National Library of Energy BETA

Sample records for area buildings economic

  1. Savings and Economic Impacts of the Better Buildings Neighborhood...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savings and Economic Impacts of the Better Buildings Neighborhood Program, Final Evaluation Volume 2 Savings and Economic Impacts of the Better Buildings Neighborhood Program, ...

  2. Savings and Economic Impacts of the Better Buildings Neighborhood Program,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Evaluation Volume 2 | Department of Energy Savings and Economic Impacts of the Better Buildings Neighborhood Program, Final Evaluation Volume 2 Savings and Economic Impacts of the Better Buildings Neighborhood Program, Final Evaluation Volume 2 Final Report: Savings and Economic Impacts of the Better Buildings Neighborhood Program, Final Evaluation Volume 2, American Recovery and Reinvestment Act of 2009, June 2015. Prepared for U.S. Department of Energy Office of Energy Efficiency and

  3. Economic Potential of CHP in Detroit Edison Service Area: The...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economic Potential of CHP in Detroit Edison Service Area: The Customer Perspective, June 2003 Economic Potential of CHP in Detroit Edison Service Area: The Customer Perspective, ...

  4. Property:Building/FloorAreaMiscellaneous | Open Energy Information

    Open Energy Info (EERE)

    the property "BuildingFloorAreaMiscellaneous" Showing 25 pages using this property. S Sweden Building 05K0002 + 360 + Sweden Building 05K0005 + 110 + Sweden Building 05K0013 +...

  5. New Bedford Builds Foundation for Energy-Centric Economic Development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Bedford Builds Foundation for Energy-Centric Economic Development New Bedford Builds Foundation for Energy-Centric Economic Development August 25, 2014 - 2:51pm Addthis Pictured here is one of the solar arrays that is providing New Bedford with clean, renewable energy to power its municipally owned buildings. This ground-mounted solar array is built on a brownfield site. | Photo courtesy of Con Edison Solutions. Pictured here is one of the solar arrays that is providing

  6. Property:Building/FloorAreaResidential | Open Energy Information

    Open Energy Info (EERE)

    BuildingFloorAreaResidential Jump to: navigation, search This is a property of type Number. Floor area for Residential Pages using the property "BuildingFloorAreaResidential"...

  7. Property:Building/FloorAreaHotels | Open Energy Information

    Open Energy Info (EERE)

    BuildingFloorAreaHotels Jump to: navigation, search This is a property of type Number. Floor area for Hotels Pages using the property "BuildingFloorAreaHotels" Showing 1 page...

  8. Canister Storage Building and Interim Storage Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Canister Storage Building and Interim Storage Area About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental

  9. Energy Innovation Hub Report Shows Philadelphia-area Building Retrofits

    Office of Environmental Management (EM)

    Could Support 23,500 Jobs | Department of Energy Innovation Hub Report Shows Philadelphia-area Building Retrofits Could Support 23,500 Jobs Energy Innovation Hub Report Shows Philadelphia-area Building Retrofits Could Support 23,500 Jobs November 10, 2011 - 10:36am Addthis This is the Greater Philadelphia Innovation Cluster located at the Philadelphia Navy Yard, which has 270 buildings that consortium members can use to conduct energy efficiency experiments. The Energy Efficiency Buildings

  10. Building America Expert Meeting: Code Challenges with Multifamily Area

    Energy Savers [EERE]

    Separation Walls | Department of Energy Code Challenges with Multifamily Area Separation Walls Building America Expert Meeting: Code Challenges with Multifamily Area Separation Walls This Building America Expert Meeting was conducted by the IBACOS team on Sept. 29, 2014, and focused on air sealing of area separation wall assemblies in multifamily buildings. This is an identified barrier that limits the ability of builders to cost effectively achieve higher energy efficiency and quality

  11. Property:Building/FloorAreaUnheatedRentedPremises | Open Energy...

    Open Energy Info (EERE)

    Property Edit with form History Property:BuildingFloorAreaUnheatedRentedPremises Jump to: navigation, search This is a property of type Number. Floor area for Unheated but...

  12. Property:Building/FloorAreaHeatedGarages | Open Energy Information

    Open Energy Info (EERE)

    Property Edit with form History Property:BuildingFloorAreaHeatedGarages Jump to: navigation, search This is a property of type Number. Floor area for Heated garages (> 10 C)...

  13. Property:Building/FloorAreaOffices | Open Energy Information

    Open Energy Info (EERE)

    Property Edit with form History Property:BuildingFloorAreaOffices Jump to: navigation, search This is a property of type Number. Floor area for Offices Pages using the property...

  14. Property:Building/FloorAreaRestaurants | Open Energy Information

    Open Energy Info (EERE)

    Property Edit with form History Property:BuildingFloorAreaRestaurants Jump to: navigation, search This is a property of type Number. Floor area for Restaurants Pages using the...

  15. Property:Building/FloorAreaShops | Open Energy Information

    Open Energy Info (EERE)

    Property Edit with form History Property:BuildingFloorAreaShops Jump to: navigation, search This is a property of type Number. Floor area for Shops Pages using the property...

  16. Property:Building/FloorAreaWarehouses | Open Energy Information

    Open Energy Info (EERE)

    Property Edit with form History Property:BuildingFloorAreaWarehouses Jump to: navigation, search This is a property of type Number. Floor area for Warehouses Pages using the...

  17. Property:Building/FloorAreaOtherRetail | Open Energy Information

    Open Energy Info (EERE)

    Property Edit with form History Property:BuildingFloorAreaOtherRetail Jump to: navigation, search This is a property of type Number. Floor area for Other retail Pages using the...

  18. Property:Building/FloorAreaTheatresConcertHallsCinemas | Open...

    Open Energy Info (EERE)

    Property Edit with form History Property:BuildingFloorAreaTheatresConcertHallsCinemas Jump to: navigation, search This is a property of type Number. Floor area for Theatres,...

  19. Property:Building/FloorAreaHealthServicesDaytime | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Floor area for Daytime health services Pages using the property "BuildingFloorAreaHealthServicesDaytime" Showing 4...

  20. Property:Building/FloorAreaSportCenters | Open Energy Information

    Open Energy Info (EERE)

    This is a property of type Number. Floor area for Swimming baths, indoor and outdoor sports centres Pages using the property "BuildingFloorAreaSportCenters" Showing 2 pages...

  1. Impacts of Regional Electricity Prices and Building Type on the Economics of Commercial Photovoltaic Systems

    SciTech Connect (OSTI)

    Ong, S.; Campbell, C.; Clark, N.

    2012-12-01

    To identify the impacts of regional electricity prices and building type on the economics of solar photovoltaic (PV) systems, 207 rate structures across 77 locations and 16 commercial building types were evaluated. Results for expected solar value are reported for each location and building type. Aggregated results are also reported, showing general trends across various impact categories.

  2. Economic Investigation of Community-Scale Versus Building Scale Net-Zero Energy

    SciTech Connect (OSTI)

    Fernandez, Nicholas; Katipamula, Srinivas; Brambley, Michael R.; Reddy, T. A.

    2009-12-31

    The study presented in this report examines issues concerning whether achieving net-zero energy performance at the community scale provides economic and potentially overall efficiency advantages over strategies focused on individual buildings.

  3. Savings and Economic Impacts of the Better Buildings Neighborhood Program, Final Evaluation Volume 2

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Prepared For: U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Final Report Savings and Economic Impacts of the Better Buildings Neighborhood Program Final Evaluation Volume 2 American Recovery and Reinvestment Act of 2009 June 2015 DOE/EE-1203 DOE/EE-1203 Final Report Savings and Economic Impacts of the Better Buildings Neighborhood Program Final Evaluation Volume 2 American Recovery and Reinvestment Act of 2009 June 2015 Funded By: Prepared By: Research Into Action,

  4. Building Toxic Metal Characterization and Decontamination Report: Area 6, Building 914

    SciTech Connect (OSTI)

    NSTec Industrial Hygiene

    2011-08-15

    The purpose of this report is to outline the toxic metal characterization and decontamination efforts in Area 6, Building 914. This includes the initial building inspection, the hotspot sampling, results/findings, building cleanup, and the verification sampling. Building 914 is a steel light frame building that was constructed in 1992. It is about 16,454 square feet, and five employees are assigned to this building. According to the building's floor plan blueprints, it could be inferred that this building was once a Wiremen/Lineman shop. In 2002-2004, the National Nuclear Security Administration Nevada Site Office embarked on a broad characterization of beryllium (Be) surface concentrations throughout the North Las Vegas Facility, the Nevada National Security Site (NNSS), and ancillary facilities like the Special Technologies Laboratory, Remote Sensing Laboratory, etc. Building 914 was part of this characterization. The results of the 2002 study illustrated that the metal housekeeping limits were within acceptable limits and from a Be standpoint, the building was determined to be fit for occupancy. On March 2, 2011, based on a request from Building 914 users, National Security Technologies, LLC (NSTec) Industrial Hygiene (IH) collected bulk samples from the southwest corner of Building 914 at heights above 6 feet where black dust had been noticed on this particular wall. IH conducted surface swipe sampling of the area and analyzed the samples for toxic metals, namely, beryllium (Be), cadmium (Cd), chromium (Cr), lead (Pb), and manganese (Mn). The sample results indicated values two to four times above the housekeeping threshold for Be, Cd, Cr, Pb, and Mn. Subsequently, the facility was closed and posted; the necessary personnel were notified; and controls were instituted for ingress and egress of the building. On March 17, 2011, IH performed an extensive sampling event involving the entire warehouse in accordance with NSTec Organization Procedure OP-P250.004, Sampling Procedures. Analysis of the results from this exercise illustrated that toxic metal contamination was ubiquitous throughout the warehouse section of this building but did not extend into the office, restroom, and break room areas. On March 22, 2011, a planning meeting was held with Environment, Safety, Health & Quality management; Operations & Infrastructure (O&I) mangement; Facility Management; Occupational Medicine; O&I Operations; and IH. After a brief discussion concerning the salient facts of the surface sample results, it was agreed that the facility and its contents required cleaning. The facility would then be re-sampled to verify cleanliness and suitability for re-occupancy. On April 18, 2011, warehouse cleanup activites began. On July 5, 2011, upon receipt of the results from the last cleaned section, the cleanup operations were concluded. The building was statistically determined to be clean; thus, it could be reoccupied and the warehouse operations could resume immediately.

  5. Application issues for large-area electrochromic windows incommercial buildings

    SciTech Connect (OSTI)

    Lee, Eleanor S.; DiBartolomeo, D.L.

    2000-05-01

    Projections of performance from small-area devices to large-area windows and enterprise marketing have created high expectations for electrochromic glazings. As a result, this paper seeks to precipitate an objective dialog between material scientists and building-application scientists to determine whether actual large-area electrochromic devices will result in significant performance benefits and what material improvements are needed, if any, to make electrochromics more practical for commercial building applications. Few in-situ tests have been conducted with large-area electrochromic windows applied in buildings. This study presents monitored results from a full-scale field test of large-area electrochromic windows to illustrate how this technology will perform in commercial buildings. The visible transmittance (Tv) of the installed electrochromic ranged from 0.11 to 0.38. The data are limited to the winter period for a south-east-facing window. The effect of actual device performance on lighting energy use, direct sun control, discomfort glare, and interior illumination is discussed. No mechanical system loads were monitored. These data demonstrate the use of electrochromics in a moderate climate and focus on the most restrictive visual task: computer use in offices. Through this small demonstration, we were able to determine that electrochromic windows can indeed provide unmitigated transparent views and a level of dynamic illumination control never before seen in architectural glazing materials. Daily lighting energy use was 6-24 percent less compared to the 11 percent-glazing, with improved interior brightness levels. Daily lighting energy use was 3 percent less to 13 percent more compared to the 38 percent-glazing, with improved window brightness control. The electrochromic window may not be able to fulfill both energy-efficiency and visual comfort objectives when low winter direct sun is present, particularly for computer tasks using cathode-ray tube (CRT) displays. However, window and architectural design as well as electrochromic control options are suggested as methods to broaden the applicability of electrochromics for commercial buildings. Without further modification, its applicability is expected to be limited during cold winter periods due to its slow switching speed.

  6. Property:Building/TotalFloorArea | Open Energy Information

    Open Energy Info (EERE)

    Building 05K0019 + 24,000 + Sweden Building 05K0020 + 2,761 + Sweden Building 05K0021 + 5,100 + Sweden Building 05K0022 + 16,900 + Sweden Building 05K0023 + 9,541 + Sweden Building...

  7. Property:Building/FloorAreaTotal | Open Energy Information

    Open Energy Info (EERE)

    Building 05K0019 + 24,000 + Sweden Building 05K0020 + 2,761 + Sweden Building 05K0021 + 5,100 + Sweden Building 05K0022 + 17,000 + Sweden Building 05K0023 + 9,500 + Sweden Building...

  8. The added economic and environmental value of plug-in electric vehicles connected to commercial building microgrids

    SciTech Connect (OSTI)

    Stadler, Michael; Momber, Ilan; Megel, Olivier; Gomez, Tomás; Marnay, Chris; Beer, Sebastian; Lai, Judy; Battaglia, Vincent

    2010-08-25

    Connection of electric storage technologies to smartgrids or microgrids will have substantial implications for building energy systems. In addition to potentially supplying ancillary services directly to the traditional centralized grid (or macrogrid), local storage will enable demand response. As an economically attractive option, mobile storage devices such as plug-in electric vehicles (EVs) are in direct competition with conventional stationary sources and storage at the building. In general, it is assumed that they can improve the financial as well as environmental attractiveness of renewable and fossil based on-site generation (e.g. PV, fuel cells, or microturbines operating with or without combined heat and power). Also, mobile storage can directly contribute to tariff driven demand response in commercial buildings. In order to examine the impact of mobile storage on building energy costs and carbon dioxide (CO2) emissions, a microgrid/distributed-energy-resources (DER) adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs applying CO2 taxes/CO2 pricing schemes. The problem is solved for a representative office building in the San Francisco Bay Area in 2020. By using employees' EVs for energy management, the office building can arbitrage its costs. But since the car battery lifetime is reduced, a business model that also reimburses car owners for the degradation will be required. In general, the link between a microgrid and an electric vehicle can create a win-win situation, wherein the microgrid can reduce utility costs by load shifting while the electric vehicle owner receives revenue that partially offsets his/her expensive mobile storage investment. For the California office building with EVs connected under a business model that distributes benefits, it is found that the economic impact is very limited relative to the costs of mobile storage for the site analyzed, i.e. cost reductions from electric vehicle connections are modest. Nonetheless, this example shows that some economic benefit is created because of avoided demand charges and on-peak energy. The strategy adopted by the office building is to avoid these high on-peak costs by using energy from the mobile storage in the business hours. CO2 emission reduction strategy results indicate that EVs' contribution at the selected office building are minor.

  9. Energy Innovation Hub Report Shows Philadelphia-area Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... including investment into building systems, public policies, and workforce development. ... to Lead Philadelphia-Based Team that will Pioneer New Energy-Efficient Building Designs

  10. The impact of demand-controlled and economizer ventilation strategies on energy use in buildings

    SciTech Connect (OSTI)

    Brandemuehl, M.J.; Braun, J.E.

    1999-07-01

    The overall objective of this work was to evaluate typical energy requirements associated with alternative ventilation control strategies for constant-air-volume (CAV) systems in commercial buildings. The strategies included different combinations of economizer and demand-controlled ventilation, and energy analyses were performed for four typical building types, eight alternative ventilation systems, and twenty US climates. Only single-zone buildings were considered so that simultaneous heating and cooling did not exist. The energy savings associated with economizer and demand-controlled ventilation strategies were found to be very significant for both heating and cooling. In general, the greatest savings in electrical usage for cooling with the addition of demand-controlled ventilation occur in situations where the opportunities for economizer cooling are less. This is true for warm and humid climates and for buildings that have relatively low internal gains (i.e., low occupant densities). As much as 20% savings in electrical energy for cooling were possible with demand-controlled ventilation. The savings in heating energy associated with demand-controlled ventilation were generally much larger but were strongly dependent upon the building type and occupancy schedule. Significantly greater savings were found for buildings with highly variable occupancy schedules and large internal gains (i.e., restaurants) as compared with office buildings. In some cases, the primary heating energy was virtually eliminated by demand-controlled ventilation as compared with fixed ventilation rates. For both heating and cooling, the savings associated with demand-controlled ventilation are dependent on the fixed minimum ventilation rate of the base case at design conditions.

  11. Property:Building/SPPurchasedEngyPerAreaKwhM2Total | Open Energy...

    Open Energy Info (EERE)

    EngyPerAreaKwhM2Total" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 221.549575215 + Sweden Building 05K0002 + 213.701117318 + Sweden...

  12. Economic analysis of wind-powered farmhouse and farm building heating systems. Final report

    SciTech Connect (OSTI)

    Stafford, R.W.; Greeb, F.J.; Smith, M.F.; Des Chenes, C.; Weaver, N.L.

    1981-01-01

    The study evaluated the break-even values of wind energy for selected farmhouses and farm buildings focusing on the effects of thermal storage on the use of WECS production and value. Farmhouse structural models include three types derived from a national survey - an older, a more modern, and a passive solar structure. The eight farm building applications that were analyzed include: poultry-layers, poultry-brooding/layers, poultry-broilers, poultry-turkeys, swine-farrowing, swine-growing/finishing, dairy, and lambing. These farm buildings represent the spectrum of animal types, heating energy use, and major contributions to national agricultural economic values. All energy analyses were based on hour-by-hour computations which allowed for growth of animals, sensible and latent heat production, and ventilation requirements. Hourly or three-hourly weather data obtained from the National Climatic Center was used for the nine chosen analysis sites, located throughout the United States and corresponding to regional agricultural production centers.

  13. Solar Photovoltaic Economic Development: Building and Growing a Local PV Industry, August 2011 (Book)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    The U.S. photovoltaic (PV) industry is forecast to grow, and it represents an opportunity for economic development and job creation in communities throughout the United States. This report helps U.S. cities evaluate economic opportunities in the PV industry. It serves as a guide for local economic development offices in evaluating their community?s competitiveness in the solar PV industry, assessing the viability of solar PV development goals, and developing strategies for recruiting and retaining PV companies to their areas.

  14. Economic Potential of CHP in Detroit Edison Service Area: The Customer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Perspective, June 2003 | Department of Energy Economic Potential of CHP in Detroit Edison Service Area: The Customer Perspective, June 2003 Economic Potential of CHP in Detroit Edison Service Area: The Customer Perspective, June 2003 For this case study, the Gas Technology Institute analyzed a single 16 MW grid feeder circuit in Ann Arbor, Michigan, to determine whether there are economic incentives to use small distributed power generation systems that would offset the need to increase grid

  15. Property:Building/SPPurchasedEngyPerAreaKwhM2WoodChips | Open...

    Open Energy Info (EERE)

    PerAreaKwhM2WoodChips" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  16. Property:Building/SPPurchasedEngyPerAreaKwhM2Pellets | Open Energy...

    Open Energy Info (EERE)

    gyPerAreaKwhM2Pellets" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  17. Property:Building/FloorAreaSchoolsChildDayCare | Open Energy...

    Open Energy Info (EERE)

    Property Edit with form History Property:BuildingFloorAreaSchoolsChildDayCare Jump to: navigation, search This is a property of type Number. Floor area for Schools, including...

  18. Property:Building/SPPurchasedEngyPerAreaKwhM2Other | Open Energy...

    Open Energy Info (EERE)

    Property Edit with form History Property:BuildingSPPurchasedEngyPerAreaKwhM2Other Jump to: navigation, search This is a property of type String. Other Pages using the property...

  19. Property:Building/FloorAreaHealthServices24hr | Open Energy Informatio...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Floor area for 24-hour health services Retrieved from "http:en.openei.orgwindex.php?titleProperty:Building...

  20. Property:Building/SPPurchasedEngyPerAreaKwhM2Oil-FiredBoiler...

    Open Energy Info (EERE)

    Oil-FiredBoiler Jump to: navigation, search This is a property of type String. Oil-fired boiler Pages using the property "BuildingSPPurchasedEngyPerAreaKwhM2Oil-FiredBoiler"...

  1. 100 Area D4 Project Building Completion Report: December 2008 to December 2009

    SciTech Connect (OSTI)

    K.G. Finucane, J.P. Harrie

    2010-10-26

    This report documents the final status of buildings after the completion of D4 activities at the 100 Area of the U.S. Department of Energy Hanford Site from December 1, 2008, to December 31, 2009.

  2. Contamination source review for Building E1489, Edgewood Area, Aberdeen Proving Ground, Maryland

    SciTech Connect (OSTI)

    Billmark, K.A.; Hayes, D.C.; Draugelis, A.K.

    1995-09-01

    This report was prepared by Argonne National Laboratory (ANL) to document the results of a contamination source review of Building E1489 at the Aberdeen Proving Ground (APG) in Maryland. This report may be used to assist the U.S. Army-in planning for the future use or disposition of this building. The review included a historical records search, physical inspection, photographic documentation, and geophysical investigation. The field investigations were performed in 1994-1995. Building E1489 located in J-Field on the Gunpowder Peninsula in APG`s Edgewood Area housed a power generator that supplied electricity to a nearby observation tower. Building E1489 and the generator were abandoned in 1974, demolished by APG personnel and removed from real estate records. A physical inspection and photographic documentation of Building E1489 were completed by ANL staff during November 1994. In 1994, ANL staff conducted geophysical surveys in the immediate vicinity of Building E1489 by using several nonintrusive methods. Survey results suggest the presence of some underground objects near Building E1489, but they do not provide conclusive evidence of the source of geophysical anomalies observed during the survey. No air monitoring was conducted at the site, and no information on underground storage tanks associated with Building E1489 was available.

  3. Final environmental assessment: TRU waste drum staging building, Technical Area 55, Los Alamos National Laboratory

    SciTech Connect (OSTI)

    1996-02-09

    Much of the US Department of Energy`s (DOE`s) research on plutonium metallurgy and plutonium processing is performed at Los Alamos National Laboratory (LANL), in Los Alamos, New Mexico. LANL`s main facility for plutonium research is the Plutonium Facility, also referred to as Technical Area 55 (TA-55). The main laboratory building for plutonium work within the Plutonium Facility (TA-55) is the Plutonium Facility Building 4, or PF-4. This Environmental Assessment (EA) analyzes the potential environmental effects that would be expected to occur if DOE were to stage sealed containers of transuranic (TRU) and TRU mixed waste in a support building at the Plutonium Facility (TA-55) that is adjacent to PF-4. At present, the waste containers are staged in the basement of PF-4. The proposed project is to convert an existing support structure (Building 185), a prefabricated metal building on a concrete foundation, and operate it as a temporary staging facility for sealed containers of solid TRU and TRU mixed waste. The TRU and TRU mixed wastes would be contained in sealed 55-gallon drums and standard waste boxes as they await approval to be transported to TA-54. The containers would then be transported to a longer term TRU waste storage area at TA-54. The TRU wastes are generated from plutonium operations carried out in PF-4. The drum staging building would also be used to store and prepare for use new, empty TRU waste containers.

  4. Contamination source review for Building E3180, Edgewood Area, Aberdeen Proving Ground, Maryland

    SciTech Connect (OSTI)

    Zellmer, S.D.; Smits, M.P.; Rueda, J.; Zimmerman, R.E.

    1995-09-01

    This report was prepared by Argonne National Laboratory (ANL) to document the results of a contamination source review of Building E3180 at the Aberdeen Proving Ground (APG) in Maryland. The report may be used to assist the US Army in planning for the future use or disposition of this building. The review included a historical records search, physical inspection, photographic documentation, geophysical investigation, collection of air samples, and review of available records regarding underground storage tanks associated with Building E3180. The field investigations were performed by ANL during 1994. Building,E3180 (current APG designation) is located near the eastern end of Kings Creek Road, north of Kings Creek, and about 0.5 miles east of the airstrip within APG`s Edgewood Area. The building was constructed in 1944 as a facsimile of a Japanese pillbox and used for the development of flame weapons systems until 1957 (EAI Corporation 1989). The building was not used from 1957 until 1965, when it was converted and used as a flame and incendiary laboratory. During the 1970s, the building was converted to a machine (metal) shop and used for that purpose until 1988.

  5. Contamination source review for Building E3163, Edgewood Area, Aberdeen Proving Ground, Maryland

    SciTech Connect (OSTI)

    Draugelis, A.K.; Muir-Ploense, K.L.; Glennon, M.A.; Zimmerman, R.E.

    1995-09-01

    This report was prepared by Argonne National Laboratory (ANL) to document the results of a contamination source review for Building E3163 at the Aberdeen Proving Ground (APG) in Maryland. This report may be used to assist the US Army in planning for the future use or disposition of this building. The review included a historical records search, physical inspection, photographic documentation, and geophysical investigation. The field investigations were performed by ANL during 1994 and 1995. Building E3163 (APG designation) is part of the Medical Research Laboratories E3160 Complex. This research laboratory complex is located west of Kings Creek, east of the airfield and Ricketts Point Road, and south of Kings Creek Road in the Edgewood Area of APG. The original structures in the E3160 Complex were constructed during World War II. The complex was originally used as a medical research laboratory. Much of the research involved wound assessment. Building E3163, constructed in 1946, was used for toxicological studies on animals until 1965. All agent testing was done using laboratory-scale quantities of agents. All operational data were destroyed; total quantities and types of agents used during the testing are unknown. No experimentation has been conducted in the building since 1965. However, the building was used as overflow office space until the late 1980s. Since that time, the building has been unoccupied.

  6. 300 Area D4 Project 3rd Quarter Fiscal Year 2006 Building Completion Report

    SciTech Connect (OSTI)

    D. S. Smith

    2006-09-25

    This report documents the deactivation, decontamination, decommissioning, and demolition of five buildings in the 300 Area of the Hanford Site. The D4 of these facilities included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, utility disconnection, deactivation, decontamination, demolition of the structure, and stabilization or removal of the remaining slab and foundation as appropriate.

  7. 300 Area D4 Project Fiscal Year 2007 Building Completion Report

    SciTech Connect (OSTI)

    R. A. Westberg

    2009-01-15

    This report documents the deactivation, decontamination, decommissioning, and demolition (D4) of twenty buildings in the 300 Area of the Hanford Site. The D4 of these facilties included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, utility disconnection, deactivation, decontamination, demolition of the structure, and stabilization or removal of the remaining slab and foundation, as appropriate.

  8. 300 Area D4 Project 2nd Quarter FY06 Building Completion Report

    SciTech Connect (OSTI)

    David S. Smith

    2006-06-26

    This report documents the deactivation, decontamination, decommissioning, and demolition of 16 buildings in the 300 Area of the Hanford Site. The D4 of these facilities included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, utility disconnection, deactivation, decontamination, demolition of the structure, and stabilization or removal of the remaining slab and foundation as appropriate.

  9. Contamination source review for Building E7995, Edgewood Area, Aberdeen Proving Ground, Maryland

    SciTech Connect (OSTI)

    Booher, M.N.; Miller, G.A.; Draugelis, A.K.; Glennon, M.A.; Rueda, J.; Zimmerman, R.E.

    1995-09-01

    The US Army Aberdeen Proving Ground (APG) commissioned Argonne National Laboratory (ANL) to conduct a contamination source review to identify and define areas of toxic or hazardous contaminants and to assess the physical condition and accessibility of APG buildings. The information obtained from the review may be used to assist the US Army in planning for the future use or disposition, of the buildings. The source contamination review consisted of the following tasks: historical records search, physical inspection, photographic documentation, geophysical investigation, investigation of potential hazardous materials facilities (HMFs), and review of available records regarding underground storage tanks. This report provides the results of the contamination source review for Building E7995. any of the APG facilities constructed between 1917 and the 1960s are no longer used because of obsolescence and their poor state of repair. Because many of these buildings were used for research, development, testing, and/or pilot-scale production of chemical warfare agents and other military substances, the potential exists for portions of the buildings to be contaminated with these substances, their degradation products, and other laboratory or industrial chemicals. These buildings, and associated structures or appurtenances, may contribute to environmental concerns at APG.

  10. Category:Utility Rate Impacts on PV Economics By Building Type...

    Open Energy Info (EERE)

    navigation, search Impact of Utility Rates on PV Economics Full Service Restaurant Hospital Large Hotel Large Office Medium Office Midrise Apartment Outpatient Primary School...

  11. 300 Area D4 Project Fiscal Year 2008 Building Completion Report

    SciTech Connect (OSTI)

    R. A. Westberg

    2009-01-15

    This report documents the deactivation, decontamination, decommissioning, and demolition (D4) of eighteen buildings in the 300 Area of the Hanford Site that were demolished in Fiscal Year 2008. The D4 of these facilties included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, utility disconnection, deactivation, decontamination, demolition of the structure, and stabilization or removal of the remaining slab and foundation, as appropriate.

