Powered by Deep Web Technologies
Note: This page contains sample records for the topic "area bir ch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

XIAP Induces NF-kB Activation via the BIR1/TAB1 Interaction and BIR1 Dimerization  

Science Conference Proceedings (OSTI)

In addition to caspase inhibition, X-linked inhibitor of apoptosis (XIAP) induces NF-{kappa}B and MAP kinase activation during TGF-b and BMP receptor signaling and upon overexpression. Here we show that the BIR1 domain of XIAP, which has no previously ascribed function, directly interacts with TAB1 to induce NF-{kappa}B activation. TAB1 is an upstream adaptor for the activation of the kinase TAK1, which in turn couples to the NF-{kappa}B pathway. We report the crystal structures of BIR1, TAB1, and the BIR1/TAB1 complex. The BIR1/TAB1 structure reveals a striking butterfly-shaped dimer and the detailed interaction between BIR1 and TAB1. Structure-based mutagenesis and knockdown of TAB1 show unambiguously that the BIR1/TAB1 interaction is crucial for XIAP-induced TAK1 and NF-{kappa}B activation. We show that although not interacting with BIR1, Smac, the antagonist for caspase inhibition by XIAP, also inhibits the XIAP/TAB1 interaction. Disruption of BIR1 dimerization abolishes XIAP-mediated NF-{kappa}B activation, implicating a proximity-induced mechanism for TAK1 activation.

Lu,M.; Lin, S.; Huang, Y.; Kang, Y.; Rich, R.; Lo, Y.; Myszka, D.; Han, J.; Wu, H.

2007-01-01T23:59:59.000Z

2

AREA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AREA AREA FAQ # Question Response 316 vs DCAA FAQ 1 An inquiry from CH about an SBIR recipient asking if a DCAA audit is sufficient to comply with the regulation or if they need to add this to their audit they have performed yearly by a public accounting firm. 316 audits are essentially A-133 audits for for-profit entities. They DO NOT replace DCAA or other audits requested by DOE to look at indirect rates or incurred costs or closeouts. DCAA would never agree to perform A-133 or our 316 audits. They don't do A-133 audits for DOD awardees. The purpose of the audits are different, look at different things and in the few instances of overlap, from different perspectives. 316

3

ch_4  

NLE Websites -- All DOE Office Websites (Extended Search)

towers that reach 250 feet. 4.5 Aesthetic and Scenic Resources This section describes a baseline visual character of INEEL and the surrounding area, including designated scenic...

4

ch_4  

NLE Websites -- All DOE Office Websites (Extended Search)

20 20 Affected Environment 4.6 Geology and Soils This section describes the geological, mineral resources, seismic, and volcanic characteristics of INEEL, INTEC, and surrounding areas. A more detailed description of geology at INEEL can be reviewed in the SNF & INEL EIS, Volume 2, Part A, Section 4.6 (DOE 1995). 4.6.1 GENERAL GEOLOGY INEEL occupies a relatively flat area on the northwestern edge of the Eastern Snake River Plain. Figure 4-4 shows important geological features of the INEEL area. The area consists of a broad plain that has been built up from the eruptions of multi- ple flows of basaltic lava, which is shown on Figure 4-5. The flows at the surface range in age from 1.2 million to 2,100 years. The Plain is bounded on the north and south by the north-to-north-

5

ch_4  

NLE Websites -- All DOE Office Websites (Extended Search)

58 58 Affected Environment 4.9.1 PLANT COMMUNITIES AND ASSOCIATIONS INEEL lies within a cool desert ecosystem dom- inated by shrub-steppe vegetation. The area is relatively undisturbed, providing important habi- tat for species native to the region. Vegetation and habitat on INEEL can be grouped into six types: shrub-steppe, juniper woodlands, native grasslands, modified ephemeral playas, lava, and wetland-like areas. Figure 4-16 shows these areas. More than 90 percent of INEEL falls within the shrub-steppe vegetation type. The shrub-steppe vegetation type is dominated by sagebrush (Artemisia spp.), saltbush (Atriplex spp.), and rabbitbrush (Chrysothamnus spp.). Grasses found on INEEL include cheatgrass (Bromus tectorum), Indian ricegrass (Oryzopsis hymenoides), wheatgrass (Agropyron spp.), and

6

ch_4  

NLE Websites -- All DOE Office Websites (Extended Search)

47 47 DOE/EIS-0287 Idaho HLW & FD EIS 4.8.2 SUBSURFACE WATER Subsurface water at INEEL occurs in the under- lying Snake River Plain Aquifer and the vadose zone (area of unsaturated soil and material above the aquifer). This section describes the regional and local hydrogeology, vadose zone hydrology, perched water, and subsurface water quality. 4.8.2.1 Regional Hydrogeology INEEL overlies the Snake River Plain Aquifer as shown in Figure 4-12. This aquifer is the major source of drinking water for southeast- ern Idaho and has been desig- nated a Sole Source Aquifer by EPA. The aquifer flows to the south and southwest and covers an area of 9,611 square miles. Water storage in the aquifer is estimated at 2 billion acre-feet, and irrigation wells can yield 7,000 gallons per minute (DOE 1995). Depth to the

7

ch_2  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Background 2.1.3 CURRENT MISSION The current INEEL mission is to develop, demonstrate, and deploy advanced engineering technology and systems to improve national competitiveness and security, to make the pro- duction and use of energy more efficient, and to improve the quality of the environment. Areas of primary emphasis at INEEL include waste management and waste minimization, environ- mental engineering and restoration, energy effi- ciency, renewable energy, national security and defense, nuclear technologies, and advanced technologies and methods. INEEL is the lead laboratory for the National Spent Nuclear Fuel Management Program, which sets standards for developing and maintaining the capability to safely manage DOE's spent nuclear fuel. DOE considers the Environmental Management

8

ch_3  

NLE Websites -- All DOE Office Websites (Extended Search)

47 47 DOE/EIS-0287 Idaho HLW & FD EIS has been provided to the public, committed DOE to restoring the existing contaminated groundwater plume outside the INTEC security fence to meet the current drinking water stan- dard of 4 millirem per year. A performance assessment would be developed for each facility or group of facilities under consideration for disposition, to determine which of the three disposition alternatives would be implemented. The performance assessment results would be used to identify the impact on the limited cumulative risk in the INTEC area resulting from residual contami- nation from all facilities. For facilities where a performance assessment is not necessary, resid- ual waste left in place would also be used to identify impacts on the limited cumulative risk

9

ch_4  

NLE Websites -- All DOE Office Websites (Extended Search)

40 40 Affected Environment playas 15 to 20 miles northeast of INTEC, where the water infiltrates. The water in Birch Creek and the Little Lost River is diverted in summer months for irriga- tion prior to reaching INEEL. During periods of unusually high precipitation or rapid snow melt, water from Birch Creek and the Little Lost River may enter INEEL from the northwest and infil- trate the ground, recharging the underlying aquifer. 4.8.1.2 Local Drainage INTEC is located on an alluvial plain approxi- mately 200 feet from the Big Lost River channel near the channel intersection with Lincoln Boulevard on INEEL. INTEC is surrounded by a stormwater drainage ditch system (DOE 1998). Stormwater runoff from most areas of INTEC flows through the ditches to an abandoned gravel

10

Methane (CH4)  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane (CH4) Gateway Pages to Methane Data Modern Records of Atmospheric Methane (CH4) and a 2000-year Ice-core Record from Law Dome, Antarctica 800,000-year Ice-Core Records of...

11

CH Packaging Operations Manual  

Science Conference Proceedings (OSTI)

This procedure provides instructions forassembling the following CH packaging payload: Drum payload assembly Standard Waste Box (SWB) assembly Ten-Drum Overpack (TDOP)

Washington TRU Solutions LLC

2007-11-29T23:59:59.000Z

12

CH Packaging Operations Manual  

SciTech Connect

Introduction - This procedure provides instructions for assembling the following CH packaging payload: - Drum payload assembly - Standard Waste Box (SWB) assembly - Ten-Drum Overpack (TDOP).

Washington TRU Solutions

2002-03-04T23:59:59.000Z

13

CH Packaging Operations Manual  

SciTech Connect

Introduction - This procedure provides instructions forassembling the following CH packaging payload: Drum payload assembly Standard Waste Box (SWB) assembly Ten-Drum Overpack (TDOP)

Washington TRU Solutions LLC

2006-12-18T23:59:59.000Z

14

CH Packaging Operations Manual  

SciTech Connect

This procedure provides instructions forassembling the following CH packaging payload: Drum payload assembly Standard Waste Box (SWB) assembly Ten-Drum Overpack (TDOP)

Washington TRU Solutions LLC

2007-08-22T23:59:59.000Z

15

CH Packaging Operations Manual  

Science Conference Proceedings (OSTI)

Introduction - This procedure provides instructions for assembling the following CH packaging payload: -Drum payload assembly -Standard Waste Box (SWB) assembly -Ten-Drum Overpack (TDOP).

Washington TRU Solutions LLC

2003-06-26T23:59:59.000Z

16

CH Packaging Operations Manual  

SciTech Connect

Introduction - This procedure provides instructions forassembling the following CH packaging payload: Drum payload assembly Standard Waste Box (SWB) assembly Ten-Drum Overpack (TDOP)

Washington TRU Solutions LLC

2007-05-15T23:59:59.000Z

17

th e american bir d conse rvan c y g u id e to bird conservation  

E-Print Network (OSTI)

th e american bir d conse rvan c y g u id e to bird conservation by daniel j. lebbin, michael j CONSERVATION 1886 George Grinnell founds the first Audubon So- ciety. 1896 Harriet Hemenway, her cousin Minna conservation for waterfowl and other birds. 1934 Roger Tory Peterson publishes his landmark Field Guide

McReynolds, Ben

18

CH Packaging Operations Manual  

Science Conference Proceedings (OSTI)

This procedure provides instructions for assembling the CH Packaging Drum payload assembly, Standard Waste Box (SWB) assembly, Abnormal Operations and ICV and OCV Preshipment Leakage Rate Tests on the packaging seals, using a nondestructive Helium (He) Leak Test.

Washington TRU Solutions LLC

2005-06-13T23:59:59.000Z

19

CH-TRU Waste Content Codes (CH-TRUCON)  

Science Conference Proceedings (OSTI)

The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

Washington TRU Solutions LLC

2004-10-01T23:59:59.000Z

20

CH-TRU Waste Content Codes (CH-TRUCON)  

Science Conference Proceedings (OSTI)

The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

Washington TRU Solutions LLC

2006-06-20T23:59:59.000Z

Note: This page contains sample records for the topic "area bir ch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

CH-TRU Waste Content Codes (CH-TRUCON)  

Science Conference Proceedings (OSTI)

The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

Washington TRU Solutions LLC

2005-12-15T23:59:59.000Z

22

CH-TRU Waste Content Codes (CH-TRUCON)  

Science Conference Proceedings (OSTI)

The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

Washington TRU Solutions LLC

2006-01-18T23:59:59.000Z

23

CH-TRU Waste Content Codes (CH-TRUCON)  

Science Conference Proceedings (OSTI)

The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

Washington TRU Solutions LLC

2007-02-15T23:59:59.000Z

24

CH-TRU Waste Content Codes (CH-TRUCON)  

Science Conference Proceedings (OSTI)

The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

Washington TRU Solutions LLC

2005-05-01T23:59:59.000Z

25

CH-TRU Waste Content Codes (CH-TRUCON)  

Science Conference Proceedings (OSTI)

The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

Washington TRU Solutions LLC

2006-12-20T23:59:59.000Z

26

CH-TRU Waste Content Codes (CH-TRUCON)  

Science Conference Proceedings (OSTI)

The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

Washington TRU Solutions LLC

2007-06-15T23:59:59.000Z

27

CH-TRU Waste Content Codes (CH-TRUCON)  

Science Conference Proceedings (OSTI)

The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

Washington TRU Solutions LLC

2006-08-15T23:59:59.000Z

28

CH-TRU Waste Content Codes (CH-TRUCON)  

Science Conference Proceedings (OSTI)

The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

Washington TRU Solutions LLC

2005-01-30T23:59:59.000Z

29

CH-TRU Waste Content Codes (CH-TRUCON)  

Science Conference Proceedings (OSTI)

The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

Washington TRU Solutions LLC

2005-06-20T23:59:59.000Z

30

CH-TRU Waste Content Codes (CH-TRUCON)  

Science Conference Proceedings (OSTI)

The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

Washington TRU Solutions LLC

2007-08-15T23:59:59.000Z

31

CH-TRU Waste Content Codes (CH-TRUCON)  

Science Conference Proceedings (OSTI)

The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

Washington TRU Solutions LLC

2005-11-20T23:59:59.000Z

32

CH-TRU Content Codes (CH-TRUCON)  

Science Conference Proceedings (OSTI)

The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

Washington TRU Solutions LLC

2005-10-15T23:59:59.000Z

33

CH-TRU Waste Content Codes (CH TRUCON)  

Science Conference Proceedings (OSTI)

The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

Washington TRU Solutions LLC

2004-12-01T23:59:59.000Z

34

CH-TRU Waste Content Codes (CH-TRUCON)  

Science Conference Proceedings (OSTI)

The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

Washington TRU Solutions LLC

2007-09-20T23:59:59.000Z

35

CH-TRU Waste Content Codes (CH-TRUCON)  

Science Conference Proceedings (OSTI)

The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

Washington TRU Solutions LLC

2006-09-15T23:59:59.000Z

36

CH-TRU Waste Content Codes (CH-TRUCON)  

Science Conference Proceedings (OSTI)

The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codesand corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

Washington TRU Solutions LLC

2005-01-15T23:59:59.000Z

37

CH-TRU Waste Content Codes (CH-TRUCON)  

Science Conference Proceedings (OSTI)

The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

Washington TRU Solutions LLC

2005-03-15T23:59:59.000Z

38

CH-TRU Waste Content Codes (CH-TRUCON)  

Science Conference Proceedings (OSTI)

The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

Washington TRU Solutions LLC

2005-08-15T23:59:59.000Z

39

CH 338 Winter 2008 CH 338 (CRN 21222)  

E-Print Network (OSTI)

Instructor: Dr. Michael E. Koscho 175 Onyx / 346-2924 koscho@uoregon.edu [please use CH 338 as the subject-line, finding immeasurable utility in our everyday lives. The isolation, preparation, purification times. The chemical laboratory is a safe place to work when everyone in the laboratory is dedicated

Richmond, Geraldine L.

40

ChIP-PED enhances the analysis of ChIP-seq and ChIP-chip data  

Science Conference Proceedings (OSTI)

Motivation: Although chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) or tiling array hybridization (ChIP-chip) is increasingly used to map genome-widebinding sites of transcription factors (TFs), it still ...

