National Library of Energy BETA

Sample records for area buildings phase

  1. Healthy Zero Energy Buildings ENVIRONMENTAL AREA RESEARCH

    E-Print Network [OSTI]

    Healthy Zero Energy Buildings ENVIRONMENTAL AREA RESEARCH PIER Environmental Research www.energy from buildings. Ventilation, however, comes with a significant energy cost. Currently, heating, cooling and ventilating commercial buildings represents 29 percent of their total onsite energy use

  2. Application of Phase Change Wallboard to an Energy-Conservation Building in the Cold Area in North China 

    E-Print Network [OSTI]

    Feng, G.; Deng, D.; Li, G.

    2006-01-01

    indicate that the application of phase change wallboard in the cold northern region, where there are abundant natural resources, combined with the national policy of reducing the cost of electricity and shifting portions of the load from periods of maximum...

  3. Building America Webinar: Opportunities to Apply Phase Change...

    Energy Savers [EERE]

    Opportunities to Apply Phase Change Materials to Building Enclosures Building America Webinar: Opportunities to Apply Phase Change Materials to Building Enclosures This webinar,...

  4. Energy Innovation Hub Report Shows Philadelphia-area Building...

    Office of Environmental Management (EM)

    Innovation Hub Report Shows Philadelphia-area Building Retrofits Could Support 23,500 Jobs Energy Innovation Hub Report Shows Philadelphia-area Building Retrofits Could Support...

  5. Opportunities to Apply Phase Change Materials to Building Enclosures...

    Energy Savers [EERE]

    Documents & Publications Building America Webinar: Opportunities to Apply Phase Change Materials to Building Enclosures 2011 Residential Energy Efficiency Technical Update...

  6. Building America Webinar: Results from Phased Deep Retrofits...

    Energy Savers [EERE]

    Building America Webinar: Results from Phased Deep Retrofits in Florida Building America Webinar: Results from Phased Deep Retrofits in Florida This presentation by Danny Parker is...

  7. 300 Area Building Retention Evaluation Mitigation Plan

    SciTech Connect (OSTI)

    D. J. McBride

    2007-07-03

    Evaluate the long-term retention of several facilities associated with the PNNL Capability Replacement Laboratory and other Hanfor mission needs. WCH prepared a mitigation plan for three scenarios with different release dates for specific buildings. The evaluations present a proposed plan for providing utility services to retained facilities in support of a long-term (+20 year) lifespan in addition to temporary services to buildings with specified delayed release dates.

  8. Building the Nordic Research and Innovation Area in Hydrogen

    E-Print Network [OSTI]

    euro). 6 Nordic Energy Research H2 and FC projects Nordic representation in EU FP projects Nordic, Icelandic New Energy, Sydkraft, VTT Wärtsilä and Det Norske Veritas FP5 (1999-2002): 40% of 70 projects FP6Building the Nordic Research and Innovation Area in Hydrogen Birte Holst Jřrgensen Senior Scientist

  9. Building an Information Ecosystem for Public Transport in Rural Areas

    E-Print Network [OSTI]

    Edwards, Pete

    Building an Information Ecosystem for Public Transport in Rural Areas Peter Edwards, David Corsar, to con- struct an information ecosystem upon which a range of ap- plications and services can be built.beecroft,jeff.z.pan,yaji.sripada}@abdn.ac.uk ABSTRACT Passenger information systems (PISs) providing real-time information are valuable tools for public

  10. Building Toxic Metal Characterization and Decontamination Report: Area 6, Building 914

    SciTech Connect (OSTI)

    NSTec Industrial Hygiene

    2011-08-15

    The purpose of this report is to outline the toxic metal characterization and decontamination efforts in Area 6, Building 914. This includes the initial building inspection, the hotspot sampling, results/findings, building cleanup, and the verification sampling. Building 914 is a steel light frame building that was constructed in 1992. It is about 16,454 square feet, and five employees are assigned to this building. According to the building's floor plan blueprints, it could be inferred that this building was once a Wiremen/Lineman shop. In 2002-2004, the National Nuclear Security Administration Nevada Site Office embarked on a broad characterization of beryllium (Be) surface concentrations throughout the North Las Vegas Facility, the Nevada National Security Site (NNSS), and ancillary facilities like the Special Technologies Laboratory, Remote Sensing Laboratory, etc. Building 914 was part of this characterization. The results of the 2002 study illustrated that the metal housekeeping limits were within acceptable limits and from a Be standpoint, the building was determined to be fit for occupancy. On March 2, 2011, based on a request from Building 914 users, National Security Technologies, LLC (NSTec) Industrial Hygiene (IH) collected bulk samples from the southwest corner of Building 914 at heights above 6 feet where black dust had been noticed on this particular wall. IH conducted surface swipe sampling of the area and analyzed the samples for toxic metals, namely, beryllium (Be), cadmium (Cd), chromium (Cr), lead (Pb), and manganese (Mn). The sample results indicated values two to four times above the housekeeping threshold for Be, Cd, Cr, Pb, and Mn. Subsequently, the facility was closed and posted; the necessary personnel were notified; and controls were instituted for ingress and egress of the building. On March 17, 2011, IH performed an extensive sampling event involving the entire warehouse in accordance with NSTec Organization Procedure OP-P250.004, Sampling Procedures. Analysis of the results from this exercise illustrated that toxic metal contamination was ubiquitous throughout the warehouse section of this building but did not extend into the office, restroom, and break room areas. On March 22, 2011, a planning meeting was held with Environment, Safety, Health & Quality management; Operations & Infrastructure (O&I) mangement; Facility Management; Occupational Medicine; O&I Operations; and IH. After a brief discussion concerning the salient facts of the surface sample results, it was agreed that the facility and its contents required cleaning. The facility would then be re-sampled to verify cleanliness and suitability for re-occupancy. On April 18, 2011, warehouse cleanup activites began. On July 5, 2011, upon receipt of the results from the last cleaned section, the cleanup operations were concluded. The building was statistically determined to be clean; thus, it could be reoccupied and the warehouse operations could resume immediately.

  11. Submission of manuscript to Energy and Buildings A thermal model for Phase Change Materials in a building roof for a

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Submission of manuscript to Energy and Buildings A thermal model for Phase Change Materials in "Energy and Buildings 70 (2014) http://www.sciencedirect.com/science/article/pii/ S0378778813007962" DOI : 10.1016/j.enbuild.2013.11.079 #12;Manuscript submitted to Energy and Buildings S.GUICHARD 2013 2

  12. The Cost of Enforcing Building Energy Codes: Phase 1

    E-Print Network [OSTI]

    Williams, Alison

    2013-01-01

    S. (2011). Utilities and Building Energy Codes: Air QualityUtility Programs and Building Energy Codes: How utilityUtility Programs and Building Energy Codes: How utility

  13. Low-Cost Phase Change Material for Building Envelopes

    SciTech Connect (OSTI)

    Abhari, Ramin

    2015-08-06

    A low-cost PCM process consisting of conversion of fats and oils to PCM-range paraffins, and subsequent “encapsulation” of the paraffin using conventional plastic compounding/pelletizing equipment was demonstrated. The PCM pellets produced were field-tested in a building envelope application. This involved combining the PCM pellets with cellulose insulation, whereby 33% reduction in peak heat flux and 12% reduction in heat gain was observed (average summertime performance). The selling price of the PCM pellets produced according to this low-cost process is expected to be in the $1.50-$3.00/lb range, compared to current encapsulated PCM price of about $7.00/lb. Whole-building simulations using corresponding PCM thermal analysis data suggest a payback time of 8 to 16 years (at current energy prices) for an attic insulation retrofit project in the Phoenix climate area.

  14. Discussion on Energy-Efficient Technology for the Reconstruction of Residential Buildings in Cold Areas 

    E-Print Network [OSTI]

    Zhao, J.; Wang, S.; Chen, H.; Shi, Y.; Li, D.

    2006-01-01

    with the software PKPM, and provides the technical and economic analysis, which may provide reference for suitable plans for energy efficient reconstruction of buildings in cold areas....

  15. The Cost of Enforcing Building Energy Codes: Phase 1

    E-Print Network [OSTI]

    Williams, Alison

    2013-01-01

    Summer Study on Energy Efficiency in Buildings. pp. 8-249Summer Study on Energy Efficiency in Buildings. pp. 4-275 -Summer Study on Energy Efficiency in Buildings. pp. 8-170 -

  16. The Cost of Enforcing Building Energy Codes: Phase 1

    E-Print Network [OSTI]

    Williams, Alison

    2013-01-01

    Buildings. 2011. 85. —. New Hampshire Strategic ComplianceCode Compliance in New Hampshire's Building. 2011. 86. —.Project. (2011). New Hampshire GapAnalysis. Washington, DC:

  17. Development of whole-building energy design targets for commercial buildings: Phase 1, Planning: Volume 2, Technical report

    SciTech Connect (OSTI)

    Crawley, D.B.; Briggs, R.S.; Jones, J.W.; Seaton, W.W.; Kaufman, J.E.; Deringer, J.J.; Kennett, E.W.

    1987-08-01

    This is the second volume of the Phase 1 report and discusses the 10 tasks performed in Phase 1. The objective of this research is to develop a methodology for setting energy design targets to provide voluntary guidelines for the buildings industry. The whole-building energy targets project is being conducted at the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) to encourage the construction of energy-efficient buildings by informing designers and owners about cost-effective goals for energy use in new commercial buildings. The outcome of this research will be a flexible methodology for setting such targets. The tasks are listed and discussed in this report as follows: Task 1 - Develop Detailed Project Goals and Objectives; Task 2 - Establish Buildings-Industry Liaison; Task 3 - Develop Approaches to the Energy Targets Model, Building Operations, and Climate; Task 4 - Develop an Approach for Treating Economic Considerations; Task 5 - Develop an Approach for Treating Energy Sources; Task 6 - Collect Energy-Use Data; Task 7 - Survey Energy Expert Opinion; Task 8 - Evaluation Procedure Specification and Integration; Task 9 - Phase 1 Report Development; and Task 10 - Phase 1 Review Planning.

  18. Fusion of Feature-and Area-Based Information for Urban Buildings Modeling from Aerial Imagery

    E-Print Network [OSTI]

    Giger, Christine

    Fusion of Feature- and Area-Based Information for Urban Buildings Modeling from Aerial Imagery on Graph Cuts. The fusion pro- cess exploits the advantages of both information sources and thus yields the complete geometry of the build- ing. The fusion of those sparse features is very fragile as there is no way

  19. Adjudication of a Contract for the Erection of an Office and Laboratory Building in the North Experimental Area

    E-Print Network [OSTI]

    1976-01-01

    Adjudication of a Contract for the Erection of an Office and Laboratory Building in the North Experimental Area

  20. 100 Area D4 Project Building Completion Report: December 2008 to December 2009

    SciTech Connect (OSTI)

    K.G. Finucane, J.P. Harrie

    2010-10-26

    This report documents the final status of buildings after the completion of D4 activities at the 100 Area of the U.S. Department of Energy Hanford Site from December 1, 2008, to December 31, 2009.

  1. Canister Storage Building and Interim Storage Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &BradburyMay 1, 2013,Cafe ScientifiqueCanister Storage Building and

  2. Analysis of Heat Charging and Discharging on the Phase Change Energy-Storage Composite Wallboard (PCECW) in Building 

    E-Print Network [OSTI]

    Yue, H.; Chen, C.; Liu, Y.; Guo, H.

    2006-01-01

    This research paper combines the phase change material and the basal building material to constitute a kind of new phase change energy- storage composite wallboard (PCECW), applied in a residential building in Beijing. We analyzed the energy-storage...

  3. Property:Building/FloorAreaShops | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975)EnergyFloorAreaOffices Jump to: navigation,FloorAreaShops Jump

  4. Property:Building/FloorAreaSportCenters | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975)EnergyFloorAreaOffices Jump to: navigation,FloorAreaShops

  5. Property:Building/FloorAreaTotal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975)EnergyFloorAreaOffices Jump to:FloorAreaTotal Jump to:

  6. Property:Building/FloorAreaWarehouses | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975)EnergyFloorAreaOffices Jump to:FloorAreaTotal

  7. Property:Building/FloorAreaHeatedGarages | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975)Energy TechnologyFloorAreaHealthServicesDaytime Jump

  8. Property:Building/FloorAreaHotels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975)Energy TechnologyFloorAreaHealthServicesDaytime

  9. Property:Building/FloorAreaRestaurants | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975)EnergyFloorAreaOffices Jump to: navigation, search

  10. Property:Building/TotalFloorArea | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975)EnergyFloorAreaOffices

  11. Property:Building/FloorAreaGroceryShops | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975)Energy Technology JumpWilliamDRAFTAreaFloorAreaGroceryShops

  12. Property:Building/FloorAreaOffices | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975)EnergyFloorAreaOffices Jump to: navigation, search This is a

  13. Property:Building/FloorAreaOtherRetail | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975)EnergyFloorAreaOffices Jump to: navigation, search This is

  14. Property:Building/FloorAreaResidential | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975)EnergyFloorAreaOffices Jump to: navigation, search This

  15. 1.3 SCHOOL COMMUNICATION The main Reception Area in the Alan Turing Building is just inside the main

    E-Print Network [OSTI]

    Sidorov, Nikita

    1.3 SCHOOL COMMUNICATION The main Reception Area in the Alan Turing Building is just inside Turing Building. There are student notice boards in the Alan Turing Building on the walls inside on the wall in the foyer of the Alan Turing Building. #12;

  16. Contamination source review for Building E1489, Edgewood Area, Aberdeen Proving Ground, Maryland

    SciTech Connect (OSTI)

    Billmark, K.A.; Hayes, D.C.; Draugelis, A.K.

    1995-09-01

    This report was prepared by Argonne National Laboratory (ANL) to document the results of a contamination source review of Building E1489 at the Aberdeen Proving Ground (APG) in Maryland. This report may be used to assist the U.S. Army-in planning for the future use or disposition of this building. The review included a historical records search, physical inspection, photographic documentation, and geophysical investigation. The field investigations were performed in 1994-1995. Building E1489 located in J-Field on the Gunpowder Peninsula in APG`s Edgewood Area housed a power generator that supplied electricity to a nearby observation tower. Building E1489 and the generator were abandoned in 1974, demolished by APG personnel and removed from real estate records. A physical inspection and photographic documentation of Building E1489 were completed by ANL staff during November 1994. In 1994, ANL staff conducted geophysical surveys in the immediate vicinity of Building E1489 by using several nonintrusive methods. Survey results suggest the presence of some underground objects near Building E1489, but they do not provide conclusive evidence of the source of geophysical anomalies observed during the survey. No air monitoring was conducted at the site, and no information on underground storage tanks associated with Building E1489 was available.

  17. Building America Webinar: Opportunities to Apply Phase Change Materials to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels| Department of Energy America: Research -Building Enclosures |

  18. Building America Webinar: Results from Phased Deep Retrofits in Florida |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels| Department of Energy America: Research -BuildingDepartment of

  19. Waste Area Grouping 2 Remedial Investigation Phase 1 Seep Task data report: Contaminant source area assessment

    SciTech Connect (OSTI)

    Hicks, D.S.

    1996-03-01

    This report presents the findings of the Waste Area Grouping (WAG) 2, Phase 1 Remedial Investigation (RI) Seep Task efforts during 1993 and 1994 at Oak Ridge National Laboratory (ORNL). The results presented here follow results form the first year of sampling, 1992, which are contained in the Phase 1 RI report for WAG 2 (DOE 1995a). The WAG 2 Seep Task efforts focused on contaminants in seeps, tributaries, and main streams within the White Oak Creek (WOC) watershed. This report is designed primarily as a reference for contaminants and a resource for guiding remedial decisions. Additional in-depth assessments of the Seep Task data may provide clearer understandings of contaminant transport from the different source areas in the WOC watershed. WAG 2 consists of WOC and its tributaries downstream of the ORNL main plant area, White Oak Lake, the White Oak Creek Embayment of the Clinch River, and the associated flood plains and subsurface environment. The WOC watershed encompasses ORNL and associated WAGs. WAG 2 acts as an integrator for contaminant releases from the contaminated sites at ORNL and as the conduit transporting contaminants to the Clinch River. The main objectives of the Seep Task were to identify and characterize seeps, tributaries and source areas that are responsible for the contaminant releases to the main streams in WAG 2 and to quantify their input to the total contaminant release from the watershed at White Oak Dam (WOD). Efforts focused on {sup 90}Sr, {sup 3}H, and {sup 137}Cs because these contaminants pose the greatest potential human health risk from water ingestion at WOD. Bimonthly sampling was conducted throughout the WOC watershed beginning in March 1993 and ending in August 1994. Samples were also collected for metals, anions, alkalinity, organics, and other radionuclides.

  20. Final environmental assessment: TRU waste drum staging building, Technical Area 55, Los Alamos National Laboratory

    SciTech Connect (OSTI)

    1996-02-09

    Much of the US Department of Energy`s (DOE`s) research on plutonium metallurgy and plutonium processing is performed at Los Alamos National Laboratory (LANL), in Los Alamos, New Mexico. LANL`s main facility for plutonium research is the Plutonium Facility, also referred to as Technical Area 55 (TA-55). The main laboratory building for plutonium work within the Plutonium Facility (TA-55) is the Plutonium Facility Building 4, or PF-4. This Environmental Assessment (EA) analyzes the potential environmental effects that would be expected to occur if DOE were to stage sealed containers of transuranic (TRU) and TRU mixed waste in a support building at the Plutonium Facility (TA-55) that is adjacent to PF-4. At present, the waste containers are staged in the basement of PF-4. The proposed project is to convert an existing support structure (Building 185), a prefabricated metal building on a concrete foundation, and operate it as a temporary staging facility for sealed containers of solid TRU and TRU mixed waste. The TRU and TRU mixed wastes would be contained in sealed 55-gallon drums and standard waste boxes as they await approval to be transported to TA-54. The containers would then be transported to a longer term TRU waste storage area at TA-54. The TRU wastes are generated from plutonium operations carried out in PF-4. The drum staging building would also be used to store and prepare for use new, empty TRU waste containers.

  1. Contamination source review for Building E3163, Edgewood Area, Aberdeen Proving Ground, Maryland

    SciTech Connect (OSTI)

    Draugelis, A.K.; Muir-Ploense, K.L.; Glennon, M.A.; Zimmerman, R.E.

    1995-09-01

    This report was prepared by Argonne National Laboratory (ANL) to document the results of a contamination source review for Building E3163 at the Aberdeen Proving Ground (APG) in Maryland. This report may be used to assist the US Army in planning for the future use or disposition of this building. The review included a historical records search, physical inspection, photographic documentation, and geophysical investigation. The field investigations were performed by ANL during 1994 and 1995. Building E3163 (APG designation) is part of the Medical Research Laboratories E3160 Complex. This research laboratory complex is located west of Kings Creek, east of the airfield and Ricketts Point Road, and south of Kings Creek Road in the Edgewood Area of APG. The original structures in the E3160 Complex were constructed during World War II. The complex was originally used as a medical research laboratory. Much of the research involved wound assessment. Building E3163, constructed in 1946, was used for toxicological studies on animals until 1965. All agent testing was done using laboratory-scale quantities of agents. All operational data were destroyed; total quantities and types of agents used during the testing are unknown. No experimentation has been conducted in the building since 1965. However, the building was used as overflow office space until the late 1980s. Since that time, the building has been unoccupied.

  2. Building Area Location Grant 3rd Floor Hallway Outside of S304

    E-Print Network [OSTI]

    Ford, James

    Building Area Location Grant 3rd Floor Hallway Outside of S304 Grant 2nd Floor Room S274 Grant 2nd Floor Mailroom A246 (Next to S299) Alway 3rd Floor End of Hallway (By Recycling Bins) Lane Library 1st Beckman Center 3rd Floor Mail / Recycling Area Beckman Center 4th Floor Room B432 Hagey PSRL 1st Floor

  3. Transparent building-integrated PV modules. Phase 1: Comprehensive report

    SciTech Connect (OSTI)

    NONE

    1998-09-28

    This Comprehensive Report encompasses the activities that have been undertaken by Kiss + Cathcart, Architects, in conjunction with Energy Photovoltaics, Incorporated (EPV), to develop a flexible patterning system for thin-film photovoltaic (PV) modules for building applications. There are two basic methods for increasing transparency/light transmission by means of patterning the PV film: widening existing scribe lines, or scribing a second series of lines perpendicular to the first. These methods can yield essentially any degree of light transmission, but both result in visible patterns of light and dark on the panel surface. A third proposed method is to burn a grid of dots through the films, independent of the normal cell scribing. This method has the potential to produce a light-transmitting panel with no visible pattern. Ornamental patterns at larger scales can be created using combinations of these techniques. Kiss + Cathcart, Architects, in conjunction with EPV are currently developing a complementary process for the large-scale lamination of thin-film PVs, which enables building integrated (BIPV) modules to be produced in sizes up to 48 in. x 96 in. Flexible laser patterning will be used for three main purposes, all intended to broaden the appeal of the product to the building sector: To create semitransparent thin-film modules for skylights, and in some applications, for vision glazing.; to create patterns for ornamental effects. This application is similar to fritted glass, which is used for shading, visual screening, graphics, and other purposes; and to allow BIPV modules to be fabricated in various sizes and shapes with maximum control over electrical characteristics.

  4. 300 Area D4 Project 3rd Quarter Fiscal Year 2006 Building Completion Report

    SciTech Connect (OSTI)

    D. S. Smith

    2006-09-25

    This report documents the deactivation, decontamination, decommissioning, and demolition of five buildings in the 300 Area of the Hanford Site. The D4 of these facilities included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, utility disconnection, deactivation, decontamination, demolition of the structure, and stabilization or removal of the remaining slab and foundation as appropriate.

  5. 300 Area D4 Project Fiscal Year 2007 Building Completion Report

    SciTech Connect (OSTI)

    R. A. Westberg

    2009-01-15

    This report documents the deactivation, decontamination, decommissioning, and demolition (D4) of twenty buildings in the 300 Area of the Hanford Site. The D4 of these facilties included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, utility disconnection, deactivation, decontamination, demolition of the structure, and stabilization or removal of the remaining slab and foundation, as appropriate.

  6. 300 Area D4 Project 2nd Quarter FY06 Building Completion Report

    SciTech Connect (OSTI)

    David S. Smith

    2006-06-26

    This report documents the deactivation, decontamination, decommissioning, and demolition of 16 buildings in the 300 Area of the Hanford Site. The D4 of these facilities included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, utility disconnection, deactivation, decontamination, demolition of the structure, and stabilization or removal of the remaining slab and foundation as appropriate.

  7. Using Multilevel Phase Change Memory to Build Data Storage: A

    E-Print Network [OSTI]

    Zhang, Tong

    -based solid-state disk and PCM-based disk cache. Index Terms--Phase change memory, MLC, ECC, resistance drift such as flash mem- ory and DRAM, there has been recently a resurgence of interest in search of highly scalable and reliable realization of MLC PCM can be almost indispensable for PCM to successfully enter main- stream

  8. Contamination source review for Building E7995, Edgewood Area, Aberdeen Proving Ground, Maryland

    SciTech Connect (OSTI)

    Booher, M.N.; Miller, G.A.; Draugelis, A.K.; Glennon, M.A.; Rueda, J.; Zimmerman, R.E.

    1995-09-01

    The US Army Aberdeen Proving Ground (APG) commissioned Argonne National Laboratory (ANL) to conduct a contamination source review to identify and define areas of toxic or hazardous contaminants and to assess the physical condition and accessibility of APG buildings. The information obtained from the review may be used to assist the US Army in planning for the future use or disposition, of the buildings. The source contamination review consisted of the following tasks: historical records search, physical inspection, photographic documentation, geophysical investigation, investigation of potential hazardous materials facilities (HMFs), and review of available records regarding underground storage tanks. This report provides the results of the contamination source review for Building E7995. any of the APG facilities constructed between 1917 and the 1960s are no longer used because of obsolescence and their poor state of repair. Because many of these buildings were used for research, development, testing, and/or pilot-scale production of chemical warfare agents and other military substances, the potential exists for portions of the buildings to be contaminated with these substances, their degradation products, and other laboratory or industrial chemicals. These buildings, and associated structures or appurtenances, may contribute to environmental concerns at APG.

  9. Building

    E-Print Network [OSTI]

    Physical Facilities

    2013-11-12

    MATHEMATICAL SCIENCES BUILDING. BUILDING EMERGENCY PLAN. Date Adopted: Sept 20, 2013. Date Revised: Sep 20. 2013. Prepared By: Kelly ...

  10. Experimental Assessment of a Phase Change Material for Wall Building Use

    E-Print Network [OSTI]

    interesting for use in buildings and particularly for renovation; (2) the air temperature in the room with PCM,version1-9Jun2014 Author manuscript, published in "Applied Energy 86, 10 (2009) 2038-2046" DOI : 10.1016/j.apenergy.2009.01.004 #12;Key words: phase change material, wallboard, energy storage, experimental investigation

  11. 300 Area D4 Project Fiscal Year 2008 Building Completion Report

    SciTech Connect (OSTI)

    R. A. Westberg

    2009-01-15

    This report documents the deactivation, decontamination, decommissioning, and demolition (D4) of eighteen buildings in the 300 Area of the Hanford Site that were demolished in Fiscal Year 2008. The D4 of these facilties included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, utility disconnection, deactivation, decontamination, demolition of the structure, and stabilization or removal of the remaining slab and foundation, as appropriate.

  12. 300 Area D4 Project Fiscal Year 2009 Building Completion Report

    SciTech Connect (OSTI)

    B. J. Skwarek

    2010-01-27

    This report summarizes the deactivation, decontamination, decommissioning, and demolition activities of seven facilities in the 300 Area of the Hanford Site in fiscal year 2009. The D4 of these facilities included characterization; engineering; removal of hazardous and radiologically contaminated materials; equipment removal; utility disconnection; deactivation, decontamination, demolition of the structure; and stabilization or removal of slabs and foundations. This report also summarizes the nine below-grade slabs/foundations removed in FY09 of buildings demolished in previous fiscal years.

  13. 300 Area D4 Project 1st Quarter Fiscal Year 2006 Building Completion Report

    SciTech Connect (OSTI)

    David S. Smith

    2006-04-20

    This report documents the deactivation, decontamination, decommissioning, and demolition of the MO-052, 3225, 334, 334A, and 334-TF Buildings in the 300 Area of the Hanford Site. The D4 of these facilities included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, utility disconnection, deactivation, decontamination, demolition of the structure, and stabilization or removal of the remaining slab and foundation as appropriate.

  14. Lifecycle Assessment of Beijing-Area Building Energy Use and Emissions: Summary Findings and Policy Applications

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01

    energy assessment." Energy and Buildings 41: 1263-1268.Canada, and USA,” Energy and Buildings 36, no. 12 (Decemberbuildings (LC-ZEB),” Energy and Buildings 42, no. 6 (June

  15. Lifecycle Assessment of Beijing-Area Building Energy Use and Emissions: Summary Findings and Policy Applications

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01

    IZ, et al. 2009. “Life cycle assessment in buildings: State-S, et al. 2006. "Life-cycle Assessment of Office BuildingsA. (2006) "Life-cycle Assessment of Office Buildings in

  16. Lifecycle Assessment of Beijing-Area Building Energy Use and Emissions: Summary Findings and Policy Applications

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01

    P. 2010. “From net energy to zero energy buildings: DefiningP. 2010. “From net energy to zero energy buildings: Defining

  17. Building

    U.S. Energy Information Administration (EIA) Indexed Site

    DIV. Electricity Consumption and Expenditure Intensities by Census Division, 1999" ,"Electricity Consumption",,,"Electricity Expenditures" ,"per Building (thousand kWh)","per...

  18. Cementitious building material incorporating end-capped polyethylene glycol as a phase change material

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH); Griffen, Charles W. (Mason, OH)

    1986-01-01

    A cementitious composition comprising a cementitious material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the compositions are useful in making pre-formed building materials such as concrete blocks, brick, dry wall and the like or in making poured structures such as walls or floor pads; the glycols can be encapsulated to reduce their tendency to retard set.

  19. Canister storage building (CSB) safety analysis report phase 3: Safety analysis documentation supporting CSB construction

    SciTech Connect (OSTI)

    Garvin, L.J.

    1997-04-28

    The Canister Storage Building (CSB) will be constructed in the 200 East Area of the U.S. Department of Energy (DOE) Hanford Site. The CSB will be used to stage and store spent nuclear fuel (SNF) removed from the Hanford Site K Basins. The objective of this chapter is to describe the characteristics of the site on which the CSB will be located. This description will support the hazard analysis and accident analyses in Chapter 3.0. The purpose of this report is to provide an evaluation of the CSB design criteria, the design's compliance with the applicable criteria, and the basis for authorization to proceed with construction of the CSB.

  20. Underground Test Area Subproject Phase I Data Analysis Task. Volume VII - Tritium Transport Model Documentation Package

    SciTech Connect (OSTI)

    1996-12-01

    Volume VII of the documentation for the Phase I Data Analysis Task performed in support of the current Regional Flow Model, Transport Model, and Risk Assessment for the Nevada Test Site Underground Test Area Subproject contains the tritium transport model documentation. Because of the size and complexity of the model area, a considerable quantity of data was collected and analyzed in support of the modeling efforts. The data analysis task was consequently broken into eight subtasks, and descriptions of each subtask's activities are contained in one of the eight volumes that comprise the Phase I Data Analysis Documentation.

  1. Underground Test Area Subproject Phase I Data Analysis Task. Volume II - Potentiometric Data Document Package

    SciTech Connect (OSTI)

    1996-12-01

    Volume II of the documentation for the Phase I Data Analysis Task performed in support of the current Regional Flow Model, Transport Model, and Risk Assessment for the Nevada Test Site Underground Test Area Subproject contains the potentiometric data. Because of the size and complexity of the model area, a considerable quantity of data was collected and analyzed in support of the modeling efforts. The data analysis task was consequently broken into eight subtasks, and descriptions of each subtask's activities are contained in one of the eight volumes that comprise the Phase I Data Analysis Documentation.