  12. 300 Area D4 Project Fiscal Year 2009 Building Completion Report

    SciTech Connect (OSTI)

    B. J. Skwarek

    2010-01-27

    This report summarizes the deactivation, decontamination, decommissioning, and demolition activities of seven facilities in the 300 Area of the Hanford Site in fiscal year 2009. The D4 of these facilities included characterization; engineering; removal of hazardous and radiologically contaminated materials; equipment removal; utility disconnection; deactivation, decontamination, demolition of the structure; and stabilization or removal of slabs and foundations. This report also summarizes the nine below-grade slabs/foundations removed in FY09 of buildings demolished in previous fiscal years.

  13. The technical and economic feasibility of establishing a building system integration laboratory

    SciTech Connect (OSTI)

    Crawley, D.B.; Drost, M.K.; Johnson, B.M.

    1989-09-01

    On December 22, 1987, the US Congress provided funding to the US Department of Energy (DOE) to study the feasibility and conceptual design of a whole building system integration laboratory'' (Title II of Pub. L. 100--202). A whole-building system integration laboratory would be a full-scale experimental facility in which the energy performance interactions of two or more building components, e.g., walls, windows, lighting, could be tested under actual operating conditions. At DOE's request, the Pacific Northwest Laboratory (PNL) conducted the study with the assistance of a technical review and representing other federal agencies and the academic and private sectors, including professional societies, building component manufacturers, and building research organizations. The results of the feasibility study are presented in this report.

  14. Property:Building/SPPurchasedEngyPerAreaKwhM2OtherElctrty | Open...

    Open Energy Info (EERE)

    + 53.5026548673 + Sweden Building 05K0006 + 58.7608028994 + Sweden Building 05K0007 + 61.5607534672 + Sweden Building 05K0008 + 40.3846153846 + Sweden Building 05K0009 +...

  15. Property:Building/SPPurchasedEngyPerAreaKwhM2ElctrtyTotal | Open...

    Open Energy Info (EERE)

    + 54.2477876106 + Sweden Building 05K0006 + 58.7608028994 + Sweden Building 05K0007 + 61.5607534672 + Sweden Building 05K0008 + 40.3846153846 + Sweden Building 05K0009 +...

  16. Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Superior Energy Performance Policy Interpretation providing a certification pathway for Commercial Buildings May 7, 2015 Question: As a hotel or university campus, can I use the ...

  17. Building

    U.S. Energy Information Administration (EIA) Indexed Site

    DIV. Electricity Consumption and Expenditure Intensities by Census Division, 1999" ,"Electricity Consumption",,,"Electricity Expenditures" ,"per Building (thousand kWh)","per...

  18. Renewable Energy Requirements for Future Building Codes: Energy Generation and Economic Analysis

    SciTech Connect (OSTI)

    Russo, Bryan J.; Weimar, Mark R.; Dillon, Heather E.

    2011-09-30

    As the model energy codes are improved to reach efficiency levels 50 percent greater than current codes, installation of on-site renewable energy generation is likely to become a code requirement. This requirement will be needed because traditional mechanisms for code improvement, including the building envelope, mechanical systems, and lighting, have been maximized at the most cost-effective limit.

  19. Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Superior Energy PerformanceÂź Policy Interpretation providing a certification pathway for Commercial Buildings May 7, 2015 Question: As a hotel or university campus, can I use the supporting standards and protocols developed for SEP- Industry to apply for SEP certification? Response: The SEP Administrator is providing this interpretation regarding the types of facilities that can be certified to Superior Energy Performance (SEP). Background: A number of owners/operators of buildings and complex

  20. Property:Building/SPPurchasedEngyPerAreaKwhM2ElctrcHeating |...

    Open Energy Info (EERE)

    reaKwhM2ElctrcHeating" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.915704329247 + Sweden Building 05K0002 + 0.0 + Sweden Building...

  1. Property:Building/SPPurchasedEngyPerAreaKwhM2DstrtHeating | Open...

    Open Energy Info (EERE)

    + 49.0472118426 + Sweden Building 05K0023 + 125.55033781 + Sweden Building 05K0024 + 100.666666667 + Sweden Building 05K0025 + 99.0384615385 + (previous 25) (next 25)...

  2. Building.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plant in ITER refers to plant systems located outside the Tokamak Building. A thick wall of concrete surrounding the main tokamak cryostat and designed to absorb the bulk of any remaining radiation from the plasma or from activated components inside the cryostat. This shields the region outside so that it can be accessed after shutdown for major hands-on repairs. The structure surrounding the plasma in a fusion reactor, within which the fusion-produced neutrons are slowed down, heat is

  3. Property:Building/SPPurchasedEngyPerAreaKwhM2DigesterLandfillGas...

    Open Energy Info (EERE)

    M2DigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  4. Regional economic impacts of changes in electricity rates resulting from Western Area Power Administration`s power marketing alternatives

    SciTech Connect (OSTI)

    Allison, T.; Griffes, P.; Edwards, B.K.

    1995-03-01

    This technical memorandum describes an analysis of regional economic impacts resulting from changes in retail electricity rates due to six power marketing programs proposed by Western Area Power Administration (Western). Regional economic impacts of changes in rates are estimated in terms of five key regional economic variables: population, gross regional product, disposable income, employment, and household income. The REMI (Regional Impact Models, Inc.) and IMPLAN (Impact Analysis for Planning) models simulate economic impacts in nine subregions in the area in which Western power is sold for the years 1993, 2000, and 2008. Estimates show that impacts on aggregate economic activity in any of the subregions or years would be minimal for three reasons. First, the utilities that buy power from Western sell only a relatively small proportion of the total electricity sold in any of the subregions. Second, reliance of Western customers on Western power is fairly low in each subregion. Finally, electricity is not a significant input cost for any industry or for households in any subregion.

  5. Non-Economic Determinants of Energy Use in Rural Areas of South Africa

    SciTech Connect (OSTI)

    Annecke, W.

    1999-03-29

    This project will begin to determine the forces and dimensions in rural energy-use patterns and begin to address policy and implementation needs for the future. This entails: Forecasting the social and economic benefits that electrification is assumed to deliver regarding education and women's lives; Assessing negative perceptions of users, which have been established through the slow uptake of electricity; Making recommendations as to how these perceptions could be addressed in policy development and in the continuing electrification program; Making recommendations to policy makers on how to support and make optimal use of current energy-use practices where these are socio-economically sound; Identifying misinformation and wasteful practices; and Other recommendations, which will significantly improve the success of the rural electrification program in a socio-economically sound manner, as identified in the course of the work.

  6. Social and economic aspects of the introduction of gasification technology in rural areas of developing countries (Tanzania)

    SciTech Connect (OSTI)

    Groeneveld, M.J.; Westerterp, K.R.

    1980-01-01

    According to the evaluation criteria presented, the gasification of corn cobs is acceptable from the economical and agricultural point of view in the rural areas around Arusha (Tanzania). The gasification system is of relatively simple construction and local maintenance is possible. If the system is connected to the already existing corn mills in the villages, it is appropriate to the existing socio-cultural system. The economic calculations made clear that the use of gasification is attractive for both the owners of the corn mill and the government. The advantages for the government are the savings on imported oil and the extra income created for the users of the corn mill (inhabitants of the rural villages). The government loses income from taxes and from the production and transport of diesel oil. Evaluation methods presented can and should be used for gasification projects in other areas.

  7. Social and economic aspects of the introduction of gasification technology in rural areas of developing countries (Tanzania)

    SciTech Connect (OSTI)

    Groeneveld, M.J.; Westerterp, K.R.

    1980-01-01

    The development of third world rural areas depends largely on the availability of energy and for an improvement in agricultural production; an increase in energy consumption is required. It seems attractive to replace the fossil liquid fuels needed for machinery by locally produced fuels. The thermal gasification of agricultural waste which produces gas that can be used directly to drive engines is suggested. A study to identify the social and economic advantages of this process and its applicability in rural areas of Tanzania has been made.

  8. Safety analysis--200 Area Savannah River Site: Separations Area operations Building 211-H Outside Facilities. Supplement 11, Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The H-Area Outside Facilities are located in the 200-H Separations Area and are comprised of a number of processes, utilities, and services that support the separations function. Included are enriched uranium loadout, bulk chemical storage, water handling, acid recovery, general purpose evaporation, and segregated solvent facilities. In addition, services for water, electricity, and steam are provided. This Safety Analysis Report (SAR) documents an analysis of the H-Area Outside Facilities and is one of a series of documents for the Separations Area as specified in the SR Implementation Plan for DOE order 5481.1A. The primary purpose of the analysis was to demonstrate that the facility can be operated without undue risk to onsite or offsite populations, to the environment, and to operating personnel. In this report, risks are defined as the expected frequencies of accidents, multiplied by the resulting radiological consequences in person-rem. Following the summary description of facility and operations is the site evaluation including the unique features of the H-Area Outside Facilities. The facility and process design are described in Chapter 3.0 and a description of operations and their impact is given in Chapter 4.0. The accident analysis in Chapter 5.0 is followed by a list of safety related structures and systems (Chapter 6.0) and a description of the Quality Assurance program (Chapter 7.0). The accident analysis in this report focuses on estimating the risk from accidents as a result of operation of the facilities. The operations were evaluated on the basis of three considerations: potential radiological hazards, potential chemical toxicity hazards, and potential conditions uniquely different from normal industrial practice.

  9. Energy Department Recognizes Denver Area Partners for Housing and Building Efficiency

    Broader source: Energy.gov [DOE]

    As a part of the Administration’s effort to help cut energy waste, the Energy Department and the U.S. Department of Housing and Urban Development (HUD) will recognize the Denver Housing Authority and the cities of Denver and Arvada, Colorado today for their leadership in the Better Buildings Challenge.

  10. Corrective Action Investigation plan for Corrective Action Unit 263: Area 25 Building 4839 Leachfield, Nevada Test Site, Nevada, March 1999

    SciTech Connect (OSTI)

    ITLV

    1999-03-01

    The Corrective Action Investigation Plan for Corrective Action Unit 263, the Area 25 Building 4839 Leachfield, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the US Department of Energy, Nevada Operations Office; the Nevada Division of Environmental Protection; and the US Department of Defense. Corrective Action Unit 263 is comprised of the Corrective Action Site 25-05-04 sanitary leachfield and associated collection system. This Corrective Action Investigation Plan is used in combination with the Work Plan for Leachfield Corrective Action Units: Nevada Test Site and Tonopah Test Range, Nevada (DOE/NV, 1998d). The Leachfield Work Plan was developed to streamline investigations at Leachfield Corrective Action Units by incorporating management, technical, quality assurance, health and safety, public involvement, field sampling, and waste management information common to a set of Corrective Action Units with similar site histories and characteristics into a single document that can be referenced. This Corrective Action Investigation Plan provides investigative details specific to Corrective Action Unit 263. Corrective Action Unit 263 is located southwest of Building 4839, in the Central Propellant Storage Area. Operations in Building 4839 from 1968 to 1996 resulted in effluent releases to the leachfield and associated collection system. In general, effluent released to the leachfield consisted of sanitary wastewater from a toilet, urinal, lavatory, and drinking fountain located within Building 4839. The subsurface soils in the vicinity of the collection system and leachfield may have been impacted by effluent containing contaminants of potential concern generated by support activities associated with the Building 4839 operations.

  11. Reducing Transaction Costs for Energy Efficiency Investments and Analysis of Economic Risk Associated With Building Performance Uncertainties: Small Buildings and Small Portfolios Program

    SciTech Connect (OSTI)

    Langner, R.; Hendron, B.; Bonnema, E.

    2014-08-01

    The small buildings and small portfolios (SBSP) sector face a number of barriers that inhibit SBSP owners from adopting energy efficiency solutions. This pilot project focused on overcoming two of the largest barriers to financing energy efficiency in small buildings: disproportionately high transaction costs and unknown or unacceptable risk. Solutions to these barriers can often be at odds, because inexpensive turnkey solutions are often not sufficiently tailored to the unique circumstances of each building, reducing confidence that the expected energy savings will be achieved. To address these barriers, NREL worked with two innovative, forward-thinking lead partners, Michigan Saves and Energi, to develop technical solutions that provide a quick and easy process to encourage energy efficiency investments while managing risk. The pilot project was broken into two stages: the first stage focused on reducing transaction costs, and the second stage focused on reducing performance risk. In the first stage, NREL worked with the non-profit organization, Michigan Saves, to analyze the effects of 8 energy efficiency measures (EEMs) on 81 different baseline small office building models in Holland, Michigan (climate zone 5A). The results of this analysis (totaling over 30,000 cases) are summarized in a simple spreadsheet tool that enables users to easily sort through the results and find appropriate small office EEM packages that meet a particular energy savings threshold and are likely to be cost-effective.

  12. 300 Area D4 Project Fiscal Year 2010 Building Completion Report

    SciTech Connect (OSTI)

    Skwarek, B. J.

    2011-01-27

    This report summarizes the deactiviation, decontamination, decommissioning, and demolition activities of facilities in the 300 Area of the Hanford Site in fiscal year 2010.

  13. Building America Expert Meeting: Code Challenges with Multifamily Area Separation Walls

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Focus Meeting Code Challenges with Multi-Family Area Separation Walls Date/Time: Monday, Sept. 29, 2014, 10:30 am to 12:30 pm EST Location: web meeting Host: IBACOS, Inc., www.IBACOS.com Meeting Manager: Armin Rudd, arudd@abtsystems.us Agenda 10:30: Opening by Armin Rudd and Duncan Prahl Explain the reason, purpose, goals and expected outcomes of the meeting Facilitated open discussion *Review typical UL 263 (ASTM E119) area separation wall Designs (U336, U347, U373) *Review the tested

  14. Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM

    SciTech Connect (OSTI)

    Momber, Ilan; Gomez, Tomás; Venkataramanan, Giri; Stadler, Michael; Beer, Sebastian; Lai, Judy; Marnay, Chris; Battaglia, Vincent

    2010-06-01

    It is generally believed that plug-in electric vehicles (PEVs) offer environmental and energy security advantages compared to conventional vehicles. Policies are stimulating electric transportation deployment, and PEV adoption may grow significantly. New technology and business models are being developed to organize the PEV interface and their interaction with the wider grid. This paper analyzes the PEVs' integration into a building's Energy Management System (EMS), differentiating between vehicle to macrogrid (V2M) and vehicle to microgrid (V2m) applications. This relationship is modeled by the Distributed Energy Resources Customer Adoption Model (DER-CAM), which finds optimal equipment combinations to meet microgrid requirements at minimum cost, carbon footprint, or other criteria. Results derive battery value to the building and the possibility of a contractual affiliation sharing the benefit. Under simple annual fixed payments and energy exchange agreements, vehicles are primarily used to avoid peak demand charges supplying cheaper off-peak electricity to the building during workdays.

  15. 100 Area D4 Project Building Completion Report May 2006 - June 2007

    SciTech Connect (OSTI)

    E. G. Ison

    2007-07-25

    This report documents the decontamination and decommissioning (D&D) and the demolition of the 153-N, 1515-N, 1516-N, 1517-N, 1518-N, 1519-N, 1331-N, 1332-N, and 181-NC facilities in the 100 Area of the Hanford Site. The D&D and demolition of these facilities included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, utility disconnection, deactivation, decontamination, demolition of the structure, and removal of the remaining slabs.

  16. 100 Area D4 Project Building Completion Report - July 2007 to December 2008

    SciTech Connect (OSTI)

    M. T. Stankovich

    2009-04-15

    This report documents the decontamination, decommissioning, and demolition of the 105-NB, 163-N, 183-N, 183-NA, 183-NB, 183-NC, 184-N, 184-NA, 184-NB, 184-NC, 184-ND, 184-NE, 184-NF, 1312-N, 1330-N, 1705-N, 1705-NA, 1706-N, 1712-N, 1714-N, 1714-NA, 1714-NB, 1802-N, MO-050, MO-055, MO-358, MO-390, MO-900, MO-911, and MO-950 facilities in the 100 Area of the Hanford Site. The D4 activities for these facilities include utility disconnection, planning, characterization, engineering, removal of hazardous and radiological contaminated materials, equipment removal, decommissioning, deactivation, decontamination, demolition of the structure, and removal of the remaining slabs.

  17. Selected Area Fishery Evaluation Project Economic Analysis Study Final Report, Final Draft Revision 4: November 10, 2006.

    SciTech Connect (OSTI)

    Bonneville Power Administration; Washington Department of Fish and Wildlife; Oregon Department of Fish and Wildlife

    2006-11-01

    The purpose of this Study is to provide an economic review of current and proposed changes to the Select Area Fishery Evaluation Project (SAFE or Project). The Study results are the information requested in comments made on the Project by a joint review dated March 2005 by the Northwest Power and Conservation Council (NPCC) Independent Scientific Review Panel (ISRP) and Independent Economic Analysis Board (IEAB). North et al. (2006) addressed technical questions about operations and plans, and this report contains the response information for comments concerning Project economics. This report can be considered an economic feasibility review meeting guidelines for cost-effective analysis developed by the IEAB (2003). It also contains other economic measurement descriptions to illustrate the economic effects of SAFE. The SAFE is an expansion of a hatchery project (locally called the Clatsop Economic Development Council Fisheries Project or CEDC) started in 1977 that released an early run coho (COH) stock into the Youngs River. The Youngs River entrance to the Columbia River at River Mile 12 is called Youngs Bay, which is located near Astoria, Oregon. The purpose of the hatchery project was to provide increased fishing opportunities for the in-river commercial fishing gillnet fleet. Instead of just releasing fish at the hatchery, a small scale net pen acclimation project in Youngs Bay was tried in 1987. Hirose et al. (1998) found that 1991-1992 COH broodstock over-wintered at the net pens had double the smolt-to-adult return rate (SAR) of traditional hatchery release, less than one percent stray rates, and 99 percent fishery harvests. It was surmised that smolts from other Columbia River hatcheries could be hauled to the net pens for acclimation and release to take advantage of the SAR's and fishing rates. Proposals were tendered to Bonneville Power Administration (BPA) and other agencies to fund the expansion for using other hatcheries smolts and other off-channel release sites. The BPA, who had been providing funds to the Project since 1982, greatly increased their financial participation for the experimental expansion of the net pen operations in 1993. Instead of just being a funding partner in CEDC operations, the BPA became a major financing source for other hatchery production operations. The BPA has viewed the 10 plus years of funding since then as an explorative project with two phases: a 'research' phase ending in 1993, and a 'development' phase ending in 2006. The next phase is referred to in proposals to BPA for continued funding as an 'establishment' phase to be started in 2007. There are three components of SAFE: (1) The CEDC owns and operates the net pens in the Columbia River estuary on the Oregon side. The CEDC also owns and operates a hatchery on the South Fork Klaskanine River. (2) There are many other hatcheries contributing smolts to the net pen operations. The present suite of hatcheries are operated by the Washington Department of Fish and Wildlife (WDFW) and Oregon Department of Fish and Wildlife (ODFW). The WDFW owns and operates the net pens at Deep River on the Washington side of the Columbia River. (3) The monitoring and evaluation (M&E) responsibilities are performed by employees of WDFW and ODFW. BPA provides funding for all three components as part of NPCC Project No. 199306000. The CEDC and other contributing hatcheries have other sources of funds that also support the SAFE. BPA's minor share (less than 10 percent) of CEDC funding in 1982 grew to about 55 percent in 1993 with the beginning of the development phase of the Project. The balance of the CEDC budget over the years has been from other federal, state, and local government programs. It has also included a 10 percent fee assessment (five percent of ex-vessel value received by harvesters plus five percent of purchase value made by processors) on harvests that take place in off-channel locations near the release sites. The CEDC total annual budget in the last several years has been in the $600 to $700 thousand range. The Project over the years also has relied on heavy volunteer participation and other agency in-kind support. The CEDC budget is exclusive of WDFW and ODFW M&E costs, and all non-CEDC hatchery smolt production costs. The annual estimated operation and management costs for SAFE except for the value of volunteer time and donated materials is in the $2.4 million range. Of this amount, BPA annual funding has been in the $1.6 million or two thirds range in recent years. Depreciation on capital assets (or an equivalent amount for annual contributions to a capital improvement fund) would be in addition to these operation and management costs. North et al. (2006) documented results through the second of three phases and described potential capacities. Full capacity as defined in early planning for the project (TRG 1996) was not reached by the time the second phase ended.

  18. Buildings*","Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Water Heating","Water-Heating ...

  19. Joint China-United States Report for Year 1 Insulation Materials and Systems Project Area Clean Energy Research Center Building Energy Efficiency (CERC-BEE)

    SciTech Connect (OSTI)

    Stovall, Therese K; Biswas, Kaushik; Song, Bo; Zhang, Sisi

    2012-08-01

    In November of 2009, the presidents of China and the U.S. announced the establishment of the Clean Energy Research Center (CERC). This broad research effort is co-funded by both countries and involves a large number of research centers and universities in both countries. One part of this program is focused on improving the energy efficiency of buildings. One portion of the CERC-BEE was focused on building insulation systems. The research objective of this effort was to Identify and investigate candidate high performance fire resistant building insulation technologies that meet the goal of building code compliance for exterior wall applications in green buildings in multiple climate zones. A Joint Work Plan was established between researchers at the China Academy of Building Research and Oak Ridge National Laboratory. Efforts in the first year under this plan focused on information gathering. The objective of this research program is to reduce building energy use in China via improved building insulation technology. In cold regions in China, residents often use inefficient heating systems to provide a minimal comfort level within inefficient buildings. In warmer regions, air conditioning has not been commonly used. As living standards rise, energy consumption in these regions will increase dramatically unless significant improvements are made in building energy performance. Previous efforts that defined the current state of the built environment in China and in the U.S. will be used in this research. In countries around the world, building improvements have typically followed the implementation of more stringent building codes. There have been several changes in building codes in both the U.S. and China within the last few years. New U.S. building codes have increased the amount of wall insulation required in new buildings. New government statements from multiple agencies in China have recently changed the requirements for buildings in terms of energy efficiency and fire safety. A related issue is the degree to which new standards are adopted and enforced. In the U.S., standards are developed using a consensus process, and local government agencies are free to implement these standards or to ignore them. For example, some U.S. states are still using 2003 versions of the building efficiency standards. There is also a great variation in the degree to which the locally adopted standards are enforced in different U.S. cities and states. With a more central process in China, these issues are different, but possible impacts of variable enforcement efficacy may also exist. Therefore, current building codes in China will be compared to the current state of building fire-safety and energy-efficiency codes in the U.S. and areas for possible improvements in both countries will be explored. In particular, the focus of the applications in China will be on green buildings. The terminology of 'green buildings' has different meanings to different audiences. The U.S. research is interested in both new, green buildings, and on retrofitting existing inefficient buildings. An initial effort will be made to clarify the scope of the pertinent wall insulation systems for these applications.

  20. Buildings Interoperability Landscape

    SciTech Connect (OSTI)

    Hardin, Dave; Stephan, Eric G.; Wang, Weimin; Corbin, Charles D.; Widergren, Steven E.

    2015-12-31

    Through its Building Technologies Office (BTO), the United States Department of Energy’s Office of Energy Efficiency and Renewable Energy (DOE-EERE) is sponsoring an effort to advance interoperability for the integration of intelligent buildings equipment and automation systems, understanding the importance of integration frameworks and product ecosystems to this cause. This is important to BTO’s mission to enhance energy efficiency and save energy for economic and environmental purposes. For connected buildings ecosystems of products and services from various manufacturers to flourish, the ICT aspects of the equipment need to integrate and operate simply and reliably. Within the concepts of interoperability lie the specification, development, and certification of equipment with standards-based interfaces that connect and work. Beyond this, a healthy community of stakeholders that contribute to and use interoperability work products must be developed. On May 1, 2014, the DOE convened a technical meeting to take stock of the current state of interoperability of connected equipment and systems in buildings. Several insights from that meeting helped facilitate a draft description of the landscape of interoperability for connected buildings, which focuses mainly on small and medium commercial buildings. This document revises the February 2015 landscape document to address reviewer comments, incorporate important insights from the Buildings Interoperability Vision technical meeting, and capture thoughts from that meeting about the topics to be addressed in a buildings interoperability vision. In particular, greater attention is paid to the state of information modeling in buildings and the great potential for near-term benefits in this area from progress and community alignment.

  1. Economic and Technical Feasibility Study of Utility-Scale Wind Generation for the New York Buffalo River and South Buffalo Brownfield Opportunity Areas

    SciTech Connect (OSTI)

    Roberts, J. O.; Mosey, G.

    2014-04-01

    Through the RE-Powering America's Land initiative, the economic and technical feasibility of utilizing contaminated lands in the Buffalo, New York, area for utility-scale wind development is explored. The study found that there is available land, electrical infrastructure, wind resource, and local interest to support a commercial wind project; however, economies of scale and local electrical markets may need further investigation before significant investment is made into developing a wind project at the Buffalo Reuse Authority site.

  2. Preliminary Energy Savings Impact Evaluation: Better Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Savings Impact Evaluation: Better Buildings Neighborhood Program Preliminary Energy Savings ... More Documents & Publications Savings and Economic Impacts of the Better Buildings ...

  3. Case history of implementation of conservation program in a multitude of diverse buildings in the metropolitan area

    SciTech Connect (OSTI)

    Khan, S.M.

    1982-06-01

    This paper outlines an energy conservation program undertaken by Jazco Corporation. Monitoring techniques were based on a calculated energy norm. Abnormalities, internal heat load, and switch-over temperature were also established. An actual physical audit verified the results. HVAC systems were found to be incompatible. Most boilers were derated. An electronic economizer cycle was installed. Occupied temperature setting, night temperature setback, dynamic load control, demand control, were all instrumented with savings. Microprocessor-based systems replaced main frame computers at a fraction of the cost. It was found that New York state lighting standards are good except where frequency of use is low.

  4. Recovery Act Weekly Video: 200 Area Asbestos Removal, U-Ancillary Demolition, 200 West Transfer Building Footings

    ScienceCinema (OSTI)

    None

    2012-06-14

    A weekly update of the Recovery Act at work. Demolition of U-Ancillary that was contaminated with uranium and asbestos as well as removing asbestos from the Steam Generation Plant in the 200 East Area.

  5. 2014-09-30 Issuance: Buildings-to-Grid Integration and Related Areas of Research; Notice of Availability and Request for Public Comment

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of availability and request for public comment regarding buildings-to-grid integration and related areas of research, as issued by the Deputy Assistant Secretary for Energy Efficiency on September 30, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  6. Buildings*","Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    ... "Buildings with Cooling ......",3625,3469,1188,1794,161,52 "Buildings with Water Heating .",3472,3337,999,1765,226,57 "Buildings with Cooking ......",801,764,223,397,68,8 ...

  7. Sustainable Building Design Training | Open Energy Information

    Open Energy Info (EERE)

    Building Design Training AgencyCompany Organization: United States Department of Energy Focus Area: Buildings Resource Type: Training materials Website:...

  8. Revegetation Plan for Areas of the Fitzner-Eberhardt Arid Lands Ecology Reserve Affected by Decommissioning of Buildings and Infrastructure and Debris Clean-up Actions

    SciTech Connect (OSTI)

    Downs, Janelle L.; Durham, Robin E.; Larson, Kyle B.

    2011-01-01

    The U.S. Department of Energy (DOE), Richland Operations Office is working to remove a number of facilities on the Fitzner Eberhardt Arid Lands Ecology Reserve (ALE), which is part of the Hanford Reach National Monument. Decommissioning and removal of buildings and debris on ALE will leave bare soils and excavated areas that need to be revegetated to prevent erosion and weed invasion. Four main areas within ALE are affected by these activities (DOE 2009;DOE/EA-1660F): 1) facilities along the ridgeline of Rattlesnake Mountain, 2) the former Nike missile base and ALE HQ laboratory buildings, 3) the aquatic research laboratory at Rattlesnake Springs area, and 4) a number of small sites across ALE where various types of debris remain from previous uses. This revegetation plan addresses the revegetation and restoration of those land areas disturbed by decommissioning and removal of buildings, facilities and associated infrastructure or debris removal. The primary objective of the revegetation efforts on ALE is to establish native vegetation at each of the sites that will enhance and accelerate the recovery of the native plant community that naturally persists at that location. Revegetation is intended to meet the direction specified by the Environmental Assessment (DOE 2009; DOE/EA-1660F) and by Stipulation C.7 of the Memorandum of Agreement (MOA) for the Rattlesnake Mountain Combined Community Communication Facility and InfrastructureCleanup on the Fitzner/Eberhardt Arid Lands Ecology Reserve, Hanford Site, Richland Washington(DOE 2009; Appendix B). Pacific Northwest National Laboratory (PNNL) under contract with CH2M Hill Plateau Remediation Company (CPRC) and in consultation with the tribes and DOE-RL developed a site-specific strategy for each of the revegetation units identified within this document. The strategy and implementation approach for each revegetation unit identifies an appropriate native species mix and outlines the necessary site preparation activities and specific methods for seeding and planting at each area. evegetation work is scheduled to commence during the first quarter of FY 2011 to minimize the amount of time that sites are unvegetated and more susceptible to invasion by non-native weedy annual species.

