National Library of Energy BETA

Sample records for area bir ch

  1. Biomedical Engineering Cynthia Bir, PhD

    E-Print Network [OSTI]

    Finley Jr., Russell L.

    Biomedical Engineering Cynthia Bir, PhD Professor, Department of BME Director of Research, Orthopaedic Surgery #12;What is a Biomedical E i ?Engineer? "A bioengineer is anyoneA bioengineer is anyone who calls himself one." YC Fung #12;What is Biomedical E i i ?Engineering? Biomedical engineering

  2. Liu Shao-Ch'i and "People's War": A Report on the Creation of Base Areas in 1938

    E-Print Network [OSTI]

    Schwarz, Henry G.

    1969-01-01

    and the methods they used in dealing with those problems. The document is a report by Liu Shao-ch'i on the creation of Chin-Ch'a-Chi, formally the Shansi-Chahar-Hopei Border region, and other resistance cen ters behind Japanese lines. It was said to have been... provinces of Hopei, Chahar, Suiyiian, Shan tung, and Shansi. Only the East Hopei Autonomous Council 5 under General Yin Ju-keng materialized from the Japanese ef forts. Along the northern periphery of North China, bordering on the Gobi desert...

  3. MARE: Marine Autonomous Robotic Explorer Yogesh Girdhar, Anqi Xu, Bir Bikram Dey, Malika Meghjani,

    E-Print Network [OSTI]

    Dudek, Gregory

    MARE: Marine Autonomous Robotic Explorer Yogesh Girdhar, Anqi Xu, Bir Bikram Dey, Malika Meghjani programming. I. INTRODUCTION Exploring marine environments is a challenging task for the robotics community. We address this challenge by in- troducing MARE: Marine Autonomous Robotic Explorer. MARE is a sea

  4. CH Packaging Operations Manual

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-11-29

    This procedure provides instructions forassembling the following CH packaging payload: Drum payload assembly Standard Waste Box (SWB) assembly Ten-Drum Overpack (TDOP)

  5. CH Packaging Operations Manual

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2003-06-26

    Introduction - This procedure provides instructions for assembling the following CH packaging payload: -Drum payload assembly -Standard Waste Box (SWB) assembly -Ten-Drum Overpack (TDOP).

  6. CH Packaging Operations Manual

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-06-13

    This procedure provides instructions for assembling the CH Packaging Drum payload assembly, Standard Waste Box (SWB) assembly, Abnormal Operations and ICV and OCV Preshipment Leakage Rate Tests on the packaging seals, using a nondestructive Helium (He) Leak Test.

  7. CONSTRAINING THE ENVIRONMENT OF CH FORMATION WITH CH

    E-Print Network [OSTI]

    Oka, Takeshi

    CONSTRAINING THE ENVIRONMENT OF CH + FORMATION WITH CH + 3 OBSERVATIONS This article has been reserved. Printed in the U.S.A. CONSTRAINING THE ENVIRONMENT OF CH+ FORMATION WITH CH+ 3 OBSERVATIONS Nick of Illinois at Urbana-Champaign, Urbana, IL 61801, USA 2 Department of Astronomy and Astrophysics

  8. N. Kelley, A. Wright, G. Bir, R. Osgood, E. McKenna, and H. Sutherland, "An Overview of the NREL/SNL Flexible Turbine Characterization Project," 1998 ASME Wind Energy

    E-Print Network [OSTI]

    1 N. Kelley, A. Wright, G. Bir, R. Osgood, E. McKenna, and H. Sutherland, "An Overview of the NREL. AN OVERVIEW OF THE NREL/SNL FLEXIBLE TURBINE CHARACTERIZATION PROJECT* Neil Kelley, Alan Wright, Gunjit Bir an overview and our progress to date of a joint effort of the National Renewable Energy Laboratory (NREL

  9. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-02-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  10. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  11. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-09-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  12. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-09-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  13. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-01-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codesand corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  14. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-11-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  15. CH-TRU Waste Content Codes (CH TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2004-12-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  16. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-12-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  17. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-05-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  18. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-12-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  19. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-01-30

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  20. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-06-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  1. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2004-10-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  2. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-01-18

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  3. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  4. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-06-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  5. CH-TRU Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-10-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  6. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-06-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  7. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  8. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-03-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  9. CH-TRUCON Rev. 21, January 2008

    Office of Environmental Management (EM)

    DOEWIPP 01-3194 Rev. 21 CH-TRU WASTE CONTENT CODES (CH-TRUCON) Revision 21 January 2008 This document supercedes DOEWIPP 01-3194, Revision 20 CH-TRUCON, Rev. 21, January 2008...

  10. Prfungsleitung Master Mathematik Prof. Dr. Ch. Riedtmann

    E-Print Network [OSTI]

    Sola, Rolf Haenni

    CH-3012 Bern Tel. +41 031 631 88 34 christine.riedtmann@math.unibe.ch Sekretariat Tel. +41 031 631 88 Mathematisches Institut, Sidlerstrasse 5, CH-3012 Bern #12;

  11. AT 351 Lab 3: Seasons and Surface Temperature (Ch. 3)

    E-Print Network [OSTI]

    Rutledge, Steven

    an important role in an area's local vertical temperature distribution. Below, Figure 1 shows the verticalAT 351 Lab 3: Seasons and Surface Temperature (Ch. 3) Question #1: Seasons (20 pts) A. In your own words, describe the cause of the seasons. B. In the Northern Hemisphere we are closer to the sun during

  12. 4, 31953227, 2007 Modelling CH4

    E-Print Network [OSTI]

    Boyer, Edmond

    Interactive Discussion EGU 1 Introduction Together with water vapour and carbon dioxide (CO2), CH4, hydrology, soil physical properties, vegetation type and NPP.15 For Kytalyk the simulated CH4 fluxes show

  13. ARM - Datastreams - fullavhrr12ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? We would love to hear from you!ch4Datastreamsecmwfsfc1l DocumentationDatastreamsecmwfvarch2ch4ch2ch4ch2

  14. CH

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &Bradbury Science Museum6 Shares1-0005-000CD .... --

  15. ARM - Datastreams - fullavhrr11ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? We would love to hear from you!ch4Datastreamsecmwfsfc1l DocumentationDatastreamsecmwfvarch2ch4ch2ch4

  16. CH-TRU Waste Content Codes

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2008-01-16

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  17. ARM - Datastreams - avhrr17ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? We would love to hear from you!ch4 Documentation XDC documentation Datalacman Documentation7ch2ch4

  18. ARM - Datastreams - fullavhrr11ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? We would love to hear from you!ch4Datastreamsecmwfsfc1l DocumentationDatastreamsecmwfvarch2ch4ch2

  19. ARM - Datastreams - fullavhrr16ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? We would love to hear from you!ch4Datastreamsecmwfsfc1lch2 Documentation XDC documentation Datach2ch4ch2

  20. ARM - Datastreams - avhrr12ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? We would love to hear from you!ch4 Documentation XDC documentation Data Quality Plots ARM Data2ch2ch4

  1. Independent Oversight Review, Hanford Site CH2M Hill Plateau...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CH2M Hill Plateau Remediation Company - November 2012 Independent Oversight Review, Hanford Site CH2M Hill Plateau Remediation Company - November 2012 November 2012 Review of the...

  2. Prof. Roger Wattenhofer http://www.dcg.ethz.ch

    E-Print Network [OSTI]

    @tik.ee.ethz.ch, ETZ G61.3, · Philipp Sommer: sommer@tik.ee.ethz.ch, ETZ G64.1 · Roger Wattenhofer: wattenhofer

  3. Newport News in Review, ch. 47, segment includes TEDF groundbreaking...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    https:www.jlab.orgnewsarticlesnewport-news-review-ch-47-segment-includes-tedf-groundbreaking-event Newport News in Review, ch. 47, segment includes TEDF groundbreaking event...

  4. Welcome Apro 2015 kommunikation@unibe.ch

    E-Print Network [OSTI]

    Jäger, Gerhard

    .twitter.com/unibern http://www.youtube.com/ unibeweboffice Kommunikation & Marketing Hochschulstrasse 4 3012 Bern Tel. +41 Hochschulstrasse 4 CH-3012 Bern Tel. +41 31 631 80 44 The Communication & Marketing Office assists and advises

  5. Risk management for CAT events Georg Ch. Pflug

    E-Print Network [OSTI]

    Pflug, Georg

    Outline Risk management for CAT events Georg Ch. Pflug 20.5.2005 Georg Ch. Pflug Risk management billion in reconstruction lending. Georg Ch. Pflug Risk management for CAT events #12;Outline Fundamentals, budget reallocation, additional taxation) Georg Ch. Pflug Risk management for CAT events #12;Outline

  6. Translational energy dependence of reaction mechanism: Xe++CH4?XeH++CH3

    E-Print Network [OSTI]

    Miller, G. D.; Strattan, L. W.; Cole, C. L.; Hierl, Peter M.

    1981-01-01

    The dynamics of the exoergic ion–molecule reaction Xe+(CH4,CH3)XeH+ were studied by chemical accelerator techniques over the relative translational energy range 0.2 to 8 eV. Results of the kinematicmeasurements are reported ...

  7. Chemical accelerator studies of reaction dynamics: Ar^+ + CH4 ? ArH^+ + CH3

    E-Print Network [OSTI]

    Wyatt, J. R.; Strattan, L. W.; Snyder, S. C.; Hierl, Peter M.

    1975-01-01

    Chemical accelerator studies on isotopic variants of the reaction Ar+ + CH4 ? ArH+ + CH3 are reported. Velocity and angular distributions of the ionic product as a function of initial translational energy have been measured over the energy range 0...

  8. CO2 CH4 flux Air temperature Soil temperature and Soil moisture, Barrow, Alaska 2013 ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Margaret Torn

    2015-01-14

    This dataset consists of field measurements of CO2 and CH4 flux, as well as soil properties made during 2013 in Areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) measurements of CO2 and CH4 flux made from June to September (ii) Calculation of corresponding Gross Primary Productivity (GPP) and CH4 exchange (transparent minus opaque) between atmosphere and the ecosystem (ii) Measurements of Los Gatos Research (LGR) chamber air temperature made from June to September (ii) measurements of surface layer depth, type of surface layer, soil temperature and soil moisture from June to September.

  9. CO2 CH4 flux Air temperature Soil temperature and Soil moisture, Barrow, Alaska 2013 ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Margaret Torn

    This dataset consists of field measurements of CO2 and CH4 flux, as well as soil properties made during 2013 in Areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) measurements of CO2 and CH4 flux made from June to September (ii) Calculation of corresponding Gross Primary Productivity (GPP) and CH4 exchange (transparent minus opaque) between atmosphere and the ecosystem (ii) Measurements of Los Gatos Research (LGR) chamber air temperature made from June to September (ii) measurements of surface layer depth, type of surface layer, soil temperature and soil moisture from June to September.

  10. ARM - Datastreams - avhrr17ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? We would love to hear from you!ch4 Documentation XDC documentation Datalacman Documentation7ch2

  11. ARM - Datastreams - fullavhrr10ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? We would love to hear from you!ch4Datastreamsecmwfsfc1l DocumentationDatastreamsecmwfvarch2ch4

  12. ARM - Datastreams - fullavhrr15ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? We would love to hear from you!ch4Datastreamsecmwfsfc1lch2 Documentation XDC documentation Datach2ch4

  13. ARM - Datastreams - fullavhrr17ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? We would love to hear from you!ch4Datastreamsecmwfsfc1lch2 Documentation XDC documentationch2ch4

  14. ARM - Datastreams - avhrr10ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? We would love to hear from you! SendDatastreamsaoscpcDatastreamsaossmpsDatastreamsassistch2ch2ch4

  15. ARM - Datastreams - avhrr12ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? We would love to hear from you!ch4 Documentation XDC documentation Data Quality Plots ARM Data2ch2

  16. ARM - Datastreams - avhrr14ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? We would love to hear from you!ch4 Documentation XDC documentation Data Quality Plots ARMlacnau2rad4ch2

  17. ARM - Datastreams - avhrr16ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? We would love to hear from you!ch4 Documentation XDC documentation Data Quality4radgacnau6ch4

  18. ChEAS Data: The Chequamegon Ecosystem Atmosphere Study

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Davis, Kenneth J. [Penn State

    The Chequamegon Ecosystem-Atmosphere Study (ChEAS) is a multi-organizational research effort studying biosphere/atmosphere interactions within a northern mixed forest in Northern Wisconsin. A primary goal is to understand the processes controlling forest-atmosphere exchange of carbon dioxide and the response of these processes to climate change. Another primary goal is to bridge the gap between canopy-scale flux measurements and the global CO2 flask sampling network. The ChEAS flux towers participate in AmeriFlux, and the region is an EOS-validation site. The WLEF tower is a NOAA-CMDL CO2 sampling site. ChEAS sites are primarily located within or near the Chequamegon-Nicolet National Forest in northern Wisconsin, with one site in the Ottawa National Forest in the upper peninsula of Michigan. Current studies observe forest/atmosphere exchange of carbon dioxide at canopy and regional scales, forest floor respiration, photosynthesis and transpiration at the leaf level and use models to scale to canopy and regional levels. EOS-validation studies quantitatively assess the land cover of the area using remote sensing and conduct extensive ground truthing of new remote sensing data (i.e. ASTER and MODIS). Atmospheric remote sensing work is aimed at understanding atmospheric boundary layer dynamics, the role of entrainment in regulating the carbon dioxide mixing ratio profiles through the lower troposphere, and feedback between boundary layer dynamics and vegetation (especially via the hydrologic cycle). Airborne studies have included include balloon, kite and aircraft observations of the CO2 profile in the troposphere.

  19. A SCORM-Conformant LMS Ch. Bouras,

    E-Print Network [OSTI]

    A SCORM-Conformant LMS Ch. Bouras, Computer Engineering and Informatics Dept., Univ. of Patras tsiatsos@cti.gr Abstract: In this paper we propose a sample Learning Management System (LMS) that will be conformant with the SCORM v1.3 Specification. In particular, the sample LMS we propose will make use of both

  20. Effect of antisymmetric C–H stretching excitation on the dynamics of O({sup 1}D) + CH{sub 4} ? OH + CH{sub 3}

    SciTech Connect (OSTI)

    Pan, Huilin; Yang, Jiayue; Zhang, Dong; Shuai, Quan; Jiang, Bo [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China)] [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Dai, Dongxu; Wu, Guorong, E-mail: wugr@dicp.ac.cn, E-mail: xmyang@dicp.ac.cn; Yang, Xueming, E-mail: wugr@dicp.ac.cn, E-mail: xmyang@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China) [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-04-21

    The effect of antisymmetric C–H stretching excitation of CH{sub 4} on the dynamics and reactivity of the O({sup 1}D) + CH{sub 4} ? OH + CD{sub 3} reaction at the collision energy of 6.10 kcal/mol has been investigated using the crossed-beam and time-sliced velocity map imaging techniques. The antisymmetric C–H stretching mode excited CH{sub 4} molecule was prepared by direct infrared excitation. From the measured images of the CH{sub 3} products with the infrared laser on and off, the product translational energy and angular distributions were derived for both the ground and vibrationally excited reactions. Experimental results show that the vibrational energy of the antisymmetric stretching excited CH{sub 4} reagent is channeled exclusively into the vibrational energy of the OH co-products and, hence, the OH products from the excited-state reaction are about one vibrational quantum hotter than those from the ground-state reaction, and the product angular distributions are barely affected by the vibrational excitation of the CH{sub 4} reagent. The reactivity was found to be suppressed by the antisymmetric stretching excitation of CH{sub 4} for all observed CH{sub 3} vibrational states. The degree of suppression is different for different CH{sub 3} vibrational states: the suppression is about 40%–60% for the ground state and the umbrella mode excited CH{sub 3} products, while for the CH{sub 3} products with one quantum symmetric stretching mode excitation, the suppression is much less pronounced. In consequence, the vibrational state distribution of the CH{sub 3} product from the excited-state reaction is considerably different from that of the ground-state reaction.

  1. Microsoft Word - CH1311-11 CH2M HILL Awards $1B to Small Businesses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    price. Since receiving the contract in 2008, CH2M HILL awarded more than 1 billion in contracts to small businesses, representing 28 percent of the contract price to-date. Of...

  2. Turbulence and combustion interaction: High resolution local flame front structure visualization using simultaneous single-shot PLIF imaging of CH, OH, and CH{sub 2}O in a piloted premixed jet flame

    SciTech Connect (OSTI)

    Li, Z.S.; Li, B.; Sun, Z.W.; Alden, M. [Division of Combustion Physics, Lund University, P.O. Box 118, S-221 00 Lund (Sweden); Bai, X.S. [Division of Fluid Mechanics, Lund University, P.O. Box 118, S-221 00 Lund (Sweden)

    2010-06-15

    High resolution planar laser-induced fluorescence (PLIF) was applied to investigate the local flame front structures of turbulent premixed methane/air jet flames in order to reveal details about turbulence and flame interaction. The targeted turbulent flames were generated on a specially designed coaxial jet burner, in which low speed stoichiometric gas mixture was fed through the outer large tube to provide a laminar pilot flame for stabilization of the high speed jet flame issued through the small inner tube. By varying the inner tube flow speed and keeping the mixture composition as that of the outer tube, different flames were obtained covering both the laminar and turbulent flame regimes with different turbulent intensities. Simultaneous CH/CH{sub 2}O, and also OH PLIF images were recorded to characterize the influence of turbulence eddies on the reaction zone structure, with a spatial resolution of about 40 {mu}m and temporal resolution of around 10 ns. Under all experimental conditions, the CH radicals were found to exist only in a thin layer; the CH{sub 2}O were found in the inner flame whereas the OH radicals were seen in the outer flame with the thin CH layer separating the OH and CH{sub 2}O layers. The outer OH layer is thick and it corresponds to the oxidation zone and post-flame zone; the CH{sub 2}O layer is thin in laminar flows; it becomes broad at high speed turbulent flow conditions. This phenomenon was analyzed using chemical kinetic calculations and eddy/flame interaction theory. It appears that under high turbulence intensity conditions, the small eddies in the preheat zone can transport species such as CH{sub 2}O from the reaction zones to the preheat zone. The CH{sub 2}O species are not consumed in the preheat zone due to the absence of H, O, and OH radicals by which CH{sub 2}O is to be oxidized. The CH radicals cannot exist in the preheat zone due to the rapid reactions of this species with O{sub 2} and CO{sub 2} in the inner-layer of the reaction zones. The local PLIF intensities were evaluated using an area integrated PLIF signal. Substantial increase of the CH{sub 2}O signal and decrease of CH signal was observed as the jet velocity increases. These observations raise new challenges to the current flamelet type models. (author)

  3. Internal RTI Program Terms Revised: CH 02232015 Page 1

    E-Print Network [OSTI]

    Michelson, David G.

    Internal RTI Program Terms Revised: CH 02232015 Page 1 Office of Research Services Phone: (250) 807;Internal RTI Program Terms Revised: CH 02232015 Page 2 Applications (free form) must include the following

  4. Latest 200 Area Demolition Offers Snapshot of Hanford Cleanup...

    Broader source: Energy.gov (indexed) [DOE]

    two Power Houses, which burned coal to provide power and heat for the plutoniumprocessing plants in Hanford's 200 Area, have been idle since the mid-90s. They were added to CH2M...

  5. ARM - Datastreams - fullavhrr10ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? We would love to hear from you!ch4Datastreamsecmwfsfc1l DocumentationDatastreamsecmwfvarch2

  6. ARM - Datastreams - fullavhrr12ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? We would love to hear from you!ch4Datastreamsecmwfsfc1l

  7. ARM - Datastreams - fullavhrr14ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? We would love to hear from you!ch4Datastreamsecmwfsfc1lch2 Documentation XDC documentation Data Quality

  8. ARM - Datastreams - fullavhrr14ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? We would love to hear from you!ch4Datastreamsecmwfsfc1lch2 Documentation XDC documentation Data

  9. ARM - Datastreams - fullavhrr15ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? We would love to hear from you!ch4Datastreamsecmwfsfc1lch2 Documentation XDC documentation Datach2

  10. ARM - Datastreams - fullavhrr16ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? We would love to hear from you!ch4Datastreamsecmwfsfc1lch2 Documentation XDC documentation

  11. ARM - Datastreams - fullavhrr17ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? We would love to hear from you!ch4Datastreamsecmwfsfc1lch2 Documentation XDC documentationch2

  12. ARM - Datastreams - avhrr10ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? We would love to hear from you! SendDatastreamsaoscpcDatastreamsaossmpsDatastreamsassistch2ch2

  13. ARM - Datastreams - avhrr11ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? We would love to hear from you!ch4 Documentation XDC documentation Data Quality Plots ARM Data Discovery

  14. ARM - Datastreams - avhrr14ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? We would love to hear from you!ch4 Documentation XDC documentation Data Quality Plots

  15. ARM - Datastreams - avhrr15ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? We would love to hear from you!ch4 Documentation XDC documentation Data Quality4rad Documentation

  16. ARM - Datastreams - avhrr15ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? We would love to hear from you!ch4 Documentation XDC documentation Data Quality4rad Documentationch4

  17. ARM - Datastreams - avhrr16ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? We would love to hear from you!ch4 Documentation XDC documentation Data Quality4radgacnau6

  18. Central Characterization Program (CCP) Contact-Handled (CH) TRU...

    Office of Environmental Management (EM)

    and Waste Information SystemWaste Data System (WWISWDS) Data Entry Central Characterization Program (CCP) Contact-Handled (CH) TRU Waste Certification and Waste Information...

  19. CH2D+, the Search for the Holy Grail

    E-Print Network [OSTI]

    Roueff, E; Lis, D C; Wootten, A; Marcelino, N; cernicharo, J; Tercero, B

    2013-01-01

    CH2D+, the singly deuterated counterpart of CH3+, offers an alternative way to mediate formation of deuterated species at temperatures of several tens of K, as compared to the release of deuterated species from grains. We report a longstanding observational search for this molecular ion, whose rotational spectroscopy is not yet completely secure. We summarize the main spectroscopic properties of this molecule and discuss the chemical network leading to the formation of CH2D+, with explicit account of the ortho/para forms of H2, H3+ and CH3+. Astrochemical models support the presence of this molecular ion in moderately warm environments at a marginal level.

  20. Top-down methane emissions estimates for the San Francisco Bay Area from 1990 to 2012

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fairley, David; Fischer, Marc L.

    2015-01-30

    Methane is a potent greenhouse gas (GHG) that is now included in both California State and San Francisco Bay Area (SFBA) bottom-up emission inventories as part of California's effort to reduce anthropogenic GHG emissions. Here we provide a top-down estimate of methane (CH4) emissions from the SFBA by combining atmospheric measurements with the comparatively better estimated emission inventory for carbon monoxide (CO). Local enhancements of CH4 and CO are estimated using measurements from 14 air quality sites in the SFBA combined together with global background measurements. Mean annual CH4 emissions are estimated from the product of Bay Area Air Qualitymore »Management District (BAAQMD) emission inventory CO and the slope of ambient local CH4 to CO. The resulting top-down estimates of CH4 emissions are found to decrease slightly from 1990 to 2012, with a mean value of 240 ± 60 GgCH4 yr?¹ (at 95% confidence) in the most recent (2009–2012) period, and correspond to reasonably a constant factor of 1.5–2.0 (at 95% confidence) times larger than the BAAQMD CH4 emission inventory. However, we note that uncertainty in these emission estimates is dominated by the variation in CH4:CO enhancement ratios across the observing sites and we expect the estimates could represent a lower-limit on CH4 emissions because BAAQMD monitoring sites focus on urban air quality and may be biased toward CO rather than CH4 sources.« less

  1. Capturing fleeting intermediates in a catalytic CH amination reaction cycle

    E-Print Network [OSTI]

    Zare, Richard N.

    for the mechanistic study of catalytic processes. mass spectrometry | transient intermediates | C­H oxidation | catalysis Catalytic methods for selective C­H oxidation rely on the exquisite choreography of a series oxidant (4, 5, 11). The fast rates of the on- and off-path steps in this catalytic process

  2. Approved Module Information for CH3117, 2014/5 Module Title/Name: Literature Research Project Module Code: CH3117

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Approved Module Information for CH3117, 2014/5 Module Title/Name: Literature Research Project Module Code: CH3117 School: Engineering and Applied Science Module Type: Standard Module New Module? No Module Credits: 10 Module Management Information Module Leader Name Andrew James Sutherland Email Address

  3. Perspective on the reactions between F and CH3CH2F: The free energy landscape of the

    E-Print Network [OSTI]

    Nielsen, Steven O.

    Perspective on the reactions between F and CH3CH2F: The free energy landscape of the E2 and SN2, 2004) Recently, we computed the 3D free energy surface of the base- induced elimination reaction by the exploration of the six-dimensional free energy landscape, sampling, and mapping out the eight stable states

  4. Population SAMC, ChIP-chip Data Analysis and Beyond 

    E-Print Network [OSTI]

    Wu, Mingqi

    2011-02-22

    This dissertation research consists of two topics, population stochastics approximation Monte Carlo (Pop-SAMC) for Baysian model selection problems and ChIP-chip data analysis. The following two paragraphs give a brief introduction to each...

  5. Revised 6/5/13 CH369: Fundamentals of Biochemistry

    E-Print Network [OSTI]

    1 Revised 6/5/13 CH369: Fundamentals of Biochemistry Summer 2013 Syllabus and Course Policies What is biochemistry? Biochemistry is a branch of science biochemistry is its own distinctive discipline with regard to its emphasis

  6. Revised 9/28/2011 CH369: Fundamentals of Biochemistry

    E-Print Network [OSTI]

    1 Revised 9/28/2011 CH369: Fundamentals of Biochemistry Spring 2012 Syllabus and Course Policies What is biochemistry? Study of the structure and properties down. "Organic chemistry is the chemistry of carbon compounds. Biochemistry

  7. Understanding mechanisms for C-H bond activation 

    E-Print Network [OSTI]

    Vastine, Benjamin Alan

    2009-05-15

    The results from density functional theory (DFT) studies into C–H bond activation, hydrogen transfer, and alkyne–to–vinylidene isomerization are presented in this work. The reaction mechanism for the reductive elimination ...

  8. Analysis of the mouse embryonic stem cell regulatory networks obtained by ChIP-chip and ChIP-PET

    E-Print Network [OSTI]

    Mathur, Divya

    Background: Genome-wide approaches have begun to reveal the transcriptional networks responsible for pluripotency in embryonic stem (ES) cells. Chromatin Immunoprecipitation (ChIP) followed either by hybridization to a ...

  9. 140 P. L. WALKER,JR.,J. I?. RAICSZAWSKIAND G. R. IMPERIAL Vol. 63 surface area (0.8 m."g.) as compared to that of the

    E-Print Network [OSTI]

    surface areas of the carbons show tl maxiinurn in the teni- perature range of ea. 500 to 576'. The atomic C-H ratio of the cnrboiis is found to increase monoton- ically with increasing formation- linity, surface area and C-H ratio. The properties of the carbon are found to be affected by the amount

  10. Rhodium-Catalyzed C-C Bond Formation via Heteroatom-Directed C-H Bond Activation

    SciTech Connect (OSTI)

    Colby, Denise; Bergman, Robert; Ellman, Jonathan

    2010-05-13

    Once considered the 'holy grail' of organometallic chemistry, synthetically useful reactions employing C-H bond activation have increasingly been developed and applied to natural product and drug synthesis over the past decade. The ubiquity and relative low cost of hydrocarbons makes C-H bond functionalization an attractive alternative to classical C-C bond forming reactions such as cross-coupling, which require organohalides and organometallic reagents. In addition to providing an atom economical alternative to standard cross - coupling strategies, C-H bond functionalization also reduces the production of toxic by-products, thereby contributing to the growing field of reactions with decreased environmental impact. In the area of C-C bond forming reactions that proceed via a C-H activation mechanism, rhodium catalysts stand out for their functional group tolerance and wide range of synthetic utility. Over the course of the last decade, many Rh-catalyzed methods for heteroatom-directed C-H bond functionalization have been reported and will be the focus of this review. Material appearing in the literature prior to 2001 has been reviewed previously and will only be introduced as background when necessary. The synthesis of complex molecules from relatively simple precursors has long been a goal for many organic chemists. The ability to selectively functionalize a molecule with minimal pre-activation can streamline syntheses and expand the opportunities to explore the utility of complex molecules in areas ranging from the pharmaceutical industry to materials science. Indeed, the issue of selectivity is paramount in the development of all C-H bond functionalization methods. Several groups have developed elegant approaches towards achieving selectivity in molecules that possess many sterically and electronically similar C-H bonds. Many of these approaches are discussed in detail in the accompanying articles in this special issue of Chemical Reviews. One approach that has seen widespread success involves the use of a proximal heteroatom that serves as a directing group for the selective functionalization of a specific C-H bond. In a survey of examples of heteroatom-directed Rh catalysis, two mechanistically distinct reaction pathways are revealed. In one case, the heteroatom acts as a chelator to bind the Rh catalyst, facilitating reactivity at a proximal site. In this case, the formation of a five-membered metallacycle provides a favorable driving force in inducing reactivity at the desired location. In the other case, the heteroatom initially coordinates the Rh catalyst and then acts to stabilize the formation of a metal-carbon bond at a proximal site. A true test of the utility of a synthetic method is in its application to the synthesis of natural products or complex molecules. Several groups have demonstrated the applicability of C-H bond functionalization reactions towards complex molecule synthesis. Target-oriented synthesis provides a platform to test the effectiveness of a method in unique chemical and steric environments. In this respect, Rh-catalyzed methods for C-H bond functionalization stand out, with several syntheses being described in the literature that utilize C-H bond functionalization in a key step. These syntheses are highlighted following the discussion of the method they employ.

  11. CH4 sources estimated from atmospheric observations of CH4 and its C isotopic ratios: 1. Inverse modeling of source processes

    E-Print Network [OSTI]

    Fletcher, Sara E. Mikaloff

    , coal mining, biomass burning, and landfills. CH4 is also produced naturally by anaerobic bacteria in wetlands, dry tundra, and termites. The oceans evolve CH4 from anaerobic bacteria in surface waters, fossil

  12. Ch. III, Interpretation of water sample analyses Waunita Hot Springs area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR Jump to:RAPIDCavalloCerion Energy Inc JumpOpen

  13. Chung Qui Ch T i Cantor Ng Quang Hng

    E-Print Network [OSTI]

    Ngo, Hung Q.

    USD [20] và danh ti ng i vào l ch s khoa h c. Cng nh bài toán Fermat l n, b n thân câu tr l i cho bài này [11], thách hn n a th k nghiên c u c a các 1 #12;k s và khoa h c gia hàng u. Ng c l i, cng không

  14. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen Generation |Publications TheGashome /Areas Research Areas

  15. Enantioselective nickel catalysis : exploiting activated C-H bonds

    E-Print Network [OSTI]

    Bencivenga, Nicholas Ernest

    2012-01-01

    A method for the nickel-catalyzed cross-coupling between benzoxazole and secondary halides was explored. This method was to make use of the activated C-H bond found in benzoxazole at the 2-position to generate the nucleophilic ...

