3 PRC CORE COMPETENCIES Program & P roject Management S upport Technical & E ngineering Support S ervices Informa4on T echnology Support S ervices Facili4es & Administra4ve Support S ervices Strategic P lanning & Management S upport 4 Valued P artner - T etra T ech: * Quality r eputa4on * CommiWed

166

Wildlife Impact Assessment and Summary of Previous Mitigation Related to Hydroelectric Projects in Montana, Phase I, Volume Two (A), Clark Fork Projects, Thompson Falls Dam, Operator, Montana Power Company.  

DOE Green Energy (OSTI)

The Thompson Falls Dam inundated approximately 347 acres of wildlife habitat that likely included conifer forests, deciduous bottoms, mixed conifer-deciduous forests and grassland/hay meadows. Additionally, at least one island, and several gravel bars were inundated when the river was transformed into a reservoir. The loss of riparian and riverine habitat adversely affected the diverse wildlife community inhabiting the lower Clark Fork River area. Quantitative loss estimates were determined for selected target species based on best available information. The loss estimates were based on inundation of the habitat capable of supporting the target species. Whenever possible, loss estimates bounds were developed by determining ranges of impacts based on density estimates and/or acreage loss estimates. Of the twelve target species or species groups, nine were assessed as having net negative impacts. 86 refs., 2 figs., 5 tabs.

Wood, Marilyn

1984-03-27T23:59:59.000Z

167

Shale mineralogy and burial diagenesis of Frio and Vicksburg Formations in two geopressured wells, McAllen Ranch area, Hidalgo County, Texas  

DOE Green Energy (OSTI)

Thirty-six shale samples ranging in depth from 1454 ft to 13,430 ft from Shell Oil Company No. 1 Dixie Mortgage Loan well and 33 shale samples ranging in depth from 2183 ft to 13,632 ft from Shell Oil/Delhi-Taylor Oil Corporation No. 3 A.A. McAllen well were examined by x-ray techniques to determine the mineralogical parameters of the geopressured zone in the Vicksburg Fairway. Both wells have the same weight-percent trends with depth for the mineralogy: quartz, calcite, total clay, and potassium feldspar are constant; plagioclase feldspar gradually increases; kaolinite increases; discrete illite decreases; total mixed-layer illite-smectite (I/S) decreases; illite in mixed-layer I/S increases; and smectite in mixed-layer I/S decreases. Chlorite is found only in the geopressured zone of each well.

Freed, R.L.

1981-01-01T23:59:59.000Z

168

VHF Free-Free Beam High-Q Micromechanical Resonators Kun Wang, Yinglei Yu, Ark-Chew Wong, and Clark T.-C. Nguyen  

E-Print Network (OSTI)

VHF Free-Free Beam High-Q Micromechanical Resonators Kun Wang, Yinglei Yu, Ark-Chew Wong, and Clark Science University of Michigan Ann Arbor, Michigan 48109-2122 ABSTRACT Free-free beam, flexural and their associated losses are virtually eliminated from the design. Using this approach, free-free beam µmechanical

Nguyen, Clark T.-C.

169

Effects of urban land cover modifications in a mesoscale meteorological model on surface temperature and heat fluxes in the Phoenix metropolitan area.  

E-Print Network (OSTI)

and latent heat fluxes and therefore the ground temperature, Tg. Evaporation, E, for each grid cell temperature and heat fluxes in the Phoenix metropolitan area. S. Grossman-Clarke1, J.A. Zehnder2, and W) satellite images [2]. The data were upscaled to a 30-second grid and used to augment and correct

Hall, Sharon J.

170

Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Costal Plain  

SciTech Connect

Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates proposed a three-phase, focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling (Phase I) and a field demonstration project (Phases II and III) at Womack Hill Field Unit, Choctaw and Clarke Counties, Alabama, eastern Gulf Coastal Plain. Phase I of the project has been completed. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The major tasks of the project included reservoir characterization, recovery technology analysis, recovery technology evaluation, and the decision to implement a demonstration project. Reservoir characterization consisted of geoscientific reservoir characterization, petrophysical and engineering property characterization, microbial characterization, and integration of the characterization data. Recovery technology analysis included 3-D geologic modeling, reservoir simulation, and microbial core experiments. Recovery technology evaluation consisted of acquiring and evaluating new high quality 2-D seismic data, evaluating the existing pressure maintenance project in the Womack Hill Field Unit, and evaluating the concept of an immobilized enzyme technology project for the Womack Hill Field Unit. The decision to implement a demonstration project essentially resulted in the decision on whether to conduct an infill drilling project in Womack Hill Field. Reservoir performance, multiwell productivity analysis, and reservoir simulation studies indicate that water injection continues to provide stable support to maintain production from wells in the western unitized area of the field and that the strong water drive present in the eastern area of the field is adequate to sustain production from this part of the field. Although the results from the microbial characterization and microbial core experiments are very promising, it is recommended that an immobilized enzyme technology project not be implemented in the Womack Hill Field Unit until live (freshly taken and properly preserved) cores from the Smackover reservoir in the field are acquired to confirm the microbial core experiments to date. From 3-D geologic modeling, reservoir performance analysis, and reservoir simulation, four areas in the Womack Hill Field were identified as prospective infill drilling sites to recover undrained oil from the field. It was determined that the two areas in the unit area probably can be effectively drained by perforating higher zones in the Smackover reservoir in currently producing wells. The two areas in the eastern (non-unitized) part of the field require the drilling of new wells. The successful drilling and testing of a well in 2003 by J. R. Pounds, Inc. has proven the oil potential of the easternmost site in the non-unitized part of the field. Pruet Production Co. acquired new 2-D seismic data to evaluate the oil potential of the westernmost site. Because of the effects of a fault shadow from the major fault bounding the southern border of the Womack Hill Field, it is difficult to evaluate conclusively this potential drill site. Pruet Production Co. has decided not to drill this new well at this time and to further evaluate the new 2-D seismic profiles after these data have been processed using a pre-stack migration technique. Pruet Production Co. has elected not to continue into Phase II of this project because they are not prepared to make a proposal to the other mineral interest owners regarding the drilling of new wells as part of an infil

Ernest A. Mancini

2006-05-31T23:59:59.000Z

171

Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Coastal Plain  

Science Conference Proceedings (OSTI)

Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates proposed a three-phase, focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling (Phase I) and a field demonstration project (Phases II and III) at Womack Hill Field Unit, Choctaw and Clarke Counties, Alabama, eastern Gulf Coastal Plain. Phase I of the project has been completed. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The major tasks of the project included reservoir characterization, recovery technology analysis, recovery technology evaluation, and the decision to implement a demonstration project. Reservoir characterization consisted of geoscientific reservoir characterization, petrophysical and engineering property characterization, microbial characterization, and integration of the characterization data. Recovery technology analysis included 3-D geologic modeling, reservoir simulation, and microbial core experiments. Recovery technology evaluation consisted of acquiring and evaluating new high quality 2-D seismic data, evaluating the existing pressure maintenance project in the Womack Hill Field Unit, and evaluating the concept of an immobilized enzyme technology project for the Womack Hill Field Unit. The decision to implement a demonstration project essentially resulted in the decision on whether to conduct an infill drilling project in Womack Hill Field. Reservoir performance, multiwell productivity analysis, and reservoir simulation studies indicate that water injection continues to provide stable support to maintain production from wells in the western unitized area of the field and that the strong water drive present in the eastern area of the field is adequate to sustain production from this part of the field. Although the results from the microbial characterization and microbial core experiments are very promising, it is recommended that an immobilized enzyme technology project not be implemented in the Womack Hill Field Unit until live (freshly taken and properly preserved) cores from the Smackover reservoir in the field are acquired to confirm the microbial core experiments to date. From 3-D geologic modeling, reservoir performance analysis, and reservoir simulation, four areas in the Womack Hill Field were identified as prospective infill drilling sites to recover undrained oil from the field. It was determined that the two areas in the unit area probably can be effectively drained by perforating higher zones in the Smackover reservoir in currently producing wells. The two areas in the eastern (non-unitized) part of the field require the drilling of new wells. The successful drilling and testing of a well in 2003 by J. R. Pounds, Inc. has proven the oil potential of the easternmost site in the non-unitized part of the field. Pruet Production Co. acquired new 2-D seismic data to evaluate the oil potential of the westernmost site. Because of the effects of a fault shadow from the major fault bounding the southern border of the Womack Hill Field, it is difficult to evaluate conclusively this potential drill site. Pruet Production Co. has decided not to drill this new well at this time and to further evaluate the new 2-D seismic profiles after these data have been processed using a pre-stack migration technique. Pruet Production Co. has elected not to continue into Phase II of this project because they are not prepared to make a proposal to the other mineral interest owners regarding the drilling of new wells as part of an infil

Ernest A. Mancini

2003-12-31T23:59:59.000Z

172

Shillapoo Wildlife Area, Annual Report 2004-2005.  

DOE Green Energy (OSTI)

This report summarizes accomplishments, challenges and successes on WDFW's Shillapoo Wildlife Area funded under Bonneville Power Administration's (BPA) Wildlife Mitigation Program (BPA project No.2003-012-00) during the Fiscal Year 05 contract period October 1, 2004-September 30, 2005. The information presented here is intended to supplement that contained in BPA's PISCES contract development and reporting system. The organization below is by broad categories of work but references are made to individual work elements in the PISCES Statement of Work as appropriate. The greatest success realized during this contract period was completion of the water system that will provide water to wetland basins within the Vancouver Lake Unit and three independent basins on adjoining Clark County owned lands. The water system paid for by Clark Public Utilities was designed and built under the direction of Ducks Unlimited. Having a reliable water supply for these areas has allowed us for the first time to begin making significant progress toward our wetland vegetation management goals on this unit. A reduction in the density of reed canary grass has already been noted and increased levels of native plant occurrence have been observed. Our most notable setback was an increase in the infestation of purple loosestrife within a portion of the Shillapoo Lakebed including parts of the North and South Units. A great deal of effort and time was spent on addressing the problem including hand cutting and spraying individual plants.

Calkins, Brian

2004-10-01T23:59:59.000Z

173

Charles W. Clark  

Science Conference Proceedings (OSTI)

... Atomic electronic excitation in nuclear reactions. ... Towards Quantum Standards: A Workshop on Quantum Information Technology," The Royal ...

2011-10-03T23:59:59.000Z

174

Jared Clark-poster  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The conversion of biomass (cellulose, hemicellulose, and lignin) into transportation fuels by pyrolysis, gasification, and liquefaction processes involves pyrolysis as either the...

175

Cover story: Colin Clark  

Science Conference Proceedings (OSTI)

Interview: Somerfield's security boss likes to keep infosecurity simple. He tells Eleanor Dallaway why he prefers to keep emails rather than block them, why Chip and PIN is a con and what is wrong with loyalty cards

Eleanor Dallaway

2007-07-01T23:59:59.000Z

176

The ranch-type house.  

E-Print Network (OSTI)

??As buildings from the recent past approach fifty years in age, the question of how to preserve these cultural resources is raised. This thesis considered (more)

Chapman, Michael Kevin

2007-01-01T23:59:59.000Z

177

Superfund Record of Decision (EPA Region 8): Silver Bow Creek/Butte Area, MT. (Second remedial action), June 1992. Interim report  

Science Conference Proceedings (OSTI)

The Silver Bow Creek/Butte Area site is a mining and processing area located 7 miles east of Anaconda in the Upper Clark Fork River Basin, Deer Lodge County, Montana. Site contamination is the result of over 100 years of mining and process operations in the area. Until the early 1970's, mining, milling, and smelting wastes were dumped directly into Silver Bow Creek and transported downstream. The ROD addresses an interim remedy for all media at OU12. The primary contaminants of concern affecting the soil, sediment, ground water, and surface water in the Inactive area are metals, including arsenic, chromium, and lead; and inorganics.

Not Available

1992-06-30T23:59:59.000Z

178

Source: Office of Institutional Research, Assessment and Planning: OIT frozen database on 09/2010 and the David A. Clark School of Law, Office of the Registrar, 2010 Fall 2010 FALL SEMESTER UNDERGRADUATE, GRADUATE, COMMUNITY COLLEGE AND LAW SCHOOL STUDENT  

E-Print Network (OSTI)

UNDERGRADUATE, GRADUATE, COMMUNITY COLLEGE AND LAW SCHOOL STUDENT ENROLLMENT PROFILE* TOTAL ENROLLMENT Number/2010 and the David A. Clark School of Law, Office of the Registrar, 2010 Fall Semester. ENROLLMENT BY ACADEMIC LOAD-degree students FULL-TIME CONTINUING FACULTY PROFILE1 : RANK: Headcount Percentage Professor 81 35.1 Associate

District of Columbia, University of the

179

Research Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

Areas Areas Research Areas Print Scientists from a wide variety of fields come to the ALS to perform experiements. Listed below are some of the most common research areas covered by ALS beamlines. Below each heading are a few examples of the specific types of topics included in that category. Click on a heading to learn more about that research area at the ALS. Energy Science Photovoltaics, photosynthesis, biofuels, energy storage, combustion, catalysis, carbon capture/sequestration. Bioscience General biology, structural biology. Materials/Condensed Matter Correlated materials, nanomaterials, magnetism, polymers, semiconductors, water, advanced materials. Physics Atomic, molecular, and optical (AMO) physics; accelerator physics. Chemistry Surfaces/interfaces, catalysts, chemical dynamics (gas-phase chemistry), crystallography, physical chemistry.

180

Research Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Print Research Areas Print Scientists from a wide variety of fields come to the ALS to perform experiements. Listed below are some of the most common research areas covered by ALS beamlines. Below each heading are a few examples of the specific types of topics included in that category. Click on a heading to learn more about that research area at the ALS. Energy Science Photovoltaics, photosynthesis, biofuels, energy storage, combustion, catalysis, carbon capture/sequestration. Bioscience General biology, structural biology. Materials/Condensed Matter Correlated materials, nanomaterials, magnetism, polymers, semiconductors, water, advanced materials. Physics Atomic, molecular, and optical (AMO) physics; accelerator physics. Chemistry Surfaces/interfaces, catalysts, chemical dynamics (gas-phase chemistry), crystallography, physical chemistry.