  9. Buildings","Building Size"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Cooling ......",58474,4879,6212,9530,8116,9401,7609,6345,6382 "Buildings with Water Heating .",56115,4280,5748,9000,8088,8887,7527,6258,6327 "Buildings with Cooking ...

  10. Seven NNSS buildings achieve High Performance Sustainable Building...

    National Nuclear Security Administration (NNSA)

    Sustainable Building (HPSB) plaques to the NNSS team for seven "green" buildings. ... in the areas of energy, water and waste reduction, as well as tenant health and comfort. ...

  11. 324 Building - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Building About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental Restoration Disposal Facility F Reactor H

  12. 325 Building - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    325 Building About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental Restoration Disposal Facility F Reactor H

  13. Building Energy Consumption Analysis

    Energy Science and Technology Software Center (OSTI)

    2005-03-02

    DOE2.1E-121SUNOS is a set of modules for energy analysis in buildings. Modules are included to calculate the heating and cooling loads for each space in a building for each hour of a year (LOADS), to simulate the operation and response of the equipment and systems that control temperature and humidity and distribute heating, cooling and ventilation to the building (SYSTEMS), to model energy conversion equipment that uses fuel or electricity to provide the required heating,more » cooling and electricity (PLANT), and to compute the cost of energy and building operation based on utility rate schedule and economic parameters (ECONOMICS).« less

  14. Energy Efficient Buildings Hub

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy created the Energy Efficient Buildings Hub in Philadelphia, Pennsylvania to promote regional job creation and economic growth while also improving the energy...

  15. Before the House Transportation and Infrastructure Subcommittee on Economic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development, Public Buildings, and Emergency Management | Department of Energy Transportation and Infrastructure Subcommittee on Economic Development, Public Buildings, and Emergency Management Before the House Transportation and Infrastructure Subcommittee on Economic Development, Public Buildings, and Emergency Management Before the House Transportation and Infrastructure Subcommittee on Economic Development, Public Buildings, and Emergency Management By: Drury Crawley, Office of Energy

  16. Jackson Park Hospital Green Building Medical Center

    SciTech Connect (OSTI)

    William Dorsey; Nelson Vasquez

    2010-03-31

    Jackson Park Hospital completed the construction of a new Medical Office Building on its campus this spring. The new building construction has adopted the City of Chicago's recent focus on protecting the environment, and conserving energy and resources, with the introduction of green building codes. Located in a poor, inner city neighborhood on the South side of Chicago, Jackson Park Hospital has chosen green building strategies to help make the area a better place to live and work. The new green building houses the hospital's Family Medicine Residency Program and Specialty Medical Offices. The residency program has been vital in attracting new, young physicians to this medically underserved area. The new outpatient center will also help to allure needed medical providers to the community. The facility also has areas designated to women's health and community education. The Community Education Conference Room will provide learning opportunities to area residents. Emphasis will be placed on conserving resources and protecting our environment, as well as providing information on healthcare access and preventive medicine. The new Medical Office Building was constructed with numerous energy saving features. The exterior cladding of the building is an innovative, locally-manufactured precast concrete panel system with integral insulation that achieves an R-value in excess of building code requirements. The roof is a 'green roof' covered by native plantings, lessening the impact solar heat gain on the building, and reducing air conditioning requirements. The windows are low-E, tinted, and insulated to reduce cooling requirements in summer and heating requirements in winter. The main entrance has an air lock to prevent unconditioned air from entering the building and impacting interior air temperatures. Since much of the traffic in and out of the office building comes from the adjacent Jackson Park Hospital, a pedestrian bridge connects the two buildings, further decreasing the amount of unconditioned air that enters the office building. The HVAC system has an Energy Efficiency Rating 29% greater than required. No CFC based refrigerants were used in the HVAC system, thus reducing the emission of compounds that contribute to ozone depletion and global warming. In addition, interior light fixtures employ the latest energy-efficient lamp and ballast technology. Interior lighting throughout the building is operated by sensors that will automatically turn off lights inside a room when the room is unoccupied. The electrical traction elevators use less energy than typical elevators, and they are made of 95% recycled material. Further, locally manufactured products were used throughout, minimizing the amount of energy required to construct this building. The primary objective was to construct a 30,000 square foot medical office building on the Jackson Park Hospital campus that would comply with newly adopted City of Chicago green building codes focusing on protecting the environment and conserving energy and resources. The energy saving systems demonstrate a state of the-art whole-building approach to energy efficient design and construction. The energy efficiency and green aspects of the building contribute to the community by emphasizing the environmental and economic benefits of conserving resources. The building highlights the integration of Chicago's new green building codes into a poor, inner city neighborhood project and it is designed to attract medical providers and physicians to a medically underserved area.

  17. Team Middlebury On How to Create Buildings That Improve Communities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Team Middlebury On How to Create Buildings That Improve Communities Socially, Economically, and Environmentally Team Middlebury On How to Create Buildings That Improve Communities ...

  18. Residential Building Energy Analysis

    Energy Science and Technology Software Center (OSTI)

    1990-09-01

    PEAR (Program for Energy Analysis of Residences) provides an easy-to-use and accurate method of estimating the energy and cost savings associated with various energy conservation measures in site-built single-family homes. Measures such as ceiling, wall, and floor insulation; different window type and glazing layers; infiltration levels; and equipment efficiency can be considered. PEAR also allows the user to consider the effects of roof and wall color, movable night insulation on the windows, reflective and heatmore » absorbing glass, an attached sunspace, and use of a night temperature setback. Regression techniques permit adjustments for different building geometries, window areas and orientations, wall construction, and extension of the data to 880 U.S. locations determined by climate parameters. Based on annual energy savings, user-specified costs of conservation measures, fuel, lifetime of measure, loan period, and fuel escalation and interest rates, PEAR calculates two economic indicators; the Simple Payback Period (SPP) and the Savings-to-Investment Ratio (SIR). Energy and cost savings of different sets of conservation measures can be compared in a single run. The program can be used both as a research tool by energy policy analysts and as a method for nontechnical energy calculation by architects, home builders, home owners, and others in the building industry.« less

  19. Briefing on the Better Buildings Neighborhood Program Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... We also had impact evaluation and the market effects of evaluation. Evergreen Economics conducted the analysis of the economic impact of the building regression analysis and worked ...

  20. Building Diagnostic Market Deployment - Final Report

    SciTech Connect (OSTI)

    Katipamula, Srinivas; Gayeski, N.

    2012-04-01

    The work described in this report was done as part of a Cooperative Research and Development Agreement (CRADA) between the U.S. Department of Energy’s Pacific Northwest National Laboratory (PNNL) and KGS Building LLC (KGS). PNNL and KGS both believe that the widespread adoption of automated fault de4tection and diagnostic (AFDD) tools will result in significant reduction to energy and peak energy consumption. The report provides an introduction, and summary of the various tasks performed under the CRADA. The CRADA project had three major focus areas: 1) Technical Assistance for Whole Building Energy Diagnostician (WBE) Commercialization, 2) Market Transfer of the Outdoor Air/Economizer Diagnostician (OAE), and 3) Development and Deployment of Automated Diagnostics to Improve Large Commercial Building Operations.

  1. Industrial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Industrial Manufacturing Buildings Industrialmanufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey...

  2. EECBG Success Story: New Bedford Builds Foundation for Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bedford Builds Foundation for Energy-Centric Economic Development EECBG Success Story: New Bedford Builds Foundation for Energy-Centric Economic Development August 25, 2014 - 2:51pm ...

  3. Building Energy Consumption Analysis

    Energy Science and Technology Software Center (OSTI)

    2005-01-24

    DOE2.1E-121 is a set of modules for energy analysis in buildings. Modules are included to calculate the heating and cooling loads for each space in a building for each hour of a year (LOADS), to simulate the operation and response of the equipment and systems that control temperature and humidity and distribute heating, cooling and ventilation to the building (SYSTEMS), to model energy conversion equipment that uses fuel or electricity to provide the required heating,more » cooling and electricity (PLANT), and to compute the cost of energy and building operation based on utility rate schedule and economic parameters (ECONOMICS). DOE2.1E-121 contains modifications to DOE2.1E which allows 1000 zones to be modeled.« less

  4. Economical wind protection - underground

    SciTech Connect (OSTI)

    Kiesling, E.W.

    1980-01-01

    Earth-sheltered buildings inherently posess near-absolute occupant protection from severe winds. They should sustain no structural damage and only minimal facial damage. Assuming that the lower-hazard risk attendant to this type of construction results in reduced insurance-premium rates, the owner accrues economic benefits from the time of construction. Improvements to aboveground buildings, in contrast, may not yield early economic benefits in spite of a favorable benefit-to-cost ratio. This, in addition to sensitivity to initial costs, traditionalism in residential construction, and lack of professional input to design, impede the widespread use of underground improvements and the subsequent economic losses from severe winds. Going underground could reverse the trend. 7 references.

  5. Green Building Studio | Open Energy Information

    Open Energy Info (EERE)

    Studio Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Green Building Studio AgencyCompany Organization: Autodesk Sector: Energy Focus Area: Buildings, Energy...

  6. Preliminary Energy Savings Impact Evaluation: Better Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Savings Impact Evaluation: Better Buildings Neighborhood Program, Final report Preliminary ... PDF icon Technical Report More Documents & Publications Savings and Economic ...

  7. Building Diagnostic Market Deployment - Final Report

    SciTech Connect (OSTI)

    Katipamula, S.; Gayeski, N.

    2012-04-30

    Operational faults are pervasive across the commercial buildings sector, wasting energy and increasing energy costs by up to about 30% (Mills 2009, Liu et al. 2003, Claridge et al. 2000, Katipamula and Brambley 2008, and Brambley and Katipamula 2009). Automated fault detection and diagnostic (AFDD) tools provide capabilities essential for detecting and correcting these problems and eliminating the associated energy waste and costs. The U.S. Department of Energy's (DOE) Building Technology Program (BTP) has previously invested in developing and testing of such diagnostic tools for whole-building (and major system) energy use, air handlers, chillers, cooling towers, chilled-water distribution systems, and boilers. These diagnostic processes can be used to make the commercial buildings more energy efficient. The work described in this report was done as part of a Cooperative Research and Development Agreement (CRADA) between the U.S. Department of Energy's Pacific Northwest National Laboratory (PNNL) and KGS Building LLC (KGS). PNNL and KGS both believe that the widespread adoption of AFDD tools will result in significant reduction to energy and peak energy consumption. The report provides an introduction and summary of the various tasks performed under the CRADA. The CRADA project had three major focus areas: (1) Technical Assistance for Whole Building Energy Diagnostician (WBE) Commercialization, (2) Market Transfer of the Outdoor Air/Economizer Diagnostician (OAE), and (3) Development and Deployment of Automated Diagnostics to Improve Large Commercial Building Operations. PNNL has previously developed two diagnostic tools: (1) whole building energy (WBE) diagnostician and (2) outdoor air/economizer (OAE) diagnostician. WBE diagnostician is currently licensed non-exclusively to one company. As part of this CRADA, PNNL developed implementation documentation and provided technical support to KGS to implement the tool into their software suite, Clockworks. PNNL also provided validation data sets and the WBE software tool to validate the KGS implementation. OAE diagnostician automatically detects and diagnoses problems with outdoor air ventilation and economizer operation for air handling units (AHUs) in commercial buildings using data available from building automation systems (BASs). As part of this CRADA, PNNL developed implementation documentation and provided technical support to KGS to implement the tool into their software suite. PNNL also provided validation data sets and the OAE software tool to validate the KGS implementation. Finally, as part of this CRADA project, PNNL developed new processes to automate parts of the re-tuning process and transfer those process to KGS for integration into their software product. The transfer of DOE-funded technologies will transform the commercial buildings sector by making buildings more energy efficient and also reducing the carbon footprint from the buildings. As part of the CRADA with PNNL, KGS implemented the whole building energy diagnostician, a portion of outdoor air economizer diagnostician and a number of measures that automate the identification of re-tuning measures.

  8. Integrative Genomics Building

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrative Genomics Building Community Berkeley Global Campus Environmental Documents Tours Community Programs Friends of Berkeley Lab ⇒ Navigate Section Community Berkeley Global Campus Environmental Documents Tours Community Programs Friends of Berkeley Lab Project Description The Integrative Genomics Building (IGB) is proposed to be an approximately 77,000 gsf, four-story research and office building constructed in the former Bevatron area - a fully developed site in the geographic

  9. Evaluating the economic effectiveness of a cogeneration plant

    SciTech Connect (OSTI)

    Korik, L.; Yeaple, D.: Hajosy, M.

    1996-08-01

    Economic considerations constitute the major factor in the decision to build a cogeneration plant and to its eventual design - topics which have been the focus of many studies and papers. These economic concerns continue when the plant is built and on-line, thus plant operation must be geared to provide the customers` demand in the most economically effective manner possible. Unfortunately, the complexity of and high degree of interaction between the disparate components of a cogeneration plant oftentimes, make it difficult to conceptualize the plant configuration required to maximize plant economic performance for a given demand, Indeed, actions taken to increase the thermal performance of individual plant components can actually decrease the overall economic effectiveness of the plant as a whole in the context of converting fuels to sendouts. What is needed, then, is a way to meld the performance of individual plant components into a total plant performance index that accurately measures the economic effectiveness of the plant. This paper details such a method developed by the Cogeneration Management Company to accomplish the performance evaluation of its Medical Area Total Energy Plant which supplies electricity, steam, and chilled water to the Longwood. Medical Area in Boston, This method - which is easily adapted to a variety of cogeneration designs - addresses the aforementioned complexities in the assessing of a cogeneration plant`s effectiveness and results in simple-to-understand plant performance quantifications which have proved to be of great utility in ensuring the economically sound operation of MATEP.

  10. Economic Incentives for Cybersecurity: Using Economics to Design Technologies Ready for Deployment

    SciTech Connect (OSTI)

    Vishik, Claire; Sheldon, Frederick T; Ott, David

    2013-01-01

    Cybersecurity practice lags behind cyber technology achievements. Solutions designed to address many problems may and do exist but frequently cannot be broadly deployed due to economic constraints. Whereas security economics focuses on the cost/benefit analysis and supply/demand, we believe that more sophisticated theoretical approaches, such as economic modeling, rarely utilized, would derive greater societal benefits. Unfortunately, today technologists pursuing interesting and elegant solutions have little knowledge of the feasibility for broad deployment of their results and cannot anticipate the influences of other technologies, existing infrastructure, and technology evolution, nor bring the solutions lifecycle into the equation. Additionally, potentially viable solutions are not adopted because the risk perceptions by potential providers and users far outweighs the economic incentives to support introduction/adoption of new best practices and technologies that are not well enough defined. In some cases, there is no alignment with redominant and future business models as well as regulatory and policy requirements. This paper provides an overview of the economics of security, reviewing work that helped to define economic models for the Internet economy from the 1990s. We bring forward examples of potential use of theoretical economics in defining metrics for emerging technology areas, positioning infrastructure investment, and building real-time response capability as part of software development. These diverse examples help us understand the gaps in current research. Filling these gaps will be instrumental for defining viable economic incentives, economic policies, regulations as well as early-stage technology development approaches, that can speed up commercialization and deployment of new technologies in cybersecurity.

  11. Numerical Modeling of 90Sr and 137Cs Transport from a Spill in the B-Cell of the 324 Building, Hanford Site 300 Area

    SciTech Connect (OSTI)

    Rockhold, Mark L.; Bacon, Diana H.; Freedman, Vicky L.; Lindberg, Michael J.; Clayton, Ray E.

    2012-03-19

    To characterize the extent of contamination under the 324 Building, a pit was excavated on the north side of the building in 2010 by Washington Closure Hanford LLC (WCH). Horizontal closed-end steel access pipes were installed under the foundation of the building from this pit and were used for measuring temperatures and exposure rates under the B-Cell. The deployed sensors measured elevated temperatures of up to 61 C (142 F) and exposure rates of up to 8,900 R/hr. WCH suspended deactivation of the facility because it recognized that building safety systems and additional characterization data might be needed for remediation of the contaminated material. The characterization work included additional field sampling, laboratory measurements, and numerical flow and transport modeling. Laboratory measurements of sediment physical, hydraulic, and geochemical properties were performed by Pacific Northwest National Laboratory (PNNL) and others. Geochemical modeling and subsurface flow and transport modeling also were performed by PNNL to evaluate the possible extent of contamination in the unsaturated sand and gravel sediments underlying the building. Historical records suggest that the concentrated 137Cs- and 90Sr-bearing liquid wastes that were spilled in B-Cell were likely from a glass-waste repository testing program associated with the Federal Republic of Germany (FRG). Incomplete estimates of the aqueous chemical composition (no anion data provided) of the FRG waste solutions were entered into a geochemical speciation model and were charge balanced with nitrate to estimate waste composition. Additional geochemical modeling was performed to evaluate reactions of the waste stream with the concrete foundation of the building prior to the stream entering the subsurface.

  12. Mercantile Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Mercantile Characteristics by Activity... Mercantile Mercantile buildings are those used for the sale and display of goods other than food (buildings used for the sales of food are...

  13. Education Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Education Characteristics by Activity... Education Education buildings are buildings used for academic or technical classroom instruction, such as elementary, middle, or high...

  14. Better Buildings

    Broader source: Energy.gov [DOE]

    The Better Buildings Initiative aims to make commercial and industrial buildings 20% more energy efficient by 2020 and accelerate private sector investment in energy efficiency.

  15. Economic Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Economic Development Economic Development Los Alamos is committed to investing and partnering in economic development initiatives and programs that have a positive impact to stimulate business growth that creates jobs and strengthens communities in Northern New Mexico. September 20, 2013 LANS Venture Acceleration Fund (VAF) award enabled Ideum to develop motion recognition software for international release. Jim Spadaccini (R) has tapped into the Lab's economic development programs: VAF, NMSBA,

  16. City of Grand Rapids Building Solar Roof Demonstration

    SciTech Connect (OSTI)

    DeClercq, Mark; Martinez, Imelda

    2012-08-31

    Grand Rapids, Michigan is striving to reduce it environmental footprint. The municipal government organization has established environmental sustainability policies with the goal of securing 100% of its energy from renewable sources by 2020. This report describes the process by which the City of Grand Rapids evaluated, selected and installed solar panels on the Water/Environmental Services Building. The solar panels are the first to be placed on a municipal building. Its new power monitoring system provides output data to assess energy efficiency and utilization. It is expected to generate enough clean solar energy to power 25 percent of the building. The benefit to the public includes the economic savings from reduced operational costs for the building; an improved environmentally sustainable area in which to live and work; and increased knowledge about the use of solar energy. It will serve as a model for future energy saving applications.

  17. Energy Demands and Efficiency Strategies in Data Center Buildings

    SciTech Connect (OSTI)

    Shehabi, Arman

    2009-09-01

    Information technology (IT) is becoming increasingly pervasive throughout society as more data is digitally processed, stored, and transferred. The infrastructure that supports IT activity is growing accordingly, and data center energy demands haveincreased by nearly a factor of four over the past decade. Data centers house IT equipment and require significantly more energy to operate per unit floor area thanconventional buildings. The economic and environmental ramifications of continued data center growth motivate the need to explore energy-efficient methods to operate these buildings. A substantial portion of data center energy use is dedicated to removing the heat that is generated by the IT equipment. Using economizers to introduce large airflow rates of outside air during favorable weather could substantially reduce the energy consumption of data center cooling. Cooling buildings with economizers is an established energy saving measure, but in data centers this strategy is not widely used, partly owing to concerns that the large airflow rates would lead to increased indoor levels of airborne particles, which could damage IT equipment. The environmental conditions typical of data centers and the associated potential for equipment failure, however, are not well characterized. This barrier to economizer implementation illustrates the general relationship between energy use and indoor air quality in building design and operation. This dissertation investigates how building design and operation influence energy use and indoor air quality in data centers and provides strategies to improve both design goals simultaneously.As an initial step toward understanding data center air quality, measurements of particle concentrations were made at multiple operating northern California data centers. Ratios of measured particle concentrations in conventional data centers to the corresponding outside concentrations were significantly lower than those reported in the literature for office or residential buildings. Estimates using a material-balance model match well with empirical results, indicating that the dominant particle sources and losses -- ventilation and filtration -- have been characterized. Measurements taken at a data center using economizers show nearly an order of magnitude increase in particle concentration during economizer activity. However, even with the increase, themeasured particle concentrations are still below concentration limits recommended in most industry standards. The research proceeds by exploring the feasibility of using economizers in data centers while simultaneously controlling particle concentrations with high-quality air filtration. Physical and chemical properties of indoor and outdoor particles were analyzed at a data center using economizers and varying levels of air filtration efficiency. Results show that when improved filtration is used in combination with an economizer, the indoor/outdoor concentration ratios for most measured particle types were similar to the measurements when using conventional filtration without economizers. An energy analysis of the data center reveals that, even during the summer months, chiller savings from economizer use greatly outweigh the increase in fan power associated with improved filtration. These findings indicate that economizer use combined with improved filtration couldsignificantly reduce data center energy demand while providing a level of protection from particles of outdoor origin similar to that observed with conventional design. The emphasis of the dissertation then shifts to evaluate the energy benefits of economizer use in data centers under different design strategies. Economizer use with high ventilation rates is compared against an alternative, water-side economizer design that does not affect indoor particle concentrations. Building energy models are employed to estimate energy savings of both economizer designs for data centers in

  18. 100 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    00 Area About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental Restoration Disposal Facility F Reactor H

  19. 200 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    00 Area About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental Restoration Disposal Facility F Reactor H

  20. 300 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental Restoration Disposal Facility F Reactor H

  1. 700 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    700 Area About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental Restoration Disposal Facility F Reactor H

  2. Corrective Action Investigation Plan for Corrective Action Unit 263: Area 25 Building 4839 Leachfields, Nevada Test Site, Revision 0, DOE/NV--535 UPDATED WITH RECORD OF TECHNICAL CHANGE No.1

    SciTech Connect (OSTI)

    US DOE Nevada Operations Office

    1999-04-12

    The Corrective Action Investigation Plan for Corrective Action Unit 263, the Area 25 Building 4839 Leachfield, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the US Department of Energy, Nevada Operations Office; the Nevada Division of Environmental Protection; and the US Department of Defense. Corrective Action Unit 263 is comprised of the Corrective Action Site 25-05-04 sanitary leachfield and associated collection system. This Corrective Action Investigation Plan is used in combination with the Work Plan for Leachfield Corrective Action Units: Nevada Test Site and Tonopah Test Range, Nevada (DOE/NV, 1998d). The Leachfield Work Plan was developed to streamline investigations at Leachfield Corrective Action Units by incorporating management, technical, quality assurance, health and safety, public involvement, field sampling, and waste management information common to a set of Corrective Action Units with similar site histories and characteristics into a single document that can be referenced. This Corrective Action Investigation Plan provides investigative details specific to Corrective Action Unit 263. Corrective Action Unit 263 is located southwest of Building 4839, in the Central Propellant Storage Area. Operations in Building 4839 from 1968 to 1996 resulted in effluent releases to the leachfield and associated collection system. In general, effluent released to the leachfield consisted of sanitary wastewater from a toilet, urinal, lavatory, and drinking fountain located within Building 4839. The subsurface soils in the vicinity of the collection system and leachfield may have been impacted by effluent containing contaminants of potential concern generated by support activities associated with the Building 4839 operations.

  3. Boston solar retrofits: studies of solar access and economics

    SciTech Connect (OSTI)

    Shapiro, M.

    1980-11-01

    Studies of solar access and solar retrofit economics are described for residential applications in the City of Boston. The study of solar access was based upon a random sample of 94 buildings; the sample was stratified to ensure a broad geographic representation from the city's various sections. Using available data on the heights and orientations of the sampled structures and surrounding buildings, each building's hourly access to sunlight was computed separately for the roof and south facing walls. These data were then aggregated by broad structural classifications in order to provide general measures of solar access. The second study was a comparative analysis of the economics of several solar heating and hot water systems. An active hot water system, installed using pre-assembled, commercially purchased equipment, was selected as a reference technology. A variety of measures of economic performance were computed for this system, with and without existing tax credits and under various financing arrangements. Next, a number of alternative approaches for solar space and water heating were identified from interviews with individuals and groups involved in solar retrofit projects in the Boston area. The objective was to identify approaches that many of those interviewed believe to be low-cost means of applying solar energy in residential settings. The approaches selected include thermal window covers, wall collectors, bread box water heaters, and sun spaces. Preliminary estimates of the performance of several representative designs were developed and the economics of these designs evaluated.

  4. Past Building America Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Past Building America Projects Past Building America Projects Building America research projects are completed by industry consortia (teams) comprised of leading experts from across the country. This page provides an overview of the past projects, team members, and areas of focus. Learn about current Building America teams and projects. Advanced Residential Integrated Energy Solutions Alliance for Residential Building Innovation Building America Research Alliance Building America Partnership for

  5. Mainstreaming Building Energy Efficiency Codes in Developing...

    Open Energy Info (EERE)

    Area: Energy Efficiency, Buildings Topics: Policiesdeployment programs Resource Type: Lessons learnedbest practices Website: www.ecn.nlfileadminecnunitsbsIEC...

  6. High Performance Commercial Buildings Technology Roadmap | Open...

    Open Energy Info (EERE)

    Company Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Energy Efficiency, Buildings Topics: Technology characterizations Resource Type: Dataset...

  7. Colorado State Capitol Building Geothermal Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Retrofit a large scale ground source heat pump system into a historic building located in a built up urban area.

  8. A Technical and Economic Analysis of an Innovative Two-Step Absorption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economic Analysis of an Innovative Two-Step Absorption System for Utilizing Low-Temperature Geothermal Resources to Condition Commercial Buildings A Technical and Economic Analysis ...

  9. Strengthening the Workforce in Better Buildings Neighborhoods

    ScienceCinema (OSTI)

    Sperling, Gil; Adams, Cynthia; Fiori, Laura; Penzkover, Dave; Wood, Danny; Farris, Joshua

    2013-05-29

    The Better Buildings Neighborhood Program is supporting an expanding energy efficiency workforce upgrading buildings in communities around the country. Contractors are being trained and have access to additional job opportunities, spurring local economic growth while helping Americans use less energy, save money, and be more comfortable in their homes and other buildings.

  10. Building America

    SciTech Connect (OSTI)

    Brad Oberg

    2010-12-31

    IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.

  11. Buildings Energy Efficiency Frontiers & Innovation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Topic AreasTechnical Areas of Interest INNOVATIONS Section: * Topic 1: Open Topic for Energy Efficiency Solutions for Residential and Commercial Buildings Within this topic, the ...

  12. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    SciTech Connect (OSTI)

    Wall, L.W.; Rosenfeld, A.H.

    1982-12-01

    Recent accomplishments in buildings energy research by the diverse groups in the Energy Efficient Buildings Program at Lawrence Berkeley Laboratory (LBL) are summarized. We review technological progress in the areas of ventilation and indoor air quality, buildings energy performance, computer modeling, windows, and artificial lighting. The need for actual consumption data to track accurately the improving energy efficiency of buildings is being addressed by the Buildings Energy Data (BED) Group at LBL. We summarize results to date from our Building Energy Use Compilation and Analysis (BECA) studies, which include time trends in the energy consumption of new commercial and new residential buildings, the measured savings being attained by both commercial and residential retrofits, and the cost-effectiveness of buildings energy conservation measures. We also examine recent comparisons of predicted vs. actual energy usage/savings, and present the case for building energy use labels.

  13. Building technologies

    SciTech Connect (OSTI)

    Jackson, Roderick

    2014-07-14

    After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

  14. Building technologies

    ScienceCinema (OSTI)

    Jackson, Roderick

    2014-07-15

    After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

  15. Beardmore Building

    High Performance Buildings Database

    Priest River, ID Originally built in 1922 by Charles Beardmore, the building housed offices, mercantile shops, a ballroom and a theater. After decades of neglect under outside ownership, Brian Runberg, an architect and great-grandson of Charles Beardmore, purchased the building in 2006 and began an extensive whole building historic restoration.

  16. Energy Implications of Economizer Use in California Data Centers

    SciTech Connect (OSTI)

    Shehabi, Arman; Ganguly, Srirupa; Traber, Kim; Price, Hillary; Horvath, Arpad; Nazaroff, William W.; Gadgil, Ashok J.

    2008-08-01

    In the US, data center operations currently account for about 61 billion kWh/y of electricity consumption, which is more than 1.5percent of total demand. Data center energy consumption is rising rapidly, having doubled in the last five years. A substantial portion of data-center energy use is dedicated to removing the heat generated by the computer equipment. Data-center cooling load might be met with substantially reduced energy consumption with the use of air-side economizers. This energy saving measure, however, has been shown to expose servers to an order-of-magnitude increase in indoor particle concentrations with an unquantified increase in the risk of equipment failure. An alternative energy saving option is the use of water-side economizers, which do not affect the indoor particle concentration but require additional mechanical equipment and tend to be less beneficial in high humidity areas. Published research has only presented qualitative benefits of economizer use, providing industry with inadequate information on which to base their design decisions. Energy savings depend on local climate and the specific building-design characteristics. In this paper, based on building energy models, we report energy savings for air-side and water-side economizer use in data centers in several climate zones in California. Results show that in terms of energy savings, air-side economizers consistently outperform water-side economizers, though the performance difference varies by location. Model results also show that conventional humidity restrictions must by relaxed or removed to gain the energy benefits of air-side economizers.