  2. A zero-sum economic game Walmart and KMart are each planning to build a store in an area with

    E-Print Network [OSTI]

    Galvin, David

    A zero-sum economic game Walmart and KMart are each planning to build a store in an area with three will choose Walmart. If shoppers have to choose between a nearby Walmart and a further away KMart, 90% will choose Walmart. If KMart is closer, 40% will still choose Walmart. Because it is too small, Walmart

  3. 324 Building radiochemical engineering cells, high-level vault, low-level vault, and associated areas closure plan

    SciTech Connect (OSTI)

    Barnett, J.M.

    1998-03-25

    The Hanford Site, located adjacent to and north of Richland, Washington, is operated by the US Department of Energy, Richland Operations Office (RL). The 324 Building is located in the 300 Area of the Hanford Site. The 324 Building was constructed in the 1960s to support materials and chemical process research and development activities ranging from laboratory/bench-scale studies to full engineering-scale pilot plant demonstrations. In the mid-1990s, it was determined that dangerous waste and waste residues were being stored for greater than 90 days in the 324 Building Radiochemical Engineering Cells (REC) and in the High-Level Vault/Low-Level Vault (HLV/LLV) tanks. [These areas are not Resource Conservation and Recovery Act of 1976 (RCRA) permitted portions of the 324 Building.] Through the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-89, agreement was reached to close the nonpermitted RCRA unit in the 324 Building. This closure plan, managed under TPA Milestone M-20-55, addresses the identified building areas targeted by the Tri-Party Agreement and provides commitments to achieve the highest degree of compliance practicable, given the special technical difficulties of managing mixed waste that contains high-activity radioactive materials, and the physical limitations of working remotely in the areas within the subject closure unit. This closure plan is divided into nine chapters. Chapter 1.0 provides the introduction, historical perspective, 324 Building history and current mission, and the regulatory basis and strategy for managing the closure unit. Chapters 2.0, 3.0, 4.0, and 5.0 discuss the detailed facility description, process information, waste characteristics, and groundwater monitoring respectively. Chapter 6.0 deals with the closure strategy and performance standard, including the closure activities for the B-Cell, D-Cell, HLV, LLV; piping and miscellaneous associated building areas. Chapter 7.0 addresses the closure activities identified in Chapter 6.0, and also adds information on closure activities for the soil directly beneath the unit, regulated material removed during closure, and the schedule for closure. Chapter 8.0 provides Surveillance, monitoring and post-closure information and Chapter 9.0 provides a list of references used throughout the document.

  4. Lifecycle Assessment of Beijing-Area Building Energy Use and Emissions: Summary Findings and Policy Applications

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01

    al. 2006. “Research and development of Chinese LCA databaseand LCA software,” Rare Metals 25, no. 6 (December 2006):recent developments based on LCA,” Construction and Building

  5. Recommendations for the analysis and design of naturally ventilated buildings in urban areas

    E-Print Network [OSTI]

    Truong, Phan Hue

    2012-01-01

    The motivation behind this work was to obtain a better understanding of how a building's natural ventilation potential is affected by the complexities introduced by the urban environment. To this end, we have derived in ...

  6. Lifecycle Assessment of Beijing-Area Building Energy Use and Emissions: Summary Findings and Policy Applications

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01

    component selection. 13 EnergyPlus is a building envelope,program. 14 The roots of EnergyPlus are in the BLAST (weather patterns) and interfaces. EnergyPlus version 5.0 was

  7. Safety analysis--200 Area Savannah River Site: Separations Area operations Building 211-H Outside Facilities. Supplement 11, Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The H-Area Outside Facilities are located in the 200-H Separations Area and are comprised of a number of processes, utilities, and services that support the separations function. Included are enriched uranium loadout, bulk chemical storage, water handling, acid recovery, general purpose evaporation, and segregated solvent facilities. In addition, services for water, electricity, and steam are provided. This Safety Analysis Report (SAR) documents an analysis of the H-Area Outside Facilities and is one of a series of documents for the Separations Area as specified in the SR Implementation Plan for DOE order 5481.1A. The primary purpose of the analysis was to demonstrate that the facility can be operated without undue risk to onsite or offsite populations, to the environment, and to operating personnel. In this report, risks are defined as the expected frequencies of accidents, multiplied by the resulting radiological consequences in person-rem. Following the summary description of facility and operations is the site evaluation including the unique features of the H-Area Outside Facilities. The facility and process design are described in Chapter 3.0 and a description of operations and their impact is given in Chapter 4.0. The accident analysis in Chapter 5.0 is followed by a list of safety related structures and systems (Chapter 6.0) and a description of the Quality Assurance program (Chapter 7.0). The accident analysis in this report focuses on estimating the risk from accidents as a result of operation of the facilities. The operations were evaluated on the basis of three considerations: potential radiological hazards, potential chemical toxicity hazards, and potential conditions uniquely different from normal industrial practice.

  8. The Wide-area Energy Management System Phase 2 Final Report

    SciTech Connect (OSTI)

    Lu, Ning; Makarov, Yuri V.; Weimar, Mark R.

    2010-08-31

    The higher penetration of intermittent generation resources (including wind and solar generation) in the Bonneville Power Administration (BPA) and California Independent System Operator (CAISO) balancing authorities (BAs) raises issue of requiring expensive additional fast grid balancing services in response to additional intermittency and fast up and down power ramps in the electric supply system. The overall goal of the wide-area energy management system (WAEMS) project is to develop the principles, algorithms, market integration rules, a functional design, and a technical specification for an energy storage system to help cope with unexpected rapid changes in renewable generation power output. The resulting system will store excess energy, control dispatchable load and distributed generation, and utilize inter-area exchange of the excess energy between the California ISO and Bonneville Power Administration control areas. A further goal is to provide a cost-benefit analysis and develop a business model for an investment-based practical deployment of such a system. There are two tasks in Phase 2 of the WAEMS project: the flywheel field tests and the battery evaluation. Two final reports, the Wide-area Energy Management System Phase 2 Flywheel Field Tests Final Report and the Wide-area Energy Storage and Management System Battery Storage Evaluation, were written to summarize the results of the two tasks.

  9. Building Energy Simulation Test for Existing Homes (BESTEST-EX); Phase 1 Test Procedure: Building Thermal Fabric Cases

    SciTech Connect (OSTI)

    Judkoff, R.; Polly, B.; Bianchi, M.; Neymark, J.

    2010-08-01

    The U.S. Department of Energy tasked NREL to develop a process for testing the reliability of models that predict retrofit energy savings, including their associated calibration methods. DOE asked NREL to conduct the work in phases so that a test procedure would be ready should DOE need it to meet legislative requirements related to residential retrofits in FY 2010. This report documents the initial 'Phase 1' test procedure.

  10. Mixed waste focus area integrated technical baseline report. Phase I, Volume 2: Revision 0

    SciTech Connect (OSTI)

    1996-01-16

    This document (Volume 2) contains the Appendices A through J for the Mixed Waste Focus Area Integrated Technical Baseline Report Phase I for the Idaho National Engineering Laboratory. Included are: Waste Type Managers` Resumes, detailed information on wastewater, combustible organics, debris, unique waste, and inorganic homogeneous solids and soils, and waste data information. A detailed list of technology deficiencies and site needs identification is also provided.

  11. Optimal design of ground source heat pump system integrated with phase change cooling storage tank in an office building 

    E-Print Network [OSTI]

    Zhu, N.

    2014-01-01

    source heat pump system integrated with phase change cooling storage tank in an office building Dr. Na Zhu Department of Building Environment and Energy Engineering Huazhong University of Science & Technology, Wuhan, China 2014-09-14 ESL-IC-14-09-18a...-conditioning system: ?Splitting air-conditioner for cooling and coal fired boiler for heating. • Problems: a)Energy efficiency is low b)This system is not environmental friendly 2014/11/11 New energy saving technology ESL-IC-14-09-18a Proceedings of the 14th...

  12. Low-cost phase change material as an energy storage medium in building envelopes: Experimental and numerical analyses

    SciTech Connect (OSTI)

    Biswas, Kaushik; Abhari, Mr. Ramin

    2014-01-01

    A promising approach to increasing the energy efficiency of buildings is the implementation of a phase change material (PCM) in the building envelope. Numerous studies over the last two decades have reported the energy saving potential of PCMs in building envelopes, but their wide application has been inhibited, in part, by their high cost. This article describes a novel PCM made of naturally occurring fatty acids/glycerides trapped into high density polyethylene (HDPE) pellets and its performance in a building envelope application. The PCM-HDPE pellets were mixed with cellulose insulation and then added to an exterior wall of a test building in a hot and humid climate, and tested over a period of several months, To demonstrate the efficacy of the PCM-enhanced cellulose insulation in reducing the building envelope heat gains and losses, side-by-side comparison was performed with another wall section filled with cellulose-only insulation. Further, numerical modeling of the test wall was performed to determine the actual impact of the PCM-HDPE pellets on wall-generated heating and cooling loads and the associated electricity consumption. The model was first validated using experimental data and then used for annual simulations using typical meteorological year (TMY3) weather data. This article presents the experimental data and numerical analyses showing the energy-saving potential of the new PCM.

  13. Validation Methodology to Allow Simulated Peak Reduction and Energy Performance Analysis of Residential Building Envelope with Phase Change Materials: Preprint

    SciTech Connect (OSTI)

    Tabares-Velasco, P. C.; Christensen, C.; Bianchi, M.

    2012-08-01

    Phase change materials (PCM) represent a potential technology to reduce peak loads and HVAC energy consumption in residential buildings. This paper summarizes NREL efforts to obtain accurate energy simulations when PCMs are modeled in residential buildings: the overall methodology to verify and validate Conduction Finite Difference (CondFD) and PCM algorithms in EnergyPlus is presented in this study. It also shows preliminary results of three residential building enclosure technologies containing PCM: PCM-enhanced insulation, PCM impregnated drywall and thin PCM layers. The results are compared based on predicted peak reduction and energy savings using two algorithms in EnergyPlus: the PCM and Conduction Finite Difference (CondFD) algorithms.

  14. 300 Area D4 Project Fiscal Year 2010 Building Completion Report

    SciTech Connect (OSTI)

    Skwarek, B. J.

    2011-01-27

    This report summarizes the deactiviation, decontamination, decommissioning, and demolition activities of facilities in the 300 Area of the Hanford Site in fiscal year 2010.

  15. U.Va. Map : McCormick Road Area 1 (A4) Albert H. Small Building

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    ) Monroe Hill House/Range (MH3) 32 (B5) Montebello 33 (F1) Morea 34 (G2) Nameless Field 35 (F5) New Cabell*) 14 (F1) 108 Cresap Road 51 (C3) Dell 1 (Studio Art) 52 (C3) Dell 2 (Studio Art) 15 (D3) Dell Science Building (MSB) 25 (E4) Maury Hall (MRY*) 27 (B4) Mechanical Engineering (MEC) 28 (F2) Memorial

  16. BaaS Project: Covering the Building Design and Operational-Phase Interoperability Gap 

    E-Print Network [OSTI]

    Valmaseda, C.; Garcia, M.; Hernandez, J.; Martin, S.

    2012-01-01

    ?modelling?and?simulation?for?energy?performance? estimation?and?control?design. SO2:?Integrated?Automation?and?Control?Services. TO1: Data?Management:?Working?on?existing?initiatives?and?ongoing projects?results,?integrating?State?of?the?Art?of?extended?BIM,?EEB? Ontologies?and?Standards. TO2:?System?Integration...?the?profit?margin?of?the? end?user?(ESCO) 3.1 Rates to estimate consumes & other variables (Energy, Economy) X X X X X X 4 Different?Building?Management? System?in?each?building?and?across? buildings 4.1 Management integration system and adjusted optimization logic...

  17. Waste area Grouping 2 Phase I task data report: Human health risk assessment

    SciTech Connect (OSTI)

    Purucker, S.T.; Douthat, D.M.

    1996-06-01

    This report is one of five reports issued in 1996 that provide follow- up information to the Phase 1 Remedial Investigation (RI) Report for Waste Area Grouping (WAG) 2 at Oak Ridge National Laboratory (ORNL). The five reports address areas of concern that could cause potential human health risk and ecological risk within WAG2 at ORNL. The purpose of this report is to present a summary of the human health risk assessment results based on the data collected for the WAG 2 Phase 1 RI. Estimates of risk are provided based on measured concentrations in the surface water, floodplain soil, and sediment of White Oak Creek, Melton Branch, and their tributaries. The human health risk assessment methodology used in this risk assessment is based on Risk Assessment Guidance for Superfund (RAGS). First, the data for the different media are elevated to determine usability for risk assessment. Second, through the process of selecting chemicals of potential concern (COPCs), contaminants to be considered in the risk assessment are identified for each assessment of exposure potential is performed, and exposure pathways are identified. Subsequently, exposure is estimated quantitatively, and the toxicity of each of the COPCs is determined. The results of these analyses are combined and summarized in a risk characterization.

  18. Property:Building/FloorAreaUnheatedRentedPremises | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975)EnergyFloorAreaOffices Jump to:FloorAreaTotal Jump

  19. Stimulated Emission from As-grown GaN Hexagons by Selective Area Growth Hydride Vapor Phase Epitaxy

    E-Print Network [OSTI]

    Stimulated Emission from As-grown GaN Hexagons by Selective Area Growth Hydride Vapor Phase Epitaxy Engineering and the Photonics Center, Boston University, 8 Saint Mary's St., Boston, MA 02215-2421, USA R hydride vapor phase epitaxy. We found the threshold for bulk stimulated emission to be 3.4 MW cm2

  20. Property:Building/FloorAreaSchoolsChildDayCare | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975)EnergyFloorAreaOffices Jump to: navigation,

  1. Property:Building/FloorAreaTheatresConcertHallsCinemas | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975)EnergyFloorAreaOffices Jump to:

  2. Property:Building/FloorAreaHealthServicesDaytime | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975)Energy TechnologyFloorAreaHealthServicesDaytime Jump to:

  3. Annual energy analysis of concrete containing phase change materials for building envelopes

    E-Print Network [OSTI]

    Pilon, Laurent

    of residential and com- mercial buildings for electricity varies significantly during the day [3]. To satisfy schedules to encourage ratepayers to shift their electricity use to off-peak hours. In practice, the price Engineering Department, Henry Samueli School of Engineering and Applied Science, University of California, Los

  4. THE WIDE-AREA ENERGY STORAGE AND MANAGEMENT SYSTEM PHASE II Final Report - Flywheel Field Tests

    SciTech Connect (OSTI)

    Lu, Ning; Makarov, Yuri V.; Weimar, Mark R.; Rudolph, Frank; Murthy, Shashikala; Arseneaux, Jim; Loutan, Clyde; Chowdhury, S.

    2010-08-31

    This research was conducted by Pacific Northwest National Laboratory (PNNL) operated for the U.S. department of Energy (DOE) by Battelle Memorial Institute for Bonneville Power Administration (BPA), California Institute for Energy and Environment (CIEE) and California Energy Commission (CEC). A wide-area energy management system (WAEMS) is a centralized control system that operates energy storage devices (ESDs) located in different places to provide energy and ancillary services that can be shared among balancing authorities (BAs). The goal of this research is to conduct flywheel field tests, investigate the technical characteristics and economics of combined hydro-flywheel regulation services that can be shared between Bonneville Power Administration (BPA) and California Independent System Operator (CAISO) controlled areas. This report is the second interim technical report for Phase II of the WAEMS project. This report presents: 1) the methodology of sharing regulation service between balancing authorities, 2) the algorithm to allocate the regulation signal between the flywheel and hydro power plant to minimize the wear-and-tear of the hydro power plants, 3) field results of the hydro-flywheel regulation service (conducted by the Beacon Power), and 4) the performance metrics and economic analysis of the combined hydro-flywheel regulation service.

  5. TABLE OF CONTENTS: Building Executive Definition.......................................................................3

    E-Print Network [OSTI]

    Capogna, Luca

    #12;TABLE OF CONTENTS: Building Executive Definition.......................................................................3 Building Executives Areas of Responsibilities ...................................................................................5 Building Safety and Security Issues

  6. DOE Commercial Building Energy Asset Score: Software Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Score: Software Development for Phase II Building Types DOE Commercial Building Energy Asset Score: Software Development for Phase II Building Types DOE Commercial Building Energy...

  7. 100 Area D4 Project Building Completion Report - July 2007 to December 2008

    SciTech Connect (OSTI)

    M. T. Stankovich

    2009-04-15

    This report documents the decontamination, decommissioning, and demolition of the 105-NB, 163-N, 183-N, 183-NA, 183-NB, 183-NC, 184-N, 184-NA, 184-NB, 184-NC, 184-ND, 184-NE, 184-NF, 1312-N, 1330-N, 1705-N, 1705-NA, 1706-N, 1712-N, 1714-N, 1714-NA, 1714-NB, 1802-N, MO-050, MO-055, MO-358, MO-390, MO-900, MO-911, and MO-950 facilities in the 100 Area of the Hanford Site. The D4 activities for these facilities include utility disconnection, planning, characterization, engineering, removal of hazardous and radiological contaminated materials, equipment removal, decommissioning, deactivation, decontamination, demolition of the structure, and removal of the remaining slabs.

  8. Hydronic Heating Retrofits for Low-Rise Multifamily Buildings - Phase 1: Boiler Control Replacement and Monitoring

    SciTech Connect (OSTI)

    Dentz, J.; Henderson, H.

    2012-04-01

    The ARIES Collaborative, a Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, MA to implement and study improvements to the heating system in one of the non-profit's housing developments. The heating control systems in the 42-unit Columbia CAST housing development were upgraded in an effort projected to reduce heating costs by 15 to 25 percent.

  9. Underground Test Area Subproject Phase I Data Analysis Task. Volume III - Groundwater Recharge and Discharge Data Documentation Package

    SciTech Connect (OSTI)

    1996-10-01

    Volume III of the documentation for the Phase I Data Analysis Task performed in support of the current Regional Flow Model, Transport Model, and Risk Assessment for the Nevada Test Site Underground Test Area Subproject contains the data covering groundwater recharge and discharge. Because of the size and complexity of the model area, a considerable quantity of data was collected and analyzed in support of the modeling efforts. The data analysis task was consequently broken into eight subtasks, and descriptions of each subtask's activities are contained in one of the eight volumes that comprise the Phase I Data Analysis Documentation.

  10. Underground Test Area Subproject Phase I Data Analysis Task. Volume V - Transport Parameter and Source Term Data Documentation Package

    SciTech Connect (OSTI)

    1996-12-01

    Volume V of the documentation for the Phase I Data Analysis Task performed in support of the current Regional Flow Model, Transport Model, and Risk Assessment for the Nevada Test Site Underground Test Area Subproject contains the transport parameter and source term data. Because of the size and complexity of the model area, a considerable quantity of data was collected and analyzed in support of the modeling efforts. The data analysis task was consequently broken into eight subtasks, and descriptions of each subtask's activities are contained in one of the eight volumes that comprise the Phase I Data Analysis Documentation.

  11. Joint China-United States Report for Year 1 Insulation Materials and Systems Project Area Clean Energy Research Center Building Energy Efficiency (CERC-BEE)

    SciTech Connect (OSTI)

    Stovall, Therese K; Biswas, Kaushik; Song, Bo; Zhang, Sisi

    2012-08-01

    In November of 2009, the presidents of China and the U.S. announced the establishment of the Clean Energy Research Center (CERC). This broad research effort is co-funded by both countries and involves a large number of research centers and universities in both countries. One part of this program is focused on improving the energy efficiency of buildings. One portion of the CERC-BEE was focused on building insulation systems. The research objective of this effort was to Identify and investigate candidate high performance fire resistant building insulation technologies that meet the goal of building code compliance for exterior wall applications in green buildings in multiple climate zones. A Joint Work Plan was established between researchers at the China Academy of Building Research and Oak Ridge National Laboratory. Efforts in the first year under this plan focused on information gathering. The objective of this research program is to reduce building energy use in China via improved building insulation technology. In cold regions in China, residents often use inefficient heating systems to provide a minimal comfort level within inefficient buildings. In warmer regions, air conditioning has not been commonly used. As living standards rise, energy consumption in these regions will increase dramatically unless significant improvements are made in building energy performance. Previous efforts that defined the current state of the built environment in China and in the U.S. will be used in this research. In countries around the world, building improvements have typically followed the implementation of more stringent building codes. There have been several changes in building codes in both the U.S. and China within the last few years. New U.S. building codes have increased the amount of wall insulation required in new buildings. New government statements from multiple agencies in China have recently changed the requirements for buildings in terms of energy efficiency and fire safety. A related issue is the degree to which new standards are adopted and enforced. In the U.S., standards are developed using a consensus process, and local government agencies are free to implement these standards or to ignore them. For example, some U.S. states are still using 2003 versions of the building efficiency standards. There is also a great variation in the degree to which the locally adopted standards are enforced in different U.S. cities and states. With a more central process in China, these issues are different, but possible impacts of variable enforcement efficacy may also exist. Therefore, current building codes in China will be compared to the current state of building fire-safety and energy-efficiency codes in the U.S. and areas for possible improvements in both countries will be explored. In particular, the focus of the applications in China will be on green buildings. The terminology of 'green buildings' has different meanings to different audiences. The U.S. research is interested in both new, green buildings, and on retrofitting existing inefficient buildings. An initial effort will be made to clarify the scope of the pertinent wall insulation systems for these applications.

  12. Passive solar commercial buildings: design assistance and demonstration program. Phase 1. Final report

    SciTech Connect (OSTI)

    1981-01-26

    The final design of the Mount Airy Public Library is given. Incremental passive design costs are discussed. Performance and economic analyses are made and the results reported. The design process is thoroughly documented. Considerations discussed are: (1) building energy needs; (2) site energy potentials, (3) matching energy needs with site energy potentials, (4) design indicators for best strategies and concepts, (5) schematic design alternatives, (6) performance testing of the alternatives, (7) design selection, and (8) design development. Weather data and Duke Power electric rates are included. (LEW)

  13. Building Technologies | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Biology Transportation Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Buildings SHARE Building Technologies Reducing the energy...

  14. 2D phase-sensitive inversion recovery imaging to measure in vivo spinal cord gray and white matter areas in clinically feasible acquisition times

    E-Print Network [OSTI]

    2015-01-01

    TCA) and gray matter (GM) areas based on phase-sensitiveassessment of spinal cord GM and white matter (WM) couldbecause of insufficient GM/WM contrast provided by

  15. Phased Construction Completion Report for Building K-1401 of the Remaining Facilities Demolition Project at the East Tennessee Technology Park Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Garland S.

    2008-03-01

    This Phased Construction Completion Report documents the demolition of Bldg. K-1401, Maintenance Building, addressed in the Action Memorandum for the Remaining Facilities Demolition Project at East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2003a) as a Comprehensive Environmental Response, Compensation, and Liability Act of 1980 non-time-critical removal action. The objectives of the removal action (DOE 2003a) - to eliminate the source of potential contamination, to eliminate the threat of potential future releases, and/or to eliminate the threats to the general public and the environment - were met. The end state of this action is for the slab to remain with all penetrations sealed and grouted or backfilled. The basement and pits remain open. There is residual radiological and polychlorinated biphenyl contamination on the slab and basement. A fixative was applied to the area on the pad contaminated with polychlorinated biphenyls. Interim land-use controls will be maintained until final remediation decisions are made under the Zone 2 Record of Decision (DOE 2005a).

  16. FY17 Scope of Work Aggregate Areas Phase I Nature & Extent Sampling

    Office of Environmental Management (EM)

    Phase I Nature & Extent Sampling | Environmental Programs | Email: envoutreach@lanl.gov Web: www.lanl.govenvironment LA-UR-15-22015 The Laboratory determines nature and extent of...

  17. Phase 1 RCRA Facility Investigation & Corrective Measures Study Work Plan for Single Shell Tank (SST) Waste Management Areas

    SciTech Connect (OSTI)

    MCCARTHY, M.M.

    1999-08-01

    This document is the master work plan for the Resource Conservation and Recovery Act of 1976 (RCRA) Corrective Action Program (RCAP) for single-shell tank (SST) farms at the US. Department of Energy's (DOE'S) Hanford Site. The DOE Office of River Protection (ORP) initiated the RCAP to address the impacts of past and potential future tank waste releases to the environment. This work plan defines RCAP activities for the four SST waste management areas (WMAs) at which releases have contaminated groundwater. Recognizing the potential need for future RCAP activities beyond those specified in this master work plan, DOE has designated the currently planned activities as ''Phase 1.'' If a second phase of activities is needed for the WMAs addressed in Phase 1, or if releases are detected at other SST WMAs, this master work plan will be updated accordingly.

  18. Phase A: Initial Development of an Advanced Diagnostic Procedure for Air-Side Retrofits in Commercial Buildings 

    E-Print Network [OSTI]

    Reddy, T. A.; Kissock, J. K.; Katipamula, S.; Claridge, D. E.

    1994-01-01

    The objective of this research is to develop a diagnostic approach that involves analyzing monitored whole-building cooling and heating energy use in large commercial buildings in order to determine the effectiveness of air-side energy retrofits...

  19. Improved Hydrogen Gas Getters for TRU Waste Transuranic and Mixed Waste Focus Area - Phase 2 Final Report

    SciTech Connect (OSTI)

    Stone, Mark Lee

    2002-04-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For that reason, the Nuclear Regulatory Commission (NRC) limits the flammable gas (hydrogen) concentration in the Transuranic Package Transporter-II (TRUPACT-II) containers to 5 vol% of hydrogen in air, which is the lower explosion limit. Consequently, a method is needed to prevent the build up of hydrogen to 5 vol% during the storage and transport of the TRUPACT-II containers (up to 60 days). One promising option is the use of hydrogen getters. These materials scavenge hydrogen from the gas phase and irreversibly bind it in the solid phase. One proven getter is a material called 1,4-bis (phenylethynyl) benzene, or DEB. It has the needed binding rate and capacity, but some of the chemical species that might be present in the containers could interfere with its ability to remove hydrogen. This project is focused upon developing a protective polymeric membrane coating for the DEB getter material, which comes in the form of small, irregularly shaped particles. This report summarizes the experimental results of the second phase of the development of the materials.

  20. A Phase I Cultural Resources Survey of the Walker County Jail and Office Expansion Area Project 

    E-Print Network [OSTI]

    Moore, William

    2015-06-08

    on historical accounts and current populations. A study by Keller (1974:78-81) of the paleoecology of the middle Neches region lists those mammals most likely to have been hunted in the area. They are Whitetail deer, Cottontail rabbit, Swamp... and Miller Sites of Northeastern Texas, with a Preliminary Definition of the La Harpe Aspect. Bulletin of the Texas Archeological Society 32:141-284. Keller, John Esten 1974 The Subsistence Paleoecology of the Middle Neches Region of East Texas...

  1. Phase I remedial investigation report of Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Miller, D.E. [ed.

    1995-07-01

    This report presents the activities and findings of the first phase of a three-phase remedial investigation (RI) of Waste Area Grouping (WAG) 2 at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, and updates the scope and strategy for WAG-2-related efforts. WAG 2 contains White Oak Creek (WOC) and its tributaries downstream of the ORNL main plant area, White Oak Lake, White Oak Creek Embayment on the Clinch River, and the associated floodplain and subsurface environment. Water, sediment, soil, and biota in WAG 2 are contaminated and continue to receive contaminants from upgradient WAGs. This report includes field activities completed through October 1992. The remediation of WAG 2 is scheduled to follow the cessation of contaminant input from hydrologically upgradient WAGs. While upgradient areas are being remediated, the strategy for WAG 2 is to conduct a long-term monitoring and investigation program that takes full advantage of WAG 2`s role as an integrator of contaminant fluxes from other ORNL WAGs and focuses on four key goals: (1) Implement, in concert with other programs, long-term, multimedia environmental monitoring and tracking of contaminants leaving other WAGs, entering WAG 2, and being transported off-site. (2) Provide a conceptual framework to integrate and develop information at the watershed-level for pathways and processes that are key to contaminant movement, and so support remedial efforts at ORNL. (3) Provide periodic updates of estimates of potential risk (both human health and ecological) associated with contaminants accumulating in and moving through WAG 2 to off-site areas. (4) Support the ORNL Environmental Restoration Program efforts to prioritize, remediate, and verify remedial effectiveness for contaminated sites at ORNL, through long-term monitoring and continually updated risk assessments.

  2. 2014-09-30 Issuance: Buildings-to-Grid Integration and Related Areas of Research; Notice of Availability and Request for Public Comment

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of availability and request for public comment regarding buildings-to-grid integration and related areas of research, as issued by the Deputy Assistant Secretary for Energy Efficiency on September 30, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  3. Cost Analysis of Simple Phase Change Material-Enhanced Building Envelopes in Southern U.S. Climates

    SciTech Connect (OSTI)

    Kosny, J.; Shukla, N.; Fallahi, A.

    2013-01-01

    Traditional thermal designs of building envelope assemblies are based on static energy flows, yet building envelopes are subject to varying environmental conditions. This mismatch between the steady-state principles and their dynamic operation can decrease thermal efficiency. Design work supporting the development of low-energy houses showed that conventional insulations may not always be the most cost effective solution to improvement envelope thermal performance. PCM-enhanced building envelopes that simultaneously reduce the total cooling loads and shift the peak-hour loads are the focus of this report.

  4. Recovery Act Weekly Video: 200 Area Asbestos Removal, U-Ancillary Demolition, 200 West Transfer Building Footings

    ScienceCinema (OSTI)

    None

    2012-06-14

    A weekly update of the Recovery Act at work. Demolition of U-Ancillary that was contaminated with uranium and asbestos as well as removing asbestos from the Steam Generation Plant in the 200 East Area.