Note: This page contains sample records for the topic "area clark ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Radiological Areas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revision to Clearance Policy Associated with Recycle of Scrap Metals Originating from Revision to Clearance Policy Associated with Recycle of Scrap Metals Originating from Radiological Areas On July 13, 2000, the Secretary of Energy imposed an agency-wide suspension on the unrestricted release of scrap metal originating from radiological areas at Department of Energy (DOE) facilities for the purpose of recycling. The suspension was imposed in response to concerns from the general public and industry groups about the potential effects of radioactivity in or on material released in accordance with requirements established in DOE Order 5400.5, Radiation Protection of the Public and Environment. The suspension was to remain in force until DOE developed and implemented improvements in, and better informed the public about, its release process. In addition, in 2001 the DOE announced its intention to prepare a

182

Long-Term Surveillance Plan for the Collins Ranch Disposal Site, Lakeview, Oregon, DOE/AL/62350-19F, Revision 3, August 1994  

NLE Websites -- All DOE Office Websites (Extended Search)

blank blank This page intentionally left blank LONG-TERM SURMtUANQ M N FOA T ) ( E C O W S RANW D S W S A L S m . IAKEVEW . OREOON T A W UF C O N l W f S TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0 INTRODUCTION 1-1 ........................................... 1.1 Background 1-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Licensing process 1-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Long-term surveillance plan 1-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.0 FINAL SITE CONDITIONS 2-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Site history 2-1 ..................................... 2.2 Final site conditions 2-2 2.2.1 Description and location of the disposal site area . . . . . . . . . . . 2-2 . . . . . . . . . . . . . . . . . . . . . . 2.2.2 Disposal site access and security 2-4 .

183

Clark County REMC - Clark County REMC - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Rebate Program Eligibility Residential Savings For Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Water...

184

SLAC National Accelerator Laboratory: SLAC Science Focus Area...  

NLE Websites -- All DOE Office Websites (Extended Search)

Clark, S D. Conradson, and J.R. Bargar (2008) Structure of biogenic UO2 produced by Shewanella Oneidensis, strain MR-1. Environ. Sci. Technol., 42, 7898-7904. K.-U. Ulrich, D....

185

Clark Dynamic Test Laboratory, Inc.  

Science Conference Proceedings (OSTI)

... [12/50121cc] EN 50121-3-2 (2006) Railway applications - Electromagnetic compatibility -- Part 3-2: Rolling stock - Apparatus. ...

2013-09-20T23:59:59.000Z

186

Oxbow Conservation Area; Middle Fork John Day River, Annual Report 2002-2003.  

DOE Green Energy (OSTI)

In early 2001, the Confederated Tribes of Warm Springs, through their John Day Basin Office, concluded the acquisition of the Oxbow Ranch, now know as the Oxbow Conservation Area (OCA). Under a memorandum of agreement with the Bonneville Power Administration (BPA), the Tribes are required to provided BPA an 'annual written report generally describing the real property interests in the Project, HEP analyses undertaken or in progress, and management activities undertaken or in progress'. The 2002 contract period was well funded and the second year of the project. A new manager started in April, allowing the previous manager to focus his efforts on the Forrest Ranch acquisition. However, the Oxbow Habitat manager's position was vacant from October through mid February of 2003. During this time, much progress, mainly O&M, was at a minimum level. Many of the objectives were not completed during this contract due to both the size and duration needed to complete such activities (example: dredge mine tailings restoration project) or because budget crisis issues with BPA ending accrual carryover on the fiscal calendar. Although the property had been acquired a year earlier, there were numerous repairs and discoveries, which on a daily basis could pull personnel from making progress on objectives for the SOW, aside from O&M objectives. A lack of fencing on a portion of the property's boundary and deteriorating fences in other areas are some reasons much time was spent chasing trespassing cattle off of the property. The success of this property purchase can be seen on a daily basis. Water rights were used seldom in the summer of 2002, with minor irrigation water diverted from only Granite Boulder Creek. Riparian fences on the river, Ruby and Granite Boulder creeks help promote important vegetation to provide shade and bank stabilization. Trees planted in this and past years are growing and will someday provide cover fish and wildlife. Even grazing on the property was carefully managed to ensure the protection of fish and wildlife habitat. Monitoring of property populations, resources, and management activities continued in 2002 to build a database for future management of this and other properties in the region.

Cochran, Brian; Smith, Brent

2003-07-01T23:59:59.000Z

187

Caldwell Ranch: Innovative Exploration Technologies Yield ...  

Biomass and Biofuels; Building Energy ... , pinpointing the reservoir and accurately measuring volume in this replicable model will better target drilling and ...

188

Betty Van Dyke: The Van Dyke Ranch  

E-Print Network (OSTI)

from Turkey when we cut all relationships with Iran.Iran was the supplier of all of the dried apricots toCalifornia at the time. Well, Iran couldnt ship to us

Rabkin, Sarah

2010-01-01T23:59:59.000Z

189

Janet and Grant Brians: Brians Ranch  

E-Print Network (OSTI)

Brians: Well, putting on compost and gypsum have been two ofback in the soil, and compost and things. But we didntthen putting gypsum and compost in, gradually its getting

Farmer, Ellen

2010-01-01T23:59:59.000Z

190

Janet and Grant Brians: Brians Ranch  

E-Print Network (OSTI)

organization, like Dale Coke. 3 I remember going and helpingmarket and deliver to Dale Coke over in San Juan [Bautista].See the oral history with Dale Coke in this series. The Loma

Farmer, Ellen

2010-01-01T23:59:59.000Z

191

A Hydrostratigraphic Framework Model and Alternatives for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 98: Frenchman Flat, Clark, Lincoln and Nye Counties, Nevada  

SciTech Connect

A new, revised three-dimensional (3-D) hydrostratigraphic framework model for Frenchman Flat was completed in 2004. The area of interest includes Frenchman Flat, a former nuclear testing area at the Nevada Test Site, and proximal areas. Internal and external reviews of an earlier (Phase I) Frenchman Flat model recommended additional data collection to address uncertainties. Subsequently, additional data were collected for this Phase II initiative, including five new drill holes and a 3-D seismic survey.

Bechtel Nevada

2005-09-01T23:59:59.000Z

192

Shillapoo Wildlife Area, Annual Report 2006-2007.  

DOE Green Energy (OSTI)

This report summarizes accomplishments, challenges and successes on WDFW's Shillapoo Wildlife Area funded under Bonneville Power Administration's (BPA) Wildlife Mitigation Program (BPA project No.2003-012-00) during the Fiscal Year 07 contract period October 1, 2006-September 30, 2007. The information presented here is intended to supplement that contained in BPA's PISCES contract development and reporting system. The organization below is by broad categories of work but references are made to individual work elements in the PISCES Statement of Work as appropriate. The greatest success realized during this contract period was significant positive changes in the vegetative community in several wetland basins throughout the wildlife area. This major goal is being achieved in part by new equipment and operation capability funded under the BPA contract, state capital and migratory bird stamp funds, and the past or ongoing investment of other partners including Ducks Unlimited, The Natural Resources Conservation Service (NRCS), Clark Public Utilities and others. We continue to be challenged by requirements under the archaeological and historic preservation act necessary to protect many sensitive sites known to occur within the wildlife area. The problems encountered to date have been largely administrative in nature and those experienced this year were unforeseen and probably unavoidable. Early in the contract period, WDFW and BPA had agreed to have a BPA staff archaeologist perform the survey and reporting work. Unexpectedly, just prior to the expected start date for the surveys, the employee resigned leaving BPA's staff short handed and necessitated contracting the work with an archaeological consultant. This delay caused us to forego work on several projects that are now deferred until the next contract period. The most notable projects impacted by this unfortunate circumstance are those involving the construction or repair of fences.

Calkins, Brian

2006-10-01T23:59:59.000Z

193

Oxbow Conservation Area; Middle Fork John Day River, Annual Report 2003-2004.  

DOE Green Energy (OSTI)

In early 2001, the Confederated Tribes of Warm Springs, through their John Day Basin Office, concluded the acquisition of the Oxbow Ranch, now know as the Oxbow Conservation Area (OCA). Under a memorandum of agreement with the Bonneville Power Administration (BPA), the Tribes are required to provided BPA an 'annual written report generally describing the real property interests in the Project, HEP analyses undertaken or in progress, and management activities undertaken or in progress'. The project during 2003 was crippled due to the aftermath of the BPA budget crisis. Some objectives were not completed during the first half of this contract because of limited funds in the 2003 fiscal year. The success of this property purchase can be seen on a daily basis. Water rights were utilized only in the early, high water season and only from diversion points with functional fish screens. After July 1, all of the OCA water rights were put instream. Riparian fences on the river, Ruby and Granite Boulder creeks continued to promote important vegetation to provide shade and bank stabilization. Hundreds of willow, dogwood, Douglas-fir, and cottonwood were planted along the Middle Fork John Day River. Livestock grazing on the property was carefully managed to ensure the protection of fish and wildlife habitat, while promoting meadow vigor and producing revenue for property taxes. Monitoring of property populations, resources, and management activities continued in 2003 to build a database for future management of this and other properties in the region.

Cochran, Brian

2004-02-01T23:59:59.000Z

194

Columbia Basin Wildlife Mitigation Project : Rainwater Wildlife Area Final Management Plan.  

DOE Green Energy (OSTI)

This Draft Management Plan has been developed by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) to document how the Rainwater Wildlife Area (formerly known as the Rainwater Ranch) will be managed. The plan has been developed under a standardized planning process developed by the Bonneville Power Administration (BPA) for Columbia River Basin Wildlife Mitigation Projects (See Appendix A and Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus our management actions and prioritize funding during the Fiscal 2001-2005 planning period. This plan is a product of nearly two years of field studies and research, public scoping, and coordination with the Rainwater Advisory Committee. The committee consists of representatives from tribal government, state agencies, local government, public organizations, and members of the public. The plan is organized into several sections with Chapter 1 providing introductory information such as project location, purpose and need, project goals and objectives, common elements and assumptions, coordination efforts and public scoping, and historical information about the project area. Key issues are presented in Chapter 2 and Chapter 3 discusses existing resource conditions within the wildlife area. Chapter 4 provides a detailed presentation on management activities and Chapter 5 outlines a monitoring and evaluation plan for the project that will help assess whether the project is meeting the intended purpose and need and the goals and objectives. Chapter 6 displays the action plan and provides a prioritized list of actions with associated budget for the next five year period. Successive chapters contain appendices, references, definitions, and a glossary.

Childs, Allen

2002-03-01T23:59:59.000Z

195

Strategic Focus Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

Focus Areas Lockheed Martin on behalf of Sandia National Laboratories will consider grant requests that best support the Corporation's strategic focus areas and reflect effective...

196

Columbia River Wildlife Mitigation Habitat Evaluation Procedures Report / Scotch Creek Wildlife Area, Berg Brothers, and Douglas County Pygmy Rabbit Projects.  

DOE Green Energy (OSTI)

This Habitat Evaluation Procedure study was conducted to determine baseline habitat units (HUs) on the Scotch Creek, Mineral Hill, Pogue Mountain, Chesaw and Tunk Valley Habitat Areas (collectively known as the Scotch Creek Wildlife Area) in Okanogan County, Sagebrush Flat and the Dormaler property in Douglas County, and the Berg Brothers ranch located in Okanogan County within the Colville Reservation. A HEP team comprised of individuals from the Washington Department of Fish and Wildlife, the Confederated Tribes of the Colville Reservation, and the Natural Resources Conservation Service (Appendix A) conducted baseline habitat surveys using the following HEP evaluation species: mule deer (Odocoileus hemionus), sharp-tailed grouse (Tympanuchus phasianellus), pygmy rabbit (Brachylagus idahoensis), white-tailed deer (Odocoileus virginiana), mink (Mustela vison), Canada goose (Branta canadensis), downy woodpecker (Picoides pubescens), Lewis woodpecker (Melanerpes lewis), and Yellow warbler (Dendroica petechia). Results of the HEP analysis are listed below. General ratings (poor, marginal, fair, etc.,) are described in Appendix B. Mule deer habitat was marginal lacking diversity and quantify of suitable browse species. Sharp-tailed grouse habitat was marginal lacking residual nesting cover and suitable winter habitat Pygmy rabbit habitat was in fair condition except for the Dormaier property which was rated marginal due to excessive shrub canopy closure at some sites. This report is an analysis of baseline habitat conditions on mitigation project lands and provides estimated habitat units for mitigation crediting purposes. In addition, information from this document could be used by wildlife habitat managers to develop management strategies for specific project sites.

Ashley, Paul R.

1997-01-01T23:59:59.000Z

197

Division/ Interest Area Information  

Science Conference Proceedings (OSTI)

Learn more about Divisions and Interest areas. Division/ Interest Area Information Membership Information achievement application award Awards distinguished division Divisions fats job Join lipid lipids Member member get a member Membership memori

198

DOE Designates Southwest Area and Mid-Atlantic Area National...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Designates Southwest Area and Mid-Atlantic Area National Interest Electric Transmission Corridors October 2, 2007 DOE Designates Southwest Area and Mid-Atlantic Area National...

199

DOE Designates Southwest Area and Mid-Atlantic Area National...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Designates Southwest Area and Mid-Atlantic Area National Interest Electric Transmission Corridors DOE Designates Southwest Area and Mid-Atlantic Area National Interest Electric...

200

Geothermal br Resource br Area Geothermal br Resource br Area...  

Open Energy Info (EERE)

Brady Hot Springs Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region MW K Coso Geothermal Area Coso Geothermal Area Walker Lane...

Note: This page contains sample records for the topic "area clark ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Oxbow Conservation Area; Middle Fork John Day River, Annual Report 2001-2002.  