  17. Economic Dispatch

    Office of Environmental Management (EM)

    Economic Dispatch and Technological Change Report to Congress March 2014 United States Department of Energy Washington, DC 20585 Page left intentionally blank Department of Energy | March 2014 Message from the Assistant Secretary In this report, the Department of Energy is responding to Sections 1234 and 1832 of the Energy Policy Act of 2005, which directed the Secretary of Energy to conduct an annual study of economic dispatch and potential ways to improve such dispatch to benefit American

  18. Impact of Utility Rates on PV Economics - Digital Appendix |...

    Open Energy Info (EERE)

    for The Impacts of Utility Rates and Building Type on the Economics of Commercial Photovoltaic Systems. This digital appendix contains supplement material for the NREL technical...

  19. Vacant Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Vacant Characteristics by Activity... Vacant Vacant buildings are those in which more floorspace was vacant than was used for any single commercial activity at the time of the...

  20. Service Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Service Characteristics by Activity... Service Service buildings are those in which some type of service is provided, other than food service or retail sales of goods. Basic...

  1. Other Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Other Characteristics by Activity... Other Other buildings are those that do not fit into any of the specifically named categories. Basic Characteristics See also: Equipment |...

  2. Buildings Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Efficiency & Renewable Energy EERE Home | Programs & Offices | Consumer Information Buildings Database Welcome Guest Log In | Register | Contact Us Home About All Projects...

  3. Economics | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACEconomics content top NISAC Agent-Based Laboratory for Economics (N-ABLE(tm)) Posted by Admin on Mar 1, 2012 in | Comments 0 comments NISAC Agent-Based Laboratory for Economics (N-ABLE(tm)) NISAC has developed N-ABLE(tm) to assist federal decision makers in improving the security and resilience of the U.S. economy. N-ABLE(tm) is a large-scale microeconomic simulation tool that models the complex supply-chain, spatial market dynamics, and critical-infrastructure interdependencies of

  4. ECONOMIC DISPATCH

    Office of Environmental Management (EM)

    ECONOMIC DISPATCH OF ELECTRIC GENERATION CAPACITY A REPORT TO CONGRESS AND THE STATES PURSUANT TO SECTIONS 1234 AND 1832 OF THE ENERGY POLICY ACT OF 2005 United States Department of Energy February 2007 ECONOMIC DISPATCH OF ELECTRIC GENERATION CAPACITY A REPORT TO CONGRESS AND THE STATES PURSUANT TO SECTIONS 1234 AND 1832 OF THE ENERGY POLICY ACT OF 2005 Sections 1234 and 1832 of the Energy Policy Act of 2005 (EPAct) 1 direct the U.S. Department of Energy (the Department, or DOE) to: 1) Study

  5. Community Economic Analysis: A How To Guide | Open Energy Information

    Open Energy Info (EERE)

    Name: Community Economic Analysis: A How To Guide AgencyCompany Organization: Ronald J. Hustedde Partner: Ron Shaffer Sector: Energy Focus Area: Economic Development Phase:...

  6. Team Middlebury On How to Create Buildings That Improve Communities

    Energy Savers [EERE]

    Socially, Economically, and Environmentally | Department of Energy Team Middlebury On How to Create Buildings That Improve Communities Socially, Economically, and Environmentally Team Middlebury On How to Create Buildings That Improve Communities Socially, Economically, and Environmentally July 8, 2013 - 4:36pm Addthis Team Middlebury at their Spring Build of the InSite, a 954 sq. ft. solar-powered home that's set to compete in the 2013 Solar Decathlon. Cordelia, Team Manager, is pictured

  7. BuildingOS by Lucid | Open Energy Information

    Open Energy Info (EERE)

    Lucid Sector: Energy Focus Area: Renewable Energy, Non-renewable Energy, Buildings, - ENERGY STAR, - HVAC, - LEED, Buildings - Commercial, Energy Efficiency, - Central Plant,...

  8. Building Energy Codes-Best Practices Report for APEC Economies...

    Open Energy Info (EERE)

    AgencyCompany Organization: The Building Codes Assistance Project (BCAP) Sector: Energy Focus Area: Energy Efficiency, Buildings Topics: Policiesdeployment programs Resource...

  9. The Underground Test Area Project of the Nevada Test Site: Building Confidence in Groundwater Flow and Transport Models at Pahute Mesa Through Focused Characterization Studies

    SciTech Connect (OSTI)

    Pawloski, G A; Wurtz, J; Drellack, S L

    2009-12-29

    Pahute Mesa at the Nevada Test Site contains about 8.0E+07 curies of radioactivity caused by underground nuclear testing. The Underground Test Area Subproject has entered Phase II of data acquisition, analysis, and modeling to determine the risk to receptors from radioactivity in the groundwater, establish a groundwater monitoring network, and provide regulatory closure. Evaluation of radionuclide contamination at Pahute Mesa is particularly difficult due to the complex stratigraphy and structure caused by multiple calderas in the Southwestern Nevada Volcanic Field and overprinting of Basin and Range faulting. Included in overall Phase II goals is the need to reduce the uncertainty and improve confidence in modeling results. New characterization efforts are underway, and results from the first year of a three-year well drilling plan are presented.

  10. City of Detroit- SmartBuildings Detroit Green Fund Loan

    Broader source: Energy.gov [DOE]

    The Economic Development Corporation (EDC) of the City of Detroit is offering financial assistance to commercial, institutional and public buildings in Detroit that install energy efficiency and ...

  11. Fuel economizer

    SciTech Connect (OSTI)

    Zwierzelewski, V.F.

    1984-06-26

    A fuel economizer device for use with an internal combustion engine fitted with a carburetor is disclosed. The fuel economizer includes a plate member which is mounted between the carburetor and the intake portion of the intake manifold. The plate member further has at least one aperture formed therein. One tube is inserted through the at least one aperture in the plate member. The one tube extends longitudinally in the passage of the intake manifold from the intake portion toward the exit portion thereof. The one tube concentrates the mixture of fuel and air from the carburetor and conveys the mixture of fuel and air to a point adjacent but spaced away from the inlet port of the internal combustion engine.

  12. Current Status and Future Scenarios of Residential Building Energy Consumption in China

    SciTech Connect (OSTI)

    Zhou, Nan; Nishida, Masaru; Gao, Weijun

    2008-12-01

    China's rapid economic expansion has propelled it into the ranks of the largest energy consuming nation in the world, with energy demand growth continuing at a pace commensurate with its economic growth. Even though the rapid growth is largely attributable to heavy industry, this in turn is driven by rapid urbanization process, by construction materials and equipment produced for use in buildings. Residential energy is mostly used in urban areas, where rising incomes have allowed acquisition of home appliances, as well as increased use of heating in southern China. The urban population is expected to grow by 20 million every year, accompanied by construction of 2 billion square meters of buildings every year through 2020. Thus residential energy use is very likely to continue its very rapid growth. Understanding the underlying drivers of this growth helps to identify the key areas to analyze energy efficiency potential, appropriate policies to reduce energy use, as well as to understand future energy in the building sector. This paper provides a detailed, bottom-up analysis of residential building energy consumption in China using data from a wide variety of sources and a modeling effort that relies on a very detailed characterization of China's energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast the future outlook for the critical period extending to 2020, based on assumptions of likely patterns of economic activity, availability of energy services, technology improvement and energy intensities.

  13. ECONOMIC IMPACT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ECONOMIC IMPACT 2015 SANDIA NATIONAL LABORATORIES National Security Sandia's primary mission is ensuring the U.S. nuclear arsenal is safe, secure, and reliable, and can fully support our nation's deterrence policy. NUCLEAR WEAPONS DEFENSE SYSTEMS & ASSESSMENTS We provide technical solutions for global security by engineering and integrating advanced science and technology to help defend and protect the United States. Jill Hruby President and Laboratories Director "Qualified, diverse

  14. Economic Performance

    Office of Environmental Management (EM)

    09 Executive Order 13514-Federal Leadership in Environmental, Energy, and Economic Performance October 5, 2009 By the authority vested in me as President by the Constitution and the laws of the United States of America, and to establish an integrated strategy towards sustainability in the Federal Government and to make reduction of greenhouse gas emissions a priority for Federal agencies, it is hereby ordered as follows: Section 1. Policy. In order to create a clean energy economy that will

  15. Building Energy Monitoring and Analysis

    SciTech Connect (OSTI)

    Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

    2013-06-01

    U.S. and China are the world’s top two economics. Together they consumed one-third of the world’s primary energy. It is an unprecedented opportunity and challenge for governments, researchers and industries in both countries to join together to address energy issues and global climate change. Such joint collaboration has huge potential in creating new jobs in energy technologies and services. Buildings in the US and China consumed about 40% and 25% of the primary energy in both countries in 2010 respectively. Worldwide, the building sector is the largest contributor to the greenhouse gas emission. Better understanding and improving the energy performance of buildings is a critical step towards sustainable development and mitigation of global climate change. This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

  16. Building Science

    Broader source: Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question How do we first do no harm with high-r enclosures?Ž

  17. Lodging Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    were then asked to place the building into the following more specific categories: a hotel a motel, inn, or resort a retirement home a shelter, orphanage, or children's home a...

  18. Office Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    page, please call 202-586-8800. There were enough buildings in the responding sample to report statistics for all of these types except for research and development, which has...

  19. Building America Residential Buildings Energy Efficiency Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings ... More Documents & Publications Summary of Gaps and Barriers for Implementing Residential ...

  20. Building America Expert Meeting: Transforming Existing Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transforming Existing Buildings through New Media--An Idea Exchange Building America Expert Meeting: Transforming Existing Buildings through New Media--An Idea Exchange This report...

  1. Request for Information: Request for Information for Solar on Leased Commercial Buildings

    Broader source: Energy.gov [DOE]

    In order to promote adoption of photovoltaics and other advanced cost-effective technologies for commercial buildings, the U.S. Department of Energy’s SunShot Initiative and the Better Buildings Alliance (BBA) are exploring best strategies to support, expand, and streamline efforts to deploy solar photovoltaics on and for commercial buildings in the U.S. real estate market. Understanding the benefits and most prominent challenges for building owners, tenants and other stakeholders is essential for developing resources and solutions to promote solar installations in this market. Areas of key interest center on technical, economic, administrative, and legal barriers and opportunities to reduce costs of capital, lower operational risks, protect consumers, and increase efficient market activities.

  2. Photovoltaics Economic Calculator (United States) | Open Energy...

    Open Energy Info (EERE)

    (United States) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Photovoltaics Economic Calculator (United States) Focus Area: Solar Topics: System & Application...

  3. Bagley University Classroom Building

    High Performance Buildings Database

    Duluth, MN, MN LEED PLATINUM CERTIFIED AND PASSIVHAUS ( certification pending) CLASSROOM BUILDING The Nature Preserve where this building is located is a contiguous natural area, 55 acres in size, deeded to the University in the 1950's for educational and recreational use. The site has hiking trails through old growth hard woods frequented by the university students as well as the public. We were charged with designing a facility to serve eight different departments for the nature portions of their teaching and study at a regional University.

  4. Ecological economizer

    SciTech Connect (OSTI)

    Peterson, E.M.

    1992-06-16

    This patent describes an engine economizer system adapted to supply an internal combustion engine with a heated air and water vapor mixture. It comprises a containment vessel, the vessel having: water level control means, an engine coolant fluid circuit, an engine lubricant circuit, an elongated air passage, air disbursement means, a water reservoir, air filter means, a vacuum aspiration port, and engine induction means associated with one of the carburetor and intake manifold and adapted to draw in the heated air and water vapor mixture by means of a hose connection to the aspiration port.

  5. Flexible Framework for Building Energy Analysis: Preprint

    SciTech Connect (OSTI)

    Hale, E.; Macumber, D.; Weaver, E.; Shekhar, D.

    2012-09-01

    In the building energy research and advanced practitioner communities, building models are perturbed across large parameter spaces to assess energy and cost performance in the face of programmatic and economic constraints. This paper describes the OpenStudio software framework for performing such analyses.

  6. Archive Reference Buildings by Building Type: Warehouse

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

  7. Canister storage building natural phenomena hazards

    SciTech Connect (OSTI)

    Tallman, A.M.

    1996-06-01

    This document specifies the natural phenomena loads for the canister storage building in the 200 East Area of the Hanford Site.

  8. High Performance Sustainable Building - DOE Directives, Delegations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by Adam Pugh Functional areas: Program Management, Project Management This Guide provides approaches for implementing the High Performance Sustainable Building (HPSB) requirements...

  9. Buildings Energy Data Book | Open Energy Information

    Open Energy Info (EERE)

    Energy Data Book AgencyCompany Organization: United States Department of Energy Sector: Energy Focus Area: Buildings Topics: Market analysis, Pathways analysis, Technology...

  10. INL High Performance Building Strategy

    SciTech Connect (OSTI)

    Jennifer D. Morton

    2010-02-01

    High performance buildings, also known as sustainable buildings and green buildings, are resource efficient structures that minimize the impact on the environment by using less energy and water, reduce solid waste and pollutants, and limit the depletion of natural resources while also providing a thermally and visually comfortable working environment that increases productivity for building occupants. As Idaho National Laboratory (INL) becomes the nation’s premier nuclear energy research laboratory, the physical infrastructure will be established to help accomplish this mission. This infrastructure, particularly the buildings, should incorporate high performance sustainable design features in order to be environmentally responsible and reflect an image of progressiveness and innovation to the public and prospective employees. Additionally, INL is a large consumer of energy that contributes to both carbon emissions and resource inefficiency. In the current climate of rising energy prices and political pressure for carbon reduction, this guide will help new construction project teams to design facilities that are sustainable and reduce energy costs, thereby reducing carbon emissions. With these concerns in mind, the recommendations described in the INL High Performance Building Strategy (previously called the INL Green Building Strategy) are intended to form the INL foundation for high performance building standards. This revised strategy incorporates the latest federal and DOE orders (Executive Order [EO] 13514, “Federal Leadership in Environmental, Energy, and Economic Performance” [2009], EO 13423, “Strengthening Federal Environmental, Energy, and Transportation Management” [2007], and DOE Order 430.2B, “Departmental Energy, Renewable Energy, and Transportation Management” [2008]), the latest guidelines, trends, and observations in high performance building construction, and the latest changes to the Leadership in Energy and Environmental Design (LEEDź) Green Building Rating System (LEED 2009). The document employs a two-level approach for high performance building at INL. The first level identifies the requirements of the Guiding Principles for Sustainable New Construction and Major Renovations, and the second level recommends which credits should be met when LEED Gold certification is required.

  11. Commercial Building Partnership

    Broader source: Energy.gov [DOE]

    Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review

  12. Energy Efficient Buildings Hub

    SciTech Connect (OSTI)

    2013-04-01

    Energy Efficient Buildings HUB Lunch Presentation for the 2013 Building Technologies Office's Program Peer Review

  13. Energy Efficient Buildings Hub

    Broader source: Energy.gov [DOE]

    Energy Efficient Buildings HUB Lunch Presentation for the 2013 Building Technologies Office's Program Peer Review

  14. Building America System Research

    Broader source: Energy.gov [DOE]

    Residential Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review

  15. Building Technologies Office Overview

    SciTech Connect (OSTI)

    2013-04-01

    Building Technologies Office Overview Presentation for the 2013 Building Technologies Office's Program Peer Review

  16. Residential Buildings Integration Program

    Broader source: Energy.gov [DOE]

    Residential Buildings Integration Program Presentation for the 2013 Building Technologies Office's Program Peer Review

  17. Building America System Research

    SciTech Connect (OSTI)

    2013-04-01

    Residential Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review

  18. Building America Webinar: Building America: Research for Real-World Results

    Energy Savers [EERE]

    | Department of Energy America: Research for Real-World Results Building America Webinar: Building America: Research for Real-World Results For 20 years, the U.S. Department of Energy's (DOE) Building America program has been a source of innovations for high performance homes. This webinar on December 17, 2014, featured Eric Werling, Building America Program Coordinator, providing an overview of key Building America accomplishments, current research focus areas, and future strategies for

  19. Building Retrofit and DSM Study in Jiangsu | Open Energy Information

    Open Energy Info (EERE)

    Natural Resources Defense Council Sector Energy Focus Area Buildings, Energy Efficiency Topics Background analysis, Pathways analysis, Policiesdeployment programs Resource...

  20. Buildings Energy Data Book: 9.4 High Performance Buildings

    Buildings Energy Data Book [EERE]

    2 Case Study, The Cambria Department of Environmental Protection Office Building, Ebensburg, Pennsylvania (Office) Building Design Floor Area: Floors: 2 Open office space (1) File storage area Two small labratories Conference rooms Break room Storage areas Two mechanical rooms Telecom room Shell Windows Material: Triple Pane, low-e with Aluminum Frames and Wood Frames Triple Pane Triple Pane Aluminum Frames Wood Frames U-Factor 0.24 U-Factor 0.26 Wall/Roof Primary Material R-Value Wall :

  1. Better Buildings Challenge-- Milwaukee

    Broader source: Energy.gov [DOE]

    Lead Performer: City of Milwaukee – Milwaukee, WI Partners: -- Franklin Energy, LLC – Port Washington, WI -- Milwaukee Area Technical College – Milwaukee, WI -- Midwest Energy Research Consortium – Milwaukee, WI -- Staples Energy – Pewaukee, WI -- Milwaukee Business Improvement Districts – Milwaukee, WI -- Transwestern Sustainability Services – Milwaukee, WI -- U.S. Green Building Council – Wisconsin Chapter – Milwaukee, WI -- Office of Energy Innovation – Madison, WI -- Focus on Energy – Madison, WI -- BOMA-Wisconsin – Milwaukee, WI

  2. Buildings","Heated Buildings",,"Cooled Buildings",,"Lit Buildingsc...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... with Cooling ......",58474,56361,49482,58474,42420,57936,50055 "Buildings with Water Heating .",56115,54204,48070,52589,38844,55586,48125 "Buildings with Cooking ...

  3. Jackson Park Hospital Green Building Medical Center

    SciTech Connect (OSTI)

    William Dorsey; Nelson Vasquez

    2010-03-01

    Jackson Park Hospital completed the construction of a new Medical Office Building on its campus this spring. The new building construction has adopted the City of Chicagoù��s recent focus on protecting the environment, and conserving energy and resources, with the introduction of green building codes. Located in a poor, inner city neighborhood on the South side of Chicago, Jackson Park Hospital has chosen green building strategies to help make the area a better place to live and work.

  4. Types of Lighting in Commercial Buildings - Table L2

    U.S. Energy Information Administration (EIA) Indexed Site

    Any Lighting Lighted Area Only Area Lit by Each Type of Light Incan- descent Standard Fluor-escent Compact Fluor- escent High Intensity Discharge Halogen All Buildings*...

  5. Physics of passive solar buildings

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1981-01-01

    Primary emphasis in the paper is on methods of characterizing and analyzing passive solar buildings. Simplifying assumptions are described which make this analysis tractable without compromising significant accuracy or loss of insight into the basic physics of the situation. The overall nature of the mathematical simulation approach is described. Validation procedures based on data from test rooms and monitored buildings are outlined. Issues of thermal comfort are discussed. Simplified methods of analysis based on correlation procedures are reported and the nature of the economic conservation-solar optimization process is explored. Future trends are predicted.

  6. Heat recovery and the economizer for HVAC systems

    SciTech Connect (OSTI)

    Anantapantula, V.S. . Alco Controls Div.); Sauer, H.J. Jr. )

    1994-11-01

    This articles examines why a combined heat reclaim/economizer system with priority to heat reclaim operation is most likely to result in the least annual total HVAC energy. PC-based, hour-by-hour simulation programs evaluate annual HVAC energy requirements when using combined operation of heat reclaim and economizer cycle, while giving priority to operation of either one. These simulation programs also enable the design engineer to select the most viable heat reclaim and/or economizer system for any given type of HVAC system serving the building internal load level, building geographical location and other building/system variables.

  7. Btu)","per Building

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Number of Buildings (thousand)","Floorspace (million square feet)","Floorspace per Building (thousand square feet)","Total (trillion Btu)","per Building (million Btu)","per...

  8. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Rhode Island Building Code Standards Committee adopts, promulgates and administers the state building code. Compliance is determined through the building permit and inspection process by local...

  9. 1999 Commercial Buildings Characteristics

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Reports > 2003 Building Characteristics Overview 1999 Commercial Buildings Energy Consumption SurveyCommercial Buildings Characteristics Released: May 2002 Topics: Energy...

  10. Economic benefits of an economizer system: Energy savings and reduced sick leave

    SciTech Connect (OSTI)

    Fisk, William J.; Seppanen, Olli; Faulkner, David; Huang, Joe

    2004-02-01

    This study estimated the health, energy, and economic benefits of an economizer ventilation control system that increases outside air supply during mild weather to save energy. A model of the influence of ventilation rate on airborne transmission of respiratory illnesses was used to extend the limited data relating ventilation rate with illness and sick leave. An energy simulation model calculated ventilation rates and energy use versus time for an office building in Washington, D.C. with fixed minimum outdoor air supply rates, with and without an economizer. Sick leave rates were estimated with the disease transmission model. In the modeled 72-person office building, our analyses indicate that the economizer reduces energy costs by approximately $2000 and, in addition, reduces sick leave. The annual financial benefit of the decrease in sick leave is estimated to be between $6,000 and $16,000. This modeling suggests that economizers are much more cost effective than currently recognized.

  11. Building America Building Science Translator

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Science Translator February 2015 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affliated partners, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use

  12. Technical Area 21

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Area 21 Technical Area 21 Technical Area 21 was the site of chemical research for refining plutonium and plutonium metal production from 1945 to 1978. August 1, 2013 Technical Area 21 in 2011 Technical Area 21 in 2011 Technical Area 21 (TA-21), also known as DP Site was the site of chemical research for refining plutonium and plutonium metal production from 1945 to 1978. Between 2008 and 2011, MDAs B, U, and V were excavated and removed. 24 buildings were demolished in 2010 and 2011

  13. Metal Buildings - 2014 BTO Peer Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal Buildings - 2014 BTO Peer Review Metal Buildings - 2014 BTO Peer Review Presenter: Heather Buckberry, Oak Ridge National Laboratory This project aims to increase energy efficiency in metal buildings through research into areas specifically targeted by metal building industry leaders. In collaboration with the Metal Building Manufacturer Association (MBMA) (the principal technical resource for the metal building industry), the project addresses infiltration issues that can reduce heating,

  14. Office Buildings - Types of Office Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    administration building Insurance company headquarters building Local insurance agency Social services office Attorney's office Real estate sales office Government office State...

  15. 1999 Commercial Buildings Characteristics--Building Size

    U.S. Energy Information Administration (EIA) Indexed Site

    (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey Top Return to: "1999 CBECS-Commercial Buildings Characteristics" Specific questions...

  16. Buildings Interoperability Planning: Connected Buildings Interoperabil...

    Broader source: Energy.gov (indexed) [DOE]

    Vision Context Steve Widergren PNNL 11 March 2015 Topics Purpose of meeting Buildings automation in the transformative time of connectivity Interoperability - a connected buildings...

  17. Building Technologies Program: Building America Publications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and existing homes provided by the Building America Program.You may also visit the new Solution Center to find expert building science and energy efficiency resources. RSS...

  18. Buildings of the Future Scoping Study: A Framework for Vision Development

    SciTech Connect (OSTI)

    Wang, Na; Goins, John D.

    2015-02-01

    The Buildings of the Future Scoping Study, funded by the U.S. Department of Energy (DOE) Building Technologies Office, seeks to develop a vision for what U.S. mainstream commercial and residential buildings could become in 100 years. This effort is not intended to predict the future or develop a specific building design solution. Rather, it will explore future building attributes and offer possible pathways of future development. Whether we achieve a more sustainable built environment depends not just on technologies themselves, but on how effectively we envision the future and integrate these technologies in a balanced way that generates economic, social, and environmental value. A clear, compelling vision of future buildings will attract the right strategies, inspire innovation, and motivate action. This project will create a cross-disciplinary forum of thought leaders to share their views. The collective views will be integrated into a future building vision and published in September 2015. This report presents a research framework for the vision development effort based on a literature survey and gap analysis. This document has four objectives. First, it defines the project scope. Next, it identifies gaps in the existing visions and goals for buildings and discusses the possible reasons why some visions did not work out as hoped. Third, it proposes a framework to address those gaps in the vision development. Finally, it presents a plan for a series of panel discussions and interviews to explore a vision that mitigates problems with past building paradigms while addressing key areas that will affect buildings going forward.

  19. 1999 Commercial Building Characteristics--Building Activity Comparison

    U.S. Energy Information Administration (EIA) Indexed Site

    Building Activity Comparison Percentage of Floorspace and Buildings by Principal Building Activity, 1999 Percentage of Floorspace and Buildings by Principal Building Activity,...

  20. BSC: Building America, Building Science Consortium - 2015 Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review BSC: Building America, Building Science Consortium - 2015 Peer Review Presenter: Joe Lstiburek, Building Science Corp. View the Presentation BSC: Building America, Building...

  1. Buildings*","Lit Buildings","Lighting Equipment Types

    U.S. Energy Information Administration (EIA) Indexed Site

    Lighting Equipment, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Lit Buildings","Lighting Equipment Types (more than one ...

  2. A Technical and Economic Analysis of an Innovative Two-Step Absorption

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System for Utilizing Low-Temperature Geothermal Resources to Condition Commercial Buildings | Department of Energy A Technical and Economic Analysis of an Innovative Two-Step Absorption System for Utilizing Low-Temperature Geothermal Resources to Condition Commercial Buildings A Technical and Economic Analysis of an Innovative Two-Step Absorption System for Utilizing Low-Temperature Geothermal Resources to Condition Commercial Buildings PDF icon A Technical and Economic Analysis of an

  3. The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (Japanese translation)

    SciTech Connect (OSTI)

    Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

    2004-10-15

    The August 2003 blackout of the northeastern U.S. and CANADA caused great economic losses and inconvenience to New York City and other affected areas. The blackout was a warning to the rest of the world that the ability of conventional power systems to meet growing electricity demand is questionable. Failure of large power systems can lead to serious emergencies. Introduction of on-site generation, renewable energy such as solar and wind power and the effective utilization of exhaust heat is needed, to meet the growing energy demands of the residential and commercial sectors. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems. This work demonstrates a method for choosing and designing economically optimal DER systems. An additional purpose of this research is to establish a database of energy tariffs, DER technology cost and performance characteristics, and building energy consumption for Japan. This research builds on prior DER studies at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) and with their associates in the Consortium for Electric Reliability Technology Solutions (CERTS) and operation, including the development of the microgrid concept, and the DER selection optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a test period, usually an historic year. Since hourly electric and thermal energy data are rarely available, they are typically developed by building simulation for each of six end use loads used to model the building: electric-only loads, space heating, space cooling, refrigeration, water heating, and natural-gas-only loads. DER-CAM provides a global optimization, albeit idealized, that shows how the necessary useful energy loads can be provided for at minimum cost by selection and operation of on-site generation, heat recovery, cooling, and efficiency improvements. This study examines five prototype commercial buildings and uses DER-CAM to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Each building type was considered for both 5,000 and 10,000 square meter floor sizes. The energy consumption of these building types is based on building energy simulation and published literature. Based on the optimization results, energy conservation and the emissions reduction were also evaluated. Furthermore, a comparison study between Japan and the U.S. has been conducted covering the policy, technology and the utility tariffs effects on DER systems installations.

  4. A Minority Serving Institution Leads the Way in Better Buildings |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy A Minority Serving Institution Leads the Way in Better Buildings A Minority Serving Institution Leads the Way in Better Buildings July 5, 2012 - 6:06pm Addthis Secretary Chu visits Delaware State University to commemorate the school's efforts with the Better Buildings Initiative. Secretary Chu visits Delaware State University to commemorate the school's efforts with the Better Buildings Initiative. Dot Harris Dot Harris Director, Office of Economic Impact and Diversity

  5. Arctic Economics Model

    Energy Science and Technology Software Center (OSTI)

    1995-03-01

    AEM (Arctic Economics Model) for oil and gas was developed to provide an analytic framework for understanding the arctic area resources. It provides the capacity for integrating the resource and technology information gathered by the arctic research and development (R&D) program, measuring the benefits of alternaive R&D programs, and providing updated estimates of the future oil and gas potential from arctic areas. AEM enables the user to examine field or basin-level oil and gas recovery,more » costs, and economics. It provides a standard set of selected basin-specified input values or allows the user to input their own values. AEM consists of five integrated submodels: geologic/resource submodel, which distributes the arctic resource into 15 master regions, consisting of nine arctic offshore regions, three arctic onshore regions, and three souhtern Alaska (non-arctic) regions; technology submodel, which selects the most appropriate exploration and production structure (platform) for each arctic basin and water depth; oil and gas production submodel, which contains the relationship of per well recovery as a function of field size, production decline curves, and production decline curves by product; engineering costing and field development submodel, which develops the capital and operating costs associated with arctic oil and gas development; and the economics submodel, which captures the engineering costs and development timing and links these to oil and gas prices, corporate taxes and tax credits, depreciation, and timing of investment. AEM provides measures of producible oil and gas, costs, and ecomonic viability under alternative technology or financial conditions.« less

  6. Buildings | Open Energy Information

    Open Energy Info (EERE)

    influence a building, including incentives, utilities, weather, climate, and locationground temperature. Municipalities and Renewable Energy Opportunities Building...