George Wu, Jason T. Yustein, Matthew N. McCall, Michael Zilliox, Rafael A. Irizarry, Karen Zeller, Chi V. Dang, Hongkai Ji

2013-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "area bir ch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

SC-CH FACTS Customer Service  

NLE Websites -- All DOE Office Websites (Extended Search)

SC-CH FACTS SC-CH FACTS Customer Service Office of Communications P (630) 252-2110 F (630) 252-9473 Address 9800 South Cass Ave. Argonne, Illinois 60439 Websites Chicago Office www.ch.doe.gov Office of Science http://science.energy.gov/ U.S. Department of Energy http://energy.gov/ CH Factoids Who We Are ... Our Mission The Office of Science - Chicago Office (SC-CH) is a field office of the U.S. Department of Energy (DOE), a Cabinet-level agency with

42

CH Packaging Operations for High Wattage Waste  

Science Conference Proceedings (OSTI)

This document provides instructions for assembling the following CH packaging payload: Drum payload assembly Standard Waste Box (SWB) assembly Ten-Drum Overpack (TDOP)

Washington TRU Solutions LLC

2006-01-06T23:59:59.000Z

43

AOCS Recommended Practice Ch 2a-94  

Science Conference Proceedings (OSTI)

trans Unsaturated Fatty Acids by Capillary Column Gas Chromatography AOCS Recommended Practice Ch 2a-94 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads AOCS DEFINITI

44

CH-TRU Waste Content Codes  

Science Conference Proceedings (OSTI)

The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

Washington TRU Solutions LLC

2008-01-16T23:59:59.000Z

45

AOCS Official Method Ch 1-91  

Science Conference Proceedings (OSTI)

Preparation of Methyl Esters of Long-Chain Fatty Acids AOCS Official Method Ch 1-91 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION This method provides a means

46

AOCS Official Method Ch 3-91  

Science Conference Proceedings (OSTI)

Determination of Fatty Acids in the 2-Position in the Triglycerides of Oils and Fats AOCS Official Method Ch 3-91 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION ...

47

AOCS Official Method Ch 7-09  

Science Conference Proceedings (OSTI)

International Trade Standard Applying to Olive and Olive-Pomace Oils AOCS Official Method Ch 7-09 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION These analytica

48

AOCS Official Method Ch 2-91  

Science Conference Proceedings (OSTI)

Determination of Fatty Acids in Olive Oils by Capillary GLC AOCS Official Method Ch 2-91 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION This method is for the d

49

AOCS Official Method Ch 8-02  

Science Conference Proceedings (OSTI)

Determination of Wax Content by Capillary Column Gas-Liquid Chromatography AOCS Official Method Ch 8-02 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION Addition

50

AOCS Official Method Ch 6-91  

Science Conference Proceedings (OSTI)

Determination of the Composition of the Sterol Fraction of Animal and Vegetable Oils and Fats by TLC and Capillary GLC AOCS Official Method Ch 6-91 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads AOCS ...

51

Linear growth for Ch\\^atelet surfaces  

E-Print Network (OSTI)

An upper bound of the expected order of magnitude is established for the number of rational points of bounded height on Ch\\^atelet surfaces defined over the rationals.

Browning, T D

2009-01-01T23:59:59.000Z

52

AOCS Official Method Ch 4-91  

Science Conference Proceedings (OSTI)

Chlorophyll Pigments AOCS Official Method Ch 4-91 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION This method is used to determine mg/kg of chlorophyll-related p

53

AOCS Official Method Ch 5-91  

Science Conference Proceedings (OSTI)

Determination of Specific Extinction of Oils and Fats, Ultraviolet Absorption AOCS Official Method Ch 5-91 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION This m

54

NMR Study of the Dynamics of ILs with -CH2Si(CH3)3 vs CH2C(CH3)3  

NLE Websites -- All DOE Office Websites (Extended Search)

Magnetic Resonance Study of the Dynamics of Imidazolium Ionic Magnetic Resonance Study of the Dynamics of Imidazolium Ionic Liquids with -CH2Si(CH3)3 vs CH2C(CH3)3 Substituents S. H. Chung, R. Lopato, S. G. Greenbaum, H. Shirota, E. W. Castner, Jr. and J. F. Wishart J. Phys. Chem. B 111, 4885-4893 (2007). [Find paper at ACS Publications] or use ACS Articles on Request Abstract: Trimethylsilylmethyl (TMSiM)-substituted imidazolium bis(trifluoromethylsulfonyl)imide (NTf2-), and tetrafluoroborate (BF4-) ionic liquids (ILs) have lower room-temperature viscosities by factors of 1.6 and 7.4, respectively, than isostructural neopentylimidazolium ILs. In an attempt to account for the effects of silicon substitution in imidazolium RTILs and to investigate the ion dynamics, we report nuclear magnetic resonance (NMR) measurements of 1H (I = 1/2) and 19F (I = 1/2)

55

Dynamic Reduction of a CH4/Air Chemical Mechanism Appropriate...  

NLE Websites -- All DOE Office Websites (Extended Search)

Dynamic Reduction of a CH4Air Chemical Mechanism Appropriate for Investigating Vortex Flame Interactions Title Dynamic Reduction of a CH4Air Chemical Mechanism Appropriate for...

56

www.ethz.ch Dear reader  

E-Print Network (OSTI)

and energy economy. With the necessary reduction in overall energy consumption, the demand for electricity in electrical energy technology, with the aim of gaining wider knowledge on high voltage net- works and energy emissions in electricity generation by 2050. Info: www.esc.ethz.ch #12;ElEkTRoTECHNoloGIE IN SHoRT FRESH FRo

57

CH-ANL Report.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 2.0 STATUS AND RESULTS ..................................................................... 1 3.0 CONCLUSIONS .................................................................................... 5 4.0 RATING ................................................................................................. 5 5.0 OPPORTUNITIES FOR IMPROVEMENT .......................................... 6 APPENDIX A: SUPPLEMENTAL INFORMATION ................................... 7 APPENDIX B: SITE-SPECIFIC FINDINGS ................................................. 8 Abbreviations Used in This Report ANL Argonne National Laboratory CH Offi ce of Science Chicago Offi ce CIC Classifi cation and Information Control DOE U.S. Department of Energy NNSA National Nuclear Security Administration

58

ChEAS Data: The Chequamegon Ecosystem Atmosphere Study  

DOE Data Explorer (OSTI)

The ChEAS flux towers participate in AmeriFlux, and the region is an EOS-validation site. The WLEF tower is a NOAA-CMDL CO2 sampling site. ChEAS sites are primarily located within or near the Chequamegon-Nicolet National Forest in northern Wisconsin, with one site in the Ottawa National Forest in the upper peninsula of Michigan. Current studies observe forest/atmosphere exchange of carbon dioxide at canopy and regional scales, forest floor respiration, photosynthesis and transpiration at the leaf level and use models to scale to canopy and regional levels. EOS-validation studies quantitatively assess the land cover of the area using remote sensing and conduct extensive ground truthing of new remote sensing data (i.e. ASTER and MODIS). Atmospheric remote sensing work is aimed at understanding atmospheric boundary layer dynamics, the role of entrainment in regulating the carbon dioxide mixing ratio profiles through the lower troposphere, and feedback between boundary layer dynamics and vegetation (especially via the hydrologic cycle). Airborne studies have included include balloon, kite and aircraft observations of the CO2 profile in the troposphere.

Davis, Kenneth J. [Penn State

59

Enforcement Letter, CH2M Hill- October 4, 2004  

Energy.gov (U.S. Department of Energy (DOE))

Issued to CH2M Hill related to at a Lapse in Dosimetry Accreditation at the Separations Process Research Unit

60

Chemical Engineering Education150 ChE department  

E-Print Network (OSTI)

Chemical Engineering Education150 ChE department ChE at... The University of Houston C hemical engineering at the Uni- versity of Houston has reflected the growth and diversification of the field: from. The Department of Chemical & Biomolecular Engineering (ChBE) at the University of Houston started as a program

Azevedo, Ricardo

Note: This page contains sample records for the topic "area bir ch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Comparison Between Dust Particle Generation In CH4 or CH4/N2 Mixing RF Plasmas  

SciTech Connect

Dust particles have been spontaneously generated either in pure CH4 or in CH4/N2 r.f. plasmas. The dust particle formation results from homogeneous nucleation in the plasma and is detected by laser light scattering (Ar+, {lambda} = 514.5 nm). The temporal and spatial behaviour of dust particles is studied. In pure methane gas, particles are trapped in well defined clouds at the plasma sheath boundaries. In a CH4/N2 mixture, the nitrogen addition leads to an expansion of the clouds. For nitrogen contents higher than 50%, the space between the electrodes is nearly completely filled with dust particles leading to plasma instabilities and a void appears in the center of the discharge. The particles are spherical with diameters in the range 0.8-2 {mu}m. For nitrogen-rich plasmas, the particles growth is improved and leads to a rough shape with an orange-peel-type surface texture.

Pereira, Jeremy; Massereau-Guilbaud, Veronique; Geraud-Grenier, Isabelle; Plain, Andre [LASEP, Faculte des Sciences, Universite d'Orleans, Site de Bourges, rue G.Berger, BP 4043, 18028 Bourges Cedex (France)

2005-10-31T23:59:59.000Z

62

Independent Activity Report, CH2M Hill Plateau Remediation Company -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Activity Report, CH2M Hill Plateau Remediation Company Independent Activity Report, CH2M Hill Plateau Remediation Company - January 2011 Independent Activity Report, CH2M Hill Plateau Remediation Company - January 2011 January 2011 Review of the CH2M Hill Plateau Remediation Company Unreviewed Safety Question Procedure [ARPT-RL-2011-003] The U.S. Department of Energy Office of Independent Oversight, within the Office of Health, Safety and Security, during a site visit from January 10-14, 2011, presented the results of a technical review of the CH2M Hill Plateau Remediation Company (PRC) Unreviewed Safety Question (USQ) Procedure. Independent Activity Report, CH2M Hill Plateau Remediation Company - January 2011 More Documents & Publications CX-009415: Categorical Exclusion Determination Independent Activity Report, Richland Operations Office - January 2011

63

CH Packaging Operations for High Wattage Waste at LANL  

Science Conference Proceedings (OSTI)

This procedure provides instructions for assembling the following CH packaging payload: Drum payload assembly Standard Waste Box (SWB) assembly Ten-Drum Overpack (TDOP).

Washington TRU Solutions LLC

2005-04-13T23:59:59.000Z

64

CH Packaging Operations for High Wattage Waste at LANL  

Science Conference Proceedings (OSTI)

This procedure provides instructions for assembling the following CH packaging payload: Drum payload assembly Standard Waste Box (SWB) assembly Ten-Drum Overpack (TDOP).

Washington TRU Solutions LLC

2005-04-04T23:59:59.000Z

65

A CH-type Inequality For Real Experiments  

E-Print Network (OSTI)

We derive an efficient CH-type inequality. Quantum mechanics violates our proposed inequality independent of the detection-efficiency problem.

Afshin Shafiee

2004-01-06T23:59:59.000Z

66

Atmospheric CH4 Concentrations from the CSIRO GASLAB Flask Sampling...  

NLE Websites -- All DOE Office Websites (Extended Search)

CH4 Concentrations from the CSIRO GASLAB Flask Sampling Network image Alert, NWT, Canada Cape Ferguson, Australia Cape Grim, Australia Estevan Point, BC, Canada Macquarie...

67

CH4 sources estimated from atmospheric observations of CH4 and its C-13/C-12 isotopic ratios: 2. Inverse modeling of CH4 fluxes from geographical regions  

E-Print Network (OSTI)

atmosphere, and CH 4 from fossil fuels such as coal andTermites Biomass burning Fossil Fuels Coal Natural gas andbiomass burning and fossil fuel source processes to the a

Mikaloff Fletcher, S.E.; Tans, P P; Bruhwiler, L M; Miller, J B; Heimann, M

2004-01-01T23:59:59.000Z

68

Potential energy surfaces for CH bond cleavage reactions  

DOE Green Energy (OSTI)

Ab initio, multi-reference, configuration interaction calculations are reported for CH{sub 4}{leftrightarrow}CH{sub 3}+H, CH{sub 3}F{leftrightarrow}CH{sub 2}F+H, CH{sub 2}F{sub 2}{leftrightarrow}CHF{sub 2}+H, and CHF{sub 3}{leftrightarrow}CF{sub 3}+H. Two equivalent, barrier-less paths are found for the CH{sub 3}+H recombination, two inequivalent, barrier-less paths are found for the CH{sub 2}F+H and CHF{sub 2}+H recombinations (depending on which side of the radical the H atom approaches), and only one barrier-less path is found for the CF{sub 3}+H recombination. Minimum energy path for H atom approaching CF{sub 3} from the concave side is predicted to have a barrier of 27 kcal/mole. Both minimum energy path energies and transitional frequencies as function of R{sub CH} for all 4 reactions are predicted to be similar.

Harding, L.B.

1996-12-31T23:59:59.000Z

69

Electron-Impact Dissociation of CD3+ and CH3+ Ions Producing CD2+, CH+ and C+ Fragment Ions  

Science Conference Proceedings (OSTI)

Using a crossed electron-ion beams method, we measured absolute cross sections for electron-impact dissociation of the CD3+ molecular ions producing CD2+ fragment ions and CH3+ ions yielding CH+ and C+ fragment ions over a collision energy range from a few eV up to 100 eV. The total experimental uncertainties are about 12% at the maximum of the curves of cross sections (peak of the cross section, for the CH+ channel). The obtained results suggest important roles played by pre-dissociation of bound states in the production of both the CH+ and C+ fragment ions. Good agreement is found with other results reported for the CH+ fragment, but some differences are found for the CD2+ and C+.

Bahati Musafiri, Eric [ORNL; Fogle, Jr., Michael R [ORNL; Vane, C Randy [ORNL; Bannister, Mark E [ORNL; Thomas, R. D. [Stockholm University, Stockholm, Sweden; Zhaunerchyk, Vitali [Stockholm University, Stockholm, Sweden

2009-01-01T23:59:59.000Z

70

Estimation of mass transport parameters of gases for quantifying CH{sub 4} oxidation in landfill soil covers  

SciTech Connect

Methane (CH{sub 4}), which is one of the most abundant anthropogenic greenhouse gases, is produced from landfills. CH{sub 4} is biologically oxidized to carbon dioxide, which has a lower global warming potential than methane, when it passes through a cover soil. In order to quantify the amount of CH{sub 4} oxidized in a landfill cover soil, a soil column test, a diffusion cell test, and a mathematical model analysis were carried out. In the column test, maximum oxidation rates of CH{sub 4} (V{sub max}) showed higher values in the upper part of the column than those in the lower part caused by the penetration of O{sub 2} from the top. The organic matter content in the upper area was also higher due to the active microbial growth. The dispersion analysis results for O{sub 2} and CH{sub 4} in the column are counter-intuitive. As the upward flow rate of the landfill gas increased, the dispersion coefficient of CH{sub 4} slightly increased, possibly due to the effect of mechanical dispersion. On the other hand, as the upward flow rate of the landfill gas increased, the dispersion coefficient of O{sub 2} decreased. It is possible that the diffusion of gases in porous media is influenced by the counter-directional flow rate. Further analysis of other gases in the column, N{sub 2} and CO{sub 2}, may be required to support this hypothesis, but in this paper we propose the possibility that the simulations using the diffusion coefficient of O{sub 2} under the natural condition may overestimate the penetration of O{sub 2} into the soil cover layer and consequently overestimate the oxidation of CH{sub 4}.