DOE Green Energy (OSTI)

In early 2001, the Confederated Tribes of Warm Springs, through their John Day Basin Office, concluded the acquisition of the Middle Fork Oxbow Ranch. Under a memorandum of agreement with the Bonneville Power Administration (BPA), the Tribes are required to provided BPA an 'annual written report generally describing the real property interests in the Project, HEP analyses undertaken or in progress, and management activities undertaken or in progress'. This report is to be provided to the BPA by 30 April of each year. This is the first annual report filed for the Oxbow Ranch property.

Robertson, Shaun; Smith, Brent; Cochran, Brian

2003-04-01T23:59:59.000Z

202

Material Disposal Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Disposal Areas Material Disposal Areas Material Disposal Areas Material Disposal Areas, also known as MDAs, are sites where material was disposed of below the ground surface in excavated pits, trenches, or shafts. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Material Disposal Areas at LANL The following are descriptions and status updates of each MDA at LANL. To view a current fact sheet on the MDAs, click on LA-UR-13-25837 (pdf). MDA A MDA A is a Hazard Category 2 nuclear facility comprised of a 1.25-acre, fenced, and radiologically controlled area situated on the eastern end of Delta Prime Mesa. Delta Prime Mesa is bounded by Delta Prime Canyon to the north and Los Alamos Canyon to the south.

203

Naval applications study areas  

SciTech Connect

This memorandum discusses study areas and items that will require attention for the naval studies of the utilization of nuclear propulsion in a submarine-based missile system.

Hadley, J. W.

1962-06-20T23:59:59.000Z

204

Boulder Area Transportation  

Science Conference Proceedings (OSTI)

... NIST does not endorse or guarantee the quality or services provided by these businesses. All Denver/Boulder area transportation companies. ...

2011-11-16T23:59:59.000Z

205

NIST Aperture area measurements  

Science Conference Proceedings (OSTI)

... particularly critical, for example, in climate and weather applications on ... of aperture areas used in exo-atmospheric solar irradiance measurements; ...

2011-11-03T23:59:59.000Z

206

Fueling area site assessment  

SciTech Connect

This report provides results of a Site Assessment performed at the Fuel Storage Area at Buckley ANG Base in Aurora, Colorado. Buckley ANG Base occupies 3,328 acres of land within the City of Aurora in Arapahoe County, Colorado. The Fuel Storage Area (also known as the Fueling Area) is located on the west side of the Base at the intersection of South Powderhorn Street and East Breckenridge Avenue. The Fueling Area consists of above ground storage tanks in a bermed area, pumps, piping, valves, an unloading stand and a fill stand. Jet fuel from the Fueling Area is used to support aircraft operations at the Base. Jet fuel is stored in two 200,000 gallon above ground storage tanks. Fuel is received in tanker trucks at the unloading stand located south and east of the storage tanks. Fuel required for aircraft fueling and other use is transferred into tanker trucks at the fill stand and transported to various points on the Base. The Fuel Storage Area has been in operation for over 20 years and handles approximately 7 million gallons of jet fuel annually.

1996-08-15T23:59:59.000Z

207

NSTB Summarizes Vulnerable Areas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NSTB Summarizes Vulnerable Areas NSTB Summarizes Vulnerable Areas Commonly Found in Energy Control Systems Experts at the National SCADA Test Bed (NSTB) discovered some common areas of vulnerability in the energy control systems assessed between late 2004 and early 2006. These vulnerabilities ranged from conventional IT security issues to specific weaknesses in control system protocols. The paper "Lessons Learned from Cyber Security Assessments of SCADA and Energy Management Systems" describes the vulnerabilities and recommended strategies for mitigating them. It should be of use to asset owners and operators, control system vendors, system integrators, and third-party vendors interested in enhancing the security characteristics of current and future products.

208

area | OpenEI  

Open Energy Info (EERE)

area area Dataset Summary Description These estimates are derived from a composite of high resolution wind resource datasets modeled for specific countries with low resolution data originating from the National Centers for Environmental Prediction (United States) and the National Center for Atmospheric Research (United States) as processed for use in the IMAGE model. The high resolution datasets were produced by the National Renewable Energy Laboratory (United States), Risø DTU National Laboratory (Denmark), the National Institute for Space Research (Brazil), and the Canadian Wind Energy Association. The data repr Source National Renewable Energy Laboratory Date Released Unknown Date Updated Unknown Keywords area capacity clean energy international National Renewable Energy Laboratory

209

Geographic Area Month  

Gasoline and Diesel Fuel Update (EIA)

Fuels by PAD District and State (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month No. 1 Distillate No. 2 Distillate a No. 4 Fuel b Sales to End Users Sales for...

210

3. Producing Areas  

U.S. Energy Information Administration (EIA)

The OCS area provides surplus capacity to meet major seasonal swings in the lower 48 States gas requirements. The ... Jun-86 9,878 17,706 1,460 19,166 9,288 51.5

211

Western Area Power Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Loveland Area Projects November 29-30, 2011 2 Agenda * Overview of Western Area Power Administration * Post-1989 Loveland Area Projects (LAP) Marketing Plan * Energy Planning and Management Program * Development of the 2025 PMI Proposal * 2025 PMI Proposal * 2025 PMI Comment Period & Proposal Information * Questions 3 Overview of Western Area Power Administration (Western) * One of four power marketing administrations within the Department of Energy * Mission: Market and deliver reliable, renewable, cost-based Federal hydroelectric power and related services within a 15-state region of the central and western U.S. * Vision: Provide premier power marketing and transmission services Rocky Mountain Region (RMR) is one of five regional offices 4 Rocky Mountain Region

212

300 AREA URANIUM CONTAMINATION  

SciTech Connect

{sm_bullet} Uranium fuel production {sm_bullet} Test reactor and separations experiments {sm_bullet} Animal and radiobiology experiments conducted at the. 331 Laboratory Complex {sm_bullet} .Deactivation, decontamination, decommissioning,. and demolition of 300 Area facilities

BORGHESE JV

2009-07-02T23:59:59.000Z

213

Decontamination & decommissioning focus area  

Science Conference Proceedings (OSTI)

In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

NONE

1996-08-01T23:59:59.000Z

214

APS Area Emergency Supervisors  

NLE Websites -- All DOE Office Websites (Extended Search)

Area Emergency Supervisors BUILDING AES AAES 400-EAA Raul Mascote Debra Eriksen-Bubulka 400-A (SPX) Tim Jonasson 400-Sectors 25-30 Reggie Gilmore 401-CLO Steve Downey Ed Russell...

215

Strontium Isotopic Composition of Paleozoic Carbonate Rocks in the Nevada Test Site Vicinity, Clark, Lincoln, and Nye Counties, Nevada and Inyo County, California.  

SciTech Connect

Ground water moving through permeable Paleozoic carbonate rocks represents the most likely pathway for migration of radioactive contaminants from nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. The strontium isotopic composition (87Sr/86Sr) of ground water offers a useful means of testing hydrochemical models of regional flow involving advection and reaction. However, reaction models require knowledge of 87Sr/86Sr data for carbonate rock in the Nevada Test Site vicinity, which is scarce. To fill this data gap, samples of core or cuttings were selected from 22 boreholes at depth intervals from which water samples had been obtained previously around the Nevada Test Site at Yucca Flat, Frenchman Flat, Rainier Mesa, and Mercury Valley. Dilute acid leachates of these samples were analyzed for a suite of major- and trace-element concentrations (MgO, CaO, SiO2, Al2O3, MnO, Rb, Sr, Th, and U) as well as for 87Sr/86Sr. Also presented are unpublished analyses of 114 Paleozoic carbonate samples from outcrops, road cuts, or underground sites in the Funeral Mountains, Bare Mountain, Striped Hills, Specter Range, Spring Mountains, and ranges east of the Nevada Test Site measured in the early 1990's. These data originally were collected to evaluate the potential for economic mineral deposition at the potential high-level radioactive waste repository site at Yucca Mountain and adjacent areas (Peterman and others, 1994). Samples were analyzed for a suite of trace elements (Rb, Sr, Zr, Ba, La, and Ce) in bulk-rock powders, and 87Sr/86Sr in partial digestions of carbonate rock using dilute acid or total digestions of silicate-rich rocks. Pre-Tertiary core samples from two boreholes in the central or western part of the Nevada Test Site also were analyzed. Data are presented in tables and summarized in graphs; however, no attempt is made to interpret results with respect to ground-water flow paths in this report. Present-day 87Sr/86Sr values are compared to values for Paleozoic seawater present at the time of deposition. Many of the samples have 87Sr/86Sr compositions that remain relatively unmodified from expected seawater values. However, rocks underlying the northern Nevada Test Site as well as rocks exposed at Bare Mountain commonly have elevated 87Sr/86Sr values derived from post-depositional addition of radiogenic Sr most likely from fluids circulating through rubidium-rich Paleozoic strata or Precambrian basement rocks.

James B. Paces; Zell E. Peterman; Kiyoto Futa; Thomas A. Oliver; and Brian D. Marshall.

2007-08-07T23:59:59.000Z

216

Operational Area Monitoring Plan  

Office of Legacy Management (LM)

' ' SECTION 11.7B Operational Area Monitoring Plan for the Long -Term H yd rol og ical M o n i to ri ng - Program Off The Nevada Test Site S . C. Black Reynolds Electrical & Engineering, Co. and W. G. Phillips, G. G. Martin, D. J. Chaloud, C. A. Fontana, and 0. G. Easterly Environmental Monitoring Systems Laboratory U. S. Environmental Protection Agency October 23, 1991 FOREWORD This is one of a series of Operational Area Monitoring Plans that comprise the overall Environmental Monitoring Plan for the DOE Field Office, Nevada (DOEINV) nuclear and non- nuclear testing activities associated with the Nevada Test Site (NTS). These Operational Area Monitoring Plans are prepared by various DOE support contractors, NTS user organizations, and federal or state agencies supporting DOE NTS operations. These plans and the parent

217

Rainwater Wildlife Area, Watershed Management Plan, A Columbia Basin Wildlife Mitigation Project, 2002.  

DOE Green Energy (OSTI)

This Management Plan has been developed by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) to document how the Rainwater Wildlife Area (formerly known as the Rainwater Ranch) will be managed. The plan has been developed under a standardized planning process developed by the Bonneville Power Administration (BPA) for Columbia River Basin Wildlife Mitigation Projects (See Appendix A and Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus our management actions and prioritize funding during the Fiscal 2001-2005 planning period. This plan is a product of nearly two years of field studies and research, public scoping, and coordination with the Rainwater Advisory Committee. The committee consists of representatives from tribal government, state agencies, local government, public organizations, and members of the public. The plan is organized into several sections with Chapter 1 providing introductory information such as project location, purpose and need, project goals and objectives, common elements and assumptions, coordination efforts and public scoping, and historical information about the project area. Key issues are presented in Chapter 2 and Chapter 3 discusses existing resource conditions within the wildlife area. Chapter 4 provides a detailed presentation on management activities and Chapter 5 outlines a monitoring and evaluation plan for the project that will help assess whether the project is meeting the intended purpose and need and the goals and objectives. Chapter 6 displays the action plan and provides a prioritized list of actions with associated budget for the next five year period. Successive chapters contain appendices, references, definitions, and a glossary. The purpose of the project is to protect, enhance, and mitigate fish and wildlife resources impacted by Columbia River Basin hydroelectric development. The effort is one of several wildlife mitigation projects in the region developed to compensate for terrestrial habitat losses resulting from the construction of McNary and John Day Hydroelectric facilities located on the mainstem Columbia River. While this project is driven primarily by the purpose and need to mitigate for wildlife habitat losses, it is also recognized that management strategies will also benefit many other non-target fish and wildlife species and associated natural resources. The Rainwater project is much more than a wildlife project--it is a watershed project with potential to benefit resources at the watershed scale. Goals and objectives presented in the following sections include both mitigation and non-mitigation related goals and objectives.

Childs, Allen B.

2002-03-01T23:59:59.000Z

218

Rockies Area | Open Energy Information  

Open Energy Info (EERE)

Rockies Area Rockies Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Rockies Area 1.1 Products and Services in the Rockies Area 1.2 Research and Development Institutions in the Rockies Area 1.3 Networking Organizations in the Rockies Area 1.4 Investors and Financial Organizations in the Rockies Area 1.5 Policy Organizations in the Rockies Area Clean Energy Clusters in the Rockies Area Products and Services in the Rockies Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

219

Bay Area | Open Energy Information  

Open Energy Info (EERE)

Bay Area Bay Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Bay Area 1.1 Products and Services in the Bay Area 1.2 Research and Development Institutions in the Bay Area 1.3 Networking Organizations in the Bay Area 1.4 Investors and Financial Organizations in the Bay Area 1.5 Policy Organizations in the Bay Area Clean Energy Clusters in the Bay Area Products and Services in the Bay Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

220

Texas Area | Open Energy Information  

Open Energy Info (EERE)

Area Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Texas Area 1.1 Products and Services in the Texas Area 1.2 Research and Development Institutions in the Texas Area 1.3 Networking Organizations in the Texas Area 1.4 Investors and Financial Organizations in the Texas Area 1.5 Policy Organizations in the Texas Area Clean Energy Clusters in the Texas Area Products and Services in the Texas Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

Note: This page contains sample records for the topic "area clark ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

borrow_area.cdr  

Office of Legacy Management (LM)

information information at Weldon Spring, Missouri. This site is managed by the U.S. Department of Energy Office of Legacy Management. developed by the former WSSRAP Community Relations Department to provide comprehensive descriptions of key activities that took place throughout the cleanup process The Missouri Department of Conservation (MDC) approved a plan on June 9, 1995, allowing the U.S. Department of Energy (DOE) at the Weldon Spring Site Remedial Action Project (WSSRAP) to excavate nearly 2 million cubic yards of clay material from land in the Weldon Spring Conservation Area. Clay soil from a borrow area was used to construct the permanent disposal facility at the Weldon Spring site. Clay soil was chosen to construct the disposal facility because it has low permeability when