  16. Ch.2 Solar Energy to Earth and the Seasons

    E-Print Network [OSTI]

    Pan, Feifei

    Ch.2 Solar Energy to Earth and the Seasons #12;Learning Objective One: The Solar System #12;Milky Aphelion ­ farthest, on July 4 152,083,000 km #12;Learning Objective Two: The Solar Energy #12;What is Solar Energy? Energy is the capacity of a physical system to do work. The unit is Joule (J). Solar

  17. People's Physics Book Ch 20-1 The Big Ideas

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    People's Physics Book Ch 20-1 The Big Ideas Einstein believed that the laws of physics do of physics. In other words, if you are on a moving train and drop a ball or if you are standing on a farm and drop a ball, the physics that describe the motion of that ball will be the same. Einstein realized

  18. Revised 5/23/2012 CH369: Fundamentals of Biochemistry

    E-Print Network [OSTI]

    1 Revised 5/23/2012 CH369: Fundamentals of Biochemistry Summer 2012 Unique #90770: 10:00-11:30 am in WEL 2.246 Syllabus and Course Policies What is biochemistry is the chemistry of carbon compounds. Biochemistry is the study of carbon compounds

  19. Molecular Dynamics of Methanol Monocation (CH3OH+ ) in Strong

    E-Print Network [OSTI]

    Schlegel, H. Bernhard

    Molecular Dynamics of Methanol Monocation (CH3OH+ ) in Strong Laser Fields Bishnu Thapa and H surfaces of methanol neutral, monocation, and singlet and triplet dication were explored using the CBS in the presence of a 2.9 × 1014 W/cm2 800 nm laser field for methanol monocation on the ground state potential

  20. ChE 210A M. F. Doherty Thermodynamics

    E-Print Network [OSTI]

    Bigelow, Stephen

    ChE 210A M. F. Doherty Thermodynamics Instructor: Michael F. Doherty (mfd@engineering.ucsb.edu, 893 is an introduction to the fundamentals of classical and statistical thermodynamics. We focus on equilibrium are formulated using either classical or statistical thermodynamics, and these methods have found wide

  1. People's Physics book Ch 2-1 The Big Idea

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    People's Physics book Ch 2-1 The Big Idea Energy is a measure of the amount of, or potential for, dynamical activity in something. The total amount of energy in the universe is always the same universe. A group of things (we'll use the word system) has a certain amount of energy. Energy can be added

  2. People's Physics Book Ch 5-1 The Big Idea

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    People's Physics Book Ch 5-1 The Big Idea Acceleration is caused by force. All forces come in pairs of two bodies upon each other are always equal, and directed to contrary parts. Key Concepts · An object pairs must obey three rules: they must be of the same type of force, 1 Principia in modern English

  3. Seismic Tomography: Definitions Lapo Boschi (lapo@erdw.ethz.ch)

    E-Print Network [OSTI]

    Boschi, Lapo

    Seismic Tomography: Definitions Lapo Boschi (lapo@erdw.ethz.ch) September 14, 2009 Seismic Tomography Seismic tomography is the science of interpreting seismic measurements (seismograms) to derive information about the structure of the Earth. This course does not cover the techniques of seismic observation

  4. CO2 and CH4 Fluxes across Polygon Geomorphic Types, Barrow, Alaska, 2006-2010

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Tweedie,Craig; Lara, Mark

    2014-09-17

    Carbon flux data are reported as Net Ecosystem Exchange (NEE), Gross Ecosystem Exchange (GEE), Ecosystem Respiration (ER), and Methane (CH4) flux. Measurements were made at 82 plots across various polygon geomorphic classes at research sites on the Barrow Environmental Observatory (BEO), the Biocomplexity Experiment site on the BEO, and the International Biological Program (IBP) site a little west of the BEO. This product is a compilation of data from 27 plots as presented in Lara et al. (2012), data from six plots presented in Olivas et al. (2010); and from 49 plots described in (Lara et al. 2014). Measurements were made during the peak of the growing seasons during 2006 to 2010. At each of the measurement plots (except Olivas et al., 2010) four different thicknesses of shade cloth were used to generate CO2 light response curves. Light response curves were used to normalize photosynthetically active radiation that is diurnally variable to a peak growing season average ~400 umolm-2sec-1. At the Olivas et al. (2010) plots, diurnal patterns were characterized by repeated sampling. CO2 measurements were made using a closed-chamber photosynthesis system and CH4 measurements were made using a photo-acoustic multi-gas analyzer. In addition, plot-level measurements for thaw depth (TD), water table depth (WTD), leaf area index (LAI), and normalized difference vegetation index (NDVI) are summarized by geomorphic polygon type.

  5. CO2 and CH4 Fluxes across Polygon Geomorphic Types, Barrow, Alaska, 2006-2010

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Tweedie,Craig; Lara, Mark

    Carbon flux data are reported as Net Ecosystem Exchange (NEE), Gross Ecosystem Exchange (GEE), Ecosystem Respiration (ER), and Methane (CH4) flux. Measurements were made at 82 plots across various polygon geomorphic classes at research sites on the Barrow Environmental Observatory (BEO), the Biocomplexity Experiment site on the BEO, and the International Biological Program (IBP) site a little west of the BEO. This product is a compilation of data from 27 plots as presented in Lara et al. (2012), data from six plots presented in Olivas et al. (2010); and from 49 plots described in (Lara et al. 2014). Measurements were made during the peak of the growing seasons during 2006 to 2010. At each of the measurement plots (except Olivas et al., 2010) four different thicknesses of shade cloth were used to generate CO2 light response curves. Light response curves were used to normalize photosynthetically active radiation that is diurnally variable to a peak growing season average ~400 umolm-2sec-1. At the Olivas et al. (2010) plots, diurnal patterns were characterized by repeated sampling. CO2 measurements were made using a closed-chamber photosynthesis system and CH4 measurements were made using a photo-acoustic multi-gas analyzer. In addition, plot-level measurements for thaw depth (TD), water table depth (WTD), leaf area index (LAI), and normalized difference vegetation index (NDVI) are summarized by geomorphic polygon type.

  6. Vibrational relaxation of CH3I in the gas phase and in solution

    E-Print Network [OSTI]

    Elles, Christopher G.; Cox, M. Jocelyn; Crim, F. Fleming

    2004-03-30

    Transient electronic absorption measurements reveal the vibrational relaxation dynamics of CH(3)I following excitation of the C–H stretch overtone in the gas phase and in liquid solutions. The isolated molecule relaxes through two stages...

  7. Stoichiometry of CH4 and CO2 flux in a California Rice Paddy

    E-Print Network [OSTI]

    McMillan, Andrew M. S.; Goulden, Michael L.; Tyler, Stanley C.

    2007-01-01

    relationships between NEP, NPP and CH 4 emissions wouldfluxes of CH 4 and/or NEP. [ 7 ] Simultaneous measurements4.5% to 5.6% of preharvest NEP). During the growing season

  8. Quantitative Visualization of ChIP-chip Data by Using Linked...

    Office of Scientific and Technical Information (OSTI)

    Quantitative Visualization of ChIP-chip Data by Using Linked Views Citation Details In-Document Search Title: Quantitative Visualization of ChIP-chip Data by Using Linked Views...

  9. Voluntary Protection Program Onsite Review, CH2M HILL B&W West...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CH2M HILL B&W West Valley LLC, West Valley Demonstration Project - October 2013 Voluntary Protection Program Onsite Review, CH2M HILL B&W West Valley LLC, West Valley Demonstration...

  10. Theoretical Studies of the sp2 C-H Bond Activation

    E-Print Network [OSTI]

    Burke, Kieron

    -picoline C-H activation chemistry is proceeded by -bond metathesis for both the thorium and uranium (C5Me5Theoretical Studies of the sp2 versus sp3 C-H Bond Activation Chemistry of 2-Picoline by (C5Me5)2An activation chemistry of (C5Me5)2Th(CH3)2 and (C5Me5)2U(CH3)2 with 2-picoline (2- methylpyridine) is examined

  11. Palladium-Catalysed CH Activation of Aliphatic Amines! to give Strained Nitrogen Heterocycles !

    E-Print Network [OSTI]

    Jackson, Sophie

    Palladium-Catalysed C­H Activation of Aliphatic Amines! to give Strained Nitrogen Heterocycles. The University of Cambridge, Lensfield Road, Cambridge, CB2 1EW.! Palladium-Catalyzed C­H Activation Modes cyclopalladation complex N H palladium catalyst directed C­H activation oxidant C­Pd functionalization 4-membered

  12. MODELING THE EMISSIONS OF NITROUS OXIDE (N20) AND METHANE (CH 4) FROM THE

    E-Print Network [OSTI]

    MODELING THE EMISSIONS OF NITROUS OXIDE (N20) AND METHANE (CH 4) FROM THE TERRESTRIAL BIOSPHERE;2 #12;MODELING THE EMISSIONS OF NITROUS OXIDE (N 20) AND METHANE (CH 4) FROM THE TERRESTRIAL BIOSPHERE cli- mate has on natural emissions of N2 0 and CH4 from the terrestrial biosphere to the atmosphere

  13. Modes of Activation of Organometallic Iridium Complexes for Catalytic Water and C-H Oxidation

    E-Print Network [OSTI]

    Zare, Richard N.

    Modes of Activation of Organometallic Iridium Complexes for Catalytic Water and C-H Oxidation - ) or (cod)IrI (cod = cyclooctadiene) complexes, which are water and C-H oxidation catalyst precursors. Extensive oxidation of the Cp* ligand is observed, likely beginning with electrophilic C-H hydroxylation

  14. 2001 by M. Kosticwww.kostic.niu.edu Ch.3: Measurement System Behavior

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    1 ©2001 by M. Kosticwww.kostic.niu.edu Ch.3: Measurement System Behavior · Ch.3: Measurement System) · Magnitude ratio (2nd O.S.) · Phase shift (2nd O.S.) · 2nd Order System (MathCAD) · The End ©2001 by M. Kosticwww.kostic.niu.edu Ch.3:MeasurementSystem Behavior #12;2 ©2001 by M. Kosticwww

  15. A first principles study of CH 3 dehydrogenation on Ni(111) A. Michaelides and P. Hu

    E-Print Network [OSTI]

    Alavi, Ali

    step in funda- mental catalytic processes such as steam reforming and methanation. It is also); 10.1063/1.3297885 The internal energy of CO 2 produced by the catalytic oxidation of CH 3 OH by O 2 on Ni 111 , a crucial step in many important catalytic reactions. The reaction, CH3 ads CH2 ads H ads

  16. Volume 2, Chapter 1: A General Discussion on Construction of Ch'in

    E-Print Network [OSTI]

    Binkley, Jim

    to explain these mysteries in successive order starting from selecting materials, to construction, to repairs) ch'in handbook 7 . Nowadays these ch'in are seldom seen. Also if one examines all of the ch'in handbooks it is rare that one will find anything about construction. Some of them occasionally will mention

  17. Liu UCD Phy9B 07 1 Ch 35. Interference

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    Liu UCD Phy9B 07 1 Ch 35. Interference #12;Liu UCD Phy9B 07 2 35-1. Interference & Coherence #12;Liu UCD Phy9B 07 4 35-2. Two Source Interference of Light Thomas Young's experiment (1800... Spacing between adjacent maxima /minima: R/d (R>>d, R>>ym) #12;Liu UCD Phy9B 07 6 35-3. Intensity

  18. Excitation functions for the reactions of Ar^+ with CH4, CD4, and CH2D2

    E-Print Network [OSTI]

    Wyatt, J. R.; Strattan, L. W.; Chivalak, S.; Hierl, Peter M.

    1975-01-01

    )-(3) are plotted in Figs. 6 and 7. It was found that the over-all shape of the excitation functions for Reactions (1)-(3) could be described rea­ sonably well (sQe Figs. 6 and 7) by a simple expreSSion of the general form {o if E"'Eo uR(E)= A(E_Eo)Be_C(E-EO... to IP: 129.237.46.100 On: Mon, 15 Sep 2014 13:25:50 Wyatt, Strattan, Chivalak, and Hierl: Reactions of Ar+ with CH4 , CD4 , and CH2 D2 4589 (0) 0.25 0 0 C\\l E u <:e I 0 cr b (b) C\\l E u <:e I Q cr b 0.15 0.0 o. FIG. 7. Integral...

  19. Decomposition and vibrational relaxation in CH{sub 3}I and self-reaction of CH{sub 3} radicals.

    SciTech Connect (OSTI)

    Yang, X.; Goldsmith, C. F.; Tranter, R. S.

    2009-07-01

    Vibrational relaxation and dissociation of CH{sub 3}I, 2-20% in krypton, have been investigated behind incident shock waves in a diaphragmless shock tube at 20, 66, 148, and 280 Torr and 630-2200 K by laser schlieren densitometry. The effective collision energy obtained from the vibrational relaxation experiments has a small, positive temperature dependence, {Delta}E{sub down} = 63 x (T/298){sup 0.56} cm{sup -1}. First-order rate coefficients for dissociation of CH{sub 3}I show a strong pressure dependence and are close to the low-pressure limit. Restricted-rotor Gorin model RRKM calculations fit the experimental results very well with {Delta}E{sub down} = 378 x (T/298){sup 0.457} cm{sup -1}. The secondary chemistry of this reaction system is dominated by reactions of methyl radicals and the reaction of the H atom with CH{sub 3}I. The results of the decomposition experiments are very well simulated with a model that incorporates methyl recombination and reactions of methylene. Second-order rate coefficients for ethane dissociation to two methyl radicals were derived from the experiments and yield k = (4.50 {+-} 0.50) x 10{sup 17} exp(-32709/T) cm{sup 3} mol{sup -1} s{sup -1}, in good agreement with previous measurements. Rate coefficients for H + CH{sub 3}I were also obtained and give k = (7.50 {+-} 1.0) x 10{sup 13} exp(-601/T) cm{sup 3} mol{sup -1} s{sup -1}, in reasonable agreement with a previous experimental value.

  20. Role of impact parameter in branching reactions: Chemical accelerator studies of the reaction Xe++CH4?XeCH3 ++H

    E-Print Network [OSTI]

    Miller, G. D.; Strattan, L. W.; Hierl, Peter M.

    1981-01-01

    Integral reaction cross sections and product velocity distributions have been measured for the ion–molecule reaction Xe+(CH4,H)XeCH3 + over the relative reactant translational energy range of 0.7–5.5 eV by chemical accelerator ...

  1. Approved Module Information for CH3102, 2014/5 Module Title/Name: Advances in Biomaterials Science Module Code: CH3102

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Approved Module Information for CH3102, 2014/5 Module Title/Name: Advances in Biomaterials Science Module Code: CH3102 School: Engineering and Applied Science Module Type: Standard Module New Module? No Module Credits: 10 Module Management Information Module Leader Name Brian J Tighe Email Address tighebj

  2. Selectivity of chemisorbed oxygen in CH bond activation and CO oxidation and kinetic consequences for CH4O2 catalysis on Pt and Rh clusters

    E-Print Network [OSTI]

    Iglesia, Enrique

    Available online 12 August 2011 Keywords: CH4 Catalytic partial oxidation Methane combustion Platinum, thus confirming that direct catalytic partial oxidation of CH4 to CO (and H2) does not occur the sequential reforming steps. Ó 2011 Elsevier Inc. All rights reser

  3. On the Interaction of Methyl Azide (CH3N3) Ices with Ionizing Radiation: Formation of Methanimine (CH2NH), Hydrogen Cyanide (HCN), and Hydrogen Isocyanide (HNC)

    E-Print Network [OSTI]

    Kaiser, Ralf I.

    On the Interaction of Methyl Azide (CH3N3) Ices with Ionizing Radiation: Formation of Methanimine in solar system analogue ices. Introduction Methyl azide (CH3N3) is an organic compound suggested to be present in Titan's atmosphere.1 To date, the Voyager Infrared Radiometer and Infrared Spectrometer (IRIS

  4. A Single Transition State Serves Two Mechanisms. The Branching Ratio for CH2O-+ CH3Cl on Improved Potential Energy Surfaces

    E-Print Network [OSTI]

    Schlegel, H. Bernhard

    for this reaction has been studied by ab initio molecular dynamics (AIMD). The energies of transition states change of the potential energy surface around the transition state may vary the branching ratioA Single Transition State Serves Two Mechanisms. The Branching Ratio for CH2O·- + CH3Cl on Improved

  5. ChBE 3130 Chemical Engineering Thermodynamics II (required course) Note: This course was previously numbered 3110

    E-Print Network [OSTI]

    Sherrill, David

    ChBE 3130 Chemical Engineering Thermodynamics II (required course) Note: This course was previously numbered 3110 Credit: 3-0-3 Instructor: Carson Meredith Textbook: Introduction to Chemical Engineering Principles (ChBE 2100), Numerical Methods (ChBE 2120), and Chemical Engineering Thermodynamics I (ChBE 2130

  6. Methanogenic Conversion of CO2 Into CH4

    SciTech Connect (OSTI)

    Stevens, S.H., Ferry, J.G., Schoell, M.

    2012-05-06

    This SBIR project evaluated the potential to remediate geologic CO2 sequestration sites into useful methane gas fields by application of methanogenic bacteria. Such methanogens are present in a wide variety of natural environments, converting CO2 into CH4 under natural conditions. We conclude that the process is generally feasible to apply within many of the proposed CO2 storage reservoir settings. However, extensive further basic R&D still is needed to define the precise species, environments, nutrient growth accelerants, and economics of the methanogenic process. Consequently, the study team does not recommend Phase III commercial application of the technology at this early phase.

  7. Manganese Porphyrins Catalyze Selective C-H Bond Halogenations

    SciTech Connect (OSTI)

    Liu, Wei; Groves, John T

    2010-01-01

    We report a manganese porphyrin mediated aliphatic C?H bond chlorination using sodium hypochlorite as the chlorine source. In the presence of catalytic amounts of phase transfer catalyst and manganese porphyrin Mn(TPP)Cl 1, reaction of sodium hypochlorite with different unactivated alkanes afforded alkyl chlorides as the major products with only trace amounts of oxygenation products. Substrates with strong C?H bonds, such as neopentane (BDE =?100 kcal/mol) can be also chlorinated with moderate yield. Chlorination of a diagnostic substrate, norcarane, afforded rearranged products indicating a long-lived carbon radical intermediate. Moreover, regioselective chlorination was achieved by using a hindered catalyst, Mn(TMP)Cl, 2. Chlorination of trans-decalin with 2 provided 95% selectivity for methylene-chlorinated products as well as a preference for the C2 position. This novel chlorination system was also applied to complex substrates. With 5?-cholestane as the substrate, we observed chlorination only at the C2 and C3 positions in a net 55% yield, corresponding to the least sterically hindered methylene positions in the A-ring. Similarly, chlorination of sclareolide afforded the equatorial C2 chloride in a 42% isolated yield. Regarding the mechanism, reaction of sodium hypochlorite with the Mn{sup III} porphyrin is expected to afford a reactive Mn{sup V}?O complex that abstracts a hydrogen atom from the substrate, resulting in a free alkyl radical and a Mn{sup IV}—OH complex. We suggest that this carbon radical then reacts with a Mn{sup IV}—OCl species, providing the alkyl chloride and regenerating the reactive Mn{sup V}?O complex. The regioselectivity and the preference for CH{sub 2} groups can be attributed to nonbonded interactions between the alkyl groups on the substrates and the aryl groups of the manganese porphyrin. The results are indicative of a bent [Mn{sup v}?O---H---C] geometry due to the C—H approach to the Mn{sup v}?O (d??p?)* frontier orbital.

  8. CH2 Contorhaus Hansestadt Hamburg | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas: Energy Resources Jump to:EnergyCEEGObnovitelne zdroje sroCH2

  9. Test Plan: WIPP bin-scale CH TRU waste tests

    SciTech Connect (OSTI)

    Molecke, M.A.

    1990-08-01

    This WIPP Bin-Scale CH TRU Waste Test program described herein will provide relevant composition and kinetic rate data on gas generation and consumption resulting from TRU waste degradation, as impacted by synergistic interactions due to multiple degradation modes, waste form preparation, long-term repository environmental effects, engineered barrier materials, and, possibly, engineered modifications to be developed. Similar data on waste-brine leachate compositions and potentially hazardous volatile organic compounds released by the wastes will also be provided. The quantitative data output from these tests and associated technical expertise are required by the WIPP Performance Assessment (PA) program studies, and for the scientific benefit of the overall WIPP project. This Test Plan describes the necessary scientific and technical aspects, justifications, and rational for successfully initiating and conducting the WIPP Bin-Scale CH TRU Waste Test program. This Test Plan is the controlling scientific design definition and overall requirements document for this WIPP in situ test, as defined by Sandia National Laboratories (SNL), scientific advisor to the US Department of Energy, WIPP Project Office (DOE/WPO). 55 refs., 16 figs., 19 tabs.

  10. POST-UNIVERSITAIRE OPLEIDING BEDRIJFSKUNDIG INGENIEUR (BIR)

    E-Print Network [OSTI]

    Fiems, Dieter

    BENELUX ORMIT BELUX NV PACKO INOX NV PALM BREWERIES PAUWELS TRAFO BELGIUM NV PFIZER PHILIPS INDUSTRIAL

  11. Voluntary Protection Program Onsite Review, CH2M WG LLC, Idaho Cleanup Project – March 2014

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether CH2M WG LLC, Idaho Cleanup Project is performing at a level deserving DOE-VPP Star recognition.

  12. Preliminary Notice of Violation, CH2M-Washington Group Idaho...

    Broader source: Energy.gov (indexed) [DOE]

    14, 2007 Issued to CH2M-Washington Group Idaho, LLC, related to Radiation Protection Program Deficiencies at the Radioactive Waste Management Complex - Accelerated Retrieval...

  13. Bimetallic cleavage of aromatic C-H bonds by rare-earth-metal complexes

    E-Print Network [OSTI]

    Huang, W; Huang, W; Dulong, F; Khan, SI; Cantat, T; Diaconescu, PL

    2014-01-01

    of Aromatic C-H Bonds by Rare Earth Metal Complexes Wenliangone week prior to use. Rare earth metal oxides (scandium,

  14. Stoichiometry of CH4 and CO2 flux in a California Rice Paddy

    E-Print Network [OSTI]

    McMillan, Andrew M. S.; Goulden, Michael L.; Tyler, Stanley C.

    2007-01-01

    Measurements of carbon sequestration by long-term eddyemission versus carbon sequestration, Tellus, Ser. B,which to estimate carbon sequestration from F CH4 data since

  15. DOE Selects CH2M Hill Plateau Remediation Company for Plateau...

    Energy Savers [EERE]

    by CH2M Hill Constructors, Inc. The team also includes AREVA Federal Services, LLC; East Tennessee Materials & Energy Corporation, Inc.; and Fluor Federal Services, Inc. as...

  16. Recrossing and tunnelling in the kinetics study of the OH + CH4 -> H2O + CH3 reaction

    E-Print Network [OSTI]

    Suleimanov, Yury V

    2015-01-01

    Thermal rate constants and several kinetic isotope effects were evaluated for the OH + CH4 hydrogen abstraction reaction using two kinetics approaches, ring polymer molecular dynamics (RPMD), and variational transition state theory with multidimensional tunnelling(VTST/MT), based on a refined full-dimensional analytical potential energy surface, PES-2014, in the temperature range 200-2000 K. For the OH + CH4 reaction, at low temperatures, T = 200 K, where the quantum tunnelling effect is more important, RPMD overestimates the experimental rate constants due to problems associated with PES-2014 in the deep tunnelling regime and to the known overestimation of this method in asymmetric reactions, while VTST/MT presents a better agreement, differences about 10%, due to compensation of several factors, inaccuracy of PES-2014 and ignoring anharmonicity. In the opposite extreme, T = 1000 K, recrossing effects play the main role, and the difference between both methods is now smaller, by a factor of 1.5. Given that R...

  17. Thermal desorption of CH4 retained in CO2 ice

    E-Print Network [OSTI]

    Luna, R; Domingo, M; Satorre, M A

    2008-01-01

    CO2 ices are known to exist in different astrophysical environments. In spite of this, its physical properties (structure, density, refractive index) have not been as widely studied as those of water ice. It would be of great value to study the adsorption properties of this ice in conditions related to astrophysical environments. In this paper, we explore the possibility that CO2 traps relevant molecules in astrophysical environments at temperatures higher than expected from their characteristic sublimation point. To fulfil this aim we have carried out desorption experiments under High Vacuum conditions based on a Quartz Crystal Microbalance and additionally monitored with a Quadrupole Mass Spectrometer. From our results, the presence of CH4 in the solid phase above the sublimation temperature in some astrophysical scenarios could be explained by the presence of several retaining mechanisms related to the structure of CO2 ice.

  18. Thermal desorption of CH4 retained in CO2 ice

    E-Print Network [OSTI]

    R. Luna; C. Millan; M. Domingo; M. A. Satorre

    2008-01-21

    CO2 ices are known to exist in different astrophysical environments. In spite of this, its physical properties (structure, density, refractive index) have not been as widely studied as those of water ice. It would be of great value to study the adsorption properties of this ice in conditions related to astrophysical environments. In this paper, we explore the possibility that CO2 traps relevant molecules in astrophysical environments at temperatures higher than expected from their characteristic sublimation point. To fulfil this aim we have carried out desorption experiments under High Vacuum conditions based on a Quartz Crystal Microbalance and additionally monitored with a Quadrupole Mass Spectrometer. From our results, the presence of CH4 in the solid phase above the sublimation temperature in some astrophysical scenarios could be explained by the presence of several retaining mechanisms related to the structure of CO2 ice.

  19. TransCom model simulations of CH? and related species: linking transport, surface flux and chemical loss with CH? variability in the troposphere and lower stratosphere

    E-Print Network [OSTI]

    Patra, P. K.

    A chemistry-transport model (CTM) intercomparison experiment (TransCom-CH?) has been designed to investigate the roles of surface emissions, transport and chemical loss in simulating the global methane distribution. Model ...

  20. Wildlife Management Areas (Florida)

    Broader source: Energy.gov [DOE]

    Certain sites in Florida are designated as wildlife management areas, and construction and development is heavily restricted in these areas.

  1. Evidence for Methane -Complexes in Reductive Elimination Reactions from TpRh(L)(CH3)H

    E-Print Network [OSTI]

    Jones, William D.

    Evidence for Methane -Complexes in Reductive Elimination Reactions from TpRh(L)(CH3)H Douglas D of methane from TpRh(L)(CH3)H in benzene/perfluorobenzene solvent mixtures is found to be dependent upon the concentration of benzene, indicating an associative component to the reductive elimination of methane. Both

  2. Fates of methane from different lake habitats: Connecting whole-lake budgets and CH4 emissions

    E-Print Network [OSTI]

    Pace, Michael L.

    Fates of methane from different lake habitats: Connecting whole-lake budgets and CH4 emissions September 2007; revised 3 February 2008; accepted 28 February 2008; published 24 May 2008. [1] Methane (CH4 clear. We quantified internal cycling and methane emissions in three lakes during summer stratification

  3. SimpleMonitorUSBXPress User Guide Tobi Delbruck, tobi@ini.phys.ethz.ch

    E-Print Network [OSTI]

    Delbruck, Tobi

    SimpleMonitorUSBXPress User Guide Tobi Delbruck, tobi@ini.phys.ethz.ch Allows monitoring AER over at the University of Sevilla and the second by Tobi Delbruck at INI in Zurich. The firmware and host code is written. Last modified 8/20/2005 Under subversion https://svn.ini.unizh.ch/repos/avlsi/CAVIAR/wp5/USBAER

  4. ChBE 2120 Numerical Methods in Chemical Engineering (required course) Credit: 3-0-3

    E-Print Network [OSTI]

    Sherrill, David

    ChBE 2120 Numerical Methods in Chemical Engineering (required course) Credit: 3-0-3 Prerequisite(s): Chemical Process Principles (ChBE 2100), minimum grade of "C" and Computing for Engineers (CS 1371 of chemical engineering problems. An introduction to chemical process simulation, and the appropriate software

  5. 1997-2001 by M. Kostic Ch.5: Uncertainty/Error Analysis

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    1 ©1997-2001 by M. Kostic Ch.5: Uncertainty/Error Analysis · Introduction · Bias and Precision Summation/Propagation (Expanded Combined Uncertainty) · Problem 5-30 ©1997-2001 by M. Kostic Ch.5) at corresponding Probability (%P) Remember: u = d%P = t,%PS (@ %P); z=t=d/S #12;2 ©1997-2001 by M. Kostic Bias

  6. DISCOVERY OF THE FIRST METHANOL (CH [subscript 3] OH) MASER IN THE ANDROMEDA GALAXY (M31)

    E-Print Network [OSTI]

    Sjouwerman, Loránt O.

    We present the first detection of a 6.7 GHz Class II methanol (CH[subscript 3]OH) maser in the Andromeda galaxy (M31). The CH[subscript 3]OH maser was found in a VLA survey during the fall of 2009. We have confirmed the ...

  7. A CH O Hydrogen Bond Stabilized Polypeptide Chain Reversal Motif at the C Terminus of Helices

    E-Print Network [OSTI]

    Babu, M. Madan

    A C­H· · ·O Hydrogen Bond Stabilized Polypeptide Chain Reversal Motif at the C Terminus of Helices of Science Bangalore 560012, India The serendipitous observation of a C­H· · ·O hydrogen bond mediated­N hydrogen bond involving the side- chain of residue T 2 4 and the N­H group of residue T þ 3. In as many

  8. Ground state of CH2 : Experimental aspects and theoretical implications M. Grieser,2

    E-Print Network [OSTI]

    Zajfman, Daniel

    by the Coulomb explosion imaging method at different stages of cooling. The bending angle distributions were. The purpose of this paper is to disclose data on the structure of CH2 , which demonstrates the inad- equacy are the bending angle distributions of ensembles of CH2 ions at different excitation levels. The bending angle

  9. Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats

    E-Print Network [OSTI]

    Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats C . C . T R E poorly under- stood despite the potential for a significant positive feedback to climate change. Our dioxide (CO2) and methane (CH4) emissions from peat samples collected at active layer and permafrost

  10. TOUR HYDROS.CH -Duba Hong-Kong-Singapore-Monaco-Brazil USA Records & conferences

    E-Print Network [OSTI]

    Psarrakos, Panayiotis

    ;· · · · 10 #12;· · · 11 #12;12 #12;13 #12;14 #12;15 #12;16 #12;VOILES DE SAINT- TROPEZ TOUR HYDROS.CH - Dubaï19-23 July 2016 Energy Efficiency Global Forum Washington May, 12-13 TOUR HYDROS.CH ­ Records

  11. Photolysis of CH{sub 3}CHO at 248 nm: Evidence of triple fragmentation from primary quantum yield of CH{sub 3} and HCO radicals and H atoms

    SciTech Connect (OSTI)

    Morajkar, Pranay; Schoemaecker, Coralie; Fittschen, Christa; Bossolasco, Adriana

    2014-06-07

    Radical quantum yields have been measured following the 248 nm photolysis of acetaldehyde, CH{sub 3}CHO. HCO radical and H atom yields have been quantified by time resolved continuous wave Cavity Ring Down Spectroscopy in the near infrared following their conversion to HO{sub 2} radicals by reaction with O{sub 2}. The CH{sub 3} radical yield has been determined using the same technique following their conversion into CH{sub 3}O{sub 2}. Absolute yields have been deduced for HCO radicals and H atoms through fitting of time resolved HO{sub 2} profiles, obtained under various O{sub 2} concentrations, to a complex model, while the CH{sub 3} yield has been determined relative to the CH{sub 3} yield from 248 nm photolysis of CH{sub 3}I. Time resolved HO{sub 2} profiles under very low O{sub 2} concentrations suggest that another unknown HO{sub 2} forming reaction path exists in this reaction system besides the conversion of HCO radicals and H atoms by reaction with O{sub 2}. HO{sub 2} profiles can be well reproduced under a large range of experimental conditions with the following quantum yields: CH{sub 3}CHO?+?h?{sub 248nm} ? CH{sub 3}CHO{sup *}, CH{sub 3}CHO{sup *} ? CH{sub 3}?+?HCO??{sub 1a} = 0.125?±?0.03, CH{sub 3}CHO{sup *} ? CH{sub 3}?+?H?+?CO??{sub 1e} = 0.205?±?0.04, CH{sub 3}CHO{sup *}?{sup o{sub 2}}CH{sub 3}CO?+?HO{sub 2}??{sub 1f} = 0.07?±?0.01. The CH{sub 3}O{sub 2} quantum yield has been determined in separate experiments as ?{sub CH{sub 3}} = 0.33 ± 0.03 and is in excellent agreement with the CH{sub 3} yields derived from the HO{sub 2} measurements considering that the triple fragmentation (R1e) is an important reaction path in the 248 nm photolysis of CH{sub 3}CHO. From arithmetic considerations taking into account the HO{sub 2} and CH{sub 3} measurements we deduce a remaining quantum yield for the molecular pathway: CH{sub 3}CHO{sup *} ? CH{sub 4}?+?CO??{sub 1b} = 0.6. All experiments can be consistently explained with absence of the formerly considered pathway: CH{sub 3}CHO{sup *} ? CH{sub 3}CO?+?H??{sub 1c} = 0.

  12. Area Activation 1 Running Head: AREA ACTIVATION

    E-Print Network [OSTI]

    Pomplun, Marc

    Area Activation 1 Running Head: AREA ACTIVATION Advancing Area Activation towards a General Model at Boston 100 Morrissey Boulevard Boston, MA 02125-3393 USA Phone: 617-287-6485 Fax: 617-287-6433 e. Without great effort, human observers clearly outperform every current artificial vision system in tasks

  13. THE ROTATIONAL SPECTRUM OF ANTI-ETHYLAMINE (CH3CH2NH2) FROM 10 TO 270 GHz: A LABORATORY STUDY AND ASTRONOMICAL SEARCH IN SGR B2(N)

    E-Print Network [OSTI]

    Ziurys, Lucy M.