  5. Recovery Act Weekly Video: 200 Area Asbestos Removal, U-Ancillary Demolition, 200 West Transfer Building Footings

    SciTech Connect (OSTI)

    None

    2010-01-01

    A weekly update of the Recovery Act at work. Demolition of U-Ancillary that was contaminated with uranium and asbestos as well as removing asbestos from the Steam Generation Plant in the 200 East Area.

  6. Revegetation Plan for Areas of the Fitzner-Eberhardt Arid Lands Ecology Reserve Affected by Decommissioning of Buildings and Infrastructure and Debris Clean-up Actions

    SciTech Connect (OSTI)

    Downs, Janelle L.; Durham, Robin E.; Larson, Kyle B.

    2011-01-01

    The U.S. Department of Energy (DOE), Richland Operations Office is working to remove a number of facilities on the Fitzner Eberhardt Arid Lands Ecology Reserve (ALE), which is part of the Hanford Reach National Monument. Decommissioning and removal of buildings and debris on ALE will leave bare soils and excavated areas that need to be revegetated to prevent erosion and weed invasion. Four main areas within ALE are affected by these activities (DOE 2009;DOE/EA-1660F): 1) facilities along the ridgeline of Rattlesnake Mountain, 2) the former Nike missile base and ALE HQ laboratory buildings, 3) the aquatic research laboratory at Rattlesnake Springs area, and 4) a number of small sites across ALE where various types of debris remain from previous uses. This revegetation plan addresses the revegetation and restoration of those land areas disturbed by decommissioning and removal of buildings, facilities and associated infrastructure or debris removal. The primary objective of the revegetation efforts on ALE is to establish native vegetation at each of the sites that will enhance and accelerate the recovery of the native plant community that naturally persists at that location. Revegetation is intended to meet the direction specified by the Environmental Assessment (DOE 2009; DOE/EA-1660F) and by Stipulation C.7 of the Memorandum of Agreement (MOA) for the Rattlesnake Mountain Combined Community Communication Facility and InfrastructureCleanup on the Fitzner/Eberhardt Arid Lands Ecology Reserve, Hanford Site, Richland Washington(DOE 2009; Appendix B). Pacific Northwest National Laboratory (PNNL) under contract with CH2M Hill Plateau Remediation Company (CPRC) and in consultation with the tribes and DOE-RL developed a site-specific strategy for each of the revegetation units identified within this document. The strategy and implementation approach for each revegetation unit identifies an appropriate native species mix and outlines the necessary site preparation activities and specific methods for seeding and planting at each area. evegetation work is scheduled to commence during the first quarter of FY 2011 to minimize the amount of time that sites are unvegetated and more susceptible to invasion by non-native weedy annual species.

  7. The Underground Test Area Project of the Nevada Test Site: Building Confidence in Groundwater Flow and Transport Models at Pahute Mesa Through Focused Characterization Studies

    SciTech Connect (OSTI)

    Pawloski, G A; Wurtz, J; Drellack, S L

    2009-12-29

    Pahute Mesa at the Nevada Test Site contains about 8.0E+07 curies of radioactivity caused by underground nuclear testing. The Underground Test Area Subproject has entered Phase II of data acquisition, analysis, and modeling to determine the risk to receptors from radioactivity in the groundwater, establish a groundwater monitoring network, and provide regulatory closure. Evaluation of radionuclide contamination at Pahute Mesa is particularly difficult due to the complex stratigraphy and structure caused by multiple calderas in the Southwestern Nevada Volcanic Field and overprinting of Basin and Range faulting. Included in overall Phase II goals is the need to reduce the uncertainty and improve confidence in modeling results. New characterization efforts are underway, and results from the first year of a three-year well drilling plan are presented.

  8. Integrated pressure-dependence in automated mechanism generation : a new tool for building gas-phase kinetic models

    E-Print Network [OSTI]

    Matheu, David M. (David Michael), 1974-

    2003-01-01

    A host of vital, current, and developing technologies, such as pyrolysis, thermal cracking, partial oxidation, and high-efficiency combustion engines, involve complex, gas-phase chemical mechanisms with hundreds of species ...

  9. The recent accumulation of snow in many areas throughout New York state has caused some agricultural buildings to fail. Failure can be the result of several items linked to the snow load present

    E-Print Network [OSTI]

    Walter, M.Todd

    1 The recent accumulation of snow in many areas throughout New York state has caused some agricultural buildings to fail. Failure can be the result of several items linked to the snow load present construction · Actual snow load exceeds design snow load · Imbalance of snow load on roof · Failure of one key

  10. Potential Energy Savings Due to Phase Change Material in a Building Wall Assembly: An Examination of Two Climates

    SciTech Connect (OSTI)

    Childs, Kenneth W [ORNL; Stovall, Therese K [ORNL

    2012-03-01

    Phase change material (PCM), placed in an exterior wall, alters the temperature profile within the wall and thus influences the heat transport through the wall. This may reduce the net energy transport through the wall via interactions with diurnal temperature swings in the external environment or reduce the electricity needed to meet the net load through the wall by shifting the time of the peak load to a time when the cooling system operates more efficiently. This study covers a broad range of parameters that can influence the effectiveness of such a merged thermal storage-thermal insulation system. These parameters included climate, PCM location within the wall, amount of PCM, midpoint of the PCM melting and freezing range relative to the indoor setpoint temperature, temperature range over which phase change occurs, and the wall orientation. Two climates are investigated using finite difference and optimization analyses: Phoenix and Baltimore, with two utility rate schedules. Although potential savings for a PCM with optimized properties were greater when the PCM was concentrated near the inside wall surface, other considerations described here lead to a recommendation for a full-thickness application. An examination of the temperature distribution within the walls also revealed the potential for this system to reduce the amount of energy transported through the wall framing. Finally, economic benefits can exceed energy savings when time-of-day utility rates are in effect, reflecting the value of peak load reductions for the utility grid.

  11. Volume I of the roadmap marks the completion of the first phase of the NIST Cloud Computing program and initiative to collaboratively build a USG Cloud Computing Technology Roadmap. This milestone is

    E-Print Network [OSTI]

    Next Steps Volume I of the roadmap marks the completion of the first phase of the NIST Cloud Computing program and initiative to collaboratively build a USG Cloud Computing Technology Roadmap, and with the program time line presented in November 2010. As described previously, this roadmap document

  12. Communication in Home Area Networks

    E-Print Network [OSTI]

    Wang, Yubo

    2012-01-01

    used in area like smart buildings, street light controls andbuilding. This section focuses on HAN design to address two smart

  13. Building Stones

    E-Print Network [OSTI]

    2012-01-01

    3). Photographs by the author. Building Stones, Harrell, UEEOxford Short Citation: Harrell, 2012, Building Stones. UEE.Harrell, James A. , 2012, Building Stones. In Willeke

  14. 200 Market Building

    High Performance Buildings Database

    Portland, Oregon The 200 Market Building is a high-rise built in 1973 and located in downtown Portland, Oregon. It was purchased in 1988 by its current owner, 200 Market Associates, primarily because of its optimal location in Portland's central business district. Since 1989 the building has undergone continuous improvements in multiple phases.

  15. 300 Area Disturbance Report

    SciTech Connect (OSTI)

    LL Hale; MK Wright; NA Cadoret

    1999-01-07

    The objective of this study was to define areas of previous disturbance in the 300 Area of the U.S. Department of Energy (DOE) Hanford Site to eliminate these areas from the cultural resource review process, reduce cultural resource monitoring costs, and allow cultural resource specialists to focus on areas where subsurface disturbance is minimal or nonexistent. Research into available sources suggests that impacts from excavations have been significant wherever the following construction activities have occurred: building basements and pits, waste ponds, burial grounds, trenches, installation of subsurface pipelines, power poles, water hydrants, and well construction. Beyond the areas just mentioned, substrates in the' 300 Area consist of a complex, multidimen- sional mosaic composed of undisturbed stratigraphy, backfill, and disturbed sediments; Four Geographic Information System (GIS) maps were created to display known areas of disturbance in the 300 Area. These maps contain information gleaned from a variety of sources, but the primary sources include the Hanford GIS database system, engineer drawings, and historic maps. In addition to these maps, several assumptions can be made about areas of disturbance in the 300 Area as a result of this study: o o Buried pipelines are not always located where they are mapped. As a result, cultural resource monitors or specialists should not depend on maps depicting subsurface pipelines for accurate locations of previous disturbance. Temporary roads built in the early 1940s were placed on layers of sand and gravel 8 to 12 in. thick. Given this information, it is likely that substrates beneath these early roads are only minimally disturbed. Building foundations ranged from concrete slabs no more than 6 to 8 in. thick to deeply excavated pits and basements. Buildings constructed with slab foundations are more numerous than may be expected, and minimally disturbed substrates may be expected in these locations. Historic black and white photographs provide a partial record of some excavations, including trenches, building basements, and material lay-down yards. Estimates of excavation depth and width can be made, but these estimates are not accurate enough to pinpoint the exact location where the disturbedhmdisturbed interface is located (e.g., camera angles were such that depths and/or widths of excavations could not be accurately determined or estimated). In spite of these limitations, these photographs provide essential information. Aerial and historic low-level photographs have captured what appears to be backfill throughout much of the eastern portion of the 300 Area-near the Columbia River shoreline. This layer of fill has likely afforded some protection for the natural landscape buried beneath the fill. This assumption fits nicely with the intermittent and inadvertent discoveries of hearths and stone tools documented through the years in this part of the 300 Area. Conversely, leveling of sand dunes appears to be substantial in the northwestern portion of the 300 Area during the early stages of development. o Project files and engineer drawings do not contain information on any impromptu but necessary adjustments made on the ground during project implementation-after the design phase. Further, many projects are planned and mapped but never implemented-this information is also not often placed in project files. Specific recommendations for a 300 Area cultural resource monitoring strategy are contained in the final section of this document. In general, it is recommended that monitoring continue for all projects located within 400 m of the Columbia River. The 400-m zone is culturally sensitive and likely retains some of the most intact buried substrates in the 300 Area.

  16. Phase 1 RCRA Facility Investigation and Corrective Measures Study Work Plan for Single Shell Tank Waste Management Areas

    SciTech Connect (OSTI)

    ROGERS, P.M.

    2000-06-01

    This document is the master work plan for the Resource Conservation and Recovery Act of 1976 (RCRA) for single-shell tank (SST) farms at the Hanford Site. Evidence indicates that releases at four of the seven SST waste management areas have impacted.

  17. Personalized building comfort control

    E-Print Network [OSTI]

    Feldmeier, Mark Christopher, 1974-

    2009-01-01

    Creating an appropriate indoor climate is essential to worker productivity and personal happiness. It is also an area of large expenditure for building owners. And, with rising fuel costs, finding ways of reducing energy ...

  18. Numerical Modeling of 90Sr and 137Cs Transport from a Spill in the B-Cell of the 324 Building, Hanford Site 300 Area

    SciTech Connect (OSTI)

    Rockhold, Mark L.; Bacon, Diana H.; Freedman, Vicky L.; Lindberg, Michael J.; Clayton, Ray E.

    2012-03-19

    To characterize the extent of contamination under the 324 Building, a pit was excavated on the north side of the building in 2010 by Washington Closure Hanford LLC (WCH). Horizontal closed-end steel access pipes were installed under the foundation of the building from this pit and were used for measuring temperatures and exposure rates under the B-Cell. The deployed sensors measured elevated temperatures of up to 61 C (142 F) and exposure rates of up to 8,900 R/hr. WCH suspended deactivation of the facility because it recognized that building safety systems and additional characterization data might be needed for remediation of the contaminated material. The characterization work included additional field sampling, laboratory measurements, and numerical flow and transport modeling. Laboratory measurements of sediment physical, hydraulic, and geochemical properties were performed by Pacific Northwest National Laboratory (PNNL) and others. Geochemical modeling and subsurface flow and transport modeling also were performed by PNNL to evaluate the possible extent of contamination in the unsaturated sand and gravel sediments underlying the building. Historical records suggest that the concentrated 137Cs- and 90Sr-bearing liquid wastes that were spilled in B-Cell were likely from a glass-waste repository testing program associated with the Federal Republic of Germany (FRG). Incomplete estimates of the aqueous chemical composition (no anion data provided) of the FRG waste solutions were entered into a geochemical speciation model and were charge balanced with nitrate to estimate waste composition. Additional geochemical modeling was performed to evaluate reactions of the waste stream with the concrete foundation of the building prior to the stream entering the subsurface.

  19. Building Nim E. Duchene M. Dufour S. Heubach U. Larsson

    E-Print Network [OSTI]

    Heubach, Silvia

    Building Nim E. Duchene M. Dufour S. Heubach U. Larsson CGTC, Boca Raton, March 2 - 6, 2015 Building Nim with n tokens on s stacks Building Nim BN(n, s) introduces a building phase Phase 1: Players. Building Nim with n tokens on s stacks Question: Which player has a winning strategy? Winning position

  20. First results of a large-area cryogenic gaseous photomultiplier coupled to a dual-phase liquid xenon TPC

    E-Print Network [OSTI]

    Arazi, L; Erdal, E; Israelashvili, I; Rappaport, M L; Shchemelinin, S; Vartsky, D; Santos, J M F dos; Breskin, A

    2015-01-01

    We discuss recent advances in the development of cryogenic gaseous photomultipliers (GPM), for possible use in dark matter and other rare-event searches using noble-liquid targets. We present results from a 10 cm diameter GPM coupled to a dual-phase liquid xenon (LXe) TPC, demonstrating - for the first time - the feasibility of recording both primary ("S1") and secondary ("S2") scintillation signals. The detector comprised a triple Thick Gas Electron Multiplier (THGEM) structure with cesium iodide photocathode on the first element; it was shown to operate stably at 180 K with gains above 10^5, providing high single-photon detection efficiency even in the presence of large alpha particle-induced S2 signals comprising thousands of photoelectrons. S1 scintillation signals were recorded with a time resolution of 1.2 ns (RMS). The energy resolution ({\\sigma}/E) for S2 electroluminescence of 5.5 MeV alpha particles was ~9%, which is comparable to that obtained in the XENON100 TPC with PMTs. The results are discusse...

  1. BUILDING NAMES AA Architecture Building

    E-Print Network [OSTI]

    Dawson, Jeff W.

    P18$ P16 BUILDING NAMES AA Architecture Building AC Recreation and Athletics Centre AH Alumni Hall AP Azrieli Pavillion AT Azrieli Theatre CB Canal Building CO Residence Commons DT Dunton Tower FH Interaction Building (HCI) HP Herzberg Laboratories IH Ice House LA Loeb Building LE Leeds House LH Lanark

  2. Waste area grouping 2 Phase I task data report: Ecological risk assessment and White Oak Creek watershed screening ecological risk assessment

    SciTech Connect (OSTI)

    Efroymson, R.A.; Jackson, B.L.; Jones, D.S. [and others] [and others

    1996-05-01

    This report presents an ecological risk assessment for Waste Area Grouping (WAG) 2 based on the data collected in the Phase I remedial investigation (RI). It serves as an update to the WAG 2 screening ecological risk assessment that was performed using historic data. In addition to identifying potential ecological risks in WAG 2 that may require additional data collection, this report serves to determine whether there are ecological risks of sufficient magnitude to require a removal action or some other expedited remedial process. WAG 2 consists of White Oak Creek (WOC) and its tributaries downstream of the Oak Ridge National Laboratory (ORNL) main plant area, White Oak Lake (WOL), the White Oak Creek Embayment of the Clinch River, associated flood plains, and the associated groundwater. The WOC system drains the WOC watershed, an area of approximately 16.8 km{sup 2} that includes ORNL and associated WAGs. The WOC system has been exposed to contaminants released from ORNL and associated operations since 1943 and continues to receive contaminants from adjacent WAGs.

  3. Dynamic Simulation and Analysis of Factors Impacting the Energy Consumption of Residential Buildings 

    E-Print Network [OSTI]

    Lian, Y.; Hao, Y.

    2006-01-01

    Buildings have a close relationship with climate. There are a lot of important factors that influence building energy consumption such as building shape coefficient, insulation work of building envelope, covered area, and the area ratio of window...

  4. Building design guidelines for solar energy technologies

    SciTech Connect (OSTI)

    Givoni, B.

    1989-01-01

    There are two main objectives to this publication. The first is to find out the communalities in the experience gained in previous studies and in actual applications of solar technologies in buildings, residential as well as nonresidential. The second objective is to review innovative concepts and products which may have an impact on future developments and applications of solar technologies in buildings. The available information and common lessons were collated and presented in a form which, hopefully, is useful for architects and solar engineers, as well as for teachers of solar architecture'' and students in Architectural Schools. The publication is based mainly on the collection and analysis of relevant information. The information included previous studies in which the performance of solar buildings was evaluated, as well as the personal experience of the Author and the research consultants. The state of the art, as indicated by these studies and personal experience, was summarized and has served as basis for the development of the Design Guidelines. In addition to the summary of the state of the art, as was already applied in solar buildings, an account was given of innovative concepts and products. Such innovations have occurred in the areas of thermal storage by Phase Change Materials (PCM) and in glazing with specialized or changeable properties. Interesting concepts were also developed for light transfer, which may enable to transfer sunlight to the core areas of large multi story nonresidential buildings. These innovations may have a significant impact on future developments of solar technologies and their applications in buildings. 15 refs., 19 figs., 3 tabs.

  5. Development of a Simulation Toolkit for the Selection of High-Performance Systems for Office Buildings in Hot and Humid Climates (Phase I: Calibrated Simulation of the Case Study Building

    E-Print Network [OSTI]

    Cho, S.; Haberl, J. S.

    2008-01-01

    plant has two chillers proving chilled water for space cooling, two boilers proving hot water for space heating, and one water heater for service water heating. The two centrifugal chillers have a capacity of 280-ton each. The JBC building only needs...-metered cooling electricity use, lighting and miscellaneous equipment use, as well as thermal energy measurements for chilled water and hot water use. Also used in the calibration process were portable data loggers for comparing the performance...

  6. Assessment of Energy Impact of Window Technologies for Commercial Buildings

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01

    12 - Building Energy Savings per Square Foot of Window13 - Building Energy Savings per Square Foot of Windowshows the energy savings per square foot of window area for

  7. Building America

    SciTech Connect (OSTI)

    Brad Oberg

    2010-12-31

    IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.

  8. Building technologies

    SciTech Connect (OSTI)

    Jackson, Roderick

    2014-07-14

    After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

  9. Building technologies

    ScienceCinema (OSTI)

    Jackson, Roderick

    2014-07-15

    After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

  10. Results of Phase I groundwater quality assessment for single-shell tank waste management Area S-SX at the Hanford Site

    SciTech Connect (OSTI)

    Johnson, V.G.; Chou, C.J.

    1998-01-01

    Pacific Northwest National Laboratory (PNNL) conducted a Phase I, Resource Conservation and Recovery Act of 1976 (RCRA) groundwater quality assessment for the Richland Field Office of the U.S. Department of Energy (DOE-RL), in accordance with the Federal Facility Compliance Agreement. The purpose of the investigation was to determine if the Single-Shell Tank Waste Management Area (WMA) S-SX has impacted groundwater quality. The WMA is located in the southern portion of the 200 West Area of the Hanford Site and consists of the 241-S and 241-SX tank farms and ancillary waste systems. The unit is regulated under RCRA interim-status regulations (40 CFR 265, Subpart F) and was placed in assessment groundwater monitoring (40 CFR 265.93 [d]) in August 1996 because of elevated specific conductance and technetium-99, a non-RCRA co-contaminant, in downgradient monitoring wells. Major findings of the assessment are summarized below: (1) Distribution patterns for radionuclides and RCRA/dangerous waste constituents indicate WMA S-SX has contributed to groundwater contamination observed in downgradient monitoring wells. (2) Drinking water standards for nitrate and technetium-99 are currently exceeded in one RCRA-compliant well (299-W22-46) located at the southeastern comer of the SX tank farm. (3) Technetium-99, nitrate, and chromium concentrations in downgradient well 299-W22-46 (the well with the highest current concentrations) appear to be declining after reaching maximum concentrations in May 1997. (4) Cesium-137 and strontium-90, major constituents of concern in single-shell tank waste, were not detected in any of the RCRA-compliant wells in the WMA network, including the well with the highest current technetium-99 concentrations (299-W22-46). (5) Low but detectable strontium-90 and cesium-137 were found in one old well (2-W23-7), located inside and between the S and SX tank farms.

  11. Building Energy Optimization Analysis Method (BEopt) - Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy Optimization Analysis Method (BEopt) - Building America Top Innovation Building Energy Optimization Analysis Method (BEopt) - Building America Top Innovation House...

  12. Beardmore Building

    High Performance Buildings Database

    Priest River, ID Originally built in 1922 by Charles Beardmore, the building housed offices, mercantile shops, a ballroom and a theater. After decades of neglect under outside ownership, Brian Runberg, an architect and great-grandson of Charles Beardmore, purchased the building in 2006 and began an extensive whole building historic restoration.

  13. Building Load Simulation and Validation of an Office Building 

    E-Print Network [OSTI]

    Alghimlas, F.

    2002-01-01

    This paper describes the methodology to develop a well defined energy simulation model for an office building in Kuwait using DOE2.1E program. The two story building has approximately a total airconditioned area of about 23,470 m2 (77,000 ft2...

  14. GENERAL SERVICES ADMINISTRATION PUBLIC BUILDINGS SERVICE

    E-Print Network [OSTI]

    (Wax, cleansers, cloths, etc.) 7. CONTRACT SERVICES (Window washing, waste and snow removal) B. HEATING a share of building support/common areas such as elevator lobbies, building corridors, and floor service areas. Floor service areas typically include restrooms, janitor rooms, telephone closets, electrical

  15. PVT -- A photovoltaic/thermal concentrator total energy system: Final phase 1 project report. Building opportunities in the U.S. for photovoltaics (PV:BONUS) Two

    SciTech Connect (OSTI)

    1998-12-31

    United Solar completed its Phase 1 report and its proposal for Phase 2 of the PVBONUS Two program at the end of March 1998. At the same time, it also completed and submitted a proposal to the California Energy Commission PIER program for additional funding to cost-share development and testing of a pre-production model of the PVT-14. It was unsuccessful in both of these proposed efforts. While waiting for the proposal decisions, work continued in April and May to analyze the system design and component decisions described below. This document is a final summation report on the Phase 1 effort of the PVBONUS Two program that describes the key technical issues that United Solar and its subcontractor, Industrial Solar Technology Corporation, worked on in preparation of a Phase 2 award. The decisions described were ones that will guide the design and fabrication of a pre-production prototype of a 1500:1 mirrored concentrator with gallium arsenide cells when United solar resumes its development work. The material below is organized by citing the key components that underwent a design review, what the company considered, what was decided, the name of the expected supplier, if not to be produced in-house, and some information about expected costs. The cost figures given are usually budgetary estimates, not the result of firm quotations or extensive analysis.

  16. University Of California, Berkeley Valley Life Sciences Building

    E-Print Network [OSTI]

    University Of California, Berkeley Valley Life Sciences Building (VLSB) Building Emergency Plan Date Revised: January 2014 Prepared By: Derek Apodaca #12;TABLE OF CONTENTS I. BUILDING INFORMATION 1. Building Name 2. Building Coordinator Name 3. Alternate BC Name 4. Emergency Assembly Area Location 5

  17. Canister storage building natural phenomena hazards

    SciTech Connect (OSTI)

    Tallman, A.M.

    1996-06-01

    This document specifies the natural phenomena loads for the canister storage building in the 200 East Area of the Hanford Site.

  18. Benefits of Commisioning New & Existing Buildings 

    E-Print Network [OSTI]

    Meline, K.

    2011-01-01

    OF COMMISSIONING New & Existing Buildings Ken Meline, PE, CxA, LEED AP CATEE 2011 November 8, 2011 What is Commissioning? Commissioning [k -mi-sh n-ing] ? n. ?Systematic process of assuring by verification and documentation, from the design phase... established by the National Conference on Building Commissioning e e ?Types? of Commissioning ?New Building Commissioning ?Existing Building Commissioning ? Re-Commissioning ? Retro-Commissioning ? Ongoing Commissioning ? Continuous Commissioning...

  19. Contribution of gas phase oxidation of volatile organic compounds to atmospheric carbon monoxide levels in two areas of the United States

    E-Print Network [OSTI]

    Dabdub, Donald

    - house gas, but also the hydroperoxide radical (HO2). HO2 converts nitric oxide to nitrogen dioxideContribution of gas phase oxidation of volatile organic compounds to atmospheric carbon monoxide. Chen, K. Carmody, S. Vutukuru, and D. Dabdub (2007), Contribution of gas phase oxidation of volatile

  20. Building Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roland Risser Director, Building Technologies Office Building Technologies Office Energy Efficiency Starts Here. 2 Building Technologies Office Integrated Approach: Improving...

  1. Bagley University Classroom Building

    High Performance Buildings Database

    Duluth, MN, MN LEED PLATINUM CERTIFIED AND PASSIVHAUS ( certification pending) CLASSROOM BUILDING The Nature Preserve where this building is located is a contiguous natural area, 55 acres in size, deeded to the University in the 1950's for educational and recreational use. The site has hiking trails through old growth hard woods frequented by the university students as well as the public. We were charged with designing a facility to serve eight different departments for the nature portions of their teaching and study at a regional University.

  2. Converging Redundant Sensor Network Information for Improved Building Control

    SciTech Connect (OSTI)

    Dale Tiller; D. Phil; Gregor Henze; Xin Guo

    2007-09-30

    This project investigated the development and application of sensor networks to enhance building energy management and security. Commercial, industrial and residential buildings often incorporate systems used to determine occupancy, but current sensor technology and control algorithms limit the effectiveness of these systems. For example, most of these systems rely on single monitoring points to detect occupancy, when more than one monitoring point could improve system performance. Phase I of the project focused on instrumentation and data collection. During the initial project phase, a new occupancy detection system was developed, commissioned and installed in a sample of private offices and open-plan office workstations. Data acquisition systems were developed and deployed to collect data on space occupancy profiles. Phase II of the project demonstrated that a network of several sensors provides a more accurate measure of occupancy than is possible using systems based on single monitoring points. This phase also established that analysis algorithms could be applied to the sensor network data stream to improve the accuracy of system performance in energy management and security applications. In Phase III of the project, the sensor network from Phase I was complemented by a control strategy developed based on the results from the first two project phases: this controller was implemented in a small sample of work areas, and applied to lighting control. Two additional technologies were developed in the course of completing the project. A prototype web-based display that portrays the current status of each detector in a sensor network monitoring building occupancy was designed and implemented. A new capability that enables occupancy sensors in a sensor network to dynamically set the 'time delay' interval based on ongoing occupant behavior in the space was also designed and implemented.

  3. Building America Expert Meeting: Transforming Existing Buildings...

    Energy Savers [EERE]

    Transforming Existing Buildings through New Media--An Idea Exchange Building America Expert Meeting: Transforming Existing Buildings through New Media--An Idea Exchange This report...

  4. Building America Residential Buildings Energy Efficiency Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings Energy Efficiency Meeting: July 2010 On this page, you may link to the summary report and...

  5. Zn13(CrxAl1-x)27 (x = 0.34-0.37): a new intermetallic phase containing icosahedra as building units

    SciTech Connect (OSTI)

    Thimmaiah, Srinivasa; Han, Mi-Kyung; Miller, Gordon J.

    2011-03-13

    The title compounds Zn{sub 13}(Cr{sub x}Al{sub 1-x}){sub 27} (x = 0.34-0.37) were obtained by melting the pure elements at 923 K, and followed by a heat treatment at 723 K in a tantalum container. According to single crystal structural analysis, the title compounds crystallize in the rhombohedral system, adopting a new structure type (R-3m, a = 7.5971(8), c = 36.816(6), for crystal I). Single crystal X-ray structural analysis reveals a statistical mixing of Cr/Al in their crystallographic positions. Single crystal and powder X-ray diffraction as well as energy dispersive X-ray analyses suggested the title phase to have a narrow homogeneity range. The substructure of Zn{sub 13}(Cr{sub x}Al{sub 1-x}){sub 27} shows close resemblance with the Mn{sub 3}Al{sub 10} structure type. A bonding analysis, through crystal orbital Hamiltonian populations (COHPs), of 'Cr{sub 9}Al{sub 18}Zn{sub 13}' as a representative composition indicated that both homo- and heteronuclear interactions are important for the stability of this new phase.

  6. Building debris

    E-Print Network [OSTI]

    Dahmen, Joseph (Joseph F. D.)

    2006-01-01

    This thesis relates architectural practices to intelligent use of resources and the reuse of derelict spaces. The initial investigation of rammed earth as a building material is followed by site-specific operations at the ...

  7. Archive Reference Buildings by Building Type: Warehouse

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

  8. Archive Reference Buildings by Building Type: Supermarket

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

  9. Jackson Park Hospital Green Building Medical Center

    SciTech Connect (OSTI)

    William Dorsey; Nelson Vasquez

    2010-03-01

    Jackson Park Hospital completed the construction of a new Medical Office Building on its campus this spring. The new building construction has adopted the City of Chicago�s recent focus on protecting the environment, and conserving energy and resources, with the introduction of green building codes. Located in a poor, inner city neighborhood on the South side of Chicago, Jackson Park Hospital has chosen green building strategies to help make the area a better place to live and work.