222

Focus Area Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

information provided was consolidated from the original five focus areas for the EM information provided was consolidated from the original five focus areas for the EM Corporate QA Board. The status of QAP/QIP approvals etc. was accurate at the time of posting; however, additional approvals may have been achieved since that time. If you have any questions about the information provided, please contact Bob Murray at robert.murray@em.doe.gov Task # Task Description Status 1.1 Develop a brief questionnaire to send out to both commercial and EM contractors to describe their current approach for identifying the applicable QA requirements for subcontractors, tailoring the requirements based upon risk, process for working with procurement to ensure QA requirements are incorporated into subcontracts, and implementing verification of requirement flow-down by their

223

Focus Area 3 Deliverables  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 - Commercial Grade item and Services 3 - Commercial Grade item and Services Dedication Implementation and Nuclear Services Office of Environmental Management And Energy Facility Contractors Group Quality Assurance Improvement Project Plan Project Focus Area Task # and Description Deliverable Project Area 3-Commercial Grade Item and Services Dedication 3.1-Complete a survey of selected EM contractors to identify the process and basis for their CGI dedication program including safety classification of items being dedicated for nuclear applications within their facilities Completed Survey Approvals: Yes/No/NA Project Managers: S. Waisley, D. Tuttel Yes Executive Committee: D. Chung, J. Yanek, N. Barker, D. Amerine No EM QA Corporate Board: No Energy Facility Contractors Group

224

Argonne area restaurants  

NLE Websites -- All DOE Office Websites (Extended Search)

area restaurants area restaurants Amber Cafe 13 N. Cass Ave. Westmont, IL 60559 630-515-8080 www.ambercafe.net Argonne Guest House Building 460 Argonne, IL 60439 630-739-6000 www.anlgh.org Ballydoyle Irish Pub & Restaurant 5157 Main Street Downers Grove, IL 60515 630-969-0600 www.ballydoylepub.com Bd's Mongolian Grill The Promenade Shopping Center Boughton Rd. & I-355 Bolingbrook, IL 60440 630-972-0450 www.gomongo.com Branmor's American Grill 300 Veterans Parkway Bolingbrook, IL 60440 630-226-9926 www.branmors.com Buca di Beppo 90 Yorktown Convenience Center Lombard, IL 60148 630-932-7673 www.bucadibeppo.com California Pizza Kitchen 551 Oakbrook Center Oak Brook, IL 60523 630-571-7800 www.cpk.com Capri Ristorante 5101 Main Street Downers Grove, IL 60516 630-241-0695 www.capriristorante.com Carrabba's Italian Grill

225

EA-1177: Salvage/Demolition of 200 West Area, 200 East Area, and 300 Area  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Salvage/Demolition of 200 West Area, 200 East Area, and 7: Salvage/Demolition of 200 West Area, 200 East Area, and 300 Area Steam Plants, Richland, Washington EA-1177: Salvage/Demolition of 200 West Area, 200 East Area, and 300 Area Steam Plants, Richland, Washington SUMMARY This EA evaluates the environmental impacts for the proposal to salvage and demolish the 200 West Area, 200 East Area, and 300 Area steam plants and their associated steam distribution piping equipment, and ancillary facilities at the U.S. Department of Energy Hanford Site in Richland, Washington. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD October 21, 1996 EA-1177: Finding of No Significant Impact Salvage/Demolition of 200 West Area, 200 East Area, and 300 Area Steam Plants October 21, 1996 EA-1177: Final Environmental Assessment

226

A Biographical Sketch FREDERICK J. CLARKE  

E-Print Network (OSTI)

of the wartime atomic bomb project and now command lieutenant. Three months later, he reported for duty as a company commander with the 5th Engineer Regiment's Manhattan Engineer District which then controlled the design, production, and storage of the nation's atomic

US Army Corps of Engineers

227

Clark Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Electric Coop Electric Coop Place Wisconsin Utility Id 3701 Utility Location Yes Ownership C NERC Location MRO Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Rider 1- Power Cost Adjustment- Uncontrolled Rider 2- Power Cost Adjustment- Controlled Rider 3- Controlled Water Heater Rider 4- Controlled Central Air Conditioner/ Heat Pump Credit Rider 5- Evergreen Renewable Energy Rate Schedule A, HS Heat Storage (Rate Code 73) Commercial Schedule A, IAC Controlled Electric Heat & Air Conditioning (Rate Code 74) Commercial Schedule A, Single Phase Service (Rate 78, 80, 88)-Transformer Size: 37.5

228

Clark Energy - Residential Energy Efficiency Rebate Programs...  

Open Energy Info (EERE)

Building Insulation, Comprehensive MeasuresWhole Building, Doors, Heat pumps, Windows, Geothermal Heat Pumps Active Incentive Yes Implementing Sector Utility Energy...

229

Clark Public Utilities - Residential Weatherization Loan Program...  

Open Energy Info (EERE)

Sector Residential Eligible Technologies Building Insulation, DuctAir sealing, Windows Active Incentive Yes Implementing Sector Utility Energy Category Energy Efficiency...

230

Clark Public Utilities - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sealing Your Home Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Solar Maximum Rebate Windows: 500 Insulation: 400 for each type...

231

Clark Public Utilities - Residential Energy Efficiency Rebate...  

Open Energy Info (EERE)

Whole Building, DuctAir sealing, Heat pumps, Lighting, Refrigerators, Water Heaters, Windows, Geothermal Heat Pumps, Solar Water Heat Active Incentive Yes Implementing Sector...

232

Clarke American Checks, Inc. Profile - 2001  

Science Conference Proceedings (OSTI)

... This dual planning approach benefits from ... Society for Training and Development. ... is facilitated through systematic approaches to communication ...

2011-07-13T23:59:59.000Z

233

Clark Public Utilities - Commercial Energy Efficiency Rebate...  

Open Energy Info (EERE)

Comprehensive MeasuresWhole Building, Compressed air, CustomOthers pending approval, Energy Mgmt. SystemsBuilding Controls, Heat pumps, Lighting, Motor VFDs, Motors,...

234

Clark Public Utilities - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heating Windows, Doors, & Skylights Solar Maximum Rebate Windows: 500 Insulation: 400 for each type (floor, attic, and wall) Air Sealing Envelope: 100 Program...

235

Clark Public Utilities - Commercial Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Lighting: Up to 50% project costs Custom Industrial Retrofit: 0.25kWh up to 50% of cost Custom Industrial New Construction: 0.20 - 0.27kWh up to 50% of...

236

Large area bulk superconductors  

DOE Patents (OSTI)

A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

Miller, Dean J. (Darien, IL); Field, Michael B. (Jersey City, NJ)

2002-01-01T23:59:59.000Z

237

Proposal Review Panels (Areas Other Than Crystallography)  

NLE Websites -- All DOE Office Websites (Extended Search)

Proposal Review Panels Proposal Review Panels High Pressure Instrumentation Imaging/ Microbeam Macromolecular Crystallography Scattering Applied Materials Stanislav Sinogeikin, Chair Tim Graber, Chair Patrick LaRiviere, Chair John Rose, Chair Robert Suter, Chair Ercan Alp Maria Baldini Bin Chen Przemyslaw Dera Lars Ehm Ravi Kumar Barbara Lavina Sang-Heon (Dan) Shim Heather Watson Keith Brister Wenjun Liu Darren Dale Matthew Ginder-Vogel Xiaojing Huang (guest) Tony Lanzirotti Lisa Miller Mark Pfeifer Martina Ralle Xianghui Xiao Hanfei Yan Arnon Lavie Anne Mulichak Armand Beaudoin Dillon Fong Dileep Singh Mike Toney Bob Von Dreele Scattering Condensed Matter Scattering Chem/Biol/Environ Small Angle Scattering (SAXS) Spectroscopy Structural Science Roy Clarke, Chair Lynda Soderholm, Chair Peter Jemian, Chair Mali Balasubramanian, Chair

238

Western Area Power Administration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

v*Zy- i , . v*Zy- i , . r ,v * -i S # Af [, (e- . - o -A tl }r- 0 v-" l^~4~S J l ^-)^ I^U^ck iM clti ^ Area Power Administration Follow-up to Nov. 25, 2008 Transition Meeting Undeveloped Transmission Right-of-Way Western has very little undeveloped transmission right-of-way. There is a 7-mile right- of-way between Folsom, CA and Roseville, CA where Western acquired a 250' wide right-of-way but is only using half of it. Another line could be built parallel to Western's line to relieve congestion in the Sacramento area. In addition, Western has rights-of- way for many transmission lines that could be rebuilt to increase transmission capacity. For example, Western's Tracy-Livermore 230-kV line is a single circuit line but the existing towers could support a double circuit line. These rights-of-way would have to

239

Geothermal Areas | Open Energy Information  

Open Energy Info (EERE)

Geothermal Areas Geothermal Areas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Areas Geothermal Areas are specific locations of geothermal potential (e.g., Coso Geothermal Area). The base set of geothermal areas used in this database came from the 253 geothermal areas identified by the USGS in their 2008 Resource Assessment.[1] Additional geothermal areas were added, as needed, based on a literature search and on projects listed in the GTP's 2011 database of funded projects. Add.png Add a new Geothermal Resource Area Map of Areas List of Areas Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":2500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

240

Western Area Power Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Western Area Power Administration Customer Meeting The meeting will begin at 12:30 pm MST We have logged on early for connectivity purposes Please stand-by until the meeting begins Please be sure to call into the conference bridge at: 888-989-6414 Conf. Code 60223 If you have connectivity issues, please contact: 866-900-1011 1 Introduction  Welcome  Introductions  Purpose of Meeting ◦ Status of the SLCA/IP Rate ◦ SLCA/IP Marketing Plan ◦ Credit Worthiness Policy ◦ LTEMP EIS update ◦ Access to Capital  Handout Materials http://www.wapa.gov/crsp/ratescrsp/default.htm 2 SLCA/IP Rate 3 1. Status of Repayment 2. Current SLCA/IP Firm Power Rate (SLIP-F9) 3. Revenue Requirements Comparison Table 4.SLCA/IP Rate 5. Next Steps

Note: This page contains sample records for the topic "area clark ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Mosquito populations in the Powder River basin, Wyoming.  

E-Print Network (OSTI)

??Coal bed natural gas development in northeastern Wyoming has increased surface water in ranching and agricultural areas over undeveloped land. This increase of water increases (more)

Doherty, Melissa Kuckler.

2007-01-01T23:59:59.000Z

242

AREA RADIATION MONITOR  

DOE Patents (OSTI)

S>An improved area radiation dose monitor is designed which is adapted to compensate continuously for background radiation below a threshold dose rate and to give warning when the dose integral of the dose rate of an above-threshold radiation excursion exceeds a selected value. This is accomplished by providing means for continuously charging an ionization chamber. The chamber provides a first current proportional to the incident radiation dose rate. Means are provided for generating a second current including means for nulling out the first current with the second current at all values of the first current corresponding to dose rates below a selected threshold dose rate value. The second current has a maximum value corresponding to that of the first current at the threshold dose rate. The excess of the first current over the second current, which occurs above the threshold, is integrated and an alarm is given at a selected integrated value of the excess corresponding to a selected radiation dose. (AEC)

Manning, F.W.; Groothuis, S.E.; Lykins, J.H.; Papke, D.M.

1962-06-12T23:59:59.000Z

243

Program Areas | National Security | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Programs Initiatives Facilities Events and Conferences Supporting Organizations National Security Home | Science & Discovery | National Security | Program Areas SHARE Program...

244

Rainwater Wildlife Area Management Plan Executive Summary : A Columbia Basin Wildlife Mitigation Project.  

SciTech Connect

This Executive Summary provides an overview of the Draft Rainwater Wildlife Area Management Plan. The comprehensive plan can be viewed on the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) website at: www.umatilla.nsn.us or requested in hard copy from the CTUIR at the address below. The wildlife area was established in September 1998 when the CTUIR purchased the Rainwater Ranch through Bonneville Power Administration (BPA) for purposes of fish and wildlife mitigation for the McNary and John Day dams. The Management Plan has been developed under a standardized planning process developed by BPA for Columbia River Basin Wildlife Mitigation Projects (See Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus management actions and prioritize funding during the 2002-2006 planning period. Since acquisition of the property in late 1998, the CTUIR has conducted an extensive baseline resource assessment in preparation for the management plan, initiated habitat restoration in the Griffin Fork drainage to address road-related resource damage caused by roads constructed for forest practices and an extensive flood event in 1996, and initiated infrastructure developments associated with the Access and Travel Management Plan (i.e., installed parking areas, gates, and public information signs). In addition to these efforts, the CTUIR has worked to set up a long-term funding mechanism with BPA through the NPPC Fish and Wildlife Program. The CTUIR has also continued to coordinate closely with local and state government organizations to ensure consistency with local land use laws and maintain open lines of communication regarding important issues such as big game hunting, tribal member exercise of treaty rights, and public access. During the past two years, non-Indian public concern over big game hunting issues has at times overwhelmed other issues related to the wildlife area. In 2001, the CTUIR Fish and Wildlife Committee closed the wildlife area to tribal branch antlered bull elk harvest in response to harvest data that indicated harvest rates were greater than expected. In addition, illegal harvest of mature bull elk in southeastern Washington during the 2001 season exceeded the legal tribal and nontribal harvest combined which has created a potential significant regression in the bull;cow ratio in the Blue Mountain Elk herd. CTUIR Fish and Wildlife Committee and staff and Washington Department of Fish and Wildlife Regional Director and staff have been coordinating regularly to develop strategies to address harvest rates and ensure protection of viable big game herds in southeastern Washington. The CTUIR Fish and Wildlife Committee and WDFW has jointly agreed to continue close coordination on this and other issues and continue working together to ensure the long-term vigor of the elk herd on the Rainwater Wildlife Area. The purpose of the project is to protect, enhance, and mitigate fish and wildlife resources impacted by Columbia River Basin hydroelectric development. The effort is one of several wildlife mitigation projects in the region developed to compensate for terrestrial habitat losses resulting from the construction of McNary and John Day Hydroelectric facilities located on the mainstem Columbia River. While this project is driven primarily by the purpose and need to mitigate for wildlife habitat losses, it is also recognized that management strategies will also benefit many other non-target fish and wildlife species and associated natural resources.

Childs, Allen B.