  7. Building Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roland Risser Director, Building Technologies Office Building Technologies Office Overview Our Homes and Buildings Use 40% of Our Nation's Energy and 75% of Electricity Energy Use Electricity Use Residential Transportation 21 quads 27 quads Commercial 18 quads Industrial 31 quads U.S. Energy Bill for Buildings: $410 billion per year 2 Building Technologies Office (BTO) Ecosystem Emerging Technologies Building Codes Appliance Standards Residential Buildings Integration Commercial Buildings

  8. Building Envelope Stakeholder Workshop

    Broader source: Energy.gov [DOE]

    Oak Ridge National Laboratory is hosting a building envelope stakeholder workshop on behalf of the DOE Building Technologies Office.

  9. Building America Building Science Education Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Science Education Roadmap April 2013 Contents Introduction ................................................................................................................................ 3 Background ................................................................................................................................. 4 Summit Participants .................................................................................................................... 5 Key Results

  10. Commercial Buildings Energy Consumption Survey - Office Buildings

    Reports and Publications (EIA)

    2010-01-01

    Provides an in-depth look at this building type as reported in the 2003 Commercial Buildings Energy Consumption Survey. Office buildings are the most common type of commercial building and they consumed more than 17% of all energy in the commercial buildings sector in 2003. This special report provides characteristics and energy consumption data by type of office building (e.g. administrative office, government office, medical office) and information on some of the types of equipment found in office buildings: heating and cooling equipment, computers, servers, printers, and photocopiers.

  11. Energy use in office buildings

    SciTech Connect (OSTI)

    1980-10-01

    This is the report on Task IB, Familiarization with Additional Data Collection Plans of Annual Survey of BOMA Member and Non-Member Buildings in 20 Cities, of the Energy Use in Office Buildings project. The purpose of the work was to monitor and understand the efforts of the Building Owners and Managers Association International (BOMA) in gathering an energy-use-oriented data base. In order to obtain an improved data base encompassing a broad spectrum of office space and with information suitable for energy analysis in greater detail than is currently available, BOMA undertook a major data-collection effort. Based on a consideration of geographic area, climate, population, and availability of data, BOMA selected twenty cities for data collection. BOMA listed all of the major office space - buildings in excess of 40,000 square feet - in each of the cities. Tax-assessment records, local maps, Chamber of Commerce data, recent industrial-development programs, results of related studies, and local-realtor input were used in an effort to assemble a comprehensive office-building inventory. In order to verify the accuracy and completeness of the building lists, BOMA assembled an Ad-Hoc Review Committee in each city to review the assembled inventory of space. A questionnaire on office-building energy use and building characteristics was developed. In each city BOMA assembled a data collection team operating under the supervision of its regional affiliate to gather the data. For each city a random sample of buildings was selected, and data were gathered. Responses for over 1000 buildings were obtained.

  12. EECBG Success Story: New Bedford Builds Foundation for Energy-Centric

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Economic Development | Department of Energy New Bedford Builds Foundation for Energy-Centric Economic Development EECBG Success Story: New Bedford Builds Foundation for Energy-Centric Economic Development August 25, 2014 - 2:51pm Addthis Pictured here is one of the solar arrays that is providing New Bedford with clean, renewable energy to power its municipally owned buildings. This ground-mounted solar array is built on a brownfield site. | Photo courtesy of Con Edison Solutions. Pictured

  13. Hungary-Employment Impacts of a Large-Scale Deep Building Retrofit...

    Open Energy Info (EERE)

    AgencyCompany Organization European Climate Foundation Sector Energy Focus Area Energy Efficiency, Buildings, - Building Energy Efficiency Topics Co-benefits assessment,...

  14. Building Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roland Risser Director, Building Technologies Office Building Technologies Office Energy Efficiency Starts Here. 2 Building Technologies Office Integrated Approach: Improving Building Performance Research & Development Developing High Impact Technologies Standards & Codes Locking in the Savings Market Stimulation Accelerating Tech-to- Market 3 Building Technologies Office Goal: Reduce building energy use by 50% (compared to a 2010 baseline) 4 Building Technologies Office Working to

  15. Building America

    SciTech Connect (OSTI)

    Brad Oberg

    2010-12-31

    Builders generally use a 'spec and purchase' business management system (BMS) when implementing energy efficiency. A BMS is the overall operational and organizational systems and strategies that a builder uses to set up and run its company. This type of BMS treats building performance as a simple technology swap (e.g. a tank water heater to a tankless water heater) and typically compartmentalizes energy efficiency within one or two groups in the organization (e.g. purchasing and construction). While certain tools, such as details, checklists, and scopes of work, can assist builders in managing the quality of the construction of higher performance homes, they do nothing to address the underlying operational strategies and issues related to change management that builders face when they make high performance homes a core part of their mission. To achieve the systems integration necessary for attaining 40% + levels of energy efficiency, while capturing the cost tradeoffs, builders must use a 'systems approach' BMS, rather than a 'spec and purchase' BMS. The following attributes are inherent in a systems approach BMS; they are also generally seen in quality management systems (QMS), such as the National Housing Quality Certification program: Cultural and corporate alignment, Clear intent for quality and performance, Increased collaboration across internal and external teams, Better communication practices and systems, Disciplined approach to quality control, Measurement and verification of performance, Continuous feedback and improvement, and Whole house integrated design and specification.

  16. DOE Announces Webinars on Energy Efficiency Competitions, Better Buildings Workforce Guidelines, and More

    Broader source: Energy.gov [DOE]

    EERE webinars on November 5, 7, and 20 will cover energy efficiency competitions, Better Buildings workforce guidelines, and offshore wind economic impacts.

  17. Berkeley Lab to Help Build Straw Bale Building

    SciTech Connect (OSTI)

    Worsham, S.A.; Van Mechelen, G.

    1998-12-01

    The Shorebird Environmental Learning Center (SELC) is a new straw bale building that will showcase current and future technologies and techniques that will reduce the environmental impacts of building construction and operations. The building will also serve as a living laboratory to test systems and monitor their performance. The project will be the model for a building process that stops using our precious resources and reduces waste pollution. The rice straw that will be used for the bale construction is generally waste material that is typically burned--millions of tons of it a year--especially in California's San Joaquin Valley. Buildings have significant impacts on the overall environment. Building operations, including lighting, heating, and cooling, consume about 30% of the energy used in the United States. Building construction and the processes into making building materials consume an additional 8% of total energy. Construction also accounts for 39% of wood consumed in the U S, while 25% of solid waste volume is construction and demolition (C &D) debris. The SELC will incorporate a variety of materials and techniques that will address these and other issues, while providing a model of environmentally considered design for Bay Area residents and builders. Environmental considerations include energy use in construction and operations, selection of materials, waste minimization, and indoor air quality. We have developed five major environmental goals for this project: (1) Minimize energy use in construction and operations; (2) Employ material sources that are renewable, salvaged, recycled, and/or recyclable; (3) Increase building lifespan with durable materials and designs that permit flexibility and modification with minimal demolition; (4) Reduce and strive to eliminate construction debris; and (5) Avoid products that create toxic pollutants and make a healthy indoor environment.

  18. 2016 Tribal Energy and Economic Development January Webinar: Energy

    Energy Savers [EERE]

    Planning for Tribal Economic Development | Department of Energy January Webinar: Energy Planning for Tribal Economic Development 2016 Tribal Energy and Economic Development January Webinar: Energy Planning for Tribal Economic Development The Office of Indian Energy, in partnership with Western Area Power Administration, hosted a webinar on Energy Planning for Tribal Economic Development on Wednesday, Jan. 27, 2016, about tools and resources available to establish a clean, diverse, and

  19. Building Energy Optimization Analysis Method (BEopt) - Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Read the Top Innovation profile about BEopt. See an example of a Building America project that used BEopt. Find more case studies of Building America projects across the country ...

  20. Voluntary Green Building Standards for Public Buildings

    Broader source: Energy.gov [DOE]

    NOTE: The program described below is a voluntary program that encourages state agencies to consider using green building standard. The State of Alabama does not have mandatory Green Building...

  1. Building America Webinar: Ventilation in Multifamily Buildings

    Broader source: Energy.gov [DOE]

    This webinar was presented by research team Consortium for Advanced Residential Buildings (CARB), and discussed ventilation strategies for multifamily buildings, including how to successfully implement those strategies through smart design, specification, and construction techniques.

  2. Technical Meeting: Buildings Interoperability Vision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Interoperability Vision Technical Meeting: Buildings Interoperability Vision On March 11-12, 2015, BTO held a technical meeting in Seattle to discuss the current landscape of buildings interoperability and hear from technology leaders about Internet of Things (IoT) and next generation buildings automation concepts and challenges. To help frame the vision discussion, BTO assembled experts representing a variety of stakeholder groups in the connected buildings area to discuss the

  3. Integrated Energy Systems (IES) for Buildings: A Market Assessment

    SciTech Connect (OSTI)

    LeMar, P.

    2002-10-29

    Integrated Energy Systems (IES) combine on-site power or distributed generation technologies with thermally activated technologies to provide cooling, heating, humidity control, energy storage and/or other process functions using thermal energy normally wasted in the production of electricity/power. IES produce electricity and byproduct thermal energy onsite, with the potential of converting 80 percent or more of the fuel into useable energy. IES have the potential to offer the nation the benefits of unprecedented energy efficiency gains, consumer choice and energy security. It may also dramatically reduce industrial and commercial building sector carbon and air pollutant emissions and increase source energy efficiency. Applications of distributed energy and Combined heat and power (CHP) in ''Commercial and Institutional Buildings'' have, however, been historically limited due to insufficient use of byproduct thermal energy, particularly during summer months when heating is at a minimum. In recent years, custom engineered systems have evolved incorporating potentially high-value services from Thermally Activated Technologies (TAT) like cooling and humidity control. Such TAT equipment can be integrated into a CHP system to utilize the byproduct heat output effectively to provide absorption cooling or desiccant humidity control for the building during these summer months. IES can therefore expand the potential thermal energy services and thereby extend the conventional CHP market into building sector applications that could not be economically served by CHP alone. Now more than ever, these combined cooling, heating and humidity control systems (IES) can potentially decrease carbon and air pollutant emissions, while improving source energy efficiency in the buildings sector. Even with these improvements over conventional CHP systems, IES face significant technological and economic hurdles. Of crucial importance to the success of IES is the ability to treat the heating, ventilation, air conditioning, water heating, lighting, and power systems loads as parts of an integrated system, serving the majority of these loads either directly or indirectly from the CHP output. The CHP Technology Roadmaps (Buildings and Industry) have focused research and development on a comprehensive integration approach: component integration, equipment integration, packaged and modular system development, system integration with the grid, and system integration with building and process loads. This marked change in technology research and development has led to the creation of a new acronym to better reflect the nature of development in this important area of energy efficiency: Integrated Energy Systems (IES). Throughout this report, the terms ''CHP'' and ''IES'' will sometimes be used interchangeably, with CHP generally reserved for the electricity and heat generating technology subsystem portion of an IES. The focus of this study is to examine the potential for IES in buildings when the system perspective is taken, and the IES is employed as a dynamic system, not just as conventional CHP. This effort is designed to determine market potential by analyzing IES performance on an hour-by-hour basis, examining the full range of building types, their loads and timing, and assessing how these loads can be technically and economically met by IES.

  4. Building America Webinar: Ventilation in Multifamily Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ventilation strategies for multifamily buildings, including how to successfully implement those strategies through smart design, specification, and construction techniques. ...

  5. Research and Development Roadmap: Windows and Building Envelope |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy and Development Roadmap: Windows and Building Envelope Research and Development Roadmap: Windows and Building Envelope Cover of windows and envelope report, depicting a house, storefront, and multiple office windows. This Building Technologies Office (BTO) Research and Development (R&D) Roadmap identifies priority windows and building envelope R&D areas of interest. Cost and performance targets are identified for each key R&D area. The roadmap describes the

  6. Building Science-Based Climate Maps - Building America Top Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Science-Based Climate Maps - Building America Top Innovation Building Science-Based Climate Maps - Building America Top Innovation Photo showing climate zone maps based on ...

  7. Types of Lighting in Commercial Buildings - Building Size and...

    U.S. Energy Information Administration (EIA) Indexed Site

    commercial buildings. Note: Data are for non-mall buildings. Source: Energy Information Administration, 2003 Commercial Buildings Energy Consumption Survey. Office buildings and...

  8. Building America Top Innovations Hall of Fame Profile - Building...

    Energy Savers [EERE]

    Building America Top Innovations Hall of Fame Profile - Building Energy Optimization Analysis Method (BEopt) Building America Top Innovations Hall of Fame Profile - Building Energy...

  9. Buildings","All Buildings with Water Heating","Water-Heating...

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Water-Heating Energy Sources, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Buildings with Water Heating","Water-Heating Energy Sources Used ...

  10. Office Buildings: Consumption Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    and Type of Office Building Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) Dollars per Million Btu All Office Buildings 1,089 1,475 90.5 16.32...

  11. Building Energy Code

    Broader source: Energy.gov [DOE]

    In 2006 Iowa enacted H.F. 2361, requiring the State Building Commissioner to adopt energy conservation requirements based on a nationally recognized building energy code. The State Building Code...

  12. Building Energy Efficiency in Rural China

    SciTech Connect (OSTI)

    Evans, Meredydd; Yu, Sha; Song, Bo; Deng, Qinqin; Liu, Jing; Delgado, Alison

    2014-04-01

    Rural buildings in China now account for more than half of China’s total building energy use. Forty percent of the floorspace in China is in rural villages and towns. Most of these buildings are very energy inefficient, and may struggle to meet basic needs. They are cold in the winter, and often experience indoor air pollution from fuel use. The Chinese government plans to adopt a voluntary building energy code, or design standard, for rural homes. The goal is to build on China’s success with codes in urban areas to improve efficiency and comfort in rural homes. The Chinese government recognizes rural buildings represent a major opportunity for improving national building energy efficiency. The challenges of rural China are also greater than those of urban areas in many ways because of the limited local capacity and low income levels. The Chinese government wants to expand on new programs to subsidize energy efficiency improvements in rural homes to build capacity for larger-scale improvement. This article summarizes the trends and status of rural building energy use in China. It then provides an overview of the new rural building design standard, and describes options and issues to move forward with implementation.

  13. Buildings Performance Database Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview Buildings.energy.gov/BPD BuildingsPerformanceDatabase@ee.doe.gov 2 * The BPD statistically analyzes trends in the energy performance and physical & operational characteristics of real commercial and residential buildings. The Buildings Performance Database 3 Design Principles * The BPD contains actual data on existing buildings - not modeled data or anecdotal evidence. * The BPD enables statistical analysis without revealing information about individual buildings. * The BPD cleanses

  14. Commercial Buildings Integration Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Integration Program Arah Schuur Program Manager arah.schuur@ee.doe.gov April 2, 2013 Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Vision Commercial buildings are constructed, operated, renovated and transacted with energy performance in mind and net zero ready commercial buildings are common and cost-effective. Commercial Buildings Integration Program Mission Accelerate voluntary uptake of significant energy performance improvements

  15. Transforming Commercial Building Operations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transforming Commercial Building Operations Transforming Commercial Building Operations Ron Underhill Pacific Northwest National Laboratory ronald.underhill@pnnl.gov (509)375-9765 April 4, 2013 2 | Building Technologies Office eere.energy.gov * Most buildings are not commissioned (Cx) before occupancy, including HVAC and lighting systems * Buildings often are poorly operated and maintained leading to significant energy waste of 5 to 20%, even when they have building automation systems (BASs) *

  16. Text-Alternative Version of Building America Webinar: Research for Real-World Results

    Broader source: Energy.gov [DOE]

    This webinar, held on Dec. 17, 2014, featured Eric Werling, Building America Program Coordinator, providing an overview of key Building America accomplishments, current research focus areas, and future strategies for advancing market adoption of energy efficient building technologies and practices.

  17. Office Buildings - Full Report

    U.S. Energy Information Administration (EIA) Indexed Site

    administration building Insurance company headquarters building Local insurance agency Social services office Attorney's office Real estate sales office Government office State...

  18. Building Energy Code

    Broader source: Energy.gov [DOE]

    The California Building Standards Commission (BSC) is responsible for administering California's building standards adoption, publication, and implementation. Since 1989, the BSC has published tr...

  19. Model Building Energy Code

    Broader source: Energy.gov [DOE]

    The Energy Efficiency Building Performance Standards (EEBPS) are statewide minimum requirements that all new construction and additions to existing buildings must satisfy. Exceptions include...

  20. Building-Level Intensities

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Electricity Consumption",,,,,,"Electricity Expenditures" ,"per Building (thousand kWh)","per...

  1. Food Sales Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales Characteristics by Activity... Food Sales Food sales buildings are buildings that are used for retail or wholesale sale of food. Basic Characteristics See also: Equipment |...

  2. Buildings","Year Constructed"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... with Cooling ......",58474,2911,4383,7601,9325,11050,12849,10355 "Buildings with Water Heating .",56115,3130,4644,7154,9421,10182,12137,9446 "Buildings with Cooking ...

  3. Office Buildings - Energy Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Office buildings consumed more than 17 percent of the total energy used by the commercial buildings sector (Table 4). At least half of total energy, electricity,...

  4. Buildings | Open Energy Information

    Open Energy Info (EERE)

    work, live, learn, govern, heal, worship, and play in buildings-and they require enormous energy resources. Related Links Buildings Gateway Retrieved from "http:en.openei.orgw...

  5. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Connecticut Office of the State Building Inspector establishes and enforces building, electrical, mechanical, plumbing and energy code requirements by reviewing, developing, adopting and...

  6. Ryerson Building Science

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ryerson Building Science -Zone Residence Project Summary - ZONE is a sustainable approach to infill housing in underutilized urban settings Constrained by buildings to the ...

  7. NREL: Buildings Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    building technologies and innovations that deliver significant energy savings in buildings, and the new facilities further extend those capabilities. In addition, the NREL...

  8. Ventilation in Multifamily Buildings

    Broader source: Energy.gov [DOE]

    This webinar, hosted by Building America,was conducted on November 1, 2011, and describes ways to save energy in buildings through effective ventilation techniques.

  9. Building Energy Code

    Broader source: Energy.gov [DOE]

    Public Act 093-0936 (Illinois Energy Conservation Code for Commercial Buildings) was signed into law in August, 2004. The Illinois Energy Conservation Code for Commercial Buildings became...

  10. Building Technologies Program Vision, Mission, and Goals

    SciTech Connect (OSTI)

    2011-12-15

    The Vision, Mission, and Goals of the Building Technologies Program (BTP) focus on short term energy efficiency outcomes such as improved economic environment, enhanced comfort, and affordability that collectively benefit our nation. Long-term goals focus on helping secure our nation's energy independence.

  11. 1999 CBECS Principal Building Activities

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Reports > 2003 Building Characteristics Overview A Look at Building Activities in the 1999 Commercial Buildings Energy Consumption Survey The Commercial Buildings Energy...

  12. Federal Buildings Supplemental Survey -- Overview

    U.S. Energy Information Administration (EIA) Indexed Site

    Buildings The Federal Buildings Supplemental Survey 1993 provides building-level energy-related characteristics for a special sample of commercial buildings owned by the...

  13. Health Care Buildings: Equipment Table

    U.S. Energy Information Administration (EIA) Indexed Site

    Equipment Table Buildings, Size and Age Data by Equipment Types for Health Care Buildings Number of Buildings (thousand) Percent of Buildings Floorspace (million square feet)...

  14. Economic Impact | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab's Hall A Jefferson Lab generates many economic benefits for the nation and Virginia, providing many well-paying jobs for highly skilled and well-educated workers. A D D I T I O N A L L I N K S: Brochures Fact Sheets JLab Video 12 GeV Construction Economic Impact top-right bottom-left-corner bottom-right-corner economic impact Jefferson Lab generates many economic benefits. For the nation, Jefferson Lab generates $679.1 million in economic output and 4,422 jobs. The economic output

  15. Better Buildings Neighborhood Program: BetterBuildings Lowell Final Report

    SciTech Connect (OSTI)

    Heslin, Thomas

    2014-01-31

    The City of Lowell set four goals at the beginning of the Better Buildings Neighborhood Program: 1. Improve the Downtown Historic Park District’s Carbon Footprint 2. Develop a sustainable and replicable model for energy efficiency in historic buildings 3. Create and retain jobs 4. Promote multi‐stakeholder partnerships The City of Lowell, MA was awarded $5 million in May 2010 to conduct energy efficiency retrofits within the downtown National Historical Park (NHP). The City’s target was to complete retrofits in 200,000 square feet of commercial space and create 280 jobs, while adhering to the strict historical preservation regulations that govern the NHP. The development of a model for energy efficiency in historic buildings was successfully accomplished. BetterBuildings Lowell’s success in energy efficiency in historic buildings was due to the simplicity of the program. We relied strongly on the replacement of antiquated HVAC systems and air sealing and a handful of talented energy auditors and contractors. BetterBuildings Lowell was unique for the Better Buildings Neighborhood Program because it was the only program that focused solely on commercial properties. BetterBuildings Lowell did target multi‐family properties, which were reported as commercial, but the majority of the building types and uses were commercial. Property types targeted were restaurants, office buildings, museums, sections of larger buildings, mixed use buildings, and multifamily buildings. This unique fabric of building type and use allows for a deeper understanding to how different properties use energy. Because of the National Historical Park designation of downtown Lowell, being able to implement energy efficiency projects within a highly regulated historical district also provided valuable research and precedent proving energy efficiency projects can be successfully completed in historical districts and historical buildings. Our program was very successful in working with the local Historic Board, which has jurisdiction in the NHP. The Historic Board was cooperative with any exterior renovations as long as they were not changing the existing aesthetics of the property. If we were replacing a rooftop condenser it needed to be placed where the existing rooftop condenser was located. Receiving proper approval from the Historic Board for any external energy conservation measures was known by all the participating contractors. One area of the retrofits that was contentious regarded venting of the new HVAC equipment. Installing external stacks was not allowed so the contractors had to negotiate with the Historic Board regarding the proper way to vent the equipment that met the needs mechanically and aesthetically. Overall BetterBuildings Lowell was successful at implementing energy and cost saving measures into 31 commercial properties located within the NHP. The 31 retrofits had 1,554,768 square feet of commercial and multifamily housing and a total predicted energy savings exceeding 22,869 a year. Overall the City of Lowell achieved its target goals and is satisfied with the accomplishments of the BetterBuildings program. The City will continue to pursue energy efficient programs and projects.

  16. Indonesia-GTZ Mini-Hydropower Schemes for Sustainable Economic...

    Open Energy Info (EERE)

    "Energy supplies generated by mini-hydropower to selected rural areas in Sulawesi, Java and Sumatra are improved. Local economic cycles triggered by this are able to generate...

  17. Carbon Cycling, Environmental & Rural Economic Impacts from Collecting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review March 24, 2015 Technology Area Review Steve Kelley, NCSU Rick Gustafson, U of WA Elaine Oneil, CORRIM Carbon Cycling, Environmental & Rural Economic Impacts from Collecting ...

  18. Microsoft Word - REPORT Jefferson Lab Economic Impact FY2010...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    these contractors and visitors also spend money in the immediate area for accommodations, food and transportation. The estimation of economic impact is an analytic process that...

  19. Regional Economic Models, Inc. (REMI) Model | Open Energy Information

    Open Energy Info (EERE)

    TOOL Name: REMI AgencyCompany Organization: Regional Economic Models Inc. Sector: Energy Focus Area: Transportation Resource Type: Softwaremodeling tools User Interface:...

  20. Obama Administration Launches $130 Million Building Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effort | Department of Energy 130 Million Building Energy Efficiency Effort Obama Administration Launches $130 Million Building Energy Efficiency Effort February 12, 2010 - 12:00am Addthis Washington, D.C. - The Obama Administration today announced a multi-agency initiative to spur regional economic growth while making buildings more energy efficient. Seven federal agencies today issued a combined Funding Opportunity Announcement of up to $129.7 million over five years to create a regional

  1. Preliminary Energy Savings Impact Evaluation: Better Buildings Neighborhood

    Energy Savers [EERE]

    Program | Department of Energy Energy Savings Impact Evaluation: Better Buildings Neighborhood Program Preliminary Energy Savings Impact Evaluation: Better Buildings Neighborhood Program Preliminary Energy Savings Impact Evaluation: Better Buildings Neighborhood Program, American Recovery and Reinvestment Act of 2009, prepared for the U.S. Department of Energy, November 4, 2013. PDF icon Preliminary Energy Savings Impact Evaluation More Documents & Publications Savings and Economic

  2. Buildings Energy Data Book: 7.2 Federal Tax Incentives

    Buildings Energy Data Book [EERE]

    3 Tax Incentives of the Emergency Economic Stabilization Act of 2008 (1) New Homes --Extends tax credits for efficient new homes to December 31, 2009. Envelope Improvements to Existing Homes --Reinstates 10% tax credit for building shell, HVAC and windows to include installations during 2009. Commercial Buildings --Extends tax deductions for efficiency upgrades in commercial buildings to December 31, 2013. Note(s): Source(s): 1) Tax incentives detailed are extensions to incentives found in the

  3. IAEA Planning and Economic Studies Section (PESS) Capacity Building...

    Open Energy Info (EERE)

    outputs to policy formulation" expert missions, fellowship, supplementary distance-learning, and tele-support expert system PESS Energy Models include: MAED, WASP. ENPEP,...

  4. Better Buildings Neighborhood Program

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy Better Buildings Neighborhood Program: Business Models Guide, October 27, 2011.

  5. Building Energy Tools Software Directory | Open Energy Information

    Open Energy Info (EERE)

    Company Organization: United States Department of Energy Sector: Energy Focus Area: Energy Efficiency, Buildings Phase: Create a Vision, Determine Baseline, Develop Goals...

  6. Sweden Building 05K0005 | Open Energy Information

    Open Energy Info (EERE)

    5 Jump to: navigation, search Start Page General Information Year of construction 1940 Category Office Boundaries One building Ownership Category Private company Total floor area...

  7. Sweden Building 05K0075 | Open Energy Information

    Open Energy Info (EERE)

    5 Jump to: navigation, search Start Page General Information Year of construction 1996 Category Office Boundaries One building Ownership Category Private company Total floor area...