Im, J.; Moon, S.; Nam, K.; Kim, Y.-J. [Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul (Korea, Republic of); Kim, J.Y. [Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul (Korea, Republic of)], E-mail: jaeykim@snu.ac.kr

2009-02-15T23:59:59.000Z

71

Idaho Cleanup Project CH2M-WG Idaho, LLC | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Cleanup Project CH2M-WG Idaho, LLC Idaho Cleanup Project CH2M-WG Idaho, LLC Idaho Cleanup Project Idaho Cleanup Project CH2M-WG Idaho, LLC More Documents & Publications...

72

CH2M HILL Plateau Remediation Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CH2M HILL Plateau Remediation Company CH2M HILL Plateau Remediation Company CH2M HILL Plateau Remediation Company The Office of Hea1th, Safety and Security's Office of Enforcement and Oversight has evaluated the facts and circumstances of a series of radiological work deficiencies at the Plutonium Finishing Plant (PFP) and the 105 K-East Reactor Facility (105KE Reactor) by CH2M HILL Plateau Remediation Company (CHPRC). The radiological work deficiencies at PFP are documented in the April 29, 2011, Department of Energy Richland Operations Office (DOE-RL) Surveillance Report S-11-SED-CHP~C-PFP-002, Planning and Execution of Radiological Work. S-11-SED-CHPRC-PFP-002 documented four examples where inadequate hazard analysis resulted in airborne radioactivity that exceeded the limits of the controlling radiological work permit.

73

A parallel algorithm for computing the spectrum of CH5+  

Science Conference Proceedings (OSTI)

We present a parallelized contracted basis-iterative calculation of vibrational energy levels of CH$_5^+$ (a 12D calculation). We use Radau polyspherical coordinates and basis functions that are products of eigenfunctions of bend and stretch Hamiltonians. ...

Xiao-Gang Wang; Tucker Carrington

2009-06-01T23:59:59.000Z

74

Analysis of the mouse embryonic stem cell regulatory networks obtained by ChIP-chip and ChIP-PET  

E-Print Network (OSTI)

Background: Genome-wide approaches have begun to reveal the transcriptional networks responsible for pluripotency in embryonic stem (ES) cells. Chromatin Immunoprecipitation (ChIP) followed either by hybridization to a ...

Mathur, Divya

75

Seasonal variation of CH4 emissions from central California  

NLE Websites -- All DOE Office Websites (Extended Search)

Seasonal variation of CH4 emissions from central California Seasonal variation of CH4 emissions from central California Title Seasonal variation of CH4 emissions from central California Publication Type Journal Article Year of Publication 2012 Authors Jeong, Seongeun, Chuanfeng Zhao, Arlyn E. Andrews, Laura Bianco, James M. Wilczak, and Marc L. Fischer Journal Journal of Geophysical Research - Atmospheres Volume 117 Issue D11 Keywords atmospheric transport, emission inventory, greenhouse gas, inverse model, methane Abstract We estimate seasonal variations in methane (CH4) emissions from central California from December 2007 through November 2008 by comparing CH4 mixing ratios measured at a tall tower with transport model predictions based on a global 1° a priori CH4emissions map (EDGAR32) and a 10 km seasonally varying California-specific map, calibrated to statewide by CH4emission totals. Atmospheric particle trajectories and surface footprints are computed using the Weather Research and Forecasting and Stochastic Time-Inverted Lagrangian Transport models. Uncertainties due to wind velocity and boundary layer mixing depth are evaluated using measurements from radar wind profilers. CH4signals calculated using the EDGAR32 emission model are larger than those based on the California-specific model and in better agreement with measurements. However, Bayesian inverse analyses using the California-specific and EDGAR32 maps yield comparable annually averaged posterior CH4emissions totaling 1.55 ± 0.24 times and 1.84 ± 0.27 times larger than the California-specific prior emissions, respectively, for a region of central California within approximately 150 km of the tower. If these results are applicable across California, state total CH4 emissions would account for approximately 9% of state total greenhouse gas emissions. Spatial resolution of emissions within the region near the tower reveal seasonality expected from several biogenic sources, but correlations in the posterior errors on emissions from both prior models indicate that the tower footprints do not resolve spatial structure of emissions. This suggests that including additional towers in a measurement network will improve the regional specificity of the posterior estimates.

76

Effect of CH4 and O2 variations on rates of CH4 oxidation and stable isotope fractionation in tropical rain forest soils  

Science Conference Proceedings (OSTI)

Methane-oxidizing bacteria are the primary sink for CH{sub 4} in reduced soils, and account for as much as 90 percent of all CH{sub 4} produced. Methanotrophic bacteria strongly discriminate against the heavy isotopes of carbon, resulting in CH{sub 4} emissions that are significantly more enriched in {sup 13}C than the original source material. Previous studies have used an isotope mass balance approach to quantify CH{sub 4} sources and sinks in the field, based on the assumption that the fractionation factor for CH{sub 4} oxidation is a constant. This study quantifies the effect of systematic variations in CH{sub 4} and O{sub 2} concentrations on rates of CH{sub 4} oxidation and stable isotope fractionation in tropical rain forest soils. Soils were collected from the 0-15 cm depth, and incubated with varying concentrations of CH{sub 4} (100 ppmv, 500 ppmv, 1000 ppmv, and 5000 ppmv) or O{sub 2} (3 percent, 5 percent, 10 percent, and 21 percent). The isotope fractionation factor for CH{sub 4} oxidation was calculated for each incubation using a Rayleigh fractionation model. Rates of CH{sub 4} oxidation varied significantly between CH{sub 4} treatments, with the 100 ppmv CH{sub 4} treatment showing the lowest rate of CH{sub 4} uptake, and the other 3 treatments showing similar rates of CH{sub 4} uptake. Rates of CH{sub 4} oxidation did not vary significantly between the different O{sub 2} treatments. The fractionation factor for CH{sub 4} oxidation varied significantly between the different CH{sub 4} treatments, with the 5000 ppmv CH{sub 4} treatment showing the largest {sup 13}C-enrichment of residual CH{sub 4}. In treatments where CH{sub 4} concentration was not rate-limiting (> 500 ppmv CH{sub 4}), the fractionation factor for CH{sub 4} oxidation was negatively correlated with CH{sub 4} oxidation rate (P activity or CH{sub 4} pool size.

Teh, Yit Arn; Conrad, Mark; Silver, Whendee L.; Carlson, Charlotte M.

2003-10-01T23:59:59.000Z

77

Independent Oversight Review, Hanford Site CH2M Hill Plateau Remediation Company- November 2012  

Energy.gov (U.S. Department of Energy (DOE))

Review of the Hanford Site CH2M Hill Plateau Remediation Company Implementation Verification Review Processes

78

CH2 Contorhaus Hansestadt Hamburg | Open Energy Information  

Open Energy Info (EERE)

CH2 Contorhaus Hansestadt Hamburg CH2 Contorhaus Hansestadt Hamburg Jump to: navigation, search Name CH2 Contorhaus Hansestadt Hamburg Place Hamburg, Germany Zip 20457 Sector Solar Product Germany-based firm that sets up closed-end funds for investor-capital market products and projects, including solar. Coordinates 53.553345°, 9.992455° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.553345,"lon":9.992455,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

79

CH Packaging Operations for High Wattage Waste at LANL  

SciTech Connect

This procedure provides instructions for assembling the following contact-handled (CH) packaging payloads: - Drum payload assembly - Standard Waste Box (SWB) assembly - Ten-Drum Overpack (TDOP) In addition, this procedure also provides operating instructions for the TRUPACT-II CH waste packaging. This document also provides instructions for performing ICV and OCV preshipment leakage rate tests on the following packaging seals, using a nondestructive helium (He) leak test: - ICV upper main O-ring seal - ICV outer vent port plug O-ring seal - OCV upper main O-ring seal - OCV vent port plug O-ring seal.

Washington TRU Solutions LLC

2003-05-06T23:59:59.000Z

80

CH Packaging Operations for High Wattage Waste at LANL  

SciTech Connect

This procedure provides instructions for assembling the following contact-handled (CH) packaging payloads: - Drum payload assembly - Standard Waste Box (SWB) assembly - Ten-Drum Overpack (TDOP) In addition, this procedure also provides operating instructions for the TRUPACT-II CH waste packaging. This document also provides instructions for performing ICV and OCV preshipment leakage rate tests on the following packaging seals, using a nondestructive helium (He) leak test: - ICV upper main O-ring seal - ICV outer vent port plug O-ring seal - OCV upper main O-ring seal - OCV vent port plug O-ring seal.

Washington TRU Solutions LLC

2003-03-21T23:59:59.000Z

Note: This page contains sample records for the topic "area bir ch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

CH Packaging Operations for High Wattage Waste at LANL  

Science Conference Proceedings (OSTI)

This procedure provides instructions for assembling the following contact-handled (CH) packaging payloads: - Drum payload assembly - Standard Waste Box (SWB) assembly - Ten-Drum Overpack (TDOP) In addition, this procedure also provides operating instructions for the TRUPACT-II CH waste packaging. This document also provides instructions for performing ICV and OCV preshipment leakage rate tests on the following packaging seals, using a nondestructive helium (He) leak test: - ICV upper main O-ring seal - ICV outer vent port plug O-ring seal - OCV upper main O-ring seal - OCV vent port plug O-ring seal.

Washington TRU Solutions LLC

2002-12-18T23:59:59.000Z

82

CH Packaging Operations for High Wattage Waste at LANL  

Science Conference Proceedings (OSTI)

This procedure provides instructions for assembling the following contact-handled (CH) packaging payloads: - Drum payload assembly - Standard Waste Box (SWB) assembly - Ten-Drum Overpack (TDOP) In addition, this procedure also provides operating instructions for the TRUPACT-II CH waste packaging. This document also provides instructions for performing ICV and OCV preshipment leakage rate tests on the following packaging seals, using a nondestructive helium (He) leak test: - ICV upper main O-ring seal - ICV outer vent port plug O-ring seal - OCV upper main O-ring seal - OCV vent port plug O-ring seal.

Washington TRU Solutions LLC

2003-08-28T23:59:59.000Z

83

Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, 1998/pp. 615623 EXPERIMENTAL AND COMPUTATIONAL STUDY OF CH, CH*, AND OH* IN  

E-Print Network (OSTI)

and modeled. CH* and OH* number densities are deconvoluted from line-of-sight flame-emission mea- surements recognized as a key reactant in NOx formation through the prompt NO mechanism. Given that CH is a short-lived]. Despite the prevalence of CH* and OH* chemiluminescence, little quantitative work has been done either

Long, Marshall B.

84

Rhodium-Catalyzed C-C Bond Formation via Heteroatom-Directed C-H Bond Activation  

SciTech Connect

Once considered the 'holy grail' of organometallic chemistry, synthetically useful reactions employing C-H bond activation have increasingly been developed and applied to natural product and drug synthesis over the past decade. The ubiquity and relative low cost of hydrocarbons makes C-H bond functionalization an attractive alternative to classical C-C bond forming reactions such as cross-coupling, which require organohalides and organometallic reagents. In addition to providing an atom economical alternative to standard cross - coupling strategies, C-H bond functionalization also reduces the production of toxic by-products, thereby contributing to the growing field of reactions with decreased environmental impact. In the area of C-C bond forming reactions that proceed via a C-H activation mechanism, rhodium catalysts stand out for their functional group tolerance and wide range of synthetic utility. Over the course of the last decade, many Rh-catalyzed methods for heteroatom-directed C-H bond functionalization have been reported and will be the focus of this review. Material appearing in the literature prior to 2001 has been reviewed previously and will only be introduced as background when necessary. The synthesis of complex molecules from relatively simple precursors has long been a goal for many organic chemists. The ability to selectively functionalize a molecule with minimal pre-activation can streamline syntheses and expand the opportunities to explore the utility of complex molecules in areas ranging from the pharmaceutical industry to materials science. Indeed, the issue of selectivity is paramount in the development of all C-H bond functionalization methods. Several groups have developed elegant approaches towards achieving selectivity in molecules that possess many sterically and electronically similar C-H bonds. Many of these approaches are discussed in detail in the accompanying articles in this special issue of Chemical Reviews. One approach that has seen widespread success involves the use of a proximal heteroatom that serves as a directing group for the selective functionalization of a specific C-H bond. In a survey of examples of heteroatom-directed Rh catalysis, two mechanistically distinct reaction pathways are revealed. In one case, the heteroatom acts as a chelator to bind the Rh catalyst, facilitating reactivity at a proximal site. In this case, the formation of a five-membered metallacycle provides a favorable driving force in inducing reactivity at the desired location. In the other case, the heteroatom initially coordinates the Rh catalyst and then acts to stabilize the formation of a metal-carbon bond at a proximal site. A true test of the utility of a synthetic method is in its application to the synthesis of natural products or complex molecules. Several groups have demonstrated the applicability of C-H bond functionalization reactions towards complex molecule synthesis. Target-oriented synthesis provides a platform to test the effectiveness of a method in unique chemical and steric environments. In this respect, Rh-catalyzed methods for C-H bond functionalization stand out, with several syntheses being described in the literature that utilize C-H bond functionalization in a key step. These syntheses are highlighted following the discussion of the method they employ.

Colby, Denise; Bergman, Robert; Ellman, Jonathan

2010-05-13T23:59:59.000Z

85

People's Physics Book Ch13-1 The Big Ideas  

E-Print Network (OSTI)

to the mismatched frame rates of the camera and TV screen.) Electrical current coming out of your plug is an examplePeople's Physics Book Ch13-1 The Big Ideas: The name electric current is given to the phenomenon that occurs when an electric field moves down a wire at close to the speed of light. Voltage is the electrical

California at Santa Cruz, University of

86

Ch.2 Solar Energy to Earth and the Seasons  

E-Print Network (OSTI)

Ch.2 Solar Energy to Earth and the Seasons #12;Learning Objective One: The Solar System Sun Earth,083,000 km #12;Learning Objective Two: The Solar Energy Solar Radiation #12;What is Solar Energy? Energy is the capacity of a physical system to do work. The unit is Joule (J). Solar energy is radiant energy (i

Pan, Feifei

87

People's Physics book Ch 2-1 The Big Idea  

E-Print Network (OSTI)

People's Physics book Ch 2-1 The Big Idea Energy is a measure of the amount of, or potential for, dynamical activity in something. The total amount of energy in the universe is always the same universe. A group of things (we'll use the word system) has a certain amount of energy. Energy can be added

California at Santa Cruz, University of

88

Ch.2 Solar Energy to Earth and the Seasons  

E-Print Network (OSTI)

? Pairs of hydrogen nuclei are joined, form helium, and emit large amount of energy. Solar energy-Output Energy=Storage Change #12;Learning Objective Four: The Seasons #12;The Seasons SeasonalityCh.2 Solar Energy to Earth and the Seasons #12;Learning Objective One: The Solar System #12;Milky

Pan, Feifei

89

HIGH-RESOLUTION CH OBSERVATIONS OF TWO TRANSLUCENT MOLECULAR CLOUDS  

SciTech Connect

We present high-resolution (1.'3 x 1.'6) observations of the CH {sup 2}{pi}{sub 1/2} (F = 1-1) emission line at 3335 MHz in two high-latitude translucent clouds, MBM 3 and 40. At the assumed cloud distances, the angular resolution corresponds to {approx}0.05 pc, nearly an order of magnitude better than previous studies. Comparisons of the CH emission with previously obtained CO(1-0) data are difficult to interpret: the CO and CH line emission correlates in MBM 40 but not in MBM 3. In both clouds, there is a spatial offset in the peak emission, and perhaps in velocity for MBM 40. The difference in emission characteristics for the two tracers are noticeable in these two nearby clouds because of the high spatial resolution. Since both CH and CO are deemed to be reliable tracers of H{sub 2}, our results indicate that more care should be taken when using one of these tracers to determine the mass of a nearby molecular cloud.