    AND ASTRONOMICAL SEARCH IN SGR B2(N) A. J. Apponi, M. Sun, D. T. Halfen,1 and L. M. Ziurys Departments of Chemistry identification of methylamine (CH3NH2) and ethylamine (CH3CH2NH2) in the aerogel collectors (Sandford et al. 2006

  14. Independent Oversight Review, Richland Operations Office and CH2M Hill Plateau Remediation Company and Mission Support Alliance- April 2012

    Office of Energy Efficiency and Renewable Energy (EERE)

    Review of Richland Operations Office and CH2M Hill Plateau Remediation Company and Mission Support Alliance Conduct of Operations

  15. ChBE 4505/4525 Chemical Process Design/Biochemical Process Design Basic Curriculum and Learning Outcomes.

    E-Print Network [OSTI]

    Sherrill, David

    Outcomes. Credit: 3-0-3 Instructor: Matthew J. Realff Textbook: Product & Process Design Principles, Third Edition, Wiley 2009. W.D. Seider, J.D. Seader, D.R. Lewin, S. Widagdo, Catalog Description: Principles Phen. II (ChBE 3210), Kinetics & Reactor Design (ChBE 4300), and separation processes (ChBE 3225

  16. Ion imaging study of reaction dynamics in the N+ + CH4 system Linsen Pei and James M. Farrar

    E-Print Network [OSTI]

    Farrar, James M.

    map ion imaging method is applied to the ion-molecule reactions of N+ with CH4. The velocity spaceIon imaging study of reaction dynamics in the N+ + CH4 system Linsen Pei and James M. Farrar OF CHEMICAL PHYSICS 137, 154312 (2012) Ion imaging study of reaction dynamics in the N+ + CH4 system Linsen

  17. New C-H Stretching Vibrational Spectral Features in the Raman Spectra of Gaseous and Liquid Ethanol

    E-Print Network [OSTI]

    Liu, Shilin

    New C-H Stretching Vibrational Spectral Features in the Raman Spectra of Gaseous and Liquid Ethanol Traditionally, the Raman spectrum of ethanol in the C-H vibrational stretching region between 2800 cm-1 and 3100, and the -CH3 antisymmetric stretching. In this report, new Raman spectral features were observed for ethanol

  18. Intern experience at CH?M Hill, Inc.: an internship report 

    E-Print Network [OSTI]

    Winter, William John, 1949-

    2013-03-13

    (standards) imposed upon the mill by the State of Washington Department of Ecology and the U.S. Environmental Protection Agency. The author's assignment also entailed necessary interaction with the project manager and other CH?M HILL design...

  19. Joint DOE-CH2M HILL News Release Media Contact: For Immediate...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    price. Since receiving the contract in 2008, CH2M HILL awarded more than 1 billion in contracts to small businesses, representing 28 percent of the contract price to date....

  20. Tetra-substituted olefin synthesis using palladium-catalysed C-H activation 

    E-Print Network [OSTI]

    Lopez Suarez, Laura; Suarez, Laura Lopez

    2012-06-22

    In an effort to obtain more efficient and greener chemical transformations, a substantial amount of research interest has been directed towards the use of arene C-H bonds as functional groups. Hydroarylation of alkynes ...

  1. Fundamental Understanding of Methane-Carbon Dioxide-Water (CH4...

    Office of Scientific and Technical Information (OSTI)

    Fundamental Understanding of Methane-Carbon Dioxide-Water (CH4-CO2-H2O) Interactions in Shale Nanopores under Reservoir Conditions. Citation Details In-Document Search Title:...

  2. Fundamental Understanding of Methane-Carbon Dioxide-Water (CH4...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Fundamental Understanding of Methane-Carbon Dioxide-Water (CH4-CO2-H2O) Interactions in Shale Nanopores under Reservoir Conditions. Citation Details In-Document...

  3. Park, Y.J.; Hofmayer, C.H. [Brookhaven National Lab., Upton,...

    Office of Scientific and Technical Information (OSTI)

    Understanding seismic design criteria for Japanese nuclear power plants Park, Y.J.; Hofmayer, C.H. Brookhaven National Lab., Upton, NY (United States); Costello, J.F. US Nuclear...

  4. Credal Networks for Military Identification aIDSIA, Galleria 2, CH-6928 Manno (Lugano), Switzerland

    E-Print Network [OSTI]

    Zaffalon, Marco

    ), Switzerland bArmasuisse (W+T), Feuerwerkerstrasse 39, CH-3600 Thun, Switzerland Alessandro Antonucci a , Ralph targets surveyed by the Armed Forces has become usual prac- tice, also in neutral states like Switzerland

  5. EG39CH12-Jackson ARI 27 September 2014 12:18 The Environmental Costs

    E-Print Network [OSTI]

    Jackson, Robert B.

    EG39CH12-Jackson ARI 27 September 2014 12:18 The Environmental Costs and Benefits of Fracking by horizontal drilling and hydraulic fracturing (fracking) is driving an economic boom, with con- sequences

  6. NOx-Mediated Homogeneous Pathways for the Synthesis of Formaldehyde from CH4-O2 Mixtures

    E-Print Network [OSTI]

    Iglesia, Enrique

    NOx-Mediated Homogeneous Pathways for the Synthesis of Formaldehyde from CH4-O2 Mixtures Jeffrey M-NOx reactions is used to estimate maximum attainable formaldehyde (and methanol) yields

  7. Variable carbon isotope fractionation expressed by aerobic CH4-oxidizing bacteria

    E-Print Network [OSTI]

    Chu, Kung-Hui "Bella"

    in biomass carbon isotopes is primarily due to differences in the fraction- ation effect at the formaldehyde in the production and consumption of CH4 oc- cur (e.g., Bergamaschi, 1997; Conrad et al., 1999; Avery and Martens

  8. Hydrogen Storage in Carbon Nanotubes Through Formation of C-H...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Print Two of the major challenges for humanity in the next 20 years are the shrinking availability of fossil...

  9. Interpretation of observed atmospheric variations of CO2 and CH4. 

    E-Print Network [OSTI]

    Barlow, James Mathew

    2015-06-30

    The overarching theme of my thesis is understanding observed variations of northern hemisphere atmospheric carbon dioxide (CO2) and methane (CH4) concentrations. I focus my analysis on high-latitude observations of these gases, as there are large...

  10. 28 BIts&ChIps 17 november 2005 Energetiq Technology heeft een licht-

    E-Print Network [OSTI]

    Cambridge, University of

    28 · BIts&ChIps · 17 november 2005 Energetiq Technology heeft een licht- bron gelanceerd voor extreem ultravi- olet (EUV) metrologie. Deze Electrode- less Z-Pinch EUV-source, of EQ-10M, genereert EUV

  11. Proton transfer and unimolecular decay in the reaction HCO/sup +/ + CH/sub 3/OH. -->. CH/sub 3/OH/sub 2//sup +/ + CO

    SciTech Connect (OSTI)

    Moryl, J.E.; Farrar, J.M.

    1982-05-27

    We report a study of the title reaction over the relative energy range from 0.45 to 3.59 eV. The proton-transfer reaction proceeds in a direct, impulsive manner at all energies with 33 to 70% of the available energy appearing in product translation. Dissociation of the protonated methanol product via CH/sub 3//sup +/ formation or elimination of H/sub 2/ to CH/sub 2/OH/sup +/ becomes important at higher collision energies. Measurement of the threshold for CH/sub 3//sup +/ production demonstrates that > 90% of the HCO/sup +/ reagents are in the ground vibrational state. Abnormally small product translational energy release for H/sub 2/ elimination provides evidence that quantum mechanical tunneling through the exit channel barrier determines the dynamics of this process. Isotopic labeling studies, in which the parent ion CH/sub 3/ODH/sup +/ may eliminate H/sub 2/ or HD, show that k/sub H/sub 2///k/sub HD/ = 3.0, confirming the role of tunneling in the elimination step.

  12. MeteoSvizzera, 6605 Locarno, Switzerland email: Katja.Friedrich@meteoswiss.ch http://www.meteoswiss.ch P11B8: Effects of Radar Beam Shielding on Rainfall

    E-Print Network [OSTI]

    ://www.meteoswiss.ch P11B8: Effects of Radar Beam Shielding on Rainfall Estimation for Polarimetric C-band Radar Katja In the case of radar beam shielding, a weaker transmitted signal reaches precipitation at further ranges 1998 with: Complete shielding in Partial shielding in No shielding to the South 1 2 3 2 4 Height

  13. Approved Module Information for CH3103, 2014/5 Module Title/Name: Organic Chemistry III Module Code: CH3103

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Credits: 10 Module Management Information Module Leader Name Andrew James Sutherland Email Address. These rapidly evolving areas of chemistry are especially relevant to the pharmaceutical industry but are also Lectures [Part 1] Combinatorial chemistry and its relevance to the pharmaceutical industry Concepts

  14. Ion imaging study of reaction dynamics in the N{sup +}+ CH{sub 4} system

    SciTech Connect (OSTI)

    Pei, Linsen; Farrar, James M. [Department of Chemistry, University of Rochester, Rochester, New York 14627 (United States)

    2012-10-21

    The velocity map ion imaging method is applied to the ion-molecule reactions of N{sup +} with CH{sub 4}. The velocity space images are collected at collision energies of 0.5 and 1.8 eV, providing both product kinetic energy and angular distributions for the reaction products CH{sub 4}{sup +}, CH{sub 3}{sup +}, and HCNH{sup +}. The charge transfer process is energy resonant and occurs by long-range electron transfer that results in minimal deflection of the products. The formation of the most abundant product, CH{sub 3}{sup +}, proceeds by dissociative charge transfer rather than hydride transfer, as reported in earlier publications. The formation of HCNH{sup +} by C-N bond formation appears to proceed by two different routes. The triplet state intermediates CH{sub 3}NH{sup +} and CH{sub 2}NH{sub 2}{sup +} that are formed as N{sup +}({sup 3}P) approaches CH{sub 4} may undergo sequential loss of two hydrogen atoms to form ground state HCNH{sup +} products on a spin-allowed pathway. However, the kinetic energy distributions for formation of HCNH{sup +} extend past the thermochemical limit to form HCNH{sup +}+ 2H, implying that HCNH{sup +} may also be formed in concert with molecular hydrogen, and requiring that intersystem crossing to the singlet manifold must occur in a significant ({approx}25%) fraction of reactive collisions. We also report GAUSSIAN G2 calculations of the energies and structures of important singlet and triplet [CNH{sub 4}{sup +}] complexes that serve as precursors to product formation.

  15. Photodissociation and photoisomerization dynamics of CH{sub 2}=CHCHO in solution

    SciTech Connect (OSTI)

    Wu Weiqiang; Yang Chunfan; Zhao Hongmei; Liu Kunhui; Su Hongmei

    2010-03-28

    By means of time-resolved Fourier transform infrared absorption spectroscopy, we have investigated the 193 nm photodissociation and photoisomerization dynamics of the prototype molecule of {alpha},{beta}-enones, acrolein (CH{sub 2}=CHCHO) in CH{sub 3}CN solution. The primary photolysis channels and absolute branching ratios are determined. The most probable reaction mechanisms are clarified by control experiments monitoring the product yields varied with the triplet quencher addition. The predominant channel is the 1,3-H migration yielding the rearrangement product CH{sub 3}CH=C=O with a branching ratio of 0.78 and the less important channel is the {alpha} cleavage of C-H bond yielding radical fragments CH{sub 2}=CHCO+H with a branching ratio of only 0.12. The 1,3-H migration is strongly suggested to correlate with the triplet {sup 3}({pi}{pi}{sup *}) state rather than the ground S{sub 0} state and the {alpha} cleavage of C-H bond is more likely to proceed in the singlet S{sub 1} {sup 1}(n{pi}{sup *}) state. From the solution experiments we have not only acquired clues clarifying the previous controversial mechanisms, but also explored different photochemistry in solution. Compared to the gas phase photolysis which is dominated by photodissociation channels, the most important channel in solution is the photoisomerization of 1,3-H migration. The reason leading to the different photochemistry in solution is further ascribed to the solvent cage effect.

  16. Unit 51 - GIS Application Areas

    E-Print Network [OSTI]

    Unit 51, CC in GIS; Cowen, David; Ferguson, Warren

    1990-01-01

    51 - GIS APPLICATION AREAS UNIT 51 - GIS APPLICATION AREAS1990 Page 1 Unit 51 - GIS Application Areas Computers inyour students. UNIT 51 - GIS APPLICATION AREAS Compiled with

  17. Insights into the structure of mixed CO2/CH4 in gas hydrates

    SciTech Connect (OSTI)

    Everett, Susan M; Rawn, Claudia J; Chakoumakos, Bryan C; Keffer, David J.; Huq, Ashfia; Phelps, Tommy Joe

    2015-01-01

    The exchange of CO2 for CH4 in natural gas hydrates is an attractive approach to methane for energy production while simultaneously sequestering CO2. In addition to the energy and environmental implications, the solid solution of clathrate hydrate (CH4)1-x(CO2)x 5.75H2O provides a model system to study how the distinct bonding and shapes of CH4 and CO2 influence the structure and properties of the compound. High-resolution neutron diffraction was used to examine mixed CO2/CH4 gas hydrates. CO2-rich hydrates had smaller lattice parameters, which were attributed to the higher affinity of the CO2 molecule interacting with H2O molecules that form the surrounding cages, and resulted in a reduction in the unit cell volume. Experimental nuclear scattering densities illustrate how the cage occupants and energy landscape change with composition. These results provide important insights on the impact and mechanisms for exchanging CH4 and CO2.

  18. Ion imaging study of dissociative charge transfer in the N{sub 2}{sup +}+ CH{sub 4} system

    SciTech Connect (OSTI)

    Pei Linsen; Farrar, James M. [Department of Chemistry, University of Rochester, Rochester, New York 14627 (United States)

    2013-03-28

    The velocity map ion imaging method is applied to the dissociative charge transfer reactions of N{sub 2}{sup +} with CH{sub 4} studied in crossed beams. The velocity space images are collected at four collision energies between 0.5 and 1.5 eV, providing both product kinetic energy and angular distributions for the reaction products CH{sub 3}{sup +} and CH{sub 2}{sup +}. The general shapes of the images are consistent with long range electron transfer from CH{sub 4} to N{sub 2}{sup +} preceding dissociation, and product kinetic energy distributions are consistent with energy resonance in the initial electron transfer step. The branching ratio for CH{sub 3}{sup +}:CH{sub 2}{sup +} is 85:15 over the full collision energy range, consistent with literature reports.

  19. Interlayer magnetoresistance peak in -,,BEDTTTF...2SF5CH2CF2SO3 X. Su and F. Zuoa)

    E-Print Network [OSTI]

    Zuo, Fulin

    Interlayer magnetoresistance peak in -,,BEDT­TTF...2SF5CH2CF2SO3 X. Su and F. Zuoa) Department crystals of organic superconductor -(BEDT­TTF 2SF5CH2CF2SO3 . The magnetoresistance is found to display measurement on a highly two-dimensional organic superconductor -(BEDT­TTF 2 SF5CH2CF2SO3 . Similar to other ET

  20. J. Chem. Thermodynamics 1996, 28, 521538 Volumetric properties for {(1-x)CO2+xCH4},

    E-Print Network [OSTI]

    Bodnar, Robert J.

    J. Chem. Thermodynamics 1996, 28, 521­538 Volumetric properties for {(1-x)CO2+xCH4}, {(1-x)CO2+xN2, U.S.A. Densities r of pure CO2, CH4, and {(1-x)CO2+xCH4}, {(1-x)CO2+xN2}, and {(1-x)CH4+xN2} were from mole fraction x=0 to x=1. The results were obtained with a custom-designed, high-pressure, high-temperature

  1. Observation of CH4 and other Non-CO2 Green House Gas Emissions from California

    SciTech Connect (OSTI)

    Fischer, Marc L.; Zhao, Chuanfeng; Riley, William J.; Andrews, Arlyn C.

    2009-01-09

    In 2006, California passed the landmark assembly bill AB-32 to reduce California's emissions of greenhouse gases (GHGs) that contribute to global climate change. AB-32 commits California to reduce total GHG emissions to 1990 levels by 2020, a reduction of 25 percent from current levels. To verify that GHG emission reductions are actually taking place, it will be necessary to measure emissions. We describe atmospheric inverse model estimates of GHG emissions obtained from the California Greenhouse Gas Emissions Measurement (CALGEM) project. In collaboration with NOAA, we are measuring the dominant long-lived GHGs at two tall-towers in central California. Here, we present estimates of CH{sub 4} emissions obtained by statistical comparison of measured and predicted atmospheric mixing ratios. The predicted mixing ratios are calculated using spatially resolved a priori CH{sub 4} emissions and surface footprints, that provide a proportional relationship between the surface emissions and the mixing ratio signal at tower locations. The footprints are computed using the Weather Research and Forecast (WRF) coupled to the Stochastic Time-Inverted Lagrangian Transport (STILT) model. Integral to the inverse estimates, we perform a quantitative analysis of errors in atmospheric transport and other factors to provide quantitative uncertainties in estimated emissions. Regressions of modeled and measured mixing ratios suggest that total CH{sub 4} emissions are within 25% of the inventory estimates. A Bayesian source sector analysis obtains posterior scaling factors for CH{sub 4} emissions, indicating that emissions from several of the sources (e.g., landfills, natural gas use, petroleum production, crops, and wetlands) are roughly consistent with inventory estimates, but livestock emissions are significantly higher than the inventory. A Bayesian 'region' analysis is used to identify spatial variations in CH{sub 4} emissions from 13 sub-regions within California. Although, only regions near the tower are significantly constrained by the tower measurements, CH{sub 4} emissions from the south Central Valley appear to be underestimated in a manner consistent with the under-prediction of livestock emissions. Finally, we describe a pseudo-experiment using predicted CH{sub 4} signals to explore the uncertainty reductions that might be obtained if additional measurements were made by a future network of tall-tower stations spread over California. These results show that it should be possible to provide high-accuracy estimates of surface CH{sub 4} emissions for multiple regions as a means to verify future emissions reductions.

  2. Cyclic Versus Linear Isomers Produced by Reaction of the Methylidyne Radical (CH) with Small Unsaturated Hydrocarbons

    SciTech Connect (OSTI)

    Goulay, Fabien; Trevitt, Adam J.; Meloni, Giovanni; Selby, Talitha M.; Osborn, David L.; Taatjes, Craig A.; Vereecken, Luc; Leone, Stephen R.

    2008-12-05

    The reactions of the methylidyne radical (CH) with ethylene, acetylene, allene, and methylacetylene are studied at room temperature using tunable vacuum ultraviolet (VUV) photoionization and time-resolved mass spectrometry. The CH radicals are prepared by 248 nm multiphoton photolysis of CHBr3 at 298 K and react with the selected hydrocarbon in a helium gas flow. Analysis of photoionization efficiency versus VUV photon wavelength permits isomer-specific detection of the reaction products and allows estimation of the reaction product branching ratios. The reactions proceed by either CH insertion or addition followed by H atom elimination from the intermediate adduct. In the CH + C2H4 reaction the C3H5 intermediate decays by H atom loss to yield 70(+-8)percent allene, 30(+-8)percent methylacetylene and less than 10percent cyclopropene, in agreement with previous RRKM results. In the CH + acetylene reaction, detection of mainly the cyclic C3H2 isomer is contrary to a previous RRKM calculation that predicted linear triplet propargylene to be 90percent of the total H-atom co-products. High-level CBS-APNO quantum calculations and RRKM calculation for the CH + C2H2 reaction presented in this manuscript predict a higher contribution of the cyclic C3H2 (27.0percent) versus triplet propargylene (63.5percent) than these earlier predictions. Extensive calculations on the C3H3 and C3H2D system combined with experimental isotope ratios for the CD + C2H2 reaction indicate that H-atom assisted isomerization in the present experiments is responsible for the discrepancy between the RRKM calculations and the experimental results. Cyclic isomers are also found to represent 30(+-6)percent of the detected products in the case of CH + methylacetylene, together with 33(+-6)percent 1,2,3-butatriene and 37(+-6)percent vinylacetylene. The CH + allene reaction gives 23(+-5)percent 1,2,3-butatriene and 77(+-5)percent vinylacetylene, whereas cyclic isomers are produced below the detection limit in this reaction. The reaction exit channels deduced by comparing the product distributions for the aforementioned reactions are discussed in detail.

  3. Site Monitoring Area Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and roads The spatial location and boundaries for each Site shown on the Site Monitoring Area maps originate from activities conducted under the Compliance Order on Consent with...

  4. Geothermal br Resource br Area Geothermal br Resource br Area...

    Open Energy Info (EERE)

    Area Central Nevada Seismic Zone Pull Apart in Strike Slip Fault Zone Ordovician shale quartzite MW K Blue Mountain Geothermal Area Blue Mountain Geothermal Area Northwest...

  5. Constraints on Asian and European sources of methane from CH4 -C2H6-CO correlations in Asian outflow

    E-Print Network [OSTI]

    Jacob, Daniel J.

    of emissions from coal mining and landfills. 2 #12;1. Introduction Atmospheric methane (CH4) is an important, landfills, fossil fuel production and consumption (natural gas venting, leakage and coal mining a global CH4 source inventory constrained with NOAA/CMDL surface observations [Wang et al., 2003]. We find

  6. 2590 J. Am. Chem. SOC.1995,117, 2590-2599 The C-H Bond Energy of Benzene

    E-Print Network [OSTI]

    Ellison, Barney

    2590 J. Am. Chem. SOC.1995,117, 2590-2599 The C-H Bond Energy of Benzene Gustavo E. Davico ion with benzene and phenide ion with ammonia: c&6 +NH2- C6H5- +NH3. The ratio of these rate constants for derived. The enthalpy of deprotonationof benzene, the C-H bond dissociationenergy, and the electron

  7. Synthesis, Structure, and Reactivity of O-Donor Ir(III) Complexes: C-H Activation Studies with Benzene

    E-Print Network [OSTI]

    Goddard III, William A.

    with Benzene Gaurav Bhalla, Xiang Yang Liu, Jonas Oxgaard, William A. Goddard, III, and Roy A. Periana. All the R-Ir-Py complexes undergo quantitative, intermolecular CH activation reactions with benzene to benzene to generate a discrete benzene complex, cis-R-Ir-PhH; and (D) rapid C-H cleavage. Kinetic isotope

  8. Computational identification of a metal organic framework for high selectivity membrane-based CO2/CH4 separations

    E-Print Network [OSTI]

    Nair, Sankar

    CH4/CO2 mixtures with low cost are required. Membranes offer a powerful general approachComputational identification of a metal organic framework for high selectivity membrane-based CO2 for CO2/CH4 mixtures could revolutionize this industrially important separation. We predict using

  9. Electronic Effects of Rh(II)-Mediated Carbenoid Intramolecular C-H Insertion: A Linear Free Energy Correlation Study

    E-Print Network [OSTI]

    Wang, Jianbo

    Electronic Effects of Rh(II)-Mediated Carbenoid Intramolecular C-H Insertion: A Linear Free Energy. The mechanistic significance of these Hammett correlations is discussed. Introduction The electronic effects of Rh is enhanced by an electron-donating group while an electron-withdrawing group retards the C-H insertion, thus

  10. Energetics of C-H Bond Activation of Fluorinated Aromatic Hydrocarbons Using a [TpRh(CNneopentyl)] Complex

    E-Print Network [OSTI]

    Jones, William D.

    Energetics of C-H Bond Activation of Fluorinated Aromatic Hydrocarbons Using a [Tp activation of fluorinated aromatic hydrocarbons by [TpRh(CNneopentyl)] resulted in the formation of products of homogeneous transition-metal catalysts to activate and functionalize C-H bonds of hydrocarbons for industrial

  11. Ultrafast UV Pump/IR Probe Studies of C-H Activation in Linear, Cyclic, and Aryl Hydrocarbons

    E-Print Network [OSTI]

    Harris, Charles B.

    Ultrafast UV Pump/IR Probe Studies of C-H Activation in Linear, Cyclic, and Aryl Hydrocarbons, cyclic, and aromatic hydrocarbon solvents on a femtosecond to microsecond time scale. These results have revealed that the structure of the hydrocarbon substrate affects the final C-H bond activation step, which

  12. FL47CH15-Goldstein ARI 25 November 2014 9:45 Green Algae as Model

    E-Print Network [OSTI]

    Goldstein, Raymond E.

    FL47CH15-Goldstein ARI 25 November 2014 9:45 Green Algae as Model Organisms for Biological Fluid green algae, spanning from the unicellular Chlamydomonas to multicellular Volvox, have emerged as model of flagellar synchronization. Green algae are well suited to the study of such problems because of their range

  13. Dynamic isotope effect on the product energy partitioning in CH2OH ~CHO H2

    E-Print Network [OSTI]

    Kim, Myung Soo

    Dynamic isotope effect on the product energy partitioning in CH2OH ~CHO H2 Young Min Rheea March 1998; accepted 1 July 1998 The deuterium isotope effect on the product energy partitioning. Close inspection of the potential energy surface revealed that the isotope effect on KER and the product

  14. BENDIX SYSTEMS DIVISION ANN AIt 1 o I, MI CH NO. Plan for Operational Contingency

    E-Print Network [OSTI]

    Rathbun, Julie A.

    8/29/66 BENDIX SYSTEMS DIVISION ANN AIt 1 o I, MI CH NO. ATM-396 Plan for Operational Contingency of the operational plans and the system design and to study methods of recovery from partial failure through the use. ATM- 396 RIV.MO. A I I f..r I (I IOperational Contingency Study 2 PAGI OP

  15. PREPARED FORTHE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DEAC0276CH03073

    E-Print Network [OSTI]

    PREPARED FORTHE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE­AC02­76CH03073 PRINCETON PLASMA Acceleration the Field­reversed Configuration (FRC) Slowly Rotating Odd­parity Magnetic Fields (RMF ) Alan Plasma Physics Laboratory Publications Reports web site Calendar Year 2001. The home PPPL Reports

  16. PREPARED FORTHE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DEAC0276CH03073

    E-Print Network [OSTI]

    of Reversed Configuration (FRC). a compact toroid negligible toroidal in which plasma confined a poloidal. Introduction The FRC a compact toroid with negligible toroidal in which plasma confined a poloidal magneticPREPARED FORTHE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE­AC02­76CH03073 PRINCETON PLASMA

  17. Do Water Molecules Mediate Protein-DNA Recognition? Ch. Koti Reddy, Achintya Das and B. Jayaram*

    E-Print Network [OSTI]

    Jayaram, Bhyravabotla

    Do Water Molecules Mediate Protein-DNA Recognition? Ch. Koti Reddy, Achintya Das and B. Jayaram analysis of interfacial water molecules in the structures of 109 unique protein-DNA complexes is presented together with a new view on their role in protein-DNA recognition. Location of interfacial water molecules

  18. PREPARED FORTHE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DEAC0276CH03073

    E-Print Network [OSTI]

    PREPARED FORTHE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE­AC02­76CH03073 PRINCETON PLASMA.K. Ram, Bers, R.W. Harvey, C.B. Forest May 2001 #12; PPPL Reports Disclaimer report prepared account work Department Energy's Princeton Plasma Physics Laboratory Publications Reports web site Calendar Year 2001

  19. Twofold C?H Functionalization: Palladium-Catalyzed Ortho Arylation of Anilides

    E-Print Network [OSTI]

    Brasche, Gordon

    The ortho arylation of anilides to form biphenyls via a twofold C?H functionalization/C?C bond-forming process is described. The oxidative coupling takes place in the presence of 5?10 mol % of Pd(OAc)[subscript 2], 10?20 ...

  20. Steady and unsteady flow within an axisymmetric tube dilatation Ch. Stamatopoulos a

    E-Print Network [OSTI]

    Papaharilaou, Yannis

    Accepted 20 February 2010 Keywords: Tube dilatation Wall shear Vortex Flow separation­reattachment a bSteady and unsteady flow within an axisymmetric tube dilatation Ch. Stamatopoulos a , Y s t r a c t The flow field in an axisymmetric tube dilatation is studied employing a 2D PIV system

  1. Soil chemistry versus environmental controls on production of CH4 and CO2 in northern peatlands

    E-Print Network [OSTI]

    Williams, Christopher J.

    . B. YAVITT a , C. J. WILLIAMS b & R. K. WIEDER c a Department of Natural Resources, Cornell Rates of organic carbon mineralization (to CO2 and CH4) vary widely in peat soil. We transplanted four peat soils with different chemical composition into six sites with different environmental conditions

  2. TraCE -TRANSPORTATION CENTER EPFL 09 Sep 2009 sonia.lavadinho@epfl.ch STRC Ascona

    E-Print Network [OSTI]

    Bierlaire, Michel

    & capillary walking (TUBE & WALK LONDON) #12;TraCE - TRANSPORTATION CENTER EPFL 09 Sep 2009 soniaTraCE - TRANSPORTATION CENTER EPFL 09 Sep 2009 sonia.lavadinho@epfl.ch STRC Ascona 11 Potentials for combining walking and public transport at the agglomeration scale THE MULTIMODAL WALKER #12;Tra

  3. PREPARED FORTHE U.S. DEPARTMENT ENERGY, UNDER CONTRACT DEAC0276CH03073

    E-Print Network [OSTI]

    ions [1,2] beneficial they "channel" energy from the ion population thermal population (rather thanPREPARED FORTHE U.S. DEPARTMENT ENERGY, UNDER CONTRACT DE­AC02­76CH03073 PRINCETON PLASMA PHYSICS herein specific commercial product, process, or service trade name, trademark, manufacturer, otherwise

  4. CH 5 MANAGEMENT PLAN.DOC 5-1 5 Management Plan

    E-Print Network [OSTI]

    CH 5 MANAGEMENT PLAN.DOC 5-1 5 Management Plan 5.1 Vision The Willamette Subbasin Plan Oversight. The ecosystem processes that have undergone the most disruptive change are flow, channel form, and connectivity. Disruptions in these processes, in turn, have created a host of negative habitat changes, including

  5. BE12CH08-Zare ARI 22 April 2010 20:22 Microfluidic Platforms

    E-Print Network [OSTI]

    Zare, Richard N.

    BE12CH08-Zare ARI 22 April 2010 20:22 R E V I E W S IN A D V A N CE Microfluidic Platforms, genetic analysis Abstract Microfluidics, the study and control of the fluidic behavior in microstruc to analyze various types of intracellular components quantitatively. The microfluidic approach offers a rapid

  6. ChBE 4300 Kinetics and Reactor Design (required course) Credit: 3-0-3

    E-Print Network [OSTI]

    Sherrill, David

    , and (ii) reactor design for the homogeneous reaction systems. The design principles for ideal homogeneousChBE 4300 Kinetics and Reactor Design (required course) Credit: 3-0-3 Prerequisite in terms of reaction mechanisms, kinetics, and reactor design. Both homogeneous and heterogeneous reactions

  7. ChBE 4310 Bioprocess Engineering (required course) Credit: 3-0-3

    E-Print Network [OSTI]

    Sherrill, David

    Description: Integrating several ChBE core concepts, bioprocess engineering applies the engineering principles) or Biochemistry II (Chem 4511) minimum grade "D", and Kinetics and Reactor Design, minimum grade "C" Objectives: Specifically, after completing the course, students should be able to: 1.) Apply engineering principles

  8. Binary properties of CH and Carbon-Enhanced Metal-Poor stars

    E-Print Network [OSTI]

    Jorissen, A; Van Winckel, H; Merle, T; Boffin, H M J; Andersen, J; Nordstroem, B; Udry, S; Masseron, T; Lenaerts, L; Waelkens, C

    2015-01-01

    The HERMES spectrograph installed on the 1.2-m Mercator telescope has been used to monitor the radial velocity of 13 low-metallicity carbon stars, among which 7 Carbon-Enhanced Metal-Poor (CEMP) stars and 6 CH stars. All stars but one show clear evidence for binarity. New orbits are obtained for 8 systems. The sample covers an extended range in orbital periods, extending from 3.4 d (for the dwarf carbon star HE 0024-2523) to about 54 yr (for the CH star HD 26, the longest known among barium, CH and extrinsic S stars). Three systems exhibit low-amplitude velocity variations with periods close to 1 yr superimposed on a long-term trend. In the absence of an accurate photometric monitoring of these systems, it is not clear yet whether these variations are the signature of a very low-mass companion, or of regular envelope pulsations. The period - eccentricity (P - e) diagram for the 40 low-metallicity carbon stars with orbits now available shows no difference between CH and CEMP-s stars (the latter corresponding t...