  8. Energy Efficient Buildings Hub

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Henry C. Foley April 3, 2013 Presentation at the U.S. DOE Building Technologies Office Peer Review Meeting Purpose and Objectives * Problem Statement - Building energy efficiency has not increased in recent decades compared to other sectors especially transportation - Building component technologies have become more energy efficient but buildings as a whole have not * Impact of Project - A 20% reduction in commercial building energy use could save the nation four quads of energy annually *

  9. Commercial Buildings Consortium

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Buildings Consortium Sandy Fazeli National Association of State Energy Officials sfazeli@naseo.org; 703-299-8800 ext. 17 April 2, 2013 Supporting Consortium for the U.S. Department of Energy Net-Zero Energy Commercial Buildings Initiative 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Many energy savings opportunities in commercial buildings remain untapped, underserved by the conventional "invest-design-build- operate"

  10. Commercial Buildings Integration (CBI)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 | Energy Efficiency and Renewable Energy eere.energy.gov Arah Schuur Program Manager Commercial Buildings Integration (CBI) April 22, 2014 Commercial Buildings Integration (CBI) 2 Commercial Buildings Integration (CBI) Mission/Vision CBI Mission Accelerate voluntary uptake of significant energy performance improvements in existing and new commercial buildings. CBI Vision: A commercial buildings market where energy performance is a key consideration during construction, operation, renovation,

  11. Better Buildings Residential

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential 2014 Building Technologies Office Peer Review Danielle Sass Byrnett danielle.byrnett@ee.doe.gov U.S. Department of Energy 2 Project Summary: Better Buildings Residential (BBR) Timeline: Start date: FY11 Planned end date: ongoing Key Milestones 1. Better Buildings Neighborhood Program, Fall 2010 2. Home Energy Score, 2011 3. Home Performance with ENERGY STAR to DOE, Oct. 2011 4. Better Buildings Residential Network, April 2013 5. Better Buildings Residential Program Solution Center

  12. Better Buildings Workforce Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BETTER BUILDINGS WORKFORCE ACTIVITIES  Benjamin Goldstein, Better Buildings Workforce Project Manager, U.S. Department of Energy April 24, 2014 Housekeeping and Overview 1) Restroom location 2) Cell phones-silent please 3) Presentation format  15 min presentation; 15 minute Q&A (reviewers first, then audience) 4) Presenters  Phil Coleman, LBNL: Better Buildings Workforce Guidelines (Energy Manager and Federal Facility Manager)  Marta Milan, Waypoint Building: Commercial Buildings

  13. Building Energy Codes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    David Cohan Program Manager Building Energy Codes April 22, 2014 Presentation Outline * Mission * Goals * Program Organization * Strategies/Roles * Near-Term Focus * Measuring Progress/Outcomes/Impacts * Priorities for FY15 and Beyond 2 Building Energy Codes - Mission Support the building energy code and standard development, adoption, implementation and enforcement processes to achieve the maximum practicable improvements in building energy efficiency 3 Building Energy Codes Program - Goals

  14. Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    Current and Past EditionsGlossaryPopular TablesQuery Tools Contact Us Search What Is the Buildings Energy Data Book? The Data Book includes statistics on residential and commercial building energy consumption. Data tables contain statistics related to construction, building technologies, energy consumption, and building characteristics. The Building Technologies Program within the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy developed this resource to provide a

  15. Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    4.1 Federal Buildings Energy Consumption 4.2 Federal Buildings and Facilities Characteristics 4.3 Federal Buildings and Facilities Expenditures 4.4 Legislation Affecting Energy Consumption of Federal Buildings and Facilities 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download

  16. Buildings Energy Data Book

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Type Definition Includes These Sub-Categories from 2003 CBECS Questionnaire Education Buildings used for academic or technical classroom instruction, such as elementary, middle, or high schools, and classroom buildings on college or university campuses. Buildings on education campuses for which the main use is not classroom are included in the category relating to their use. For example, administration buildings are part of "Office", dormitories are "Lodging", and

  17. House Simulation Protocols (Building America Benchmark) - Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    profile for House Simulation Protocols. See an example of this Top Innovation in action. Find more case studies of Building America projects across the country that ...

  18. Building Green in Greensburg: Business Incubator Building

    Broader source: Energy.gov [DOE]

    This poster highlights energy efficiency, renewable energy, and sustainable features of the high-performing SunChips Business Incubator building in Greensburg, Kansas.

  19. Building Green in Greensburg: City Hall Building

    Broader source: Energy.gov [DOE]

    This poster highlights energy efficiency, renewable energy, and sustainable features of the high-performing City Hall building in Greensburg, Kansas.

  20. 1999 Commercial Buildings Characteristics--Principal Building...

    U.S. Energy Information Administration (EIA) Indexed Site

    contact the National Energy Information Center at (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey Differences between the...

  1. NREL: Buildings Research - Challenges in Commercial Buildings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Challenges in Commercial Buildings Whether your focus is new construction or existing facilities, renewable resources or energy efficiency, the National Renewable Energy Laboratory...

  2. Green Building Certification Systems Requirement for New Federal Buildings

    Office of Environmental Management (EM)

    and Major Renovations of Federal Buildings Final Rule | Department of Energy Green Building Certification Systems Requirement for New Federal Buildings and Major Renovations of Federal Buildings Final Rule Green Building Certification Systems Requirement for New Federal Buildings and Major Renovations of Federal Buildings Final Rule Document details the Green Building Certification Systems Requirement for New Federal Buildings and Major Renovations of Federal Buildings' Final Rule for 10 CFR

  3. Building America: Bringing Building Innovations to Market | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy America: Bringing Building Innovations to Market Building America: Bringing Building Innovations to Market Building America Research-to-Market Plan Released Building America Research-to-Market Plan Released Read the plan that will guide Building America's research and development activities over the coming years. Read more New Building America Projects Focus on Building Envelope, Ventilation, and More New Building America Projects Focus on Building Envelope, Ventilation, and More

  4. Changing ventilation rates in U.S. offices: Implications for health, work performance, energy, and associated economics

    SciTech Connect (OSTI)

    Fisk, William; Black, Douglas; Brunner, Gregory

    2011-07-01

    This paper provides quantitative estimates of benefits and costs of providing different amounts of outdoor air ventilation in U.S. offices. For four scenarios that modify ventilation rates, we estimated changes in sick building syndrome (SBS) symptoms, work performance, short-term absence, and building energy consumption. The estimated annual economic benefits were $13 billion from increasing minimum ventilation rates (VRs) from 8 to 10 L/s per person, $38 billion from increasing minimum VRs from 8 to 15 L/s per person, and $33 billion from increasing VRs by adding outdoor air economizers for the 50% of the office floor area that currently lacks economizers. The estimated $0.04 billion in annual energy-related benefits of decreasing minimum VRs from 8 to 6.5 L/s per person are very small compared to the projected annual costs of $12 billion. Benefits of increasing minimum VRs far exceeded energy costs while adding economizers yielded health, performance, and absence benefits with energy savings.

  5. Buildings Energy Data Book: 9.4 High Performance Buildings

    Buildings Energy Data Book [EERE]

    1 Case Study, The Adam Joseph Lewis Center for Environmental Studies, Oberlin College, Oberlin, Ohio (Education) Building Design Floor Area: Floors: 2 Footprint: 3 Classrooms (1) 1 Conference Room 1 Adminstration Office Auditorium, 100 seats 6 Small Offices Atrium Wastewater Treatment Facility Shell Windows Material: Green Tint Triple Pane Argon Fill Insulating Glass Grey Tint Double Pane Argon Fill Insulating Glass Fenestration(square feet) Window Wall (2) window/wall l Atrium, Triple Pane (3)

  6. Buildings Energy Data Book: 9.4 High Performance Buildings

    Buildings Energy Data Book [EERE]

    5 Case Study, The Thermal Test Facility, National Renewable Energy Laboratory, Golden, Colorado (Office/Laboratory) Building Design Floor Area: 10,000 SF Floors(1): 2 Aspect Ratio: 1.75 Offices Laboratories Conference Room Mechanical Level Shell Windows Material U-factor SHGC(2) Viewing Windows: Double Pane, Grey Tint, Low-e 0.42 0.44 Clerestory Windows: Double Pane, Clear, Low-e 0.45 0.65 Window Area(SF) North 38 South(3) 1,134 East 56 West 56 Wall/Roof Material Effective R-Value North Wall

  7. Joseph Vance Building, The

    High Performance Buildings Database

    Seattle, WA In 2006, the Rose Smart Growth Investment Fund acquired the historic Joseph Vance Building with the purpose of transforming it into "the leading green and historic class B" building in the marketplace. The terra cotta Vance Building was constructed in 1929 and has 14 floors - 13 floors of offices over ground-floor retail with a basement for mechanical equipment and storage. In 2009 the U.S. Green Building Council (USGBC) awarded the Vance Building LEED for Existing Buildings (EB) Gold certification.

  8. CMI Course Inventory: Mineral Economics and Business | Critical Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute Mineral Economics and Business Mineral Economics and Business Of the six CMI Team members that are educational institutions, two offer courses in Mineral Economics and Business. These are Colorado School of Mines and Brown University. The following links go to the class list on the CMI page for that school. Colorado School of Mines offers a major in these areas At Brown University, the Institute of Environment and Society offers several courses on economics and policy CMI Education

  9. Kyiv institutional buildings sector energy efficiency program: Technical assessment

    SciTech Connect (OSTI)

    Secrest, T.J.; Freeman, S.L.; Popelka, A.; Shestopal, P.A.; Gagurin, E.V.

    1997-08-01

    The purpose of this assessment is to characterize the economic energy efficiency potential and investment requirements for space heating and hot water provided by district heat in the stock of state and municipal institutional buildings in the city of Kyiv. The assessment involves three activities. The first is a survey of state and municipal institutions to characterize the stock of institutional buildings. The second is to develop an estimate of the cost-effective efficiency potential. The third is to estimate the investment requirements to acquire the efficiency resource. Institutional buildings are defined as nonresidential buildings owned and occupied by state and municipal organizations. General categories of institutional buildings are education, healthcare, and cultural. The characterization activity provides information about the number of buildings, building floorspace, and consumption of space heating and hot water energy provided by the district system.

  10. WINDExchange: Wind Economic Development Resources and Tools

    Wind Powering America (EERE)

    Development Resources and Tools This page lists wind-related economic development resources and tools such as publications, Web resources, and news. Search the WINDExchange Database Choose a Type of Information All News Publications Web Resource Videos Start Search Clear Search Date State Type of Information Program Area Title 11/10/2015 News Tool Econ. Dev. Job and Economic Development Impact (JEDI) Model 10/6/2015 OK Publication Econ. Dev. New Report Outlines Wind Industry Impacts in Oklahoma

  11. BSC: Building America, Building Science Consortium - 2015 Peer Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy BSC: Building America, Building Science Consortium - 2015 Peer Review BSC: Building America, Building Science Consortium - 2015 Peer Review Presenter: Joe Lstiburek, Building Science Corp. View the Presentation PDF icon BSC: Building America, Building Science Consortium - 2015 Peer Review More Documents & Publications Building America Technology Solutions Case Study: Field Testing an Unvented Roof with Asphalt Shingles in a Cold Climate Building America Best

  12. SWAMC Economic Summit

    Broader source: Energy.gov [DOE]

    The 27th Annual Southwest Alaska Economic Summit and Business Meeting is a three-day conference covering energy efficiency planning, information on Alaska programs, and more.

  13. Nexus of Energy Use and Technology in the Buildings Sector

    Gasoline and Diesel Fuel Update (EIA)

    Nexus of Energy Use and Technology in the Buildings Sector EIA Energy Conference July 15, 2014 | Washington, DC Tom Leckey, EIA Director, Office of Energy Consumption and Efficiency Statistics 2. Select segments 1. Select Primary Sampling Units (PSUs) - counties or groups of counties Main St Diagonal Ave 3. Select buildings How is CBECS Conducted? Nexus of Energy Use and and Technology, Buildings July 15, 2014 2 * No comprehensive source of buildings exists * Area frame - Randomly select small,

  14. Economic Values | Open Energy Information

    Open Energy Info (EERE)

    Economic Values Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleEconomicValues&oldid612356...

  15. Building Energy Code

    Broader source: Energy.gov [DOE]

    Missouri does not have a statewide building or energy code for private residential and commercial buildings, and there currently is no state regulatory agency authorized to promulgate, adopt, or...

  16. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Virginia Uniform Statewide Building Code (USBC) is a statewide minimum requirement that local jurisdictions cannot amend. The code is applicable to all new buildings in the commonwealth. The...

  17. Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  18. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Massachusetts Board of Building Regulations and Standards has authority to promulgate the Massachusetts State Building Code (MSBC). The energy provisions in the MSBC were developed by the Boa...

  19. Guam- Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  20. Food Service Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    was a food service building were only asked whether the building was a restaurant, bar, fast food chain, or cafeteria (all the same category) or some other type of food service...

  1. Better Buildings Summit 2015

    Broader source: Energy.gov [DOE]

    The Better Buildings Summit is a national meeting where Better Buildings partners, including AMO’s Better Plants Program partners, and leading organizations can exchange best practices and showcase...

  2. Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more deta...

  3. Buildings interoperability landscape - Draft

    SciTech Connect (OSTI)

    Hardin, Dave B.; Stephan, Eric G.; Wang, Weimin; Corbin, Charles D.; Widergren, Steven E.

    2015-02-01

    Buildings are an integral part of our nation’s energy economy. The advancement in information and communications technology (ICT) has revolutionized energy management in industrial facilities and large commercial buildings. As ICT costs decrease and capabilities increase, buildings automation and energy management features are transforming the small-medium commercial and residential buildings sectors. A vision of a connected world in which equipment and systems within buildings coordinate with each other to efficiently meet their owners’ and occupants’ needs, and where buildings regularly transact business with other buildings and service providers (such as gas and electric service providers) is emerging. However, while the technology to support this collaboration has been demonstrated at various degrees of maturity, the integration frameworks and ecosystems of products that support the ability to easily install, maintain, and evolve building systems and their equipment components are struggling to nurture the fledging business propositions of their proponents.

  4. Building Energy Code

    Broader source: Energy.gov [DOE]

    Note: Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  5. Building Energy Code

    Broader source: Energy.gov [DOE]

    Prior to 1997, South Carolina's local governments adopted and enforced the building codes. In 1997, the law required statewide use of the most up-to-date building codes, which then required the...

  6. Building Energy Code

    Broader source: Energy.gov [DOE]

    The 2012 IECC is in effect for all residential and commercial buildings, Idaho schools, and Idaho jurisdictions that adopt and enforce building codes, unless a local code exists that is more...

  7. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Florida Building Commission (FBC) is directed to adopt, revise, update, and maintain the Florida Building Code in accordance with Chapter 120 of the state statutes. The code is mandatory...

  8. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Board of Building Standards is the primary state agency that protects the public's safety by: adopting rules governing the construction, repair, and rehabilitation of buildings in the state;...

  9. Special Building Renovations

    Broader source: Energy.gov [DOE]

    A number of building types have specific energy uses and needs, and as such the renewable opportunities may be different from a typical office building. This section briefly discusses the following...

  10. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Kentucky Building Code (KBC) is updated every three years on a cycle one year behind the publication year for the International Building Code. Any changes to the code by the state of Kentucky...

  11. 2015 Better Buildings Summit

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy's Better Buildings Summit is a national meeting where leading organizations across key sectors showcase solutions to cut energy intensity in their buildings portfolio...

  12. Building Energy Code

    Broader source: Energy.gov [DOE]

    Note: Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  13. Health Care Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    also tended to be larger than those not on complexes. The average building on a complex was 79.9 thousand square feet, compared to 11.2 thousand square feet for buildings...

  14. Building Awards | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Each building on NREL's South Table Mountain campus is designed to meet the Gold or Platinum standards of the U.S. Green Building Council's Leadership in Energy and Environmental ...

  15. Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  16. Building Design & Construction - Sustainability

    SciTech Connect (OSTI)

    2003-11-01

    Offers a brief history of green building; presents the results of a specially commissioned survey; and analyzes the chief trends, issues, and published research, based on interviews with dozens of experts and participants in green building.

  17. Sustainable Buildings Checklist

    Office of Energy Efficiency and Renewable Energy (EERE)

    Document provides a checklist to evaluate sustainability in existing federal buildings. It provides points to consider during building sustainability assessments and a system for tracking progress made toward each Guiding Principle.

  18. Grid-Responsive Buildings

    Broader source: Energy.gov [DOE]

    The U.S.-India Joint Center for Building Energy Research and Development (CBERD) conducts energy efficiency research and development with a focus on integrating information technology with building controls and physical systems for commercial/high-rise residential units.

  19. 1999 Commercial Buildings Characteristics--Building Shell and...

    U.S. Energy Information Administration (EIA) Indexed Site

    & Practices > Building Shell & Lighting Conservation Features Building Shell and Lighting Conservation Features The 1999 CBECS collected information on two types of building shell...

  20. Better Buildings Neighborhood Initiative Upgrades 100,000 Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings, Saves 730 Million on Energy Bills Better Buildings Neighborhood Initiative Upgrades ... | Photo courtesy of Dan Olson, EI2 Q&A: Better Buildings Neighborhood Program ...

  1. Buildings*","Lit Buildings","Lighting Equipment Types

    U.S. Energy Information Administration (EIA) Indexed Site

    Lighting Equipment, Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Lit Buildings","Lighting Equipment Types (more than one ...

  2. Building America Top Innovations Hall of Fame Profile - Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Top Innovations Propel the Home Building Industry toward Higher Performance Building America Top Innovations Hall of Fame Profile - Building America's Top Innovations Propel the...

  3. Trends in Commercial Buildings--Buildings and Floorspace

    U.S. Energy Information Administration (EIA) Indexed Site

    activity. Number of Commercial Buildings In 1979, the Nonresidential Buildings Energy Consumption Survey estimated that there were 3.8 million commercial buildings in the...

  4. Building America Top Innovations 2013 Profile - Building America...

    Energy Savers [EERE]

    Building America Top Innovations 2013 Profile - Building America Solution Center PNNL set up the framework for the Building America Solution Center, a web tool connecting users to ...

  5. Building America Solution Center - Building America Top Innovation...

    Energy Savers [EERE]

    Building America Solution Center - Building America Top Innovation SCimagemale.jpg The Building America Solution Center is a Web-based tool connecting users to fast, free, and ...

  6. Building Energy Code

    Broader source: Energy.gov [DOE]

    In March 2006, SB 459 was enacted to promote renewable energy and update the state's building energy codes.

  7. High Performance Sustainable Buildings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Buildings Goal 3: High Performance Sustainable Buildings Maintaining the conditions of a building improves the health of not only the surrounding ecosystems, but also the well-being of its occupants. Energy Conservation» Efficient Water Use & Management» High Performance Sustainable Buildings» Greening Transportation» Green Purchasing & Green Technology» Pollution Prevention» Science Serving Sustainability» ENVIRONMENTAL SUSTAINABILITY GOALS at LANL The Radiological Laboratory

  8. Residential Buildings Integration (RBI)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Energy Efficiency and Renewable Energy eere.energy.gov David Lee Program Manager Residential Buildings Integration (RBI) April 22, 2014 Residential Buildings Integration (RBI) Mission/Vision The Residential Buildings Integration (RBI) program's mission: To accelerate energy performance improvements in residential buildings by developing, demonstrating, and deploying a suite of cost-effective technologies, tools, and solutions to achieve peak performance in new and existing homes. RBI Vision,

  9. Better Buildings Neighborhood Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BTO Program Peer Review Analysis Leading to Lessons Learned Better Buildings Neighborhood Program Danielle Sass Byrnett, DOE Dave Roberts, NREL david.roberts@nrel.gov 303.384.7496 April 3, 2013 Better Buildings Neighborhood Program Analysis Leading to Lessons Learned 2 | Building Technologies Office eere.energy.gov Purpose & Objectives - Program Problem Statement: Buildings consume 40% of energy in the United States and are responsible for nearly 40% of the country's greenhouse gas

  10. Building Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office Roland Risser Director, Building Technologies Office National Energy Consumption 40% 60% Reducing consumption or improving performance calls for cutting-edge energy-efficient solutions Aiming High for 2030 Double U.S. energy productivity Lower building energy use by 50% Annual energy use by 20 quads 1 billion metric tons CO 2 $200 billion for America's homes and buildings Delivering Energy-Efficient Solutions Co Emerging Technologies High-impact building technologies ~Five

  11. Kiowa County Commons Building

    Broader source: Energy.gov [DOE]

    This poster describes the energy efficiency features and sustainable materials used in the Kiowa County Commons Building in Greensburg, Kansas.

  12. Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    1.1 Buildings Sector Energy Consumption 1.2 Building Sector Expenditures 1.3 Value of Construction and Research 1.4 Environmental Data 1.5 Generic Fuel Quad and Comparison 1.6 Embodied Energy of Building Assemblies 2The Residential Sector 3Commercial Sector 4Federal Sector 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy

  13. Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    The Energy Index for Commercial Buildings Welcome to the Energy Index for Commercial Buildings. Data for this tool comes from the Energy Information Administration's (EIA) 2003 Commercial Buildings Energy Consumption Survey (CBECS). Select categories from the CBECS micro data allow users to search on common building characteristics that impact energy use. Users may select multiple criteria, however if the resulting sample size is too small, the data will be unreliable. If nothing is selected

  14. Buildings Energy Databook

    Buildings Energy Data Book [EERE]

    2 BUILDINGS ENERGY DATABOOK U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY DOE's Office of Energy Efficiency and Renewable Energy Buildings Energy Databook The United States Department of Energy's Office of Energy Efficiency and Renewable Energy has developed this Buildings Energy Databook to provide a current and accurate set of comprehensive buildings-related data and to promote the use of such data for consistency throughout DOE programs. The Databook is considered

  15. Emerging Energy-Efficient Technologies in Buildings Technology Characterizations for Energy Modeling

    SciTech Connect (OSTI)

    Hadley, SW

    2004-10-11

    The energy use in America's commercial and residential building sectors is large and growing. Over 38 quadrillion Btus (Quads) of primary energy were consumed in 2002, representing 39% of total U.S. energy consumption. While the energy use in buildings is expected to grow to 52 Quads by 2025, a large number of energy-related technologies exist that could curtail this increase. In recent years, improvements in such items as high efficiency refrigerators, compact fluorescent lights, high-SEER air conditioners, and improved building shells have all contributed to reducing energy use. Hundreds of other technology improvements have and will continue to improve the energy use in buildings. While many technologies are well understood and are gradually penetrating the market, more advanced technologies will be introduced in the future. The pace and extent of these advances can be improved through state and federal R&D. This report focuses on the long-term potential for energy-efficiency improvement in buildings. Five promising technologies have been selected for description to give an idea of the wide range of possibilities. They address the major areas of energy use in buildings: space conditioning (33% of building use), water heating (9%), and lighting (16%). Besides describing energy-using technologies (solid-state lighting and geothermal heat pumps), the report also discusses energy-saving building shell improvements (smart roofs) and the integration of multiple energy service technologies (CHP packaged systems and triple function heat pumps) to create synergistic savings. Finally, information technologies that can improve the efficiency of building operations are discussed. The report demonstrates that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The five technology areas alone can potentially result in total primary energy savings of between 2 and 4.2 Quads by 2025, or 3.8% to 8.1% of the total commercial and residential energy use by 2025 (52 Quads). Many other technologies will contribute to additional potential for energy-efficiency improvement, while the technical potential of these five technologies on the long term is even larger.

  16. Building Energy Codes Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program U.S. Department of Energy Building Technologies Office Jeremy Williams, Project Manager Building Technologies Peer Review April 2014 Presentation Overview: * Introduction * Statutory Requirements * Program Structure * Recent accomplishments 2 Introduction: Background NATIONAL STATE LOCAL Building codes are developed through national industry consensus processes with input from industry representatives, trade organizations, government officials, and the general public Model energy codes

  17. BUILDING MATERIALS RECLAMATION PROGRAM

    SciTech Connect (OSTI)

    David C. Weggel; Shen-En Chen; Helene Hilger; Fabien Besnard; Tara Cavalline; Brett Tempest; Adam Alvey; Madeleine Grimmer; Rebecca Turner

    2010-08-31

    This report describes work conducted on the Building Materials Reclamation Program for the period of September 2008 to August 2010. The goals of the project included selecting materials from the local construction and demolition (C&D) waste stream and developing economically viable reprocessing, reuse or recycling schemes to divert them from landfill storage. Educational resources as well as conceptual designs and engineering feasibility demonstrations were provided for various aspects of the work. The project was divided into two distinct phases: Research and Engineering Feasibility and Dissemination. In the Research Phase, a literature review was initiated and data collection commenced, an advisory panel was organized, and research was conducted to evaluate high volume C&D materials for nontraditional use; five materials were selected for more detailed investigations. In the Engineering Feasibility and Dissemination Phase, a conceptual study for a regional (Mecklenburg and surrounding counties) collection and sorting facility was performed, an engineering feasibility project to demonstrate the viability of recycling or reuse schemes was created, the literature review was extended and completed, and pedagogical materials were developed. Over the two-year duration of the project, all of the tasks and subtasks outlined in the original project proposal have been completed. The Final Progress Report, which briefly describes actual project accomplishments versus the tasks/subtasks of the original project proposal, is included in Appendix A of this report. This report describes the scientific/technical aspects (hypotheses, research/testing, and findings) of six subprojects that investigated five common C&D materials. Table 1 summarizes the six subprojects, including the C&D material studied and the graduate student and the faculty advisor on each subproject.

  18. Federal Buildings Supplemental Survey 1993

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Energy Conservation Features in FBSS Building in Federal Region 3, Number of Buildings and Floorspace, 1993 Total Floorspace Number of Buildings (thousand square feet) Any Any...

  19. Principal Building Activities--1995 CBECS

    U.S. Energy Information Administration (EIA) Indexed Site

    Detailed Tables > Principal Building Activities Table Number of Buildings, Total Floorspace, and Total Site and Primary Energy Consumption for All Principal Building Activities,...

  20. Ad Building demolition, recycling completed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ad Building demolition, recycling completed Ad Building demolition, recycling completed Demolition of the Administration Building helps Los Alamos meet an NNSA directive to reduce...

  1. Sandia Energy - Building a Microgrid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building a Microgrid Home Infrastructure Security Energy Surety Partnership News Customers & Partners Energy Assurance Microgrid Building a Microgrid Previous Next Building a...

  2. Buildings | OpenEI Community

    Open Energy Info (EERE)

    Buildings > Posts by term Content Group Activity By term Q & A Feeds ancient building system (1) architect (1) biomimicry (1) building technology (1) cooling (1) cu (1) daylight...

  3. Metal Buildings M&V

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Atlas Bolt & Screw Behlen Manufacturing Butler Manufacturing Building Research Systems Kirby Building Systems DOW Lamtec Schulte Building Systems Participants: Bigbee Steel Chief ...

  4. Honest Buildings | Open Energy Information

    Open Energy Info (EERE)

    Website: www.honestbuildings.com Web Application Link: www.honestbuildings.com Cost: Free Honest Buildings Screenshot References: Honest Buildings1 Logo: Honest Buildings...

  5. Health Care Buildings: Subcategories Table

    U.S. Energy Information Administration (EIA) Indexed Site

    Subcategories Table Selected Data by Type of Health Care Building Number of Buildings (thousand) Percent of Buildings Floorspace (million square feet) Percent of Floorspace Square...

  6. Wind Economic Development (Postcard)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    The U.S. Department of Energy's Wind Powering America initiative provides information on the economic development benefits of wind energy. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to the economic development benefits section on the Wind Powering America website.

  7. Buildings*","Buildings Using Any Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil","District Heat","District Chilled Water","Propane","Other a " "All Buildings* ...7,67,25,4,67,25,"Q","Q" "District Chilled Water ......",33,33,33,17,3,25,33,"Q","Q" ...

  8. Buildings*","Buildings Using Any Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil","District Heat","District Chilled Water","Propane","Other a " "All Buildings* ...,1731,5443,2311,"Q","Q" "District Chilled Water ......",2853,2853,2853,1765,986,2311,2853...

  9. Better Buildings Webinar: Better Buildings Alliance - Annual...

    Broader source: Energy.gov (indexed) [DOE]

    5 2:00PM to 3:00PM EDT Online The Better Buildings Alliance is hosting a webinar on new energy efficiency resources and upcoming opportunities available this year through DOE's...

  10. Passive solar buildings

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1992-10-01

    Developments in passive solar buildings that took place from the early 1970`s through 1989 are described. Much of the work covered was federally sponsored during the period 1975 through 1986. About half the volume is devoted to quantitative methods for modeling, simulation, and design analysis of passive buildings; the other half summarizes the quantitative results of testing and monitoring of models and buildings. The following are covered: building solar gain modeling, simulation analysis, simplified methods, materials and components, analytical results for specific systems, test modules, building integration, performance monitoring and results, and design tools. (MHR)

  11. Passive solar buildings

    SciTech Connect (OSTI)

    Balcomb, J.D. )

    1992-01-01

    Developments in passive solar buildings that took place from the early 1970's through 1989 are described. Much of the work covered was federally sponsored during the period 1975 through 1986. About half the volume is devoted to quantitative methods for modeling, simulation, and design analysis of passive buildings; the other half summarizes the quantitative results of testing and monitoring of models and buildings. The following are covered: building solar gain modeling, simulation analysis, simplified methods, materials and components, analytical results for specific systems, test modules, building integration, performance monitoring and results, and design tools. (MHR)

  12. Can Behavioral Economics Teach Us Anything Useful About Work, Management,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retirement Investing, Or Life? | Argonne Leadership Computing Facility Can Behavioral Economics Teach Us Anything Useful About Work, Management, Retirement Investing, Or Life? Event Sponsor: Argonne Leadership Computing Facility Seminar Start Date: Feb 17 2016 - 12:00pm Building/Room: Building 240/Room 4301 Location: Argonne National Laboratory Speaker(s): Ira Goldberg Speaker(s) Title: Argonne National Laboratory, LCF The goal of this talk is to introduce a few concepts from behavioral

  13. NREL: Buildings Research - Commercial Buildings Research Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercial Buildings Research Staff Members of the Commercial Buildings research staff have backgrounds in architectural, civil, electrical, environmental, and mechanical engineering, as well as computer science, physics, and chemistry. Brian Ball Kyle Benne Willy Bernal Eric Bonnema Larry Brackney Michael Deru Kristin Field-Macumber Katherine Fleming Stephen Frank Luigi Gentile Polese David Goldwasser Rob Guglielmetti Gregor Henze Adam Hirsch Eric Kozubal Feitau Kung Rois Langner Edwin Lee

  14. NREL: Buildings Research - Residential Buildings Research Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Residential Buildings Research Staff Members of the Residential Buildings research staff have backgrounds in architectural, civil, electrical, environmental, and mechanical engineering, as well as environmental design and physics. Kyri Baker Chuck Booten Craig Christensen Dane Christensen Lieko Earle Mike Heaney Scott Horowitz Xin Jin Jeff Maguire Noel Merket Tim Merrigan Lucas Phillips Ben Polly David Roberts Joseph Robertson Stacey Rothgeb Bethany Sparn Eric Wilson Jon Winkler Jason Woods

  15. Operations building | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations building Operations building Chemical recycling columns in an operations building

  16. Archive Reference Buildings by Building Type: Fast food

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

  17. Archive Reference Buildings by Building Type: Strip mall

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

  18. Archive Reference Buildings by Building Type: Stand-alone retail

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

  19. Archive Reference Buildings by Building Type: Secondary school

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

  20. Archive Reference Buildings by Building Type: Primary school

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

  1. CNG and Fleets: Building Your Business Case

    SciTech Connect (OSTI)

    2015-09-01

    Two online resources help fleets evaluate the economic soundness of a compressed natural gas program. The National Renewable Energy Laboratory's (NREL's) Vehicle Infrastructure and Cash-Flow Evaluation (VICE 2.0) model and the accompanying report, Building a Business Case for Compressed Natural Gas in Fleet Applications, are uniquely designed for fleet managers considering an investment in CNG and can help ensure wise investment decisions about CNG vehicles and infrastructure.