Chastain, Raymond J. [Department of Physics and Astronomy, Louisiana State University, 368 Nicholson Hall, Tower Dr. Baton Rouge, LA 70803 (United States); Cotten, David; Magnani, Loris [Department of Physics and Astronomy, University of Georgia, Athens, GA 30602 (United States)

2010-01-15T23:59:59.000Z

90

Effect of CH4 and O2 variations on rates of CH4 oxidation and stable isotope fractionation in tropical rain forest soils  

SciTech Connect

Methane-oxidizing bacteria are the primary sink for CH{sub 4} in reduced soils, and account for as much as 90 percent of all CH{sub 4} produced. Methanotrophic bacteria strongly discriminate against the heavy isotopes of carbon, resulting in CH{sub 4} emissions that are significantly more enriched in {sup 13}C than the original source material. Previous studies have used an isotope mass balance approach to quantify CH{sub 4} sources and sinks in the field, based on the assumption that the fractionation factor for CH{sub 4} oxidation is a constant. This study quantifies the effect of systematic variations in CH{sub 4} and O{sub 2} concentrations on rates of CH{sub 4} oxidation and stable isotope fractionation in tropical rain forest soils. Soils were collected from the 0-15 cm depth, and incubated with varying concentrations of CH{sub 4} (100 ppmv, 500 ppmv, 1000 ppmv, and 5000 ppmv) or O{sub 2} (3 percent, 5 percent, 10 percent, and 21 percent). The isotope fractionation factor for CH{sub 4} oxidation was calculated for each incubation using a Rayleigh fractionation model. Rates of CH{sub 4} oxidation varied significantly between CH{sub 4} treatments, with the 100 ppmv CH{sub 4} treatment showing the lowest rate of CH{sub 4} uptake, and the other 3 treatments showing similar rates of CH{sub 4} uptake. Rates of CH{sub 4} oxidation did not vary significantly between the different O{sub 2} treatments. The fractionation factor for CH{sub 4} oxidation varied significantly between the different CH{sub 4} treatments, with the 5000 ppmv CH{sub 4} treatment showing the largest {sup 13}C-enrichment of residual CH{sub 4}. In treatments where CH{sub 4} concentration was not rate-limiting (> 500 ppmv CH{sub 4}), the fractionation factor for CH{sub 4} oxidation was negatively correlated with CH{sub 4} oxidation rate (P < 0.003, r{sup 2} = 0.86). A multiple regression model that included initial CH{sub 4} concentration and CH{sub 4} oxidation rate as independent variables accounted for 94 percent of the variability in the isotope fractionation data, suggesting that both factors are important in determining the extent of isotopic fractionation (P < 0.002, r{sup 2} = 0.94). The fractionation factor for CH{sub 4} oxidation did not vary significantly between the different O{sub 2} treatments. These results challenge the assumption that the isotope fractionation factor for CH{sub 4} oxidation remains constant, regardless of metabolic activity or CH{sub 4} pool size.

Teh, Yit Arn; Conrad, Mark; Silver, Whendee L.; Carlson, Charlotte M.

2003-10-01T23:59:59.000Z

91

DE-AC02-09CH11466  

NLE Websites -- All DOE Office Websites (Extended Search)

2-09CH11466 2-09CH11466 copies of the amendment; (b) By acknowledging receipt of this amendment on each copy of the offer submitted; or (c) By separate letter or telegram which includes a reference to the solicitation and amendment numbers. FAILURE OF YOUR ACKNOWLEDGEMENT TO BE RECEIVED AT THE PLACE DESIGNATED FOR THE RECEIPT OF OFFERS PRIOR TO THE HOUR AND DATE SPECIFIED MAY RESULT IN REJECTION OF YOUR OFFER. If by virtue of this amendment you desire to change an offer already submitted, such change may be made by telegram or letter, provided each telegram or letter makes reference to the solicitation and this amendment, and is received prior to the opening hour and date specified. Word Modification PRINCETON NJ 085442020 002484665 TRUSTEES OF PRINCETON UNIVERSITY, THE

92

DOE Selects CH2M Hill Plateau Remediation Company for Plateau...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CH2M Hill Plateau Remediation Company for Plateau Remediation Contract at its Hanford Site DOE Selects CH2M Hill Plateau Remediation Company for Plateau Remediation Contract at its...

93

Enforcement Letter, CH2M Hill Mound, Inc - December 22, 2004...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Letter, CH2M Hill Mound, Inc - December 22, 2004 December 22, 2004 Issued to CH2M Hill Mound, Inc. related to a Radioactive Contamination Event during Remediation Activities at...

94

Salinity-induced hydrate dissociation: A mechanism for recent CH4 release on Mars  

SciTech Connect

Recent observations of CH4 in the Martian atmosphere suggest that CH4 has been added relatively recently. Several mechanisms for recent CH4 release have been proposed including subsurface biological methanogenesis, abiogenic hydrothermal and/or volcanic activity, dissociation of CH4 hydrates, atmospheric photolysis, or addition of organics via bolide impact. This study examines the effects of increasing salinity on gas hydrate stability and compares estimates of the Martian geothermal gradient to CH4 and CO2 hydrate stability fields in the presence of high salinity brines. The results demonstrate that salinity increases alone result in a significant decrease in the predicted hydrate stability zone within the Martian subsurface and may be a driving force in CH4 hydrate destabilization. Active thermal and/or pressure fluctuations are not required in order for CH4 hydrates to be the source of atmospheric CH4.

Madden, Megan Elwood [ORNL; Ulrich, Shannon M [ORNL; Onstott, Tullis [Princeton University; Phelps, Tommy Joe [ORNL

2007-01-01T23:59:59.000Z

95

NEPA REVIEW SCREENING FORM DOE/CX-00088 I. Project Title: CH2f"JHill Plateau Remediation Company -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 Number: 10 Number: NEPA REVIEW SCREENING FORM DOE/CX-00088 I. Project Title: CH2f"JHill Plateau Remediation Company - Cleanup Actions, December 2012 to December 2013 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions. e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): CH2MHill Plateau Remediation Company (PRC) will be conducting cleanup actions on the Hanford Site in accordance with the categorical exclusion (CX) referenced in 10 CFR 1021, B, CX B6.1 ''Cleanup actions". PRC Projects include all those identified Sections . 3 and J.l4 of the PRC Contract, DE-AC06-08RL14788. Small-scale, short-term cleanup actions, under RCRA, Atomic Energy Act, or other

96

Special Report Order, Issued to CH2M Hill Hanford Group, Inc.- October 22, 2001  

Energy.gov (U.S. Department of Energy (DOE))

Issued to CH2M Hill Hanford Group, Inc., related to Multiple Nuclear Safety Issues at the Hanford Site

97

Research Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

Areas Areas Research Areas Print Scientists from a wide variety of fields come to the ALS to perform experiements. Listed below are some of the most common research areas covered by ALS beamlines. Below each heading are a few examples of the specific types of topics included in that category. Click on a heading to learn more about that research area at the ALS. Energy Science Photovoltaics, photosynthesis, biofuels, energy storage, combustion, catalysis, carbon capture/sequestration. Bioscience General biology, structural biology. Materials/Condensed Matter Correlated materials, nanomaterials, magnetism, polymers, semiconductors, water, advanced materials. Physics Atomic, molecular, and optical (AMO) physics; accelerator physics. Chemistry Surfaces/interfaces, catalysts, chemical dynamics (gas-phase chemistry), crystallography, physical chemistry.

98

Efficiency of formation of CH{sub 3}O in the reaction of CH{sub 3}O{sub 2} with ClO  

SciTech Connect

Employing a discharge-flow apparatus the authors measure the branching ratio for the reaction of ClO with CH{sub 3}O{sub 2} to the formation of CH{sub 3}O. The CH{sub 3}O{sub 2} is formed in the stratosphere from the reaction of Cl with CH{sub 4}. This branching ratio is of interest to determine if a chain of reactions through it could be a contributor to the stratospheric decomposition of ozone.

Biggs, P.; Canosa-Mas, C.E.; Frachebound, J.M. [Physical Chemistry Laboratory, Oxford (United Kingdom)] [Physical Chemistry Laboratory, Oxford (United Kingdom)

1995-05-15T23:59:59.000Z

99

Research Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Print Research Areas Print Scientists from a wide variety of fields come to the ALS to perform experiements. Listed below are some of the most common research areas covered by ALS beamlines. Below each heading are a few examples of the specific types of topics included in that category. Click on a heading to learn more about that research area at the ALS. Energy Science Photovoltaics, photosynthesis, biofuels, energy storage, combustion, catalysis, carbon capture/sequestration. Bioscience General biology, structural biology. Materials/Condensed Matter Correlated materials, nanomaterials, magnetism, polymers, semiconductors, water, advanced materials. Physics Atomic, molecular, and optical (AMO) physics; accelerator physics. Chemistry Surfaces/interfaces, catalysts, chemical dynamics (gas-phase chemistry), crystallography, physical chemistry.

100

Aviation Safety Officer Functional Area Qualification Standard  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

64-2003 64-2003 September 2003 CHANGE NOTICE NO. 1 January 2010 DOE STANDARD AVIATION SAFETY OFFICER FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1164-2003 CH-1 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-STD-1164-2003 CH-1 iv List of Changes Page/paragraph Change Page ii Change to new FAQS format Page iii Change in approval signature Page iv Added list of changes Page v Updated Table of Contents Page vii Changes to organizational names and

Note: This page contains sample records for the topic "area bir ch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Aviation Manager Functional Area Qualification Standard  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-STD-1165-2003 September 2003 CHANGE NOTICE NO. 1 December 2009 DOE STANDARD AVIATION MANAGER FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1165-2003 CH-1 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-STD-1165-2003 CH-1 iv List of Changes Page/paragraph Change Page ii Change to new FAQS format Page iii Change in approval signature Page iv Added list of changes Page v Changes to Table of Contents Page vii Changes to organizational names and

102

Methanogenic Conversion of CO2 Into CH4  

SciTech Connect

This SBIR project evaluated the potential to remediate geologic CO2 sequestration sites into useful methane gas fields by application of methanogenic bacteria. Such methanogens are present in a wide variety of natural environments, converting CO2 into CH4 under natural conditions. We conclude that the process is generally feasible to apply within many of the proposed CO2 storage reservoir settings. However, extensive further basic R&D still is needed to define the precise species, environments, nutrient growth accelerants, and economics of the methanogenic process. Consequently, the study team does not recommend Phase III commercial application of the technology at this early phase.

Stevens, S.H., Ferry, J.G., Schoell, M.

2012-05-06T23:59:59.000Z

103

Test Plan: WIPP bin-scale CH TRU waste tests  

SciTech Connect

This WIPP Bin-Scale CH TRU Waste Test program described herein will provide relevant composition and kinetic rate data on gas generation and consumption resulting from TRU waste degradation, as impacted by synergistic interactions due to multiple degradation modes, waste form preparation, long-term repository environmental effects, engineered barrier materials, and, possibly, engineered modifications to be developed. Similar data on waste-brine leachate compositions and potentially hazardous volatile organic compounds released by the wastes will also be provided. The quantitative data output from these tests and associated technical expertise are required by the WIPP Performance Assessment (PA) program studies, and for the scientific benefit of the overall WIPP project. This Test Plan describes the necessary scientific and technical aspects, justifications, and rational for successfully initiating and conducting the WIPP Bin-Scale CH TRU Waste Test program. This Test Plan is the controlling scientific design definition and overall requirements document for this WIPP in situ test, as defined by Sandia National Laboratories (SNL), scientific advisor to the US Department of Energy, WIPP Project Office (DOE/WPO). 55 refs., 16 figs., 19 tabs.

Molecke, M.A.

1990-08-01T23:59:59.000Z

104

Radiological Areas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revision to Clearance Policy Associated with Recycle of Scrap Metals Originating from Revision to Clearance Policy Associated with Recycle of Scrap Metals Originating from Radiological Areas On July 13, 2000, the Secretary of Energy imposed an agency-wide suspension on the unrestricted release of scrap metal originating from radiological areas at Department of Energy (DOE) facilities for the purpose of recycling. The suspension was imposed in response to concerns from the general public and industry groups about the potential effects of radioactivity in or on material released in accordance with requirements established in DOE Order 5400.5, Radiation Protection of the Public and Environment. The suspension was to remain in force until DOE developed and implemented improvements in, and better informed the public about, its release process. In addition, in 2001 the DOE announced its intention to prepare a

105

Thermal desorption of CH4 retained in CO2 ice  

E-Print Network (OSTI)

CO2 ices are known to exist in different astrophysical environments. In spite of this, its physical properties (structure, density, refractive index) have not been as widely studied as those of water ice. It would be of great value to study the adsorption properties of this ice in conditions related to astrophysical environments. In this paper, we explore the possibility that CO2 traps relevant molecules in astrophysical environments at temperatures higher than expected from their characteristic sublimation point. To fulfil this aim we have carried out desorption experiments under High Vacuum conditions based on a Quartz Crystal Microbalance and additionally monitored with a Quadrupole Mass Spectrometer. From our results, the presence of CH4 in the solid phase above the sublimation temperature in some astrophysical scenarios could be explained by the presence of several retaining mechanisms related to the structure of CO2 ice.

R. Luna; C. Millan; M. Domingo; M. A. Satorre

2008-01-21T23:59:59.000Z

106

ChIP-seq Identification of Weakly Conserved Heart Enhancers  

SciTech Connect

Accurate control of tissue-specific gene expression plays a pivotal role in heart development, but few cardiac transcriptional enhancers have thus far been identified. Extreme non-coding sequence conservation successfully predicts enhancers active in many tissues, but fails to identify substantial numbers of heart enhancers. Here we used ChIP-seq with the enhancer-associated protein p300 from mouse embryonic day 11.5 heart tissue to identify over three thousand candidate heart enhancers genome-wide. Compared to other tissues studied at this time-point, most candidate heart enhancers are less deeply conserved in vertebrate evolution. Nevertheless, the testing of 130 candidate regions in a transgenic mouse assay revealed that most of them reproducibly function as enhancers active in the heart, irrespective of their degree of evolutionary constraint. These results provide evidence for a large population of poorly conserved heart enhancers and suggest that the evolutionary constraint of embryonic enhancers can vary depending on tissue type.