  9. A Practical Agent Programming Language Mehdi Dastani and John-Jules Ch. Meyer

    E-Print Network [OSTI]

    Dastani, Mehdi

    A Practical Agent Programming Language Mehdi Dastani and John-Jules Ch. Meyer Utrecht University-based agent- oriented programming language. It proposes an alternative by presenting the syn- tax and semantics of a programming language, called 2APL (A Practical Agent Programming Language). This programming

  10. Physics of thin-film ferroelectric oxides DPMC, University of Geneva, CH-1211, Geneva 4, Switzerland

    E-Print Network [OSTI]

    Wu, Zhigang

    Physics of thin-film ferroelectric oxides M. Dawber* DPMC, University of Geneva, CH-1211, Geneva 4 of thin-film ferroelectric oxides, the strongest emphasis being on those aspects particular to ferroelectrics in thin-film form. The authors introduce the current state of development in the application

  11. Liu UCD Phy9B 07 1 Ch 19. The First Law of Thermodynamics

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    Liu UCD Phy9B 07 1 Ch 19. The First Law of Thermodynamics #12;Liu UCD Phy9B 07 2 19-1. Thermodynamic Systems Thermodynamic system: A system that can interact (and exchange energy) with its surroundings Thermodynamic process: A process in which there are changes in the state of a thermodynamic system

  12. X-ray Thomson scattering measurements of temperature and density from multi-shocked CH capsules

    SciTech Connect (OSTI)

    Fletcher, L. B. [Department of Physics, University of California, Berkeley, California 94720 (United States)] [Department of Physics, University of California, Berkeley, California 94720 (United States); Kritcher, A.; Pak, A.; Ma, T.; Döppner, T.; Divol, L.; Landen, O. L.; Glenzer, S. H. [Lawrence Livermore National Laboratory, 7000 East Av., Livermore, California 94550 (United States)] [Lawrence Livermore National Laboratory, 7000 East Av., Livermore, California 94550 (United States); Fortmann, C. [Lawrence Livermore National Laboratory, 7000 East Av., Livermore, California 94550 (United States) [Lawrence Livermore National Laboratory, 7000 East Av., Livermore, California 94550 (United States); University of California, Los Angeles, California 90095 (United States); Vorberger, J.; Gericke, D. O. [Department of Physics, Centre for Fusion, Space, and Astrophysics, University of Warwick, Coventry CV4 7AL (United Kingdom)] [Department of Physics, Centre for Fusion, Space, and Astrophysics, University of Warwick, Coventry CV4 7AL (United Kingdom); Chapman, D. A. [Department of Physics, Centre for Fusion, Space, and Astrophysics, University of Warwick, Coventry CV4 7AL (United Kingdom) [Department of Physics, Centre for Fusion, Space, and Astrophysics, University of Warwick, Coventry CV4 7AL (United Kingdom); Plasma Physics Department, AWE plc, Aldermaston (United Kingdom); Falcone, R. W. [Department of Physics, University of California, Berkeley, California 94720 (United States) [Department of Physics, University of California, Berkeley, California 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2013-05-15

    Proof-of-principle measurements of the electron densities, temperatures, and ionization states of spherically compressed multi-shocked CH (polystyrene) capsules have been achieved using spectrally resolved x-ray Thomson scattering. A total energy of 13.5 kJ incident on target is used to compress a 70 ?m thick CH shell above solid-mass density using three coalescing shocks. Separately, a laser-produced zinc He-? x-ray source at 9 keV delayed 200 ps-800 ps after maximum compression is used to probe the plasma in the non-collective scattering regime. The data show that x-ray Thomson scattering enables a complete description of the time-dependent hydrodynamic evolution of shock-compressed CH capsules, with a maximum measured density of ? > 6 g cm{sup ?3}. In addition, the results demonstrate that accurate measurements of x-ray scattering from bound-free transitions in the CH plasma demonstrate strong evidence that continuum lowering is the primary ionization mechanism of carbon L-shell electrons.

  13. FL43CH19-Shelley ARI 10 September 2010 19:30 Flapping and Bending Bodies

    E-Print Network [OSTI]

    Shelley, Michael

    FL43CH19-Shelley ARI 10 September 2010 19:30 R E V I E W S IN A D V A N CE Flapping and Bending, flutter, flexible bodies, instability, drag reduction Abstract The flapping or bending of a flexible is important to applications such as paper processing (Watanabe et al. 2002), as well as to possible approaches

  14. Mechanistic Analysis of Iridium Heteroatom C-H Activation: Evidence for an Internal Electrophilic Substitution Mechanism

    E-Print Network [OSTI]

    Goddard III, William A.

    Substitution Mechanism Jonas Oxgaard,*, William J. Tenn, III, Robert J. Nielsen, Roy A. Periana, and William A: The mechanism responsible for C-H actiVation in Ir(acac)2(OCH3)(C6H6) has been identified and described as an internal electrophilic substitution (IES) mechanism, on the basis of orbital changes and predicted reacti

  15. Large-Scale Quality Analysis of Published ChIP-seq Data

    E-Print Network [OSTI]

    Kundaje, Anshul

    ChIP-seq has become the primary method for identifying in vivo protein–DNA interactions on a genome-wide scale, with nearly 800 publications involving the technique appearing in PubMed as of December 2012. Individually and ...

  16. Ch 1: Suspect Subjectivity March 16, 2012 SUBJECTIVITY: EXPOSURE, CARE, AND RESPONSE

    E-Print Network [OSTI]

    Doyle, Robert

    Ch 1: Suspect Subjectivity March 16, 2012 1 ONE SUBJECTIVITY: EXPOSURE, CARE, AND RESPONSE For many't. There is the notorious "truth is subjectivity" and the oft-cited "passionate leap of faith." Setting aside the tangles around `leaps of faith,' what is Kierkegaard promoting under the heading of subjectivity? My aim here

  17. 16. Wave-particle interaction Reading: Shu, Vol.II, Ch.29

    E-Print Network [OSTI]

    Pohl, Martin Karl Wilhelm

    16. Wave-particle interaction Reading: Shu, Vol.II, Ch.29 16.1 Landau damping We started our discussion of hydromagnetic waves with simple one-dimensional electrostatic fluctuations, the Langmuir waves, whose dispersion relation is = p = e2 ne 0 me Can the waves change plasma properties or, vice versa

  18. Active Seismic BENDIX SYSTEMS DIVISION ANN A R8 0 R, M I CH NO.

    E-Print Network [OSTI]

    Rathbun, Julie A.

    Active Seismic ,'1~ y · ~net'¥· BENDIX SYSTEMS DIVISION ANN A R8 0 R, M I CH NO. ATM-463 REV in the word format of the Active Seismic Experiment. It also serves to document Action Item B6-0805-5B, which and compares three different word formats for the Active Seismic Experiment. These are designated Present DE

  19. Catalytic C-H Activation and Functionalization: Some Applications in Organic Synthesis

    E-Print Network [OSTI]

    Stoltz, Brian M.

    Non-hydro renewables Hydro power Natural Gas Transportation is Costly - CH4 major constituent,000 3,000 4,000 5,000 6,000 1970 1980 1990 2000 2010 2020 2030 Mtoe Oil Natural gas Coal Nuclear power to the cost of methane production. - Pipelines are roughly $1M/km to build. · Ind

  20. Neutron Science Research Areas | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home | Science & Discovery | Neutron Science | Research Areas SHARE Research Areas Neutron scattering research at ORNL covers four broad research areas: biology and soft...

  1. The Interfacial-Area-Based Relative Permeability Function

    SciTech Connect (OSTI)

    Zhang, Z. F.; Khaleel, Raziuddin

    2009-09-25

    CH2M Hill Plateau Remediation Company (CHPRC) requested the services of the Pacific Northwest National Laboratory (PNNL) to provide technical support for the Remediation Decision Support (RDS) activity within the Soil & Groundwater Remediation Project. A portion of the support provided in FY2009, was to extend the soil unsaturated hydraulic conductivity using an alternative approach. This alternative approach incorporates the Brooks and Corey (1964), van Genuchten (1980), and a modified van Genuchten water-retention models into the interfacial-area-based relative permeability model presented by Embid (1997). The general performance of the incorporated models is shown using typical hydraulic parameters. The relative permeability models for the wetting phase were further examined using data from literature. Results indicate that the interfacial-area-based model can describe the relative permeability of the wetting phase reasonably well.

  2. Geographic Area Month

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Fuels by PAD District and State (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month No. 1 Distillate No. 2 Distillate a No. 4 Fuel b Sales to End Users Sales for...

  3. Decontamination & decommissioning focus area

    SciTech Connect (OSTI)

    1996-08-01

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  4. Rare-earth transition-metal gallium chalcogenides RE{sub 3}MGaCh{sub 7} (M=Fe, Co, Ni; Ch=S, Se)

    SciTech Connect (OSTI)

    Rudyk, Brent W.; Stoyko, Stanislav S.; Oliynyk, Anton O.; Mar, Arthur, E-mail: arthur.mar@ualberta.ca

    2014-02-15

    Six series of quaternary rare-earth transition-metal chalcogenides RE{sub 3}MGaCh{sub 7} (M=Fe, Co, Ni; Ch=S, Se), comprising 33 compounds in total, have been prepared by reactions of the elements at 1050 °C (for the sulphides) or 900 °C (for the selenides). They adopt noncentrosymmetric hexagonal structures (ordered Ce{sub 3}Al{sub 1.67}S{sub 7}-type, space group P6{sub 3}, Z=2) with cell parameters in the ranges of a=9.5–10.2 Å and c=6.0–6.1 Å for the sulphides and a=10.0–10.5 Å and c=6.3–6.4 Å for the selenides as refined from powder X-ray diffraction data. Single-crystal structures were determined for five members of the sulphide series RE{sub 3}FeGaS{sub 7} (RE=La, Pr, Tb) and RE{sub 3}CoGaS{sub 7} (RE=La, Tb). The highly anisotropic crystal structures consist of one-dimensional chains of M-centred face-sharing octahedra and stacks of Ga-centred tetrahedra all pointing in the same direction. Magnetic measurements on the sulphides reveal paramagnetic behaviour in some cases and long-range antiferromagnetic behaviour with low Néel temperatures (15 K or lower) in others. Ga L-edge XANES spectra support the presence of highly cationic Ga tetrahedral centres with a tendency towards more covalent Ga–Ch character on proceeding from the sulphides to the selenides. Band structure calculations on La{sub 3}FeGaS{sub 7} indicate that the electronic structure is dominated by Fe 3d-based states near the Fermi level. - Graphical abstract: The series of chalcogenides RE{sub 3}MGaS{sub 7}, which form for a wide range of rare-earth and transition metals (M=Fe, Co, Ni), adopt highly anisotropic structures containing chains of M-centred octahedra and stacks of Ga-centred tetrahedra. Display Omitted - Highlights: • Six series (comprising 33 compounds) of chalcogenides RE{sub 3}MGaCh{sub 7} were prepared. • They adopt noncentrosymmetric hexagonal structures with high anisotropy. • Most compounds are paramagnetic; some show antiferromagnetic ordering. • Ga L-edge XANES confirms presence of cationic Ga species.

  5. 300 Area Disturbance Report

    SciTech Connect (OSTI)

    LL Hale; MK Wright; NA Cadoret

    1999-01-07

    The objective of this study was to define areas of previous disturbance in the 300 Area of the U.S. Department of Energy (DOE) Hanford Site to eliminate these areas from the cultural resource review process, reduce cultural resource monitoring costs, and allow cultural resource specialists to focus on areas where subsurface disturbance is minimal or nonexistent. Research into available sources suggests that impacts from excavations have been significant wherever the following construction activities have occurred: building basements and pits, waste ponds, burial grounds, trenches, installation of subsurface pipelines, power poles, water hydrants, and well construction. Beyond the areas just mentioned, substrates in the' 300 Area consist of a complex, multidimen- sional mosaic composed of undisturbed stratigraphy, backfill, and disturbed sediments; Four Geographic Information System (GIS) maps were created to display known areas of disturbance in the 300 Area. These maps contain information gleaned from a variety of sources, but the primary sources include the Hanford GIS database system, engineer drawings, and historic maps. In addition to these maps, several assumptions can be made about areas of disturbance in the 300 Area as a result of this study: o o Buried pipelines are not always located where they are mapped. As a result, cultural resource monitors or specialists should not depend on maps depicting subsurface pipelines for accurate locations of previous disturbance. Temporary roads built in the early 1940s were placed on layers of sand and gravel 8 to 12 in. thick. Given this information, it is likely that substrates beneath these early roads are only minimally disturbed. Building foundations ranged from concrete slabs no more than 6 to 8 in. thick to deeply excavated pits and basements. Buildings constructed with slab foundations are more numerous than may be expected, and minimally disturbed substrates may be expected in these locations. Historic black and white photographs provide a partial record of some excavations, including trenches, building basements, and material lay-down yards. Estimates of excavation depth and width can be made, but these estimates are not accurate enough to pinpoint the exact location where the disturbedhmdisturbed interface is located (e.g., camera angles were such that depths and/or widths of excavations could not be accurately determined or estimated). In spite of these limitations, these photographs provide essential information. Aerial and historic low-level photographs have captured what appears to be backfill throughout much of the eastern portion of the 300 Area-near the Columbia River shoreline. This layer of fill has likely afforded some protection for the natural landscape buried beneath the fill. This assumption fits nicely with the intermittent and inadvertent discoveries of hearths and stone tools documented through the years in this part of the 300 Area. Conversely, leveling of sand dunes appears to be substantial in the northwestern portion of the 300 Area during the early stages of development. o Project files and engineer drawings do not contain information on any impromptu but necessary adjustments made on the ground during project implementation-after the design phase. Further, many projects are planned and mapped but never implemented-this information is also not often placed in project files. Specific recommendations for a 300 Area cultural resource monitoring strategy are contained in the final section of this document. In general, it is recommended that monitoring continue for all projects located within 400 m of the Columbia River. The 400-m zone is culturally sensitive and likely retains some of the most intact buried substrates in the 300 Area.

  6. C-H vs C-C Bond Activation of Acetonitrile and Benzonitrile via Oxidative Addition: Rhodium vs Nickel and Cp* vs Tp

    E-Print Network [OSTI]

    Jones, William D.

    or benzene leads to thermal rearrangement to the C-C activation product, (C5Me5)Rh(PMe3)(CH3)(CN) (4C-H vs C-C Bond Activation of Acetonitrile and Benzonitrile via Oxidative Addition: Rhodium vs of the C-H activation product, (C5Me5)Rh(PMe3)(CH2CN)H (2). Thermolysis of this product in acetonitrile

  7. OLED area illumination source

    DOE Patents [OSTI]

    Foust, Donald Franklin (Scotia, NY); Duggal, Anil Raj (Niskayuna, NY); Shiang, Joseph John (Niskayuna, NY); Nealon, William Francis (Gloversville, NY); Bortscheller, Jacob Charles (Clifton Park, NY)

    2008-03-25

    The present invention relates to an area illumination light source comprising a plurality of individual OLED panels. The individual OLED panels are configured in a physically modular fashion. Each OLED panel comprising a plurality of OLED devices. Each OLED panel comprises a first electrode and a second electrode such that the power being supplied to each individual OLED panel may be varied independently. A power supply unit capable of delivering varying levels of voltage simultaneously to the first and second electrodes of each of the individual OLED panels is also provided. The area illumination light source also comprises a mount within which the OLED panels are arrayed.

  8. CH-{\\pi} interaction-induced deep orbital deformation in a benzene-methane weak binding system

    E-Print Network [OSTI]

    Li, Jianfu

    2015-01-01

    The nonbonding interaction between benzene and methane, called CH-{\\pi} interaction, plays an important role in physical, chemical, and biological fields. CH-{\\pi} interaction can decrease the system total energy and promote the formation of special geometric configurations. This work investigates systemically the orbital distribution and composition of the benzene-methane complex for the first time using ab initio calculation based on different methods and basis sets. Surprisingly, we find strong deformation in HOMO-4 and LUMO+2 induced by CH-{\\pi} interaction, extending the general view that nonbonding interaction does not cause orbital change of molecules.

  9. The Spectra of Main Sequence Stars in Galactic Globular Clusters II. CH and CN Bands in M71

    E-Print Network [OSTI]

    J. G. Cohen

    1999-01-26

    Spectra with a high signal-to-noise ratio of 79 stars which are just below the main sequence turnoff of M71 are presented. They yield indices for the strength of the G band of CH and the ultraviolet CN band at 3885 \\AA. These indices are each to first order bimodal and they are anti-correlated. There are approximately equal numbers of CN weak/CH strong and CN strong/CH weak main sequence stars in M71. It is not yet clear whether these star-to-star variations arise from primordial variations or from mixing within a fraction of individual stars as they evolve.

  10. CH2M Hill Heat Stress Mitigation Efforts During Tank Farm Work Activities

    SciTech Connect (OSTI)

    Smoot, W.L. [CH2M HILL Hanford Group, Inc., Richland, WA (United States)

    2007-07-01

    In the past, while working under the hot summer sun at the Hanford Tank Farms, workers were assigned a protective work-rest regimen and heat stress mitigation efforts were applied to prevent heat-related illnesses and minimize impacts to project schedules. In February 2006, CH2M HILL kicked off a heat stress improvement initiative led by an experienced person emphasizing the importance of worker involvement, employee education, and the application of the ALARA, or As Low As Reasonably Achievable, concepts of engineered controls, administrative controls, personal protective equipment, and physiological and work site monitoring. As a result of this initiative built upon previous years' efforts, CH2M HILL experienced increased 'wrench time' during the summer of 2006 with fewer heat-related illnesses than in previous years. (authors)

  11. Charge-Separation in Uranium Diazomethane Complexes Leading to C-H Activation and Chemical Transformation

    E-Print Network [OSTI]

    Meyer, Karsten

    Charge-Separation in Uranium Diazomethane Complexes Leading to C-H Activation and Chemical of diphenyldiazomethane with [((t-Bu ArO)3tacn)UIII ] (1) results in an 2 -bound diphenyldiazomethane uranium complex-shell ligand, [((t-Bu ArO)3tacn)UIV (2 -NNCPh2)] (2). Treating Ph2CN2 with a uranium complex that contains

  12. Chandra ACIS Survey of M33 (ChASeM33): A First Look

    E-Print Network [OSTI]

    Paul P. Plucinsky; Benjamin Williams; Knox S. Long; Terrance J. Gaetz; Manami Sasaki; Wolfgang Pietsch; Ralph Tuellmann; Randall K. Smith; William P. Blair; David Helfand; John P. Hughes; P. Frank Winkler; Miguel de Avillez; Luciana Bianchi; Dieter Breitschwerdt; Richard J. Edgar; Parviz Ghavamian; Jonathan Grindlay; Frank Haberl; Robert Kirshner; Kip Kuntz; Tsevi Mazeh; Thomas G. Pannuti; Avi Shporer; David A. Thilker

    2007-09-26

    We present an overview of the Chandra ACIS Survey of M33 (ChASeM33): A Deep Survey of the Nearest Face-on Spiral Galaxy. The 1.4 Ms survey covers the galaxy out to $R \\approx 18\\arcmin (\\approx 4$ kpc). These data provide the most intensive, high spatial resolution assessment of the X-ray source populations available for the confused inner regions of M33. Mosaic images of the ChASeM33 observations show several hundred individual X-ray sources as well as soft diffuse emission from the hot interstellar medium. Bright, extended emission surrounds the nucleus and is also seen from the giant \\hii regions NGC 604 and IC 131. Fainter extended emission and numerous individual sources appear to trace the inner spiral structure. The initial source catalog, arising from $\\sim$~2/3 of the expected survey data, includes 394 sources significant at the $3\\sigma$ confidence level or greater, down to a limiting luminosity (absorbed) of $\\sim$1.6\\ergs{35} (0.35 -- 8.0 keV). The hardness ratios of the sources separate those with soft, thermal spectra such as supernova remnants from those with hard, non-thermal spectra such as X-ray binaries and background active galactic nuclei. Emission extended beyond the Chandra point spread function is evident in 23 of the 394 sources. Cross-correlation of the ChASeM33 sources against previous catalogs of X-ray sources in M33 results in matches for the vast majority of the brighter sources and shows 28 ChASeM33 sources within 10\\arcsec of supernova remnants identified by prior optical and radio searches. This brings the total number of such associations to 31 out of 100 known supernova remnants in M33.

  13. Modeling binary CO{sub 2}/CH{sub 4} flow through coal media

    SciTech Connect (OSTI)

    Gumrah, F.; Balan, H.O.; Atay, M.U. [Middle East Technical University, Ankara (Turkey)

    2008-07-01

    CO{sub 2} can be sequestered in coal seams considering the environmental issues. By means of injecting CO{sub 2} into the coal seams, both sequestration of CO{sub 2} and the enhanced recovery of methane inside the coal seam can be realized. One-dimensional simulation regarding the binary CO{sub 2}/CH{sub 4} flow in a coal seam core was studied by using an analytical solution method. The simulation results were compared with experimental data by matching the effluent concentrations of CO{sub 2} and CH{sub 4}. The transport parameters such as longitudinal dispersion coefficient, retardation factor, and distribution coefficient were determined. It was seen that the amount of CO{sub 2} captured inside the coal sample during binary displacement was much lower than the maximum adsorption capacity of the coal at the same pressure. Then the transport behavior of CO{sub 2} and CH{sub 4} inside the coal seam was simulated. The results of analytical solution were in good agreement with the measured ones within the acceptable error range.

  14. Communication: Ultraviolet photodissociation dynamics of the simplest Criegee intermediate CH{sub 2}OO

    SciTech Connect (OSTI)

    Lehman, Julia H.; Li, Hongwei; Beames, Joseph M.; Lester, Marsha I.

    2013-10-14

    The velocity and angular distributions of O {sup 1}D photofragments arising from UV excitation of the CH{sub 2}OO intermediate on the B {sup 1}A??X {sup 1}A? transition are characterized using velocity map ion imaging. The anisotropic angular distribution yields the orientation of the transition dipole moment, which reflects the ?*?? character of the electronic transition associated with the COO group. The total kinetic energy release distributions obtained at several photolysis wavelengths provide detail on the internal energy distribution of the formaldehyde cofragments and the dissociation energy of CH{sub 2}OO X {sup 1}A? to O {sup 1}D + H{sub 2}CO X {sup 1}A{sub 1}. A common termination of the total kinetic energy distributions, after accounting for the different excitation energies, gives an upper limit for the CH{sub 2}OO X {sup 1}A? dissociation energy of D{sub 0}? 54 kcal mol{sup ?1}, which is compared with theoretical predictions including high level multi-reference ab initio calculations.

  15. Plutonium focus area

    SciTech Connect (OSTI)

    NONE

    1996-08-01

    To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this new approach, EM developed a management structure and principles that led to the creation of specific Focus Areas. These organizations were designed to focus the scientific and technical talent throughout DOE and the national scientific community on the major environmental restoration and waste management problems facing DOE. The Focus Area approach provides the framework for intersite cooperation and leveraging of resources on common problems. After the original establishment of five major Focus Areas within the Office of Technology Development (EM-50, now called the Office of Science and Technology), the Nuclear Materials Stabilization Task Group (EM-66) followed the structure already in place in EM-50 and chartered the Plutonium Focus Area (PFA). The following information outlines the scope and mission of the EM, EM-60, and EM-66 organizations as related to the PFA organizational structure.

  16. Subsurface contaminants focus area

    SciTech Connect (OSTI)

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

  17. [(CH3)4N][(C5H5NH)0.8((CH3)3NH)0.2]U2Si9O23F4 (USH-8): An Organically Templated Open-Framework Uranium Silicate

    E-Print Network [OSTI]

    Wang, Xiqu

    -Framework Uranium Silicate Xiqu Wang, Jin Huang, and Allan J. Jacobson* Department of Chemistry, Uni pyramids we obtained also a number of open-framework uranium silicates.18,19 These new compounds were-framework uranium fluorosilicate [(CH3)4N][(C5H5NH)0.8((CH3)3NH)0.2]U2Si9O23F4 (USH- 8) that has been synthesized

  18. The Breathing Orbital Valence Bond Method in Diffusion Monte Carlo: C-H Bond Dissociation of Acetylene

    E-Print Network [OSTI]

    Braida, Benoit

    2009-01-01

    Quantum Chem. 2005, (19) Barnett, R. N. ; Sun, Z. ; Lester,In a systematic DMC study, Barnett et al. 19 explored thefor the C-H bond distance. Barnett et al. reported 1-CSF DMC

  19. Experimental realization of catalytic CH4 hydroxylation predicted for an iridium NNC pincer complex, demonstrating thermal, protic,

    E-Print Network [OSTI]

    Goddard III, William A.

    Experimental realization of catalytic CH4 hydroxylation predicted for an iridium NNC pincer complex; functionalization using NaIO4 and KIO3 gives the oxy-ester. The most efficient methane hydroxylation catalysts

  20. 40 CFR Ch. I (7105 Edition) 190.10 period in which he is engaged in car-

    E-Print Network [OSTI]

    or emissions therefrom and car- rying out inspection and enforcement activities to assure compliance6 40 CFR Ch. I (7­1­05 Edition)§ 190.10 period in which he is engaged in car- rying out any

  1. The role of CO2 in CH4 exsolution from deep brine: Implications for geologic carbon sequestration

    E-Print Network [OSTI]

    Oldenburg, C.M.

    2014-01-01

    spreading under the shale where gas saturation is higher duecomposition of the gas above the shale is mainly CH 4 , andeffect of the shale remains as higher gas saturations are

  2. C-H Bond Strengths and Acidities in Aromatic Systems: Effects of Nitrogen Incorporation in Mono-, Di-, and Triazines

    E-Print Network [OSTI]

    Lineberger, W. Carl

    afterglow-selected ion tube (FA-SIFT) mass spectrometry to obtain deprotonation enthalpies (acidH298 of the corresponding radical in a thermochemical cycle to determine the corresponding C-H bond dissociation energy (BDE

  3. Aerobic C-H Acetoxylation of 8-Methylquinoline in PdII-Pyridinecarboxylic Acid Systems: Some Structure-Reactivity Relationships

    SciTech Connect (OSTI)

    Wang, Daoyong; Zavalij, Peter Y.; Vedernikov, Andrei N.

    2013-09-09

    Catalytic oxidative C–H acetoxylation of 8-methylquinoline as a model substrate with O2 as oxidant was performed using palladium(II) carboxylate catalysts derived from four different pyridinecarboxylic acids able to form palladium(II) chelates of different size. A comparison of the rates of the substrate C–H activation and the O2 activation steps shows that the C–H activation step is rate-limiting, whereas the O2 activation occurs at a much faster rate already at 20 °C. The chelate ring size and the chelate ring strain of the catalytically active species are proposed to be the key factors affecting the rate of the C–H activation.

  4. 1646 Organometallics 1994, 13, 1646-1655 A Static Agostic a-CH-M Interaction Observable by NMR

    E-Print Network [OSTI]

    Girolami, Gregory S.

    a function of temperature indicatesthat the molecule undergoestwo different dynamic processes. One process form close contacts with the carbon atoms of the a-CH2 groups. Important bond distances and angles: Cr

  5. ch_1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulation Initiative ccsi.jpg The CarbonDetectorDiscovery1.0

  6. ch_10

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulation Initiative ccsi.jpg The

  7. ch_11

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulation Initiative ccsi.jpg The0 11.0 Response Response to

  8. ch_12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulation Initiative ccsi.jpg The0 11.0 Response Response

  9. ch_13

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulation Initiative ccsi.jpg The0 11.0 Response Response.0

  10. ch_2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulation Initiative ccsi.jpg The0 11.0 Response Response.00

  11. ch_2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulation Initiative ccsi.jpg The0 11.0 Response

  12. ch_2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulation Initiative ccsi.jpg The0 11.0 Response10

  13. ch_3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulation Initiative ccsi.jpg The0 11.0 Response100 3.0

  14. ch_3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulation Initiative ccsi.jpg The0 11.0 Response100 3.013

  15. ch_3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulation Initiative ccsi.jpg The0 11.0 Response100 3.0135

  16. ch_3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulation Initiative ccsi.jpg The0 11.0 Response100

  17. ch_3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulation Initiative ccsi.jpg The0 11.0 Response10047

  18. ch_4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulation Initiative ccsi.jpg The0 11.0 Response100470 4.0

  19. ch_4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulation Initiative ccsi.jpg The0 11.0 Response100470 4.08,

  20. ch_4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulation Initiative ccsi.jpg The0 11.0 Response100470

  1. ch_4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulation Initiative ccsi.jpg The0 11.0 Response10047020

  2. ch_4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulation Initiative ccsi.jpg The0 11.0 Response1004702040

  3. ch_4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulation Initiative ccsi.jpg The0 11.0 Response100470204047

  4. ch_4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulation Initiative ccsi.jpg The0 11.0

  5. ch_4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulation Initiative ccsi.jpg The0 11.071 DOE/EIS-0287 Idaho

  6. ch_5

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulation Initiative ccsi.jpg The0 11.071 DOE/EIS-0287

  7. ch_5

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulation Initiative ccsi.jpg The0 11.071 DOE/EIS-028722

  8. ch_5

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulation Initiative ccsi.jpg The0 11.071 DOE/EIS-02872244

  9. ch_5

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulation Initiative ccsi.jpg The0 11.071

  10. ch_5

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulation Initiative ccsi.jpg The0 11.07125 DOE/EIS-0287

  11. ch_5

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulation Initiative ccsi.jpg The0 11.07125 DOE/EIS-028745

  12. ch_5

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulation Initiative ccsi.jpg The0 11.07125

  13. ch_6

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulation Initiative ccsi.jpg The0 11.07125 6.0 Sta Sta

  14. ch_7

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulation Initiative ccsi.jpg The0 11.07125 6.0 Sta Sta0 7.0

  15. ch_8

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulation Initiative ccsi.jpg The0 11.07125 6.0 Sta Sta0

  16. ch_9

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulation Initiative ccsi.jpg The0 11.07125 6.0 Sta Sta0.0

  17. ch_9

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulation Initiative ccsi.jpg The0 11.07125 6.0 Sta Sta0.0

  18. ch_9

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulation Initiative ccsi.jpg The0 11.07125 6.0 Sta

  19. Thermal decomposition of CH{sub 3}CHO studied by matrix infrared spectroscopy and photoionization mass spectroscopy

    SciTech Connect (OSTI)

    Vasiliou, AnGayle K. [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215 (United States); National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, Colorado 80401 (United States); Piech, Krzysztof M.; Reed, Beth; Ellison, G. Barney [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215 (United States); Zhang Xu [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109-8099 (United States); Nimlos, Mark R. [National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, Colorado 80401 (United States); Ahmed, Musahid; Golan, Amir; Kostko, Oleg [Chemical Sciences Division, LBNL MS 6R-2100, Berkeley, California 94720 (United States); Osborn, David L. [Combustion Research Facility, Sandia National Laboratories, P.O. Box 969 MS 9055, Livermore, California 94551-0969 (United States); David, Donald E. [Integrated Instrument Design Facility, CIRES, University of Colorado, Boulder, Colorado 80309-0216 (United States); Urness, Kimberly N.; Daily, John W. [Center for Combustion and Environmental Research, Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309-0427 (United States); Stanton, John F. [Institute for Theoretical Chemistry, Department of Chemistry, University of Texas, Austin, Texas 78712 (United States)

    2012-10-28

    A heated SiC microtubular reactor has been used to decompose acetaldehyde and its isotopomers (CH{sub 3}CDO, CD{sub 3}CHO, and CD{sub 3}CDO). The pyrolysis experiments are carried out by passing a dilute mixture of acetaldehyde (roughly 0.1%-1%) entrained in a stream of a buffer gas (either He or Ar) through a heated SiC reactor that is 2-3 cm long and 1 mm in diameter. Typical pressures in the reactor are 50-200 Torr with the SiC tube wall temperature in the range 1200-1900 K. Characteristic residence times in the reactor are 50-200 {mu}s after which the gas mixture emerges as a skimmed molecular beam at a pressure of approximately 10 {mu}Torr. The reactor has been modified so that both pulsed and continuous modes can be studied, and results from both flow regimes are presented. Using various detection methods (Fourier transform infrared spectroscopy and both fixed wavelength and tunable synchrotron radiation photoionization mass spectrometry), a number of products formed at early pyrolysis times (roughly 100-200 {mu}s) are identified: H, H{sub 2}, CH{sub 3}, CO, CH{sub 2}=CHOH, HC{identical_to}CH, H{sub 2}O, and CH{sub 2}=C=O; trace quantities of other species are also observed in some of the experiments. Pyrolysis of rare isotopomers of acetaldehyde produces characteristic isotopic signatures in the reaction products, which offers insight into reaction mechanisms that occur in the reactor. In particular, while the principal unimolecular processes appear to be radical decomposition CH{sub 3}CHO (+M) {yields} CH{sub 3}+ H + CO and isomerization of acetaldehyde to vinyl alcohol, it appears that the CH{sub 2}CO and HCCH are formed (perhaps exclusively) by bimolecular reactions, especially those involving hydrogen atom attacks.