  10. Building Technologies Office Overview

    SciTech Connect (OSTI)

    2013-04-01

    Building Technologies Office Overview Presentation for the 2013 Building Technologies Office's Program Peer Review

  11. Building America System Research

    SciTech Connect (OSTI)

    2013-04-01

    Residential Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review

  12. Energy Efficient Buildings Hub

    SciTech Connect (OSTI)

    2013-04-01

    Energy Efficient Buildings HUB Lunch Presentation for the 2013 Building Technologies Office's Program Peer Review

  13. Development of a Training Program for Commercial Building Technicians

    SciTech Connect (OSTI)

    Rinholm, Rod

    2013-05-31

    This project focused on developing and deploying a comprehensive program of 22 training modules, including certification requirements, and accreditation standards for commercial building technicians, to help achieve the full savings potential of energy efficient buildings, equipment, and systems. This curriculum extended the currently available commercial building technician programs -- training a labor force in a growing market area focused on energy efficiency. The program helps to remove a major market impediment to low energy/zero energy commercial building system acceptance, namely a lack of operating personnel capable of handling more complex high efficiency systems. The project developed a training curriculum for commercial building technicians, with particular focus on high-efficiency building technology, and systems. In Phase 1, the project team worked collaboratively in developing a draft training syllabus to address project objectives. The team identified energy efficiency knowledge gaps in existing programs and plans and plans to address the gaps with either modified or new curricula. In Phase 2, appropriate training materials were developed to meet project objectives. This material was developed for alternative modes of delivery, including classroom lecture materials, e-learning elements, video segments, exercises, and hands-on training elements. A Certification and Accreditation Plan and a Commercialization and Sustainability Plan were also investigated and developed. The Project Management Plan was updated quarterly and provided direction on the management approaches used to accomplish the expected project objectives. GTI project management practices tightly coordinate project activities using management controls to deliver optimal customer value. The project management practices include clear scope definition, schedule/budget tracking, risk/issue resolution and team coordination.

  14. Supplemental Figures and Tables for Groundfish EFH Review Phase 1 Report "Federal and State Marine Protected Areas Type of Fishing Restriction"

    E-Print Network [OSTI]

    Goldfinger, Chris

    "Federal and State Marine Protected Areas ­ Type of Fishing Restriction" Author and state MPAs depicted in map figures, categorized by level of fishing restriction Fishing Restriction BEFORE AFTER Commercial and Recreational Fishing Prohibited

  15. Laboratory simulation of subsurface airflow beneath a building

    E-Print Network [OSTI]

    Corsello, Joseph William

    2014-01-01

    Vapor intrusion is the vapor-phase migration of volatile organic compounds (VOCs) into buildings due to subsurface soil or groundwater contamination. Oxygen replenishment rates beneath a building are significant for ...

  16. Office Buildings - Full Report

    Gasoline and Diesel Fuel Update (EIA)

    PDF Office Buildings Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17...

  17. DESIGN-PHASE COMMISSIONING This procedure defines the process for performing design-phase commissioning (Cx) on new

    E-Print Network [OSTI]

    Kamat, Vineet R.

    -phase commissioning (Cx) on new building, building addition and building renovation projects. When performed-phase Cx is a process by which a building Commissioning Authority (CxA) assists the U-M Design Manager Manager, but the CxA shall provide the Design Manager with recommendations on the MEP design to assure

  18. The Consortium of Advanced Residential Buildings (CARB) - A Building America Energy Efficient Housing Partnership

    SciTech Connect (OSTI)

    Robb Aldrich; Lois Arena; Dianne Griffiths; Srikanth Puttagunta; David Springer

    2010-12-31

    This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis by 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at Clipper Mill (mixed, humid climate) - William Ryan Homes - Tampa (hot, humid climate).

  19. Multiple missions: The 300 Area in Hanford Site history

    SciTech Connect (OSTI)

    Gerber, M.S.

    1993-09-01

    This report provides an historical overview of the role of the 300 Area buildings at the Hanford Reservation. Topics covered are: Early fuel fabrication at the Hanford site (313 and 314 Buildings); N reactor fuel fabrication in the 300 Area; 305 test pile was Hanford`s first operating reactor; Early process improvement chemical research (321 and 3706 Buildings); Major 1952 and 1953 expansions in the 300 area (325 and 329 Buildings); Early 300 area facilities constructed to support reactor development (326 and 327 Buildings); Hanford site ventures with the peaceful atom (309, 308 and 318 Buildings); Modern 300 Area Buildings; Significant miscellaneous buildings in the 300 area; 300 Area process waste handling and disposal.

  20. Buildings & Connective

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    Signage Program Complete New Signage, Wayfinding, Campus Identity Program 2 4 4 0 2 2 0 4 2 4 2 5 16 47 Sciences Greenway Interim Landscape New Green Pathway Connecting Parking, Building Entrances Courtyard 2 2 0 0 4 2 0 0 4 2 2 0 16 34 Ashland/Taylor Lot G/K Interim Green Gate Provide New Green

  1. Better Buildings 

    E-Print Network [OSTI]

    Neukomm, M.

    2012-01-01

    replicable programs/solutions. Emphasis on home energy improvement Federal Performance-based Contracting Challenge ?Leverage ARRA ?Overcome Barriers ?Drive Action/Change ?Grow Partnerships Better Buildings promotes energy efficiency as top... Senior Executive --Announce innovations/market solutions Take Action -Showcase project within 9 months -Organization wide plan, schedule and milestones within 9 months Report Results -Share information and implementation models -Share...

  2. Buildings*","Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7 Relative Standard ErrorsYear Jan Feb MarA6. BuildingB7. Building6.

  3. Buildings*","Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7 Relative Standard ErrorsYear Jan Feb MarA6. BuildingB7. Building6.8.

  4. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Technology Solutions for New and Existing Homes: Investigating Solutions to Wind Washing Issues in Two-Story Florida Homes: Phase 2, Southeastern United States...

  5. Building America Technology Solutions for New and Existing Homes...

    Energy Savers [EERE]

    Issues in Two-Story Florida Homes: Phase 2, Southeastern United States Building America Technology Solutions for New and Existing Homes: Investigating Solutions to Wind Washing...

  6. Btu)","per Building

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Number of Buildings (thousand)","Floorspace (million square feet)","Floorspace per Building (thousand square feet)","Total (trillion Btu)","per Building (million Btu)","per...

  7. Building Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roland Risser Director, Building Technologies Office Building Technologies Office Overview Our Homes and Buildings Use 40% of Our Nation's Energy and 75% of Electricity Energy Use...

  8. Building Performance Simulation

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01

    Y (2008). DeST—An integrated building simulation toolkit,Part ? : Fundamentals. Building Simulation, 1: 95 ? 110.Y (2008). DeST—An integrated building simulation toolkit,

  9. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Rhode Island Building Code Standards Committee adopts, promulgates and administers the state building code. Compliance is determined through the building permit and inspection process by local...

  10. Accessible buildings Moderately accessible buildings*

    E-Print Network [OSTI]

    Lee, Dongwon

    Campus neighborhood map Moderately accessible paths** Accessible building entrance via parking lot to the University Park campus. This map, provided by UAC, is designed to assist persons with disabilities in finding accessibility. Your observations and suggestions regarding architectural For more information on UAC, you can

  11. A cleaning energy area conception on Fenhe river valley

    SciTech Connect (OSTI)

    Guan, C. [Shanxi Environmental Protection Bureau (China)

    1997-12-31

    Fenhe river valley has a dense population, abundant resources and coal mining, coke making, metallurgy industry concentration. Therefore, it is a seriously pollute area. The paper puts forward a concept of building up a clean energy area through process improvement and change of energy structure to realize ecological economy. The analysis shows that the indigenous method used for coking produces serious pollution, the resource cannot be used comprehensively, the regular machinery coke has a high investment in capital construction, but not much economic benefit. All are disadvantages for health and sustainable economic development. Also, this paper describes a LJ-95 machinery coke oven which has lower investment, higher product quality, less pollution, and higher economical benefit. LJ-95 coke oven will be the technical basis for construction of a clean energy area. The clean energy area concept for the Fenhe river valley consists of a coal gas pipeline network during the first phase and building electricity generation using steam turbines in the second phase.

  12. 1999 Commercial Building Characteristics--Building Activity Comparison

    U.S. Energy Information Administration (EIA) Indexed Site

    Building Activity Comparison Percentage of Floorspace and Buildings by Principal Building Activity, 1999 Percentage of Floorspace and Buildings by Principal Building Activity,...

  13. Minimizing User Burden in Building Energy Analysis | Department...

    Broader source: Energy.gov (indexed) [DOE]

    performance levels, etc. The analysis of single buildings will be based directly on EnergyPlus. For the modeling of extended urban areas involving an aggregate of buildings, TAI...

  14. Buildings Interoperability Planning: Connected Buildings Interoperabil...

    Broader source: Energy.gov (indexed) [DOE]

    Vision Context Steve Widergren PNNL 11 March 2015 Topics Purpose of meeting Buildings automation in the transformative time of connectivity Interoperability - a connected buildings...

  15. The Economics of Green Building

    E-Print Network [OSTI]

    Eichholtz, Piet; Kok, Nils; Quigley, John M.

    2010-01-01

    Rental Sample Control Buildings PSM Controls Rated BuildingsSample Control Buildings PSM Controls Appendix Table A2 (Sample Control Buildings PSM Controls Rated Buildings Sales

  16. Texas LoanSTAR Monitoring & Analysis Program- Characterizing Loanstar Buildings & Energy Consumption 

    E-Print Network [OSTI]

    Challa, V.; Athar, A.; Abbas, M.; Claridge, D.; Haberl, J.

    1992-01-01

    This paper presents an overview of the buildings participating in the Texas LoanSTAR program. In this paper, we categorized the buildings in terms of their number, size, percent area effected, types of buildings, types of ...

  17. Text-Alternative Version of Building America Webinar: Research for Real-World Results

    Broader source: Energy.gov [DOE]

    This webinar, held on Dec. 17, 2014, featured Eric Werling, Building America Program Coordinator, providing an overview of key Building America accomplishments, current research focus areas, and future strategies for advancing market adoption of energy efficient building technologies and practices.

  18. Map-likelihood phasing

    SciTech Connect (OSTI)

    Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov [Bioscience Division, Mail Stop M888, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2001-12-01

    A map-likelihood function is described that can yield phase probabilities with very low model bias. The recently developed technique of maximum-likelihood density modification [Terwilliger (2000 ?), Acta Cryst. D56, 965–972] allows a calculation of phase probabilities based on the likelihood of the electron-density map to be carried out separately from the calculation of any prior phase probabilities. Here, it is shown that phase-probability distributions calculated from the map-likelihood function alone can be highly accurate and that they show minimal bias towards the phases used to initiate the calculation. Map-likelihood phase probabilities depend upon expected characteristics of the electron-density map, such as a defined solvent region and expected electron-density distributions within the solvent region and the region occupied by a macromolecule. In the simplest case, map-likelihood phase-probability distributions are largely based on the flatness of the solvent region. Though map-likelihood phases can be calculated without prior phase information, they are greatly enhanced by high-quality starting phases. This leads to the technique of prime-and-switch phasing for removing model bias. In prime-and-switch phasing, biased phases such as those from a model are used to prime or initiate map-likelihood phasing, then final phases are obtained from map-likelihood phasing alone. Map-likelihood phasing can be applied in cases with solvent content as low as 30%. Potential applications of map-likelihood phasing include unbiased phase calculation from molecular-replacement models, iterative model building, unbiased electron-density maps for cases where 2F{sub o} ? F{sub c} or ?{sub A}-weighted maps would currently be used, structure validation and ab initio phase determination from solvent masks, non-crystallographic symmetry or other knowledge about expected electron density.

  19. Building Envelope Stakeholder Workshop

    Broader source: Energy.gov [DOE]

    Oak Ridge National Laboratory is hosting a building envelope stakeholder workshop on behalf of the DOE Building Technologies Office.

  20. Energy use in office buildings

    SciTech Connect (OSTI)

    None

    1980-10-01

    This is the report on Task IB, Familiarization with Additional Data Collection Plans of Annual Survey of BOMA Member and Non-Member Buildings in 20 Cities, of the Energy Use in Office Buildings project. The purpose of the work was to monitor and understand the efforts of the Building Owners and Managers Association International (BOMA) in gathering an energy-use-oriented data base. In order to obtain an improved data base encompassing a broad spectrum of office space and with information suitable for energy analysis in greater detail than is currently available, BOMA undertook a major data-collection effort. Based on a consideration of geographic area, climate, population, and availability of data, BOMA selected twenty cities for data collection. BOMA listed all of the major office space - buildings in excess of 40,000 square feet - in each of the cities. Tax-assessment records, local maps, Chamber of Commerce data, recent industrial-development programs, results of related studies, and local-realtor input were used in an effort to assemble a comprehensive office-building inventory. In order to verify the accuracy and completeness of the building lists, BOMA assembled an Ad-Hoc Review Committee in each city to review the assembled inventory of space. A questionnaire on office-building energy use and building characteristics was developed. In each city BOMA assembled a data collection team operating under the supervision of its regional affiliate to gather the data. For each city a random sample of buildings was selected, and data were gathered. Responses for over 1000 buildings were obtained.

  1. Converging Redundant Sensor Network Information for Improved Building Control

    SciTech Connect (OSTI)

    Dale K. Tiller; Gregor P. Henze

    2005-12-01

    This project is investigating the development and application of sensor networks to enhance building energy management and security. Commercial, industrial and residential buildings often incorporate systems used to determine occupancy, but current sensor technology and control algorithms limit the effectiveness of these systems. For example, most of these systems rely on single monitoring points to detect occupancy, when more than one monitoring point would improve system performance. Phase I of the project focused on instrumentation and data collection. In Phase I, a new occupancy detection system was developed, commissioned and installed in a sample of private offices and open-plan office workstations. Data acquisition systems were developed and deployed to collect data on space occupancy profiles. In phase II of the project, described in this report, we demonstrate that a network of several sensors provides a more accurate measure of occupancy than is possible using systems based on single monitoring points. We also establish that analysis algorithms can be applied to the sensor network data stream to improve the accuracy of system performance in energy management and security applications, and show that it may be possible to use sensor network pulse rate to distinguish the number of occupants in a space. Finally, in this phase of the project we also developed a prototype web-based display that portrays the current status of each detector in a sensor network monitoring building occupancy. This basic capability will be extended in the future by applying an algorithm-based inference to the sensor network data stream, so that the web page displays the likelihood that each monitored office or area is occupied, as a supplement to the actual status of each sensor.

  2. 1 Zoology Building 2 Cruickshank Building

    E-Print Network [OSTI]

    Neri, Peter

    1 Zoology Building 2 Cruickshank Building 3 23 St Machar Drive 4 King's Museum (Old Town House) 5 The Hub 6 St Mary's 7 Fraser Noble Building 8 Elphinstone Road Halls 9 The Sir Duncan Rice Library 10 Meston Building 11 Chaplaincy Centre 12 Confucius Institute 13 Security Office/Mailroom 14 Counselling

  3. Postirradiation Testing Laboratory (327 Building)

    SciTech Connect (OSTI)

    Kammenzind, D.E.

    1997-05-28

    A Standards/Requirements Identification Document (S/RID) is the total list of the Environment, Safety and Health (ES and H) requirements to be implemented by a site, facility, or activity. These requirements are appropriate to the life cycle phase to achieve an adequate level of protection for worker and public health and safety, and the environment during design, construction, operation, decontamination and decommissioning, and environmental restoration. S/RlDs are living documents, to be revised appropriately based on change in the site`s or facility`s mission or configuration, a change in the facility`s life cycle phase, or a change to the applicable standards/requirements. S/RIDs encompass health and safety, environmental, and safety related safeguards and security (S and S) standards/requirements related to the functional areas listed in the US Department of Energy (DOE) Environment, Safety and Health Configuration Guide. The Fluor Daniel Hanford (FDH) Contract S/RID contains standards/requirements, applicable to FDH and FDH subcontractors, necessary for safe operation of Project Hanford Management Contract (PHMC) facilities, that are not the direct responsibility of the facility manager (e.g., a site-wide fire department). Facility S/RIDs contain standards/requirements applicable to a specific facility that are the direct responsibility of the facility manager. S/RlDs are prepared by those responsible for managing the operation of facilities or the conduct of activities that present a potential threat to the health and safety of workers, public, or the environment, including: Hazard Category 1 and 2 nuclear facilities and activities, as defined in DOE 5480.23. Selected Hazard Category 3 nuclear, and Low Hazard non-nuclear facilities and activities, as agreed upon by RL. The Postirradiation Testing Laboratory (PTL) S/RID contains standards/ requirements that are necessary for safe operation of the PTL facility, and other building/areas that are the direct responsibility of the specific facility manager. The specific DOE Orders, regulations, industry codes/standards, guidance documents and good industry practices that serve as the basis for each element/subelement are identified and aligned with each subelement.

  4. Berkeley Lab to Help Build Straw Bale Building

    SciTech Connect (OSTI)

    Worsham, S.A.; Van Mechelen, G.

    1998-12-01

    The Shorebird Environmental Learning Center (SELC) is a new straw bale building that will showcase current and future technologies and techniques that will reduce the environmental impacts of building construction and operations. The building will also serve as a living laboratory to test systems and monitor their performance. The project will be the model for a building process that stops using our precious resources and reduces waste pollution. The rice straw that will be used for the bale construction is generally waste material that is typically burned--millions of tons of it a year--especially in California's San Joaquin Valley. Buildings have significant impacts on the overall environment. Building operations, including lighting, heating, and cooling, consume about 30% of the energy used in the United States. Building construction and the processes into making building materials consume an additional 8% of total energy. Construction also accounts for 39% of wood consumed in the U S, while 25% of solid waste volume is construction and demolition (C &D) debris. The SELC will incorporate a variety of materials and techniques that will address these and other issues, while providing a model of environmentally considered design for Bay Area residents and builders. Environmental considerations include energy use in construction and operations, selection of materials, waste minimization, and indoor air quality. We have developed five major environmental goals for this project: (1) Minimize energy use in construction and operations; (2) Employ material sources that are renewable, salvaged, recycled, and/or recyclable; (3) Increase building lifespan with durable materials and designs that permit flexibility and modification with minimal demolition; (4) Reduce and strive to eliminate construction debris; and (5) Avoid products that create toxic pollutants and make a healthy indoor environment.

  5. Building Energy Efficiency in Rural China

    SciTech Connect (OSTI)

    Evans, Meredydd; Yu, Sha; Song, Bo; Deng, Qinqin; Liu, Jing; Delgado, Alison

    2014-04-01

    Rural buildings in China now account for more than half of China’s total building energy use. Forty percent of the floorspace in China is in rural villages and towns. Most of these buildings are very energy inefficient, and may struggle to meet basic needs. They are cold in the winter, and often experience indoor air pollution from fuel use. The Chinese government plans to adopt a voluntary building energy code, or design standard, for rural homes. The goal is to build on China’s success with codes in urban areas to improve efficiency and comfort in rural homes. The Chinese government recognizes rural buildings represent a major opportunity for improving national building energy efficiency. The challenges of rural China are also greater than those of urban areas in many ways because of the limited local capacity and low income levels. The Chinese government wants to expand on new programs to subsidize energy efficiency improvements in rural homes to build capacity for larger-scale improvement. This article summarizes the trends and status of rural building energy use in China. It then provides an overview of the new rural building design standard, and describes options and issues to move forward with implementation.

  6. Lessons Learned from Continuous Commissioning® of a LEED Gold Building in Texas 

    E-Print Network [OSTI]

    Bynum, J.; Claridge, D. E.

    2008-09-22

    The subject building is a relatively new building with 120,000 square feet located in Texas and was the first LEED® Gold building in the area. To earn the title of a green building, the designers of this high performance building included many...

  7. Buildings*","Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7 Relative Standard ErrorsYear Jan Feb MarA6. BuildingB7.

  8. Building America Building Science Translator

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De pEnergy IndustrialofofBuilding Science Translator February

  9. YMCA Building 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    in Texas. (Nay 1971) Eddy Joe Williams, B S ~ , Texas A&M University; Directed by: Dr. Donald E. Farris Costs and returns were budgeted for selected cattle feeding systems in four areas of Texas for both a 1500 and a 20, 000 head capacity feedlot... on feed, a wide variety of systems with different rates of gain and conversion ratios were selected, The ob]ectives of the study were to determine (1) the competitive advantage of feeding cattle in each area, (2) the optimum location of each cattle...

  10. Gas-Phase Spectroscopy of Biomolecular

    E-Print Network [OSTI]

    de Vries, Mattanjah S.

    Gas-Phase Spectroscopy of Biomolecular Building Blocks Mattanjah S. de Vries1 and Pavel Hobza2 1, REMPI, computational chemistry, spectral hole burning, jet cooling Abstract Gas-phase spectroscopy lends. In recent years, we have seen enormous progress in the study of biomolecular building blocks in the gas

  11. Building America Top Innovations Hall of Fame Profile - Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Top Innovations Hall of Fame Profile - Building America's Top Innovations Propel the Home Building Industry toward Higher Performance Building America Top...

  12. Building Science-Based Climate Maps - Building America Top Innovation...

    Energy Savers [EERE]

    Building Science-Based Climate Maps - Building America Top Innovation Building Science-Based Climate Maps - Building America Top Innovation Photo showing climate zone maps based on...

  13. Better Buildings Neighborhood Initiative Upgrades 100,000 Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Neighborhood Initiative Upgrades 100,000 Buildings, Saves 730 Million on Energy Bills Better Buildings Neighborhood Initiative Upgrades 100,000 Buildings, Saves...

  14. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01

    indoor air quality, buildings energy performance, computervoluntary building-energy-performance guidelines. Recentlyrelated to building-energy-performance standards, guidelines

  15. Better Buildings Neighborhood Program: BetterBuildings Lowell Final Report

    SciTech Connect (OSTI)

    Heslin, Thomas

    2014-01-31

    The City of Lowell set four goals at the beginning of the Better Buildings Neighborhood Program: 1. Improve the Downtown Historic Park District’s Carbon Footprint 2. Develop a sustainable and replicable model for energy efficiency in historic buildings 3. Create and retain jobs 4. Promote multi?stakeholder partnerships The City of Lowell, MA was awarded $5 million in May 2010 to conduct energy efficiency retrofits within the downtown National Historical Park (NHP). The City’s target was to complete retrofits in 200,000 square feet of commercial space and create 280 jobs, while adhering to the strict historical preservation regulations that govern the NHP. The development of a model for energy efficiency in historic buildings was successfully accomplished. BetterBuildings Lowell’s success in energy efficiency in historic buildings was due to the simplicity of the program. We relied strongly on the replacement of antiquated HVAC systems and air sealing and a handful of talented energy auditors and contractors. BetterBuildings Lowell was unique for the Better Buildings Neighborhood Program because it was the only program that focused solely on commercial properties. BetterBuildings Lowell did target multi?family properties, which were reported as commercial, but the majority of the building types and uses were commercial. Property types targeted were restaurants, office buildings, museums, sections of larger buildings, mixed use buildings, and multifamily buildings. This unique fabric of building type and use allows for a deeper understanding to how different properties use energy. Because of the National Historical Park designation of downtown Lowell, being able to implement energy efficiency projects within a highly regulated historical district also provided valuable research and precedent proving energy efficiency projects can be successfully completed in historical districts and historical buildings. Our program was very successful in working with the local Historic Board, which has jurisdiction in the NHP. The Historic Board was cooperative with any exterior renovations as long as they were not changing the existing aesthetics of the property. If we were replacing a rooftop condenser it needed to be placed where the existing rooftop condenser was located. Receiving proper approval from the Historic Board for any external energy conservation measures was known by all the participating contractors. One area of the retrofits that was contentious regarded venting of the new HVAC equipment. Installing external stacks was not allowed so the contractors had to negotiate with the Historic Board regarding the proper way to vent the equipment that met the needs mechanically and aesthetically. Overall BetterBuildings Lowell was successful at implementing energy and cost saving measures into 31 commercial properties located within the NHP. The 31 retrofits had 1,554,768 square feet of commercial and multifamily housing and a total predicted energy savings exceeding 22,869 a year. Overall the City of Lowell achieved its target goals and is satisfied with the accomplishments of the BetterBuildings program. The City will continue to pursue energy efficient programs and projects.

  16. Building America

    SciTech Connect (OSTI)

    Brad Oberg

    2010-12-31

    Builders generally use a 'spec and purchase' business management system (BMS) when implementing energy efficiency. A BMS is the overall operational and organizational systems and strategies that a builder uses to set up and run its company. This type of BMS treats building performance as a simple technology swap (e.g. a tank water heater to a tankless water heater) and typically compartmentalizes energy efficiency within one or two groups in the organization (e.g. purchasing and construction). While certain tools, such as details, checklists, and scopes of work, can assist builders in managing the quality of the construction of higher performance homes, they do nothing to address the underlying operational strategies and issues related to change management that builders face when they make high performance homes a core part of their mission. To achieve the systems integration necessary for attaining 40% + levels of energy efficiency, while capturing the cost tradeoffs, builders must use a 'systems approach' BMS, rather than a 'spec and purchase' BMS. The following attributes are inherent in a systems approach BMS; they are also generally seen in quality management systems (QMS), such as the National Housing Quality Certification program: Cultural and corporate alignment, Clear intent for quality and performance, Increased collaboration across internal and external teams, Better communication practices and systems, Disciplined approach to quality control, Measurement and verification of performance, Continuous feedback and improvement, and Whole house integrated design and specification.

  17. MIT and Building/Construction & Related Industries MIT Industry Brief

    E-Print Network [OSTI]

    Kastner, Marc A.

    MIT and Building/Construction & Related Industries MIT Industry Brief MIT's Industrial Liaison-617-253-2691, e-mail us at liaison@ilp.mit.edu, or visit http://ilp.mit.edu. MIT and Building and education on topics important to build- ing, construction, and related areas and industries such as

  18. Office Buildings: Consumption Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    and Type of Office Building Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) Dollars per Million Btu All Office Buildings 1,089 1,475 90.5 16.32...

  19. Building Energy Code

    Broader source: Energy.gov [DOE]

    In 2006 Iowa enacted H.F. 2361, requiring the State Building Commissioner to adopt energy conservation requirements based on a nationally recognized building energy code. The State Building Code...

  20. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01

    platforms and  building automation systems (BAS), a including  basic  building  automation  control,  fault Smart building power management automation. Building

  1. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01

    United States and China, Energy and Buildings, 2013. Underin Singapore. Energy and Buildings, 37, 167-174. Eom, J. ,building operations. Energy and Buildings, 33, 783–791.

  2. Health Care Buildings: Equipment Table

    U.S. Energy Information Administration (EIA) Indexed Site

    Equipment Table Buildings, Size and Age Data by Equipment Types for Health Care Buildings Number of Buildings (thousand) Percent of Buildings Floorspace (million square feet)...

  3. Building America Webinar: Ventilation in Multifamily Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    multifamily buildings, including how to successfully implement those strategies through smart design, specification, and construction techniques. webinarventilationmultifamily...

  4. Building Energy Asset Score: Building Owners

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Building Energy Asset Score is a national standardized tool for evaluating the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and identifies opportunities for users to invest in energy efficiency upgrades. It is web-based and free to use.

  5. Urban Integrated Industrial Cogeneration Systems Analysis. Phase II final report

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    Through the Urban Integrated Industrial Cogeneration Systems Analysis (UIICSA), the City of Chicago embarked upon an ambitious effort to identify the measure the overall industrial cogeneration market in the city and to evaluate in detail the most promising market opportunities. This report discusses the background of the work completed during Phase II of the UIICSA and presents the results of economic feasibility studies conducted for three potential cogeneration sites in Chicago. Phase II focused on the feasibility of cogeneration at the three most promising sites: the Stockyards and Calumet industrial areas, and the Ford City commercial/industrial complex. Each feasibility case study considered the energy load requirements of the existing facilities at the site and the potential for attracting and serving new growth in the area. Alternative fuels and technologies, and ownership and financing options were also incorporated into the case studies. Finally, site specific considerations such as development incentives, zoning and building code restrictions and environmental requirements were investigated.

  6. Model Building Energy Code

    Broader source: Energy.gov [DOE]

    The Energy Efficiency Building Performance Standards (EEBPS) are statewide minimum requirements that all new construction and additions to existing buildings must satisfy. Exceptions include...

  7. Building-Level Intensities

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Electricity Consumption",,,,,,"Electricity Expenditures" ,"per Building (thousand kWh)","per...

  8. Building Scale DC Microgrids

    E-Print Network [OSTI]

    Marnay, Chris

    2014-01-01

    ABORATORY Building Scale DC Microgrids Chris Marnay, Stevenemployer. Building Scale DC Microgrids Chris Marnay, IEEEgenerally known as microgrids (or µgrids). The dominance of

  9. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Energy Conservation Construction Code of New York State (ECCCNYS) requires that all government, commercial and residential buildings, including renovations involving building system replaceme...

  10. Building Energy Codes Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program U.S. Department of Energy Building Technologies Office Jeremy Williams, Project Manager Building Technologies Peer Review April 2014 Presentation Overview: * Introduction *...

  11. Building Energy Modeling Library

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    303-567-8609 April 2, 2013 Photo by : Dennis Schroeder, NREL 23250 2 | Building Technologies Office eere.energy.gov Project Overview Building Energy Modeling (BEM)...

  12. Pitfalls in Building and HVAC Audits 

    E-Print Network [OSTI]

    Gidwani, B. N.

    1985-01-01

    The purpose of an energy audit is to identify and analyze areas of energy consumption and to propose methods of conservation. In the process of completing an audit the following areas of consumption should be considered: 0 Building Envelope 0 Air...

  13. Program Building Committee's Central Planning Group. 

    E-Print Network [OSTI]

    Richardson, Burl B.; Marshall, Mary G.

    1982-01-01

    of local citizens in program development. The basic units of the county program building committee are: ? CENTRAL PLANNING GROUP (executive committee or overall committee - see pages 4-5) ? PROGRAM AREA COMMITTEES (sometimes called subcommittees... chairmen ? other key leaders ...-.. ...-.....-.....-.. " CENTRAL ....... ....... .............. '" PLANNING o 000 GROUP Program Area Committees as needed 4 Another organizational structure entails a large county committee that, as a whole, serves...