2002-02-01T23:59:59.000Z

245

Body Area Networks: A Survey  

Science Conference Proceedings (OSTI)

Advances in wireless communication technologies, such as wearable and implantable biosensors, along with recent developments in the embedded computing area are enabling the design, development, and implementation of body area networks. This class of ... Keywords: body area networks, survey, wireless sensor networks

Min Chen; Sergio Gonzalez; Athanasios Vasilakos; Huasong Cao; Victor C. Leung

2011-04-01T23:59:59.000Z

246

Geothermal resource area 9: Nye County. Area development plan  

DOE Green Energy (OSTI)

Geothermal Resource area 9 encompasses all of Nye County, Nevada. Within this area there are many different known geothermal sites ranging in temperature from 70/sup 0/ to over 265/sup 0/ F. Fifteen of the more major sites have been selected for evaluation in this Area Development Plan. Various potential uses of the energy found at each of the resource sites discussed in this Area Development Plan were determined after evaluating the area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities, and comparing those with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories certain subdivisions were considered separately. The findings about each of the 15 geothermal sites considered in this Area Development Plan are summarized.

Pugsley, M.

1981-01-01T23:59:59.000Z

247

Property:AreaGeology | Open Energy Information  

Open Energy Info (EERE)

AreaGeology AreaGeology Jump to: navigation, search Property Name AreaGeology Property Type String Description A description of the area geology This is a property of type String. Subproperties This property has the following 22 subproperties: A Amedee Geothermal Area B Beowawe Hot Springs Geothermal Area Blue Mountain Geothermal Area Brady Hot Springs Geothermal Area C Chena Geothermal Area Coso Geothermal Area D Desert Peak Geothermal Area D cont. Dixie Valley Geothermal Area E East Mesa Geothermal Area G Geysers Geothermal Area K Kilauea East Rift Geothermal Area L Lightning Dock Geothermal Area Long Valley Caldera Geothermal Area R Raft River Geothermal Area Roosevelt Hot Springs Geothermal Area S Salt Wells Geothermal Area Salton Sea Geothermal Area San Emidio Desert Geothermal Area

248

Carver Ranches, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

247°, -80.1922693° 247°, -80.1922693° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.9884247,"lon":-80.1922693,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

249

Sea Ranch Lakes, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

200111°, -80.096221° 200111°, -80.096221° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.200111,"lon":-80.096221,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

250

Southwest Ranches, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

01°, -80.3372733° 01°, -80.3372733° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.0587001,"lon":-80.3372733,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

251

Santa Cruz and the Cowell Ranch, 1890-9641  

E-Print Network (OSTI)

and went to work as an architect for John D. Rockefeller.D. Rockefeller ' s head architect. He told me that duringCity, and he was the head architect on it. He said he would

Regional History Project, UCSC Library; Cardiff, George; Calciano, Elizabeth Spedding

1965-01-01T23:59:59.000Z

252

Galvan Ranch, TX Natural Gas Imports by Pipeline from Mexico  

U.S. Energy Information Administration (EIA)

U.S. Natural Gas Imports by Point of Entry (Volumes in Million Cubic Feet, Prices in Dollars per Thousand Cubic Feet)

253

Final Report Caldwell Ranch Exploration and Confirmation Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

MAPS ... E-1 iii APPENDIX F OXYGEN-18 VALUES IN NW GEYSERS STEAM CONDENSATE ... F-1 APPENDIX G WHOLE-ROCK OXYGEN-18 VALUES IN NW GEYSERS...

254

Montana Beginning Farm/Ranch Loan Program (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

Loans subsidized by tax-exempt bonds issued by the Montana Agricultural Loan Authority may be used for the production of energy using an alternative renewable energy source. The program is run...

255

Galvan Ranch, TX Natural Gas Imports by Pipeline from Mexico  

U.S. Energy Information Administration (EIA)

Pipeline Volumes: 19: 18: 20: 20: 14: 28: 2011-2013: Pipeline Prices: 2.42: 2.34: 2.53: 2.53: 3.21: 3.21: 2011-2013-= No Data Reported; --= Not Applicable; NA = Not ...

256

CX-004877: Categorical Exclusion Determination  

Energy.gov (U.S. Department of Energy (DOE))

Borrow at Basic Substation in Clark County, NevadaCX(s) Applied: B4.11Date: 11/30/2010Location(s): Clark County, NevadaOffice(s): Western Area Power Administration-Desert Southwest Region

257

Transforming Parks and Protected Areas  

E-Print Network (OSTI)

areas Lisa M. Campbell, Noella J. Gray; and Zoe A. Meletis In many countries, parks and protected areas construction of nature, conservation and development narratives, and alternative consumption - and what World' or 'developing' countries. One feature of political ecology has been an overriding emphasis

Bolch, Tobias

258

Data Administration Area: Date Issued  

E-Print Network (OSTI)

Policy Data Administration Policy Area: Date Issued: April, 1994 Title: Data Administration Last. INTRODUCTION The President established the Committee on Data Administration (CODA) in May, 1992, to advise him on policies in the area of data administration (attached as references Policy ADC 011 and TOR for CODA

Brownstone, Rob

259

Area 410 status and capabilities  

SciTech Connect

This memo is distributed to acquaint personnel with (a) the status of the various 410 areas, (b) time and personnel required to do optic experiments in the ``Dog`` area, and (c) status of the timing and firing system and conditions of cables from Able to Dog.

Bennett, W. P.

1962-10-01T23:59:59.000Z

260

Report Wildland Fire Area Hazard  

NLE Websites -- All DOE Office Websites (Extended Search)

Report Wildland Fire Area Hazard Report Wildland Fire Area Hazard Report Wildland Fire Area Hazard Report wildland fire area hazards or incidents that are non-life threatening only. Call 911 for all emergencies that require immediate assistance. How to report wildland fire hazard Use the following form to report any wildland fire area hazards or incidents that are non-life threatening only. Call 911 for all emergencies that require immediate assistance. Fill out this form as completely as possible so we can better assess the hazard. All submissions will be assessed as promptly as possible. For assistance with a non-emergency situation, contact the Operations Support Center at 667-6211. Name (optional): Hazard Type (check one): Wildlife Sighting (check box if animal poses serious threat) Trails (access/egress)

Note: This page contains sample records for the topic "area clark ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Tech Area II: A History  

E-Print Network (OSTI)

This report documents the history of the major buildings in Sandia National Laboratories' Technical Area II. It was prepared in support of the Department of Energy's compliance with Section 106 of the National Historic Preservation Act. Technical Area II was designed and constructed in 1948 specifically for the final assembly of the non-nuclear components of nuclear weapons, and was the primary site conducting such assembly until 1952. Both the architecture and location of the oldest buildings in the area reflect their original purpose. Assembly activities continued in Area II from 1952 to 1957, but the major responsibility for this work shifted to other sites in the Atomic Energy Commission's integrated contractor complex. Gradually, additional buildings were constructed and the original buildings were modified. After 1960, the Area's primary purpose was the research and testing of high-explosive components for nuclear weapons. In 1994, Sandia constructed new facilities for work on hi...

Rebecca Ullrich; Rebecca Ullrich

1998-01-01T23:59:59.000Z

262

Thermal energy storage application areas  

DOE Green Energy (OSTI)

The use of thermal energy storage in the areas of building heating and cooling, recovery of industrial process and waste heat, solar power generation, and off-peak energy storage and load management in electric utilities is reviewed. (TFD)

Not Available

1979-03-01T23:59:59.000Z

263

Accelerating Observers, Area and Entropy  

E-Print Network (OSTI)

We consider an explicit example of a process, where the entropy carried by radiation through an accelerating two-plane is proportional to the decrease in the area of that two-plane even when the two-plane is not a part of any horizon of spacetime. Our results seem to support the view that entropy proportional to area is possessed not only by horizons but by all spacelike two-surfaces of spacetime.

Makela, J

2005-01-01T23:59:59.000Z

264

Accelerating Observers, Area and Entropy  

E-Print Network (OSTI)

We consider an explicit example of a process, where the entropy carried by radiation through an accelerating two-plane is proportional to the decrease in the area of that two-plane even when the two-plane is not a part of any horizon of spacetime. Our results seem to support the view that entropy proportional to area is possessed not only by horizons but by all spacelike two-surfaces of spacetime.

Jarmo Makela

2005-06-16T23:59:59.000Z

265

Variable area fuel cell cooling  

DOE Patents (OSTI)

A fuel cell arrangement having cooling fluid flow passages which vary in surface area from the inlet to the outlet of the passages. A smaller surface area is provided at the passage inlet, which increases toward the passage outlet, so as to provide more uniform cooling of the entire fuel cell. The cooling passages can also be spaced from one another in an uneven fashion.

Kothmann, Richard E. (Churchill Borough, PA)

1982-01-01T23:59:59.000Z

266

Geothermal resource area 3: Elko County. Area development plan  

DOE Green Energy (OSTI)

Geothermal Resource Area 3 includes all of the land in Elko County, Nevada. There are in excess of 50 known thermal anomalies in this area. Several of the more major resources have been selected for detailed description and evaluation in this Area Development Plan. The other resources are considered too small, too low in temperature, or too remote to be considered for development in the near future. Various potential uses of the energy found at each of the studied resource sites in Elko County were determined after evaluating the area's physical characteristics; the land ownership and land use patterns; existing population and projected growth rates; transportation facilities and energy requirements. These factors were then compared with resource site specific data to determine the most likely uses of the resource. The uses considered in this evaluation were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories several subdivisions were considered separately. It was determined that several of the geothermal resources evaluated in the Area Development Plan could be commercially developed. The potential for development for the seven sites considered in this study is summarized.

Pugsley, M.

1981-01-01T23:59:59.000Z

267

Focus Areas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission » Focus Areas Mission » Focus Areas Focus Areas Safety With this focus on cleanup completion and risk reducing results, safety still remains the utmost priority. EM will continue to maintain and demand the highest safety performance. All workers deserve to go home as healthy as they were when they came to the job in the morning. There is no schedule or milestone worth any injury to the work force. Project Management EM is increasing its concentration on project management to improve its overall performance toward cost-effective risk reduction. This will involve review of validated project baselines, schedules, and assumptions about effective identification and management of risks. Instrumental in refining the technical and business approaches to project management are the senior

268

100 Areas CERCLA ecological investigations  

SciTech Connect

This document reports the results of the field terrestrial ecological investigations conducted by Westinghouse Hanford Company during fiscal years 1991 and 1992 at operable units 100-FR-3, 100-HR-3, 100-NR-2, 100-KR-4, and 100-BC-5. The tasks reported here are part of the Remedial Investigations conducted in support of the Comprehensive Environmental Response, compensation, and Liability Act of 1980 studies for the 100 Areas. These ecological investigations provide (1) a description of the flora and fauna associated with the 100 Areas operable units, emphasizing potential pathways for contaminants and species that have been given special status under existing state and/or federal laws, and (2) an evaluation of existing concentrations of heavy metals and radionuclides in biota associated with the 100 Areas operable units.

Landeen, D.S.; Sackschewsky, M.R.; Weiss, S.

1993-09-01T23:59:59.000Z

269

Manhattan Project: Tech Area Gallery  

Office of Scientific and Technical Information (OSTI)

TECH AREA GALLERY (LARGE) TECH AREA GALLERY (LARGE) Los Alamos: The Laboratory Resources > Photo Gallery All of the photographs below are of the "Tech Area" at Los Alamos during or shortly after the wartime years. If this page is taking a long time to load, click here for a photo gallery with smaller versions of the same images. There is a map of the Tech Area at the top and again at the bottom. The first image below is courtesy the Los Alamos National Laboratory. All of the other photographs are reproduced from Edith C. Truslow, with Kasha V. Thayer, ed., Manhattan Engineer District: Nonscientific Aspects of Los Alamos Project Y, 1942 through 1946 (Los Alamos, NM: Manhattan Engineer District, ca. 1946; first printed by Los Alamos Scientific Laboratory as LA-5200, March 1973; reprinted in 1997 by the Los Alamos Historical Society). This is a reprint of an unpublished volume originally written in 1946 by 2nd Lieutenant Edith C. Truslow, a member of the Women's Army Corps, as a contribution to the Manhattan Engineer District History.

270

Wildlife Impact Assessment and Summary of Previous Mitigation Related to Hydroelectric Projects in Montana, Phase 1, Volume Two (B), Clark Fork River Projects, Cabinet Gorge and Noxon Rapids Dams, Operator, Washington Water Power Company.  

DOE Green Energy (OSTI)

This report documents best available information concerning the wildlife species impacted and the degree of the impact. A target species list was developed to focus the impact assessment and to direct mitigation efforts. Many non-target species also incurred impacts but are not discussed in this report. All wildlife habitats inundated by the two reservoirs are represented by the target species. It was assumed the numerous non-target species also affected will be benefited by the mitigation measures adopted for the target species. Impacts addressed are limited to those directly attributable to the loss of habitat and displacement of wildlife populations due to the construction and operation of the two hydroelectric projects. Secondary impacts, such as the relocation of railroads and highways, and the increase of the human population, were not considered. In some cases, both positive and negative impacts were assessed; and the overall net effect was reported. The loss/gain estimates reported represent impacts considered to have occurred during one point in time except where otherwise noted. When possible, quantitative estimates were developed based on historical information from the area or on data from similar areas. Qualitative loss estimates of low, moderate, or high with supporting rationale were assessed for each species or species group.