  20. Program Areas | National Security | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organizations National Security Home | Science & Discovery | National Security | Program Areas SHARE Program Areas image Oak Ridge National Laboratory (ORNL) has a robust...

  1. 100 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopmentataboutScalablePhysicist: Christian Bauer 101000 Area

  2. 300 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.TheoryTuesday, August 10, 20102016 News Below are newsBelle-IIProcesses -1300 Area

  3. 700 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.TheoryTuesday, August 10, 20102016 News Below are4B Drawings 4B618-10 and700 Area

  4. Tank Farm Area Closure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S. Coal StocksSuppliers Tag:Take Action APPENDIX-11CoverArea

  5. Tank Farm Area Closure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S. Coal StocksSuppliers Tag:Take Action APPENDIX-11CoverArea

  6. Material Disposal Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS onBudgetMaterial Disposal Areas Material

  7. datamanagementgroup 2011 SURVEY AREA SUMMARY

    E-Print Network [OSTI]

    Toronto, University of

    Collingwood CFB Borden 0 10 20 Kilometers Area = 521,900 Hectares #12;POPULATION CHARACTERISTICS Population

  8. Recharge Data Package for Hanford Single-Shell Tank Waste Management Areas

    SciTech Connect (OSTI)

    Fayer, Michael J.; Keller, Jason M.

    2007-09-24

    Pacific Northwest National Laboratory (PNNL) assists CH2M HILL Hanford Group, Inc., in its preparation of the Resource Conservation and Recovery Act (RCRA) Facility Investigation report. One of the PNNL tasks is to use existing information to estimate recharge rates for past and current conditions as well as future scenarios involving cleanup and closure of tank farms. The existing information includes recharge-relevant data collected during activities associated with a host of projects, including those of RCRA, the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), the CH2M HILL Tank Farm Vadose Zone Project, and the PNNL Remediation and Closure Science Project. As new information is published, the report contents can be updated. The objective of this data package was to use published data to provide recharge estimates for the scenarios being considered in the RCRA Facility Investigation. Recharge rates were estimated for areas that remain natural and undisturbed, areas where the vegetation has been disturbed, areas where both the vegetation and the soil have been disturbed, and areas that are engineered (e.g., surface barrier). The recharge estimates supplement the estimates provided by PNNL researchers in 2006 for the Hanford Site using additional field measurements and model analysis using weather data through 2006.

  9. Fax +41 61 306 12 34 E-Mail karger@karger.ch

    E-Print Network [OSTI]

    Ryan, Michael J.

    , anterior hypothalamus, ventromedial hypothalamus, and ventral tegmental area/substantia nigra pars compacta

  10. The Radiative Transfer Of CH{sub 4}-N{sub 2} Plasma Arc

    SciTech Connect (OSTI)

    Benallal, R.; Liani, B.

    2008-09-23

    Any physical modelling of a circuit-breaker arc therefore requires an understanding of the radiated energy which is taken into account in the form of a net coefficient. The evaluation of the net emission coefficient is performed by the knowledge of the chemical plasma composition and the resolution of the radiative transfer equation. In this paper, the total radiation which escapes from a CH{sub 4}-N{sub 2} plasma is calculated in the temperature range between 5000 and 30000K on the assumption of a local thermodynamic equilibrium and we have studied the nitrogen effect in the hydrocarbon plasmas.

  11. Enforcement Letter, CH2M Hill - October 4, 2004 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNatural GasDepartment ofDepartment2 Issued to04 Issued to CH2M

  12. Consent Order, CH2M Hill Hanford Group, Inc. - EA-2000-09 | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle (PEV)Day-June 22,FresnoSky)Nuclear SafetyEnergy CH2M

  13. Consent Order, CH2M-WG Idaho, LLC - WCO-2011-01 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle (PEV)Day-June 22,FresnoSky)Nuclear SafetyEnergy CH2M1

  14. T-1 Training Area

    ScienceCinema (OSTI)

    None

    2015-01-09

    Another valuable homeland security asset at the NNSS is the T-1 training area, which covers more than 10 acres and includes more than 20 separate training venues. Local, County, and State first responders who train here encounter a variety of realistic disaster scenarios. A crashed 737 airliner lying in pieces across the desert, a helicopter and other small aircraft, trucks, buses, and derailed train cars are all part of the mock incident scene. After formal classroom education, first responders are trained to take immediate decisive action to prevent or mitigate the use of radiological or nuclear devices by terrorists. The Counterterrorism Operations Support Center for Radiological Nuclear Training conducts the courses and exercises providing first responders from across the nation with the tools they need to protect their communities. All of these elements provide a training experience that cannot be duplicated anywhere else in the country.

  15. T-1 Training Area

    SciTech Connect (OSTI)

    2014-11-07

    Another valuable homeland security asset at the NNSS is the T-1 training area, which covers more than 10 acres and includes more than 20 separate training venues. Local, County, and State first responders who train here encounter a variety of realistic disaster scenarios. A crashed 737 airliner lying in pieces across the desert, a helicopter and other small aircraft, trucks, buses, and derailed train cars are all part of the mock incident scene. After formal classroom education, first responders are trained to take immediate decisive action to prevent or mitigate the use of radiological or nuclear devices by terrorists. The Counterterrorism Operations Support Center for Radiological Nuclear Training conducts the courses and exercises providing first responders from across the nation with the tools they need to protect their communities. All of these elements provide a training experience that cannot be duplicated anywhere else in the country.

  16. DOE Designates Southwest Area and Mid-Atlantic Area National...

    Energy Savers [EERE]

    Corridors DOE Designates Southwest Area and Mid-Atlantic Area National Interest Electric Transmission Corridors October 2, 2007 - 2:50pm Addthis WASHINGTON, DC - U.S. Department...

  17. The peculiar distribution of CH3CN in IRC+10216 seen by ALMA

    E-Print Network [OSTI]

    Agundez, M; Quintana-Lacaci, G; Prieto, L Velilla; Castro-Carrizo, A; Marcelino, N; Guelin, M

    2015-01-01

    IRC+10216 is a circumstellar envelope around a carbon-rich evolved star which contains a large variety of molecules. According to interferometric observations, molecules are distributed either concentrated around the central star or as a hollow shell with a radius of 15". We present ALMA Cycle 0 band 6 observations of the J=14-13 rotational transition of CH3CN in IRC+10216, obtained with an angular resolution of 0.76x0.61. The bulk of the emission is distributed as a hollow shell located at just 2" from the star, with a void of emission in the central region up to a radius of 1". This spatial distribution is markedly different from those found to date in this source for other molecules. Our analysis indicate that methyl cyanide is not formed neither in the stellar photosphere nor far in the outer envelope, but at radial distances as short as 1-2", reaching a maximum abundance of 5e-8 with respect to H2 at about 6" from the star. Standard chemical models of IRC+10216 predict that CH3CN should form farther out ...

  18. CHIRON: a package for ChPT numerical results at two loops

    E-Print Network [OSTI]

    Johan Bijnens

    2014-12-02

    This document describes the package CHIRON which includes two libraries, chiron itself and jbnumlib. CHIRON is a set of routines useful for two-loop numerical results in Chiral Perturbation Theory (ChPT). It includes programs for the needed one- and two-loop integrals as well as routines to deal with the ChPT parameters. The present version includes everything needed for the masses, decay constants and quark-antiquark vacuum-expectation-values. An added routine calculates consistent values for the masses and decay constants when the pion and kaon masses are varied. In addition a number of finite volume results are included: one-loop tadpole integrals, two-loop sunset integrals and the results for masses and decay constants. The numerical routine library jbnumlib contains the numerical routines used in chiron. Many are to a large extent simple C++ versions of routines in the CERNLIB numerical library. Notable exceptions are the dilogarithm and the Jacobi theta function implementations. This paper describes what is included in CHIRON v0.50.

  19. Cooperative, Multicentered CH/ Interaction-Controlled Supramolecular Self-Assembly Processes

    SciTech Connect (OSTI)

    Li, Qing; Han, Chengbo; Horton, Scott R; Fuentes-Cabrera, Miguel A; Sumpter, Bobby G; Lu, Wenchang; Bernholc, J.; Maksymovych, Petro; Pan, Minghu

    2012-01-01

    Supramolecular self-assembly on well-defined surfaces provides access to a multitude of nanoscale architectures, including clusters of distinct symmetry and size. The driving forces underlying supramolecular structures generally involve both graphoepitaxy and weak directional nonconvalent interactions. Here we show that functionalizing a benzene molecule with an ethyne group introduces attractive interactions in a 2D geometry, which would otherwise be dominated by intermolecular repulsion. Furthermore, the attractive interactions enable supramolecular self-assembly, wherein a subtle balance between very weak CH/{pi} bonding and molecule-surface interactions produces a well-defined 'magic' dimension and chirality of supramolecular clusters. The nature of the process is corroborated by extensive scanning tunneling microscopy/spectroscopy (STM/S) measurements and ab initio calculations, which emphasize the cooperative, multicenter characters of the CH/{pi} interaction. This work points out new possibilities for chemical functionalization of {pi}-conjugated hydrocarbon molecules that may allow for the rational design of supramolecular clusters with a desired shape and size.

  20. Class I methanol (CH{sub 3}OH) maser conditions near supernova remnants

    SciTech Connect (OSTI)

    McEwen, Bridget C.; Pihlström, Ylva M.; Sjouwerman, Loránt O.

    2014-10-01

    We present results from calculations of the physical conditions necessary for the occurrence of 36.169 (4{sub –1}-3{sub 0} E), 44.070 (7{sub 0}-6{sub 1} A {sup +}), 84.521 (5{sub –1}-4{sub 0} E), and 95.169 (8{sub 0}-7{sub 1} A {sup +}) GHz methanol (CH{sub 3}OH) maser emission lines near supernova remnants (SNRs), using the MOLPOP-CEP program. The calculations show that given a sufficient methanol abundance, methanol maser emission arises over a wide range of densities and temperatures, with optimal conditions at n ? 10{sup 4}-10{sup 6} cm{sup –3} and T > 60 K. The 36 GHz and 44 GHz transitions display more significant maser optical depths compared to the 84 GHz and 95 GHz transitions over the majority of physical conditions. It is also shown that line ratios are an important and applicable probe of the gas conditions. The line ratio changes are largely a result of the E-type transitions becoming quenched faster at increasing densities. The modeling results are discussed using recent observations of CH{sub 3}OH and hydroxyl (OH) masers near the SNRs G1.4–0.1, W28, and Sgr A East.

  1. Barrierless proton transfer across weak CH?O hydrogen bonds in dimethyl ether dimer

    SciTech Connect (OSTI)

    Yoder, Bruce L. West, Adam H. C.; Signorell, Ruth; Bravaya, Ksenia B.; Bodi, Andras; Sztáray, Bálint

    2015-03-21

    We present a combined computational and threshold photoelectron photoion coincidence study of two isotopologues of dimethyl ether, (DME ? h{sub 6}){sub n} and (DME ? d{sub 6}){sub n}n = 1 and 2, in the 9–14 eV photon energy range. Multiple isomers of neutral dimethyl ether dimer were considered, all of which may be present, and exhibited varying C–H?O interactions. Results from electronic structure calculations predict that all of them undergo barrierless proton transfer upon photoionization to the ground electronic state of the cation. In fact, all neutral isomers were found to relax to the same radical cation structure. The lowest energy dissociative photoionization channel of the dimer leads to CH{sub 3}OHCH{sub 3}{sup +} by the loss of CH{sub 2}OCH{sub 3} with a 0 K appearance energy of 9.71 ± 0.03 eV and 9.73 ± 0.03 eV for (DME ? h{sub 6}){sub 2} and deuterated (DME ? d{sub 6}){sub 2}, respectively. The ground state threshold photoelectron spectrum band of the dimethyl ether dimer is broad and exhibits no vibrational structure. Dimerization results in a 350 meV decrease of the valence band appearance energy, a 140 meV decrease of the band maximum, thus an almost twofold increase in the ground state band width, compared with DME ? d{sub 6} monomer.

  2. Research by BNL investigators was performed under the auspices of the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.

    E-Print Network [OSTI]

    of Energy under Contract No. DE-AC02-98CH10886. A MEASUREMENT TECHNIQUE FOR HYDROXYACETONE P. J. Klotz, E. S #12;A MEASUREMENT TECHNIQUE FOR HYDROXYACETONE P. J. Klotz, E. S. C. Kwok, X. Zhou, J. H. Lee, and Y of hydrocarbons of the type, CH3(R)C=CH2. Tuazon and Atkinson (1990) reported HA yield of 41% from the OH

  3. Anisotropic magnetoresistance in the organic superconductor -,,BEDT-TTF...2SF5CH2CF2SO3 X. Su and F. Zuo

    E-Print Network [OSTI]

    Zuo, Fulin

    Anisotropic magnetoresistance in the organic superconductor -,,BEDT-TTF...2SF5CH2CF2SO3 X. Su and F direction in an all organic superconductor - BEDT-TTF 2SF5CH2CF2SO3. For H I, the isothermal superconductor - BEDT-TTF 2SF5CH2CF2SO3.16,19,20 The structure contains layers of nearly parallel BEDT

  4. Anomalous low-temperature and high-field magnetoresistance in the organic superconductor -,,BEDT-TTF...2SF5CH2CF2SO3

    E-Print Network [OSTI]

    Zuo, Fulin

    -TTF...2SF5CH2CF2SO3 F. Zuo, X. Su, and P. Zhang Department of Physics, University of Miami, Coral Gables superconductor -(BEDT-TTF)2SF5CH2CF2SO3. Unlike other BEDT-TTF based organic superconductors, a nonmetallic discovered all organic supercon- ductor -(BEDT-TTF)2SF5CH2CF2SO3. Resistance mea- surements at low

  5. F Reactor Area Cleanup Complete

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – U.S. Department of Energy (DOE) contractors have cleaned up the F Reactor Area, the first reactor area at the Hanford Site in southeastern Washington state to be fully remediated.

  6. Memorandum CH2M WG Idaho, LLC, Request for Variance to Title 10, Code of Federal Regulations Part 851, "Worker Safety and Health Program"

    Broader source: Energy.gov [DOE]

    Memorandum CH2M WG Idaho, LLC, Request for Variance to Title 10, Code of Federal Regulations Part 851, "Worker Safety and Health Program"

  7. Research by BNL investigators was performed under the auspices of the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.

    E-Print Network [OSTI]

    of Energy under Contract No. DE-AC02-98CH10886. BNL-64805 (Abstract) OZONE PRODUCTION IN THE NEW YORK CITY

  8. Monroe Urbanized Area MTP 2035 

    E-Print Network [OSTI]

    Monroe Urbanized Area Metropolitan Planning Organization

    2010-10-31

    /plain; charset=ISO-8859-1 Monroe Urbanized Area MTP 2035 The 2035 Metropolitan Transportation Plan for the Monroe Urbanized Area Developed for The Monroe Urbanized Area Metropolitan Planning Organization and The Louisiana Department... of Transportation and Development Developed by In association with Neel-Schaffer, Inc. **DRAFT** Adopted Date Here This document was prepared in cooperation with: The Monroe Urbanized Area MPO Technical Advisory Committee and The Louisiana...

  9. Communication in Home Area Networks

    E-Print Network [OSTI]

    Wang, Yubo

    2012-01-01

    used in area like smart buildings, street light controls andbuilding. This section focuses on HAN design to address two smart

  10. datamanagementgroup 2011 SURVEY AREA SUMMARY

    E-Print Network [OSTI]

    Toronto, University of

    RidgeRd. SimcoeSt. Hwy.7&12 RegRd.57 0 4 8 Kilometers Area = 51,980 Hectares #12;POPULATION CHARACTERISTICSdatamanagementgroup 2011 SURVEY AREA SUMMARY DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY Drivers Vehicles Trips/day 2011 2006 1996 1986 datamanagementgroup 2011 SURVEY AREA SUMMARY DEPARTMENT

  11. datamanagementgroup 2011 SURVEY AREA SUMMARY

    E-Print Network [OSTI]

    Toronto, University of

    .7 4.1 5.8 27.9 TRIPS MADE TO TTS AREA 4,070,800 22.8% 51% 22% 6% 21% 61% 13% 12% 2% 8% 4% 7.1 3.3 7datamanagementgroup 2011 SURVEY AREA SUMMARY DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF TORONTO PREPARED BY 5 TRANSPORTATION TOMORROW SURVEY AREA City of Orillia Durham Region City

  12. A concise and scalable strategy for the total synthesis of dictyodendrin B based on sequential C–H functionalization

    E-Print Network [OSTI]

    Pitts, Andrew K.; O'Hara, Fionn; Snell, Robert H.; Gaunt, Matthew J.

    2015-02-23

    –H functionalizations’ (comprising of metal-catalyzed C–H activation, electrophilic aromatic substitution, radical addition and directed metalation) we reasoned we would be well equipped to meet the ever-changing demands of the evolving molecule as the synthesis... and Scheme 4a).16 Although we investigated metal-catalyzed C–H insertion processes using the azide, none of these methods resulted in the desired heterocycle.17 Carbazole 14 could be isolated using Tokuyama’s batch conditions for the thermal decomposition...

  13. Detection of class I methanol (CH{sub 3}OH) maser candidates in supernova remnants

    SciTech Connect (OSTI)

    Pihlström, Y. M.; Mesler, R. A.; McEwen, B. C. [Department of Physics and Astronomy, University of New Mexico, MSC07 4220, Albuquerque, NM 87131 (United States); Sjouwerman, L. O.; Frail, D. A.; Claussen, M. J., E-mail: ylva@unm.edu [National Radio Astronomy Observatory, P.O. Box 0, Lopezville Road 1001, Socorro, NM 87801 (United States)

    2014-04-01

    We have used the Karl G. Jansky Very Large Array to search for 36 GHz and 44 GHz methanol (CH{sub 3}OH) lines in a sample of 21 Galactic supernova remnants (SNRs). Mainly the regions of the SNRs with 1720 MHz OH masers were observed. Despite the limited spatial extent covered in our search, methanol masers were detected in both G1.4–0.1 and W28. Additional masers were found in Sgr A East. More than 40 masers were found in G1.4–0.1, which we deduce are due to interactions between the SNR and at least two separate molecular clouds. The six masers in W28 are associated with the molecular cloud that is also associated with the OH maser excitation. We discuss the possibility that the methanol maser may be more numerous in SNRs than the OH maser, but harder to detect due to observational constraints.

  14. Detection of Class I Methanol (CH3OH) Maser Candidates in Supernova Remnants

    E-Print Network [OSTI]

    Pihlström, Y M; Frail, D A; Claussen, M J; Mesler, R A; McEwen, B C

    2013-01-01

    We have used the Karl G. Jansky Very Large Array (VLA) to search for 36 GHz and 44 GHz methanol (CH3OH) lines in a sample of 21 Galactic supernova remnants (SNRs). Mainly the regions of the SNRs with 1720 MHz OH masers were observed. Despite the limited spatial extent covered in our search, methanol masers were detected in both G1.4-0.1 and W28. Additional masers were found in SgrAEast. More than 40 masers were found in G1.4-0.1 which we deduce are due to interactions between the SNR and at least two separate molecular clouds. The six masers in W28 are associated with the molecular cloud that is also associated with the OH maser excitation. We discuss the possibility that the methanol maser may be more numerous in SNRs than the OH maser, but harder to detect due to observational constraints.

  15. Casualties of Heritage Distancing: Children, Ch’orti’ Indigeneity, and the Copán Archaeoscape

    E-Print Network [OSTI]

    McAnany, Patricia A.; Parks, Shoshaunna; Metz, Brent

    2012-01-01

    infrastructure and programs (L. Mortensen , personal c o m m u n i c a t i o n , 2 0 0 6 ) . W h i l e H o n d u r a n C h ' o r t i ' identity is c o m p l e x and di­ versely expressed, it does fol low the general t rends o f the indigenous-r ights discourse... for the conservation o f cultural heritage in the Copän Valley. Examined here is a collaborative education program that balances heritage education with site conservation and creates space for a dialogue about the value o f the past. Designed for Ch 'or t i...

  16. Geothermal resource area 9: Nye County. Area development plan

    SciTech Connect (OSTI)

    Pugsley, M.

    1981-01-01

    Geothermal Resource area 9 encompasses all of Nye County, Nevada. Within this area there are many different known geothermal sites ranging in temperature from 70/sup 0/ to over 265/sup 0/ F. Fifteen of the more major sites have been selected for evaluation in this Area Development Plan. Various potential uses of the energy found at each of the resource sites discussed in this Area Development Plan were determined after evaluating the area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities, and comparing those with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories certain subdivisions were considered separately. The findings about each of the 15 geothermal sites considered in this Area Development Plan are summarized.

  17. Near-infrared spectroscopy of CH{sub 2} by frequency modulated diode laser absorption

    SciTech Connect (OSTI)

    Marr, A.J.; Sears, T.J.; Chang, B.

    1998-09-01

    A diode laser spectrometer incorporating a multi-pass Herriott type cell and frequency modulation detection was used to record a previously unaccessed region of the near-infrared singlet{l_arrow}singlet absorption spectrum of methylene between 10thinsp000 cm{sup {minus}1} and 10thinsp600 cm{sup {minus}1}. With this spectrometer, signal-to-noise ratios close to the quantum noise limit have been attained. Identification of rovibronic transitions to five previously unobserved levels, K=1 {tilde a}(0,9,0), K=2thinsp{tilde b}(0,1,0), K=2thinsp{tilde a}(1,6,0), K=3thinsp{tilde b}(0,1,0) and K=3thinsp{tilde a}(0,10,0), was made. Despite the fact that the present spectra access levels within approximately 1300 cm{sup {minus}1} of the barrier to linearity, the spectrum is dense and perturbed, characteristics in common with spectra recorded in many previous studies at shorter wavelengths. Recent spectroscopic observations of halomethylenes [J. Mol. Spectrosc. {bold 188}, 68 (1998)] had suggested that the CH{sub 2} spectrum might become simpler at longer wavelengths, but this was not evident in the observed spectra. The mixed nature of the singlet states is evidenced by the assignment of rovibronic transitions to levels containing primarily {tilde a}thinsp{sup 1}A{sub 1} state character. The new measurements provide a stringent test for modern theoretical models for CH{sub 2} and will enable refinement of the electronic potential surfaces. {copyright} {ital 1998 American Institute of Physics.}

  18. Characterization of Vadose Zone Sediments from C Waste Management Area: Investigation of the C-152 Transfer Line Leak

    SciTech Connect (OSTI)

    Brown, Christopher F.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Valenta, Michelle M.; Lanigan, David C.; Vickerman, Tanya S.; Clayton, Ray E.; Geiszler, Keith N.; Iovin, Cristian; Clayton, Eric T.; Kutnyakov, Igor V.; Baum, Steven R.; Lindberg, Michael J.; Orr, Robert D.

    2008-09-11

    The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in January 2007. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc., tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within waste management area (WMA) C. Specifically, this report contains all the geologic, geochemical, and selected physiochemical characterization data compiled on vadose zone sediment recovered from direct-push samples collected around the site of an unplanned release (UPR), UPR-200-E-82, adjacent to the 241-C-152 Diversion Box located in WMA C.

  19. Vibrational assignment and FranckCondon analysis of the mass-analyzed threshold ionization ,,MATI... spectrum of CH2ClI: The effect of strong

    E-Print Network [OSTI]

    Kim, Myung Soo

    to a high l and high ml state, which is usually called a ZEKE state. Then, application of electric radiation generated by four-wave mixing is getting popular.9­11 Recently, we reported the one-photon MATI spectrum of CH2ClI.12 The vibrational fundamentals of CH2ClI+ could be readily identified simply

  20. The determination of phase relations in the CH?-H?O-NaCl system at 2 and 5 kbars, 300 to 600° C using synthetic fluid inclusions 

    E-Print Network [OSTI]

    McShane, Christopher Joseph

    1999-01-01

    Fluid inclusions were synthesized, using quartz and fluorite as host minerals, to determine the phase relations of the CH?-H?O-NaCl system at pressures of 2 and 5 kbars and temperatures of 300, 400, 500, and 600°C . Known quantities of CH?, H?O...

  1. Effects of Collision and Vibrational Energy on the Reaction of CH3CHO+() with C2D4 Ho-Tae Kim, Jianbo Liu, and Scott L. Anderson*

    E-Print Network [OSTI]

    Anderson, Scott L.

    , we calculated the structures and energetics of 13 different complexes that potentially could serve vibrational state. REMPI through different vibrational levels of the B~ electronic state is used to produce CH dynamics with increasing energy. For the CH3CHO+- C2H4 system, there is an important direct mechanism even

  2. CH O Hydrogen Bonds at Protein-Protein Interfaces*S Received for publication, May 8, 2002, and in revised form, July 8, 2002

    E-Print Network [OSTI]

    Luhua, Lai

    CH O Hydrogen Bonds at Protein-Protein Interfaces*S Received for publication, May 8, 2002, a statistical potential has been de- veloped to quantitatively describe the CH O hydrogen bonding interaction-protein interaction studies. The conventional hydrogen bonds of the type X­H Y (where X and Y N or O) have been widely

  3. Quantum cascade laser investigations of CH4 and C2H2 interconversion in hydrocarbon/H2 gas mixtures during microwave plasma

    E-Print Network [OSTI]

    Bristol, University of

    Quantum cascade laser investigations of CH4 and C2H2 interconversion in hydrocarbon/H2 gas mixtures, Russia Received 31 July 2008; accepted 19 June 2009; published online 5 August 2009 CH4 and C2H2 molecules and their interconversion in hydrocarbon/rare gas/H2 gas mixtures in a microwave reactor used

  4. SCHOOL OF CHEMICAL & BIOMOLECULAR ENGINEERING, GEORGIA INSTITUTE OF TECHNOLOGY Checklist of Required and Recommended Safety Training for ChBE Researchers

    E-Print Network [OSTI]

    Gallivan, Martha A.

    training module completion records/certificates. · Faculty/PIs: It is recommended that you request the two modules on Receiving and Making Shipments. ____ Required: Fire Safety Training Online: http://www.ehs.gatech.edu/fire/fire_training of Required and Recommended Safety Training for ChBE Researchers · "ChBE Researcher" refers to any researcher

  5. Crossed beam studies of the reactions:O(3P,1D) + CH Direct evidence of intersystem crossing

    E-Print Network [OSTI]

    Nijmegen, University of

    on the triplet potential energy surface with rebound dynamics and via a long-lived complex mechanism following experiments with a rotating mass] CH 3 I spectrometer detector at collision energies of 55.2 and 64.0 kJ mol~1. The center of mass product angular and translational energy distributions for both the O(3P) and O(1D

  6. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    the equilibrium from having zero net current. 1 #12;I. INTRODUCTION Helically symmetric MHD equilibria represent of a current. This allows conventional stellarator equilibria to have zero net current in each flux surfacePREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA

  7. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA. Availability This report is posted on the U.S. Department of Energy's Princeton Plasma Physics Laboratory Publications and Reports web site in Fiscal Year 2003. The home page for PPPL Reports and Publications is: http

  8. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    , translation properties, and high plasma beta1,2 . One of the most important issues is FRC stabilityPREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA agency thereof. Availability This report is posted on the U.S. Department of Energy's Princeton Plasma

  9. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    -Reversed Configuration (FRC) is a compact toroid with negligible toroidal field, in which plasma is confined fusion reactor potential of the FRC (compact and simple geometry, translation properties and high plasmaPREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA

  10. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA Acceleration in the Field-reversed Configuration (FRC) by Slowly Rotating Odd-parity Magnetic Fields (RMFo agency thereof. Availability This report is posted on the U.S. Department of Energy's Princeton Plasma

  11. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    properties, and high plasma beta. One of the most important is- sues is FRC stability with respect to low] to investigate a variety of non-ideal MHD effects, including plasma flow and kinetic effects on FRC stabilityPREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA

  12. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    carried by the plasma. It has been known for some time that a MHD model of the FRC is unstable to manyPREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA on the U.S. Department of Energy's Princeton Plasma Physics Laboratory Publications and Reports web site

  13. Ligand-Enabled Catalytic C–H Arylation of Aliphatic Amines via a Four Membered Ring Cyclopalladation Pathway

    E-Print Network [OSTI]

    He, Chuan; Gaunt, Matthew J.

    2015-01-01

    A palladium-catalyzed C–H arylation of aliphatic amines with arylboronic esters is described via a four membered ring cyclopalladation pathway. Crucial to the successful outcome of this reaction is the action of an amino acid derived ligand. A range...

  14. CH(A-X) and OH(A-X) Optical Emission in an Axisymmetric Laminar Diffusion Flame

    E-Print Network [OSTI]

    Long, Marshall B.

    CH(A-X) and OH(A-X) Optical Emission in an Axisymmetric Laminar Diffusion Flame J. LUQUE, J. B an axisymmetric laminar diffusion flame [K. T. Walsh, M. B. Long, M. A. Tanoff, and M. D. Smooke, Twenty axisymmetric laminar methane/air diffusion flame studied here has been exten- sively characterized both

  15. Physical and chemical properties of dust produced in a N{sub 2}-CH{sub 4} RF plasma discharge

    SciTech Connect (OSTI)

    Ouni, F.; Alcouffe, G.; Szopa, C.; Carrasco, N.; Cernogora, G.; Adande, G.; Thissen, R.; Quirico, E.; Brissaud, O.; Schmitz-Afonso, I.; Laprevote, O.

    2008-09-07

    Titan's atmospheric chemistry is simulated using a Capacitively Coupled Plasma discharge produced in a N{sub 2}-CH{sub 4} mixture. The produced solid particles are analysed ex-situ. Chemical properties are deduced from: elemental composition, FTIR and LTQ-Orbitrap mass spectrometer. Optical properties are deduced from reflectivity in visible and IR range.

  16. TpPt(IV)Me(H)2 Forms a -CH4 Complex That Is Kinetically Resistant to Methane Liberation

    E-Print Network [OSTI]

    Keinan, Ehud

    TpPt(IV)Me(H)2 Forms a -CH4 Complex That Is Kinetically Resistant to Methane Liberation H demonstra- tion that methane can be catalytically activated by an organometallic complex of Pt(II).2 report that although 1 has a very high energy barrier for the liberation of methane, it readily forms

  17. 1/4Peter Debye Nobelpreis fr Chemie 1936www.nobelpreis.uzh.ch/debye.html traditionellen Frhlingsfest, dem Sech-

    E-Print Network [OSTI]

    Zürich, Universität

    1/4Peter Debye ­ Nobelpreis für Chemie 1936www.nobelpreis.uzh.ch/debye.html traditionellen Moleküle gibt, die permanente elektri- sche Dipole sind. Das «Dipolmoment» Nobelpreis für Chemie 1936 «für für Chemie 1936 Der Leonardo der Physik April 1914: Mit grossen Feierlichkei- ten eröffnet die

  18. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    per pulse. The pulse energy is limited by the thermal damage to the compression gratings which becomePREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does

  19. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    of looking at ions in both the thermal and suprathermal energy ranges, neutron detectors, and a Faraday cupPREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does

  20. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA Propagation and Absorption in Plasmas with Non-thermal Populations by R.J. Dumont, C.K. Phillips, and D specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does

  1. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA PHYSICS LABORATORY PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY PPPL-3698 PPPL-3698 UC-70 Thermal Response by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

  2. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    in that they "channel" energy from the fast ion population to the thermal ion population [3] (rather than the thermalPREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation

  3. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA Conversion of Thermal Electron Bernstein Waves to the Extraordinary Electromagnetic Mode on the National specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does

  4. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    laser pulses [2, 3] with up to 500 J per pulse. The pulse energy is limited by the thermal damagePREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does

  5. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    provide a mechanism for direct energy trans- fer from super-Alfv´enic beam ions to thermal ions [3PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does

  6. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA PHYSICS LABORATORY PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY PPPL-3790 PPPL-3790 UC-70 Truncated Thermal commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does

  7. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA of the Effect of Compressional Alfvén Modes on Thermal Transport in the National Spherical Torus Experiment by E by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

  8. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    elds: di usion | methods: analytical | plasmas 1. Introduction The problem of thermal conductionPREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA on the U.S. Department of Energy's Princeton Plasma Physics Laboratory Publications and Reports web site

  9. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    a practical reality ­ an alternative energy source. The Year 2000 marked the second year of National SphericalPREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA on the U.S. Department of Energy's Princeton Plasma Physics Laboratory Publications and Reports web site

  10. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    alternative for measuring the energy of fast escaping neutrals when the high-energy ion component producedPREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA on the U.S. Department of Energy's Princeton Plasma Physics Laboratory Publications and Reports web site

  11. Communication: Spectroscopic characterization of an alkyl substituted Criegee intermediate syn-CH{sub 3}CHOO through pure rotational transitions

    SciTech Connect (OSTI)

    Nakajima, Masakazu; Endo, Yasuki

    2014-01-07

    An alkyl-substituted Criegee intermediate syn-CH{sub 3}CHOO was detected in the gas phase through Fourier-transform microwave spectroscopy. Observed pure rotational transitions show a small splitting corresponding to the A/E components due to the threefold methyl internal rotation. The rotational constants and the barrier height of the hindered methyl rotation were determined to be A = 17?586.5295(15) MHz, B = 7133.4799(41) MHz, C = 5229.1704(40) MHz, and V{sub 3} = 837.1(17) cm{sup ?1}. High-level ab initio calculations which reproduce the experimentally determined values well indicate that the in-plane C–H bond in the methyl moiety is trans to the C–O bond, and other two protons are directed to the terminal oxygen atom for the most stable structure of syn-CH{sub 3}CHOO. The torsional barrier of the methyl top is fairly large in syn-CH{sub 3}CHOO, implying a significant interaction between the terminal oxygen and the protons of the methyl moiety, which may be responsible for the high production yields of the OH radical from energized alkyl-substituted Criegee intermediates.