  2. Commercial Building Partnerships Replication and Diffusion

    SciTech Connect (OSTI)

    Antonopoulos, Chrissi A.; Dillon, Heather E.; Baechler, Michael C.

    2013-09-16

    This study presents findings from survey and interview data investigating replication efforts of Commercial Building Partnership (CBP) partners that worked directly with the Pacific Northwest National Laboratory (PNNL). PNNL partnered directly with 12 organizations on new and retrofit construction projects, which represented approximately 28 percent of the entire U.S. Department of Energy (DOE) CBP program. Through a feedback survey mechanism, along with personal interviews, PNNL gathered quantitative and qualitative data relating to replication efforts by each organization. These data were analyzed to provide insight into two primary research areas: 1) CBP partners’ replication efforts of technologies and approaches used in the CBP project to the rest of the organization’s building portfolio (including replication verification), and, 2) the market potential for technology diffusion into the total U.S. commercial building stock, as a direct result of the CBP program. The first area of this research focused specifically on replication efforts underway or planned by each CBP program participant. Factors that impact replication include motivation, organizational structure and objectives firms have for implementation of energy efficient technologies. Comparing these factors between different CBP partners revealed patterns in motivation for constructing energy efficient buildings, along with better insight into market trends for green building practices. The second area of this research develops a diffusion of innovations model to analyze potential broad market impacts of the CBP program on the commercial building industry in the United States.

  3. Sault Tribe Building Efficiency Energy Audits

    SciTech Connect (OSTI)

    Holt, Jeffrey W.

    2013-09-26

    The Sault Ste. Marie Tribe of Chippewa Indians is working to reduce energy consumption and expense in Tribally-owned governmental buildings. The Sault Ste. Marie Tribe of Chippewa Indians will conduct energy audits of nine Tribally-owned governmental buildings in three counties in the Upper Peninsula of Michigan to provide a basis for evaluating and selecting the technical and economic viability of energy efficiency improvement options. The Sault Ste. Marie Tribe of Chippewa Indians will follow established Tribal procurement policies and procedures to secure the services of a qualified provider to conduct energy audits of nine designated buildings. The contracted provider will be required to provide a progress schedule to the Tribe prior to commencing the project and submit an updated schedule with their monthly billings. Findings and analysis reports will be required for buildings as completed, and a complete Energy Audit Summary Report will be required to be submitted with the provider?s final billing. Conducting energy audits of the nine governmental buildings will disclose building inefficiencies to prioritize and address, resulting in reduced energy consumption and expense. These savings will allow Tribal resources to be reallocated to direct services, which will benefit Tribal members and families.

  4. Balancing Hydronic Systems in Multifamily Buildings

    SciTech Connect (OSTI)

    Ruch, Russell; Ludwig, Peter; Maurer, Tessa

    2014-07-01

    In multifamily hydronic systems, temperature imbalance may be caused by undersized piping, improperly adjusted balancing valves, inefficient water temperature and flow levels, and owner/occupant interaction with the boilers, distribution, and controls. The imbalance leads to tenant discomfort, higher energy use intensity, and inefficient building operation. This research, conducted by Building America team Partnership for Advanced Residential Retrofit, explores cost-effective distribution upgrades and balancing measures in multifamily hydronic systems, providing a resource to contractors, auditors, and building owners on best practices to improve tenant comfort and lower operating costs. The team surveyed existing knowledge on cost-effective retrofits for optimizing distribution in typical multifamily hydronic systems, with the aim of identifying common situations and solutions, and then conducted case studies on two Chicago area buildings with known balancing issues in order to quantify the extent of temperature imbalance. At one of these buildings a booster pump was installed on a loop to an underheated wing of the building. This study found that unit temperature in a multifamily hydronic building can vary as much as 61°F, particularly if windows are opened or tenants use intermittent supplemental heating sources like oven ranges. Average temperature spread at the building as a result of this retrofit decreased from 22.1°F to 15.5°F.

  5. Economic Development Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Economic Development Office Is your technology business looking for a door to the Laboratory? The Economic Development Office at PNNL is here to help you start, grow, or relocate your business. We help you tap into technology experts, facilities, and other resources available at the Laboratory...some at no cost to you. We've helped more than 400 companies in our region and 100 more nationwide. Our goals: to expand the economy's technology sector and create high-value jobs. Economic Development

  6. Building Your Message Map Worksheet

    Broader source: Energy.gov [DOE]

    Building Your Message Map Worksheet, as posted on the U.S. Department of Energy's Better Buildings Neighborhood Program website.

  7. buildings technology | OpenEI Community

    Open Energy Info (EERE)

    technology Home Buildings Description: This group is dedicated to discussions about green buildings, energy use in buildings, occupant comfort in buildings, and building...

  8. building reviews | OpenEI Community

    Open Energy Info (EERE)

    reviews Home Buildings Description: This group is dedicated to discussions about green buildings, energy use in buildings, occupant comfort in buildings, and building...

  9. Labor Relations Building | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Labor Relations Building Labor Relations Building

  10. Commercial Building Demonstration and Deployment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Building Demonstration and Deployment 2014 Building Technologies Office Peer Review Kristen Taddonio US Department of Energy Commercial Buildings Integration (CBI) Program Vision Commercial buildings are constructed, operated, renovated and transacted with energy performance in mind and net zero ready commercial buildings are common and cost-effective. Mission Accelerate voluntary uptake of significant energy performance improvements in existing and new commercial buildings by

  11. SWAMC Economic Summit

    Broader source: Energy.gov [DOE]

    Hosted by the Southwest Alaska Municipal Conference (SWAMC), the 27th Annual Southwest Alaska Economic Summit and Business Meeting is a three-day conference covering energy efficiency planning,...

  12. Renewable Energy Economic Potential

    Broader source: Energy.gov [DOE]

    The report describes a geospatial analysis method to estimate the economic potential of several renewable resources available for electricity generation in the United States. Economic potential, one measure of renewable generation potential, is defined in this report as the subset of the available resource technical potential where the cost required to generate the electricity (which determines the minimum revenue requirements for development of the resource) is below the revenue available in terms of displaced energy and displaced capacity.

  13. Conflict Between Economic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conflict Between Economic Growth and Environmental Protection Dr. Brian Czech Advancement - Steady State Economy Monday, Jan 9, 2012 - 4:15PM MBG AUDITORIUM Refreshments at 4:00PM The confict between economic growth and environmental protection may not be reconciled via technological progress. The fundamentality of the confict ultimately boils down to laws of thermodynamics. Physicists and other scholars from the physical sciences are urgently needed for helping the public and policy makers

  14. Regional Economic Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Economic Development Regional Economic Development Supporting companies in every stage of development through access to technology, technical assistance or investment Questions Richard P. Feynman Center for Innovation Regional Programs (505) 665-9090 New Mexico Small Business Assistance Email Venture Acceleration Fund Email DisrupTECH Email SBIR/STTR Email FCI facilitates commercialization in New Mexico to accelerate and enhance our efforts to convert federal and state research

  15. The Lovejoy Building

    High Performance Buildings Database

    Portland, Oregon Originally built in 1910 as the stables for the Marshall-Wells Hardware Company, the Lovejoy Building is the home of Opsis Architects. The owner/architects purchased and renovated the historic building to house their growing business and to provide ground-floor office lease space and second-floor offices for their firm. Opsis wanted to use the building to experience and demonstrate the technologies and practices it promotes with clients.

  16. ORISE: Capacity Building

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute for Science and Education (ORISE) helps government agencies and organizations develop a solid infrastructure through capacity building. Capacity building refers to activities that improve an organization's ability to achieve its mission or a person's ability do his or her job more effectively. For organizations, capacity

  17. Chapter 3: Building Siting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    : Building Siting Site Issues at LANL Site Inventory and Analysis Site Design Transportation and Parking LANL | Chapter 3 Site Issues at LANL Definitions and related documents Building Siting Laboratory site-wide issues include transportation and travel distances for building occupants, impacts on wildlife corridors and hydrology, and energy supply and distribution limitations. Decisions made during site selec- tion and planning impact the surrounding natural habitat, architectural design

  18. Commercial Buildings Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Integration Images courtesy CREE, True Manufacturing, A.O. Smith, Bernstein Associates, Cambridge Engineering, Alliance Laundry Systems, NREL 2 Strategic Fit within Building Technologies Office 3 4 In the U.S., packaged units: * condition 40 billion square feet of the commercial building floor space * consume 2,100 trillion Btu of primary energy annually Many RTUs are past their typical life span, functioning at much lower efficiency levels than new units, and are ready to be replaced.

  19. Buildings Performance Database

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Buildings Performance Database Paul Mathew Lawrence Berkeley National Laboratory pamathew@lbl.gov (510) 486 5116 April 3, 2013 Standard Data Spec API 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Large-scale high-quality empirical data on building energy performance is critical to support decision- making and increase confidence in energy efficiency investments. * While there are a many potential sources for such data, they: - are dispersed

  20. Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    8.1 Buildings Sector Water Consumption 8.2 Residential Sector Water Consumption 8.3 Commercial Sector Water Consumption 8.4 WaterSense 8.5 Federal Government Water Usage 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables This chapter includes data on water use in commercial and residential buildings and the energy

  1. Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    Explore Survey Data from the Energy Information Administration Follow the links below to two easy-to-use query tools, developed exclusively for this website. With these tools you can explore results from the Commercial Buildings Energy Consumption Survey (CBECS) and the Residential Energy Consumption Survey (RECS). Commercial Buildings Energy Index Use this custom query tool to analyze micro data from CBECS 2003. Residential Buildings Energy Index Use this custom Microsoft Excel pivot table to

  2. Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Buildings EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency ñ€” promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which we work, shop, and lead our everyday lives. EERE leads a robust network of researchers and other partners to

  3. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Illuminance Assignments for CBECS Building Activity Categories Illuminance ranges were adopted from the 1987 Illuminating Engineering Society (IES) Lighting Handbook. The IES...

  4. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    from the engineering literature, based on CBECS building activity.) 4. Efficacy: an energy efficiency measure. Technically, the amount of light produced per unit of energy...

  5. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    (CEC), March 1990. Advanced Lighting Technologies Application Guidelines (ALTAG), Building and Appliance Efficiency Office. 3. Dubin, F.S., Mindell, H.L., and Bloome, S., 1976....

  6. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    energy are presented in this section. Statistics are presented by subgroups based on building characteristics, and by subgroups based on lighting equipment. The three sets of...

  7. Buildings Interoperability Landscape

    Broader source: Energy.gov [DOE]

    This landscape document describes the current state of interoperability for connected buildings and outlines an initial list of requirements to be addressed going forward.

  8. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Motivation and Computation of Lighting Measures Floorspace by Lighting Equipment Configuration As described in Appendix A, for each building b, the CBECS data set has the total...

  9. Warehouse and Storage Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    belongings. Basic Characteristics See also: Equipment | Activity Subcategories | Energy Use Warehouse and Storage Buildings... While the idea of a warehouse may bring to...

  10. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Maryland Building Performance Standards (MBPS) are adopted by the Maryland Department of Housing and Community Development (DHCD) Codes Administration. As required by legislation passed in...

  11. BUILDING AMERICA PROGRAM EVALUATION

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... design housing, build based on these designs, and ... system. This system involves multiple steps: ... or through the collaborative research to improve the overall ...

  12. Building Energy Code

    Broader source: Energy.gov [DOE]

    Kansas adopted the 2006 International Energy Conservation Code (IECC) as "the applicable state standard" for commercial and industrial buildings. Enforcement is provided by local jurisdictions; t...

  13. Buildings Interoperability Proceedings

    Broader source: Energy.gov (indexed) [DOE]

    for t he integration of intelligent, connected buildings equipment and automation s ystems, understanding the importance of integration frameworks and product...

  14. Commercial Buildings Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Integration Images courtesy CREE, True Manufacturing, A.O. Smith, Bernstein Associates, Cambridge Engineering, Alliance Laundry Systems, NREL 2 Strategic Fit within ...

  15. Advanced Commercial Buildings Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1. Year 1: Building and Program Benchmarking 2. Year 2: Program Development and ... monitoring Performance testing Benchmarking Energy modeling 4 Approach Approach: ...

  16. Religious Worship Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Religious Worship Characteristics by Activity... Religious Worship Religious worship buildings are those in which people gather for religious activities. Basic Characteristics ...

  17. State Building Energy Standards

    Broader source: Energy.gov [DOE]

    In May 2013 the Sustainable Coonstruction Advisory Committee responsible for adopting buildings codes was mandated to automatically adopt tne most recent version of the rating systems developed b...

  18. Building Energy Code

    Broader source: Energy.gov [DOE]

    The North Carolina State Building Code Council is responsible for developing all state codes. By statute, the Commissioner of Insurance has general supervision over the administration and...

  19. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    more comprehensive understanding of commercial lighting and the potential for lighting energy savings. Steps to build on this analysis can be taken in many directions. One...

  20. Commercial Buildings Characteristics 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    the sponsor the government, utility or sponsored in-house. Energy Management and Control System Heating or cooling system monitored or controlled by a computerized building...

  1. High Performance Sustainable Buildings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science and bioscience capabiities. Occupational Medicine will become a High Performance Sustainable Building in 2013. On the former County landfill, a photovoltaic array field...

  2. What is Building America?

    ScienceCinema (OSTI)

    None

    2013-07-22

    DOE's Building America program is helping to bridge the gap between homes with high energy costs and homes that are healthy, durable, and energy efficient.

  3. Autotune Building Energy Models

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Autotune Building Energy Models Joshua New Oak Ridge National Laboratory newjr@ornl.gov, 865-241-8783 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * "All (building energy) models are wrong, but some are useful" - 22%-97% different from utility data for 3,349 buildings * More accurate models are more useful - Error from inputs and algorithms for practical reasons - Useful for cost-effective energy efficiency (EE) at speed and

  4. What is Building America?

    SciTech Connect (OSTI)

    2013-06-20

    DOE's Building America program is helping to bridge the gap between homes with high energy costs and homes that are healthy, durable, and energy efficient.

  5. New Buildings Program

    Broader source: Energy.gov [DOE]

    Energy Trust of Oregon offers commercial businesses in Oregon a menu of services and incentives for new building construction or major renovation projects which utilize energy efficient equipment...

  6. Transamerica Pyramid Building

    SciTech Connect (OSTI)

    2010-04-01

    This is a combined heat and power (CHP) project profile on a 1 MW CCHP system at the Transamerica Pyramid Building in San Francisco, California.

  7. Building Energy Modeling Library

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy Modeling (BEM) Library * Define and develop a best-practices BEM knowledge ... Links within modeling process for informing design Terms Methods Project Phase Key ...

  8. Buildings","Total

    U.S. Energy Information Administration (EIA) Indexed Site

    ...",5908,5816,5204,316,3558,619,868,387 "Principal Building Activity" "Education ...",9874,9870,8983,489,7692,461,520,191 "Food Sales...

  9. Buildings","Total

    U.S. Energy Information Administration (EIA) Indexed Site

    ...",5035,5035,4688,448,3331,410,877,166 "Principal Building Activity" "Education ...",8651,8651,7927,514,6859,357,528,202 "Food Sales...

  10. Whole Building Energy Simulation

    Broader source: Energy.gov [DOE]

    Whole building energy simulation, also referred to as energy modeling, can and should be incorporated early during project planning to provide energy impact feedback for which design considerations...

  11. Public Assembly Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Most public assembly buildings were not large convention centers or entertainment arenas; about two-fifths fell into the smallest size category. About one-fifth of public...

  12. Residential Building Activities

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) is leading several different activities to develop, demonstrate, and deploy cost-effective solutions to reduce energy consumption across the residential building...

  13. Better Buildings Alliance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... standard used by market leaders (Walmart, DoD) 26 | Building Technologies Office ... in development of better technology WalMart is using lighting specifications in their ...

  14. Energy Efficient Buildings Hub

    Broader source: Energy.gov [DOE]

    Science and industry work together to improve energy efficiency and reduce carbon emissions of both new and existing buildings while also stimulating private investment and quality job creation.

  15. BUILDING AMERICA PROGRAM EVALUATION

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Table 10. Technology R&D Projects Table 6. Housing ... 30 4.1 Team-based Organization ......35 5. Building America Management and Teams ...

  16. Building Science- Ventilation

    Broader source: Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question "What are the best ventilation techniques"

  17. Assessment of industrial minerals and rocks in the controlled area

    SciTech Connect (OSTI)

    Castor, S.B.; Lock, D.E.

    1996-08-01

    Yucca Mountain in Nye County, Nevada, is a potential site for a permanent repository for high-level nuclear waste in Miocene ash flow tuff. The Yucca Mountain controlled area occupies approximately 98 km{sup 2} that includes the potential repository site. The Yucca Mountain controlled area is located within the southwestern Nevada volcanic field, a large area of Miocene volcanism that includes at least four major calderas or cauldrons. It is sited on a remnant of a Neogene volcanic plateau that was centered around the Timber Mountain caldera complex. The Yucca Mountain region contains many occurrences of valuable or potentially valuable industrial minerals, including deposits with past or current production of construction aggregate, borate minerals, clay, building stone, fluorspar, silicate, and zeolites. The existence of these deposits in the region and the occurrence of certain mineral materials at Yucca Mountain, indicate that the controlled area may have potential for industrial mineral and rock deposits. Consideration of the industrial mineral potential within the Yucca Mountain controlled area is mainly based on petrographic and lithologic studies of samples from drill holes in Yucca Mountain. Clay minerals, zeolites, fluorite, and barite, as minerals that are produced economically in Nevada, have been identified in samples from drill holes in Yucca Mountain.

  18. Buildings Energy Data Book: 9.4 High Performance Buildings

    Buildings Energy Data Book [EERE]

    4 Case Study, The Philip Merrill Environmental Center, Annapolis, Maryland (Office) Building Design Floor Area: 31,000 SF Floors: 2 Footprint: 220 ft. x (1) 2 Floors of open office space Attached pavilion containing: Meeting space Kitchen Staff dining Conference room Shell Windows U-Factor SHGC (2) Type: Double Pane, Low-e, Argon Filled Insulating Glass 0.244 0.41 Wall/Roof Material Effective R-Value Interior Wall plywood, gypsum, SIP foam, and sheathing 28.0 Exterior Wall gypsum and insulated

  19. Buildings Energy Data Book: 9.4 High Performance Buildings

    Buildings Energy Data Book [EERE]

    6 Case Study, The Solaire, New York, New York (Apartments/Multi-Family) Building Design Floor Area: 357,000 SF Units: 293 Maximum Occupancy: 700 Floors: 27 Site Size: 0.38 Acres Typical Occupancy(1): 578 Black-Water Treatment Facility (2) Shell Windows Material: Double Glazed, Low-e, Thermal Breaks with Insulated Spacers Operable Windows Fixed Windows Visual Transminttance 0.68 0.68 Solar Heat Gain Coefficient 0.35 0.35 U-Factor 0.47 0.41 Wall/Roof Material R-Value Exterior Walls: Insulated

  20. Green Building Certification Systems Requirement for New Federal Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Major Renovations of Federal Buildings OIRA Comparison Document | Department of Energy OIRA Comparison Document Green Building Certification Systems Requirement for New Federal Buildings and Major Renovations of Federal Buildings OIRA Comparison Document Document details the Green Building Certification Systems Requirement for New Federal Buildings and Major Renovations of Federal Buildings' OIRA Comparison Document for 10 CFR Parts 433, 435 and 436. File greenblgcert_compare2014.docx

  1. Building America Building Science Education Roadmap | Department of Energy

    Energy Savers [EERE]

    Education Roadmap Building America Building Science Education Roadmap This roadmap outlines steps that U.S. Department of Energy Building America program must take to develop a robust building science education curriculum in coming years. PDF icon ba_bldg_science_education_roadmap.pdf More Documents & Publications DOE Challenge Home Student Competition Building America Top Innovations Hall of Fame Profile - Building America's Top Innovations Propel the Home Building Industry toward Higher

  2. Building America Solution Center - Building America Top Innovation |

    Energy Savers [EERE]

    Department of Energy Building America Solution Center - Building America Top Innovation Building America Solution Center - Building America Top Innovation SC_image_male.jpg The Building America Solution Center is a Web-based tool connecting users to fast, free, and expert building science and energy efficiency information based on Building America research results. The Pacific Northwest National Laboratory garnered a 2013 Top Innovation award for this tool, which delivers resources on

  3. Building America Top Innovations Hall of Fame Profile - Building

    Energy Savers [EERE]

    America's Top Innovations Propel the Home Building Industry toward Higher Performance | Department of Energy Top Innovations Hall of Fame Profile - Building America's Top Innovations Propel the Home Building Industry toward Higher Performance Building America Top Innovations Hall of Fame Profile - Building America's Top Innovations Propel the Home Building Industry toward Higher Performance This Building America Innovations profile describes the concept for the U.S. Department of Energy

  4. Economic Impact Analysis for EGS

    Broader source: Energy.gov [DOE]

    Project objective: To conduct an economic impact study for EGS and to develop a Geothermal Economics Calculator (GEC) tool to quantify (in economic terms) the potential job, energy and environmental impacts associated with electric power production from geothermal resources.

  5. Preliminary Energy Savings Impact Evaluation: Better Buildings Neighborhood Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report Preliminary Energy Savings Impact Evaluation: Better Buildings Neighborhood Program American Recovery and Reinvestment Act of 2009 November 4, 2013 Prepared For: U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Final Report Preliminary Energy Savings Impact Evaluation: Better Buildings Neighborhood Program American Recovery and Reinvestment Act of 2009 November 4, 2013 Funded By: Prepared By: Research Into Action, Inc. Evergreen Economics Nexant, Inc. NMR Group,

  6. The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)

    SciTech Connect (OSTI)

    Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

    2004-10-15

    The August 2003 blackout of the northeastern U.S. and CANADA caused great economic losses and inconvenience to New York City and other affected areas. The blackout was a warning to the rest of the world that the ability of conventional power systems to meet growing electricity demand is questionable. Failure of large power systems can lead to serious emergencies. Introduction of on-site generation, renewable energy such as solar and wind power and the effective utilization of exhaust heat is needed, to meet the growing energy demands of the residential and commercial sectors. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems. This work demonstrates a method for choosing and designing economically optimal DER systems. An additional purpose of this research is to establish a database of energy tariffs, DER technology cost and performance characteristics, and building energy consumption for Japan. This research builds on prior DER studies at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) and with their associates in the Consortium for Electric Reliability Technology Solutions (CERTS) and operation, including the development of the microgrid concept, and the DER selection optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a test period, usually an historic year. Since hourly electric and thermal energy data are rarely available, they are typically developed by building simulation for each of six end use loads used to model the building: electric-only loads, space heating, space cooling, refrigeration, water heating, and natural-gas-only loads. DER-CAM provides a global optimization, albeit idealized, that shows how the necessary useful energy loads can be provided for at minimum cost by selection and operation of on-site generation, heat recovery, cooling, and efficiency improvements. This study examines five prototype commercial buildings and uses DER-CAM to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Each building type was considered for both 5,000 and 10,000 square meter floor sizes. The energy consumption of these building types is based on building energy simulation and published literature. Based on the optimization results, energy conservation and the emissions reduction were also evaluated. Furthermore, a comparison study between Japan and the U.S. has been conducted covering the policy, technology and the utility tariffs effects on DER systems installations. This study begins with an examination of existing DER research. Building energy loads were then generated through simulation (DOE-2) and scaled to match available load data in the literature. Energy tariffs in Japan and the U.S. were then compared: electricity prices did not differ significantly, while commercial gas prices in Japan are much higher than in the U.S. For smaller DER systems, the installation costs in Japan are more than twice those in the U.S., but this difference becomes smaller with larger systems. In Japan, DER systems are eligible for a 1/3 rebate of installation costs, while subsidies in the U.S. vary significantly by region and application. For 10,000 m{sup 2} buildings, significant decreases in fuel consumption, carbon emissions, and energy costs were seen in the economically optimal results. This was most noticeable in the sports facility, followed the hospital and hotel. This research demonstrates that office buildings can benefit from CHP, in contrast to popular opinion. For hospitals and sports facilities, the use of waste heat is particularly effective for water and space heating. For the other building types, waste heat is most effectively used for both heating and cooling. The same examination was done for the 5,000 m{sup 2} buildings. Although CHP installation capacity is smaller and the payback periods are longer, economic, fuel efficiency, and environmental benefits are still seen. While these benefits remain even when subsidies are removed, the increased installation costs lead to lower levels of installation capacity and thus benefit.

  7. Building Design Guidelines for Solar Energy Technologies

    DOE R&D Accomplishments [OSTI]

    Givoni, B.

    1989-01-01

    There are two main objectives to this publication. The first is to find out the communalities in the experience gained in previous studies and in actual applications of solar technologies in buildings, residential as well as nonresidential. The second objective is to review innovative concepts and products which may have an impact on future developments and applications of solar technologies in buildings. The available information and common lessons were collated and presented in a form which, hopefully, is useful for architects and solar engineers, as well as for teachers of "solar architecture" and students in Architectural Schools. The publication is based mainly on the collection and analysis of relevant information. The information included previous studies in which the performance of solar buildings was evaluated, as well as the personal experience of the Author and the research consultants. The state of the art, as indicated by these studies and personal experience, was summarized and has served as basis for the development of the Design Guidelines. In addition to the summary of the state of the art, as was already applied in solar buildings, an account was given of innovative concepts and products. Such innovations have occurred in the areas of thermal storage by Phase Change Materials (PCM) and in glazing with specialized or changeable properties. Interesting concepts were also developed for light transfer, which may enable to transfer sunlight to the core areas of large multi story nonresidential buildings. These innovations may have a significant impact on future developments of solar technologies and their applications in buildings.

  8. Reference Buildings by Building Type: Midrise Apartment

    Broader source: Energy.gov [DOE]

    In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

  9. Reference Buildings by Building Type: Small Hotel

    Broader source: Energy.gov [DOE]

    In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

  10. Reference Buildings by Building Type: Large Hotel

    Broader source: Energy.gov [DOE]

    In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

  11. Reference Buildings by Building Type: Warehouse

    Broader source: Energy.gov [DOE]

    In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

  12. Reference Buildings by Building Type: Hospital

    Broader source: Energy.gov [DOE]

    In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

  13. Reference Buildings by Building Type: Strip mall

    Broader source: Energy.gov [DOE]

    In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

  14. Reference Buildings by Building Type: Secondary school

    Broader source: Energy.gov [DOE]

    In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

  15. Reference Buildings by Building Type: Medium office

    Broader source: Energy.gov [DOE]

    In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

  16. Reference Buildings by Building Type: Primary school

    Broader source: Energy.gov [DOE]

    In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

  17. Reference Buildings by Building Type: Supermarket

    Office of Energy Efficiency and Renewable Energy (EERE)

    In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

  18. Illustrative Calculation of Economics for Heat Pump and "Grid-Enabled"

    Energy Savers [EERE]

    Water Heaters | Department of Energy Illustrative Calculation of Economics for Heat Pump and "Grid-Enabled" Water Heaters Illustrative Calculation of Economics for Heat Pump and "Grid-Enabled" Water Heaters PDF icon Rate discount calculation for DR WH.pdf More Documents & Publications Building America Technology Solutions for New and Existing Homes: Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida (Fact Sheet) Building America

  19. Bay Area

    National Nuclear Security Administration (NNSA)

    8%2A en NNSA to Conduct Aerial Radiological Surveys Over San Francisco, Pacifica, Berkeley, And Oakland, CA Areas http:nnsa.energy.govmediaroompressreleasesamsca

  20. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in diverse research areas such as cell biology, lithography, infrared microscopy, radiology, and x-ray tomography. Time-Resolved These techniques exploit the pulsed nature of...