  14. Jackson Park Hospital Green Building Medical Center

    SciTech Connect (OSTI)

    William Dorsey; Nelson Vasquez

    2010-03-31

    Jackson Park Hospital completed the construction of a new Medical Office Building on its campus this spring. The new building construction has adopted the City of Chicago's recent focus on protecting the environment, and conserving energy and resources, with the introduction of green building codes. Located in a poor, inner city neighborhood on the South side of Chicago, Jackson Park Hospital has chosen green building strategies to help make the area a better place to live and work. The new green building houses the hospital's Family Medicine Residency Program and Specialty Medical Offices. The residency program has been vital in attracting new, young physicians to this medically underserved area. The new outpatient center will also help to allure needed medical providers to the community. The facility also has areas designated to women's health and community education. The Community Education Conference Room will provide learning opportunities to area residents. Emphasis will be placed on conserving resources and protecting our environment, as well as providing information on healthcare access and preventive medicine. The new Medical Office Building was constructed with numerous energy saving features. The exterior cladding of the building is an innovative, locally-manufactured precast concrete panel system with integral insulation that achieves an R-value in excess of building code requirements. The roof is a 'green roof' covered by native plantings, lessening the impact solar heat gain on the building, and reducing air conditioning requirements. The windows are low-E, tinted, and insulated to reduce cooling requirements in summer and heating requirements in winter. The main entrance has an air lock to prevent unconditioned air from entering the building and impacting interior air temperatures. Since much of the traffic in and out of the office building comes from the adjacent Jackson Park Hospital, a pedestrian bridge connects the two buildings, further decreasing the amount of unconditioned air that enters the office building. The HVAC system has an Energy Efficiency Rating 29% greater than required. No CFC based refrigerants were used in the HVAC system, thus reducing the emission of compounds that contribute to ozone depletion and global warming. In addition, interior light fixtures employ the latest energy-efficient lamp and ballast technology. Interior lighting throughout the building is operated by sensors that will automatically turn off lights inside a room when the room is unoccupied. The electrical traction elevators use less energy than typical elevators, and they are made of 95% recycled material. Further, locally manufactured products were used throughout, minimizing the amount of energy required to construct this building. The primary objective was to construct a 30,000 square foot medical office building on the Jackson Park Hospital campus that would comply with newly adopted City of Chicago green building codes focusing on protecting the environment and conserving energy and resources. The energy saving systems demonstrate a state of the-art whole-building approach to energy efficient design and construction. The energy efficiency and green aspects of the building contribute to the community by emphasizing the environmental and economic benefits of conserving resources. The building highlights the integration of Chicago's new green building codes into a poor, inner city neighborhood project and it is designed to attract medical providers and physicians to a medically underserved area.

  15. Energy ForesightNordic H2 Building the Nordic Research

    E-Print Network [OSTI]

    H2 Energy ForesightNordic H2 Building the Nordic Research and Innovation Area in Hydrogen Summary Report January 2005 #12;#12;Energy ForesightNordic H2 Building the Nordic Research and Innovation Area Region 7 Competitiveness of Nordic Countries 7 Research and Development in New Energy Technologies 8

  16. Site Safety and Health Plan (Phase 3) for the treatability study for in situ vitrification at Seepage Pit 1 in Waste Area Grouping 7, Oak Ridge National Laboratory, Oak Ridge, TN

    SciTech Connect (OSTI)

    Spalding, B.P.; Naney, M.T.

    1995-06-01

    This plan is to be implemented for Phase III ISV operations and post operations sampling. Two previous project phases involving site characterization have been completed and required their own site specific health and safety plans. Project activities will take place at Seepage Pit 1 in Waste Area Grouping 7 at ORNL, Oak Ridge, Tennessee. Purpose of this document is to establish standard health and safety procedures for ORNL project personnel and contractor employees in performance of this work. Site activities shall be performed in accordance with Energy Systems safety and health policies and procedures, DOE orders, Occupational Safety and Health Administration Standards 29 CFR Part 1910 and 1926; applicable United States Environmental Protection Agency requirements; and consensus standards. Where the word ``shall`` is used, the provisions of this plan are mandatory. Specific requirements of regulations and orders have been incorporated into this plan in accordance with applicability. Included from 29 CFR are 1910.120 Hazardous Waste Operations and Emergency Response; 1910.146, Permit Required - Confined Space; 1910.1200, Hazard Communication; DOE Orders requirements of 5480.4, Environmental Protection, Safety and Health Protection Standards; 5480.11, Radiation Protection; and N5480.6, Radiological Control Manual. In addition, guidance and policy will be followed as described in the Environmental Restoration Program Health and Safety Plan. The levels of personal protection and the procedures specified in this plan are based on the best information available from reference documents and site characterization data. Therefore, these recommendations represent the minimum health and safety requirements to be observed by all personnel engaged in this project.

  17. High Performance Sustainable Buildings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Buildings Greening Transportation Green Purchasing & Green Technology Pollution Prevention Science Serving Sustainability ENVIRONMENTAL SUSTAINABILITY GOALS at...

  18. Better Buildings Neighborhood Program

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy Better Buildings Neighborhood Program: Business Models Guide, October 27, 2011.

  19. Large-area semi-transparent light-sensitive nanocrystal skins

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    -area UV/visible sensing in windows and facades of smart buildings. ©2012 Optical Society of America OCIS

  20. Demolition/Construction to Close Parking Areas Near Accelerator...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DemolitionConstruction to Close Parking Areas Near Accelerator Site Entrance Demolition of the two Radiation Control Department trailers and Building 52 is expected to begin on...

  1. Federal Energy Management Program Areas | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    areas. Sustainable Buildings and Campuses Operations and Maintenance Water Use Reduction Data Center Efficiency Sustainable Federal Fleets Laboratories for the 21st Century FEMP...

  2. BUILDING MATERIALS RECLAMATION PROGRAM

    SciTech Connect (OSTI)

    David C. Weggel; Shen-En Chen; Helene Hilger; Fabien Besnard; Tara Cavalline; Brett Tempest; Adam Alvey; Madeleine Grimmer; Rebecca Turner

    2010-08-31

    This report describes work conducted on the Building Materials Reclamation Program for the period of September 2008 to August 2010. The goals of the project included selecting materials from the local construction and demolition (C&D) waste stream and developing economically viable reprocessing, reuse or recycling schemes to divert them from landfill storage. Educational resources as well as conceptual designs and engineering feasibility demonstrations were provided for various aspects of the work. The project was divided into two distinct phases: Research and Engineering Feasibility and Dissemination. In the Research Phase, a literature review was initiated and data collection commenced, an advisory panel was organized, and research was conducted to evaluate high volume C&D materials for nontraditional use; five materials were selected for more detailed investigations. In the Engineering Feasibility and Dissemination Phase, a conceptual study for a regional (Mecklenburg and surrounding counties) collection and sorting facility was performed, an engineering feasibility project to demonstrate the viability of recycling or reuse schemes was created, the literature review was extended and completed, and pedagogical materials were developed. Over the two-year duration of the project, all of the tasks and subtasks outlined in the original project proposal have been completed. The Final Progress Report, which briefly describes actual project accomplishments versus the tasks/subtasks of the original project proposal, is included in Appendix A of this report. This report describes the scientific/technical aspects (hypotheses, research/testing, and findings) of six subprojects that investigated five common C&D materials. Table 1 summarizes the six subprojects, including the C&D material studied and the graduate student and the faculty advisor on each subproject.

  3. Building Green in Greensburg: Business Incubator Building

    Office of Energy Efficiency and Renewable Energy (EERE)

    This poster highlights energy efficiency, renewable energy, and sustainable features of the high-performing SunChips Business Incubator building in Greensburg, Kansas.

  4. Building Green in Greensburg: City Hall Building

    Office of Energy Efficiency and Renewable Energy (EERE)

    This poster highlights energy efficiency, renewable energy, and sustainable features of the high-performing City Hall building in Greensburg, Kansas.

  5. Building America Webinar: Building America Research Tools

    Broader source: Energy.gov [DOE]

    This webinar was held on March 18, 2015, and reviewed Building America Research Tools, including Field Test Best Practices, BEopt, and National Residential Efficiency Measures Database.

  6. Variable area light reflecting assembly

    DOE Patents [OSTI]

    Howard, T.C.

    1986-12-23

    Device is described for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles. 9 figs.

  7. Variable area light reflecting assembly

    DOE Patents [OSTI]

    Howard, Thomas C. (Raleigh, NC)

    1986-01-01

    Device for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles.

  8. Hybrid Fiber Reinforced Concrete Incorporated With Phase Change Material

    E-Print Network [OSTI]

    Chuang, Chia-So

    2015-01-01

    characterization and thermal stability." Solar Energycharacterization and thermal stability." Solar Energythermal performance of shape-stabilized phase change material floor used in passive solar buildings." Energy and

  9. 309 Building transition plan

    SciTech Connect (OSTI)

    Graves, C.E.

    1994-08-31

    The preparation for decontamination and decommissioning (transition) of the 309 Building is projected to be completed by the end of the fiscal year (FY) 1998. The major stabilization and decontamination efforts include the Plutonium Recycle Test Reactor (PRTR), fuel storage and transfer pits, Transfer Waste (TW) tanks and the Ion Exchange Vaults. In addition to stabilizing contaminated areas, equipment, components, records, waste products, etc., will be dispositioned. All nonessential systems, i.e., heating, ventilation, and air conditioning (HVAC), electrical, monitoring, fluids, etc., will be shut down and drained/de-energized. This will allow securing of the process, laboratory, and office areas of the facility. After that, the facility will be operated at a level commensurate with its surveillance needs while awaiting D&D. The implementation costs for FY 1995 through FY 1998 for the transition activities are estimated to be $1,070K, $2,115K, $2,939K, and $4,762K, respectively. Costs include an assumed company overhead of 20% and a 30% out year contingency.

  10. Joseph Vance Building, The

    High Performance Buildings Database

    Seattle, WA In 2006, the Rose Smart Growth Investment Fund acquired the historic Joseph Vance Building with the purpose of transforming it into "the leading green and historic class B" building in the marketplace. The terra cotta Vance Building was constructed in 1929 and has 14 floors - 13 floors of offices over ground-floor retail with a basement for mechanical equipment and storage. In 2009 the U.S. Green Building Council (USGBC) awarded the Vance Building LEED for Existing Buildings (EB) Gold certification.

  11. Managing Energy in San Antonio Public Buildings 

    E-Print Network [OSTI]

    Gates, P.

    2013-01-01

    Public Buildings Leading by Example Philip Gates, CEM, CMVP, EIT Energy Manager 1 ESL-KT-13-12-27 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 2 H ow to be gin ? ESL-KT-13-12-27 CATEE 2013: Clean Air... and Policies it i li i Energy Management Responsibilities 3 ESL-KT-13-12-27 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Public Buildings: By the Numbers 4 15,000,000 sqft of building area ESL-KT-13-12-27 CATEE...

  12. Commercial Building Partnerships Replication and Diffusion

    SciTech Connect (OSTI)

    Antonopoulos, Chrissi A.; Dillon, Heather E.; Baechler, Michael C.

    2013-09-16

    This study presents findings from survey and interview data investigating replication efforts of Commercial Building Partnership (CBP) partners that worked directly with the Pacific Northwest National Laboratory (PNNL). PNNL partnered directly with 12 organizations on new and retrofit construction projects, which represented approximately 28 percent of the entire U.S. Department of Energy (DOE) CBP program. Through a feedback survey mechanism, along with personal interviews, PNNL gathered quantitative and qualitative data relating to replication efforts by each organization. These data were analyzed to provide insight into two primary research areas: 1) CBP partners’ replication efforts of technologies and approaches used in the CBP project to the rest of the organization’s building portfolio (including replication verification), and, 2) the market potential for technology diffusion into the total U.S. commercial building stock, as a direct result of the CBP program. The first area of this research focused specifically on replication efforts underway or planned by each CBP program participant. Factors that impact replication include motivation, organizational structure and objectives firms have for implementation of energy efficient technologies. Comparing these factors between different CBP partners revealed patterns in motivation for constructing energy efficient buildings, along with better insight into market trends for green building practices. The second area of this research develops a diffusion of innovations model to analyze potential broad market impacts of the CBP program on the commercial building industry in the United States.

  13. Building America Webinar: Saving Energy in Multifamily Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation Strategies in Multifamily Buildings Webinar Building America Webinar: Advanced Envelope Research for Factory-Built Housing Building America Webinar: Ventilation in...

  14. Building America Top Innovations Hall of Fame Profile - Building...

    Energy Savers [EERE]

    Top Innovations Hall of Fame Profile - Building Energy Optimization Analysis Method (BEopt) Building America Top Innovations Hall of Fame Profile - Building Energy Optimization...

  15. Building America Top Innovations Hall of Fame Profile - Building...

    Energy Savers [EERE]

    Top Innovations Hall of Fame Profile - Building America's Top Innovations Propel the Home Building Industry toward Higher Performance Building America Top Innovations Hall of Fame...

  16. 1999 Commercial Buildings Characteristics--Building Shell and...

    U.S. Energy Information Administration (EIA) Indexed Site

    & Practices > Building Shell & Lighting Conservation Features Building Shell and Lighting Conservation Features The 1999 CBECS collected information on two types of building shell...

  17. Trends in Commercial Buildings--Buildings and Floorspace

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    activity. Number of Commercial Buildings In 1979, the Nonresidential Buildings Energy Consumption Survey estimated that there were 3.8 million commercial buildings in the...

  18. The Building (First Amendment) Regulations 1965 

    E-Print Network [OSTI]

    Pannell, Charles

    1965-01-01

    STATUTORY INSTRUMENTS 1965 No. 2184 BUILDING AND BUILDINGS The Building (First Amendment) Regulations 1965

  19. Plutonium disposition study phase 1b final report

    SciTech Connect (OSTI)

    NONE

    1993-09-15

    This report provides the results of the Westinghouse activities performed as part of the Plutonium Disposition Study Phase 1b. These activities, which took place from May 16, 1993 to September 15, 1993, build upon the work completed in Phase 1a, which concluded on May 15, 1993. In Phase 1a, three Plutonium Disposal Reactor (PDR) options were developed for the disposal of excess weapons grade plutonium from returned and dismantled nuclear weapons. This report documents the results of several tasks that were performed to further knowledge in specific areas leading up to Phase 2 of the PDR Study. The Westinghouse activities for Phase 1b are summarized as follows: (1) resolved technical issues concerning reactor physics including equilibrium cycle calculations, use of gadolinium, moderator temperature coefficient, and others as documented in Section 2.0; (2) analyzed large Westinghouse commercial plants for plutonium disposal; (3) reactor safety issues including the steam line break were resolved, and are included in Section 2.0; (4) several tasks related to the PDR Fuel Cycle were examined; (5) cost and deployment options were examined to determine optimal configuration for both plutonium disposal and tritium production; (6) response to questions from DOE and National Academy of Scientists (NAS) reviewers concerning the PDR Phase 1a report are included in Appendix A.

  20. Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more deta...

  1. Change in historic buildings

    E-Print Network [OSTI]

    Yin, Chien-Ni

    1992-01-01

    Change in historic buildings is inevitable. If these changes are not well-managed, the cityscape will be threatened because a city is composed of buildings. A good city should combine both growth and preservation. Controlling ...

  2. Better Buildings Summit 2015

    Broader source: Energy.gov [DOE]

    The Better Buildings Summit is a national meeting where Better Buildings partners, including AMO’s Better Plants Program partners, and leading organizations can exchange best practices and showcase...

  3. 2015 Better Buildings Summit

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy's Better Buildings Summit is a national meeting where leading organizations across key sectors showcase solutions to cut energy intensity in their buildings portfolio...

  4. Building America Report Template

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Renewable Energy Prepared by Sam Rashkin Building Technologies Office 950 L'Enfant Building, 6 th floor Washington, DC 20024 May 2014 iii iv Table of Contents List of...

  5. Special Building Renovations

    Broader source: Energy.gov [DOE]

    A number of building types have specific energy uses and needs, and as such the renewable opportunities may be different from a typical office building. This section briefly discusses the following...

  6. Guam- Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  7. Building Energy Code

    Broader source: Energy.gov [DOE]

    Missouri does not have a statewide building or energy code for private residential and commercial buildings, and there currently is no state regulatory agency authorized to promulgate, adopt, or...

  8. Building Energy Code

    Broader source: Energy.gov [DOE]

    In 2009 S.B. 1182 created the Oklahoma Uniform Building Code Commission. The 11-member Commission was given the power to conduct rulemaking processes to adopt new building codes. The codes adopted...

  9. Building Energy Code

    Broader source: Energy.gov [DOE]

    Note: Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  10. Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  11. Building Energy Code

    Broader source: Energy.gov [DOE]

    Prior to 1997, South Carolina's local governments adopted and enforced the building codes. In 1997, the law required statewide use of the most up-to-date building codes, which then required the...

  12. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Kentucky Building Code (KBC) is updated every three years on a cycle one year behind the publication year for the International Building Code. Any changes to the code by the state of Kentucky...

  13. Building Energy Code

    Broader source: Energy.gov [DOE]

    The 2012 IECC is in effect for all residential and commercial buildings, Idaho schools, and Idaho jurisdictions that adopt and enforce building codes, unless a local code exists that is more...

  14. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Florida Building Commission (FBC) is directed to adopt, revise, update, and maintain the Florida Building Code in accordance with Chapter 120 of the state statutes. The code is mandatory...

  15. Building Energy Code

    Broader source: Energy.gov [DOE]

    Public Act 093-0936 (Illinois Energy Conservation Code for Commercial Buildings) was signed into law in August, 2004. The Illinois Energy Conservation Code for Commercial Buildings became effective...

  16. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Massachusetts Board of Building Regulations and Standards has authority to promulgate the Massachusetts State Building Code (MSBC). The energy provisions in the MSBC were developed by the Boa...

  17. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Virginia Uniform Statewide Building Code (USBC) is a statewide minimum requirement that local jurisdictions cannot amend. The code is applicable to all new buildings in the commonwealth. The...

  18. Building condition monitoring

    E-Print Network [OSTI]

    Samouhos, Stephen V. (Stephen Vincent), 1982-

    2010-01-01

    The building sector of the United States currently consumes over 40% of the United States primary energy supply. Estimates suggest that between 5 and 30% of any building's annual energy consumption is unknowingly wasted ...

  19. Financing green buildings

    E-Print Network [OSTI]

    Pierce, Christopher John, S.M. Massachusetts Institute of Technology

    2013-01-01

    An emerging trend in real estate is the development of sustainable buildings, partially due to the huge environmental impact of the design, construction and operation of commercial buildings. This thesis provides a brief ...

  20. Building America System Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America System Research Eric Werling, DOE Ren Anderson, NREL eric.werling@ee.doe.gov, 202-586-0410 ren.anderson@nrel.gov, 303-384-7443 April 2, 2013 Building America...

  1. Balancing Hydronic Systems in Multifamily Buildings

    SciTech Connect (OSTI)

    Ruch, Russell; Ludwig, Peter; Maurer, Tessa

    2014-07-01

    In multifamily hydronic systems, temperature imbalance may be caused by undersized piping, improperly adjusted balancing valves, inefficient water temperature and flow levels, and owner/occupant interaction with the boilers, distribution, and controls. The imbalance leads to tenant discomfort, higher energy use intensity, and inefficient building operation. This research, conducted by Building America team Partnership for Advanced Residential Retrofit, explores cost-effective distribution upgrades and balancing measures in multifamily hydronic systems, providing a resource to contractors, auditors, and building owners on best practices to improve tenant comfort and lower operating costs. The team surveyed existing knowledge on cost-effective retrofits for optimizing distribution in typical multifamily hydronic systems, with the aim of identifying common situations and solutions, and then conducted case studies on two Chicago area buildings with known balancing issues in order to quantify the extent of temperature imbalance. At one of these buildings a booster pump was installed on a loop to an underheated wing of the building. This study found that unit temperature in a multifamily hydronic building can vary as much as 61°F, particularly if windows are opened or tenants use intermittent supplemental heating sources like oven ranges. Average temperature spread at the building as a result of this retrofit decreased from 22.1°F to 15.5°F.

  2. The Economics of Green Building

    E-Print Network [OSTI]

    Eichholtz, Piet; Kok, Nils; Quigley, John M.

    2010-01-01

    cost savings in energy efficient buildings. To test for thisrisk inherent in energy efficient buildings. Importantly,of energy-efficient and sustainable buildings through

  3. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01

    methodology for building energy data definition, collection,analyze good building energy data to provide valuable and9  A Standard Building Energy Data 

  4. The Economics of Green Building

    E-Print Network [OSTI]

    Eichholtz, Piet; Kok, Nils; Quigley, John M.

    2010-01-01

    Benjamin. "Do LEED-Certified Buildings Save Energy? Yes,But,." Energy and Buildings, 2009, 41, pp. 897-905. Royalrating, and publicizing buildings along these dimensions (

  5. Federal Buildings Supplemental Survey 1993

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Energy Conservation Features in FBSS Building in Federal Region 3, Number of Buildings and Floorspace, 1993 Total Floorspace Number of Buildings (thousand square feet) Any Any...

  6. Principal Building Activities--1995 CBECS

    U.S. Energy Information Administration (EIA) Indexed Site

    Detailed Tables > Principal Building Activities Table Number of Buildings, Total Floorspace, and Total Site and Primary Energy Consumption for All Principal Building Activities,...

  7. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01

    Summer Study on Energy Efficiency in Buildings. LBNL (2012).Summer Study on Energy Efficiency in Buildings. UNEP (2009).Standard for Energy Efficiency of Public Buildings. Energy

  8. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01

    improving energy efficiency of buildings is being addressedimprovement of energy efficiency in buildings are brieflyimproving the energy efficiency of buildings in the U.S. New

  9. Advanced Building Systems & Architectural Design

    E-Print Network [OSTI]

    Subramanian, Venkat

    primary research interests are whole building performance analysis, passive Advanced Building Systems & Architectural Design University with a Ph.D. in Building Performance and Diagnostics. Currently he

  10. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01

    exchange of building energy performance data difficult.  understand  building  energy  performance  and  improve to understanding building energy performance and supporting 

  11. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01

    exchange of building energy performance data difficult.  understand  building  energy  performance  and  improve Reliable  Building  Energy  Performance Characterization 

  12. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01

    I Figure 21. Sample building energy use label expressed inanalyses of actual buildings energy consumption data confirm1983. PROGRESS IN ENERGY EFFICIENT BUILDINGS Leonard W. Wall

  13. Health Care Buildings: Subcategories Table

    U.S. Energy Information Administration (EIA) Indexed Site

    Subcategories Table Selected Data by Type of Health Care Building Number of Buildings (thousand) Percent of Buildings Floorspace (million square feet) Percent of Floorspace Square...

  14. Buildings Stock Load Control 

    E-Print Network [OSTI]

    Joutey, H. A.; Vaezi-Nejad, H.; Clemoncon, B.; Rosenstein, F.

    2006-01-01

    , Shenzhen, China Building Commissioning for Energy Efficiency and Comfort, Vol.VI-9-4 Buildings Stock Load Control Ms H. Amrani Joutey Mr H. Vaezi-Nejad Mr B. Clemonçon Mr F.Rosenstein PHD student Research engineer Research... electricity consumption and curtail peak demand but in local form: building by building. Few developments are carried out for multi sites management. Multi sites management is essential in crisis and/or peak periods (large energy demand in particular during...

  15. Kiowa County Commons Building

    Office of Energy Efficiency and Renewable Energy (EERE)

    This poster describes the energy efficiency features and sustainable materials used in the Kiowa County Commons Building in Greensburg, Kansas.

  16. Building Abbreviations Alumni Hall

    E-Print Network [OSTI]

    Johnson Jr.,, Ray

    20A/B 44 20A/B 44 20A/B 44 58 17 17 88 34 25 Building Abbreviations Alumni Hall Campbell Dome Colden FitzGerald Gym Frese Hall G Building Gertz Center Goldstein Theatre Honors Hall GC GB GT HH MU KY KG KS KP PH I Building Jefferson Hall Kiely Hall King Hall Kissena Hall Klapper Hall Music Building

  17. Building Scale DC Microgrids

    E-Print Network [OSTI]

    Marnay, Chris

    2013-01-01

    CHP, which can improve overall efficiency significantly. In many climates, using the waste heat to cool buildings

  18. Building Energy Code

    Broader source: Energy.gov [DOE]

    In March 2006, SB 459 was enacted to promote renewable energy and update the state's building energy codes.

  19. Building Operator Certification 

    E-Print Network [OSTI]

    Lilley, D.

    2013-01-01

    Certification Energy Efficiency through Operator Training CATEE December 18, 2013 – San Antonio, TX Dennis Lilley, CEM, PMP ESL-KT-13-12-49 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Building Operator Certification... Energy Efficiency through Operator Training What is Building Operator Certification? Industry-recognized credential in energy efficient building operation practices Created with 100 industry experts Launched in 1996 9,000 building engineers...

  20. Energy Use and Design Options for Texas State Buildings 

    E-Print Network [OSTI]

    Katipamula, S.; O'Neal, D. L.

    1988-01-01

    was the reduction of energy use of all new buildings constructed for state agencies. The first phase of this program was to estimate the energy use of new buildings corresponding to current construction practices in state facilities and to make recommendations...

  1. Simple procedure for schematic design of passive solar buildings

    SciTech Connect (OSTI)

    Wray, W.O.; Kosiewicz, C.E.

    1984-01-01

    A simple procedure for use during the schematic phase of passive solar building design is presented in this article. The procedure is quantitative and accurate enough to insure that designs based on the provided starting point values of the primary building parameters will be cost effective.

  2. Energy Audit Results for Residential Building Energy Efficiency

    E-Print Network [OSTI]

    Energy Audit Results for Residential Building Energy Efficiency Forrest City Phases I and II Building and Community Design 3 Hawai`i Natural Energy Institute University of Hawai`i Manoa #12;#12;i This report analyses complete energy audit results from 28 homes within the Forest City residential complex

  3. Temperature behavior in the build section of multilateral wells 

    E-Print Network [OSTI]

    Romero Lugo, Analis Alejandra

    2005-11-01

    4.3 Cases with Different Fractions of Total Production from Each Lateral: Dual-Lateral with Single-Phase Liquid ..................................................... 19 4.4 Temperature Profiles for Multilaterals: Dual... .................................................................... 16 4.5 Build section temperature profiles with liquid production at the same depth..... 17 4.6 Build section temperature profiles with liquid production at depths spaced 500 feet apart...

  4. Archive Reference Buildings by Building Type: Primary school

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

  5. Archive Reference Buildings by Building Type: Secondary school

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

  6. Archive Reference Buildings by Building Type: Stand-alone retail

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

  7. Archive Reference Buildings by Building Type: Fast food

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

  8. Archive Reference Buildings by Building Type: Small office

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

  9. Archive Reference Buildings by Building Type: Strip mall

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

  10. Archive Reference Buildings by Building Type: Large office

    Office of Energy Efficiency and Renewable Energy (EERE)

    Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

  11. Phase report 1C, TA-21 operable unit RCRA Facility Investigation, Outfalls Investigation

    SciTech Connect (OSTI)

    Not Available

    1994-02-28

    This phase report summarizes the results of field investigations conducted in 1992 at Technical Area 21 of Los Alamos National Laboratory, as prescribed by the RCRA Facility Investigation work plan for the Technical Area 21 operable unit (also known as OU 1106). This phase report is the last part of a three-part phase report describing the results of field work conducted in 1992 at this operable unit. Phase Report lA, issued on l4 June l993, summarized site geologic characterization activities. Phase report 1B, issued on 28 January 1994, included an assessment of site-wide surface soil background, airborne emissions deposition, and contamination in the locations of two former air filtration buildings. The investigations assessed in Phase Report 1C include field radiation surveys and surface and near-surface sampling to characterize potential contamination at 25 outfalls and septic systems listed as SWMUs in the RFI work plan. Based on the RFI data, it is recommended that no further action is warranted for 8 SWMUs and further action is recommended for 3 SWMUs addressed in this phase report. For 14 SWMUs which represent no immediate threat to human health or environment, deferral of further action/no further action decisions is recommended until outstanding analytical data are received, sampling of adjacent SWMUs is completed, or decisions are made about the baseline risk assessment approach.

  12. Passive solar buildings

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1992-10-01

    Developments in passive solar buildings that took place from the early 1970`s through 1989 are described. Much of the work covered was federally sponsored during the period 1975 through 1986. About half the volume is devoted to quantitative methods for modeling, simulation, and design analysis of passive buildings; the other half summarizes the quantitative results of testing and monitoring of models and buildings. The following are covered: building solar gain modeling, simulation analysis, simplified methods, materials and components, analytical results for specific systems, test modules, building integration, performance monitoring and results, and design tools. (MHR)

  13. Passive solar buildings

    SciTech Connect (OSTI)

    Balcomb, J.D. )

    1992-01-01

    Developments in passive solar buildings that took place from the early 1970's through 1989 are described. Much of the work covered was federally sponsored during the period 1975 through 1986. About half the volume is devoted to quantitative methods for modeling, simulation, and design analysis of passive buildings; the other half summarizes the quantitative results of testing and monitoring of models and buildings. The following are covered: building solar gain modeling, simulation analysis, simplified methods, materials and components, analytical results for specific systems, test modules, building integration, performance monitoring and results, and design tools. (MHR)

  14. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01

    addressed by the Buildings Energy Data (BED) Group at LBL.buildings by the Buildings Energy Data (BED) Group at LBL,results from our buildings energy data bases. Actual energy

  15. Remedial Design/Remedial Action Work Plan for Operable Units 6-05 and 10-04, Phase III

    SciTech Connect (OSTI)

    R. P. Wells

    2006-09-19

    The remedial design/remedial action for Operable Unit 6-05 (Waste Area Group 6) and Operable Unit 10-04 (Waste Area Group 10) - collectively called Operable Unit 10-04 has been divided into four phases. Phase I consists of developing and implementing institutional controls at Operable Unit 10-04 sites and developing and implementing Idaho National Laboratory-wide plans for both institutional controls and ecological monitoring. Phase II will remediate sites contaminated with trinitrotoluene and Royal Demolition Explosive. Phase III will remediate lead contamination at a gun range, and Phase IV will remediate hazards from unexploded ordnance. This Phase III remedial Design/Remedial Action Work Plan addresses the remediation of lead-contaminated soils found at the Security Training Facility (STF)-02 Gun Range located at the Idaho National Laboratory. Remediation of the STF-02 Gun Range will include excavating contaminated soils; physically separating copper and lead for recycling; returning separated soils below the remediation goal to the site; stabilizing contaminated soils, as required, and disposing of the separated soils that exceed the remediation goal; encapsulating and disposing of creosote-contaminated railroad ties and power poles; removing and disposing of the wooden building and asphalt pads found at the STF-02 Gun Range; sampling and analyzing soil to determine the excavation requirements; and when the remediation goals have been met, backfilling and contouring excavated areas and revegetating the affected area.