  12. Hydroxylation of Methane by Non-Heme Diiron Enzymes: Molecular Orbital Analysis of C-H Bond Activation by

    E-Print Network [OSTI]

    Gherman, Benjamin F.

    Hydroxylation of Methane by Non-Heme Diiron Enzymes: Molecular Orbital Analysis of C-H Bond, 2002 Abstract: The electronic structures of key species involved in methane hydroxylation performed that govern the details of the hydroxylation. Introduction The selective catalytic hydroxylation of methane

  13. Role of hydrogen-bonding and its interplay with octahedral tilting in CH3NH3PbI3

    E-Print Network [OSTI]

    Lee, Jung-Hoon; Bristowe, Nicholas C.; Bristowe, Paul D.; Cheetham, Anthony K.

    2015-03-05

    First principles calculations on the hybrid perovskite CH3NH3PbI3 predict strong hydrogen-bonding which influences the structure and dynamics of the methylammonium cation and reveal its interaction with the tilting of the PbI6 octahedra...

  14. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA on the U.S. Department of Energy's Princeton Plasma Physics Laboratory Publications and Reports web site and DOE Contractors can obtain copies of this report from: U.S. Department of Energy Office of Scientific

  15. Gibbs and Helmholtz energies of formation of sI clathrate hydrates from CO$_2$, CH$_4$ and water

    E-Print Network [OSTI]

    K. S. Glavatskiy; T. J. H. Vlugt; S. Kjelstrup

    2013-07-26

    We determine thermodynamic stability conditions in terms of Helmholtz and Gibbs energies for sI clathrate hydrates with CH$_4$ and CO$_2$ at 278 K. Helmholtz energies are relevant for processing from porous rocks (constant volume), while Gibbs energies are relevant for processing from layers on the ocean floor (constant pressure). We define three steps leading to hydrate formation, and find Helmholtz energy differences from molecular simulations for two of them using grand-canonical Monte Carlo simulations at constant temperature and volume; while the third step was calculated from literature data. The Gibbs energy change for the same steps are also determined. From the variations in the total Helmholtz and Gibbs energies we suggest thermodynamic paths for exchange of CH$_4$ by CO$_2$ in the isothermal hydrate, for constant volume or pressure, respectively. We show how these paths for the mixed hydrate can be understood from single-component occupancy isotherms, where CO$_2$, but not CH$_4$, can distinguish between large and small cages. The strong preference for CH$_4$ for a range of compositions can be explained by these.

  16. Ultralow Absorption Coefficient and Temperature Dependence of Radiative Recombination of CH3NH3PbI3 Perovskite from

    E-Print Network [OSTI]

    Perovskite from Photoluminescence Chog Barugkin, Jinjin Cong, The Duong, Shakir Rahman, Hieu T. Nguyen perovskite methylammonium lead iodide (CH3NH3PbI3) films from 675 to 1400 nm. Unlike other methods used of organic-inorganic halide perovskite- based solar cells has attracted enormous interest from the entire PV

  17. Theoretical Study of Mechanism and Selectivity of Copper-Catalyzed C-H Bond Amidation of Indoles

    E-Print Network [OSTI]

    Liao, Rongzhen

    Theoretical Study of Mechanism and Selectivity of Copper-Catalyzed C-H Bond Amidation of Indoles theory calculations are used to study the reaction mechanism and origins of C2 selectivity in a copper the observed regioselectivity. Instead, an unprecedented mechanism based on a four-center reductive elimination

  18. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    ]) is a data acquisition and storage system used at several fusion facilities world-wide. The majorityPREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA on the U.S. Department of Energy's Princeton Plasma Physics Laboratory Publications and Reports web site

  19. Mixing, Lyapunov instability, and the approach to equilibrium in a hard-sphere gas Ch. Dellago and H. A. Posch

    E-Print Network [OSTI]

    Dellago, Christoph

    Mixing, Lyapunov instability, and the approach to equilibrium in a hard-sphere gas Ch. Dellago, Austria Received 31 July 1996 We present maximum Lyapunov exponents 1 and related Kolmogorov time of a one-particle distribution. At low densities the Lyapunov time 1/ 1 is much smaller than

  20. THE FORMATION OF ACETIC ACID (CH3COOH) IN INTERSTELLAR ICE ANALOGS Chris J. Bennett and Ralf I. Kaiser

    E-Print Network [OSTI]

    Kaiser, Ralf I.

    THE FORMATION OF ACETIC ACID (CH3COOH) IN INTERSTELLAR ICE ANALOGS Chris J. Bennett and Ralf I, 1195, 1160, 1051, and 957 cmÀ1 ; two dimeric forms of acetic acid were assigned via absorptions at 1757 of the col- umn densities of the acetic acid molecule suggest that the initial step of the formation process

  1. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    production in hydrogen ion sources) a negative chlorine current density of 45 mA/cm2 was obtained underPREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA agency thereof. Availability This report is posted on the U.S. Department of Energy's Princeton Plasma

  2. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA (Princeton, NJ USA) and the Max-Planck-Institut für Plasmaphysik, (Garching, Germany)and the Max-Planck-Institut für Plasmaphysik, (Garching, Germany)and the Max-Planck-Institut für Plasmaphysik, (Garching, Germany

  3. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    ) scaling for the energy confinement time, a density limit of n20 PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA. Availability This report is posted on the U.S. Department of Energy's Princeton Plasma Physics Laboratory

  4. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA. Availability This report is posted on the U.S. Department of Energy's Princeton Plasma Physics Laboratory://www.pppl.gov/pub_report/ DOE and DOE Contractors can obtain copies of this report from: U.S. Department of Energy Office

  5. A Market-Based Mechanism for Providing Demand-Side Regulation Service Ioannis Ch. Paschalidis, Binbin Li, Michael C. Caramanis

    E-Print Network [OSTI]

    Caramanis, Michael

    A Market-Based Mechanism for Providing Demand-Side Regulation Service Reserves Ioannis Ch a building Smart Microgrid Operator (SMO) to offer regulation service reserves and meet the associated utility. We study an asymptotic regime in which this upper bound is tight and the static policy provides

  6. datamanagementgroup 2011 SURVEY AREA SUMMARY

    E-Print Network [OSTI]

    Toronto, University of

    % 7% 6.5 5.5 6.5 68.5 30,100 10% 5% 51% 34% 73% 17% 1% * 3% 7% 7.0 7.2 10.0 * ANCASTER AREA CITYdatamanagementgroup 2011 SURVEY AREA SUMMARY DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF TORONTO PREPARED BY 85 ANCASTER AREA CITY OF HAMILTON Mohawk Rd. Main St. Carluke Rd. Governors Rd. Garner

  7. datamanagementgroup 2011 SURVEY AREA SUMMARY

    E-Print Network [OSTI]

    Toronto, University of

    ,213,000 38% 13% 35% 14% 60% 14% 16% 1% 7% 2% 5.7 4.1 6.6 30.0 TRIPS MADE TO TTS AREA 3,168,200 23.5% 51% 22datamanagementgroup 2011 SURVEY AREA SUMMARY DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF TORONTO PREPARED BY 5 GREATER TORONTO HAMILTON AREA Durham Region Peel Region City of Hamilton City

  8. Kodiak Area Management Reports, 19242010 Kodiak Area Management Reports, 19242010

    E-Print Network [OSTI]

    367 Kodiak Area Management Reports, 1924­2010 APPENDIX 4 Kodiak Area Management Reports, 1924­2010 1924: Fred R. Lucas. Report of Kodiak-Afognak Fish- eries District to August 31, 1924. U.S. Bureau of Fisheries, Afognak, AK (5 September 1924). 8 p. 1924: Fred R. Lucas. Report of Kodiak-Afognak Dis- trict

  9. Communication in Home Area Networks

    E-Print Network [OSTI]

    Wang, Yubo

    2012-01-01

    and implementation of smart home energy management systemsStandard Technologies for Smart Home Area Networks EnablingInteroperability framework for smart home systems”, Consumer

  10. Effects of CO addition on the characteristics of laminar premixed CH{sub 4}/air opposed-jet flames

    SciTech Connect (OSTI)

    Wu, C.-Y. [Advanced Engine Research Center, Kao Yuan University, Kaohsiung County, 821 (China); Chao, Y.-C.; Chen, C.-P.; Ho, C.-T. [Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701 (China); Cheng, T.S. [Department of Mechanical Engineering, Chung Hua University, Hsinchu, 300 (China)

    2009-02-15

    The effects of CO addition on the characteristics of premixed CH{sub 4}/air opposed-jet flames are investigated experimentally and numerically. Experimental measurements and numerical simulations of the flame front position, temperature, and velocity are performed in stoichiometric CH{sub 4}/CO/air opposed-jet flames with various CO contents in the fuel. Thermocouple is used for the determination of flame temperature, velocity measurement is made using particle image velocimetry (PIV), and the flame front position is measured by direct photograph as well as with laser-induced predissociative fluorescence (LIPF) of OH imaging techniques. The laminar burning velocity is calculated using the PREMIX code of Chemkin collection 3.5. The flame structures of the premixed stoichiometric CH{sub 4}/CO/air opposed-jet flames are simulated using the OPPDIF package with GRI-Mech 3.0 chemical kinetic mechanisms and detailed transport properties. The measured flame front position, temperature, and velocity of the stoichiometric CH{sub 4}/CO/air flames are closely predicted by the numerical calculations. Detailed analysis of the calculated chemical kinetic structures reveals that as the CO content in the fuel is increased from 0% to 80%, CO oxidation (R99) increases significantly and contributes to a significant level of heat-release rate. It is also shown that the laminar burning velocity reaches a maximum value (57.5 cm/s) at the condition of 80% of CO in the fuel. Based on the results of sensitivity analysis, the chemistry of CO consumption shifts to the dry oxidation kinetics when CO content is further increased over 80%. Comparison between the results of computed laminar burning velocity, flame temperature, CO consumption rate, and sensitivity analysis reveals that the effect of CO addition on the laminar burning velocity of the stoichiometric CH{sub 4}/CO/air flames is due mostly to the transition of the dominant chemical kinetic steps. (author)

  11. Evaluating Impacts of CO2 and CH4 Gas Intrusion into an Unconsolidated Aquifer: Fate of As and Cd

    SciTech Connect (OSTI)

    Lawter, Amanda R.; Qafoku, Nikolla; Shao, Hongbo; Bacon, Diana H.; Brown, Christopher F.

    2015-07-10

    Abstract The sequestration of carbon dioxide (CO2) in deep underground reservoirs has been identified as an important strategy to decrease atmospheric CO2 levels and mitigate global warming, but potential risks on overlying aquifers currently lack a complete evaluation. In addition to CO2, other gases such as methane (CH4) may be present in storage reservoirs. This paper explores for the first time the combined effect of leaking CO2 and CH4 gasses on the fate of major, minor and trace elements in an aquifer overlying a potential sequestration site. Emphasis is placed on the fate of arsenic (As) and cadmium (Cd) released from the sediments or present as soluble constituents in the leaking brine. Results from macroscopic batch and column experiments show that the presence of CH4 (at a concentration of 1 % in the mixture CO2/CH4) does not have a significant effect on solution pH or the concentrations of most major elements (such as Ca, Ba, and Mg). However, the concentrations of Mn, Mo, Si and Na are inconsistently affected by the presence of CH4 (i.e., in at least one sediment tested in this study). Cd is not released from the sediments and spiked Cd is mostly removed from the aqueous phase most likely via adsorption. The fate of sediment associated As [mainly sorbed arsenite or As(III) in minerals] and spiked As [i.e., As5+] is complex. Possible mechanisms that control the As behavior in this system are discussed in this paper. Results are significant for CO2 sequestration risk evaluation and site selection and demonstrate the importance of evaluating reservoir brine and gas stream composition during site selection to ensure the safest site is being chosen.

  12. Electronic structure of lanthanum copper oxychalcogenides LaCuOCh (Ch=S, Se, Te) by X-ray photoelectron and absorption spectroscopy

    SciTech Connect (OSTI)

    Rudyk, Brent W.; Blanchard, Peter E.R.; Cavell, Ronald G. [Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2 (Canada); Mar, Arthur, E-mail: arthur.mar@ualberta.ca [Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2 (Canada)

    2011-07-15

    X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge spectroscopy (XANES) have been applied to examine the electronic structures of lanthanum copper oxychalcogenides LaCuOCh (Ch=S, Se, Te), whose structure has been conventionally viewed as consisting of nominally isolated [LaO] and [CuCh] layers. However, there is evidence for weak La-Ch interactions between these layers, as seen in small changes in the satellite intensity of the La 3d XPS spectra as the chalcogen is changed and as supported by band structure calculations. The O 1s and Cu 2p XPS spectra are insensitive to chalcogen substitution. Lineshapes in the Cu 2p XPS spectra and fine-structure in the Cu L- and M-edge XANES spectra support the presence of Cu{sup +} species. The Ch XPS spectra show negative BE shifts relative to the elemental chalcogen, indicative of anionic species; these shifts correlate well with greater difference in electronegativity between the Cu and Ch atoms, provided that an intermediate electronegativity is chosen for Se. - Graphical abstract: The presence of anionic chalcogen atoms in LaCuOCh is supported by the Ch binding energies, which undergo negative shifts proportional to the polarity of the Cu-Ch bonds. Highlights: > La 3d XPS confirms La-Ch interlayer interactions between [LaO] and [CuCh] layers. > O 1s and Cu 2p XPS are insensitive to chalcogen substitution. > Cu XANES spectra support the presence of Cu{sup +} species. > Negative shifts in Ch binding energies imply anionic chalcogen atoms.

  13. datamanagementgroup 2011 SURVEY AREA SUMMARY

    E-Print Network [OSTI]

    Toronto, University of

    datamanagementgroup 2011 SURVEY AREA SUMMARY DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF TORONTO PREPARED BY 51 TOWN OF RICHMOND HILL REGIONAL MUNICIPALITY OF YORK LeslieSt. Stouffville Rd. King 6 Kilometers Area = 10,180 Hectares #12;POPULATION CHARACTERISTICS Population Age Daily

  14. Area Health Education Center of

    E-Print Network [OSTI]

    Collins, Gary S.

    Area Health Education Center of Eastern Washington Washington State University Extension's Area Health Education Center of Eastern Washington works with university and community allies to promote health for underserved and at-risk populations. It is part of a network of AHEC organiza- tions

  15. Before Mapping After Mapping Area Power Area Delay Power

    E-Print Network [OSTI]

    Pedram, Massoud

    32 Exam- ples Before Mapping After Mapping Area Power Area Delay Power 5xp1 0.93 0.98 0.86 0.82 0 1.01 1.01 1.02 1.07 0.99 duke2 1.01 1.01 0.99 1.13 0.97 e64 1.00 0.51 0.83 1.16 0.50 ex5 0.99 0.89 0.99 0.92 0.96 1.05 0.90 Table 2: Area, delay and power statistics for power script (normalized

  16. Thermochemical Insight into the Reduction of CO to CH3OH with [Re(CO)]+ and [Mn(CO)]+ Complexes

    SciTech Connect (OSTI)

    Wiedner, Eric S.; Appel, Aaron M.

    2014-05-22

    To gain insight into thermodynamic barriers for reduction of CO into CH3OH, free energies for reduction of [CpRe(PPh3)(NO)(CO)]+ into CpRe(PPh3)(NO)(CH2OH) have been determined from experimental measurements. Using model complexes, the free energies for the transfer of H+, H–, and e– have been determined. A pKa of 10.6 was estimated for [CpRe(PPh3)(NO)(CHOH)]+ by measuring the pKa for the analogous [CpRe(PPh3)(NO)(CMeOH)]+. The hydride donor ability (?G°H–) of CpRe(PPh3)(NO)(CH2OH) was estimated to be 58.0 kcal mol–1, based on calorimetry measurements of the hydride transfer reaction between CpRe(PPh3)(NO)(CHO) and [CpRe(PPh3)(NO)(CHOMe)]+ to generate the methylated analog, CpRe(PPh3)(NO)(CH2OMe). Cyclic voltammograms recorded on CpRe(PPh3)(NO)(CMeO), CpRe(PPh3)(NO)(CH2OMe), and [CpRe(PPh3)(NO)(CHOMe)]+ displayed either a quasireversible oxidation (neutral species) or reduction (cationic species). These potentials were used as estimates for the oxidation of CpRe(PPh3)(NO)(CHO) or CpRe(PPh3)(NO)(CH2OH), or the reduction of [CpRe(PPh3)(NO)(CHOH)]+. Combination of the thermodynamic data permits construction of three-dimensional free energy landscapes under varying conditions of pH and PH2. The free energy for H2 addition (?G°H2) to [CpRe(PPh3)(NO)(CO)]+ (+15 kcal mol–1) was identified as the most significant thermodynamic impediment for the reduction of CO. DFT computations indicate that ?G°H2 varies by only 4.3 kcal mol–1 across a series of [CpXRe(L)(NO)(CO)]+, while the experimental ?G°H– values for the analogous series of CpRe(PPh3)(NO)(CHO) varies by 12.9 kcal mol–1. The small range of ?G°H2 values is attributed to a minimal change in the C–O bond polarization upon modification of the ancillary ligands, as determined from the computed atomic charges. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.

  17. CH{sub 4}-CO{sub 2} reforming over Ni-substituted barium hexaaluminate catalysts

    SciTech Connect (OSTI)

    Gardner, Todd H. [U.S. DOE; Spivey, James J. [ORISE; Kugler, Edwin L.; Pakhare, Devendra

    2013-03-30

    A series of Ni-substituted barium hexaaluminate catalysts, Ba{sub 0.75}Ni{sub y}Al{sub 12?y}O{sub 19??} (y = 0.4, 0.6 and 1.0), were tested for CO{sub 2} reforming of CH{sub 4} at temperatures between 200 and 900 °C. Temperature programmed surface reaction results show that the reaction lights-off in a temperature range between 448 and 503 °C with a consistent decrease in light-off temperature with increasing Ni substitution. Isothermal runs performed at 900 °C show near equilibrium conversion and stable product concentrations for 18 h on all catalysts. Temperature programmed oxidation of the used catalysts show that the amount of carbon deposited on the catalyst increases with Ni substitution. High resolution XRD of the used Ba{sub 0.75}Ni{sub 0.4}Al{sub 11.6}O{sub 19??} catalyst shows a statistically significant contraction of the unit cell which is the result of NiO reduction from the lattice. XRD of the used catalyst also confirms the presence of graphitic carbon. XPS and ICP measurements of the as prepared catalysts show that lower levels of Ni substitution result in an increasing proportion of Ba at the surface.

  18. AREA

    Broader source: Energy.gov (indexed) [DOE]

    or if they need to add this to their audit they have performed yearly by a public accounting firm. 316 audits are essentially A-133 audits for for-profit entities. They DO...

  19. Communication in Home Area Networks

    E-Print Network [OSTI]

    Wang, Yubo

    2012-01-01

    21] ZigBee Alliance. "ZigBee Smart Energy V2.0”, 2011 [22]Secure remote access to Smart Energy Home area Networks”,Density HEMS SEP Smart Energy Profile HV Home Energy

  20. Progress Update: M Area Closure

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14

    A progress update of the Recovery Act at work at the Savannah River Site. The celebration of the first area cleanup completion with the help of the Recovery Act.

  1. Security Area Vouching and Piggybacking

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-06-05

    Establishes requirements for the Department of Energy (DOE) Security Area practice of "vouching" or "piggybacking" access by personnel. DOE N 251.40, dated 5-3-01, extends this directive until 12-31-01.

  2. Quasiclassical trajectory study of the effect of antisymmetric stretch mode excitation on the O({sup 3}P) + CH{sub 4}(?{sub 3} = 1) ? OH + CH{sub 3} reaction on an analytical potential energy surface. Comparison with experiment

    SciTech Connect (OSTI)

    Monge-Palacios, M.; González-Lavado, E.; Espinosa-Garcia, J.

    2014-09-07

    Motivated by a recent crossed-beam experiment on the title reaction reported by Pan and Liu [J. Chem. Phys. 140, 191101 (2014)], a detailed dynamics study was performed at three collision energies using quasiclassical trajectory (QCT) calculations based on a full-dimensional potential energy surface recently developed by our group (PES-2014). Although theory/experiment agreement is not yet quantitative, in general the theoretical results reproduce the experimental evidence: the vibrational branching ratio of OH(v = 1)/OH(v = 0) is ?0.8/0.2, excitation of the antisymmetric CH stretching mode in methane increases reactivity by factor 2.28–1.50, although an equivalent amount as translational energy is more efficient in promoting the reaction and, finally, product angular distribution shifts from backward in the CH{sub 4}(? = 0) ground-state to sideways when the antisymmetric CH stretching mode is excited. These results give confidence to the PES-2014 surface, depend on the quantization procedure used, are comparable with recent QCT calculations or improve previous theoretical studies using a different surface, and demonstrate the utility of the theory/experiment collaboration.

  3. Methane on Uranus: The case for a compact CH4 cloud layer at low latitudes and a severe CH4 depletion at high-latitudes based on re-analysis of Voyager occultation measurements and STIS spectroscopy

    E-Print Network [OSTI]

    Sromovsky, Lawrence; Kim, Joo Hyeon

    2015-01-01

    Lindal et al. (1987, J. Geophys. Res. 92, 14987-15001) presented a range of temperature and CH4 profiles for Uranus that were consistent with 1986 Voyager radio occultation measurements. A localized refractivity slope variation near 1.2 bars was interpreted to be the result of a condensed CH4 cloud layer. However, models fit to near-IR spectra found particle concentrations in the 1.5-3 bar range (Sromovsky et al. 2006, Icarus 182, 577-593, Sromovsky and Fry 2008, Icarus 193, 211-229, Irwin et al. 2010, Icarus 208, 913-926), and a recent analysis of STIS spectra argued that aerosol particles formed diffusely distributed hazes, with no compact condensation layer (Karkoschka and Tomasko 2009, Icarus 202, 287-309). Trying to reconcile these results, we reanalyzed the occultation observations with a He volume mixing ratio reduced from 0.15 to 0.116, which is near the edge of the 0.033 range given by Conrath et al. (1987, J. Geophys. Res., 15003-10). This allowed us to obtain saturated CH4 mixing ratios within the ...

  4. Variable area fuel cell cooling

    DOE Patents [OSTI]

    Kothmann, Richard E. (Churchill Borough, PA)

    1982-01-01

    A fuel cell arrangement having cooling fluid flow passages which vary in surface area from the inlet to the outlet of the passages. A smaller surface area is provided at the passage inlet, which increases toward the passage outlet, so as to provide more uniform cooling of the entire fuel cell. The cooling passages can also be spaced from one another in an uneven fashion.

  5. Multi-area network analysis 

    E-Print Network [OSTI]

    Zhao, Liang

    2005-02-17

    -1 MULTI-AREA NETWORK ANALYSIS A Dissertation by LIANG ZHAO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY... December 2004 Major Subject: Electrical Engineering MULTI-AREA NETWORK ANALYSIS A Dissertation by LIANG ZHAO Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR...

  6. A Pyrrolyl-based Triazolophane: A Macrocyclic Receptor With CH and NH Donor Groups That Exhibits a Preference for Pyrophosphate Anions

    SciTech Connect (OSTI)

    Sessler, Jonathan L.; Cia, Jiajia; Gong, Han-Yuan; Yang, Xiauping; Arambula, Jonathan F.; Hay, Benjamin

    2010-01-01

    A pyrrolyl-based triazolophane, incorporating CH and NH donor groups, acts as a receptor for the pyrophosphate anion in chloroform solution. It shows selectivity for this trianion, followed by HSO{sub 4}{sup -} > H{sub 2}PO{sub 4}{sup -} > Cl{sup -} > Br{sup -} (all as the corresponding tetrabutylammonium salts), with NH-anion interactions being more important than CH-anion interactions. In the solid state, the receptor binds the pyrophosphate anion in a clip-like slot via NH and CH hydrogen bonds.

  7. Joint DOE-CH2M News Release Media Contact: For Immediate...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mark.heeter@rl.doe.gov WORKERS REMOVE LAST PENCIL TANK FROM KEY AREA OF HANFORD'S PLUTONIUM FINISHING PLANT Removal of contaminated pencil tanks brings facility one step closer...

  8. DISCOVERY OF THE FIRST METHANOL (CH{sub 3}OH) MASER IN THE ANDROMEDA GALAXY (M31)

    SciTech Connect (OSTI)

    Sjouwerman, Lorant O.; Murray, Claire E. [National Radio Astronomy Observatory, P.O. Box 0, Lopezville Rd. 1001, Socorro, NM 87801 (United States); Pihlstroem, Ylva M. [Department of Physics and Astronomy, University of New Mexico, MSC07 4220, Albuquerque, NM 87131 (United States); Fish, Vincent L. [Massachusetts Institute of Technology, Haystack Observatory, Route 40, Westford, MA 01886 (United States); Araya, Esteban D., E-mail: lsjouwer@nrao.ed [Physics Department, Western Illinois University, 1 University Circle, Macomb, IL 61455 (United States)

    2010-12-01

    We present the first detection of a 6.7 GHz Class II methanol (CH{sub 3}OH) maser in the Andromeda galaxy (M31). The CH{sub 3}OH maser was found in a VLA survey during the fall of 2009. We have confirmed the methanol maser with the new EVLA, in operation since 2010 March, but were unsuccessful in detecting a water maser at this location. A direct application for this methanol maser is the determination of the proper motion of M31, such as was previously obtained with water masers in M33 and IC10. Unraveling the three-dimensional velocity of M31 would solve for the biggest unknown in the modeling of the dynamics and evolution of the Local Group of galaxies.

  9. Research Areas | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Stewardship Science Academic Alliances Research Areas Research Areas Properties of Materials under Extreme Conditions and Hydrodynamics During open solicitations research...

  10. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    - erties, and high plasma beta. One of the most important issues is FRC stability with respect to lowPREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA-ideal Effects on FRC Stability by E.V. Belova, R.C. Davidson, H. Ji, and M. Yamada October 2002 #12;PPPL Reports

  11. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA, M.D. Carter, D.W. Swain, J.B. Wilgen, A.K. Ram, A. Bers, R.W. Harvey, C.B. Forest May 2001 #12;PPPL on the U.S. Department of Energy's Princeton Plasma Physics Laboratory Publications and Reports web site

  12. Photoelectron spectroscopy of CH, N-Daniel C. Cowles, Michael J. Travers, Jennifer L. Frueh, and G. Barney Ellison

    E-Print Network [OSTI]

    Ellison, Barney

    ) with the results of previous gas phase ion studies to extract a number of thermochemical parameters (kcal/mol) : D g (CH, N-H) = 85 f 5, D x (H-CHN) = 23 f 6,Dg (H, C-N) = 144 f 6, and the isomerization enthalpy interesting in its own right, the elec- tron affinity is a link in many clever thermochemical cycles

  13. Room Temperature Copper(II)-Catalyzed Oxidative Cyclization of Enamides to 2,5-Disubstituted Oxazoles via Vinylic C–H Functionalization

    E-Print Network [OSTI]

    Cheung, Chi Wai

    A copper(II)-catalyzed oxidative cyclization of enamides to oxazoles via vinylic C–H bond functionalization at room temperature is described. Various 2,5-disubstituted oxazoles bearing aryl, vinyl, alkyl, and heteroaryl ...

  14. New way of healing : experienced counsellors’ perceptions of the influence of ch’i-related exercises on counselling practice in Taiwan 

    E-Print Network [OSTI]

    Liou, Chin-Ping

    2014-07-01

    This study examines how Taiwanese senior counsellors with substantial experience of ch’i-related exercise (CRE) perceived the influence of their regular CRE on their counselling practice. I am interested in the perceived ...

  15. H-Area Seepage Basins

    SciTech Connect (OSTI)

    Stejskal, G.

    1990-12-01

    During the third quarter of 1990 the wells which make up the H-Area Seepage Basins (H-HWMF) monitoring network were sampled. Laboratory analyses were performed to measure levels of hazardous constituents, indicator parameters, tritium, nonvolatile beta, and gross alpha. A Gas Chromatograph Mass Spectrometer (GCMS) scan was performed on all wells sampled to determine any hazardous organic constituents present in the groundwater. The primary contaminants observed at wells monitoring the H-Area Seepage Basins are tritium, nitrate, mercury, gross alpha, nonvolatile beta, trichloroethylene (TCE), tetrachloroethylene, lead, cadmium, arsenic, and total radium.

  16. Intermolecular CH bond activation of benzene and pyridines by a vanadium(III) alkylidene including a stepwise conversion of benzene to

    E-Print Network [OSTI]

    Baik, Mu-Hyun

    Intermolecular C­H bond activation of benzene and pyridines by a vanadium(III) alkylidene including a stepwise conversion of benzene to a vanadium-benzyne complex Jose G. Andino,a Uriah J. Kilgore,a Maren Pink of benzene and pyridine is observed with (PNP)V(CH2tBu)2 (1), and in the case of benzene, the formation

  17. 3rd Reading April 20, 2006 16:56 WSPC/SPI-B368 Advances in Geosciences Vol. 5 ch11

    E-Print Network [OSTI]

    Oke, Peter

    3rd Reading April 20, 2006 16:56 WSPC/SPI-B368 Advances in Geosciences Vol. 5 ch11 #12;3rd Reading and Prediction System (OceanMAPS) for operational implementation at the Bureau of Meteorology (Bureau). 87 #12;3rd Reading April 20, 2006 16:56 WSPC/SPI-B368 Advances in Geosciences Vol. 5 ch11 88 G. B

  18. University of Virginia Housing Areas

    E-Print Network [OSTI]

    Huang, Wei

    University of Virginia Housing Areas Copeley Hill Faulkner Copeley III & IV Piedmont Hereford Gardens Lile-Maupin House 2372 Tuttle - Dunnington House 2373 Shannon House 2374 Gibbons House 2375 IvyGardensWay Tree House Drive Grady Avenue University Court Farrish Circle W estview Road Engineer'sWay Gildersleve

  19. 200 area TEDF sample schedule

    SciTech Connect (OSTI)

    Brown, M.J.

    1995-03-22

    This document summarizes the sampling criteria associated with the 200 Area Treatment Effluent Facility (TEDF) that are needed to comply with the requirements of the Washington State Discharge Permit No. WA ST 4502 and good engineering practices at the generator streams that feed into TEDF. In addition, this document Identifies the responsible parties for both sampling and data transference.

  20. EA-1177: Salvage/Demolition of 200 West Area, 200 East Area, and 300 Area Steam Plants, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to salvage and demolish the 200 West Area, 200 East Area, and 300 Area steam plants and their associated steam distribution piping...