Wood, Marilyn

1984-06-01T23:59:59.000Z

271

CENTRAL NEVPJJA SUPPLEMENTAL TEST AREA  

NLE Websites -- All DOE Office Websites (Extended Search)

r r r r r t r r t r r r * r r r r r r CENTRAL NEVPJJA SUPPLEMENTAL TEST AREA ,FACILITY RECORDS 1970 UNITED STATES ATOMIC ENERGY COMMlSSION NEVADA OPERATIONS OFFICE LAS VEGAS, NEVADA September 1970 Prepared By Holmes & Narver. Inc. On-Continent Test Division P.O. Box 14340 Las Vegas, Nevada 338592 ...._- _._--_ .. -- - - - - - - .. .. - .. - - .. - - - CENTRAL NEVPJJA SUPPLEMENTAL TEST AREA FACILITY RECORDS 1970 This page intentionally left blank - - .. - - - PURPOSE This facility study has been prepared in response to a request of the AEC/NVOO Property Management Division and confirmed by letter, W. D. Smith to L. E. Rickey, dated April 14, 1970, STS Program Administrative Matters. The purpose is to identify each facility, including a brief description, the acquisition cost either purchase and/or construction, and the AE costs if identi- fiable. A narrative review of the history of the subcontracts

272

Carlsbad Area Office Executive Summary  

NLE Websites -- All DOE Office Websites (Extended Search)

June 1998 June 1998 Carlsbad Area Office Executive Summary The mission of the Carlsbad Area Office (CAO) is to protect human health and the environment by opening and operating the Waste Isolation Pilot Plant (WIPP) for safe disposal of transuranic (TRU) waste and by establishing an effective system for management of TRU waste from generation to disposal. It includes personnel assigned to CAO, WIPP site operations, transportation, and other activities associated with the National TRU Program (NTP). The CAO develops and directs implementation of the TRU waste program, and assesses compliance with the program guidance, as well as the commonality of activities and assumptions among all TRU waste sites. A cornerstone of the Department of Energy's (DOE) national cleanup strategy, WIPP is

273

RHIC | New Areas of Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

A New Area of Physics A New Area of Physics RHIC has created a new state of hot, dense matter out of the quarks and gluons that are the basic particles of atomic nuclei, but it is a state quite different and even more remarkable than had been predicted. Instead of behaving like a gas of free quarks and gluons, as was expected, the matter created in RHIC's heavy ion collisions is more like a liquid. Quarks Gluons and quarks Ions Ions about to collide Impact Just after collision Perfect Liquid The "perfect" liquid hot matter Hot Nuclear Matter A review article in the journal Science describes groundbreaking discoveries that have emerged from RHIC, synergies with the heavy-ion program at the Large Hadron Collider, and the compelling questions that will drive this research forward on both sides of the Atlantic.

274

Variable area light reflecting assembly  

DOE Patents (OSTI)

Device is described for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles. 9 figs.

Howard, T.C.

1986-12-23T23:59:59.000Z

275

Variable area light reflecting assembly  

DOE Patents (OSTI)

Device for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles.

Howard, Thomas C. (Raleigh, NC)

1986-01-01T23:59:59.000Z

276

Kilauea Summit Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kilauea Summit Geothermal Area Kilauea Summit Geothermal Area (Redirected from Kilauea Summit Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kilauea Summit Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (12) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

277

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area (Redirected from Flint Geothermal Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

278

Blackfoot Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Blackfoot Reservoir Geothermal Area Blackfoot Reservoir Geothermal Area (Redirected from Blackfoot Reservoir Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blackfoot Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Idaho Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

279

Wister Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Wister Geothermal Area Wister Geothermal Area (Redirected from Wister Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Wister Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

280

Teels Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Teels Marsh Geothermal Area Teels Marsh Geothermal Area (Redirected from Teels Marsh Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Teels Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

Note: This page contains sample records for the topic "area clark ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Truckhaven Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Truckhaven Geothermal Area Truckhaven Geothermal Area (Redirected from Truckhaven Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Truckhaven Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

282

Mokapu Penninsula Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mokapu Penninsula Geothermal Area Mokapu Penninsula Geothermal Area (Redirected from Mokapu Penninsula Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mokapu Penninsula Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

283

Innovation investment area: Technology summary  

Science Conference Proceedings (OSTI)

The mission of Environmental Management`s (EM) Office of Technology Development (OTD) Innovation Investment Area is to identify and provide development support for two types of technologies that are developed to characterize, treat and dispose of DOE waste, and to remediate contaminated sites. They are: technologies that show promise to address specific EM needs, but require proof-of-principle experimentation; and (2) already proven technologies in other fields that require critical path experimentation to demonstrate feasibility for adaptation to specific EM needs. The underlying strategy is to ensure that private industry, other Federal Agencies, universities, and DOE National Laboratories are major participants in developing and deploying new and emerging technologies. To this end, about 125 different new and emerging technologies are being developed through Innovation Investment Area`s (IIA) two program elements: RDDT&E New Initiatives (RD01) and Interagency Agreements (RD02). Both of these activities are intended to foster research and development partnerships so as to introduce innovative technologies into other OTD program elements for expedited evaluation.

Not Available

1994-03-01T23:59:59.000Z

284

Tanks focus area. Annual report  

SciTech Connect

The U.S. Department of Energy Office of Environmental Management is tasked with a major remediation project to treat and dispose of radioactive waste in hundreds of underground storage tanks. These tanks contain about 90,000,000 gallons of high-level and transuranic wastes. We have 68 known or assumed leaking tanks, that have allowed waste to migrate into the soil surrounding the tank. In some cases, the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in the safest possible condition until their eventual remediation to reduce the risk of waste migration and exposure to workers, the public, and the environment. Science and technology development for safer, more efficient, and cost-effective waste treatment methods will speed up progress toward the final remediation of these tanks. The DOE Office of Environmental Management established the Tanks Focus Area to serve as the DOE-EM`s technology development program for radioactive waste tank remediation in partnership with the Offices of Waste Management and Environmental Restoration. The Tanks Focus Area is responsible for leading, coordinating, and facilitating science and technology development to support remediation at DOE`s four major tank sites: the Hanford Site in Washington State, Idaho National Engineering and Environmental Laboratory in Idaho, Oak Ridge Reservation in Tennessee, and the Savannah River Site in South Carolina. The technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank. Safety is integrated across all the functions and is a key component of the Tanks Focus Area program.

Frey, J.

1997-12-31T23:59:59.000Z

285

Blackfoot Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Blackfoot Reservoir Geothermal Area Blackfoot Reservoir Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blackfoot Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Idaho Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

286

Wister Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Wister Geothermal Area Wister Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Wister Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

287

Area Science Park | Open Energy Information  

Open Energy Info (EERE)

Area Science Park Jump to: navigation, search Name Area Science Park Place Italy Sector Services Product General Financial & Legal Services ( Government Public sector )...

288

Southwest Area Corridor Map | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Map DOE Designates Southwest Area and Mid-Atlantic Area National Interest Electric Transmission Corridors October 2, 2007 FACT SHEET: Designation of National Interest Electric...

289

Southwest Area Corridor Map | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Map DOE Designates Southwest Area and Mid-Atlantic Area National Interest Electric Transmission Corridors October 2, 2007 Proposed Energy Transport Corridors: West-wide energy...

290

Lualualei Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Lualualei Valley Geothermal Area (Redirected from Lualualei Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lualualei Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content

291

White Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

White Mountains Geothermal Area White Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: White Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: New Hampshire Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

292

Truckhaven Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Truckhaven Geothermal Area Truckhaven Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Truckhaven Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

293

Honokowai Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Honokowai Geothermal Area Honokowai Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Honokowai Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

294

Redevelopment of Areas Needing Redevelopment Generally (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

Local redevelopment commissions may be established to oversee areas needing redevelopment (previously known as blighted, deteriorated, or deteriorating areas). The clearance, replanning, and...

295

Hydrogen, Fuel Cells, & Infrastructure - Program Areas - Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel cell Welcome> Program Areas> Program Areas Hydrogen, Fuel Cells & Infrastructure Production & Delivery | Storage | Fuel Cell R&D | Systems Integration & Analysis | Safety...

296

Aquifer Protection Area Land Use Regulations (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations describe allowable activities within aquifer protection areas, the procedure by which such areas are delineated, and relevant permit requirements. The regulations also describe...

297

Geothermal Literature Review At International Geothermal Area...  

Open Energy Info (EERE)

Latera area, Tuscany, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

298

Geothermal Literature Review At International Geothermal Area...  

Open Energy Info (EERE)

Hvalfjordur Fjord area, re: Heat flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

299

History of 100-B Area  

SciTech Connect

The initial three production reactors and their support facilities were designated as the 100-B, 100-D, and 100-F areas. In subsequent years, six additional plutonium-producing reactors were constructed and operated at the Hanford Site. Among them was one dual-purpose reactor (100-N) designed to supply steam for the production of electricity as a by-product. Figure 1 pinpoints the location of each of the nine Hanford Site reactors along the Columbia River. This report documents a brief description of the 105-B reactor, support facilities, and significant events that are considered to be of historical interest. 21 figs.

Wahlen, R.K.

1989-10-01T23:59:59.000Z

300

Carlsbad Area Office strategic plan  

SciTech Connect

This edition of the Carlsbad Area Office Strategic Plan captures the U.S. Department of Energy`s new focus, and supercedes the edition issued previously in 1995. This revision reflects a revised strategy designed to demonstrate compliance with environmental regulations earlier than the previous course of action; and a focus on the selected combination of scientific investigations, engineered alternatives, and waste acceptance criteria for supporting the compliance applications. An overview of operations and historical aspects of the Waste Isolation Pilot Plant near Carlsbad, New Mexico is presented.

1995-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "area clark ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Manhattan Project: Tech Area Gallery  

Office of Scientific and Technical Information (OSTI)

SMALL) SMALL) Los Alamos: The Laboratory Resources > Photo Gallery All of the photographs below are of the "Tech Area" at Los Alamos during or shortly after the wartime years. If you have a fast internet connection, you may wish to click here for a photo gallery with larger versions of the same images. There is a map of the Tech Area at the top and again at the bottom. The first image below is courtesy the Los Alamos National Laboratory. All of the other photographs are reproduced from Edith C. Truslow, with Kasha V. Thayer, ed., Manhattan Engineer District: Nonscientific Aspects of Los Alamos Project Y, 1942 through 1946 (Los Alamos, NM: Manhattan Engineer District, ca. 1946; first printed by Los Alamos Scientific Laboratory as LA-5200, March 1973; reprinted in 1997 by the Los Alamos Historical Society). This is a reprint of an unpublished volume originally written in 1946 by 2nd Lieutenant Edith C. Truslow, a member of the Women's Army Corps, as a contribution to the Manhattan Engineer District History.

302

Chena Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Chena Geothermal Area Chena Geothermal Area (Redirected from Chena Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Chena Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Technical Problems and Solutions 8 Geology of the Area 9 Heat Source 10 Geofluid Geochemistry 11 NEPA-Related Analyses (1) 12 Exploration Activities (9) 13 References Map: Chena Geothermal Area Chena Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Fairbanks, Alaska Exploration Region: Alaska Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

303

Mapping Population onto Priority Conservation Areas  

E-Print Network (OSTI)

areas and (in every case except Mesoamerican Reef and Namib-Karoo) are higher in areas within aggregated. Rural areas in Namib-Karoo have the highest total fertility rates (mean rate of 6.2). Areas inside / Namib Karoo (p

Lopez-Carr, David

304

Boulder Area Directions and Transportation Information  

Science Conference Proceedings (OSTI)

Boulder Area Directions and Transportation Information. NIST Boulder Visitor Check-In & Parking. Transportation. ...

2013-02-27T23:59:59.000Z

305

Geothermal resource evaluation of the Yuma area  

DOE Green Energy (OSTI)

This report presents an evaluation of the geothermal potential of the Yuma, Arizona area. A description of the study area and the Salton Trough area is followed by a geothermal analysis of the area, a discussion of the economics of geothermal exploration and exploitation, and recommendations for further testing. It was concluded economic considerations do not favor geothermal development at this time. (ACR)

Poluianov, E.W.; Mancini, F.P.

1985-11-29T23:59:59.000Z

306

Ashland Area Support Substation Project  

Science Conference Proceedings (OSTI)

The Bonneville Power Administration (BPA) provides wholesale electric service to the City of Ashland (the City) by transferring power over Pacific Power Light Company's (PP L) 115-kilovolt (kV) transmission lines and through PP L's Ashland and Oak Knoll Substations. The City distributes power over a 12.5-kV system which is heavily loaded during winter peak periods and which has reached the limit of its ability to serve peak loads in a reliable manner. Peak loads under normal winter conditions have exceeded the ratings of the transformers at both the Ashland and Oak Knoll Substations. In 1989, the City modified its distribution system at the request of PP L to allow transfer of three megawatts (MW's) of electric power from the overloaded Ashland Substation to the Oak Knoll Substation. In cooperation with PP L, BPA installed a temporary 6-8 megavolt-amp (MVA) 115-12.5-kV transformer for this purpose. This additional transformer, however, is only a temporary remedy. BPA needs to provide additional, reliable long-term service to the Ashland area through additional transformation in order to keep similar power failures from occurring during upcoming winters in the Ashland area. The temporary installation of another 20-MVA mobile transformer at the Ashland Substation and additional load curtailment are currently being studied to provide for sustained electrical service by the peak winter period 1992. Two overall electrical plans-of-service are described and evaluated in this report. One of them is proposed for action. Within that proposed plan-of-service are location options for the substation. Note that descriptions of actions that may be taken by the City of Ashland are based on information provided by them.