Blow, Matthew J.; McCulley, David J.; Li, Zirong; Zhang, Tao; Akiyama, Jennifer A.; Holt, Amy; Plajzer-Frick, Ingrid; Shoukry, Malak; Wright, Crystal; Chen, Feng; Afzal, Veena; Bristow, James; Ren, Bing; Black, Brian L.; Rubin, Edward M.; Visel, Axel; Pennacchio, Len A.

2010-07-01T23:59:59.000Z

107

U.S. Department of Energy, Richland Operations Office And CH2M HILL Plateau  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CH2M HILL CH2M HILL Plateau Remediation Company Partnering Charter For Partnering Performance Agreement U.S. Department of Energy, Richland Operations Office And CH2M HILL Plateau Remediation Company Partnering Charter For Partnering Performance Agreement The U.S. Department of Energy (DOE) Richland Operations Office (DOE-RL) and CH2M HILL Plateau Remediation Company (CHPRC) are committed to continuous improvement and will utilize principles of the DOE Environmental Management (DOE-EM) Partnering Policy to enhance teaming to further execute the Plateau Remediation Contract. U.S. Department of Energy, Richland Operations Office And CH2M HILL Plateau Remediation Company Partnering Charter For Partnering Performance Agreement More Documents & Publications CH2M HILL Plateau Remediation Company

108

Department of Justice: CH2M Hill Hanford Group Inc. Admits Criminal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Justice: CH2M Hill Hanford Group Inc. Admits Criminal Department of Justice: CH2M Hill Hanford Group Inc. Admits Criminal Conduct, Parent Company Agrees to Cooperate in Ongoing Investigation and Pay $18.5 Million to Resolve Civil and Criminal Allegations Department of Justice: CH2M Hill Hanford Group Inc. Admits Criminal Conduct, Parent Company Agrees to Cooperate in Ongoing Investigation and Pay $18.5 Million to Resolve Civil and Criminal Allegations March 7, 2013 - 12:00pm Addthis The Justice Department, in conjunction with the U.S. Attorney's Office for the Eastern District of Washington, announced today that Colorado-based CH2M Hill Hanford Group Inc. (CHG) and its parent company, CH2M Hill Companies Ltd. (CH2M Hill) have agreed that CHG committed federal criminal violations, defrauding the public by engaging in years of widespread time

109

DOE Selects CH2M Hill Plateau Remediation Company for Plateau Remediation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CH2M Hill Plateau Remediation Company for Plateau CH2M Hill Plateau Remediation Company for Plateau Remediation Contract at its Hanford Site DOE Selects CH2M Hill Plateau Remediation Company for Plateau Remediation Contract at its Hanford Site June 19, 2008 - 1:29pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that CH2M Hill Plateau Remediation Company has been selected as the plateau remediation contractor for DOE's Hanford Site in southeastern Washington State. The contract is a cost-plus award-fee contract valued at approximately $4.5 billion over ten years (a five-year base period with the option to extend it for another five years). CH2M Hill Plateau Remediation Company is a limited liability company formed by CH2M Hill Constructors, Inc. The team also includes AREVA Federal

110

Technical Standards, DOE-HDBK-1145-2001 (CH-1)- December 08, 2006  

Energy.gov (U.S. Department of Energy (DOE))

DOE-HDBK-1145-2001 (CH-1): Radiological Safety Training for Plutonium Facilities; Replaced by DOE-HDBK-1145-2008

111

TransCom model simulations of CH? and related species: linking transport, surface flux and chemical loss with CH? variability in the troposphere and lower stratosphere  

E-Print Network (OSTI)

A chemistry-transport model (CTM) intercomparison experiment (TransCom-CH?) has been designed to investigate the roles of surface emissions, transport and chemical loss in simulating the global methane distribution. Model ...

Patra, P. K.

112

Subtask 1.22 - Microbial Cycling of CH4, CO2, and N2O in a Wetlands Environment  

Science Conference Proceedings (OSTI)

Soil microbial metabolic activities play an important role in determining CO{sub 2}, CH{sub 4}, and N{sub 2}O fluxes from terrestrial ecosystems. To verify and evaluate CO{sub 2} sequestration potential by wetland restoration in the Prairie Pothole Region (PPR), as well as to address concern over restoration effects on CH{sub 4} and N{sub 2}O emissions, laboratory and in situ microcosm studies on microbial cycling of CO{sub 2}, CH{sub 4}, and N{sub 2}O were initiated. In addition, to evaluate the feasibility of the use of remote sensing to detect soil gas flux from wetlands, a remote-sensing investigation was also conducted. Results of the laboratory microcosm study unequivocally proved that restoration of PPR wetlands does sequester atmospheric CO{sub 2}. Under the experimental conditions, the simulated restored wetlands did not promote neither N{sub 2}O nor CH{sub 4} fluxes. Application of ammonia enhanced both N{sub 2}O and CH{sub 4} emission, indicating that restoration of PPR wetlands may reduce both N{sub 2}O and CH{sub 4} emission by cutting N-fertilizer input. Enhancement of CO{sub 2} emission by the N-fertilizer was observed, and this observation revealed an overlooked fact that application of N-fertilizer may potentially increase CO{sub 2} emission. In addition, the CO{sub 2} results also demonstrate that wetland restoration sequesters atmospheric carbon not only by turning soil conditions from aerobic to anoxic, but also by cutting N-fertilizer input that may enhance CO{sub 2} flux. The investigation on microbial community structure and population dynamics showed that under the experimental conditions restoration of the PPR wetlands would not dramatically increase population sizes of those microorganisms that produce N{sub 2}O and CH{sub 4}. Results of the in situ study proved that restoration of the PPR wetland significantly reduced CO{sub 2} flux. Ammonia enhanced the greenhouse gas emission and linearly correlated to the CO{sub 2} flux within the experimental rate range (46-200 kg N ha{sup -1}). The results also clarified that the overall reduction in global warming potential (GWP) by the PPR wetland restoration was mainly contributed from reduction in CO{sub 2} flux. These results demonstrate that restoration of currently farmed PPR wetlands will significantly reduce the overall GWP budget. Remote sensing investigations indicate that while the 15-meter resolution of the imagery was sufficient to delineate multiple zones in larger wetlands, it was not sufficient for correlation with the ground-based gas flux measurement data, which were collected primarily for smaller wetland sites (<250 meters) in the areas evaluated by this task. To better evaluate the feasibility of using satellite imagery to quantify wetland gas flux, either higher-resolution satellite imagery or gas flux data from larger wetland sites is needed.

Dingyi Ye; Bethany Kurz; Marc Kurz

2008-12-31T23:59:59.000Z

113

Method of preparing (CH.sub.3).sub.3 SiNSO and byproducts thereof  

DOE Patents (OSTI)

(CH.sub.3).sub.3 SiNSO is produced by the reaction of ((CH.sub.3).sub.3 Si).sub.2 NH with SO.sub.2. Also produced in the reaction are ((CH.sub.3).sub.3 Si).sub.2 O and a new solid compound [NH.sub.4 ][(CH.sub.3).sub.3 SiOSO.sub.2 ]. Both (CH.sub.3).sub.3 SiNSO and [NH.sub.4 ][(CH.sub.3).sub.3 SiOSO.sub.2 ] have fluorescent properties. The reaction of the subject invention is used in a method of measuring the concentration of SO.sub.2 pollutants in gases. By the method, a sample of gas is bubbled through a solution of ((CH.sub.3).sub.3 Si).sub.2 NH, whereby any SO.sub.2 present in the gas will react to produce the two fluorescent products. The measured fluorescence of these products can then be used to calculate the concentration of SO.sub.2 in the original gas sample. The solid product [NH.sub.4 ][(CH.sub.3).sub.3 SiOSO.sub.2 ] may be used as a standard in solid state NMR spectroscopy.

Spicer, Leonard D. (Salt Lake City, UT); Bennett, Dennis W. (Clemson, SC); Davis, Jon F. (Salt Lake City, UT)

1984-01-01T23:59:59.000Z

114

Hybrid CH&P PON-11-507 Page 1 of 19  

E-Print Network (OSTI)

Hybrid CH&P PON-11-507 Page 1 of 19 GRANT SOLICITATION CALIFORNIA ENERGY COMMISSION PON-11 and Power (DG/CHP/CCHP) Systems Research, Development and Demonstration PIER Renewable Energy and Advanced Generation APPLICATIONPACKAGE Date: January, 2012 EDMUND G. BROWN JR., Governor #12;Hybrid CH&P PON-11

115

RESEARCH ARTICLE Greenhouse gas emissions (CO2, CH4, and N2O) from several  

E-Print Network (OSTI)

RESEARCH ARTICLE Greenhouse gas emissions (CO2, CH4, and N2O) from several perialpine and alpine investigated greenhouse gas emissions (CO2, CH4, and N2O) from reservoirs located across an altitude gradient in Switzerland. These are the first results of greenhouse gas emissions from reservoirs at high elevations

Wehrli, Bernhard

116

Nano-Tera.CH: Nano-technologies for Tera-scale Problems Giovanni De Micheli  

E-Print Network (OSTI)

Nano-Tera.CH: Nano-technologies for Tera-scale Problems Giovanni De Micheli EPF Lausanne 1015, Switzerland ABSTRACT -- The Nano-Tera.CH initiative is a broad engineering program in Switzerland for health is rooted in advances in engineering nano-scale materials and their exploitation in a variety of systems

De Micheli, Giovanni

117

Aquatic Sources and Sinks of CO2 and CH4 in the Polar Regions  

Science Conference Proceedings (OSTI)

The highest concentration and greatest seasonal amplitudes of atmospheric CO2 and CH4 occur at 6070N, outside the 3060N band where the main sources of anthropogenic CO2 and CH4 are located, indicating that the northern environment is a ...

I. P. Semiletov

1999-01-01T23:59:59.000Z

118

The large-scale ionised outflow of CH Cygni  

E-Print Network (OSTI)

HST and ground-based [OII} and [NII] images obtained from 1996 to 1999 reveal the existence of a ionised optical nebula around the symbiotic binary CH Cyg extending out to 5000 A.U. from the central stars. The observed velocity range of the nebula, derived from long-slit echelle spectra, is of 130 km/s. In spite of its complex appearence, the velocity data show that the basic morphology of the inner regions of the optical nebula is that of a bipolar (or conical) outflow extending nearly along the plane of the sky out to some 2000 A.U. from the centre. Even if the extension of this bipolar outflow and its position angle are consistent with those of the radio jet produced in 1984 (extrapolated to the time of our optical imagery), no obvious counterpart is visible of the original, dense radio bullets ejected by the system. We speculate that the optical bipolar outflow might be the remannt of the interaction of the bullets with a relatively dense circumstellar medium.

Corradi, R L M; Livio, M; Mampaso, A; Gonalves, D R; Schwarz, H E; Corradi, Romano L.M.; Munari, Ulisse; Livio, Mario; Mampaso, Antonio; Goncalves, Denise R.

2001-01-01T23:59:59.000Z

119

The large-scale ionised outflow of CH Cygni  

E-Print Network (OSTI)

HST and ground-based [OII} and [NII] images obtained from 1996 to 1999 reveal the existence of a ionised optical nebula around the symbiotic binary CH Cyg extending out to 5000 A.U. from the central stars. The observed velocity range of the nebula, derived from long-slit echelle spectra, is of 130 km/s. In spite of its complex appearence, the velocity data show that the basic morphology of the inner regions of the optical nebula is that of a bipolar (or conical) outflow extending nearly along the plane of the sky out to some 2000 A.U. from the centre. Even if the extension of this bipolar outflow and its position angle are consistent with those of the radio jet produced in 1984 (extrapolated to the time of our optical imagery), no obvious counterpart is visible of the original, dense radio bullets ejected by the system. We speculate that the optical bipolar outflow might be the remannt of the interaction of the bullets with a relatively dense circumstellar medium.

Romano L. M. Corradi; Ulisse Munari; Mario Livio; Antonio Mampaso; Denise R. Goncalves; Hugo E. Schwarz

2001-09-04T23:59:59.000Z

120

Consent Order, CH2M Hill Hanford Group, Inc. - EA-2000-09 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

M Hill Hanford Group, Inc. - EA-2000-09 M Hill Hanford Group, Inc. - EA-2000-09 Consent Order, CH2M Hill Hanford Group, Inc. - EA-2000-09 July 25, 2000 Price-Anderson Enforcement Consent Order issued to CH2M Hill Hanford Group, Inc., related to Quality Problems at the Hanford Site Tank Farms, (EA-2000-09) This letter refers to the Department of Energy's (DOE) evaluation of an internal investigation conducted by CH2M Hill Group, Inc. (CHG) in February 2000. The investigation examined the facts and circumstances surrounding quality problems with the procurement of safety class piping for the W-314 Project at the Tank Farm Waste Remediation System. Consent Order, CH2M Hill Hanford Group, Inc. - EA-2000-09 More Documents & Publications Consent Order, Fluor Federal Services - EA-2000-10 Special Report Order, CH2M Hill Hanford Group, Inc. - October 22, 2001

Note: This page contains sample records for the topic "area bir ch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Enforcement Letter, CH2M Hill Hanford Group, Inc. - April 24, 2001 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CH2M Hill Hanford Group, Inc. - April 24, 2001 CH2M Hill Hanford Group, Inc. - April 24, 2001 Enforcement Letter, CH2M Hill Hanford Group, Inc. - April 24, 2001 April 24, 2001 Enforcement Letter issued to CH2M Hill Hanford Group, Inc., related to Nuclear Safety Management at the Hanford Site Tank Farms This letter refers to a recent investigation by the Department of Energy (DOE), regarding potential noncompliances with the requirements of 10 CFR 830, "Nuclear Safety Management," occurring at the Hanford Tank Farms. The investigation reviewed three issues that were reported into the Noncompliance Tracking System (NTS) by CH2M Hill Hanford Group, Inc. Two of the NTS reports involve the failure to perform the Technical Safety Requirement (TSR) for [ ] gas monitoring. The initial potential noncompliance occurred in January 2000, in which a Zip Cord was installed

122

Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc. - EA-2003-06  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CH2M Hill Hanford Group, Inc. - CH2M Hill Hanford Group, Inc. - EA-2003-06 Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc. - EA-2003-06 August 29, 2003 Preliminary Notice of Violation issued to CH2M Hill Hanford Group, Inc., related to Quality Assurance Issues at the Hanford Site Tank Farms This letter refers to the Department of Energy's Office of Price-Anderson Enforcement (OE) investigation of the facts and circumstances concerning quality assurance issues affecting nuclear safety at the Hanford Tank Farms. These issues involve the inadvertent deenergization of annulus leak detectors, dilution tank overfills, and dome loading control, over the period August 2002 to November 2002. Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc. - EA-2003-06 More Documents & Publications

123

Independent Oversight Review, Hanford Site CH2M Hill Plateau Remediation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site CH2M Hill Plateau Site CH2M Hill Plateau Remediation Company - November 2012 Independent Oversight Review, Hanford Site CH2M Hill Plateau Remediation Company - November 2012 November 2012 Review of the Hanford Site CH2M Hill Plateau Remediation Company Implementation Verification Review Processes This report documents the independent review of implementation verification review (IVR) processes at the Hanford Site CH2M Hill Plateau Remediation Company that were conducted by the Office of Enforcement and Oversight (Independent Oversight), which is within the U.S. Department of Energy (DOE) Office of Health, Safety and Security (HSS). The onsite review was performed by the HSS Office of Safety and Emergency Management Evaluations from August 13 to17, 2012. The objective of this assessment was to evaluate