  1. Fax +41 61 306 12 34 E-Mail karger@karger.ch

    E-Print Network [OSTI]

    Wade, Juli

    ], and the ventromedial hypothalamus (VMH), which controls female behaviors such as procep- tive and receptive behaviors Androgen metabolism Preoptic area Testosterone Ventromedial hypothalamus Abstract The 5 -reductase (5 R), and ventromedial hypothalamus (VMH). More 5 R2 cells were detected during the NBS than BS in the AMY

  2. Characterization of Vadose Zone Sediment: Borehole 299-E33-45 Near BX-102 in the B-BX-BY Waste Management Area

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Last, George V.; Gee, Glendon W.; Schaef, Herbert T.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Orr, Robert D.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Brown, Christopher F.; Valenta, Michelle M.; Vickerman, Tanya S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Table 4.22. The data was removed due to potential contamination introduced during the acid extraction process. The remaining text is unchanged from the original report issued in 2002. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area B-BX-BY. This report is the first in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from borehole 299-E33-45 installed northeast of tank BX-102.

  3. Variable area light reflecting assembly

    DOE Patents [OSTI]

    Howard, T.C.

    1986-12-23

    Device is described for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles. 9 figs.

  4. Variable area light reflecting assembly

    DOE Patents [OSTI]

    Howard, Thomas C. (Raleigh, NC)

    1986-01-01

    Device for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles.

  5. Final LDRD report : development of sample preparation methods for ChIPMA-based imaging mass spectrometry of tissue samples.

    SciTech Connect (OSTI)

    Maharrey, Sean P.; Highley, Aaron M.; Behrens, Richard, Jr.; Wiese-Smith, Deneille

    2007-12-01

    The objective of this short-term LDRD project was to acquire the tools needed to use our chemical imaging precision mass analyzer (ChIPMA) instrument to analyze tissue samples. This effort was an outgrowth of discussions with oncologists on the need to find the cellular origin of signals in mass spectra of serum samples, which provide biomarkers for ovarian cancer. The ultimate goal would be to collect chemical images of biopsy samples allowing the chemical images of diseased and nondiseased sections of a sample to be compared. The equipment needed to prepare tissue samples have been acquired and built. This equipment includes an cyro-ultramicrotome for preparing thin sections of samples and a coating unit. The coating unit uses an electrospray system to deposit small droplets of a UV-photo absorbing compound on the surface of the tissue samples. Both units are operational. The tissue sample must be coated with the organic compound to enable matrix assisted laser desorption/ionization (MALDI) and matrix enhanced secondary ion mass spectrometry (ME-SIMS) measurements with the ChIPMA instrument Initial plans to test the sample preparation using human tissue samples required development of administrative procedures beyond the scope of this LDRD. Hence, it was decided to make two types of measurements: (1) Testing the spatial resolution of ME-SIMS by preparing a substrate coated with a mixture of an organic matrix and a bio standard and etching a defined pattern in the coating using a liquid metal ion beam, and (2) preparing and imaging C. elegans worms. Difficulties arose in sectioning the C. elegans for analysis and funds and time to overcome these difficulties were not available in this project. The facilities are now available for preparing biological samples for analysis with the ChIPMA instrument. Some further investment of time and resources in sample preparation should make this a useful tool for chemical imaging applications.

  6. Innovation investment area: Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The mission of Environmental Management`s (EM) Office of Technology Development (OTD) Innovation Investment Area is to identify and provide development support for two types of technologies that are developed to characterize, treat and dispose of DOE waste, and to remediate contaminated sites. They are: technologies that show promise to address specific EM needs, but require proof-of-principle experimentation; and (2) already proven technologies in other fields that require critical path experimentation to demonstrate feasibility for adaptation to specific EM needs. The underlying strategy is to ensure that private industry, other Federal Agencies, universities, and DOE National Laboratories are major participants in developing and deploying new and emerging technologies. To this end, about 125 different new and emerging technologies are being developed through Innovation Investment Area`s (IIA) two program elements: RDDT&E New Initiatives (RD01) and Interagency Agreements (RD02). Both of these activities are intended to foster research and development partnerships so as to introduce innovative technologies into other OTD program elements for expedited evaluation.

  7. Estimating Temperature Distributions In Geothermal Areas Using...

    Open Energy Info (EERE)

    Areas Using A Neuronet Approach Abstract A method is proposed for predicting the distribution of temperatures in geothermal areas using the neuronet approach and, in particular,...

  8. LED Outdoor Area Lighting Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outdoor Area Lighting LED technology is rapidly becoming competitive with high-intensity discharge light sources for outdoor area lighting. This document reviews the major design...

  9. Outdoor Area Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for outdoor areas. Outdoor Area Lighting (June 2008) More Documents & Publications Philadelphia International Airport Apron Lighting: LED System Performance in a Trial...

  10. Carlsbad Area Office strategic plan

    SciTech Connect (OSTI)

    NONE

    1995-10-01

    This edition of the Carlsbad Area Office Strategic Plan captures the U.S. Department of Energy`s new focus, and supercedes the edition issued previously in 1995. This revision reflects a revised strategy designed to demonstrate compliance with environmental regulations earlier than the previous course of action; and a focus on the selected combination of scientific investigations, engineered alternatives, and waste acceptance criteria for supporting the compliance applications. An overview of operations and historical aspects of the Waste Isolation Pilot Plant near Carlsbad, New Mexico is presented.

  11. Texas Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New Energy EquipmentSvendborgTecsisArea Jump to:

  12. Geothermal Areas | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages Recent Changes All Special PagesGeotermica JumpAreas Jump

  13. Adsorption Kinetics of CO2, CH4, and their Equimolar Mixture on Coal from the Black Warrior Basin, West-Central Alabama

    SciTech Connect (OSTI)

    Gruszkiewicz, Miroslaw {Mirek} S [ORNL; Naney, Michael {Mike} T [ORNL; Blencoe, James {Jim} G [ORNL; Cole, David R [ORNL; Pashin, Jack C. [Geological Survey of Alabama; Carroll, Richard E. [Geological Survey of Alabama

    2009-01-01

    Laboratory experiments were conducted to investigate the adsorption kinetic behavior of pure and mixed gases (CO2, CH4, approximately equimolar CO2 + CH4 mixtures, and He) on a coal sample obtained from the Black Warrior Basin at the Littleton Mine (Twin Pine Coal Company), Jefferson County, west-central Alabama. The sample was from the Mary Lee coal zone of the Pottsville Formation (Lower Pennsylvanian). Experiments with three size fractions (45-150 m, 1-2 mm, and 5-10 mm) of crushed coal were performed at 40 C and 35 C over a pressure range of 1.4 6.9 MPa to simulate coalbed methane reservoir conditions in the Black Warrior Basin and provide data relevant for enhanced coalbed methane recovery operations. The following key observations were made: (1) CO2 adsorption on both dry and water-saturated coal is much more rapid than CH4 adsorption; (2) water saturation decreases the rates of CO2 and CH4 adsorption on coal surfaces, but it appears to have minimal effects on the final magnitude of CO2 or CH4 adsorption if the coal is not previously exposed to CO2; (3) retention of adsorbed CO2 on coal surfaces is significant even with extreme pressure cycling; and (4) adsorption is significantly faster for the 45-150 m size fraction compared to the two coarser fractions.

  14. Geothermal resource evaluation of the Yuma area

    SciTech Connect (OSTI)

    Poluianov, E.W.; Mancini, F.P.

    1985-11-29

    This report presents an evaluation of the geothermal potential of the Yuma, Arizona area. A description of the study area and the Salton Trough area is followed by a geothermal analysis of the area, a discussion of the economics of geothermal exploration and exploitation, and recommendations for further testing. It was concluded economic considerations do not favor geothermal development at this time. (ACR)

  15. S-OO bond dissociation energies and enthalpies of formation of the thiomethyl peroxyl radicals CH{sub 3}S(O){sub n}OO (n=0,1,2)

    SciTech Connect (OSTI)

    Salta, Zoi; Kosmas, Agnie Mylona; Lesar, Antonija

    2014-10-06

    Optimized geometries, S-OO bond dissociation energies and enthalpies of formation for a series of thiomethyl peroxyl radicals are investigated using high level ab initio and density functional theory methods. The results show that the S-OO bond dissociation energy is largest in the methylsulfonyl peroxyl radical, CH{sub 3}S(O){sub 2}OO, which contains two sulfonic type oxygen atoms followed by the methylthiyl peroxyl radical, CH{sub 3}SOO. The methylsulfinyl peroxyl radical, CH{sub 3}S(O)OO, which contains only one sulfonic type oxygen shows the least stability with regard to dissociation to CH{sub 3}S(O)+O{sub 2}. This stabilization trend is nicely reflected in the variations of the S-OO bond distance which is found to be shortest in CH{sub 3}S(O){sub 2}OO and longest in CH{sub 3}S(O)OO.

  16. Preliminary Notice of Violation, CH2M HILL Hanford Group, Inc. -

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary Areas ofEnergyCorpsDepartment of Energy 8 Issued

  17. Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc - EA-2005-01

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary Areas ofEnergyCorpsDepartment of Energy 8 Issued|

  18. Preliminary Notice of Violation, CH2M-Washington Group Idaho, LLC -

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary Areas ofEnergyCorpsDepartment of Energy 8

  19. 300 Area signal cable study

    SciTech Connect (OSTI)

    Whattam, J.W.

    1994-09-15

    This report was prepared to discuss the alternatives available for removing the 300 Area overhead signal cable system. This system, installed in 1969, has been used for various monitoring and communication signaling needs throughout the 300 Area. Over the years this cabling system has deteriorated, has been continually reconfigured, and has been poorly documented to the point of nonreliability. The first step was to look at the systems utilizing the overhead signal cable that are still required for operation. Of the ten systems that once operated via the signal cable, only five are still required; the civil defense evacuation alarms, the public address (PA) system, the criticality alarms, the Pacific Northwest Laboratory Facilities Management Control System (FMCS), and the 384 annunciator panel. Of these five, the criticality alarms and the FMCS have been dealt with under other proposals. Therefore, this study focused on the alternatives available for the remaining three systems (evacuation alarms, PA system, and 384 panel) plus the accountability aid phones. Once the systems to be discussed were determined, then three alternatives for providing the signaling pathway were examined for each system: (1) re-wire using underground communication ducts, (2) use the Integrated Voice/Data Telecommunications System (IVDTS) already installed and operated by US West, and (3) use radio control. Each alternative was developed with an estimated cost, advantages, and disadvantages. Finally, a recommendation was provided for the best alternative for each system.

  20. Department of Justice: CH2M Hill Hanford Group Inc. Admits Criminal Conduct, Parent Company Agrees to Cooperate in Ongoing Investigation and Pay $18.5 Million to Resolve Civil and Criminal Allegations

    Broader source: Energy.gov [DOE]

    The Justice Department, in conjunction with the U.S. Attorney’s Office for the Eastern District of Washington, announced today that Colorado-based CH2M Hill Hanford Group Inc. (CHG) and its parent company, CH2M Hill Companies Ltd. (CH2M Hill) have agreed that CHG committed federal criminal violations, defrauding the public by engaging in years of widespread time card fraud.

  1. Unusual defect physics in CH{sub 3}NH{sub 3}PbI{sub 3} perovskite solar cell absorber

    SciTech Connect (OSTI)

    Yin, Wan-Jian Shi, Tingting; Yan, Yanfa

    2014-02-10

    Thin-film solar cells based on Methylammonium triiodideplumbate (CH{sub 3}NH{sub 3}PbI{sub 3}) halide perovskites have recently shown remarkable performance. First-principle calculations show that CH{sub 3}NH{sub 3}PbI{sub 3} has unusual defect physics: (i) Different from common p-type thin-film solar cell absorbers, it exhibits flexible conductivity from good p-type, intrinsic to good n-type depending on the growth conditions; (ii) Dominant intrinsic defects create only shallow levels, which partially explain the long electron-hole diffusion length and high open-circuit voltage in solar cell. The unusual defect properties can be attributed to the strong Pb lone-pair s orbital and I p orbital antibonding coupling and the high ionicity of CH{sub 3}NH{sub 3}PbI{sub 3}.

  2. Communication: Imaging the effects of the antisymmetric-stretching excitation in the O({sup 3}P) + CH{sub 4}(v{sub 3} = 1) reaction

    SciTech Connect (OSTI)

    Pan, Huilin [Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, P. O. Box 23-166, Taipei 10617, Taiwan (China) [Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, P. O. Box 23-166, Taipei 10617, Taiwan (China); State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Liu, Kopin, E-mail: kliu@po.iams.sinica.edu.tw [Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, P. O. Box 23-166, Taipei 10617, Taiwan (China)] [Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, P. O. Box 23-166, Taipei 10617, Taiwan (China)

    2014-05-21

    Effects of one-quantum excitation of the antisymmetric-stretching mode of CH{sub 4}(v{sub 3} = 1) on the O({sup 3}P) + CH{sub 4} reaction were studied in a crossed-beam, ion-imaging experiment. In the post-threshold region, we found that (1) the product state distributions are dominated by the CH{sub 3}(0{sub 0}) + OH(v{sup ?} = 1) pair, (2) the product angular distributions extend toward sideways from the backward dominance of the ground-state reaction, and (3) vibrational excitation exerts a positive effect on reactivity, but translational energy is more efficient in promoting the rate of this central-barrier reaction. All major findings agree reasonably well with recent theoretical results. Some remaining questions are pointed out.

  3. Sealed head access area enclosure

    DOE Patents [OSTI]

    Golden, Martin P. (Trafford, PA); Govi, Aldo R. (Greensburg, PA)

    1978-01-01

    A liquid-metal-cooled fast breeder power reactor is provided with a sealed head access area enclosure disposed above the reactor vessel head consisting of a plurality of prefabricated structural panels including a center panel removably sealed into position with inflatable seals, and outer panels sealed into position with semipermanent sealant joints. The sealant joints are located in the joint between the edge of the panels and the reactor containment structure and include from bottom to top an inverted U-shaped strip, a lower layer of a room temperature vulcanizing material, a separator strip defining a test space therewithin, and an upper layer of a room temperature vulcanizing material. The test space is tapped by a normally plugged passage extending to the top of the enclosure for testing the seal or introducing a buffer gas thereinto.

  4. Large Area Vacuum Deposited Coatings

    SciTech Connect (OSTI)

    Martin, Peter M.

    2003-04-30

    It's easy to make the myriad of types of large area and decorative coatings for granted. We probably don't even think about most of them; the low-e and heat mirror coatings on our windows and car windows, the mirrors in displays, antireflection coatings on windows and displays, protective coatings on aircraft windows, heater coatings on windshields and aircraft windows, solar reflectors, thin film solar cells, telescope mirrors, Hubble mirrors, transparent conductive coatings, and the list goes on. All these products require large deposition systems and chambers. Also, don't forget that large batches of small substrates or parts are coated in large chambers. In order to be cost effective hundreds of ophthalmic lenses, automobile reflectors, display screens, lamp reflectors, cell phone windows, laser reflectors, DWDM filters, are coated in batches.

  5. ELECTRON IRRADIATION OF KUIPER BELT SURFACE ICES: TERNARY N{sub 2}-CH{sub 4}-CO MIXTURES AS A CASE STUDY

    SciTech Connect (OSTI)

    Kim, Y. S.; Kaiser, R. I.

    2012-10-10

    The space weathering of icy Kuiper Belt Objects was investigated in this case study by exposing methane (CH{sub 4}) and carbon monoxide (CO) doped nitrogen (N{sub 2}) ices at 10 K to ionizing radiation in the form of energetic electrons. Online and in situ Fourier transform infrared spectroscopy was utilized to monitor the radiation-induced chemical processing of these ices. Along with isocyanic acid (HNCO), the products could be mainly derived from those formed in irradiated binary ices of the N{sub 2}-CH{sub 4} and CO-CH{sub 4} systems: nitrogen-bearing products were found in the form of hydrogen cyanide (HCN), hydrogen isocyanide (HNC), diazomethane (CH{sub 2}N{sub 2}), and its radical fragment (HCN{sub 2}); oxygen-bearing products were of acetaldehyde (CH{sub 3}CHO), formyl radical (HCO), and formaldehyde (H{sub 2}CO). As in the pure ices, the methyl radical (CH{sub 3}) and ethane (C{sub 2}H{sub 6}) were also detected, as were carbon dioxide (CO{sub 2}) and the azide radical (N{sub 3}). Based on the temporal evolution of the newly formed products, kinetic reaction schemes were then developed to fit the temporal profiles of the newly formed species, resulting in numerical sets of rate constants. The current study highlights important constraints on the preferential formation of isocyanic acid (HNCO) over hydrogen cyanide (HCN) and hydrogen isocyanide (HNC), thus guiding the astrobiological and chemical evolution of those distant bodies.

  6. Review of the findings of the Ignik Sikumi CO2-CH4 gas hydrate exchange field trial

    SciTech Connect (OSTI)

    Anderson, Brian J.; Boswell, Ray; Collett, Tim S.; Farrell, Helen; Ohtsuka, Satoshi; White, Mark D.

    2014-08-01

    The Ignik Sikumi Gas Hydrate Exchange Field Trial was conducted by ConocoPhillips in partnership with the U.S. Department of Energy, the Japan Oil, Gas, and Metals National Corporation, and the U.S. Geological Survey within the Prudhoe Bay Unit on the Alaska North Slope (ANS) during 2011 and 2012. The 2011 field program included drilling the vertical test well and performing extensive wireline logging through a thick section of gas-hydrate-bearing sand reservoirs that provided substantial new insight into the nature of ANS gas hydrate occurrences. The 2012 field program involved an extended, scientific field trial conducted within a single vertical well (“huff-and-puff” design) through three primary operational phases: 1) injection of a gaseous phase mixture of CO2, N2, and chemical tracers; 2) flowback conducted at down-hole pressures above the stability threshold for native CH4-hydrate, and 3) extended (30-days) flowback at pressures below the stability threshold of native CH4-hydrate. Ignik Sikumi represents the first field investigation of gas hydrate response to chemical injection, and the longest-duration field reservoir response experiment yet conducted. Full descriptions of the operations and data collected have been fully reported by ConocoPhillips and are available to the science community. The 2011 field program indicated the presence of free water within the gas hydrate reservoir, a finding with significant implications to the design of the exchange trial – most notably the use of a mixed gas injectant. While this decision resulted in a complex chemical environment within the reservoir that greatly tests current experimental and modeling capabilities – without such a mixture, it is apparent that injection could not have been achieved. While interpretation of the field data are continuing, the primary scientific findings and implications of the program are: 1) gas hydrate destabilizing is self-limiting, dispelling any notion of the potential for uncontrolled destabilization; 2) wells must be carefully designed to enable rapid remediation of well-bore blockages that will occur during any cessation in operations; 3) appropriate gas mixes can be successfully injected into hydrate-bearing reservoirs; 4) sand production can be well-managed through standard engineering controls; 5) reservoir heat exchange during depressurization was much more favorable than expected – mitigating concerns for near-well-bore freezing and enabling consideration of more aggressive pressure reduction and; 6) CO2-CH4 exchange can be accomplished in natural reservoirs. The next steps in evaluation of exchange technology should feature multiple well applications; however such field programs will require extensive preparatory experimental and numerical modeling studies and will likely be a secondary priority to further field testing of production through depressurization.

  7. Complete Phase I Tests As Described in the Multi-lab Test Plan for the Evaluation of CH3I Adsorption on AgZ

    SciTech Connect (OSTI)

    Bruffey, S. H.; Jubin, R. T.

    2014-09-30

    Silver-exchanged mordenite (AgZ) has been identified as a potential sorbent for iodine present in the off-gas streams of a used nuclear fuel reprocessing facility. In such a facility, both elemental and organic forms of iodine are released from the dissolver in gaseous form. These species of iodine must be captured with high efficiency for a facility to avoid radioactive iodine release above regulatory limits in the gaseous effluent of the plant. Studies completed at Idaho National Laboratory (INL) examined the adsorption of organic iodine in the form of CH3I by AgZ. Upon breakthrough of the feed gas through the sorbent bed, elemental iodine was observed in the effluent stream, despite the fact that the only source of iodine in the system was the CH3I in the feed gas.1 This behavior does not appear to have been reported previously nor has it been independently confirmed. Thus, as a result of these prior studies, multiple knowledge gaps relating to the adsorption of CH3I by AgZ were identified, and a multi-lab test plan, including Oak Ridge National Laboratory (ORNL), INL, Pacific Northwest National Laboratory (PNNL), and Sandia National Laboratories, was formulated to address each in a systematic way.2 For this report, the scope of work for ORNL was further narrowed to three thin-bed experiments that would characterize CH3I adsorption onto AgZ in the presence of water, NO, and NO2. Completion of these three-thin bed experiments demonstrated that organic iodine in the form of CH3I was adsorbed by reduced silver mordenite (Ag0Z) to a 50% higher loading than that of I2 when adsorbed from a dry air stream. Adsorption curves suggest different adsorption mechanisms for I2 and CH3I. In the presence of NO and NO2 gas, the loading of CH3I onto Ag0Z is suppressed and may be reversible. Further, the presence of NO and NO2 gas appears to oxidize CH3I to I2; this is indicated by an adsorption curve similar to that of I2 on Ag0Z. Finally, the loss of organic iodine loading capacity by Ag0Z in the presence of NOx is unaffected by the addition of water vapor to the gas stream; no marked additional loss in capacity or retention was observed.

  8. Microstructures and properties of CH{sub 3}NH{sub 3}PbI{sub 3?x}Cl{sub x} hybrid solar cells

    SciTech Connect (OSTI)

    Suzuki, Kohei E-mail: oku@mat.usp.ac.jp; Suzuki, Atsushi E-mail: oku@mat.usp.ac.jp; Zushi, Masahito E-mail: oku@mat.usp.ac.jp; Oku, Takeo E-mail: oku@mat.usp.ac.jp

    2015-02-27

    Halide-perovskite CH{sub 3}NH{sub 3}PbI{sub 3} was produced on mesoporous TiO{sub 2} layer by spin-coating a precursor solution of PbCl{sub 2} and CH{sub 3}NH{sub 3}I in dimethylformamide. The role of the annealing process and chlorine (Cl) doping for the perovskite-phase formation was investigated. It was found that crystallization of the perovskite materials was stimulated by the annealing process, and that longer annealing time is necessary for the Cl-doped perovskite compared with that of non-doped perovskite phase.

  9. The Spectra of Main Sequence Stars in Galactic Globular Clusters I. CH and CN Bands in M13

    E-Print Network [OSTI]

    J. G. Cohen

    1999-01-26

    Spectra with a high signal-to-noise ratio of 50 stars which are just below the main sequence turnoff and are members of M13 are presented. They yield indices for the strength of the CH and the ultraviolet CN band. There is no evidence for a variation in the strength of either feature from star to star in this intermediate-metallicity galactic globular cluster, and thus no evidence for primordial variations in the abundance of C and N in M13. This supports the hypothesis that abundance variations found among the light elements in the evolved stars of M13 by Suntzeff (1981), and commonly seen on the giant and subgiant branches of globular clusters of comparable metallicity, are due primarily or entirely to mixing within a fraction of individual stars as they evolve.

  10. Unusual Low Temperature Reactivity of Water. The CH + H2O Reaction as a Source of Interstellar Formaldehyde?

    E-Print Network [OSTI]

    Hickson, Kevin; Caubet, Philippe

    2013-01-01

    Water is an important reservoir species for oxygen in interstellar space and plays a key role in the physics of star formation through cooling by far-infrared emission. Whilst water vapour is present at high abundances in the outflows of protostars, its contribution to the chemical evolution of these regions is a minor one due to its limited low temperature reactivity in the gas-phase. Here, we performed kinetic experiments on the barrierless CH + H2O reaction in a supersonic flow reactor down to 50 K. The measured rate increases rapidly below room temperature, confirming and extending the predictions of earlier statistical calculations. The open product channels for this reaction suggest that this process could be an important gas-phase route for formaldehyde formation in protostellar envelopes.

  11. Experimental study of the structure of rich premixed 1,3-butadiene/CH4/O2/Ar flame

    E-Print Network [OSTI]

    Gueniche, Hadj-Ali; Fournet, René; Battin-Leclerc, Frédérique

    2006-01-01

    The structure of a laminar rich premixed 1,3-C4H6/CH4/O2/Ar flame have been investigated. 1,3-Butadiene, methane, oxygen and argon mole fractions are 0.033; 0.2073; 0.3315, and 0.4280, respectively, for an equivalent ratio of 1.80. The flame has been stabilized on a burner at a pressure of 6.7 kPa (50 Torr). The concentration profiles of stable species were measured by gas chromatography after sampling with a quartz probe. Quantified species included carbon monoxide and dioxide, methane, oxygen, hydrogen, ethane, ethylene, acetylene, propyne, allene, propene, cyclopropane, 1,3-butadiene, butenes, 1-butyne, vinylacetylene, diacetylene, C5 compounds, benzene, and toluene. The temperature was measured thanks to a thermocouple in PtRh (6%)-PtRh (30%) settled inside the enclosure and ranged from 900 K close to the burner up to 2100 K.

  12. Optical emission spectroscopy and Langmuir probe diagnostics of CH{sub 3}F/O{sub 2} inductively coupled plasmas

    SciTech Connect (OSTI)

    Karakas, Erdinc; Donnelly, Vincent M.; Economou, Demetre J. [Plasma Processing Laboratory, Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004 (United States)] [Plasma Processing Laboratory, Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004 (United States)

    2013-06-07

    A CH{sub 3}F:O{sub 2} (50%:50%) inductively coupled discharge, sustained in a compact plasma reactor, was investigated as a function of power (20-400 W) and pressure (9-30 mTorr), using optical emission spectroscopy and Langmuir probe measurements. The electron density increased linearly with power but only weakly with pressure. The effective electron temperature was nearly independent of power and pressure. The gas temperature, obtained from the rotational structure of N{sub 2} (C {yields} B) optical emission, increased from 400 to 900 K as a function of inductive mode power between 75 and 400 W at 10 mTorr. For constant feed gas flow, the absolute H, F, and O atom densities, estimated by optical emission rare gas actinometry, increased linearly with power. The absolute number density ratios H/Ar, F/Ar, and O/Ar, increased, decreased, and remained constant, respectively, with pressure. The H-atom density was estimated to be 5.4 Multiplication-Sign 10{sup 13} cm{sup -3} at 400 W and 10 mTorr (gas temperature = 900 K), implying a high degree of dissociation of the CH{sub 3}F feedstock gas. The F and O atom number densities were much lower (8.3 Multiplication-Sign 10{sup 12} cm{sup -3} and 5.9 Multiplication-Sign 10{sup 12} cm{sup -3}, respectively) for the same conditions, suggesting that most of the fluorine and oxygen is contained in reaction products HF, CO, CO{sub 2}, H{sub 2}O, and OH. The relative number densities of HF, CO, and CO{sub 2} were observed to first rapidly increase with power, and then reach a plateau or decay slightly at higher power. Reaction mechanisms were proposed to explain the observed behavior of the number density of F and HF vs. power and pressure.

  13. Game Preserves and Closed Areas (Montana)

    Broader source: Energy.gov [DOE]

    Game preserves and closed areas exist within the state of Montana for the protection of all the game animals and birds. Construction and development is limited in these areas. Currently, only three...

  14. MARINE PROTECTED AREAS Fisheries Science and Management

    E-Print Network [OSTI]

    Limburg, Karin E.

    1 MARINE PROTECTED AREAS Fisheries Science and Management Rita OLIVEIRA MONTEIRO Cover photo of a mpa (coast and underwater) MARINE PROTECTED AREAS OBJECTIVES FOR TODAY: · definitions · historical · habitat degradation · invasive species · harmful algal blooms · marine epidemics · mass mortalities

  15. Center symmetry and area laws

    E-Print Network [OSTI]

    Thomas D. Cohen

    2014-07-15

    SU($N_c$) gauge theories containing matter fields may be invariant under transformations of some subgroup of the $\\mathbb{Z}_{N_c}$ center; the maximum such subgroup is $\\mathbb{Z}_{p}$, with $p$ depending on $N_c$ and the representations of the various matter fields in the theory. Confining SU($N_c$) gauge theories in either 3+1 or 2+1 space-time dimensions and with matter fields in any representation have string tensions for representation $R$ given by $\\sigma_R =\\sigma_f \\, \\, \\frac{p_R (p-p_R) \\, \\, g\\left (p_R (p-p_R) \\right )}{(p-1) \\, \\, g(p -1 )} $ with $p_R={n_R \\, \\rm mod}(p)$, where $\\sigma_f $ is the string tension for the fundamental representation, $g$ is a positive finite function and $n_R$ is the n-ality of $R$. This implies that a necessary condition for a theory in this class to have an area law is invariance of the theory under a nontrivial subgroup of the center. Significantly, these results depend on $p$ regardless of the value of $N_c$.

  16. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At International Geothermal Area, Italy (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  17. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At International Geothermal Area, Iceland (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  18. Considering LEDs for Street and Area Lighting

    Broader source: Energy.gov [DOE]

    View Jim Brodrick's keynote video from the September 2009 IES Street and Area Lighting Conference in Philadelphia.

  19. New Academic Subject Area Information Sheet To be completed for new Academic Subject Areas only

    E-Print Network [OSTI]

    Fleming, Andrew J.

    New Academic Subject Area Information Sheet To be completed for new Academic Subject Areas only New Academic Subject Area:____________________ (Maximum 4 Letters eg: INFO; except for ELFSC: Maximum of 6

  20. Part-of-Speech tagging Dividing area

    E-Print Network [OSTI]

    Yanai, Keiji

    Part-of-Speech tagging Dividing area -Grids by 1 degree lat & lng Evaluation area weight Date Area (lat, lng) snow 9/1/2012 38~39, -78~-77 sunset 13/1/2012 47~48,-123~-122 Grammy 12/2/2012 34

  1. Lake Charles Urbanized Area MTP 2034 

    E-Print Network [OSTI]

    Lake Charles Urbanized Area Metropolitan Planning Organization

    2009-08-04

    CONSTRAINED AND UNCONSTRAINED PLAN PROJECTS . C-1 ? Lake Charles Urbanized Area MTP 2034 ? Page v Alliance Transportation Group, Inc. Adopted August 4, 2009 Table of Tables Table 2-1 Stakeholders Present... ......................................................................................................... 3-1 ? Lake Charles Urbanized Area MTP 2034 ? Page iii Alliance Transportation Group, Inc. Adopted August 4, 2009 LAKE CHARLES URBANIZED AREA TRAVEL DEMAND MODEL .............................................................. 3-2 SOCIOECONOMIC...

  2. SWOPE PARK INDUSTRIAL AREA Kansas City, Missouri

    E-Print Network [OSTI]

    US Army Corps of Engineers

    SWOPE PARK INDUSTRIAL AREA Kansas City, Missouri MODIFICATION REQUEST Modification to support this request. PROJECT PURPOSE Swope Park Industrial Area is located in the south-central portion safe ingress/egress during flooding. The Swope Park Industrial Area has limited access, one

  3. 430. Naturgas (viktigaste komponent: CH4) innehller ofta CO2 och kan renas genom gasgenomtrngning av en mngd olika polymera membran. En naturgasklla producerar ett flde F = 1000 m3

    E-Print Network [OSTI]

    Zevenhoven, Ron

    430. Naturgas (viktigaste komponent: CH4) innehåller ofta CO2 och kan renas genom gasgenomträngning flödet p (mol/s) transporterat genom membranet och flödeshastigheten JCO2 för CO2 (mol/(s·m2 )) genom i Barrer, för membranet. (2 p.) c. Beräkna på samma sätt flödeshastigheten JCH4 för CH4 genom

  4. Analytical Morse/long-Range model potential and predicted infrared and microwave spectra for a symmetric top-atom dimer: A case study of CH{sub 3}F–He

    SciTech Connect (OSTI)

    Ma, Yong-Tao; Li, Hui, E-mail: Prof-huili@jlu.edu.cn [Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023 (China); Zeng, Tao [Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853 (United States)

    2014-06-07

    Four-dimensional ab initio intermolecular potential energy surfaces (PESs) for CH{sub 3}F–He that explicitly incorporates dependence on the Q{sub 3} stretching normal mode of the CH{sub 3}F molecule and are parametrically dependent on the other averaged intramolecular coordinates have been calculated. Analytical three-dimensional PESs for v{sub 3}(CH{sub 3}F) = 0 and 1 are obtained by least-squares fitting the vibrationally averaged potentials to the Morse/Long-Range potential function form. With the 3D PESs, we employ Lanczos algorithm to calculate rovibrational levels of the dimer system. Following some re-assignments, the predicted transition frequencies are in good agreement with experimental microwave data for ortho-CH{sub 3}F, with the root-mean-square deviation of 0.042 cm{sup ?1}. We then provide the first prediction of the infrared and microwave spectra for the para-CH{sub 3}F–He dimer. The calculated infrared band origin shifts associated with the ?{sub 3} fundamental of CH{sub 3}F are 0.039 and 0.069 cm{sup ?1} for para-CH{sub 3}F–He and ortho-CH{sub 3}F–He, respectively.