Not Available

1992-06-01T23:59:59.000Z

307

Obsidian Cliff Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Obsidian Cliff Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Obsidian Cliff Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

308

Chena Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Chena Geothermal Area Chena Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Chena Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Technical Problems and Solutions 8 Geology of the Area 9 Heat Source 10 Geofluid Geochemistry 11 NEPA-Related Analyses (1) 12 Exploration Activities (9) 13 References Map: Chena Geothermal Area Chena Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Fairbanks, Alaska Exploration Region: Alaska Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

309

Greater Boston Area | Open Energy Information  

Open Energy Info (EERE)

Greater Boston Area Greater Boston Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Greater Boston Area 1.1 Products and Services in the Greater Boston Area 1.2 Research and Development Institutions in the Greater Boston Area 1.3 Networking Organizations in the Greater Boston Area 1.4 Investors and Financial Organizations in the Greater Boston Area 1.5 Policy Organizations in the Greater Boston Area Clean Energy Clusters in the Greater Boston Area Products and Services in the Greater Boston Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

310

Southern CA Area | Open Energy Information  

Open Energy Info (EERE)

Southern CA Area Southern CA Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Southern CA Area 1.1 Products and Services in the Southern CA Area 1.2 Research and Development Institutions in the Southern CA Area 1.3 Networking Organizations in the Southern CA Area 1.4 Investors and Financial Organizations in the Southern CA Area 1.5 Policy Organizations in the Southern CA Area Clean Energy Clusters in the Southern CA Area Products and Services in the Southern CA Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

311

Pumpernickel Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Pumpernickel Valley Geothermal Area Pumpernickel Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Pumpernickel Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Map: Pumpernickel Valley Geothermal Area Pumpernickel Valley Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

312

Whiskey Flats Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Whiskey Flats Geothermal Area Whiskey Flats Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Whiskey Flats Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Map: Whiskey Flats Geothermal Area Whiskey Flats Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

313

Pacific Northwest Area | Open Energy Information  

Open Energy Info (EERE)

Pacific Northwest Area Pacific Northwest Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Pacific Northwest Area 1.1 Products and Services in the Pacific Northwest Area 1.2 Research and Development Institutions in the Pacific Northwest Area 1.3 Networking Organizations in the Pacific Northwest Area 1.4 Investors and Financial Organizations in the Pacific Northwest Area 1.5 Policy Organizations in the Pacific Northwest Area Clean Energy Clusters in the Pacific Northwest Area Products and Services in the Pacific Northwest Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

314

Safety analysis, 200 Area, Savannah River Plant: Separations area operations  

Science Conference Proceedings (OSTI)

The nev HB-Line, located on the fifth and sixth levels of Building 221-H, is designed to replace the aging existing HB-Line production facility. The nev HB-Line consists of three separate facilities: the Scrap Recovery Facility, the Neptunium Oxide Facility, and the Plutonium Oxide Facility. There are three separate safety analyses for the nev HB-Line, one for each of the three facilities. These are issued as supplements to the 200-Area Safety Analysis (DPSTSA-200-10). These supplements are numbered as Sup 2A, Scrap Recovery Facility, Sup 2B, Neptunium Oxide Facility, Sup 2C, Plutonium Oxide Facility. The subject of this safety analysis, the, Plutonium Oxide Facility, will convert nitrate solutions of {sup 238}Pu to plutonium oxide (PuO{sub 2}) powder. All these new facilities incorporate improvements in: (1) engineered barriers to contain contamination, (2) barriers to minimize personnel exposure to airborne contamination, (3) shielding and remote operations to decrease radiation exposure, and (4) equipment and ventilation design to provide flexibility and improved process performance.

Perkins, W.C.; Lee, R.; Allen, P.M.; Gouge, A.P.

1991-07-01T23:59:59.000Z

315

Maui Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Maui Geothermal Area Maui Geothermal Area (Redirected from Maui Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Maui Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

316

Glass Buttes Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Glass Buttes Geothermal Area Glass Buttes Geothermal Area (Redirected from Glass Buttes Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Glass Buttes Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (14) 10 References Area Overview Geothermal Area Profile Location: Oregon Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

317

Obsidian Cliff Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Obsidian Cliff Geothermal Area Obsidian Cliff Geothermal Area (Redirected from Obsidian Cliff Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Obsidian Cliff Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

318

Jemez Pueblo Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Pueblo Geothermal Area Jemez Pueblo Geothermal Area (Redirected from Jemez Pueblo Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Pueblo Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

319

Socorro Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Socorro Mountain Geothermal Area Socorro Mountain Geothermal Area (Redirected from Socorro Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Socorro Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (10) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

320

Kauai Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kauai Geothermal Area Kauai Geothermal Area (Redirected from Kauai Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kauai Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

Note: This page contains sample records for the topic "area clark ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Dixie Meadows Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dixie Meadows Geothermal Area Dixie Meadows Geothermal Area (Redirected from Dixie Meadows Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dixie Meadows Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

322

Jemez Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Mountain Geothermal Area Jemez Mountain Geothermal Area (Redirected from Jemez Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

323

Gabbs Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Gabbs Valley Geothermal Area Gabbs Valley Geothermal Area (Redirected from Gabbs Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Gabbs Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

324

Salt Wells Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Salt Wells Geothermal Area Salt Wells Geothermal Area (Redirected from Salt Wells Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 9.1 Regional Setting 9.2 Stratigraphy 9.3 Structure 10 Hydrothermal System 11 Heat Source 12 Geofluid Geochemistry 13 NEPA-Related Analyses (9) 14 Exploration Activities (28) 15 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

325

Marysville Mt Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Marysville Mt Geothermal Area Marysville Mt Geothermal Area (Redirected from Marysville Mt Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Marysville Mt Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Montana Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

326

Fort Bliss Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fort Bliss Geothermal Area Fort Bliss Geothermal Area (Redirected from Fort Bliss Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fort Bliss Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (22) 10 References Area Overview Geothermal Area Profile Location: Texas Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

327

Amedee Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Amedee Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Amedee Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Map: Amedee Geothermal Area Amedee Geothermal Area Location Map Area Overview Geothermal Area Profile Location: California Exploration Region: Walker-Lane Transition Zone GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

328

New River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

New River Geothermal Area New River Geothermal Area (Redirected from New River Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: New River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

329

Kawaihae Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kawaihae Geothermal Area Kawaihae Geothermal Area (Redirected from Kawaihae Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kawaihae Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

330

Alderwood Area Service Environmental Assessment.  

SciTech Connect

Bonneville Power Administration's (BPA's) proposal to build a new 115-kV transmission line and 115-12.5-kV, 25-MW substation in the Alderwood, Oregon, area is discussed in the attached Environmental Assessment. The proposed substation site has been relocated about 500 feet east of the site outlined in the Environmental Assessment, but in the same field. This is not a substantial change relevant to environmental concerns. Environmental impacts of the new site differ only in that: Two residences will be visually affected. The substation will be directly across Highway 36 from two houses and would be seen in their primary views. This impact will be mitigated by landscaping the substation to create a vegetative screen. To provide access to the new site and provide for Blachly-Lane Cooperative's distribution lines, a 60-foot-wide right-of-way about 200 feet long will be needed. The total transmission line length will be less than originally planned. However, the tapline into the substation will be about 50 feet longer. 4 figs.

United States. Bonneville Power Administration.

1982-06-01T23:59:59.000Z

331

Bristol Bay Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Bristol Bay Geothermal Area Bristol Bay Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Bristol Bay Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Area Overview Geothermal Area Profile Location: Bristol Bay Borough, Alaska Exploration Region: Alaska Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

332

Teels Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Teels Marsh Geothermal Area Teels Marsh Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Teels Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

333

Haleakala Volcano Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Haleakala Volcano Geothermal Area Haleakala Volcano Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Haleakala Volcano Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

334

Fort Bliss Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fort Bliss Geothermal Area Fort Bliss Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fort Bliss Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (22) 10 References Area Overview Geothermal Area Profile Location: Texas Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

335

Jemez Pueblo Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Pueblo Geothermal Area Jemez Pueblo Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Pueblo Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

336

Global Vegetation Data: Leaf Area Index  

NLE Websites -- All DOE Office Websites (Extended Search)

Leaf Area Index Data Available The ORNL DAAC announces the availability of a global data set containing approximately 1000 estimates of leaf area index (LAI) for a variety of...

337

Desert Queen Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Desert Queen Geothermal Area Desert Queen Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Desert Queen Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

338

Dixie Meadows Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dixie Meadows Geothermal Area Dixie Meadows Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dixie Meadows Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

339

Lester Meadow Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lester Meadow Geothermal Area Lester Meadow Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lester Meadow Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Washington Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

340

Mt Ranier Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mt Ranier Geothermal Area Mt Ranier Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mt Ranier Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Washington Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

Note: This page contains sample records for the topic "area clark ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Salt Wells Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Salt Wells Geothermal Area Salt Wells Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 9.1 Regional Setting 9.2 Stratigraphy 9.3 Structure 10 Hydrothermal System 11 Heat Source 12 Geofluid Geochemistry 13 NEPA-Related Analyses (9) 14 Exploration Activities (28) 15 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

342

Kilauea Summit Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kilauea Summit Geothermal Area Kilauea Summit Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kilauea Summit Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (12) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

343

Florida Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Florida Mountains Geothermal Area Florida Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Florida Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

344

Molokai Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Molokai Geothermal Area Molokai Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Molokai Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

345

Maui Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Maui Geothermal Area Maui Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Maui Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

346

Rhodes Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Rhodes Marsh Geothermal Area (Redirected from Rhodes Marsh Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Rhodes Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase:

347

Jersey Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jersey Valley Geothermal Area Jersey Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jersey Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Area Overview Geothermal Area Profile Location: near Fallon, NV Exploration Region: Central Nevada Seismic Zone Geothermal Region GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

348

Glass Buttes Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Glass Buttes Geothermal Area Glass Buttes Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Glass Buttes Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (14) 10 References Area Overview Geothermal Area Profile Location: Oregon Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

349

Separation Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Separation Creek Geothermal Area Separation Creek Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Separation Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Oregon Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

350

Areas Participating in the Reformulated Gasoline Program  

Gasoline and Diesel Fuel Update (EIA)

Reformulated Gasoline Program Reformulated Gasoline Program Contents * Introduction * Mandated RFG Program Areas o Table 1. Mandated RFG Program Areas * RFG Program Opt-In Areas o Table 2. RFG Program Opt-In Areas * RFG Program Opt-Out Procedures and Areas o Table 3. History of EPA Rulemaking on Opt-Out Procedures o Table 4. RFG Program Opt-Out Areas * State Programs o Table 5. State Reformulated Gasoline Programs * Endnotes Spreadsheets Referenced in this Article * Reformulated Gasoline Control Area Populations Related EIA Short-Term Forecast Analysis Products * Demand and Price Outlook for Phase 2 Reformulated Gasoline, 2000 * Environmental Regulations and Changes in Petroleum Refining Operations * Areas Participating in Oxygenated Gasoline Program

351

Kauai Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kauai Geothermal Area Kauai Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kauai Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

352

Rhodes Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Rhodes Marsh Geothermal Area Rhodes Marsh Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Rhodes Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

353

Kawaihae Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kawaihae Geothermal Area Kawaihae Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kawaihae Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

354

Mokapu Penninsula Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mokapu Penninsula Geothermal Area Mokapu Penninsula Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mokapu Penninsula Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

355

Socorro Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Socorro Mountain Geothermal Area Socorro Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Socorro Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (10) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

356

Jemez Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Mountain Geothermal Area Jemez Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

357

Augusta Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Augusta Mountains Geothermal Area Augusta Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Augusta Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (3) 9 Exploration Activities (0) 10 References Area Overview Geothermal Area Profile Location: Fallon, NV Exploration Region: Central Nevada Seismic Zone Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

358

Marysville Mt Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Marysville Mt Geothermal Area Marysville Mt Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Marysville Mt Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Montana Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

359

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

360

Lualualei Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lualualei Valley Geothermal Area Lualualei Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lualualei Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

Note: This page contains sample records for the topic "area clark ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

New River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

New River Geothermal Area New River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: New River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

362

AREA USA LLC | Open Energy Information  

Open Energy Info (EERE)

AREA USA LLC Jump to: navigation, search Name AREA USA LLC Place Washington, DC Zip 20004 Sector Services Product Washington, D.C.-based division of Fabiani & Company providing...

363

For the B-Area Operable Unit  

NLE Websites -- All DOE Office Websites (Extended Search)

3 April 16, 2013 Notice of Availability Record of Decision For the B-Area Operable Unit The Record of Decision (ROD) Remedial Alternative Selection for the B-Area Operable Unit...

364

Cryptographic Challenges for Smart Grid Home Area ...  

Science Conference Proceedings (OSTI)

Page 1. Cryptographic Challenges for Smart Grid Home Area Networks Secure Networking Author Apurva Mohan, Honeywell ACS Labs ...

2012-05-09T23:59:59.000Z

365

Optimization Online - All Areas Submissions - February 2011  

E-Print Network (OSTI)

... Optimization for Power System Configuration with Renewable Energy in Remote Areas ... Robust Energy Cost Optimization of Water Distribution System with...

366

Optimization Online - All Areas Submissions - October 2013  

E-Print Network (OSTI)

All Areas Submissions - October 2013. Network Optimization Optimization Models for Differentiating Quality of Service Levels in Probabilistic Network Capacity...

367

Local control of area-preserving maps  

E-Print Network (OSTI)

We present a method of control of chaos in area-preserving maps. This method gives an explicit expression of a control term which is added to a given area-preserving map. The resulting controlled map which is a small and suitable modification of the original map, is again area-preserving and has an invariant curve whose equation is explicitly known.

Cristel Chandre; Michel Vittot; Guido Ciraolo

2008-09-01T23:59:59.000Z

368

Geothermal br Resource br Area Geothermal br Resource br Area Geothermal  

Open Energy Info (EERE)

Geothermal Area Brady Hot Springs Geothermal Area Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region MW K Coso Geothermal Area Coso Geothermal Area Walker Lane Transition Zone Geothermal Region Pull Apart in Strike Slip Fault Zone Mesozoic Granitic MW K Dixie Valley Geothermal Area Dixie Valley Geothermal Area Central Nevada Seismic Zone Geothermal Region Stepover or Relay Ramp in Normal Fault Zones major range front fault Jurassic Basalt MW K Geysers Geothermal Area Geysers Geothermal Area Holocene Magmatic Geothermal Region Pull Apart in Strike Slip Fault Zone intrusion margin and associated fractures MW K Long Valley Caldera Geothermal Area Long Valley Caldera Geothermal Area Walker Lane Transition Zone Geothermal Region Displacement Transfer Zone Caldera Margin Quaternary Rhyolite MW K

369

EA-1177: Salvage/Demolition of 200 West Area, 200 East Area,...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

demolish the 200 West Area, 200 East Area, and 300 Area steam plants and their associated steam distribution piping equipment, and ancillary facilities at the U.S. Department of...

370

Gabbs Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Gabbs Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Gabbs Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

371

Redfield Campus Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Redfield Campus Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Redfield Campus Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate

372

Category Key Area Sub Area Do?an, .N., "Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Papers funded by the Fuels Program (2013) Category Key Area Sub Area Doan, .N., "Materials Development for Fossil Fueled Energy Conversion Systems," Materials Science...

373

EA-1960: Draft Environmental Assessment | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Assessment EA-1960: Draft Environmental Assessment Townsite Solar Project Transmission Line, Clark County, Nevada The Bureau of Land Management, with Western Area...