  16. Information Systems Analysis and Design CSC340 2002 John Mylopoulos Other Phases --1

    E-Print Network [OSTI]

    Mylopoulos, John

    Implementation Phase -- equipment and software purchases, project management controls, programming, testing and installation Operation PhaseOperation Phase -- training, operations control, security controls, file & test................................. Programming plan preparation..................... Building test

  17. Commercial Building Asset Rating Program

    Broader source: Energy.gov [DOE]

    Slides from a Commercial Building Initiative webinar outlining the Commercial Building Asset Rating Program on August 23, 2011.

  18. A Toolkit for Building Energy Consumption Data Quality Assurance/Quality Control 

    E-Print Network [OSTI]

    Baltazar, J.C.

    2011-01-01

    Building Operations, New York City, October 18-20, 2011 ICEBO 2011 ? New York JCB/ESL Outline ? Motivation ? Building Energy Data Quality Assurance/Quality Control (QA/QC) Project ? Tool Development ? Inputs ? Modules ? Outputs...-10-30 Proceedings of the Eleventh International Conference Enhanced Building Operations, New York City, October 18-20, 2011 ICEBO 2011 ? New York JCB/ESL Building Energy Data QA/QC Project ? 150 Campus Buildings (~500 Meters), Total Area ~ 15...

  19. About Singapore Green Building Council

    E-Print Network [OSTI]

    - friendly, energy efficiency building materials, design and architecture ­ reaching out to Green buildingAbout Singapore Green Building Council About SGBC Green Building Conference Conference Programme Green Building Conference In line with the mission of the Singapore Green Building Council (SGBC

  20. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen Generation |Publications TheGashome /Areas Research Areas

  1. Achieving 50% Energy Savings in Office Buildings, Advanced Energy Design Guides: Office Buildings (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01

    This fact sheet summarizes recommendations for designing new office buildings that result in 50% less energy use than conventional designs meeting minimum code requirements. The recommendations are drawn from the Advanced Energy Design Guide for Small to Medium Office Buildings, an ASHRAE publication that provides comprehensive recommendations for designing low-energy-use office buildings with gross floor areas up to 100,000 ft2 (see sidebar). Designed as a stand-alone document, this fact sheet provides key principles and a set of prescriptive design recommendations appropriate for smaller office buildings with insufficient budgets to fully implement best practices for integrated design and optimized performance. The recommendations have undergone a thorough analysis and review process through ASHRAE, and have been deemed the best combination of measures to achieve 50% savings in the greatest number of office buildings.

  2. Balancing Hydronic Systems in Multifamily Buildings

    SciTech Connect (OSTI)

    Ruch, R.; Ludwig, P.; Maurer, T.

    2014-07-01

    In multifamily hydronic systems, temperature imbalance may be caused by undersized piping, improperly adjusted balancing valves, inefficient water temperature and flow levels, and owner/occupant interaction with the boilers, distribution and controls. The effects of imbalance include tenant discomfort, higher energy use intensity and inefficient building operation. This paper explores cost-effective distribution upgrades and balancing measures in multifamily hydronic systems, providing a resource to contractors, auditors, and building owners on best practices to improve tenant comfort and lower operating costs. The research was conducted by The Partnership for Advanced Residential Retrofit (PARR) in conjunction with Elevate Energy. The team surveyed existing knowledge on cost-effective retrofits for optimizing distribution in typical multifamily hydronic systems, with the aim of identifying common situations and solutions, and then conducted case studies on two Chicago area buildings with known balancing issues in order to quantify the extent of temperature imbalance. At one of these buildings a booster pump was installed on a loop to an underheated wing of the building. This study found that unit temperature in a multifamily hydronic building can vary as much as 61 degrees F, particularly if windows are opened or tenants use intermittent supplemental heating sources like oven ranges. Average temperature spread at the building as a result of this retrofit decreased from 22.1 degrees F to 15.5 degrees F.

  3. Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard

    SciTech Connect (OSTI)

    Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov [Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545 (United States); Grosse-Kunstleve, Ralf W.; Afonine, Pavel V.; Moriarty, Nigel W.; Zwart, Peter H. [Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720 (United States); Hung, Li-Wei [Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545 (United States); Read, Randy J. [Department of Haematology, University of Cambridge, Cambridge CB2 0XY (United Kingdom); Adams, Paul D., E-mail: terwilliger@lanl.gov [Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720 (United States); Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545 (United States)

    2008-01-01

    The highly automated PHENIX AutoBuild wizard is described. The procedure can be applied equally well to phases derived from isomorphous/anomalous and molecular-replacement methods. The PHENIX AutoBuild wizard is a highly automated tool for iterative model building, structure refinement and density modification using RESOLVE model building, RESOLVE statistical density modification and phenix.refine structure refinement. Recent advances in the AutoBuild wizard and phenix.refine include automated detection and application of NCS from models as they are built, extensive model-completion algorithms and automated solvent-molecule picking. Model-completion algorithms in the AutoBuild wizard include loop building, crossovers between chains in different models of a structure and side-chain optimization. The AutoBuild wizard has been applied to a set of 48 structures at resolutions ranging from 1.1 to 3.2 Ĺ, resulting in a mean R factor of 0.24 and a mean free R factor of 0.29. The R factor of the final model is dependent on the quality of the starting electron density and is relatively independent of resolution.

  4. Pitfalls in Building and HVAC Systems 

    E-Print Network [OSTI]

    Gidwani, B. N.

    1985-01-01

    AND HVAC SYSTEMS B. N. Gidwani, P.E. Roy F. Weston, Inc. West Chester, Pennsylvania ABSTRACT The purpose of an energy audit is to identify and analyze areas of energy consumption and to pro pose methods of conservation. In the process... opportunities for energy savings. When performing a detailed energy audit, the fol lowing areas should be examined with respect to the building envelope: Walls ? Roofs ? Windows ? Doors ? Ceiling Height ? In order to minimize energy losses through...

  5. Geothermal System Overview ASHRAE Headquarters Building

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    ,510 sq. ft. · Square footage of floor 2 - 15,290 sq. ft. · Set point for each level - 68şF Heating, 74şF Cooling #12;Building Specifics · Heating / cooling area for GSHPs ­ 15,558 sq. ft. ­ All zones on floor 2 and a corridor zone on floor 1 · Heating / cooling area for VRF ­ 18,226 sq. ft. ­ All zones on floor 1 (minus

  6. Overview BETTER BUILDINGS, BETTER PLANTS

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary Areas of the countryofPROGRAMBetter BuildingsDOE's

  7. Phased Demolition of an Occupied Facility

    SciTech Connect (OSTI)

    Brede, Lawrence M.; Lauterbach, Merl J.; Witt, Brandon W.; McCague, James [Bechtel Jacobs Co., LLC, P.O. Box 4699, Oak Ridge, Tennessee 37831 (United States)

    2008-01-15

    The U.S. government constructed the K-1401 facility in the late 1940's as a support building for various projects supporting the uranium gaseous diffusion process. In 2004 the U.S. Department of Energy authorized Bechtel Jacobs Company, LLC (BJC) to decontaminate and demolish the facility. The K-1401 facility was used for a variety of industrial purposes supporting the gaseous diffusion process. Many different substances were used to support these processes over the years and as a result different parts of the facility were contaminated with fluorine, chlorine trifluoride, uranium and technetium radiological contamination, asbestos, and mercury. The total facility area is 46,015 m{sup 2} (495,000 sf) including a 6,800 m{sup 2} basement (73,200 sf). In addition to the contamination areas in the facility, a large portion was leased to businesses for re-industrialization when the D and D activities began. The work scope associated with the facility included purging and steam cleaning the former fluorine and chlorine trifluoride systems, decontaminating loose radiologically contaminated and mercury spill areas, dismantling former radiological lines contaminated with uranium oxide compounds and technetium, abating all asbestos containing material, and demolishing the facility. These various situations contributed to the challenge of successfully conducting D and D tasks on the facility. In order to efficiently utilize the work force, demolition equipment, and waste hauling trucks the normal approach of decontaminating the facility of the hazardous materials, and then conducting demolition in series required a project schedule of five years, which is not cost effective. The entire project was planned with continuous demolition as the goal end state. As a result, the first activities, Phase 1, required to prepare sections for demolition, including steam cleaning fluorine and chlorine trifluoride process lines in basement and facility asbestos abatement, were conducted while the tenants who were leasing floor space in the facility moved out. Upon completion of this phase the facility was turned over to the demolition project and the most hazardous materials were removed from the facility. Phase 2 activities included removing the process gas lines from sections C/D/E while decontaminating and preparing sections A and B for demolition. Demolition preparation activities include removing transit siding and universal waste from the area. Phase 3 began with demolition activities in sections A and B1 while continuing process gas line removal from sections C/D/E, as well as conducting demolition preparation activities to these sections. Area B was split into two sections, allowing demolition activities to occur in section B1 while personnel could still access the upper floor in sections C, D, and E. Once demolition began in section B2, personnel entry was only authorized in the basement. This timeline initiated phase 4, and the project completed cleaning the process components from the basement while section B2 demolition began. The final phase, phase 5, began once the basement was cleared. Final demolition activities began on sections C, D, E, and the basement. This material will ship for disposal and is scheduled for completion during FY07. Because the project was able to successfully phase demolition activities, the total facility demolition schedule was reduced by half to 2-1/2 years. The project was able to move portions of the demolition schedule from working in series to working in parallel, allowing the job to deliver facility demolition debris to ship for disposal 'just in time' as the facility was demolished.

  8. INFORMATION SURFING FOR RADIATION MAP BUILDING

    E-Print Network [OSTI]

    Tanner, Herbert G.

    to envi- ronmental changes, as well as human retasking. Computer simulations and experiments are conducted radiation detectors do not provide any visual or statistical data map of the area in question. If humanINFORMATION SURFING FOR RADIATION MAP BUILDING R. A. Cortez , H. G. Tanner , R. Lumia , and C. T

  9. Building Fire Emergency Detection and Response Using Wireless Sensor Networks

    E-Print Network [OSTI]

    Sreenan, Cormac J.

    1 Building Fire Emergency Detection and Response Using Wireless Sensor Networks Yuanyuan Zeng, Seán technologies. Fire emergency detection and response for building environments is a novel application area for this problem. Then we describe work on the use of WSNs to improve fire evacuation and navigation. Keywords

  10. Materials Research Institute 199 Materials Research Institute Building

    E-Print Network [OSTI]

    Lee, Dongwon

    promise to transform the field of materials research in areas such as energy, health, and the environment of Materials Research A New Building for the 21st Century he Materials Research Institute promotes interdisciMaterials Research Institute 199 Materials Research Institute Building The Pennsylvania State

  11. The Lovejoy Building

    High Performance Buildings Database

    Portland, Oregon Originally built in 1910 as the stables for the Marshall-Wells Hardware Company, the Lovejoy Building is the home of Opsis Architects. The owner/architects purchased and renovated the historic building to house their growing business and to provide ground-floor office lease space and second-floor offices for their firm. Opsis wanted to use the building to experience and demonstrate the technologies and practices it promotes with clients.

  12. Assessment of Energy Impact of Window Technologies for Commercial Buildings

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01

    R_Clear EC_Window EC_HR_Window Energy Savings per ft˛ ofWindow Area Whole Building Energy Use Site SourceSite Source Gas Energy % Site Energy % Source Electricity

  13. Energy efficiency indicators for high electric-load buildings

    SciTech Connect (OSTI)

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  14. Overview of Resources for Geothermal Absorption Cooling for Buildings

    SciTech Connect (OSTI)

    Liu, Xiaobing; Gluesenkamp, Kyle R; Mehdizadeh Momen, Ayyoub

    2015-06-01

    This report summarizes the results of a literature review in three areas: available low-temperature/coproduced geothermal resources in the United States, energy use for space conditioning in commercial buildings, and state of the art of geothermal absorption cooling.

  15. Transamerica Pyramid Building

    SciTech Connect (OSTI)

    2010-04-01

    This is a combined heat and power (CHP) project profile on a 1 MW CCHP system at the Transamerica Pyramid Building in San Francisco, California.

  16. Residential Buildings Integration (RBI)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 RBI Priorities for FY15 and Beyond Integrating Advanced Technologies for Homes: * Building integrated renewables * IAQVentilation solutions * Integrated high performance...

  17. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Motivation and Computation of Lighting Measures Floorspace by Lighting Equipment Configuration As described in Appendix A, for each building b, the CBECS data set has the total...

  18. Buildings Performance Database

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    distinguish between expected returns and performance risk Conduct performance risk analysis * Diversify risk by investing in a range of buildings and measures Support...

  19. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    more comprehensive understanding of commercial lighting and the potential for lighting energy savings. Steps to build on this analysis can be taken in many directions. One...

  20. Commercial Buildings Characteristics 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    the sponsor the government, utility or sponsored in-house. Energy Management and Control System Heating or cooling system monitored or controlled by a computerized building...

  1. Buildings Interoperability Proceedings

    Broader source: Energy.gov (indexed) [DOE]

    for t he integration of intelligent, connected buildings equipment and automation s ystems, understanding the importance of integration frameworks and product...

  2. Building bridges for fish

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building-bridges-for-fish Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects & Initiatives...

  3. What is Building America?

    ScienceCinema (OSTI)

    None

    2013-07-22

    DOE's Building America program is helping to bridge the gap between homes with high energy costs and homes that are healthy, durable, and energy efficient.

  4. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Illuminance Assignments for CBECS Building Activity Categories Illuminance ranges were adopted from the 1987 Illuminating Engineering Society (IES) Lighting Handbook. The IES...

  5. Building Songs 7

    E-Print Network [OSTI]

    Zla ba sgrol ma

    2009-10-28

    stream_source_info Sman_shad_building_song_7.doc.pdf.txt stream_content_type text/plain stream_size 2792 Content-Encoding ISO-8859-1 stream_name Sman_shad_building_song_7.doc.pdf.txt Content-Type text/plain; charset=ISO-8859... shad building song 7.WAV Length of track 00:09:57 Related tracks (include description/relationship if appropriate) Title of track Building Songs 7 Translation of title Description (to be used in archive entry) Skar ma chos mdzin sings...

  6. building.ppt

    E-Print Network [OSTI]

    Clarence Wilkerson

    Building Parenting Skills and Interactions with Kangaroo Care. Sharon A. Wilkerson, PhD, RN. Associate Professor of Nursing. Purdue University. West Lafayette ...

  7. ORISE: Capacity Building

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute...

  8. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    from the engineering literature, based on CBECS building activity.) 4. Efficacy: an energy efficiency measure. Technically, the amount of light produced per unit of energy...

  9. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    (CEC), March 1990. Advanced Lighting Technologies Application Guidelines (ALTAG), Building and Appliance Efficiency Office. 3. Dubin, F.S., Mindell, H.L., and Bloome, S., 1976....

  10. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    energy are presented in this section. Statistics are presented by subgroups based on building characteristics, and by subgroups based on lighting equipment. The three sets of...

  11. What is Building America?

    SciTech Connect (OSTI)

    2013-06-20

    DOE's Building America program is helping to bridge the gap between homes with high energy costs and homes that are healthy, durable, and energy efficient.

  12. Commercial Buildings Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Integration Images courtesy CREE, True Manufacturing, A.O. Smith, Bernstein Associates, Cambridge Engineering, Alliance Laundry Systems, NREL 2 Strategic Fit within...

  13. DOE Buildings Performance Database

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impacts: Example Applications of BPD * Local Benchmarking: - New York, San Francisco, and DC contribute data from local energy-disclosure ordinances - Allow local building owners...

  14. Building Energy Code

    Broader source: Energy.gov [DOE]

    Kansas adopted the 2006 International Energy Conservation Code (IECC) as "the applicable state standard" for commercial and industrial buildings. Enforcement is provided by local jurisdictions; t...

  15. Building Energy Code

    Broader source: Energy.gov [DOE]

    The North Carolina State Building Code Council is responsible for developing all state codes. By statute, the Commissioner of Insurance has general supervision over the administration and...

  16. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Maryland Building Performance Standards (MBPS) are adopted by the Maryland Department of Housing and Community Development (DHCD) Codes Administration. As required by legislation passed in...

  17. Public Assembly Buildings

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    as "primary energy," which includes the energy consumed during the generation and transmission of electricity. Public assembly buildings used 577 trillion Btu of primary...

  18. Building & Fire Assist Director

    E-Print Network [OSTI]

    Buren Physical Safety (Electrical, Confined Space, Machinery, Fall Prevention) Construction & Remodel Design Review Lab / Shop Safety Surveys Regulated Building Materials Public Health (Food, Water, Pests

  19. Chapter 3: Building Siting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    : Building Siting Site Issues at LANL Site Inventory and Analysis Site Design Transportation and Parking LANL | Chapter 3 Site Issues at LANL Definitions and related documents...

  20. Building Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office Roland Risser Director, Building Technologies Office National Energy Consumption 40% 60% Reducing consumption or improving performance calls for cutting-edge...

  1. Building America - IBACOS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    America - IBACOS 2014 Building Technologies Office Peer Review Duncan Prahl, dprahl@ibacos.com IBACOS, Inc. Project Summary Timeline: Start date: January 2013 Planned end date:...

  2. Building Emergency Plan

    E-Print Network [OSTI]

    Physical Facilities

    2013-11-12

    Aug 30, 2013 ... the building for electricity to be restored, they can move near a window where there is natural light and access to a working telephone. During ...

  3. Whole Building Energy Simulation

    Broader source: Energy.gov [DOE]

    Whole building energy simulation, also referred to as energy modeling, can and should be incorporated early during project planning to provide energy impact feedback for which design considerations...

  4. NASA Net Zero Energy Buildings Roadmap

    SciTech Connect (OSTI)

    Pless, S.; Scheib, J.; Torcellini, P.; Hendron, B.; Slovensky, M.

    2014-10-01

    In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategic approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.

  5. A primitive based approach for managing, deploying and monitoring in-building wireless sensor networks

    E-Print Network [OSTI]

    Dutta, Seemanta

    2012-01-01

    emergence of zigbee in building automation and industrialand industrial automation[5, 19, 23], measuring buildingbuildings which is our area of interest. For example, control4 home automation

  6. The Building Adapter: Towards Quickly Applying Building Analytics at Scale

    E-Print Network [OSTI]

    Weimer, Westley

    The Building Adapter: Towards Quickly Applying Building Analytics at Scale Dezhi Hong1 , Hongning}@virginia.edu, jjortiz@us.ibm.com ABSTRACT Building analytics can produce substantial energy savings in commercial buildings by automatically detecting waste- ful or incorrect operations. However, a new building's sens- ing

  7. Comparison of Building Energy Modeling Programs: Building Loads

    E-Print Network [OSTI]

    LBNL-6034E Comparison of Building Energy Modeling Programs: Building Loads Dandan Zhu1 , Tianzhen Energy, the U.S.-China Clean Energy Research Center for Building Energy Efficiency, of the U;Comparison of Building Energy Modeling Programs: Building Loads A joint effort between Lawrence Berkeley

  8. New! Building Energy Standards Essentials for Plans Examiners & Building Inspectors

    E-Print Network [OSTI]

    New! Building Energy Standards Essentials for Plans Examiners & Building Inspectors Building energy energy savings. This new, hands-on course strives to provide plans examiners and building inspectors and nonresidential projects. Free Energy Code Training for Plans Examiners & Building Inspectors For more information

  9. Building Technologies Research and

    E-Print Network [OSTI]

    Pennycook, Steve

    Impact of Buildings Centers of Excellence · 40% of total primary energy consumption · 74% of electricity consumption · 56% of natural gas consumption (including gas-generated electricity used in buildings) · 39 the nation accounts for its energy consumption, making the energy savings potential even greater. National

  10. High Performance Sustainable Building

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-06-20

    The guide supports DOE O 413.3A and provides useful information on the incorporation of high performance sustainable building principles into building-related General Plant Projects and Institutional General Plant Projects at DOE sites. Canceled by DOE G 413.3-6A. Does not cancel other directives.

  11. Building Wings Mechanical Engineering

    E-Print Network [OSTI]

    Provancher, William

    & drawing ­ 15 minutes · Build wings ­ 120 minutes · Test wings in wind tunnel ­ 45 minutes Assessments · Screwdriver (the wind tunnel we used had a small screw to attach items to the testing platform) LessonBuilding Wings Mechanical Engineering Objective · Introduce students to the theory of Conservation

  12. Digitally Fabricated Building Delivery

    E-Print Network [OSTI]

    Lab ­ Building Kit S 20 2Summer 2012 Integrated Systems ­ Programming Surfaces a) Exterior -Water production with integrated digital fabrication." Automation in Construction, Vol. 16, No. 3, 298­310, 2007Digitally Fabricated Building Delivery through Kitsthrough Kits Lawrence Sass Associate Professor

  13. Reference Buildings by Building Type: Primary school

    Broader source: Energy.gov [DOE]

    In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

  14. Reference Buildings by Building Type: Large office

    Office of Energy Efficiency and Renewable Energy (EERE)

    In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

  15. Reference Buildings by Building Type: Medium office

    Office of Energy Efficiency and Renewable Energy (EERE)

    In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

  16. Reference Buildings by Building Type: Small office

    Office of Energy Efficiency and Renewable Energy (EERE)

    In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

  17. Reference Buildings by Building Type: Small Hotel

    Office of Energy Efficiency and Renewable Energy (EERE)

    In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

  18. Reference Buildings by Building Type: Midrise Apartment

    Office of Energy Efficiency and Renewable Energy (EERE)

    In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

  19. Reference Buildings by Building Type: Secondary school

    Office of Energy Efficiency and Renewable Energy (EERE)

    In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

  20. Reference Buildings by Building Type: Warehouse

    Office of Energy Efficiency and Renewable Energy (EERE)

    In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

  1. Reference Buildings by Building Type: Supermarket

    Office of Energy Efficiency and Renewable Energy (EERE)

    In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

  2. Reference Buildings by Building Type: Large Hotel

    Office of Energy Efficiency and Renewable Energy (EERE)

    In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

  3. Reference Buildings by Building Type: Strip mall

    Office of Energy Efficiency and Renewable Energy (EERE)

    In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

  4. Reference Buildings by Building Type: Hospital

    Office of Energy Efficiency and Renewable Energy (EERE)

    In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

  5. A History of Building 828, Sandia National Laboratories

    SciTech Connect (OSTI)

    Ullrich, Rebecca

    1999-08-01

    This report documents the history of Building 828 in Sandia National Laboratories' Technical Area I. Building 828 was constructed in 1946 as a mechanical test laboratory for Los Alamos' Z-Division (later Sandia) as it moved to Sandia Base. The building has undergone significant remodeling over the years and has had a variety of occupants. The building was evaluated in compliance with the National Historic Preservation Act, but was not eligible for the National Register of Historic Places. Nevertheless, for many Labs employees, it was a symbol of Sandia's roots in World War II and the Manhattan Project.

  6. BUILDING PERFORMANCE ENGINEERING DURING CONSTRUCTION

    E-Print Network [OSTI]

    Toole, T. Michael

    1 BUILDING PERFORMANCE ENGINEERING DURING CONSTRUCTION T. Michael Toole1 and Matthew Hallowell2 of building performance engineering tasks on design-bid-build projects are typically provided by entities building construction projects. Twenty four building performance engineering tasks were required

  7. NREL Buildings Research Video

    ScienceCinema (OSTI)

    None

    2013-05-29

    Through research, the National Renewable Energy Laboratory (NREL) has developed many strategies and design techniques to ensure both commercial and residential buildings use as little energy as possible and also work well with the surroundings. Here you will find a video that introduces the work of NREL Buildings Research, highlights some of the facilities on the NREL campus, and demonstrates these efficient building strategies. Watch this video to see design highlights of the Science and Technology Facility on the NREL campus?the first Federal building to be LEED® Platinum certified. Additionally, the video demonstrates the energy-saving features of NRELs Thermal Test Facility. For a text version of this video visit http://www.nrel.gov/buildings/about_research_text_version.html

  8. Technical Management for Buildings

    E-Print Network [OSTI]

    Vairo, Antonio

    1999-01-01

    This paper is a presentation of an 'instrument' for the optimization of the functionality and conservation of tertiary buildings. This technique has several different names: Building Automation Systems (BAS), Central Control and Monitoring System (CCMS) in English, and Gestion Technique du Bâtiment' (GTB) or Gestion Technique Centralisée (GTC) in French. With this technique it is possible to manage all the functions of a building, it is a modern instrument that introduces the concept of 'automation' in the operation of buildings using computerized procedures, earlier reserved for industrial processes. The system is structured with different automation levels with a distributed intelligence, each level characterized by a communication system (Fieldbus for the lowest and Ethernet for the highest level). In order to apply the BAS to CERN buildings it is necessary to evaluate the advantages, the CERN requirements and the integration with the several existing control and automation systems.

  9. Final Status Survey Report for Corrective Action Unit 117 - Pluto Disassembly Facility, Building 2201, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    Jeremy Gwin and Douglas Frenette

    2010-09-30

    This document contains the process knowledge, radiological data and subsequent statistical methodology and analysis to support approval for the radiological release of Corrective Action Unit (CAU) 117 – Pluto Disassembly Facility, Building 2201 located in Area 26 of the Nevada National Security Site (NNSS). Preparations for release of the building began in 2009 and followed the methodology described in the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM). MARSSIM is the DOE approved process for release of Real Property (buildings and landmasses) to a set of established criteria or authorized limits. The pre-approved authorized limits for surface contamination values and corresponding assumptions were established by DOE O 5400.5. The release criteria coincide with the acceptance criteria of the U10C landfill permit. The U10C landfill is the proposed location to dispose of the radiologically non-impacted, or “clean,” building rubble following demolition. However, other disposition options that include the building and/or waste remaining at the NNSS may be considered providing that the same release limits apply. The Final Status Survey was designed following MARSSIM guidance by reviewing historical documentation and radiological survey data. Following this review a formal radiological characterization survey was performed in two phases. The characterization revealed multiple areas of residual radioactivity above the release criteria. These locations were remediated (decontaminated) and then the surface activity was verified to be less than the release criteria. Once remediation efforts had been successfully completed, a Final Status Survey Plan (10-015, “Final Status Survey Plan for Corrective Action Unit 117 – Pluto Disassembly Facility, Building 2201”) was developed and implemented to complete the final step in the MARSSIM process, the Final Status Survey. The Final Status Survey Plan consisted of categorizing each individual room into one of three categories: Class 1, Class 2 or Class 3 (a fourth category is a “Non-Impacted Class” which in the case of Building 2201 only pertained to exterior surfaces of the building.) The majority of the rooms were determined to fall in the less restrictive Class 3 category, however, Rooms 102, 104, 106, and 107 were identified as containing Class 1 and 2 areas. Building 2201 was divided into “survey units” and surveyed following the requirements of the Final Status Survey Plan for each particular class. As each survey unit was completed and documented, the survey results were evaluated. Each sample (static measurement) with units of counts per minute (cpm) was corrected for the appropriate background and converted to a value with units of dpm/100 cm2. With a surface contamination value in the appropriate units, it was compared to the surface contamination limits, or in this case the derived concentration guideline level (DCGLw). The appropriate statistical test (sign test) was then performed. If the survey unit was statistically determined to be below the DCGLw, then the survey unit passed and the null hypothesis (that the survey unit is above limits) was rejected. If the survey unit was equal to or below the critical value in the sign test, the null hypothesis was not rejected. This process was performed for all survey units within Building 2201. A total of thirty-three “Class 1,” four “Class 2,” and one “Class 3” survey units were developed, surveyed, and evaluated. All survey units successfully passed the statistical test. Building 2201 meets the release criteria commensurate with the Waste Acceptance Criteria (for radiological purposes) of the U10C landfill permit residing within NNSS boundaries. Based on the thorough statistical sampling and scanning of the building’s interior, Building 2201 may be considered radiologically “clean,” or free of contamination.

  10. The Building Standard (Scotland) Amendment Regulations 1964 

    E-Print Network [OSTI]

    Noble, Michael

    1964-01-01

    STATUTORY INSTRUMENTS 1964 No. 802 (S. 50) BUILDING AND BUILDINGS The Building Standards (Scotland) Amendment Regulations 1964

  11. Sustainability in Existing Federal Buildings | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities Sustainable Buildings & Campuses Sustainability in Existing Federal Buildings Sustainability in Existing Federal Buildings The General Services Administration...