124

Special Report Order, CH2M Hill Hanford Group, Inc. - October 22, 2001 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CH2M Hill Hanford Group, Inc. - October 22, CH2M Hill Hanford Group, Inc. - October 22, 2001 Special Report Order, CH2M Hill Hanford Group, Inc. - October 22, 2001 October 22, 2001 Special Report Order ssued to CH2M Hill Hanford Group, Inc., related to Multiple Nuclear Safety Issues at the Hanford Site On September 18, 2001, the Office of Price-Anderson Enforcement (OE) in coordination with the DOE Office of River Protection (ORP) conducted a review of the actions taken by CH2M Hill Hanford Group (CHG) in response to an Enforcement Letter dated April 24, 2001. This Enforcement Letter referenced three Noncompliance Tracking System (NTS) reports submitted by CHG which collectively suggested weaknesses in your nuclear safety operations related to (1) corrective action management, (2) worker training

125

U.S. Department of Energy, Richland Operations Office And CH2M HILL Plateau  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy, Richland Operations Office And CH2M HILL U.S. Department of Energy, Richland Operations Office And CH2M HILL Plateau Remediation Company Partnering Charter For Partnering Performance Agreement U.S. Department of Energy, Richland Operations Office And CH2M HILL Plateau Remediation Company Partnering Charter For Partnering Performance Agreement The U.S. Department of Energy (DOE) Richland Operations Office (DOE-RL) and CH2M HILL Plateau Remediation Company (CHPRC) are committed to continuous improvement and will utilize principles of the DOE Environmental Management (DOE-EM) Partnering Policy to enhance teaming to further execute the Plateau Remediation Contract. U.S. Department of Energy, Richland Operations Office And CH2M HILL Plateau Remediation Company Partnering Charter For Partnering Performance Agreement

126

Safety Evaluation Report of the Waste Isolation Pilot Plant Contact Handled (CH) Waste Documented Safety Analysis  

Science Conference Proceedings (OSTI)

This Safety Evaluation Report (SER) documents the Department of Energys (DOE's) review of Revision 9 of the Waste Isolation Pilot Plant Contact Handled (CH) Waste Documented Safety Analysis, DOE/WIPP-95-2065 (WIPP CH DSA), and provides the DOE Approval Authority with the basis for approving the document. It concludes that the safety basis documented in the WIPP CH DSA is comprehensive, correct, and commensurate with hazards associated with CH waste disposal operations. The WIPP CH DSA and associated technical safety requirements (TSRs) were developed in accordance with 10 CFR 830, Nuclear Safety Management, and DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports.

Washington TRU Solutions LLC

2005-09-01T23:59:59.000Z

127

C?H Bond Activation by Pd-substituted CeO[subscript 2]: Substituted Ions versus Reduced Species  

Science Conference Proceedings (OSTI)

Substituted metal oxides containing ionic species have been attracting a great deal of attention because of their potential ability to reduce the usage of precious metals in heterogeneous catalysts. We investigate Pd-substituted CeO{sub 2} for C-H bond activation reactions including the partial oxidation and dry reforming of CH{sub 4}. This catalyst has been previously studied for CO oxidation, NO{sub x} reduction, and the water-gas shift reaction. Pd-substituted CeO{sub 2}, Ce{sub 1-x}Pd{sub x}O{sub 2-{delta}}, was prepared as a powder with high surface area and a hollow sphere morphology using ultrasonic spray pyrolysis. The catalysts were extensively characterized using synchrotron X-ray diffraction and other techniques, confirming phase pure samples up to 10 mol % Pd substitution. Ce{sub 0.95}Pd{sub 0.05}O{sub 2-{delta}} was found to be active for partial oxidation of CH{sub 4} around 500 C and higher. Our studies, including postcatalytic synchrotron diffraction, suggest that the single-phase Ce{sub 1-x}Pd{sub x}O{sub 2-{delta}} material is not the active species and that catalysis occurs instead over the reduced two-phase Pd{sup 0}/CeO{sub 2}. This observation has been further confirmed by verifying the activity of the reduced Pd{sup 0}/CeO{sub 2} catalysts for ethylene hydrogenation, a reaction that is known to require Pd{sup 0}.

Misch, Lauren M.; Kurzman, Joshua A.; Derk, Alan R.; Kim, Young-Il; Seshadri, Ram; Metiu, Horia; McFarland, Eric W.; Stucky, Galen D. (Yeungnam); (UCSB)

2012-02-07T23:59:59.000Z

128

www.cepe.ethz.ch A Real Options Evaluation Model for the Diffusion Prospects of New Renewable Power Generation Technologies  

E-Print Network (OSTI)

www.cepe.ethz.ch A real options evaluation model for the diffusion prospects of new renewable power generation technologies

Grkan Kumbaroglu; Reinhard Madlener; Mustafa Demirel; Grkan Kumbaroglu; Reinhard Madlener; Mustafa Demirel

2004-01-01T23:59:59.000Z

129

Independent Oversight Review, Richland Operations Office and CH2M Hill  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and CH2M and CH2M Hill Plateau Remediation Company and Mission Support Alliance - April 2012 Independent Oversight Review, Richland Operations Office and CH2M Hill Plateau Remediation Company and Mission Support Alliance - April 2012 April 2012 Review of Richland Operations Office and CH2M Hill Plateau Remediation Company and Mission Support Alliance Conduct of Operations The purpose of this independent oversight review by the U.S. Department of Energy (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), was to observe and shadow1 a DOE Richland Operations Office (DOE-RL) assessment of its contractors at the Hanford Site. The HSS reviewer observed the implementation and effectiveness of the DOE-RL assessment of two of the contractors (CHPRC and

130

Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc. - EA-2003-06  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inc. - Inc. - EA-2003-06 Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc. - EA-2003-06 August 29, 2003 Preliminary Notice of Violation issued to CH2M Hill Hanford Group, Inc., related to Quality Assurance Issues at the Hanford Site Tank Farms This letter refers to the Department of Energy's Office of Price-Anderson Enforcement (OE) investigation of the facts and circumstances concerning quality assurance issues affecting nuclear safety at the Hanford Tank Farms. These issues involve the inadvertent deenergization of annulus leak detectors, dilution tank overfills, and dome loading control, over the period August 2002 to November 2002. Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc. - EA-2003-06 More Documents & Publications Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc. - EA-2006-06

131

Preliminary Notice of Violation, CH2M-Washington Group Idaho, LLC -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CH2M-Washington Group Idaho, LLC - CH2M-Washington Group Idaho, LLC - EA-2007-03 Preliminary Notice of Violation, CH2M-Washington Group Idaho, LLC - EA-2007-03 June 14, 2007 Preliminary Notice of Violation issued to CH2M-Washington Group Idaho, LLC, related to Radiation Protection Program Deficiencies at the Radioactive Waste Management Complex - Accelerated Retrieval Project at the Idaho National Laboratory This letter refers to the investigation of events at the Radioactive Waste Management Complex - Accelerated Retrieval Project (ARP) by the Department of Energy's (DOE) Office of Enforcement. The investigation summary report, Multiple Radiological Protection Program Deficiencies and Safety Culture Concerns, was provided to you in a letter dated February 20, 2007. An enforcement conference to discuss these findings was held on March

132

Independent Oversight Review, Richland Operations Office and CH2M Hill  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Richland Operations Office and CH2M Richland Operations Office and CH2M Hill Plateau Remediation Company and Mission Support Alliance - April 2012 Independent Oversight Review, Richland Operations Office and CH2M Hill Plateau Remediation Company and Mission Support Alliance - April 2012 April 2012 Review of Richland Operations Office and CH2M Hill Plateau Remediation Company and Mission Support Alliance Conduct of Operations The purpose of this independent oversight review by the U.S. Department of Energy (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), was to observe and shadow1 a DOE Richland Operations Office (DOE-RL) assessment of its contractors at the Hanford Site. The HSS reviewer observed the implementation and effectiveness of the DOE-RL assessment of two of the contractors (CHPRC and

133

800,000-year Ice-Core Records of Atmospheric Methane (CH4)  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane (CH4) » Ice Cores Methane (CH4) » Ice Cores 800,000-year Ice-Core Records of Atmospheric Methane (CH4) This page introduces ice-core records of methane (CH4) extending back 800,000 years at Dome C, Antarctica and over 400,000 years at the Vostok site. Links are also provided to shorter records from other Antarctic locations. The 2000-year record from Law Dome, Antarctica, has been merged with modern records to create a long-term record to the present. These records are maintained by the World Data Center for Paleoclimatology, National Oceanic and Atmospheric Administration (NOAA), and have graciously been made freely available for access and distribution. The original investigators made the effort to obtain the data and assure their quality. To assure proper credit is given, please follow the citation instructions

134

Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc - EA-2005-01  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CH2M Hill Hanford Group, Inc - CH2M Hill Hanford Group, Inc - EA-2005-01 Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc - EA-2005-01 March 10, 2005 Preliminary Notice of Violation issued to CH2M Hill Hanford Group, Inc., related to Radiological and Operational Events at the Hanford Tank Farms This letter refers to the recent investigation by the Department of Energy's (DOE) Office of Price-Anderson Enforcement (OE) at the Hanford Tank Farms of four radiological and operational events occurring during 2003 and 2004. The events included (1) the June 2003 multiple personnel contamination event at the [ ]; (2) the November 2003 Technical Safety Requirement violation during a cross-site waste transfer; (3) the November 2003 valve positioning error during S-112 waste retrieval operations; and

135

Modern Records of Atmospheric Methane (CH4) and a 2000-year Ice-core Record  

NLE Websites -- All DOE Office Websites (Extended Search)

(CH4) » Ice Cores (CH4) » Ice Cores Modern Records of Atmospheric Methane (CH4) and a 2000-year Ice-core Record from Law Dome, Antarctica Introduction This page provides an introduction and links to records of atmospheric methane (CH4) over the last 2000 years, emphasizing large data bases each representing currently active stations. Records in recent decades (time period depending on location) have been obtained from samples of ambient-air at remote locations, which represent global atmospheric conditions rather than influences of local sources. The longer (2000-year) record is from the Law Dome ice core in Antarctica. The ice-core record has been merged with modern annual data from Cape Grim, Tasmania to provide a 2000-year record ending with the most recent data. A spline function has

136

DOE Cites CH2M Hill Hanford for Violating Nuclear Safety Rules | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Violating Nuclear Safety Rules for Violating Nuclear Safety Rules DOE Cites CH2M Hill Hanford for Violating Nuclear Safety Rules March 10, 2005 - 10:44am Addthis Hanford Tank Farm Contractor Faces Fine of more than $300,000 WASHINGTON, DC - The Department of Energy (DOE) today notified the CH2M Hill Hanford Group, Inc. (CH2M Hill) - that it will fine the company $316,250 for violations of the department's nuclear safety requirements. CH2M Hill is the department's contractor responsible for storage of highly radioactive and hazardous liquid waste at the Hanford Tank Farms near Richland, Wash. The Preliminary Notice of Violation (PNOV) issued today, cites four events that took place in 2003 and 2004. These events include the contamination of several workers while removing equipment from a valve pit

137

Hybrid CH&P PON-11-507 Page 1 of 1  

E-Print Network (OSTI)

Hybrid CH&P PON-11-507 Page 1 of 1 ATTACHMENT I Prevailing Wage Special Condition Template Public this Agreement, the Recipient shall submit to the Energy Commission a certificate signed by the Recipient and all

138

CH Activation and Oxidation of Methane to Methanol in High Yield...  

NLE Websites -- All DOE Office Websites (Extended Search)

CH Activation and Oxidation of Methane to Methanol in High Yield with Novel Pt Complexes Speaker(s): Roy Periana Date: April 27, 1999 - 12:00pm Location: Bldg. 90 Seminar Host...

139

Preliminary Notice of Violation, CH2M-Washington Group Idaho, LLC- EA-2007-03  

Energy.gov (U.S. Department of Energy (DOE))

Preliminary Notice of Violation issued to CH2M-Washington Group Idaho, LLC, related to Radiation Protection Program Deficiencies at the Radioactive Waste Management Complex - Accelerated Retrieval Project at the Idaho National Laboratory

140

Hydrogen Storage in Carbon Nanotubes Through Formation of C-H...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Print Two of the major challenges for humanity in the next 20 years are the shrinking availability of fossil...

Note: This page contains sample records for the topic "area bir ch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

CH2M Hill Hanford Group Inc (CHG) Information Resource Management (IRM) Strategic Plan  

SciTech Connect

The CH2M Hill Hanford Group, Inc., Information Resource Management Strategic Plan is the top-level planning document for applying information and information resource management to achieve the CHG mission for the management of the River Protection Project

NELSON, R.L.

2000-05-08T23:59:59.000Z

142

C-H functionalisation through singlet chlorocarbenes insertions MP2 and DFT investigations  

Science Conference Proceedings (OSTI)

The insertion reactions of singlet mono and dichlorocarbenes (1CHCl and 1CCl2) into primary, secondary and tertiary C-H bonds of methane, ethane, propane, n-butane and iso-butane have been investigated at ...

M. Ramalingam; K. Ramasami; P. Venuvanalingam; V. Sethuraman

2006-05-01T23:59:59.000Z

143

Session 4: EER: Extended (or Enhanced) ER Model (CH-2 and 3)  

E-Print Network (OSTI)

Session 4: EER: Extended (or Enhanced) ER Model (CH-2 and 3) CSCI-585 , Cyrus Shahabi · Example ER to no subclass. EER-to-Relational Mapping · Option 1: One table for superclass + two tables for subclasses (one

Shahabi, Cyrus

144

Ion imaging study of reaction dynamics in the N{sup +}+ CH{sub 4} system  

SciTech Connect

The velocity map ion imaging method is applied to the ion-molecule reactions of N{sup +} with CH{sub 4}. The velocity space images are collected at collision energies of 0.5 and 1.8 eV, providing both product kinetic energy and angular distributions for the reaction products CH{sub 4}{sup +}, CH{sub 3}{sup +}, and HCNH{sup +}. The charge transfer process is energy resonant and occurs by long-range electron transfer that results in minimal deflection of the products. The formation of the most abundant product, CH{sub 3}{sup +}, proceeds by dissociative charge transfer rather than hydride transfer, as reported in earlier publications. The formation of HCNH{sup +} by C-N bond formation appears to proceed by two different routes. The triplet state intermediates CH{sub 3}NH{sup +} and CH{sub 2}NH{sub 2}{sup +} that are formed as N{sup +}({sup 3}P) approaches CH{sub 4} may undergo sequential loss of two hydrogen atoms to form ground state HCNH{sup +} products on a spin-allowed pathway. However, the kinetic energy distributions for formation of HCNH{sup +} extend past the thermochemical limit to form HCNH{sup +}+ 2H, implying that HCNH{sup +} may also be formed in concert with molecular hydrogen, and requiring that intersystem crossing to the singlet manifold must occur in a significant ({approx}25%) fraction of reactive collisions. We also report GAUSSIAN G2 calculations of the energies and structures of important singlet and triplet [CNH{sub 4}{sup +}] complexes that serve as precursors to product formation.