374

EA-1960: Finding of No Significant Impact | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

of No Significant Impact EA-1960: Finding of No Significant Impact Townsite Solar Project Transmission Line, Clark County, Nevada The Bureau of Land Management, with Western Area...

375

EA-1960: Final Environmental Assessment | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Assessment EA-1960: Final Environmental Assessment Townsite Solar Project Transmission Line, Clark County, Nevada The Bureau of Land Management, with Western Area...

376

EA-1960: Final Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1960: Final Environmental Assessment Townsite Solar Project Transmission Line, Clark County, Nevada The Bureau of Land Management, with Western Area Power Administration...

377

Microsoft Word - CX_Clark_Fork_River_Delta.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

$XJXVW   $XJXVW   REPLY TO ATTN OF: .(& SUBJECT: (QYLURQPHQWDO &OHDUDQFH 0HPRUDQGXP /HH :DWWV 3URMHFW 0DQDJHU ± .(:0 Proposed Action: 3URYLVLRQ RI IXQGV WR WKH ,GDKR 'HSDUWPHQW RI )LVK DQG *DPH IRU 3XUFKDVH RI &ODUN )RUN 5LYHU 'HOWD :KLWH ,VODQG 3URSHUW\ Fish and Wildlife Project No.:  &RQWUDFW %3$ Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 7UDQVIHU OHDVH GLVSRVLWLRQ RU DFTXLVLWLRQ RI LQWHUHVWV LQ XQFRQWDLPLQDWHG ODQG IRU KDELWDW SUHVHUYDWLRQ RU ZLOGOLIH PDQDJHPHQW DQG RQO\ DVVRFLDWHG EXLOGLQJV WKDW VXSSRUW WKHVH SXUSRVHV

378

R. Pitt, S. Clark, and O. Mirov May 22, 2002  

E-Print Network (OSTI)

, it specifically recognized natural re- sources : "Colorado State University in Fort Collins is Colo- rado's land in June 2010. For more information about the statewide forest re- source assessment, visit http by the American Association of Petroleum Geologists to Stephen P. Cumella, Keith W. Shanley and Wayne K. Camp

Pitt, Robert E.

379

Lake Clarke Shores, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

6.6453449°, -80.0758754° 6.6453449°, -80.0758754° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.6453449,"lon":-80.0758754,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

380

Clarke County, Iowa: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

3.7841503° 3.7841503° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0177836,"lon":-93.7841503,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "area clark ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Clarke County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

3.357567° 3.357567° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9519347,"lon":-83.357567,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

382

Clark County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

1435136° 1435136° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.959945,"lon":-84.1435136,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

383

Clarke County, Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

583°, -77.973865° 583°, -77.973865° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.1516583,"lon":-77.973865,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

384

Clark County, Wisconsin: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

35°, -90.7532809° 35°, -90.7532809° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8480735,"lon":-90.7532809,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

385

Clark County, Arkansas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

0232374°, -93.1779659° 0232374°, -93.1779659° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.0232374,"lon":-93.1779659,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

386

Clark County, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

°, -83.6773928° °, -83.6773928° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.8912092,"lon":-83.6773928,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

387

Clark County, Missouri: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

°, -91.7538817° °, -91.7538817° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.3772378,"lon":-91.7538817,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

388

Clark County, Kansas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

5°, -99.8124935° 5°, -99.8124935° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.3158895,"lon":-99.8124935,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

389

Clark County, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

7466471°, -122.5194378° 7466471°, -122.5194378° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.7466471,"lon":-122.5194378,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

390

Clark County, South Dakota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

9587°, -97.7180753° 9587°, -97.7180753° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8139587,"lon":-97.7180753,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

391

Clarke County, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

7002461°, -87.7763333° 7002461°, -87.7763333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.7002461,"lon":-87.7763333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

392

Clark County, Idaho: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

4.1975553°, -112.3755496° 4.1975553°, -112.3755496° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.1975553,"lon":-112.3755496,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

393

Lewis and Clark County, Montana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

963974°, -112.4029787° 963974°, -112.4029787° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.2963974,"lon":-112.4029787,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

394

Clark County, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

87.7763333° 87.7763333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3824189,"lon":-87.7763333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

395

Clark County, Nevada: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

.0795613°, -115.094045° .0795613°, -115.094045° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.0795613,"lon":-115.094045,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

396

Clarke County, Mississippi: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

8.7108964° 8.7108964° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.077218,"lon":-88.7108964,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

397

Clark County, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

85.7256372° 85.7256372° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.4492903,"lon":-85.7256372,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

398

College Of Visual And Performing Arts Ann Clark, Dean  

E-Print Network (OSTI)

and skin are made of a laminateconsisting of several brous layers. Layup details may in uence the adhesive

McConnell, Terry

399

Athens-Clarke County - Green Business Revolving Loan Fund (Georgia...  

Open Energy Info (EERE)

Technologies Agricultural Equipment, Doors, Processing and Manufacturing Equipment, Windows, Solar Water Heat, Unspecified technologies Active Incentive Yes Implementing Sector...

400

071 An LTCC Clark-Type Oxygen Sensor  

Science Conference Proceedings (OSTI)

005 Calcium Phosphates for Drug Carrier: Adsorption and Release Kinetics of Drugs ... 058 Properties Optimization of Refractory Mineral Resources in China.

Note: This page contains sample records for the topic "area clark ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Clark Public Utilities - Solar Energy Equipment Loan | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Making Electricity Heating & Cooling Swimming Pool Heaters Water Heating Maximum Rebate Solar PV: 30,000 Solar Pool Heaters and Solar Water Heaters: 10,000 Program Information...

402

Clark County - Solar and Wind Building Permit Guides | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Local Government Science & Innovation Science & Technology Science Education Innovation Energy Sources Energy Usage Energy Efficiency Mission News & Blog Maps Data About Us For...

403

Clark County - Solar and Wind Building Permit Guides (Nevada...  

Open Energy Info (EERE)

and commercial wind projects must submit commercial electrical sub permit applications. Solar permit applications must include minimum electric design information to confirm that...

404

Featherweight Generic Confinement Alex Potanin, James Noble, Dave Clarke1  

E-Print Network (OSTI)

- ten in one protection domain (say one Java package) should, when executed, never directly refer.2 Packages and Owner Classes FGJ+c types such as M, S, and World represent packages (or protection domains object, where confinement is limited to static protection domains, such as as Java-like packages. We plan

Potanin, Alex

405

Nevada Power: Clark Station; Las Vegas, Nevada (Data)  

DOE Data Explorer (OSTI)

A partnership with the University of Nevada and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

Stoffel, T.; Andreas, A.

406

Nevada Power: Clark Station; Las Vegas, Nevada (Data)  

Science Conference Proceedings (OSTI)

A partnership with the University of Nevada and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

Stoffel, T.; Andreas, A.

2006-03-27T23:59:59.000Z

407

CURRICULUM VITAE L. Clarke Cox, Ph.D.  

E-Print Network (OSTI)

of Otolaryngology Boston Medical Center Professor of Otolaryngology Boston University School of Medicine Associate Clinical Professor Department of Speech, Language & Hearing Sciences Sargent College of Health and Rehabilitation Sciences Boston University Former Positions: Chief of Audiology, University Hospital, Boston, MA

Guenther, Frank

408

Swanzey forester, inspector gets national recognition By Anika Clark  

E-Print Network (OSTI)

Inspector, HVAC Code Inspector, Electrical Code Inspector, Gas and Plumbing Code Inspector and the Provincial OH&S Officer all inspected the space and identified various codes violations. The lab

New Hampshire, University of

409

Chocolate Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Chocolate Mountains Geothermal Area Chocolate Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Chocolate Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Map: Chocolate Mountains Geothermal Area Chocolate Mountains Geothermal Area Location Map Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: Phase II - Resource Exploration and Confirmation Coordinates: 33.352°, -115.353° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.352,"lon":-115.353,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

410

Magic Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Magic Reservoir Geothermal Area Magic Reservoir Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Magic Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.32833333,"lon":-114.3983333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

411

Mcgee Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mcgee Mountain Geothermal Area Mcgee Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mcgee Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (7) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8,"lon":-118.87,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

412

Astor Pass Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Astor Pass Geothermal Area Astor Pass Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Astor Pass Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.352110729808,"lon":-118.48461985588,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

413

South Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

South Geothermal Area South Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: South Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":66.15,"lon":-157.1166667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

414

Boiling Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Boiling Springs Geothermal Area Boiling Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Boiling Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.3641,"lon":-115.856,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

415

Geysers Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Geysers Geothermal Area Geysers Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Geysers Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Heat Source 8 Geofluid Geochemistry 9 NEPA-Related Analyses (2) 10 Exploration Activities (22) 11 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.8,"lon":-122.8,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

416

Banbury Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Banbury Geothermal Area Banbury Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Banbury Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.688,"lon":-114.8256,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

417

Weiser Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Weiser Geothermal Area Weiser Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Weiser Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.29833333,"lon":-117.0483333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

418

Tungsten Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Tungsten Mountain Geothermal Area Tungsten Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Tungsten Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (4) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6751,"lon":-117.6945,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

419

Colado Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Colado Geothermal Area Colado Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Colado Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.23,"lon":-118.37,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

420

Moana Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Moana Geothermal Area Moana Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Moana Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.495,"lon":-119.815,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "area clark ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Kilo Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kilo Geothermal Area Kilo Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kilo Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65.8101865,"lon":-151.2360627,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

422

Sierra Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Sierra Valley Geothermal Area Sierra Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Sierra Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.71166667,"lon":-120.3216667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

423

Wendel Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Wendel Geothermal Area Wendel Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Wendel Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.35734979,"lon":-120.2549785,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

424

East Brawley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

East Brawley Geothermal Area East Brawley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: East Brawley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.99,"lon":-115.35,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

425

Butte Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Springs Geothermal Area Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Butte Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.771138,"lon":-119.114138,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

426

Emigrant Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Emigrant Geothermal Area Emigrant Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Emigrant Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.86,"lon":-117.87,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

427

Milky River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Milky River Geothermal Area Milky River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Milky River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":52.32,"lon":-174.1472,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

428

Dunes Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dunes Geothermal Area Dunes Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dunes Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.80333333,"lon":-115.0133333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

429

Black Warrior Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Black Warrior Geothermal Area Black Warrior Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Black Warrior Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.9,"lon":-119.22,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

430

Idaho Bath Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Bath Geothermal Area Bath Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Idaho Bath Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.7211,"lon":-115.0144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

431

Shakes Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Shakes Springs Geothermal Area Shakes Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Shakes Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.71765648,"lon":-132.0025034,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

432

Adak Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Adak Geothermal Area Adak Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Adak Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.975,"lon":-176.616,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

433

Fort Bidwell Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fort Bidwell Geothermal Area Fort Bidwell Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fort Bidwell Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8617,"lon":-120.1592,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

434

Silver Peak Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Silver Peak Geothermal Area Silver Peak Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Silver Peak Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (5) 9 Exploration Activities (26) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.746167220142,"lon":-117.60267734528,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

435

Geyser Bight Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Geyser Bight Geothermal Area Geyser Bight Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Geyser Bight Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.21666667,"lon":-168.4666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

436

Reese River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Reese River Geothermal Area Reese River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Reese River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (3) 9 Exploration Activities (10) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.89,"lon":-117.14,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

437

Tolovana Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Tolovana Geothermal Area Tolovana Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Tolovana Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65.2728,"lon":-148.851,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

438

Cove Fort Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Cove Fort Geothermal Area Cove Fort Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Cove Fort Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (30) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.6,"lon":-112.55,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

439

Lava Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lava Creek Geothermal Area Lava Creek Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lava Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65.2283,"lon":-162.894,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

440

Riverside Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Riverside Geothermal Area Riverside Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Riverside Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.46666667,"lon":-118.1883333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "area clark ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Desert Peak Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Desert Peak Geothermal Area Desert Peak Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Desert Peak Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (3) 9 Exploration Activities (8) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.75,"lon":-118.95,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

442

Crane Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Crane Creek Geothermal Area Crane Creek Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Crane Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.3064,"lon":-116.7447,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

443

Mother Goose Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mother Goose Geothermal Area Mother Goose Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mother Goose Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.18,"lon":-157.0183,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

444

Fireball Ridge Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fireball Ridge Geothermal Area Fireball Ridge Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fireball Ridge Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.92,"lon":-119.07,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

445

Newcastle Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Newcastle Geothermal Area Newcastle Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Newcastle Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.66166667,"lon":-113.5616667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

446

Klamath Falls Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Klamath Falls Geothermal Area Klamath Falls Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Klamath Falls Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.23333333,"lon":-121.7666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

447

Clear Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Geothermal Area Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Clear Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.85,"lon":-162.3,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

448

Heber Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Heber Geothermal Area Heber Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Heber Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Heat Source 8 Geofluid Geochemistry 9 NEPA-Related Analyses (0) 10 Exploration Activities (2) 11 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.71666667,"lon":-115.5283333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

449

South Brawley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

South Brawley Geothermal Area South Brawley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: South Brawley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.90607,"lon":-115.54,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

450

Medicine Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Medicine Lake Geothermal Area Medicine Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Medicine Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (9) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.57,"lon":-121.57,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

451

Fernley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fernley Geothermal Area Fernley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fernley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.598803,"lon":-119.110415,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

452

Lakeview Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lakeview Geothermal Area Lakeview Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lakeview Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.2,"lon":-120.36,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

453

Drum Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Drum Mountain Geothermal Area Drum Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Drum Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.544722222222,"lon":-112.91611111111,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

454

The Needles Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

The Needles Geothermal Area The Needles Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: The Needles Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (15) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.15,"lon":-119.68,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

455

Mt Signal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Signal Geothermal Area Signal Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mt Signal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.65,"lon":-115.71,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

456

Carson River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

River Geothermal Area River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Carson River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.77,"lon":-119.715,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

457

Harney Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lake Geothermal Area Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Harney Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.18166667,"lon":-119.0533333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

458

Maazama Well Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Maazama Well Geothermal Area Maazama Well Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Maazama Well Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8965,"lon":-121.9865,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

459

False Pass Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

False Pass Geothermal Area False Pass Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: False Pass Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":54.93,"lon":-163.24,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

460

Okpilak Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Okpilak Springs Geothermal Area Okpilak Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Okpilak Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":69.3,"lon":-144.0333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}