  12. Building Emergency Action Plan Facility Name: _____________________

    E-Print Network [OSTI]

    Powers, Robert

    Building Emergency Action Plan (Template) Facility Name: _____________________ Date Prepared .....................................................................................................................................................3 2. Building Description..................................................................................................................................3 3. Building Emergency Personnel

  13. Automated Continuous Commissioning of Commercial Buildings

    E-Print Network [OSTI]

    Bailey, Trevor

    2013-01-01

    measured baseline building energy performance By comparingmeasured baseline building energy performance Water Systemmeasured baseline building energy performance. The physics-

  14. Presentation: Better Buildings Residential Program Solution Center...

    Office of Environmental Management (EM)

    Presentation: Better Buildings Residential Program Solution Center Presentation: Better Buildings Residential Program Solution Center Presentation: Better Buildings Residential...

  15. Building America Industrialized Housing Partnership (BAIHP II)

    SciTech Connect (OSTI)

    Abernethy, Bob; Chandra, Subrato; Baden, Steven; Cummings, Jim; Cummings, Jamie; Beal, David; Chasar, David; Colon, Carlos; Dutton, Wanda; Fairey, Philip; Fonorow, Ken; Gil, Camilo; Gordon, Andrew; Hoak, David; Kerr, Ryan; Peeks, Brady; Kosar, Douglas; Hewes, Tom; Kalaghchy, Safvat; Lubliner, Mike; Martin, Eric; McIlvaine, Janet; Moyer, Neil; Liguori, Sabrina; Parker, Danny; Sherwin, John; Stroer, Dennis; Thomas-Rees, Stephanie; Daniel, Danielle; McIlvaine, Janet

    2010-11-30

    This report summarizes the work conducted by the Building America Industrialized Housing Partnership (BAIHP - www.baihp.org) during the final budget period (BP5) of our contract, January 1, 2010 to November 30, 2010. Highlights from the four previous budget periods are included for context. BAIHP is led by the Florida Solar Energy Center (FSEC) of the University of Central Florida. With over 50 Industry Partners including factory and site builders, work in BP5 was performed in six tasks areas: Building America System Research Management, Documentation and Technical Support; System Performance Evaluations; Prototype House Evaluations; Initial Community Scale Evaluations; Project Closeout, Final Review of BA Communities; and Other Research Activities.

  16. Subsurface contaminants focus area

    SciTech Connect (OSTI)

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

  17. Summary of Prinicpal Building Activities in Commercial Buildings

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Sumary Comparison Table Return to: A Look at CBECS Building Activities SUMMARY COMPARISON TABLE Number of Buildings (thousand) Total Floorspace (million square feet) Average Square...

  18. A Look at Principal Building Activities in Commercial Buildings

    Gasoline and Diesel Fuel Update (EIA)

    Home > Commercial Buildings Home> Special Topics > 1995 Principal Building Activities Office Education Health Care Retail and Service Food Service Food Sales Lodging Religious...

  19. Trends in Commercial Buildings--Buildings Trend Detail

    U.S. Energy Information Administration (EIA) Indexed Site

    Center at (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey Figure 2. 1989 to 1999 building trend with 95% confidence ranges...

  20. Building America Top Innovations 2013 Profile - Building America...

    Energy Savers [EERE]

    Solution Center PNNL set up the framework for the Building America Solution Center, a web tool connecting users to thousands of pieces of building science information developed...

  1. Building America Solution Center - Building America Top Innovation...

    Energy Savers [EERE]

    America Top Innovation SCimagemale.jpg The Building America Solution Center is a Web-based tool connecting users to fast, free, and expert building science and energy...

  2. Building America Webinar: Building America: Research for Real...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    America: Research for Real-World Results Building America Webinar: Building America: Research for Real-World Results This presentation was delivered on Dec. 17, 2014, by Eric...

  3. Better Buildings Neighborhood Initiative Upgrades 100,000 Buildings...

    Broader source: Energy.gov (indexed) [DOE]

    Building on President Obama's Climate Action Plan and the Administration's Better Buildings Initiative, the Energy Department announced today that the Department's Better...

  4. Commercial Building Energy Assest Score Overall Building Score

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Building Energy Asset Score: Pilot Findings & Program Update April 16, 2014 Joan Glickman, DOE Nora Wang, PNNL 2 | Building Technologies Office eere.energy.gov 1) Asset...

  5. Impact of Climate Change Heating and Cooling Energy Use in Buildings in the United States

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    1 Impact of Climate Change Heating and Cooling Energy Use in Buildings in the United States Haojie activities in buildings. One area directly affected by climate change is the energy consumption for heating to systematically study the climate change impact on various types of residential and commercial buildings in all 7

  6. Energy Efficient Operations and Maintenance Practices In New York State Buildings

    E-Print Network [OSTI]

    Smerdon, Jason E.

    Energy Efficient Operations and Maintenance Practices In New York State Buildings Columbia and implementation of energy efficient O&M practices in New York State government buildings. We would like to extend EUI Energy Use Intensity, often measured in kBtu per gross square foot of building area NYPA New York

  7. BUILDING STRONGSM 2008 AFEP Preliminary

    E-Print Network [OSTI]

    BUILDING STRONGSM 1 2008 AFEP Preliminary Research Results Northwest Power and Conservation Council Meeting March 2009 Boise, ID #12;BUILDING STRONGSM 2 Focus Today · Anadromous Fish Evaluation Program Purpose · Juvenile Fish Passage · Adult Fish · Predation ­ Avian ­ Pinniped · Lamprey #12;BUILDING

  8. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01

    energy efficiency. Intelligent Buildings, 3:43-46, 2011. InM. Bhandari. Comparison of Building Energy Use Data betweenand China, Energy and Buildings, 2013. Under reviewed. 5. T.

  9. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01

    Seven recent energy-efficient U.S. office buildings areSeven recent energy-efficient U.S. office buildings areLaboratory (1982), "Energy Efficient Buildings Program FY

  10. Building Technologies Program Key Activities

    SciTech Connect (OSTI)

    2011-12-15

    The Building Technologies Program (BTP) employs a balanced approach to making buildings more energy efficient. The three pillars of our program, research and development (R&D), market stimulation, and building and equipment standards, help meet our strategic vision.

  11. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01

    Breakdown of Total  Electricty Consumption ? Building A kWh/Breakdown of Total  Electricty Consumption ? Building B kWh/Breakdown of Total   Electricty Consumption ? Building C 

  12. Model Predictive Control for Energy Efficient Buildings

    E-Print Network [OSTI]

    Ma, Yudong

    2012-01-01

    ALC) system. ALC is a building automation system, offering aModern digital building automation systems satisfy thesemore sophisticated building automation systems and building

  13. Rating the energy performance of buildings

    E-Print Network [OSTI]

    Olofsson, Thomas; Meier, Alan; Lamberts, Roberto

    2004-01-01

    T. , (1998), Building Energy Measurement and PerformanceRating a building’s energy performance is becoming anrating of energy performance of buildings. Modern existing

  14. Health Care Buildings : Basic Characteristics Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Basic Characteristics Tables Buildings and Size Data by Basic Characteristics for Health Care Buildings Number of Buildings (thousand) Percent of Buildings Floorspace (million...

  15. BEPS redesign of 168 commercial buildings: summary report

    SciTech Connect (OSTI)

    Stoops, J.L.; Deringer, J.J.; Moreno, S.; Misuriello, H.P.

    1984-05-01

    The objective of this report is to present, in usable form, summary data from the Building Energy Performance Standards (BEPS) Phase II commercial buildings energy research conducted in 1978-1979. Summary data presented were obtained from two major research efforts: the BEPS Phase II Redesign experiment; and the related research on ASHRAE Standard 90-75R. The bulk of this report consists of data tabulations of key energy parameters for the 168 sample buildings, which were tabulated from computer-stored files of the 1978-1979 data. Two kinds of tabulations are included: numerical tabulations that extracted information from the computer-stored data base for the 168 sample buildings; and graphic presentations of the computer-generated data, plus data extracted from other sources. The intent is to provide a single data compendium of key energy-related factors from the 1978 redesign experiment and the associated 1978-1979 ASHRAE Standard 90-75R research. This report also supplements the information for which there was not space in the magazine articles. Thus, for some building types, additional analysis, comments, and data tabulations are included that could not be included in the articles because space was limited. These additional analysis items are not consistent across building types because both the energy conservation opportunities and the design strategies applied by the building designers varied considerably by building type. The chapters have been entered individually into EDB and ERA.

  16. Property:Building/FloorAreaChurchesChapels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975)Energy Technology JumpWilliamDRAFTArea

  17. Property:Building/FloorAreaMiscellaneous | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975)Energy

  18. Energy Innovation Hub Report Shows Philadelphia-area Building Retrofits

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 Infographic courtesyEducation Data JamDepartment2 A P R(April 2012)Could

  19. Energy Department Recognizes Denver Area Partners for Housing and Building

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice ofofWind Projects |Energy Leaders,EnergyLeadership inEfficiency

  20. Building America Expert Meeting: Code Challenges with Multifamily Area

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, IncBio CentersBreaking UpWhole-House

  1. Waste Handeling Building Conceptual Study

    SciTech Connect (OSTI)

    G.W. Rowe

    2000-11-06

    The objective of the ''Waste Handling Building Conceptual Study'' is to develop proposed design requirements for the repository Waste Handling System in sufficient detail to allow the surface facility design to proceed to the License Application effort if the proposed requirements are approved by DOE. Proposed requirements were developed to further refine waste handling facility performance characteristics and design constraints with an emphasis on supporting modular construction, minimizing fuel inventory, and optimizing facility maintainability and dry handling operations. To meet this objective, this study attempts to provide an alternative design to the Site Recommendation design that is flexible, simple, reliable, and can be constructed in phases. The design concept will be input to the ''Modular Design/Construction and Operation Options Report'', which will address the overall program objectives and direction, including options and issues associated with transportation, the subsurface facility, and Total System Life Cycle Cost. This study (herein) is limited to the Waste Handling System and associated fuel staging system.

  2. BETTER BUILDINGS ALLIANCE

    Broader source: Energy.gov [DOE]

    Commercial buildings—our offices, schools, hospitals, restaurants, hotels and stores—consume nearly 20% of all energy used in the United States. We spend more than $200 billion each year to power our country's commercial buildings. Unfortunately, much of this energy and money is wasted; a typical commercial building could save 20% on its energy bills simply by commissioning existing systems so they operate as intended. Energy efficiency is a cost-effective way to save money, support job growth, reduce pollution, and improve competitiveness.

  3. The Reality and Future Scenarios of Commercial Building Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2008-01-01

    Application Water Heating Fig.2 Commercial Floor Area andSpace Heating Technology Shift in Office Building Floor areaDistrict Heating has supplied about 25% of the total floor

  4. Building America Case Study: Balancing Hydronic Systems in Multifamily Buildings, Chicago, Illinois (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01

    In multifamily hydronic systems, temperature imbalance may be caused by undersized piping, improperly adjusted balancing valves, inefficient water temperature and flow levels, and owner/occupant interaction with the boilers, distribution and controls. The effects of imbalance include tenant discomfort, higher energy use intensity and inefficient building operation. This paper explores cost-effective distribution upgrades and balancing measures in multifamily hydronic systems, providing a resource to contractors, auditors, and building owners on best practices to improve tenant comfort and lower operating costs. The research was conducted by The Partnership for Advanced Residential Retrofit (PARR) in conjunction with Elevate Energy. The team surveyed existing knowledge on cost-effective retrofits for optimizing distribution in typical multifamily hydronic systems, with the aim of identifying common situations and solutions, and then conducted case studies on two Chicago area buildings with known balancing issues in order to quantify the extent of temperature imbalance. At one of these buildings a booster pump was installed on a loop to an underheated wing of the building. This study found that unit temperature in a multifamily hydronic building can vary as much as 61 degrees F, particularly if windows are opened or tenants use intermittent supplemental heating sources like oven ranges. Average temperature spread at the building as a result of this retrofit decreased from 22.1 degrees F to 15.5 degrees F.

  5. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01

    Bhandari. Comparison of Building Energy Use Data between theUnited States and China, Energy and Buildings, 2013. Underand Analytics to Inform Energy Retrofit of High Performance

  6. Solar Ready Buildings Planning Guide

    SciTech Connect (OSTI)

    Lisell, L.; Tetreault, T.; Watson, A.

    2009-12-01

    This guide offers a checklist for building design and construction to enable installation of solar photovoltaic and heating systems at some time after the building is constructed.

  7. Federal Buildings Supplemental Survey 1993

    U.S. Energy Information Administration (EIA) Indexed Site

    6. Electricity Consumption and Expenditure Intensities in FBSS Buildings in Federal Region 3, 1993 Electricity Consumption Electricity Expenditures Distribution of Building-Level...

  8. Chapter 9: Commissioning the Building

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the con- struction materials such as durability and VOC emission content. It can improve power quality for the overall building by verifying that electrical building support and...

  9. Bioengineering/Chemical Engineering Building,

    E-Print Network [OSTI]

    Bogyo, Matthew

    BioE/ChemE Building Bioengineering/Chemical Engineering Building, Under Construction Lucile Packard Graduate Residences Sterling Quad Mirrielees Pearce Mitchell Houses Stanford Hospital Varsity Lot Jordan

  10. Better building: LEEDing new facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Better building: LEEDing new facilities Better building: LEEDing new facilities We're taking big steps on-site to create energy efficient facilities and improve infrastructure....

  11. CBECS Buildings Characteristics --Revised Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Totals and Means of Floorspace, Number of Workers, and Hours of Operation, 1995 Building Characteristics RSE Column Factor: All Buildings (thousand) Total Floorspace (million...

  12. Federal Buildings Supplemental Survey 1993

    U.S. Energy Information Administration (EIA) Indexed Site

    1993 Natural Gas Consumption Natural Gas Expenditures Distribution of per per per per Building-Level Intensities Total Building Square Worker per per Thousand (cubic feetsquare...

  13. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01

    operation, maintenance, occupant behavior: U.S. buildingsoperation,  maintenance, occupant behavior: U.S.  buildings building operation and occupant behavior in both countries: 

  14. Building America Solution Center Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with fast, free and reliable building science and efficiency knowledge. At the heart of the Building America Solution Center are the guides -- a compilation of content...

  15. Buildings Interoperability Vision Technical Meeting

    Broader source: Energy.gov (indexed) [DOE]

    and will provide input to future meetings for framing a buildings interoperability roadmap. Summary Buildings are an integral part of our nation's energy economy. The...

  16. Heat Recovery in Building Envelopes

    E-Print Network [OSTI]

    Sherman, Max H.; Walker, Iain S.

    2001-01-01

    Model For Infiltration Heat Recovery. Proceedings 21st AivcLBNL 47329 HEAT RECOVERY IN BUILDING ENVELOPES Max H.contribution because of heat recovery within the building

  17. Commercial Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation Energy Efficiency Commercial Buildings Commercial Buildings At an estimated cost of 38 billion a year, lighting represents the largest source of...

  18. Building Random Trees from Blocks

    E-Print Network [OSTI]

    2012-09-18

    Sep 18, 2012 ... We have a finite collection of unlabeled, rooted, nonplanar building ... We use these as building blocks of an unlabeled, rooted, nonplanar tree.

  19. 327 Building fire hazards analysis implementation plan

    SciTech Connect (OSTI)

    BARILO, N.F.

    1999-05-10

    In March 1998, the 327 Building Fire Hazards Analysis (FHA) (Reference 1) was approved by the U.S. Department of Energy, Richland Operations Office (DOE-E) for implementation by B and W Hanford Company (BWC). The purpose of the FHA was to identify gaps in compliance with DOE Order 5480.7A (Reference 2) and Richland Operations Office Implementation Directive (RLID) 5480.7 (Reference 3), especially in regard to loss limitation. The FHA identified compliance gaps in five areas and provided nine recommendations (11 items) to bring the 327 Building into compliance. A status is provided for each recommendation in this document. BWHC will use this Implementation Plan to bring the 327 Building and its operation into compliance with DOE Order 5480.7A and IUD 5480.7.

  20. Building Diagnostic Market Deployment - Final Report

    SciTech Connect (OSTI)

    Katipamula, Srinivas; Gayeski, N.

    2012-04-01

    The work described in this report was done as part of a Cooperative Research and Development Agreement (CRADA) between the U.S. Department of Energy’s Pacific Northwest National Laboratory (PNNL) and KGS Building LLC (KGS). PNNL and KGS both believe that the widespread adoption of automated fault de4tection and diagnostic (AFDD) tools will result in significant reduction to energy and peak energy consumption. The report provides an introduction, and summary of the various tasks performed under the CRADA. The CRADA project had three major focus areas: 1) Technical Assistance for Whole Building Energy Diagnostician (WBE) Commercialization, 2) Market Transfer of the Outdoor Air/Economizer Diagnostician (OAE), and 3) Development and Deployment of Automated Diagnostics to Improve Large Commercial Building Operations.

  1. Building Energy Code

    Broader source: Energy.gov [DOE]

    New Hampshire adopted a mandatory statewide building code in 2002 based on the 2000 IECC. SB 81 was enacted in July 2007, and it upgraded the New Hampshire Energy Code to the 2006 IECC. In...

  2. DESIGN [fabrication] BUILD

    E-Print Network [OSTI]

    Rader, Nicolas Glen

    2006-01-01

    DESIGN [fabrication] BUILD proposes a new relationship among the architect, homeowner, and fabricator/assembler through the use of parametric software in order to create a truly customizable prefabricated home. This ...

  3. Portraits of buildings

    E-Print Network [OSTI]

    Alter, Robert H

    1981-01-01

    The photography of architecture is more than a simple tool to record facts about specific buildings. Photography can be used to communicate insights and perceptions about the role of architecture in society and our personal ...

  4. Energy Efficient Buildings Hub

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy created the Energy Efficient Buildings Hub in Philadelphia, Pennsylvania to promote regional job creation and economic growth while also improving the energy...

  5. Building to Fall

    E-Print Network [OSTI]

    Spain, Mitchell Ross

    2015-05-31

    Abstract Building to Fall is an exploration of our experiences that establish ideas of balance, risk, and failure, testing theories about the physical and social world in which we exist. Throughout history we have encountered many failures...

  6. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Ballast: See High-Efficiency Ballast. Btu: British thermal unit. A unit quantity of energy consumed by or delivered to a building. A Btu is defined as the amount of energy...

  7. Building Energy Efficient Schools 

    E-Print Network [OSTI]

    McClure, J. D.; Estes, J. M.

    1985-01-01

    Many new school buildings consume only half the energy required by similar efficient structures designed without energy performance as a design criterion. These are comfortable and efficient while construction costs remain about the same as those...

  8. Building Energy Standards

    Broader source: Energy.gov [DOE]

    The 2015 Vermont Commercial Building Energy Standards (CBES) took effect on March 1, 2015. The code is based on the 2015 IECC, with amendments to incorporate ASHRAE 90.1-2013. The new guidelines ...

  9. Passive solar buildings research

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1992-12-31

    This chapter covers research advances in passive solar buildings research during the time span from 1982 through 1991. These advances fall within the following categories: (1) short-term energy monitoring, (2) heat transport by natural convection within buildings, and (3) design guidelines and design tools. In short-term energy monitoring, a simulation model of the building is calibrated, based on data taken in a 3-day test. The method accurately predicts performance over an extended period. Heat transport through doorways is characterized for complex situations that arise in passive solar buildings. Simple concepts and models adequately describe the energy transport in many situations of interest. In a new approach, design guidelines are automatically generated for any specific locality. Worksheets or an accompanying computer program allow the designer to quickly and accurately evaluate performance and investigate design alternatives. 29 refs., 19 figs., 2 tabs.

  10. Building Energy Code

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Indiana Residential Building Code is based on the 2003 IRC with state amendments (eff. 9/11/05). This code applies to 1 and 2 family dwellings and townhouses. During the adoption process,...

  11. High Performance Sustainable Building

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-11-09

    This Guide provides approaches for implementing the High Performance Sustainable Building (HPSB) requirements of DOE Order 413.3B, Program and Project Management for the Acquisition of Capital Assets. Supersedes DOE G 413.3-6.

  12. Small Building Material Loan

    Broader source: Energy.gov [DOE]

    Applicants may borrow up to $100,000 for projects that improve the livability of a home, improve energy efficiency or expand space. The loan can be applied toward building materials, freight or...

  13. Wind Tunnel Building - 1 

    E-Print Network [OSTI]

    Unknown

    2005-06-30

    This paper describes a simple graphic tool that enables a building designer to evaluate the potential for wind induced ventilation cooling in several climate zones. Long term weather data were analyzed to determine the conditions for which available...

  14. Safety in Buildings 

    E-Print Network [OSTI]

    Hutcheon, N. B.

    Building codes are essentially sets of safety regulations in respect of structure, fire, and health. They were originally developed in response to frequently demonstrated hazards of structural collapse, catastrophic fires, ...

  15. Relationships in design build

    E-Print Network [OSTI]

    Wampler, Charles Wilson

    2010-01-01

    As design build (DB) becomes more popular, different ways of writing contracts and forming relationships with the various parties are being considered. The main point of this paper is to look at the relationships between ...

  16. Building Energy Code

    Broader source: Energy.gov [DOE]

    Changes to the energy code are submitted to the Uniform Building Code Commission. The proposed change is reviewed by the Commission at a monthly meeting to decide if it warrants further...

  17. Building Energy Code

    Broader source: Energy.gov [DOE]

    The State Building Code Council revised the Washington State Energy Code (WESC) in February 2013, effective July 1, 2013. The WESC is a state-developed code based upon ASHRAE 90.1-2010 and the...

  18. Building Energy Code

    Broader source: Energy.gov [DOE]

    In September 2011 the Nebraska Building Energy Code was updated to the 2009 International Energy Conservation Code (IECC) standards.  As with the previous 2003 IECC standards, which had been in...

  19. Building Energy Code

    Broader source: Energy.gov [DOE]

    All new residential, commercial, and community-owned buildings constructed on or after January 1, 1992 that recieve financing from the Alaska Housing Finance Corporation (AHFC) must comply with...

  20. Building Energy Code

    Broader source: Energy.gov [DOE]

    A mandatory energy code is not enforced at the state level. If a local energy code is adopted, it is enforced at the local level. Builders or sellers of new residential buildings (single-family or...

  1. Analysis of the Chinese Market for Building Energy Efficiency

    SciTech Connect (OSTI)

    Yu, Sha; Evans, Meredydd; Shi, Qing

    2014-03-20

    China will account for about half of the new construction globally in the coming decade. Its floorspace doubled from 1996 to 2011, and Chinese rural buildings alone have as much floorspace as all of U.S. residential buildings. Building energy consumption has also grown, increasing by over 40% since 1990. To curb building energy demand, the Chinese government has launched a series of policies and programs. Combined, this growth in buildings and renovations, along with the policies to promote green buildings, are creating a large market for energy efficiency products and services. This report assesses the impact of China’s policies on building energy efficiency and on the market for energy efficiency in the future. The first chapter of this report introduces the trends in China, drawing on both historical analysis, and detailed modeling of the drivers behind changes in floorspace and building energy demand such as economic and population growth, urbanization, policy. The analysis describes the trends by region, building type and energy service. The second chapter discusses China’s policies to promote green buildings. China began developing building energy codes in the 1980s. Over time, the central government has increased the stringency of the code requirements and the extent of enforcement. The codes are mandatory in all new buildings and major renovations in China’s cities, and they have been a driving force behind the expansion of China’s markets for insulation, efficient windows, and other green building materials. China also has several other important policies to encourage efficient buildings, including the Three-Star Rating System (somewhat akin to LEED), financial incentives tied to efficiency, appliance standards, a phasing out of incandescent bulbs and promotion of efficient lighting, and several policies to encourage retrofits in existing buildings. In the third chapter, we take “deep dives” into the trends affecting key building components. This chapter examines insulation in walls and roofs; efficient windows and doors; heating, air conditioning and controls; and lighting. These markets have seen significant growth because of the strength of the construction sector but also the specific policies that require and promote efficient building components. At the same time, as requirements have become more stringent, there has been fierce competition, and quality has at time suffered, which in turn has created additional challenges. Next we examine existing buildings in chapter four. China has many Soviet-style, inefficient buildings built before stringent requirements for efficiency were more widely enforced. As a result, there are several specific market opportunities related to retrofits. These fall into two or three categories. First, China now has a code for retrofitting residential buildings in the north. Local governments have targets of the number of buildings they must retrofit each year, and they help finance the changes. The requirements focus on insulation, windows, and heat distribution. Second, the Chinese government recently decided to increase the scale of its retrofits of government and state-owned buildings. It hopes to achieve large scale changes through energy service contracts, which creates an opportunity for energy service companies. Third, there is also a small but growing trend to apply energy service contracts to large commercial and residential buildings. This report assesses the impacts of China’s policies on building energy efficiency. By examining the existing literature and interviewing stakeholders from the public, academic, and private sectors, the report seeks to offer an in-depth insights of the opportunities and barriers for major market segments related to building energy efficiency. The report also discusses trends in building energy use, policies promoting building energy efficiency, and energy performance contracting for public building retrofits.

  2. Sustainable Building Basics

    Broader source: Energy.gov [DOE]

    Sustainable building design and operation strategies demonstrate a commitment to energy efficiency, and environmental stewardship. These approaches result in an optimal balance of energy, cost, environmental, and societal benefits, while still meeting the mission of a Federal agency and the function of the facility or infrastructure. For buildings and facilities, responsible resource management and the assessment of operational impacts encompass the principles of sustainability. Sustainable development aims to meet the needs of the present without compromising future needs.

  3. High Performance Buildings Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The High Performance Buildings Database is a shared resource for the building industry, a unique central repository of in-depth information and data on high-performance, green building projects across the United States and abroad. The database includes information on the energy use, environmental performance, design process, finances, and other aspects of each project. Members of the design and construction teams are listed, as are sources for additional information. In total, up to twelve screens of detailed information are provided for each project profile. Projects range in size from small single-family homes or tenant fit-outs within buildings to large commercial and institutional buildings and even entire campuses. The database is a data repository as well. A series of Web-based data-entry templates allows anyone to enter information about a building project into the database. Once a project has been submitted, each of the partner organizations can review the entry and choose whether or not to publish that particular project on its own Web site.

  4. Building operating systems services: An architecture for programmable buildings.

    E-Print Network [OSTI]

    Dawson-Haggerty, Stephen

    2014-01-01

    building campuses. It provides the core functionality of sensor and actuator access, access management, metadata,

  5. Building Operating Systems Services: An Architecture for Programmable Buildings

    E-Print Network [OSTI]

    Dawson-Haggerty, Stephen

    2014-01-01

    building campuses. It provides the core functionality of sensor and actuator access, access management, metadata,

  6. 3-100.1 Building Evacuation 1 Building Evacuation

    E-Print Network [OSTI]

    Hua, Kien A.

    3-100.1 Building Evacuation 1 SUBJECT: Building Evacuation Effective Date: 10-20-10 Policy Number and Safety APPLICABILITY/ACCOUNTABILITY: This policy applies to all individuals in all buildings on all University of Central Florida campuses. BACKGROUND INFORMATION: University buildings occasionally need

  7. 1 | Building America eere.energy.gov DOE's Building America

    E-Print Network [OSTI]

    1 | Building America eere.energy.gov DOE's Building America Low-E Storm Window Adoption Program Working Group #12;2 | Building America eere.energy.gov Pacific Northwest National Laboratory · Katie Cort, Larson Manufacturing Company Key Staff #12;3 | Building America eere.energy.gov Problem · Windows account

  8. The Ruskin Building 4.1 Building Condition

    E-Print Network [OSTI]

    Flynn, E. Victor

    39 The Ruskin Building 04 #12;40 4.1 Building Condition TEACHING ROOMS STUDENT ANCILLARY ADMIN First Floor Plan Second Floor Plan Third Floor Plan 4.1 Building Condition This Section provides an overview of the condition of the existing buildings. Below is a series of plans identifying the present

  9. Manhattan Project buildings and facilities at the Hanford Site: A construction history

    SciTech Connect (OSTI)

    Gerber, M.S.

    1993-09-01

    This document thoroughly examines the role that the Hanford Engineer Works played in the Manhattan project. The historical aspects of the buildings and facilities are characterized. An in depth look at the facilities, including their functions, methods of fabrication and appearance is given for the 100 AREAS, 200 AREAS, 300 AREAS, 500, 800 and 900 AREAS, 600 AREA, 700 AREA, 1100 AREA and temporary construction structures.

  10. BUILDING A RISK MANAGEMENT PLAN BUILDING A RISK MANAGEMENT PL LDING A RISK MANAGEMENT PLAN BUILDING A RISK MANAGEMENT PLAN

    E-Print Network [OSTI]

    Florida, University of

    BUILDING A RISK MANAGEMENT PLAN BUILDING A RISK MANAGEMENT PL LDING A RISK MANAGEMENT PLAN BUILDING A RISK MANAGEMENT PLAN MANAGEMENT PLAN BUILDING A RISK MANAGEMENT PLAN BUILDING A R RISK MANAGEMENT PLAN BUILDING A RISK MANAGEMENT PLAN BUILDIN T PLAN BUILDING A RISK MANAGEMENT PLAN BUILDING A RISK MANAGEM

  11. RIVER CORRIDOR BUILDINGS 324 & 327 CLEANUP

    SciTech Connect (OSTI)

    BAZZELL, K.D.; SMITH, B.A.

    2006-02-09

    A major challenge in the recently awarded River Corridor Closure (RCC) Contract at the U.S. Department of Energy's (DOE) Hanford Site is decontaminating and demolishing (D&D) facilities in the 300 Area. Located along the banks of the Columbia River about one mile north of Richland, Washington, the 2.5 km{sup 2} (1 mi{sup 2})300 Area comprises only a small part of the 1517 km{sup 2} (586 mi{sup 2}) Hanford Site. However, with more than 300 facilities ranging from clean to highly contaminated, D&D of those facilities represents a major challenge for Washington Closure Hanford (WCH), which manages the new RCC Project for DOE's Richland Operations Office (RL). A complicating factor for this work is the continued use of nearly a dozen facilities by the DOE's Pacific Northwest National Laboratory (PNNL). Most of the buildings will not be released to WCH until at least 2009--four years into the seven-year, $1.9 billion RCC Contract. The challenge will be to deactivate, decommission, decontaminate and demolish (D4) highly contaminated buildings, such as 324 and 327, without interrupting PNNL's operations in adjacent facilities. This paper focuses on the challenges associated with the D4 of the 324 Building and the 327 Building.