Pei, Linsen; Farrar, James M. [Department of Chemistry, University of Rochester, Rochester, New York 14627 (United States)

2012-10-21T23:59:59.000Z

145

Enforcement Letter, CH2M Hill Hanford Group Inc, - September 6, 2007 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Group Inc, - September 6, Group Inc, - September 6, 2007 Enforcement Letter, CH2M Hill Hanford Group Inc, - September 6, 2007 September 6, 2007 Enforcement Letter issued to CH2M Hill Hanford Group, Inc., related to Quality Improvement Deficiencies at the Hanford Tank Farms The Department of Energy (DOE) held an Enforcement Conference on August 29, 2006, with CH2M Hill Hanford Group (CHG) to discuss potential violations of nuclear safety requirements described in our Investigation Summary Report dated July 26, 2006. At that time, DOE elected to defer a decision on a potential quality improvement violation related to recurring radiological events and deficiencies in the identification and control of radiological hazards at the Tank Farms. This decision was based upon the fact that CHG senior management had initiated radiological work

146

Enforcement Letter, CH2M-Washington Group Idaho LLC , - May 20, 2009 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

M-Washington Group Idaho LLC , - May 20, M-Washington Group Idaho LLC , - May 20, 2009 Enforcement Letter, CH2M-Washington Group Idaho LLC , - May 20, 2009 May 20, 2009 Enforcement Letter issued to CH2M-Washington Group Idaho, LLC, for Electrical Safety Deficiencies at the Idaho National Laboratory In July 2008, the U.S. Department of Energy (DOE) Office of Health, Safety and Security's, Office of Enforcement was made aware of numerous, longstanding electrical safety deficiencies associated with electrical equipment located on the east side of the Idaho Nuclear Technology and Engineering Center (INTEC). The Office of Enforcement is also aware that shortly after electrical safety issues with this equipment were identified by a CH2M-Washington Group Idaho, LLC (CWI) worker in May 2007, CWI completed an Engineering Design File

147

Enforcement Letter, CH2M Oak Ridge, LLC - SEL-2012-01 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

M Oak Ridge, LLC - SEL-2012-01 M Oak Ridge, LLC - SEL-2012-01 Enforcement Letter, CH2M Oak Ridge, LLC - SEL-2012-01 May 4, 2012 Issued to URS CH2M Oak Ridge, LLC, related to a Security Incident involving the Protection and Control of Classified Information at the East Tennessee Technology Park The Office of Health, Safety and Security's Office of Enforcement and Oversight has completed its evaluation of a security incident involving the protection and control of classified information at the East Tennessee Teclmology Park (ETTP) (Local Tracking System Report No. II-IOSC-0576-13). Based on this evaluation, the Department of Energy (DOE) identified concerns that warrant management attention by URS CH2M Oak Ridge, LLC (UCOR), the responsible contractor for ETTP. The specific concerns stem from the number of classified components that

148

Enforcement Letter, CH2M-WG Idaho - NEL-2011-02 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

M-WG Idaho - NEL-2011-02 M-WG Idaho - NEL-2011-02 Enforcement Letter, CH2M-WG Idaho - NEL-2011-02 September 28, 2011 Issued to CH2M-WG Idaho, LLC related to Quality Assurance and Work Control Issues during Construction of the Sodium Bearing Waste Treatment Project at the Idaho National Laboratory The Office of Health, Safety and Security's Office of Enforcement and Oversight conducted an evaluation of the facts and circumstances associated with quality assurance and work control deficiencies that occurred during the construction of the Sodium Bearing Waste Treatment Project (SBWTP) at the U.S. Department of Energy's (DOE) Idaho National Laboratory. On February 9, 2011, CH2M-Washington Group Idaho, LLC (CWI) reported noncompliances associated with these deficiencies in DOE's Noncompliance Tracking System (NTS) in reports NTS-ID--CWI-IWTU-2010-0002

149

Preliminary Notice of Violation, CH2M HILL Hanford Group, Inc. -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HILL Hanford Group, Inc. - HILL Hanford Group, Inc. - NEA-2008-02 Preliminary Notice of Violation, CH2M HILL Hanford Group, Inc. - NEA-2008-02 June 5, 2008 Preliminary Notice of Violation issued to CH2M Hill Hanford Group, Inc., related to a Radioactive Waste Spill at the Hanford Site Tank Farms This letter refers to the Department of Energy's (DOE) investigation into the facts and circumstances associated with the July 27, 2007, spill of radioactive waste in the vicinity of the S-102 retrieval pump discharge at the Hanford Tank Farm. The results of the onsite investigation were provided in an Investigation Report dated March 5, 2008. Press Release Preliminary Notice of Violation, CH2M HILL Hanford Group, Inc. - NEA-2008-02 More Documents & Publications Preliminary Notice of Violation, Bechtel National, Inc. - NEA-2008-04

150

Enforcement Letter, CH2M Hill Hanford Group, Inc. - April 24, 2001 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inc. - April 24, 2001 Inc. - April 24, 2001 Enforcement Letter, CH2M Hill Hanford Group, Inc. - April 24, 2001 April 24, 2001 Enforcement Letter issued to CH2M Hill Hanford Group, Inc., related to Nuclear Safety Management at the Hanford Site Tank Farms This letter refers to a recent investigation by the Department of Energy (DOE), regarding potential noncompliances with the requirements of 10 CFR 830, "Nuclear Safety Management," occurring at the Hanford Tank Farms. The investigation reviewed three issues that were reported into the Noncompliance Tracking System (NTS) by CH2M Hill Hanford Group, Inc. Two of the NTS reports involve the failure to perform the Technical Safety Requirement (TSR) for [ ] gas monitoring. The initial potential noncompliance occurred in January 2000, in which a Zip Cord was installed

151

Independent Oversight Review, URS CH2M Oak Ridge - June 2013 | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

URS CH2M Oak Ridge - June 2013 URS CH2M Oak Ridge - June 2013 Independent Oversight Review, URS CH2M Oak Ridge - June 2013 June 2013 Review of Oak Ridge Environmental Management Radiological Controls Activity Level Implementation The purpose of this set of facility specific Independent Oversight targeted reviews is to evaluate the flowdown of occupational radiation protection requirements, as expressed in facility RPPs, to work planning, control, and execution processes, such as radiological work authorizations, including radiological work permits (RWPs) and other technical work documents (TWDs). This targeted review was performed at Oak Ridge during the period of March 3-22, 2013. This report discusses the background, scope, methodology, results, and conclusions of the review, as well as items identified for

152

Consent Order, CH2M-WG Idaho, LLC - WCO-2011-01 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

M-WG Idaho, LLC - WCO-2011-01 M-WG Idaho, LLC - WCO-2011-01 Consent Order, CH2M-WG Idaho, LLC - WCO-2011-01 October 6, 2011 Consent Order issued to CH2M-WG Idaho, LLC related to a Hoisting Incident that occurred at the Sodium Bearing Waste Treatment Project at the Idaho National Laboratory The Office of Health Safety and Security's Office of Enforcement and Oversight has completed its investigation into the facts and circumstances associated with the October 4, 2010, hoisting incident that occurred when a telescopic hydraulic gantry system tipped while lifting a 7,800-pound shield plug at the Sodium Bearing Waste Treatment Project (SBWTP) located at the U.S. Department of Energy's Idaho National Laboratory. The results of the investigation were provided to CH2M-WG Idaho, LLC (CWI) in an Investigation Report, dated April 20, 2011, and

153

Observation of CH4 and other Non-CO2 Green House Gas Emissions from California  

Science Conference Proceedings (OSTI)

In 2006, California passed the landmark assembly bill AB-32 to reduce California's emissions of greenhouse gases (GHGs) that contribute to global climate change. AB-32 commits California to reduce total GHG emissions to 1990 levels by 2020, a reduction of 25 percent from current levels. To verify that GHG emission reductions are actually taking place, it will be necessary to measure emissions. We describe atmospheric inverse model estimates of GHG emissions obtained from the California Greenhouse Gas Emissions Measurement (CALGEM) project. In collaboration with NOAA, we are measuring the dominant long-lived GHGs at two tall-towers in central California. Here, we present estimates of CH{sub 4} emissions obtained by statistical comparison of measured and predicted atmospheric mixing ratios. The predicted mixing ratios are calculated using spatially resolved a priori CH{sub 4} emissions and surface footprints, that provide a proportional relationship between the surface emissions and the mixing ratio signal at tower locations. The footprints are computed using the Weather Research and Forecast (WRF) coupled to the Stochastic Time-Inverted Lagrangian Transport (STILT) model. Integral to the inverse estimates, we perform a quantitative analysis of errors in atmospheric transport and other factors to provide quantitative uncertainties in estimated emissions. Regressions of modeled and measured mixing ratios suggest that total CH{sub 4} emissions are within 25% of the inventory estimates. A Bayesian source sector analysis obtains posterior scaling factors for CH{sub 4} emissions, indicating that emissions from several of the sources (e.g., landfills, natural gas use, petroleum production, crops, and wetlands) are roughly consistent with inventory estimates, but livestock emissions are significantly higher than the inventory. A Bayesian 'region' analysis is used to identify spatial variations in CH{sub 4} emissions from 13 sub-regions within California. Although, only regions near the tower are significantly constrained by the tower measurements, CH{sub 4} emissions from the south Central Valley appear to be underestimated in a manner consistent with the under-prediction of livestock emissions. Finally, we describe a pseudo-experiment using predicted CH{sub 4} signals to explore the uncertainty reductions that might be obtained if additional measurements were made by a future network of tall-tower stations spread over California. These results show that it should be possible to provide high-accuracy estimates of surface CH{sub 4} emissions for multiple regions as a means to verify future emissions reductions.

Fischer, Marc L.; Zhao, Chuanfeng; Riley, William J.; Andrews, Arlyn C.

2009-01-09T23:59:59.000Z

154

Strategic Focus Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

Focus Areas Lockheed Martin on behalf of Sandia National Laboratories will consider grant requests that best support the Corporation's strategic focus areas and reflect effective...

155

A facility design for repackaging ORNL CH-TRU legacy waste in Building 3525  

Science Conference Proceedings (OSTI)

For the last 25 years, the Oak Ridge National Laboratory (ORNL) has conducted operations which have generated solid, contact-handled transuranic (CH-TRU) waste. At present the CH-TRU waste inventory at ORNL is about 3400 55-gal drums retrievably stored in RCRA-permitted, aboveground facilities. Of the 3400 drums, approximately 2600 drums will need to be repackaged. The current US Department of Energy (DOE) strategy for disposal of these drums is to transport them to the Waste Isolation Pilot Plant (WIPP) in New Mexico which only accepts TRU waste that meets a very specific set of criteria documented in the WIPP-WAC (waste acceptance criteria). This report describes activities that were performed from January 1994 to May 1995 associated with the design and preparation of an existing facility for repackaging and certifying some or all of the CH-TRU drums at ORNL to meet the WIPP-WAC. For this study, the Irradiated Fuel Examination Laboratory (IFEL) in Building 3525 was selected as the reference facility for modification. These design activities were terminated in May 1995 as more attractive options for CH-TRU waste repackaging were considered to be available. As a result, this document serves as a final report of those design activities.

Huxford, T.J.; Cooper, R.H. Jr.; Davis, L.E.; Fuller, A.B.; Gabbard, W.A.; Smith, R.B. [Oak Ridge National Lab., TN (United States); Guay, K.P. [S. M. Stroller Corp. (United States); Smith, L.C. [United Energy Services Corp. (United States)

1995-07-01T23:59:59.000Z

156

Louisiana oyster CuLtCh ProjeCt General Project DescriPtion  

E-Print Network (OSTI)

secondary production. estiMateD cost The estimated cost to implement the Louisiana Oyster Cultch Project is $15,582,600. (Estimated costs for some of the projects were updated from those provided in the DERPLouisiana oyster CuLtCh ProjeCt General Project DescriPtion The Louisiana Oyster Cultch Project

157

CH2M Hill Hanford Group Inc (CHG) Information Resource Management (IRM) Strategic Plan  

SciTech Connect

The CH2M HILL Hanford Group, Inc. (CHG), Information Resource Management Strategic Plan is the top-level planning document for applying information and information resource management to achieve the CHG mission for the management of the River Protection Project waste tank farm.

NELSON, R.L.

2000-06-06T23:59:59.000Z

158

Study on CO2 Reforming of CH4 by Dielectric Barrier Discharge  

Science Conference Proceedings (OSTI)

In this article it is demonstrated that DBD (dielectric barrier discharge) is an effective tool to convert CH4 and CO2 to synthesis gas (syngas, H2/CO) at low temperature and ambient pressure. The DBD is performed in the co-axial quartz cube by using ... Keywords: methane, carbon dioxide, syngas, dielectric barrier discharge

Zhao Yuhan

2011-03-01T23:59:59.000Z

159

Applications of the InChI in cheminformatics with the CDK and Bioclipse  

E-Print Network (OSTI)

to enable exchange and linking of chemical information. The IUPAC Chemi- cal Identifier (InChI) [1] is such a standardized identifier for chemical structures, which lately has seen a great adoption in the cheminformatics community [2]. A recent special issue...