  5. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    of the observed FRC equilibrium and stability proper- ties presents significant challenges due to the high plasma numerical simulations are generally required to describe and understand the detailed behavior of FRC plasmasPrepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma

  6. Research by BNL investigators was performed under the auspices of the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.

    E-Print Network [OSTI]

    of Energy under Contract No. DE-AC02-98CH10886. BNL-67284-AB AIRCRAFT MEASUREMENTS OF PARTICLE SIZE to improve the CPC detection efficiency. Size distributions between 100 and 50,000 nm were measured at close the nose of the aircraft. Results obtained during July and August of 1999 indicate that urban

  7. Research by BNL investigators was performed under the auspices of the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.

    E-Print Network [OSTI]

    EFFICIENCIES IN URBAN AND POWER PLANT PLUMES: ANALYSIS OF FIELD DATA L. J. Nunnermacker, P. H. Daum, D. Imre, L of Energy under Contract No. DE-AC02-98CH10886. BNL-64804 (Abstract) NOy LIFETIMES AND O3 PRODUCTION Francisco, CA, December 8-12, 1997. Ozone production efficiency with respect to NOx, (OPEx), is a central

  8. Research by BNL investigators was performed under the auspices of the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.

    E-Print Network [OSTI]

    .S. Department of Energy under Contract No. DE-AC02-98CH10886. OZONE PRODUCTION IN URBAN PLUMES Lawrence Kleinman, Philadelphia, and Houston, we examine the process of O3 production in urban plumes. Ozone levels in Houston in each city but that the O3 production efficiency in Houston (molecules of O3 formed per NOx molecule

  9. Metal-Dinitrosyl Mediated Vinylic C-H Functionalization Chen Zhao, Mark R. Crimmin, F. Dean Toste and Robert G. Bergman

    E-Print Network [OSTI]

    Toste, Dean

    and Robert G. Bergman University of California ­ Berkeley, Berkeley, CA, 94720 Synthesis of RutheniumMetal-Dinitrosyl Mediated Vinylic C-H Functionalization Chen Zhao, Mark R. Crimmin, F. Dean Toste.; Bergman, R. G. Organometallics 1983, 2, 787. (b) Becker, P. N.; Bergman, R. G.; J. Am. Chem. Soc. 1983

  10. Research by BNL investigators was performed under the auspices of the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.

    E-Print Network [OSTI]

    of Energy under Contract No. DE-AC02-98CH10886. BNL-64179 (Abstract) AEROSOL SULFATE LOADING AND SHORTWAVE), solar zenith angle (SZA), and aerosol optical thickness (t). The parameters can be interpolated, the calculations are restricted to ammonium sulfate particles over an ocean surface. The advantage of the ocean

  11. Uncorrected)Ch.5)in)))Earthquake)Hazard,)Risk,)and)Disasters,)Ed)M.)Wyss,)Elsevier)2014)ISBN: 978-0-12-Aggravated)Earthquake)Risk)in)South)Asia:))

    E-Print Network [OSTI]

    Bilham, Roger

    Uncorrected)Ch.5)in)))Earthquake)Hazard,)Risk,)and)Disasters,)Ed)M.)Wyss,)Elsevier)2014)ISBN: 978-0-12- 394848-9) 1) Aggravated)Earthquake)Risk)in)South)Asia:)) ))))))))))))))))))))))))))Engineering.4) million) people) to) earthquake) deaths) in) the) past) 12) years,) and) more) than) 2) million) in) the

  12. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    are observed. It is found that during regular oscillations the energy of the thermal ions can reach magnitudesPrepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does

  13. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory Efficient Coupling of Thermal Electron Bernstein Waves to the Ordinary Electromagnetic by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

  14. stable specieson the potential energy surface of CH302+.dications is not questioned by the result. It should also be mentioned that

    E-Print Network [OSTI]

    Schlegel, H. Bernhard

    2260 stable specieson the potential energy surface of CH302+.dications is not questioned,74-82-8;24, 12538-91-9; An MC-SCF Study of the Thermal Cycloaddition of Two Ethylenes Fernando Bernardi,*18Andrea of two ethylenesto form cyclobutanehas been investigated in detail by ab initiomolecular orbital methods

  15. E Effi i t T h l f th F t an Energy Efficient Technology for the Future Ch i i B hlChristian Bahl

    E-Print Network [OSTI]

    Christian Bahl Fuel Cells and Solid State Chemistry Division Fuel Cells and Solid State Chemistry Division Risø E Effi i t T h l f th F t an Energy Efficient Technology for the Future Ch i i B hl is ensured. #12;#12;Challengesg Promising technology... Hi h ffi iHigh efficiency. No CFC or HCFC gasses. C

  16. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    . Super-thermal fast ions provide a source of free energy to excite instabilities, which in turn can particles from the D-T fusion reaction. These fast ions provide a potential source of free energy to excitePrepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma

  17. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    .E. Sugiyamac aPrinceton Plasma Physics Laboratory, Princeton, New Jersey 08543 b New York University, New YorkPrepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma.S. Department of Energy's Princeton Plasma Physics Laboratory Publications and Reports web site in Fiscal Year

  18. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    , California 92186 3 Columbia University, New York, New York 10027 Abstract Plasma shape control using realPrepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma is posted on the U.S. Department of Energy's Princeton Plasma Physics Laboratory Publications and Reports

  19. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    , Princeton, NJ 08543, U.S.A. 2) New York University, New York, NY e-mail: fu@pppl.gov Abstract Global hybridPrepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma is posted on the U.S. Department of Energy's Princeton Plasma Physics Laboratory Publications and Reports

  20. Texas Public Information Act (Ch. 552, Government Code) The Texas Public Information Act (PIA) guarantees the public copies of or access to

    E-Print Network [OSTI]

    1 Texas Public Information Act (Ch. 552, Government Code) · The Texas Public Information Act (PIA) guarantees the public copies of or access to "public information." The PIA defines "public information" to mean information that is collected, assembled, or maintained in connection with the transaction

  1. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    in the discharge voltage range of 200-700 V. The arcing between the floating velvet electrodes and the plasmaPrepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma. Raitses, D. Staack, A. Dunaevsky, and N.J. Fisch December 2005 PPPL-4136 PPPL-4136 #12;Princeton Plasma

  2. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma, Charles Gentile, Craig Priniski, and John Sethian February 2006 PPPL-4147 PPPL-4147 #12;Princeton Plasma agency thereof or its contractors or subcontractors. PPPL Report Availability Princeton Plasma Physics

  3. Time-Resolved Quantitative Measurement of OH HO2 and CH2O in Fuel Oxidation Reactions by High Resolution IR Absorption Spectroscopy.

    SciTech Connect (OSTI)

    Huang, Haifeng; Rotavera, Brandon; Taatjes, Craig A.

    2014-08-01

    Combined with a Herriott-type multi-pass slow flow reactor, high-resolution differential direct absorption spectroscopy has been used to probe, in situ and quantitatively, hydroxyl (OH), hydroperoxy (HO 2 ) and formaldehyde (CH 2 O) molecules in fuel oxidation reactions in the reactor, with a time resolution of about 1 micro-second. While OH and CH 2 O are probed in the mid-infrared (MIR) region near 2870nm and 3574nm respectively, HO 2 can be probed in both regions: near-infrared (NIR) at 1509nm and MIR at 2870nm. Typical sensitivities are on the order of 10 10 - 10 11 molecule cm -3 for OH at 2870nm, 10 11 molecule cm -3 for HO 2 at 1509nm, and 10 11 molecule cm -3 for CH 2 O at 3574nm. Measurements of multiple important intermediates (OH and HO 2 ) and product (CH 2 O) facilitate to understand and further validate chemical mechanisms of fuel oxidation chemistry.

  4. Prepared for the U.S. Department of Energy under Contract DE-AC02-09CH11466. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    Biewer, Theodore

    .......................................................................................................... 23 3.2 Energy Efficient "Green" BuildingsPrepared for the U.S. Department of Energy under Contract DE-AC02-09CH11466. Princeton Plasma ............................................... 17 2.6.2 PPPL Participates in the EnergyEfficient Building (EEB) Hub Program Mentoring

  5. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory Calculation of the Vacuum Green's Function Valid even for High Toroidal Mode Number Laboratory This report is posted on the U.S. Department of Energy's Princeton Plasma Physics Laboratory

  6. Modeling impacts of farming management alternatives on CO2, CH4, and N2O emissions: A case study for water management of rice

    E-Print Network [OSTI]

    emissions about 40%, or 5 Tg CH4 yrÀ1 , roughly 5­10% of total global methane emissions from rice paddies contribution to the net climate impact due to the low radiative potential of CO2. The change in water. Introduction [2] Food production contributes approximately 70% of global atmospheric input of nitrous oxide (N2

  7. Photometry of symbiotic stars X. EG And, Z And, BF Cyg, CH Cyg, V1329 Cyg, AG Dra, RW Hya, AX Per and IV Vir

    E-Print Network [OSTI]

    A. Skopal; M. Vanko; T. Pribulla; M. Wolf; E. Semkov; A. Jones

    2002-02-13

    We present new photometric observations of EG And, Z And, BF Cyg, CH Cyg, V1329 Cyg, AG Dra, RW Hya, AX Per and IV Vir made in standard Johnson UBVR system. The current issue summarizes observations of these onjects to 2001 December.

  8. Synthesis of [(DPPNCH?CH?)?N]³? Molybdenum Complexes (DPP = 3,5-(2,5-Diisopropylpyrrolyl)?C?H?) and Studies Relevant to Catalytic Reduction of Dinitrogen

    E-Print Network [OSTI]

    Reithofer, Michael R.

    Molybdenum complexes that contain a new TREN-based ligand [(3,5-(2,5-diisopropyl-pyrrolyl)2C6H3NCH2CH2)3N]3? ([DPPN3N]3?) that are relevant to the catalytic reduction of dinitrogen have been prepared. They are [Bu4N]{[DP ...

  9. High-Resolution Synchrotron Photoemission Studies of the Electronic Structure and Thermal Stability of CH3-and C2H5-Functionalized Si(111) Surfaces

    E-Print Network [OSTI]

    Webb, Lauren J.

    can yield only partial termination of the Si(111) surface by Si-C bonds (Figure 1b). X photoemission spectroscopy. Whereas the CH3-terminated Si(111) surface showed only one C 2s peak for the occupied orbitals, the C 2s spectra of C2H5-terminated Si(111) surfaces showed a symmetric splitting

  10. Research by BNL investigators was performed under the auspices of the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.

    E-Print Network [OSTI]

    within the urban center. The small spatial scale of the zone of high O3 concentrations in this episode of Energy under Contract No. DE-AC02-98CH10886. BNL-63590 OZONE PRODUCTION DURING AN URBAN AIR STAGNATION airborne (two fixed wind and one helicopter) and ground-based measurements of the chemistry and meteorology

  11. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    Energy Res. Inst., Naka, JAPAN 13 Max-Planck Institut fur Plasmaphysik, Garching, GERMANY 14 A.F. IoffePrepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma This report is posted on the U.S. Department of Energy's Princeton Plasma Physics Laboratory Publications

  12. Thermochemistry for Hydrocarbon Intermediates Chemisorbed on Metal Surfaces: CHn-m(CH3)m with n ) 1, 2, 3 and m e n on Pt, Ir,

    E-Print Network [OSTI]

    Goddard III, William A.

    Thermochemistry for Hydrocarbon Intermediates Chemisorbed on Metal Surfaces: CHn-m(CH3)m with n ) 1 hydrocarbon rearrangements on transition metal surfaces, we report systematic studies of hydrocarbon radicals for hydrocarbons on metal surfaces similar to the Benson scheme so useful for gas-phase hydrocarbons. This is used

  13. Coordinate regulation/localization of the carbohydrate responsive binding protein (ChREBP) by two nuclear export signal sites: Discovery of a new leucine-rich nuclear export signal site

    SciTech Connect (OSTI)

    Fukasawa, Masashi; Ge, Qing; Wynn, R. Max; Ishii, Seiji [Biochemistry Department, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038 (United States)] [Biochemistry Department, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038 (United States); Uyeda, Kosaku, E-mail: Kosaku.Uyeda@utsouthwestern.edu [Biochemistry Department, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038 (United States) [Biochemistry Department, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038 (United States); Dallas Veterans Affairs Medical Center, Dallas, TX 75216 (United States)

    2010-01-08

    Carbohydrate response element binding protein (ChREBP) is responsible for conversion of dietary carbohydrate to storage fat in liver by coordinating expression of the enzymes that channel glycolytic pyruvate into lipogenesis. The activation of ChREBP in response to high glucose is nuclear localization and transcription, and the inactivation of ChREBP under low glucose involves export from the nucleus to the cytosol. Here we report a new nuclear export signal site ('NES1') of ChREBP. Together these signals provide ChREBP with two NES sequences, both the previously reported NES2 and now the new NES1 coordinate to interact together with CRM1 (exportin) for nuclear export of the carbohydrate response element binding protein.

  14. Transfer Area Mechanical Handling Calculation

    SciTech Connect (OSTI)

    B. Dianda

    2004-06-23

    This calculation is intended to support the License Application (LA) submittal of December 2004, in accordance with the directive given by DOE correspondence received on the 27th of January 2004 entitled: ''Authorization for Bechtel SAX Company L.L. C. to Include a Bare Fuel Handling Facility and Increased Aging Capacity in the License Application, Contract Number DE-AC28-01R W12101'' (Arthur, W.J., I11 2004). This correspondence was appended by further Correspondence received on the 19th of February 2004 entitled: ''Technical Direction to Bechtel SAIC Company L.L. C. for Surface Facility Improvements, Contract Number DE-AC28-OIRW12101; TDL No. 04-024'' (BSC 2004a). These documents give the authorization for a Fuel Handling Facility to be included in the baseline. The purpose of this calculation is to establish preliminary bounding equipment envelopes and weights for the Fuel Handling Facility (FHF) transfer areas equipment. This calculation provides preliminary information only to support development of facility layouts and preliminary load calculations. The limitations of this preliminary calculation lie within the assumptions of section 5 , as this calculation is part of an evolutionary design process. It is intended that this calculation is superseded as the design advances to reflect information necessary to support License Application. The design choices outlined within this calculation represent a demonstration of feasibility and may or may not be included in the completed design. This calculation provides preliminary weight, dimensional envelope, and equipment position in building for the purposes of defining interface variables. This calculation identifies and sizes major equipment and assemblies that dictate overall equipment dimensions and facility interfaces. Sizing of components is based on the selection of commercially available products, where applicable. This is not a specific recommendation for the future use of these components or their related manufacturer. A component produced by one manufacturer certainly varies dimensionally from a similar product produced by a different manufacturer. The internal envelope dimensions are dependent on the selection of the individual components. The external envelope dimensions, as well as, key interface dimensions are established within this calculation and are to be treated as bounding dimensions.

  15. Dynamics of hydrogen atom abstraction in the O{sup {minus}}+CH{sub 4} reaction: Product energy disposal and angular distributions

    SciTech Connect (OSTI)

    Carpenter, M.A.; Farrar, J.M. [Department of Chemistry, University of Rochester, Rochester, New York 14627 (United States)] [Department of Chemistry, University of Rochester, Rochester, New York 14627 (United States)

    1997-04-01

    Energy and angular distributions for the hydrogen abstraction reaction O{sup {minus}}+CH{sub 4}{r_arrow}OH{sup {minus}}+CH{sub 3}, exothermic by 0.26 eV, and a prototype ionic pathway for methane oxidation in hydrocarbon flames have been studied in a crossed molecular beam experiment at collision energies of 0.34, 0.44, and 0.64 eV. At the two lower collision energies, two mechanisms contribute to the differential cross section: In the first, low impact parameter rebound collisions form sharply backward-scattered products, while in the second, larger impact parameter collisions produce a broad distribution of forward scattered products. We suggest that the first group of products is formed by collisions with hydrogen atoms oriented essentially along the relative velocity vector and proceeding through a near-collinear O{hor_ellipsis}H{hor_ellipsis}CH{sub 3} geometry, while the second group corresponds to collisions with one of the three off-axis hydrogens. The products are formed on average with 65{percent} of the total available energy in product internal excitation. The product kinetic energy distribution shows structure that correlates with excitation of the {nu}{sub 2} umbrella bending mode of CH{sub 3}. At the highest collision energy, the product angular distribution shifts entirely to the forward direction, suggesting that the low impact parameter collisions are no longer important in the reactive process. At this energy, the average product internal excitation corresponds to 59{percent} of the total available energy. The data suggest that the majority of product internal excitation resides in the {nu}{sub 2} umbrella bending mode of CH{sub 3}, with OH in its ground vibrational state. {copyright} {ital 1997 American Institute of Physics.}

  16. Infrared spectroscopic and modeling studies of H{sub 2}/CH{sub 4} microwave plasma gas phase from low to high pressure and power

    SciTech Connect (OSTI)

    Rond, C. Lombardi, G.; Gicquel, A.; Hamann, S.; Röpcke, J.; Wartel, M.

    2014-09-07

    InfraRed Tunable Diode Laser Absorption Spectroscopy technique has been implemented in a H{sub 2}/CH{sub 4} Micro-Wave (MW frequency f?=?2.45 GHz) plasma reactor dedicated to diamond deposition under high pressure and high power conditions. Parametric studies such as a function of MW power, pressure, and admixtures of methane have been carried out on a wide range of experimental conditions: the pressure up to 270 mbar and the MW power up to 4?kW. These conditions allow high purity Chemical Vapor Deposition diamond deposition at high growth rates. Line integrated absorption measurements have been performed in order to monitor hydrocarbon species, i.e., CH{sub 3}, CH{sub 4}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and C{sub 2}H{sub 6}. The densities of the stable detected species were found to vary in the range of 10{sup 12}–10{sup 17} molecules cm{sup ?3}, while the methyl radical CH{sub 3} (precursor of diamond growth under these conditions) measured into the plasma bulk was found up to 10{sup 14} molecules cm{sup ?3}. The experimental densities have been compared to those provided by 1D-radial thermochemical model for low power and low pressure conditions (up to 100 mbar/2?kW). These densities have been axially integrated. Experimental measurements under high pressure and power conditions confirm a strong increase of the degree of dissociation of the precursor, CH{sub 4}, associated to an increase of the C{sub 2}H{sub 2} density, the most abundant reaction product in the plasma.

  17. Characterization of Vadose Zone Sediment: Slant Borehole SX-108 in the S-SX Waste Management Area

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Last, George V.; Schaef, Herbert T.; Lanigan, David C.; Lindenmeier, Clark W.; Ainsworth, Calvin C.; Clayton, Ray E.; Legore, Virginia L.; O'Hara, Matthew J.; Brown, Christopher F.; Orr, Robert D.; Kutnyakov, Igor V.; Wilson, Teresa C.; Wagnon, Kenneth B.; Williams, Bruce A.; Burke, Deborah S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Table 4.17. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in February 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is the fourth in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from a slant borehole installed beneath tank SX-108 (or simply SX-108 slant borehole).

  18. Characterization of Vadose Zone Sediment: Borehole 41-09-39 in the S-SX Waste Management Area

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Last, George V.; Schaef, Herbert T.; Lanigan, David C.; Lindenmeier, Clark W.; Ainsworth, Calvin C.; Clayton, Ray E.; Legore, Virginia L.; O'Hara, Matthew J.; Brown, Christopher F.; Orr, Robert D.; Kutnyakov, Igor V.; Wilson, Teresa C.; Wagnon, Kenneth B.; Williams, Bruce A.; Burke, Deborah S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Table 5.15. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in February 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is one in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from borehole 41-09-39 installed adjacent to tank SX-109.

  19. Public participation in a DOE national program: The mixed waste focus area`s approach

    SciTech Connect (OSTI)

    1997-05-01

    The authors describe the Mixed Waste Focus Area`s approach to involving interested Tribal and public members in the mixed waste technology development process. Evidence is provided to support the thesis that the Focus Area`s systems engineering process, which provides visible and documented requirements and decision criteria, facilitates effective Tribal and public participation. Also described is a status of Tribal and public involvement at three levels of Focus Area activities.

  20. Focus Areas 1 and 4 Deliverables

    Office of Environmental Management (EM)

    1 - Requirements Flow Down and Focus Area 4 - Graded Approach to Quality Assurance Graded Approach Model and Expectation Page 1 of 18 Office of Environmental Management And Energy...

  1. Quality Assurance Functional Area Qualification Standard - DOE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear facilities. DOE-STD-1150-2013, Quality Assurance Functional Area Qualification Standard Type: Invoked Technical Standards Status: Current Approved Date: Dec 02, 2013...

  2. 300 Area Process Trenches Groundwater Monitoring Plan

    SciTech Connect (OSTI)

    Lindberg, Jonathan W.; Chou, Charissa J.

    2001-08-13

    This document is a proposed groundwater monitoring plan for the 300 Area process trenches to comply with RCRA final status, corrective action groundwater monitoring.

  3. Research Areas | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    radiation-dominated HED dynamo, and radiation-dominated reconnection. Nonlinear Optics of Plasmas and Laser-Plasma Interactions Specific areas of interest include, but are...

  4. Cuttings Analysis At International Geothermal Area, Indonesia...

    Open Energy Info (EERE)

    Cuttings Analysis At International Geothermal Area, Indonesia (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At...

  5. Safety Software Quality Assurance Functional Area Qualification...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    72-2011, Safety Software Quality Assurance Functional Area Qualification Standard by Diane Johnson This SSQA FAQS identifies the minimum technical competency requirements for DOE...

  6. Magnetotellurics At Dixie Valley Geothermal Area (Wannamaker...

    Open Energy Info (EERE)

    Geothermal Area, Nevada- Structural Controls, Hydrothermal Alteration and Deep Fluid Sources Additional References Retrieved from "http:en.openei.orgwindex.php?titleMagne...

  7. DFAS Wide-Area Workflow Issues

    Broader source: Energy.gov [DOE]

    Presentation covers the DFAS wide-area workflow issues and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

  8. Name, E-mail address (@umn.edu), Location, and Phone Number: 218-281-AgRC-Agricultural Research Ctr, ARSF-Agricultural Research Support Facility, CH-Centennial Hall, DH-Dowell Hall, DA-Dowell Hall Annex, ECB-Early Childhood Building, HillH-Hill Hall,

    E-Print Network [OSTI]

    Minnesota, University of

    Ctr, ARSF-Agricultural Research Support Facility, CH-Centennial Hall, DH-Dowell Hall, DA-Dowell Hall

  9. Density Functional Studies of Stoichiometric Surfaces of Orthorhombic Hybrid Perovskite CH3NH3PbI3

    SciTech Connect (OSTI)

    Wang, Yun; Huang, Jingsong; Sumpter, Bobby G; Zhang, Haimin; Liu, Porun; Yang, Huagui; Zhao, Huijun

    2015-01-01

    Organic/inorganic hybrid perovskite materials are highly attractive for dye-sensitized solar cells as demonstrated by their rapid advances in energy conversion efficiency. In this work, the structures, energetics, and electronic properties for a range of stoichiometric surfaces of the orthorhombic perovskite CH3NH3PbI3 are theoretically studied using density functional theory. Various possible spatially and constitutionally isomeric surfaces are considered by diversifying the spatial orientations and connectivities of surface Pb-I bonds. The comparison of the surface energies for the most stable configurations identified for various surfaces shows that the stabilities of stoichiometric surfaces are mainly dictated by the coordination numbers of surface atoms, which are directly correlated with the numbers of broken bonds. Additionally, Coulombic interactions between I anions and organic countercations on the surface also contribute to the stabilization. Electronic properties are compared between the most stable (100) surface and the bulk phase, showing generally similar features except for the lifted band degeneracy and the enhanced bandgap energy for the surface. These studies on the stoichiometric surfaces serve as the first step toward gaining a fundamental understanding of the interfacial properties in the current structural design of perovskite based solar cells, in order to achieve further breakthroughs in solar conversion efficiencies.

  10. Thermogravimetric Analysis of Modified Hematite by Methane (CH{sub 4}) for Chemical-Looping Combustion: A Global Kinetics Mechanism

    SciTech Connect (OSTI)

    Monazam, Esmail R.; Breault, Ronald W.; Siriwardane, Ranjani; Miller, Duane D.

    2013-10-01

    Iron oxide (Fe{sub 2}O{sub 3}) or in its natural form (hematite) is a potential material to capture CO{sub 2} through the chemical-looping combustion (CLC) process. It is known that magnesium (Mg) is an effective methyl cleaving catalyst and as such it has been combined with hematite to assess any possible enhancement to the kinetic rate for the reduction of Fe{sub 2}O{sub 3} with methane. Therefore, in order to evaluate its effectiveness as a hematite additive, the behaviors of Mg-modified hematite samples (hematite –5% Mg(OH){sub 2}) have been analyzed with regard to assessing any enhancement to the kinetic rate process. The Mg-modified hematite was prepared by hydrothermal synthesis. The reactivity experiments were conducted in a thermogravimetric analyzer (TGA) using continuous stream of CH{sub 4} (5, 10, and 20%) at temperatures ranging from 700 to 825 {degrees}C over ten reduction cycles. The mass spectroscopy analysis of product gas indicated the presence of CO{sub 2}, H{sub 2}O, H{sub 2} and CO in the gaseous product. The kinetic data at reduction step obtained by isothermal experiments could be well fitted by two parallel rate equations. The modified hematite samples showed higher reactivity as compared to unmodified hematite samples during reduction at all investigated temperatures.

  11. Faculty & Staff Areas of Specialization ENGINEERING

    E-Print Network [OSTI]

    Harms, Kyle E.

    Faculty & Staff Areas of Specialization 2010-2011 COLLEGE OF ENGINEERING #12;Faculty & Staff Areas of Engineering 3304 Patrick F. Taylor Hall Baton Rouge, LA 70803 225/578-5706 225/578-8388 Fax mlavall@lsu.edu www.eng.lsu.edu COLLEGE OF ENGINEERING 1 Table of Contents College of Engineering Administration

  12. College of Science CLINICAL SCIENCE AREA MANUAL

    E-Print Network [OSTI]

    1 College of Science CLINICAL SCIENCE AREA MANUAL DEPARTMENT OF PSYCHOLOGY VIRIGINIA TECH AY2015 Training 24 B. Clinical Science Area Committee 25 C. Graduate Student Representatives 25 D. Advisor 26 E for Continuation on to the Preliminary Examination 49 F. Plan of Study: Doctoral Degree 51 G. The Preliminary

  13. Unthinkable Rebellion and the Praxis of the Possible: Ch'orti' Campesin@ Struggles in Guatemala's Eastern Highlands

    E-Print Network [OSTI]

    Casolo, Jennifer Jean

    2011-01-01

    opposition to mining, hydroelectric dams, and other mega-teams for proposed hydroelectric dams and mines in the dryaware of anti-mining, anti-hydroelectric, and protected area

  14. Influence of in-plane and bridging oxygen vacancies of SnO_2 nanostructures on CH_4 sensing at low operating temperatures

    E-Print Network [OSTI]

    Bonu, Venkataramana; Prasad, Arun K; Krishna, Nanda Gopala; Dhara, Sandip; Tyagi, A K

    2015-01-01

    Role of 'O' defects in sensing pollutant with nanostructured SnO_2 is not well understood, especially at low temperatures. SnO_2 nanoparticles were grown by soft chemistry route followed by subsequent annealing treatment under specific conditions. Nanowires were grown by chemical vapor deposition technique. A systematic photoluminescence (PL) investigation of 'O' defects in SnO_2 nanostructures revealed a strong correlation between shallow donors created by the in-plane and the bridging 'O' vacancies and gas sensing at low temperatures. These SnO_2 nanostructures detected methane (CH_4), a reducing and green house gas at a low temperature of 50 ^oC. Response of CH_4 was found to be strongly dependent on surface defect in comparison to surface to volume ratio. Control over 'O' vacancies during the synthesis of SnO2 nanomaterials, as supported by X-ray photoelectron spectroscopy and subsequent elucidation for low temperature sensing are demonstrated.

  15. Direct Observation of Long Electron-Hole Diffusion Distance beyond 1 Micrometer in CH3NH3PbI3 Perovskite Thin Film

    E-Print Network [OSTI]

    Li, Yu; Li, Yunlong; Wang, Wei; Bian, Zuqiang; Xiao, Lixin; Wang, Shufeng; Gong, Qihuang

    2015-01-01

    In high performance perovskite based on CH3NH3PbI3, the formerly reported short charge diffusion distance is a confliction to thick working layer in solar cell devices. We carried out a study on charge diffusion in spin-coated CH3NH3PbI3 perovskite thin film by transient fluorescent spectroscopy. A thickness-dependent fluorescent lifetime was found. This effect correlates to the defects at crystal grain boundaries. By coating the film with electron or hole transfer layer, PCBM or Spiro-OMeTAD respectively, we observed the charge transfer directly through the fluorescent decay. One-dimensional diffusion model was applied to obtain long charge diffusion distances, which is ~1.3 micron for electrons and ~5.2 micron for holes. This study gives direct support to the high performance of perovskite solar cells.

  16. Ab Initio/RRKM Study of the Potential Energy Surface of Triplet Ethylene and Product Branching Ratios of the C(3P) + CH4 Reaction

    E-Print Network [OSTI]

    Nguyen, Minh Tho

    Ab Initio/RRKM Study of the Potential Energy Surface of Triplet Ethylene and Product Branching originating from the collision energy (12.2 kcal/mol), the sole reaction products are C2H3 + H, where 90 potential energy surface for the C(3P) + CH4 reaction have been performed using the CCSD(T)/6-311+G(3df,2p

  17. T H E U N I V E R S I T Y O F CH I C A G O

    E-Print Network [OSTI]

    He, Chuan

    T H E U N I V E R S I T Y O F CH I C A G O SC HO OL OF SO C I A L SE RV I C E AD M I N I S T R, Chairman of the Board of Trustees Robert J. Zimmer, President of the University Thomas F. Rosenbaum, Provost ADMINISTRATION OF THE SCHOOL Jeanne C. Marsh, Dean Harold A. Po

  18. Intermolecular C?H bond activation of benzene and pyridines by a vanadium(III) alkylidene including a stepwise conversion of benzene to a vanadium-benzyne complex

    SciTech Connect (OSTI)

    Andino, José G.; Kilgore, Uriah J.; Pink, Maren; Ozarowski, Andrew; Krzystek, J.; Telser, Joshua; Baik, Mu-Hyun; Mindiola, Daniel J.

    2012-01-20

    Breaking of the carbon-hydrogen bond of benzene and pyridine is observed with (PNP)V(CH{sub 2}tBu){sub 2} (1), and in the case of benzene, the formation of an intermediate benzyne complex (C) is proposed, and indirect proof of its intermediacy is provided by identification of (PNP)VO({eta}{sup 2}-C{sub 6}H{sub 4}) in combination with DFT calculations.

  19. A Glossary of Ch'in Parts For more information, see R. H. Van Gulik, The Lore of the Chinese Lute, p. 101, for the

    E-Print Network [OSTI]

    Binkley, Jim

    end of the ch'in from the bridge. 3. Hui [hui] Studs, referred to as hui. These are made of mother­receptor, a piece of wood that may or may not be connected to the bridge, behind it, and slightly raised from. Yin­t'o [yin­tuo] Gum receptor. This is the nut made out of hard wood that is put on the bottom board

  20. 21 12 7 13 30 --vZ|FEl ucidati ng the mechani sms by whi ch nervous systems process i nformati on and generate

    E-Print Network [OSTI]

    Miyashita, Yasushi

    COE 21 12 7 13 30 3 3 327 "úZz·F `è ·F --vZ|·FEl ucidati ng the mechani sms by whi ch nervous ecul es and cel l s. We are investi gati ng these questi ons usi ng the nematode Caenorhabdi ti s el to mol ecul ar and cl assi cal geneti c analysi s. Usi ng recentl y devel oped methods for i n vi vo opti