  1. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    environment and health issues; and to advance the engineering of biological systems for sustainable manufacturing. Biosciences Area research is coordinated through three...

  2. High Performance Sustainable Building

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-06-20

    The guide supports DOE O 413.3A and provides useful information on the incorporation of high performance sustainable building principles into building-related General Plant Projects and Institutional General Plant Projects at DOE sites. Canceled by DOE G 413.3-6A. Does not cancel other directives.

  3. 200 Market Building

    High Performance Buildings Database

    Portland, Oregon The 200 Market Building is a high-rise built in 1973 and located in downtown Portland, Oregon. It was purchased in 1988 by its current owner, 200 Market Associates, primarily because of its optimal location in Portland's central business district. Since 1989 the building has undergone continuous improvements in multiple phases.

  4. Building Technologies Office

    Broader source: Energy.gov [DOE]

    The Building Technologies Office (BTO) leads a vast network of research and industry partners to continually develop innovative, cost-effective energy saving solutions—better products, better new homes, better ways to improve older homes, and better buildings in which we work, shop, and lead our everyday lives.

  5. Variable area light reflecting assembly

    DOE Patents [OSTI]

    Howard, Thomas C. (Raleigh, NC)

    1986-01-01

    Device for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles.

  6. Variable area light reflecting assembly

    DOE Patents [OSTI]

    Howard, T.C.

    1986-12-23

    Device is described for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles. 9 figs.

  7. Balancing Hydronic Systems in Multifamily Buildings

    SciTech Connect (OSTI)

    Ruch, R.; Ludwig, P.; Maurer, T.

    2014-07-01

    In multifamily hydronic systems, temperature imbalance may be caused by undersized piping, improperly adjusted balancing valves, inefficient water temperature and flow levels, and owner/occupant interaction with the boilers, distribution and controls. The effects of imbalance include tenant discomfort, higher energy use intensity and inefficient building operation. This paper explores cost-effective distribution upgrades and balancing measures in multifamily hydronic systems, providing a resource to contractors, auditors, and building owners on best practices to improve tenant comfort and lower operating costs. The research was conducted by The Partnership for Advanced Residential Retrofit (PARR) in conjunction with Elevate Energy. The team surveyed existing knowledge on cost-effective retrofits for optimizing distribution in typical multifamily hydronic systems, with the aim of identifying common situations and solutions, and then conducted case studies on two Chicago area buildings with known balancing issues in order to quantify the extent of temperature imbalance. At one of these buildings a booster pump was installed on a loop to an underheated wing of the building. This study found that unit temperature in a multifamily hydronic building can vary as much as 61 degrees F, particularly if windows are opened or tenants use intermittent supplemental heating sources like oven ranges. Average temperature spread at the building as a result of this retrofit decreased from 22.1 degrees F to 15.5 degrees F.

  8. Building Technologies Office: Emerging Technologies Windows and Building Envelope

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bahman Habibzadeh, PhD Technology Development Manger Building Technologies Office Emerging Technologies Windows and Building Envelope 2 Emerging Technologies (ET)  Develop cost-effective, high-impact building technologies: Lighting, HVAC, Windows & Envelope, Sensors & Controls, Appliances & Equipment Commercial Buildings Integration (CBI) Residential Buildings Integration (RBI)  Partner with private sector to demonstrate technologies and solutions  Demonstrate market

  9. Evaluating the Performance and Economics of Transpired Solar Collectors for Commercial Applications: Preprint

    SciTech Connect (OSTI)

    Kozubal, E.; Deru, M.; Slayzak, S.; Norton, P.; Barker, G.; McClendon, J,

    2008-07-01

    Using transpired solar collectors to preheat ventilation air has recently become recognized as an economic alternative for integrating renewable energy into commercial buildings in heating climates. The collectors have relatively low installed costs and operate on simple principles. Theory and performance testing have shown that solar collection efficiency can exceed 70% of incident solar. However, implementation and current absorber designs have adversely affected the efficiency and associated economics from this initial analysis. The National Renewable Energy Laboratory has actively studied this technology and monitored performance at several installations. A calibrated model that uses typical meteorological weather data to determine absorber plate efficiency resulted from this work. With this model, an economic analysis across heating climates was done to show the effects of collector size, tilt, azimuth, and absorptivity. The analysis relates the internal rate of return of a system based on the cost of the installed absorber area. In general, colder and higher latitude climates return a higher rate of return because the heating season extends into months with good solar resource.

  10. NREL Buildings Research Video

    ScienceCinema (OSTI)

    None

    2013-05-29

    Through research, the National Renewable Energy Laboratory (NREL) has developed many strategies and design techniques to ensure both commercial and residential buildings use as little energy as possible and also work well with the surroundings. Here you will find a video that introduces the work of NREL Buildings Research, highlights some of the facilities on the NREL campus, and demonstrates these efficient building strategies. Watch this video to see design highlights of the Science and Technology Facility on the NREL campus?the first Federal building to be LEEDÂź Platinum certified. Additionally, the video demonstrates the energy-saving features of NRELs Thermal Test Facility. For a text version of this video visit http://www.nrel.gov/buildings/about_research_text_version.html

  11. NREL: Jobs and Economic Development Impact (JEDI) Models - About JEDI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Models Models The Jobs and Economic Development Impact (JEDI) models are user-friendly screening tools that estimate the economic impacts of constructing and operating power plants, fuel production facilities, and other projects at the local (usually state) level. JEDI results are intended to be estimates, not precise predictions. Based on user-entered project-specific data or default inputs (derived from industry norms), JEDI estimates the number of jobs and economic impacts to a local area

  12. Tribal Energy and Economic Development Webinar Series | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Training » Tribal Energy and Economic Development Webinar Series Tribal Energy and Economic Development Webinar Series The DOE Office of Indian Energy Policy and Programs, in partnership with Western Area Power Administration (Western), is pleased to continue its sponsorship of the DOE Tribal Energy and Economic Development Webinar Series for 2016. The series is intended for tribal leaders and staff who are interested in developing facility- and community-scale energy projects,

  13. Achieving 50% Energy Savings in Office Buildings, Advanced Energy Design Guides: Office Buildings (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01

    This fact sheet summarizes recommendations for designing new office buildings that result in 50% less energy use than conventional designs meeting minimum code requirements. The recommendations are drawn from the Advanced Energy Design Guide for Small to Medium Office Buildings, an ASHRAE publication that provides comprehensive recommendations for designing low-energy-use office buildings with gross floor areas up to 100,000 ft2 (see sidebar). Designed as a stand-alone document, this fact sheet provides key principles and a set of prescriptive design recommendations appropriate for smaller office buildings with insufficient budgets to fully implement best practices for integrated design and optimized performance. The recommendations have undergone a thorough analysis and review process through ASHRAE, and have been deemed the best combination of measures to achieve 50% savings in the greatest number of office buildings.

  14. City of Chandler- Green Building Requirement for City Buildings

    Broader source: Energy.gov [DOE]

    Additionally, all renovations and all new non-occupied buildings and all new occupied buildings smaller than 5,000 square feet must include as many green building principles as are feasible. The...

  15. City of Scottsdale- Green Building Policy for Public Buildings

    Broader source: Energy.gov [DOE]

    In 2005, Scottsdale approved a green building policy for new city buildings and remodels. The resolution requires all new, occupied city buildings of any size to be designed, contracted and built...

  16. Building America Top Innovations 2013 Profile – Building America Solution Center

    SciTech Connect (OSTI)

    none,

    2013-09-01

    This Top Innovation profile provides information about the Building America Solution Center created by Pacific Northwest National Laboratory, a web tool connecting users to thousands of pieces of building science information developed by DOE’s Building America research partners.

  17. Building America Top Innovations 2013 Profile – Building America Solution Center

    Broader source: Energy.gov [DOE]

    PNNL set up the framework for the Building America Solution Center, a web tool connecting users to thousands of pieces of building science information developed by DOE’s Building America research partners.

  18. Jobs and Economic Development Modeling

    Office of Energy Efficiency and Renewable Energy (EERE)

    Project objective: Develop models to estimate jobs and economic impacts from geothermal project development and operation.

  19. Economic viability of anaerobic digestion

    SciTech Connect (OSTI)

    Wellinger, A.

    1996-01-01

    The industrial application of anaerobic digestion is a relatively new, yet proven waste treatment technology. Anaerobic digestion reduces and upgrades organic waste, and is a good way to control air pollution as it reduces methane and nitrous gas emissions. For environmental and energy considerations, anaerobic digestion is a nearly perfect waste treatment process. However, its economic viability is still in question. A number of parameters - type of waste (solid or liquid), digester system, facility size, product quality and end use, environmental requirements, cost of alternative treatments (including labor), and interest rates - define the investment and operating costs of an anaerobic digestion facility. Therefore, identical facilities that treat the same amount and type of waste may, depending on location, legislation, and end product characteristics, reveal radically different costs. A good approach for evaluating the economics of anaerobic digestion is to compare it to treatment techniques such as aeration or conventional sewage treatment (for industrial wastewater), or composting and incineration (for solid organic waste). For example, the cost (per ton of waste) of in-vessel composting with biofilters is somewhat higher than that of anaerobic digestion, but the investment costs 1 1/2 to 2 times more than either composting or anaerobic digestion. Two distinct advantages of anaerobic digestion are: (1) it requires less land than either composting or incinerating, which translates into lower costs and milder environmental and community impacts (especially in densely populated areas); and (2) it produces net energy, which can be used to operate the facility or sold to nearby industries.

  20. Economic viability of anaerobic digestion

    SciTech Connect (OSTI)

    Wellinger, A.

    1995-11-01

    The industrial application of anaerobic digestion is a relatively new, yet proven waste treatment technology. Anaerobic digestion reduces and upgrades organic waste, and is a good way to control air pollution as it reduces methane and nitrous gas emissions. For environmental and energy considerations, anaerobic digestion is a nearly perfect waste treatment process. However, its economic viability is still in question. A number of parameters-type of waste (solid or liquid), digester system, facility size, product quality and end use, environmental requirements, cost of alternative treatments (including labor), and interest rates-define the investment and operating costs of anaerobic digestion facility. Therefore, identical facilities that treat the same amount and type of waste may, depending on location, legislation, and end product characteristics, reveal radically different costs. A good approach for evaluating the economics of anaerobic digestion is to compare it to treatment techniques such as aeration or conventional sewage treatment (for industrial wastewater), or composting and incineration (for solid organic waste). For example, the cost (per ton of waste) of in-vessel composting with biofilters in somewhat higher than that of anaerobic digestion, but the investment costs 11/2 to 2 times more than either composting or anaerobic digestion. Two distinct advantages of anaerobic digestion are: (1) it requires less land than either composting or incinerating, which translates into lower costs and milder environmental and community impacts (especially in densely populated areas); and (2) it produces net energy, which can be used to operate the facility or sold to nearby industries.

  1. Project Impact Assessments: Building America FY14 Field Test Technical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Support - 2014 BTO Peer Review | Department of Energy Project Impact Assessments: Building America FY14 Field Test Technical Support - 2014 BTO Peer Review Project Impact Assessments: Building America FY14 Field Test Technical Support - 2014 BTO Peer Review Presenter: Lieko Earle, National Renewable Energy Laboratory The goal of this project is for the National Renewable Energy Laboratory to provide extensive, hands-on technical support to Building America teams in the areas of experiment

  2. Building America Technology Solutions for New and Existing Homes: Advanced

    Energy Savers [EERE]

    Boiler Load Monitoring Controllers, Chicago, Illinois | Department of Energy Boiler Load Monitoring Controllers, Chicago, Illinois Building America Technology Solutions for New and Existing Homes: Advanced Boiler Load Monitoring Controllers, Chicago, Illinois In this project, the Building America team Partnership for Advanced Residential Retrofit (PARR) installed and monitored an ALM aftermarket controller, the M2G from Greffen Systems, at two Chicago area multifamily buildings with existing

  3. San Antonio Better Buildings Partners Recognized for Advancing Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency | Department of Energy San Antonio Better Buildings Partners Recognized for Advancing Energy Efficiency San Antonio Better Buildings Partners Recognized for Advancing Energy Efficiency May 21, 2015 - 2:55pm Addthis In April, the Energy Department recognized Better Buildings Challenge San Antonio, Texas area partners. Dr. Kathleen Hogan, Deputy Assistant Secretary for Energy Efficiency met with Macy's and the San Antonio Housing Authority (SAHA), learning how each organization is

  4. Better Buildings Neighborhood Initiative Upgrades 100,000 Buildings, Saves

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    $730 Million on Energy Bills | Department of Energy Neighborhood Initiative Upgrades 100,000 Buildings, Saves $730 Million on Energy Bills Better Buildings Neighborhood Initiative Upgrades 100,000 Buildings, Saves $730 Million on Energy Bills May 21, 2014 - 4:06pm Addthis NEWS MEDIA CONTACT (202) 586-4940 Building on President Obama's Climate Action Plan and the Administration's Better Buildings Initiative, the Energy Department announced today that the Department's Better Buildings

  5. Building America Webinar: Saving Energy in Multifamily Buildings |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Saving Energy in Multifamily Buildings Building America Webinar: Saving Energy in Multifamily Buildings This webinar introduced the Building America team Partnership for Advanced Residential Retrofit (PARR) and its partners, outlined team objectives, and highlighted their current research program, Energy Savers. File webinar_multifamily_bldgs_20110726.wmv More Documents & Publications Building America Webinar: Retrofit Ventilation Strategies in Multifamily Buildings

  6. Building Energy Asset Score: Building Owners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Owners Building Energy Asset Score: Building Owners The U.S. Department of Energy's Building Energy Asset Score is a national standardized tool for evaluating the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and identifies opportunities for users to invest in energy efficiency upgrades. It is web-based and free to use. View information

  7. Building Science-Based Climate Maps - Building America Top Innovation |

    Energy Savers [EERE]

    Department of Energy Building Science-Based Climate Maps - Building America Top Innovation Building Science-Based Climate Maps - Building America Top Innovation Photo showing climate zone maps based on the IECC climate zone map. It may not be intuitively obvious why a U.S. climate zone map is so important to the construction industry. Thanks to this Building America Top Innovation, building science education, energy code development, and residential design can much more effectively integrate

  8. Economic Development Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts Gary Spanner PNNL Manager, Economic Development 509/372-4296 ROB/1210 Robin Conger Program Manager 509/372-4328 ROB/1216 Bernard Hansen Entrepreneurial Programs Manager 206/842-9485 HOME003/ Pam Dawson Specialist 509/375-2075 ROB/1230

  9. The Role of Energy Storage in Commercial Building

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Subbarao, Krishnappa; Prakash Kumar, Nirupama; Bandyopadhyay, Gopal K.; Finley, C.; Koritarov, V. S.; Molburg, J. C.; Wang, J.; Zhao, Fuli; Brackney, L.; Florita, A. R.

    2010-09-30

    Motivation and Background of Study This project was motivated by the need to understand the full value of energy storage (thermal and electric energy storage) in commercial buildings, the opportunity of benefits for building operations and the potential interactions between a building and a smart grid infrastructure. On-site or local energy storage systems are not new to the commercial building sector; they have been in place in US buildings for decades. Most building-scale storage technologies are based on thermal or electrochemical storage mechanisms. Energy storage technologies are not designed to conserve energy, and losses associated with energy conversion are inevitable. Instead, storage provides flexibility to manage load in a building or to balance load and generation in the power grid. From the building owner's perspective, storage enables load shifting to optimize energy costs while maintaining comfort. From a grid operations perspective, building storage at scale could provide additional flexibility to grid operators in managing the generation variability from intermittent renewable energy resources (wind and solar). To characterize the set of benefits, technical opportunities and challenges, and potential economic values of storage in a commercial building from both the building operation's and the grid operation's view-points is the key point of this project. The research effort was initiated in early 2010 involving Argonne National Laboratory (ANL), the National Renewable Energy Laboratory (NREL), and Pacific Northwest National Laboratory (PNNL) to quantify these opportunities from a commercial buildings perspective. This report summarizes the early discussions, literature reviews, stakeholder engagements, and initial results of analyses related to the overall role of energy storage in commercial buildings. Beyond the summary of roughly eight months of effort by the laboratories, the report attempts to substantiate the importance of active DOE/BTP R&D activities in this space.

  10. Net PV Value by location and building type | Open Energy Information

    Open Energy Info (EERE)

    location and building type Jump to: navigation, search Impact of Utility Rates on PV Economics Solar value table: The following table shows the solar value (in kWh) found for...

  11. NREL: Buildings Research - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webmaster Please enter your name and e-mail address in the boxes provided, then type your message below. When you are finished, click "Send Message." NOTE: If you enter your e-mail address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message Printable Version Buildings Research Home Commercial Buildings Residential Buildings Facilities Working with Us Publications News Did you find what you needed? Yes 1 No 0 Thank you for your feedback.

  12. BETTER BUILDINGS ALLIANCE

    Broader source: Energy.gov [DOE]

    Commercial buildings—our offices, schools, hospitals, restaurants, hotels and stores—consume nearly 20% of all energy used in the United States. We spend more than $200 billion each year to power our country's commercial buildings. Unfortunately, much of this energy and money is wasted; a typical commercial building could save 20% on its energy bills simply by commissioning existing systems so they operate as intended. Energy efficiency is a cost-effective way to save money, support job growth, reduce pollution, and improve competitiveness.

  13. DOE Buildings Performance Database

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Performance Database 2014 Building Technologies Office Peer Review Richard Brown, REBrown@lbl.gov Lawrence Berkeley National Laboratory Project Summary Timeline: Start date: FY11 Planned end date: ongoing Key Milestones 1. v1.0 release; June 2013 2. Public Beta API launch; Feb 2014 3. v1.3 release, including 600k new buildings; Apr 2014 4. Publish data cleansing methods; Apr 2014 Budget: Total DOE $ to date: $2,205,000 (LBNL) Total future DOE $: FY15 TBD Target Market/Audience: target

  14. Better Buildings Summit

    Broader source: Energy.gov [DOE]

    Department of Energy would like to convene with Champions that are in attendance so please reach out if you or a representative is planning to attend. The Better Buildings Summit is a national meeting where leading organizations across key sectors showcase solutions to cut energy intensity in their buildings portfolio-wide by 20% over the next ten years. This Summit is designed for partners and stakeholders to exchange best practices and highlight demonstrated market solutions with an equal emphasis on discussing future opportunities for greater energy efficiency in America’s homes and buildings.

  15. Trends in Commercial Buildings--Buildings Trend Detail

    U.S. Energy Information Administration (EIA) Indexed Site

    Center at (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey Figure 2. 1989 to 1999 building trend with 95% confidence ranges...

  16. Building America Webinar: Saving Energy in Multifamily Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    America Webinar: Saving Energy in Multifamily Buildings This webinar introduced the Building America team Partnership for Advanced Residential Retrofit (PARR) and its...

  17. Property:Buildings/ModelBuildingType | Open Energy Information

    Open Energy Info (EERE)

    Religious Worship Service Warehouse and Storage Other Vacant Pages using the property "BuildingsModelBuildingType" Showing 12 pages using this property. G General Merchandise...

  18. Better Buildings Webinar: Better Buildings Alliance- Annual Open House Webinar

    Broader source: Energy.gov [DOE]

    The Better Buildings Alliance is hosting a webinar on new energy efficiency resources and upcoming opportunities available this year through DOE's Better Building Alliance.

  19. Buildings-to-Grid Technical Opportunities: From the Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings-to-Grid Technical Opportunities: From the Buildings Perspective Technological advances in demand response and energy efficiency have increased the utility of residential ...

  20. Data Center Economizer Contamination and Humidity Study

    SciTech Connect (OSTI)

    Shehabi, Arman; Tschudi, William; Gadgil, Ashok

    2007-03-06

    Data centers require continuous air conditioning to address high internal heat loads (heat release from equipment) and maintain indoor temperatures within recommended operating levels for computers. Air economizer cycles, which bring in large amounts of outside air to cool internal loads when weather conditions are favorable, could save cooling energy. There is reluctance from many data center owners to use this common cooling technique, however, due to fear of introducing pollutants and potential loss of humidity control. Concerns about equipment failure from airborne pollutants lead to specifying as little outside air as permissible for human occupants. To investigate contamination levels, particle monitoring was conducted at 8 data centers in Northern California. Particle counters were placed at 3 to 4 different locations within and outside of each data center evaluated in this study. Humidity was also monitored at many of the sites to determine how economizers affect humidity control. Results from this study indicate that economizers do increase the outdoor concentration in data centers, but this concentration, when averaged annually, is still below current particle concentration limits. Study results are summarized below: (1) The average particle concentrations measured at each location, both outside and at the servers, are shown in Table 1. Measurements show low particle concentrations at all data centers without economizers, regardless of outdoor particle concentrations. Particle concentrations were typically an order of magnitude below both outside particle concentrations and recently published ASHRAE standards. (2) Economizer use caused sharp increases in particle concentrations when the economizer vents were open. The particle concentration in the data centers, however, quickly dropped back to pre-economizer levels when the vents closed. Since economizers only allow outside air part of the time, the annual average concentrations still met the ASHRAE standards. However, concentration were still above the levels measured in data centers that do not use economizers (3) Current filtration in data centers is minimal (ASHRAE 40%) since most air is typically recycled. When using economizers, modest improvements in filtration (ASHRAE 85%) can reduce particle concentrations to nearly match the level found in data centers that do not use economizers. The extra cost associated with improve filters was not determined in this study. (4) Humidity was consistent and within the ASHRAE recommended levels for all data centers without economizers. Results show that, while slightly less steady, humidity in data centers with economizers can also be controlled within the ASHRAE recommended levels. However, this control of humidity reduces energy savings by limiting the hours the economizer vents are open. (5) The potential energy savings from economizer use has been measured in one data center. When economizers were active, mechanical cooling power dropped by approximately 30%. Annual savings at this center is estimated within the range of 60-80 MWh/year, representing approximately a 5% savings off the mechanical energy load of the data center. Incoming temperatures and humidity at this data center were conservative relative to the ASHRAE acceptable temperature and humidity ranges. Greater savings may be available if higher temperature humidity levels in the data center area were permitted. The average particle concentrations measured at each of the eight data center locations are shown in Table 1. The data centers ranged in size from approximately 5,000 ft{sup 2} to 20,000 ft{sup 2}. The indoor concentrations and humidity in Table 1 represents measurements taken at the server rack. Temperature measurements at the server rack consistently fell between 65-70 F. The Findings section contains a discussion of the individual findings from each center. Data centers currently operate under very low contamination levels. Economizers can be expected to increase the particle concentration in data centers, but the increase appears to still be

  1. Overview of Commercial Buildings, 2003

    Reports and Publications (EIA)

    2008-01-01

    The Energy Information Administration conducts the Commercial Buildings Energy Consumption Survey (CBECS) to collect information on energy-related building characteristics and types and amounts of energy consumed in commercial buildings in the United States.

  2. Building Technologies Program Key Activities

    SciTech Connect (OSTI)

    2011-12-15

    The Building Technologies Program (BTP) employs a balanced approach to making buildings more energy efficient. The three pillars of our program, research and development (R&D), market stimulation, and building and equipment standards, help meet our strategic vision.

  3. How to Build a Tower

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Volunteers - Sign Up About Science Bowl Curriculum and Activities How to Build a Motor The Great Marble Drop How to Build a Turbine How to Build a Tower Classroom...

  4. Demonstration of the Whole-Building Diagnostician in a Single-Building Operator Environment

    SciTech Connect (OSTI)

    Katipamula, Srinivas; Bauman, Nathan N.; Pratt, Robert G.; Brambley, Michael R.

    2003-03-31

    This report on documents the results of the single-building-operator, on-line, demonstration of the Whole-Building Diagnostician, conducted at the Symphony Towers building in San Diego, California. The on-line test was designed to evaluate the Outdoor-Air Economizer (OAE) diagnostic module’s capabilities to automatically and continually diagnose operational problems with air-handling units (AHUs). As part of this demonstration, all four AHUs at Symphony Towers were monitored. The measured data that were collected on a continuous basis included: 1) outdoor-air temperature, 2) return-air temperature, 3) mixed-air temperature, 4) supply-air temperature, 5) chilled-water valve position, 6) supply-fan status, 7) outdoor-air relative humidity, and 8) return-air relative humidity.

  5. Analysis of Potential Benefits and Costs of Updating the Commercial Building Energy Code in North Dakota

    SciTech Connect (OSTI)

    Cort, Katherine A.; Belzer, David B.; Winiarski, David W.; Richman, Eric E.

    2004-04-30

    The state of North Dakota is considering updating its commercial building energy code. This report evaluates the potential costs and benefits to North Dakota residents from updating and requiring compliance with ASHRAE Standard 90.1-2001. Both qualitative and quantitative benefits and costs are assessed in the analysis. Energy and economic impacts are estimated using the Building Loads Analysis and System Thermodynamics (BLAST simulation combined with a Life-cycle Cost (LCC) approach to assess correspodning economic costs and benefits.

  6. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Ballast: See High-Efficiency Ballast. Btu: British thermal unit. A unit quantity of energy consumed by or delivered to a building. A Btu is defined as the amount of energy...

  7. Better Buildings Training Toolkit

    Broader source: Energy.gov [DOE]

    The Better Buildings Residential Network Training Toolkit can be used by residential energy efficiency programs interested in realizing the value of providing training opportunities for contractors, staff, and volunteers.

  8. Passive solar buildings research

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1992-12-31

    This chapter covers research advances in passive solar buildings research during the time span from 1982 through 1991. These advances fall within the following categories: (1) short-term energy monitoring, (2) heat transport by natural convection within buildings, and (3) design guidelines and design tools. In short-term energy monitoring, a simulation model of the building is calibrated, based on data taken in a 3-day test. The method accurately predicts performance over an extended period. Heat transport through doorways is characterized for complex situations that arise in passive solar buildings. Simple concepts and models adequately describe the energy transport in many situations of interest. In a new approach, design guidelines are automatically generated for any specific locality. Worksheets or an accompanying computer program allow the designer to quickly and accurately evaluate performance and investigate design alternatives. 29 refs., 19 figs., 2 tabs.

  9. Building Energy Code

    Broader source: Energy.gov [DOE]

    In November of 2015, the Commission adopted the 2015 International Building Code (IBC) with amendments. The Commission did not adopt the 2012 International Energy Conservation Code (IECC) as part...

  10. Building Energy Code

    Broader source: Energy.gov [DOE]

    Colorado is a home rule state, so no statewide energy code exists, although state government buildings do have specific requirements. Voluntary adoption of energy codes is encouraged and efforts...

  11. Building Energy Code

    Broader source: Energy.gov [DOE]

    The State Building Code Council revised the Washington State Energy Code (WESC) in February 2013, effective July 1, 2013. The WESC is a state-developed code based upon ASHRAE 90.1-2010 and the...

  12. Building Energy Code

    Broader source: Energy.gov [DOE]

    In September 2011 the Nebraska Building Energy Code was updated to the 2009 International Energy Conservation Code (IECC) standards. As with the previous 2003 IECC standards, which had been in...

  13. Building Energy Code

    Broader source: Energy.gov [DOE]

    Changes to the energy code are submitted to the Uniform Building Code Commission. The proposed change is reviewed by the Commission at a monthly meeting to decide if it warrants further considera...

  14. Computers in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Government-owned buildings of all types, had, on average, more than one computer per person (1,104 computers per thousand employees). They also had a fairly high ratio of...

  15. Building America Analysis Spreadsheets

    Broader source: Energy.gov [DOE]

    The Building America Analysis Spreadsheets are companions to the House Simulation Protocols, and can assist with many of the calculations and look-up tables found in the report. The spreadsheets...

  16. Building Energy Standards

    Broader source: Energy.gov [DOE]

    The 2015 Vermont Commercial Building Energy Standards (CBES) took effect on March 1, 2015. The code is based on the 2015 IECC, with amendments to incorporate ASHRAE 90.1-2013. The new guidelines ...

  17. High Performance Sustainable Building

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-11-09

    This Guide highlights the DOE O 413.3B drivers for incorporating high performance sustainable building (HPSB) principles into Critical Decisions 1 through 4 and provides guidance for implementing the Order's HPSB requirements.

  18. High Performance Sustainable Building

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-11-09

    This Guide provides approaches for implementing the High Performance Sustainable Building (HPSB) requirements of DOE Order 413.3B, Program and Project Management for the Acquisition of Capital Assets. Supersedes DOE G 413.3-6.

  19. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Indiana Residential Building Code is based on the 2003 IRC with state amendments (eff. 9/11/05). This code applies to 1 and 2 family dwellings and townhouses. During the adoption process,...

  20. Small Building Material Loan

    Broader source: Energy.gov [DOE]

    Applicants may borrow up to $100,000 for projects that improve the livability of a home, improve energy efficiency, or expand space. The loan can be applied toward building materials, freight or...