  12. 324 Building fire hazards analysis implementation plan

    SciTech Connect (OSTI)

    Eggen, C.D.

    1998-09-16

    In March 1998, the 324 Building Fire Hazards Analysis (FHA) (Reference 1) was approved by the US Department of Energy, Richland Operations Office (DOE-RL) for implementation by B and W Hanford Company (BWHC). The purpose of the FHA was to identify gaps in compliance with DOE Order 5480.7A (Reference 2) and Richland Operations Office Implementation Directive (RLID) 5480.7 (Reference 3), especially in regard to loss limitation. The FHA identified compliance gaps in six areas and provided 20 recommendations to bring the 324 Building into compliance with DOE Order 5480.7A. Additionally, one observation was provided. To date, four of the recommendations and the one observation have been completed. Actions identified for seven of the recommendations are currently in progress. Exemption requests will be transmitted to DOE-RL for three of the recommendations. Six of the recommendations are related to future shut down activities of the facility and the corrective actions are not being addressed as part of this plan. The actions for recommendations associated with the safety related part of the 324 Building and operation of the cells and support areas were evaluated using the Unreviewed Safety Question (USQ) process. Major Life Safety Code concerns have been corrected. The status of the recommendations and actions was confirmed during the July 1998 Fire Protection Assessment. BVMC will use this Implementation Plan to bring the 324 Building and its operation into compliance with DOE Order 5480.7A and RLID 5480.7.

  13. 324 Building fire hazards analysis implementation plan

    SciTech Connect (OSTI)

    BARILO, N.F.

    1999-05-10

    In March 1998, the 324 Building Fire Hazards Analysis (FHA) (Reference 1) was approved by the U S. Department of Energy, Richland Operations Office (DOE-RL) for implementation by B and W Hanford Company (BWHC). The purpose of the FHA was to identify gaps in compliance with DOE Order 5480.7A (Reference 2) and Richland Operations Office Implementation Directive (RLID) 5480.7 (Reference 3), especially in regard to loss limitation. The FHA identified compliance gaps in six areas and provided 20 recommendations to bring the 324 Building into compliance with DOE Order 5480 7A. Additionally, one observation was provided. A status is provided for each recommendation in this document. The actions for recommendations associated with the safety related part of the 324 Building and operation of the cells and support areas were evaluated using the Unreviewed Safety Question (USQ) process BWHC will use this Implementation Plan to bring the 324 Building and its operation into compliance with DOE Order 5480 7A and RLID 5480.7.

  14. Radon in multi-story residential buildings. Final report

    SciTech Connect (OSTI)

    Mardis, H.M.; MacWaters, J.; Oswald, J.

    1991-12-01

    In September 1989, HUD signed an Interagency Agreement with the Environmental Protection Agency (EPA) requesting EPA to measure radon levels and distribution patterns in several multi-story residential buildings. This study was conducted in two phases. The Phase 1 included walk-through investigations of each of the four test buildings. These preliminary investigations were focused on identifying site-specific characteristics that might influence radon entry and distribution. The results of these investigations were used to design and implement short-term screening measurements (diffusion barrier charcoal canisters) of each building's radon potential. Phase 2 consisted of long-term radon measurements with alpha track detectors (approximately 6 months) and investigations of the characteristics of each building. These measurements were made to address the possibility that long-term radon levels might be higher on upper floors than indicated by the short-term basement and ground-level screening tests. The report describes the investigations that were conducted, the data that were gathered for each building, and general observations and discussions about patterns of radon distribution in these specific buildings.

  15. Particle penetration through building cracks

    E-Print Network [OSTI]

    Liu, D L; Nazaroff, William W

    2003-01-01

    advanced our knowledge, they have not fully elucidated the extent to which particles penetrate building envelopes.

  16. Archived Reference Building Type: Warehouse

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  17. Building Emergency Plan Summer 2012

    E-Print Network [OSTI]

    Building Emergency Plan Project Summer 2012 #12;Building Emergency Plan Project We will be going over: · Introductions · What a Building Emergency Plan (BEP) is · The project and goals · Why? · Gives instructions and guidance to building tenants · Lets tenants know what to do in any emergency

  18. Building Evacuation Procedures General Procedures

    E-Print Network [OSTI]

    Krovi, Venkat

    Bell Hall Building Evacuation Procedures General Procedures: It is the personal responsibility of all occupants of University buildings to immediately exit the building when the fire alarm is activated. Remaining in the building is unacceptable, regardless of the reason. Occupants should exit from

  19. Building Evacuation Procedures General Procedures

    E-Print Network [OSTI]

    Krovi, Venkat

    Davis Hall Building Evacuation Procedures General Procedures: It is the personal responsibility of all occupants of University buildings to immediately exit the building when the fire alarm is activated. Remaining in the building is unacceptable, regardless of the reason. Occupants should exit from

  20. CALIFORNIA ENERGY Large HVAC Building

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION Large HVAC Building Survey Information Database of Buildings over 100 Energy Systems: Productivity and Building Science Program. This program was funded by the California of Portland Energy Conservation, Inc. Project Management: Cathy Higgins, Program Director for New Buildings

  1. AA Architecture Building AC Athletics

    E-Print Network [OSTI]

    Kranakis, Evangelos

    $ AA Architecture Building AC Athletics AH Alumni Hall AP Azrieli Pavilion AT Azrieli Theatre CB Canal Building CC Colonel By Child Care Centre CO Residence Commons (Fenn Lounge) DH Dundas House DT Dunton Tower Interaction Building HP Herzberg Laboratories IH Ice House LA Loeb Building LE Leeds House LH Lanark House LS

  2. Bonner Hall Building Evacuation Procedures

    E-Print Network [OSTI]

    Krovi, Venkat

    Bonner Hall Building Evacuation Procedures General Procedures: It is the personal responsibility of all occupants of University buildings to immediately exit the building when the fire alarm is activated. Remaining in the building is unacceptable, regardless of the reason. Occupants should exit from

  3. KETTER HALL BUILDING EVACUATION PROCEDURES

    E-Print Network [OSTI]

    Krovi, Venkat

    KETTER HALL BUILDING EVACUATION PROCEDURES General Procedures: It is the personal responsibility of all University buildings occupants to immediately exit the building when the fire alarm is activated. Remaining in the building is unacceptable, regardless of the reason. Occupants should exit from the closest

  4. Jarvis Hall Building Evacuation Procedures

    E-Print Network [OSTI]

    Krovi, Venkat

    Jarvis Hall Building Evacuation Procedures General Procedures: It is the personal responsibility of all occupants of University buildings to immediately exit the building when the fire alarm is activated. Remaining in the building is unacceptable, regardless of the reason. Occupants should exit from

  5. Furnas Hall Building Evacuation Procedures

    E-Print Network [OSTI]

    Krovi, Venkat

    Furnas Hall Building Evacuation Procedures General Procedures: It is the personal responsibility of all occupants of University buildings to immediately exit the building when the fire alarm is activated. Remaining in the building is unacceptable, regardless of the reason. Occupants should exit from

  6. Phase correction system for automatic focusing of synthetic aperture radar

    DOE Patents [OSTI]

    Eichel, Paul H. (Albuquerque, NM); Ghiglia, Dennis C. (Placitas, NM); Jakowatz, Jr., Charles V. (Albuquerque, NM)

    1990-01-01

    A phase gradient autofocus system for use in synthetic aperture imaging accurately compensates for arbitrary phase errors in each imaged frame by locating highlighted areas and determining the phase disturbance or image spread associated with each of these highlight areas. An estimate of the image spread for each highlighted area in a line in the case of one dimensional processing or in a sector, in the case of two-dimensional processing, is determined. The phase error is determined using phase gradient processing. The phase error is then removed from the uncorrected image and the process is iteratively performed to substantially eliminate phase errors which can degrade the image.

  7. Office rent and labor availability in the Chicago Metropolitan Area

    E-Print Network [OSTI]

    Tang, Wencan, M.C.P. Massachusetts Institute of Technology

    2008-01-01

    This paper provides an empirical analysis of office rents using data from the 2000 U.S. Census and TWR office building data in the Chicago Metropolitan Statistical Area. The results indicate that rent levels respond to ...

  8. Stanford University Department of Environmental Health and Safety G:\\CAP\\CAP Team Forms \\StorageAreaInspFillableForm.pdf Enter Inspection Date

    E-Print Network [OSTI]

    as Hazardous Materials Storage Areas (not laboratories or work areas). 2. Evaluate the storage area during-9999 (24 hours). Building Number Building Name Room Number HAZARDOUS MATERIALS STORAGE AREA: MONTHLYStanford University Department of Environmental Health and Safety G:\\CAP\\CAP Team Forms \\StorageArea

  9. PRTR/309 building nuclear facility preliminary

    SciTech Connect (OSTI)

    Cornwell, B.C.

    1994-12-08

    The hazard classification of the Plutonium Recycle Test Reactor (PRTR)/309 building as a ``Radiological Facility`` and the office portions as ``Other Industrial Facility`` are documented by this report. This report provides: a synopsis of the history and facility it`s uses; describes major area of the facility; and assesses the radiological conditions for the facility segments. The assessment is conducted using the hazard category threshold values, segmentation methodology, and graded approach guidance of DOE-STD-1027-92.

  10. NET-ZERO ENERGY BUILDING OPERATOR TRAINING PROGRAM (NZEBOT)

    SciTech Connect (OSTI)

    Brizendine, Anthony; Byars, Nan; Sleiti, Ahmad; Gehrig, Bruce; Lu, Na

    2012-12-31

    The primary objective of the Net-Zero Energy Building Operator Training Program (NZEBOT) was to develop certificate level training programs for commercial building owners, managers and operators, principally in the areas of energy / sustainability management. The expected outcome of the project was a multi-faceted mechanism for developing the skill-based competency of building operators, owners, architects/engineers, construction professionals, tenants, brokers and other interested groups in energy efficient building technologies and best practices. The training program draws heavily on DOE supported and developed materials available in the existing literature, as well as existing, modified, and newly developed curricula from the Department of Engineering Technology & Construction Management (ETCM) at the University of North Carolina at Charlotte (UNC-Charlotte). The project goal is to develop a certificate level training curriculum for commercial energy and sustainability managers and building operators that: 1) Increases the skill-based competency of building professionals in energy efficient building technologies and best practices, and 2) Increases the workforce pool of expertise in energy management and conservation techniques. The curriculum developed in this project can subsequently be used to establish a sustainable energy training program that can contribute to the creation of new “green” job opportunities in North Carolina and throughout the Southeast region, and workforce training that leads to overall reductions in commercial building energy consumption. Three energy training / education programs were developed to achieve the stated goal, namely: 1. Building Energy/Sustainability Management (BESM) Certificate Program for Building Managers and Operators (40 hours); 2. Energy Efficient Building Technologies (EEBT) Certificate Program (16 hours); and 3. Energy Efficent Buildings (EEB) Seminar (4 hours). Training Program 1 incorporates the following topics in the primary five-day Building Energy/Sustainability Management Certificate program in five training modules, namely: 1) Strategic Planning, 2) Sustainability Audits, 3) Information Analysis, 4) Energy Efficiency, and 5) Communication. Training Program 2 addresses the following technical topics in the two-day Building Technologies workshop: 1) Energy Efficient Building Materials, 2) Green Roofing Systems, 3) Energy Efficient Lighting Systems, 4) Alternative Power Systems for Buildings, 5) Innovative Building Systems, and 6) Application of Building Performance Simulation Software. Program 3 is a seminar which provides an overview of elements of programs 1 and 2 in a seminar style presentation designed for the general public to raise overall public awareness of energy and sustainability topics.

  11. The Development of a Coordinated Database for Water Resources and Flow Model in the Paso Del Norte Watershed (Phase III) Part II Availability of Flow and Water Quality Data for the Rio Grande Project Area 

    E-Print Network [OSTI]

    Tillery, Sue; Sheng, Zhuping; King, J. Phillip; Creel, Bobby; Brown, Christopher; Michelsen, Ari; Srinivasan, Raghavan; Granados, Alfredo

    2009-01-01

    of the Rio Grande flow between Elephant Butte Dam and American Dam by using data collected in the first development phase of the PdNWC/Corps Coor dinated Water Resources Database and to enhance the data portal capabilities of the PdNWC Coordinated... monitoring sites from associated canals, drains, and dams along the Rio Grande. Flow data for the years from 1908 through 2002 and water quality data for the years 1938 to 2005 collected periodically by different agencies include historic chemical...

  12. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Evaluation of Energy Performance of UBC's Residential Buildings Using Actual Data

    E-Print Network [OSTI]

    PROJECT Evaluation of Energy Performance of UBC's Residential Buildings Using Actual Data PRESENTED BY JI-occupancy phase. This project was undertaken to assess the energy performance of UBC's residential buildings using Performance of UBC's Residential Buildings Using Actual Data JI-YEON SHIN University of British Columbia CEEN

  13. Phase Transitions

    E-Print Network [OSTI]

    Michael Creutz

    1997-08-25

    This is a set of notes on phase transitions and critical phenomena prepared to accompany my lectures for the RHIC '97 summer school, held at Brookhaven from July 6 to 16, 1997.

  14. Indoor-Outdoor Air Leakage of Apartments and Commercial Buildings

    SciTech Connect (OSTI)

    Price, P.N.; Shehabi, A.; Chan, R.W.; Gadgil, A.J.

    2006-06-01

    We compiled and analyzed available data concerning indoor-outdoor air leakage rates and building leakiness parameters for commercial buildings and apartments. We analyzed the data, and reviewed the related literature, to determine the current state of knowledge of the statistical distribution of air exchange rates and related parameters for California buildings, and to identify significant gaps in the current knowledge and data. Very few data were found from California buildings, so we compiled data from other states and some other countries. Even when data from other developed countries were included, data were sparse and few conclusive statements were possible. Little systematic variation in building leakage with construction type, building activity type, height, size, or location within the u.s. was observed. Commercial buildings and apartments seem to be about twice as leaky as single-family houses, per unit of building envelope area. Although further work collecting and analyzing leakage data might be useful, we suggest that a more important issue may be the transport of pollutants between units in apartments and mixed-use buildings, an under-studied phenomenon that may expose occupants to high levels of pollutants such as tobacco smoke or dry cleaning fumes.

  15. Iterative-build OMIT maps: map improvement by iterative model building and refinement without model bias

    SciTech Connect (OSTI)

    Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Grosse-Kunstleve, Ralf W.; Afonine, Pavel V.; Moriarty, Nigel W.; Adams, Paul D. [Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720 (United States); Read, Randy J. [Department of Haematology, University of Cambridge, Cambridge CB2 0XY (United Kingdom); Zwart, Peter H. [Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720 (United States); Hung, Li-Wei [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2008-05-01

    An OMIT procedure is presented that has the benefits of iterative model building density modification and refinement yet is essentially unbiased by the atomic model that is built. A procedure for carrying out iterative model building, density modification and refinement is presented in which the density in an OMIT region is essentially unbiased by an atomic model. Density from a set of overlapping OMIT regions can be combined to create a composite ‘iterative-build’ OMIT map that is everywhere unbiased by an atomic model but also everywhere benefiting from the model-based information present elsewhere in the unit cell. The procedure may have applications in the validation of specific features in atomic models as well as in overall model validation. The procedure is demonstrated with a molecular-replacement structure and with an experimentally phased structure and a variation on the method is demonstrated by removing model bias from a structure from the Protein Data Bank.

  16. Re-Building Greensburg

    ScienceCinema (OSTI)

    Hewitt, Steven; Wallach, Daniel; Peterson, Stephanie;

    2013-05-29

    Greensburg, KS - A town that was devastated by a tornado in 2007, yet came back to be one of the Nation's most energy-efficient, sustainable communities. Civic leaders and entrepreneurs helped rally residents behind the idea of "greening" Greensburg, inspiring the construction of numerous energy-efficient buildings, some of which generate their own renewable power with solar panels and wind turbines. Many of the town's government buildings use cutting edge energy-saving technologies, saving the local taxpayers' money. Greensburg has demonstrated to the world that any city can reach its energy efficiency and renewable energy goals today using widely available technologies.

  17. Historic Building Renovations

    Broader source: Energy.gov [DOE]

    When a Federal agency undertakes a renovation to an historic building, the renovation team must consider not only the uses and needs of the facility, but also a range of issues related to historic preservation. Integrating renewable energy such as solar and wind into an historic renovation has been accomplished successfully by agencies; the design and placement of any renewable energy system must be closely integrated with the overall design plans. Any renewable energy additions must maintain the integrity and defining characteristics of the building.

  18. Buildings Success Stories

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment|Marketing, LLCEfficiency | Department ofBuildingSync BuildingSync®

  19. Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan

    E-Print Network [OSTI]

    Zhou, Nan

    2011-01-01

    retrofit in northern area district heating Special fund forbuildings that have district heating system (Wu, 2009). Thein heating load is assumed for buildings using district

  20. Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    retrofit in northern area district heating Special fund forbuildings that have district heating system (Wu, 2009). Thein heating load is assumed for buildings using district

  1. PHYSICS DIVISION ESH BULLETIN 2008-1 Access Requirements for HRIBF Controlled-Entry Areas

    E-Print Network [OSTI]

    beam is present: · Dosimeters are always required in Building 6000. · Facility-specific training (Building 6000 Access Training) is required for unescorted access to Building 6000. · Facility-specific training (HRIBF Radiological Safety) is required for unescorted access to HRIBF Controlled-Entry Areas when

  2. Building Diagnostic Market Deployment - Final Report

    SciTech Connect (OSTI)

    Katipamula, S.; Gayeski, N.

    2012-04-30

    Operational faults are pervasive across the commercial buildings sector, wasting energy and increasing energy costs by up to about 30% (Mills 2009, Liu et al. 2003, Claridge et al. 2000, Katipamula and Brambley 2008, and Brambley and Katipamula 2009). Automated fault detection and diagnostic (AFDD) tools provide capabilities essential for detecting and correcting these problems and eliminating the associated energy waste and costs. The U.S. Department of Energy's (DOE) Building Technology Program (BTP) has previously invested in developing and testing of such diagnostic tools for whole-building (and major system) energy use, air handlers, chillers, cooling towers, chilled-water distribution systems, and boilers. These diagnostic processes can be used to make the commercial buildings more energy efficient. The work described in this report was done as part of a Cooperative Research and Development Agreement (CRADA) between the U.S. Department of Energy's Pacific Northwest National Laboratory (PNNL) and KGS Building LLC (KGS). PNNL and KGS both believe that the widespread adoption of AFDD tools will result in significant reduction to energy and peak energy consumption. The report provides an introduction and summary of the various tasks performed under the CRADA. The CRADA project had three major focus areas: (1) Technical Assistance for Whole Building Energy Diagnostician (WBE) Commercialization, (2) Market Transfer of the Outdoor Air/Economizer Diagnostician (OAE), and (3) Development and Deployment of Automated Diagnostics to Improve Large Commercial Building Operations. PNNL has previously developed two diagnostic tools: (1) whole building energy (WBE) diagnostician and (2) outdoor air/economizer (OAE) diagnostician. WBE diagnostician is currently licensed non-exclusively to one company. As part of this CRADA, PNNL developed implementation documentation and provided technical support to KGS to implement the tool into their software suite, Clockworks. PNNL also provided validation data sets and the WBE software tool to validate the KGS implementation. OAE diagnostician automatically detects and diagnoses problems with outdoor air ventilation and economizer operation for air handling units (AHUs) in commercial buildings using data available from building automation systems (BASs). As part of this CRADA, PNNL developed implementation documentation and provided technical support to KGS to implement the tool into their software suite. PNNL also provided validation data sets and the OAE software tool to validate the KGS implementation. Finally, as part of this CRADA project, PNNL developed new processes to automate parts of the re-tuning process and transfer those process to KGS for integration into their software product. The transfer of DOE-funded technologies will transform the commercial buildings sector by making buildings more energy efficient and also reducing the carbon footprint from the buildings. As part of the CRADA with PNNL, KGS implemented the whole building energy diagnostician, a portion of outdoor air economizer diagnostician and a number of measures that automate the identification of re-tuning measures.

  3. L Lab Building C-5 MEB Medical Examiner's Building C-10

    E-Print Network [OSTI]

    Oliver, Douglas L.

    L Lab Building C-5 MEB Medical Examiner's Building C-10 MSI UConn Musculoskeletal Institute C-7 MUN LEGEND Abbr. Building Na me Grid A Academic Building D-4 ARC American Red Cross C-9 ASB Administrative Services Building C-7 B Building B D-4 B18 Building 18 C-7 B20 Building 20 D-4 C Clinic Building D-5 CCC

  4. Visualizing Energy Information in Commercial Buildings: A Study of Tools, Expert Users, and Building Occupants

    E-Print Network [OSTI]

    Lehrer, David; Vasudev, Janani

    2011-01-01

    to improve buildings’ energy performance by offeringvisualizing the building’s energy performance, and reportshow often they view building energy or performance data, and

  5. Understanding Energy Code Acceptance within the Alaska Building Community

    SciTech Connect (OSTI)

    Mapes, Terry S.

    2012-02-14

    This document presents the technical assistance provided to the Alaska Home Financing Corporation on behalf of PNNL regarding the assessment of attitudes toward energy codes within the building community in Alaska. It includes a summary of the existing situation and specific assistance requested by AHFC, the results of a questionnaire designed for builders surveyed in a suburban area of Anchorage, interviews with a lender, a building official, and a research specialist, and recommendations for future action by AHFC.

  6. Fire in Buildings 

    E-Print Network [OSTI]

    Shorter, G.

    During the lifetime of any building in Canada it is probable that one or more "unwanted" fires will occur. "Fire Loss in Canada, 1959," the report of the Dominion Fire Commissioner, states that for the period 1950-1959 the average number of reported...

  7. Engineering Building a better

    E-Print Network [OSTI]

    Shoubridge, Eric

    Civil Engineering future Building a better #12;McGill University Montreal, with a population Bachelor of Engineering degree to undergraduate students. During this course of study, students may elect through the Internship Year in Engineering and Science (IYES) program. For students who wish to continue

  8. SUSY Model Building

    E-Print Network [OSTI]

    Stuart Raby

    2007-10-19

    I review some of the latest directions in supersymmetric model building, focusing on SUSY breaking mechanisms in the minimal supersymmetric standard model [MSSM], the "little" hierarchy and $\\mu$ problems, etc. I then discuss SUSY GUTs and UV completions in string theory.

  9. String Model Building

    E-Print Network [OSTI]

    Stuart Raby

    2009-11-06

    In this talk I review some recent progress in heterotic and F theory model building. I then consider work in progress attempting to find the F theory dual to a class of heterotic orbifold models which come quite close to the MSSM.

  10. PHOTOVOLTAICS AND COMMERCIAL BUILDINGS--

    E-Print Network [OSTI]

    Perez, Richard R.

    PHOTOVOLTAICS AND COMMERCIAL BUILDINGS-- A NATURAL MATCH A study highlighting strategic opportunities and locations for using photovoltaics to power businesses #12;SHOULD PV BE IN YOUR BUSINESS PLAN know that solar energy is environ- mentally attractive--and that photovoltaic or PV systems have made

  11. Worldwide status of energy standards for buildings: Appendices

    SciTech Connect (OSTI)

    Janda, K.B.; Busch, J.F.

    1993-02-01

    This informal survey was designed to gain information about the worldwide status of energy efficiency standards for buildings, particularly non-residential buildings such as offices, schools, and hotels. The project has three goals: 1. To understand and learn from the experience of countries with existing building energy standards; 2. To locate areas where these lessons might be applied and energy standards might be effectively proposed and developed; and 3. To share the information gathered with all participating countries. These appendices include the survey cover letter, the survey, and the details of selected energy standards in 35 countries, thus providing supporting material for the authors` article of the same title.

  12. Recovery Act: Training Program Development for Commercial Building Equipment Technicians

    SciTech Connect (OSTI)

    Leah Glameyer

    2012-07-12

    The overall goal of this project has been to develop curricula, certification requirements, and accreditation standards for training on energy efficient practices and technologies for commercial building technicians. These training products will advance industry expertise towards net-zero energy commercial building goals and will result in a substantial reduction in energy use. The ultimate objective is to develop a workforce that can bring existing commercial buildings up to their energy performance potential and ensure that new commercial buildings do not fall below their expected optimal level of performance. Commercial building equipment technicians participating in this training program will learn how to best operate commercial buildings to ensure they reach their expected energy performance level. The training is a combination of classroom, online and on-site lessons. The Texas Engineering Extension Service (TEEX) developed curricula using subject matter and adult learning experts to ensure the training meets certification requirements and accreditation standards for training these technicians. The training targets a specific climate zone to meets the needs, specialized expertise, and perspectives of the commercial building equipment technicians in that zone. The combination of efficient operations and advanced design will improve the internal built environment of a commercial building by increasing comfort and safety, while reducing energy use and environmental impact. Properly trained technicians will ensure equipment operates at design specifications. A second impact is a more highly trained workforce that is better equipped to obtain employment. Organizations that contributed to the development of the training program include TEEX and the Texas Engineering Experiment Station (TEES) (both members of The Texas A&M University System). TEES is also a member of the Building Commissioning Association. This report includes a description of the project accomplishments, including the course development phases, tasks associated with each phase, and detailed list of the course materials developed. A summary of each year's activities is also included.

  13. Building America Webinar: Building America Technology-to-Market Roadmaps

    Broader source: Energy.gov [DOE]

    This free webinar will introduce the integrated Building America Technology-to-Market Roadmaps that will serve as a guide for Building America’s research, development, and demonstration activities...

  14. Building America Webinar: Building America Technology-to-Market...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Technology-to-Market Roadmaps April 7, 2015 3:00PM to 4:30PM EDT This free webinar will introduce the integrated Building America Technology-to-Market Roadmaps...

  15. INDEPENDENT TECHNICAL REVIEW OF THE C-400 INTERIM REMEDIAL PROJECT PHASE I RESULTS, PADUCAH, KENTUCKY

    SciTech Connect (OSTI)

    Looney, B.; Rossabi, J.; Stewart,L.; Richards, W.

    2010-10-29

    The groundwater and soil in the vicinity of the C-400 Building at the Paducah Gaseous Diffusion Plant (PGDP), is contaminated with substantial quantities of industrial solvents, primarily trichoroethene (TCE). This solvent 'source' is recognized as a significant challenge and an important remediation target in the overall environmental cleanup strategy for PGDP. Thus, the cleanup of the C-400 TCE Source is a principal focus for the Department of Energy (DOE) and its contractors, and for PGDP regulators and stakeholders. Using a formal investigation, feasibility study and decision process, Electrical Resistance Heating (ERH) was selected for the treatment of the soil and groundwater in the vicinity of C-400. ERH was selected as an interim action to remove 'a significant portion of the contaminant mass of TCE at the C-400 Cleaning Building area through treatment' with the longer term goal of reducing 'the period the TCE concentration in groundwater remains above its Maximum Contaminant Level (MCL).' ERH is a thermal treatment that enhances the removal of TCE and related solvents from soil and groundwater. The heterogeneous conditions at PGDP, particularly the high permeability regional gravel aquifer (RGA), are challenging to ERH. Thus, a phased approach is being followed to implement this relatively expensive and complex remediation technology. Conceptually, the phased approach encourages safety and efficiency by providing a 'lessons learned' process and allowing appropriate adjustments to be identified and implemented prior to follow-on phase(s) of treatment. More specifically, early deployment targeted portions of the challenging RGA treatment zone with relatively little contamination reducing the risk of adverse collateral impacts from underperformance in terms of heating and capture. Because of the importance and scope of the C-400 TCE source remediation activities, DOE chartered an Independent Technical Review (ITR) in 2007 to assess the C-400 ERH plans prior to deployment and a second ITR to evaluate Phase I performance in September 2010. In this report, these ITR efforts are referenced as the '2007 ITR' and the 'current ITR', respectively. The 2007 ITR document (Looney et al., 2007) provided a detailed technical evaluation that remains relevant and this report builds on that analysis. The primary objective of the current ITR is to provide an expedited assessment of the available Phase I data to assist the PGDP team as they develop the lessons learned from Phase I and prepare plans for Phase II.

  16. Building America Webinar: Results from Phased Deep Retrofits...

    Energy Savers [EERE]

    sealing saves 20 kWhday HPWH retrofit saves 4 kWhday Takeaway: HVAC & heat pump water heater Retrofits produce reliable demand reduction Heat Pump Water Heaters *...

  17. The Cost of Enforcing Building Energy Codes: Phase 1

    E-Print Network [OSTI]

    Williams, Alison

    2013-01-01

    State Energy Officials. Energy Code Best Practices: How to2012, April 17). Energy Code Best Practices: How toMeyers, Jim. Energy Code Enforcement: Best Practices from

  18. The Cost of Enforcing Building Energy Codes: Phase 1

    E-Print Network [OSTI]

    Williams, Alison

    2013-01-01

    to Energy Efficiency Programs. ACEEE 2013 National SymposiumState Energy Code Monitoring Program. National NewEnergy Efficiency Programs’ Large Commercial & Industrial Evaluation. Burlington, MA: National

  19. The Cost of Enforcing Building Energy Codes: Phase 1

    E-Print Network [OSTI]

    Williams, Alison

    2013-01-01

    practices among code officials. Stakeholders recommendboth applicants and code officials and help to inform thecomply with the code and code officials to enforce the new

  20. Launching the Next Phase of the Better Buildings Neighborhood Program |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOE Safety StandardsLabor Relations<i>A PorscheThis