Spjuth, Ola; Berg, Arvid; Adams, Samuel; Willighagen, Egon L

2013-03-13T23:59:59.000Z

160

Latest 200 Area Demolition Offers Snapshot of Hanford Cleanup Progress:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Latest 200 Area Demolition Offers Snapshot of Hanford Cleanup Latest 200 Area Demolition Offers Snapshot of Hanford Cleanup Progress: Recovery Act Funding Allows Demolition of Power Houses Ahead of Schedule Latest 200 Area Demolition Offers Snapshot of Hanford Cleanup Progress: Recovery Act Funding Allows Demolition of Power Houses Ahead of Schedule March 4, 2011 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE (509) 376-5365 Cameron.Hardy@rl.doe.gov Andre Armstrong, CHPRC (509) 376-6773 andre_l_armstrong@rl.g RICHLAND, WASH. - Today's safe and successful explosive demolition at Hanford's 200 Area by U.S. Department of Energy (DOE) contractor CH2M HILL Plateau Remediation Company (CHPRC) is the latest reminder of progress being made on cleanup as a result of American Recovery and Reinvestment Act investments. "Recovery Act funds allowed us to accelerate the schedule for removing

Note: This page contains sample records for the topic "area bir ch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Latest 200 Area Demolition Offers Snapshot of Hanford Cleanup Progress:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Latest 200 Area Demolition Offers Snapshot of Hanford Cleanup Latest 200 Area Demolition Offers Snapshot of Hanford Cleanup Progress: Recovery Act Funding Allows Demolition of Power Houses Ahead of Schedule Latest 200 Area Demolition Offers Snapshot of Hanford Cleanup Progress: Recovery Act Funding Allows Demolition of Power Houses Ahead of Schedule March 4, 2011 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE (509) 376-5365 Cameron.Hardy@rl.doe.gov Andre Armstrong, CHPRC (509) 376-6773 andre_l_armstrong@rl.g RICHLAND, WASH. - Today's safe and successful explosive demolition at Hanford's 200 Area by U.S. Department of Energy (DOE) contractor CH2M HILL Plateau Remediation Company (CHPRC) is the latest reminder of progress being made on cleanup as a result of American Recovery and Reinvestment Act investments. "Recovery Act funds allowed us to accelerate the schedule for removing

162

ch_5  

NLE Websites -- All DOE Office Websites (Extended Search)

44 44 Environmental Consequences 5.2.7 WATER RESOURCES This section presents potential water resource impacts from implement- ing the proposed waste processing alternatives described in Chapter 3. Section 5.2.14 dis- cusses potential impacts to INEEL water resources from accidents or unusual natural phe- nomena such as earth- quakes. Appendix C.9 discusses potential long- term impacts to INEEL water resources from facility closure. Because the Minimum INEEL Processing Alternative would involve shipment of mixed HLW to the Hanford Site for treat- ment, possible impacts to water resources at Hanford were also evalu- ated (see Appendix C.8). Unless otherwise noted, however, the discussion of impacts presented in this section applies specifically to INEEL. 5.2.7.1 Methodology DOE assessed potential impacts by reviewing

163

ch_7  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 7.0 Glossar Glossar y y 7-1 DOE/EIS-0287 Terms in this glossary are defined based on the context in which they are to be used in this Environmental Impact Statement (EIS). - New Information - DOE/EIS-0287 7-2 Glossary 100-year flood A flood that occurs, on average, every 100 years (equates to a 1 percent probability of occurring in any given year). 500-year flood A flood that occurs, on average, every 500 years (equates to a 0.2 percent probability of occurring in any given year). accident An unplanned sequence of events that results in undesirable consequences. actinide Any of a series of chemically similar, mostly synthetic, radioactive elements with atomic numbers ranging from 89 (actinium-89) through 103 (lawrencium-103). Advanced Mixed Waste Treatment Project (AMWTP)

164

ch_11  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 11.0 Response Response to to P P ublic ublic Comment Comment 11-1 DOE/EIS-0287 11.1 Introduction This chapter provides responses from the U.S. Department of Energy (DOE) and the State of Idaho to public comments on the Draft Idaho High-Level Waste and Facilities Disposition Environmental Impact Statement (HLW & FD EIS) and identifies where those public comments led to changes to the EIS. The State of Idaho, a cooperating agency in the preparation of the EIS, participated in the process of reviewing, summarizing, and responding to comments. In addition, the State of Idaho responded to the comments that were directed specifically to the State. The following information identifies the opportunities for public comment and response format and provides information on how to find responses to each of the com-

165

ch_3  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 3.0 Alterna Alterna tiv tiv es es 3-1 DOE/EIS-0287 This chapter describes the alternatives for waste processing and facility disposi- tion analyzed in this environmental impact statement (EIS) as well as alter- natives eliminated from detailed analy- sis. As required by the Council on Environmental Quality (CEQ) regula- tions implementing the National Environmental Policy Act (NEPA), a No Action alternative is also included. This chapter identifies the U.S. Department of Energy's (DOE's) Preferred Alternative as well as the State of Idaho's Preferred Alternative, which is different from that identified by DOE. Some of the alternatives include one or more options. The options are described in the context of the alternative(s) they fall under, but could be used or com-

166

ch_5  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 5.0 E E nvir nvir onmental onmental Consequences Consequences 5-1 DOE/EIS-0287 5.1 Introduction Chapter 5 describes the potential environ- mental consequences of implementing each of the alternatives described in Chapter 3. This Final EIS analyzes the alternatives in the Draft EIS and provides corrections and updates as needed. In addition, it analyzes the State of Idaho's Preferred Alternative, Direct Vitrification, and a new option of the Non-Separations Alternative, the Steam Reforming Option. Furthermore, the Minimum INEEL Processing Alternative has been modified, and other changes have been made to the analyses based on information received during the public comment period. DOE/EIS-0287 5-2 Environmental Consequences Environmental consequences of actions could include direct physical disturbance of resources,

167

ch_3  

NLE Websites -- All DOE Office Websites (Extended Search)

3-34 3-34 Alternatives transuranic waste/SBW. The EIS also presents the impacts for a grout facility (see Project P2001 in Appendix C.6) that could be used to treat the waste generated after 2005. For pur- poses of assessing transportation impacts, DOE assumed the grouted waste would be character- ized as remote-handled transuranic waste and transported to the Waste Isolation Pilot Plant for disposal (see Appendix C.5). 3.2 Facility Disposition Alternatives The waste processing alternatives described in Section 3.1 do not include any specific facility disposition alternatives except for those cases where facility disposition is an integral part of implementation of the option (e.g., disposal of low-level waste Class A or Class C type grout in the Tank Farm and bin sets). However, DOE

168

ch_12  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 12.0 Distribution Distribution List List - New Information - 12-1 DOE/EIS-0287 The U.S. Department of Energy (DOE) pro- vided copies of this Final Environmental Impact Statement (EIS) to Federal, state, and local elected and appointed officials and agencies of government; Native American groups; national, state, and local environmental and public interest groups; and other organizations and individuals list- ed below. In addition, DOE sent copies of the Final EIS to all persons who comment- ed on the Idaho High-Level Waste and Facilities Disposition Draft Environmental Impact Statement; these individuals are list- ed in the Index (Alphabetical List of Commentors by Name) in Chapter 11 of this Final EIS. Other groups that received copies of the Final EIS but are not listed

169

ch_4  

NLE Websites -- All DOE Office Websites (Extended Search)

71 71 DOE/EIS-0287 Idaho HLW & FD EIS university research programs and private con- tractors. Ongoing studies by the Centers for Disease Control and Prevention, an agency of the U.S. Department of Health and Human Services, also carefully tracks possible health effects from past activities at INEEL. 4.11.1.1 Radiological Health Risk Very low doses of radiation are not known to cause health effects in humans; however, extrapolation of the dose-response relationship from high doses indicates that statistical effects might be observed in large populations. The doses reported in this EIS from INEEL opera- tions are in this very low category. This EIS reports two values: col- lective dose (in person- rem) and the hypothetical number of latent cancer fatalities. For effects on

170

ch_6  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 6.0 Sta Sta tutes tutes , , Regula Regula tions tions , , Consulta Consulta tions tions , , and Other and Other Requir Requir ements ements 6-1 DOE/EIS-0287 This chapter discusses the consultations and coordination the U.S. Department of Energy (DOE) has had with various agen- cies during the preparation of this Environmental Impact Statement (EIS). This chapter also analyzes the complex regulatory issues that arise when consider- ing the various alternatives discussed pre- viously. When reviewing this chapter, it is impor- tant to remember the following: in the Purpose and Need discussion in Chapter 2 of this EIS, DOE has described the chal- lenges it faces with its mixed high-level waste (HLW) at the Idaho National Engineering and Environmental Laboratory (INEEL) and its additional

171

ch_5  

NLE Websites -- All DOE Office Websites (Extended Search)

22 22 5.2.6 AIR RESOURCES Air pollutant emissions associated with construction and operation of facilities to support the waste processing al- ternatives could affect the air resources in the region of the INEEL. DOE characterized air emission rates and calculated maximum consequences at onsite and offsite locations from projects associated with proposed waste processing alternatives. The assessments include emis- sions from stationary sources (facility stacks); fugitive sources from construction activities; and mobile sources (trucks, cranes, tractors, etc.) that would operate in sup- port of projects under each waste processing alternative. The types of emissions assessed are the same as those in the baseline assessment in Section 4.7, Air Resources, namely, radionuclides, criteria pollutants (carbon

172

ch_5  

NLE Websites -- All DOE Office Websites (Extended Search)

160 160 Environmental Consequences Under Clean Closure, radioactive and hazardous constituents would be removed from the site or treated so that residual contamination is no higher than background levels. This could require removal of all buildings, vaults, tanks, transfer piping, and contaminated soil. No post- closure monitoring would be required because potential sources of contamination would no longer be present. Unrestricted industrial use of clean-closed facilities and sites will be permissi- ble. Impacts to water resources would not be expected from the disposition of new facilities. For Performance-Based Closure, most above- ground structures would be razed and most below-ground structures (tanks, vaults, and transfer piping) would be decontaminated, stabi-

173

ch_2  

NLE Websites -- All DOE Office Websites (Extended Search)

10 10 Background 2.2 High-Level Waste Overview 2.2.1 HIGH-LEVEL WASTE DESCRIPTION According to Section 2(12) of the Nuclear Waste Policy Act (42 USC 10101), high-level radioac- tive waste means: In July 1999, DOE issued Order 435.1 Radioactive Waste Management. This Order and its associated Manual and Guidance set forth the authorities, responsibilities, and requirements for the management of DOE's inventory of HLW, transuranic waste, and low-level waste. Specific to HLW, DOE uses the Nuclear Waste Policy Act definition but has jurisdictional authority consistent with existing law to deter- mine if the waste requires permanent isolation as the appropriate disposal mechanism. This authority is based on enabling legislation in the Atomic Energy Act, sections 202(3) and 202(4)

174

ch_5  

NLE Websites -- All DOE Office Websites (Extended Search)

HLW & FD EIS HLW & FD EIS 5-73 DOE/EIS-0287 tion dose to the nonin- volved worker and maximally exposed offsite individual and the collective dose to the population residing within 50 miles of INTEC. The radiation dose values for the var- ious alternatives were then multiplied by the dose-to-risk conversion factors, which are based on the 1993 Limitations of Exposure to Ionizing Radiation (NCRP 1993). DOE has adopted these risk fac- tors of 0.0005 and 0.0004 latent cancer fatality (LCF) for each person-rem of radiation exposure to the general public and worker popu- lation, respectively, for doses less than 20 rem. The factor for the population is slightly higher due to the presence of infants and children who are more sensitive to radiation than the adult worker population. DOE used radiation dose information provided

175

ch_5  

NLE Websites -- All DOE Office Websites (Extended Search)

45 45 DOE/EIS-0287 Idaho HLW & FD EIS 5.3.4.2 Existing Facilities Associated with High-Level Waste Management The facilities in this group are those that have historically been used at the INTEC to generate, treat, and store HLW. Because of the number of facilities involved, DOE has grouped them in functional groups for purposes of analysis (see Table 3-3). DOE analyzed the HLW tanks and bin sets for closure under all five disposition sce- narios; however, facilities that support the Tank Farm and bin sets were analyzed under a single disposition alternative. As shown in Table 3-3, the facility disposition alternative for most sup- porting facilities is Closure to Landfill Standards. (Two exceptions are the Liquid Effluent Treatment and Disposal Building and

176

ch_13  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 13.0 Index Index 13-1 DOE/EIS-0287 DOE/EIS-0287 13-2 Index A aesthetics - 3-54, 4-18, 4-35, 5-17, 5-18, 5-214, 5-232, 5-233, 9-9, 10-3, 10-7, C.2-4, C.8-13, C.8-32, C.8-46 airborne releases - 4-32, 4-71, 4-72, 5-48, 5-74, 5-87, 5-184, 5-225, C.2-13, C.2-17, C.8-16, C.8-36 aquifer - 2-30, 2-32, 2-33, 4-40, 4-47, 4-48, 4-49, 4-50, 4-51, 4-53, 4-54, 4-55, 4-56, 4-57, 4-72, 4-79, 5-2, 5-20, 5-44, 5-45, 5-107, 5-121, 5-122, 5-161, 5-165, 5-180, 5-212, 5-221, 5-222, 5-225, 5-227, 5-233, 5-234, 5-235, 6-15, 6-31, 6-32, 6-37, 7-3, 7-20, 7-24, 7-27, 7-29, 9-13, 9-14, 9-15, 11-18, 11-23, 11-24, 11-31, 11-54, 11-65, 11-73, 11-78, 11-79, 11-80, 11-82, 11-83, 11-84, 11-85, A-1, A-3, A-4, A-8, A-12, B-4, B-10, C.4-39, C.4-41, C.6-97, C.8-8, C.8-18, C.8-46, C.9-4, C.9-6, C.9-7, C.9-9, C.9-10,

177

ch_9  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 9.0 Re Re f f er er ences ences 9-1 DOE/EIS-0287 DOE/EIS-0287 9-2 References Chapter 1 DOE (U.S. Department of Energy), 1999, Record of Decision Idaho Nuclear Technology and Engineering Center Operable Unit 3-13, Idaho National Engineering and Environmental Laboratory, Idaho Falls, Idaho, DOE/ID-10660, Idaho Operations Office, Idaho Falls, Idaho, October. Kelly, K. B., 1999, State of Idaho, Office of Attorney General, Boise, Idaho, letter to B. Bowhan, U.S. Department of Energy, Idaho Operations Office, Idaho Falls, Idaho, transmitting "Third Modification to Consent Order," Idaho Code §39-4413, April 20. USDC (U.S. District Court for the District of Idaho), 1995, Public Service Company of Colorado v. Philip E. Batt, Civil No. 91-0035-S-EJL (Lead Case), Consent Order, October

178

ch_5  

NLE Websites -- All DOE Office Websites (Extended Search)

25 25 DOE/EIS-0287 Idaho HLW & FD EIS 5.3 Facility Disposition Impacts Section 5.3 presents a discussion of potential impacts associated with the disposition of exist- ing HLW management facilities at INEEL and disposition of new facilities that would be built in support of the proposed waste processing alternatives. The discussion includes (1) the potential impacts of short-term actions in dispo- sitioning new and existing HLW management facilities, (2) the potential long-term impacts from the disposal of the grouted low-level waste fraction in either a new disposal facility at INTEC or in the Tank Farm and bin sets, and (3) the potential long-term impacts of residual con- tamination in closed HLW management facili- ties. The six facility disposition alternatives are

179

ch_3  

NLE Websites -- All DOE Office Websites (Extended Search)

ansuranic w a s t e M i x e d tr ansuranic w a s t e LEGEND Mixed transuranic waste sodium-bearing waste Waste Isolation Pilot Plant Newly generated liquid waste NGLW SBW...

180

ch_10  

NLE Websites -- All DOE Office Websites (Extended Search)

S1W Naval Nuclear Reactor Prototype Project Officer 29 years; including experience in Nuclear Power Plant Operations and maintenance, radioactive and hazardous materials...

Note: This page contains sample records for the topic "area bir ch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

ch_2  

NLE Websites -- All DOE Office Websites (Extended Search)

near the site are Idaho Falls and Rexburg to the east, Blackfoot to the southeast, Atomic City to the south, Pocatello and the Fort Hall Indian Reservation to the...

182

ch_4  

NLE Websites -- All DOE Office Websites (Extended Search)

include Mud Lake and Terreton to the east; Arco, Butte City, and Howe to the west; and Atomic City to the south. The larger com- munities of Idaho Falls, Rexburg, Rigby,...

183

ch_3  

NLE Websites -- All DOE Office Websites (Extended Search)

13 DOEEIS-0287 Idaho HLW & FD EIS except the pillar and panel tanks) would be full of mixed transuranic waste in approximately 2017. Other facilities depending on the capacity of...

184

ch_9  

NLE Websites -- All DOE Office Websites (Extended Search)

Lead Federal Agency: U.S. Department of Energy (DOE) Cooperating Agency: The State of Idaho Title: Contact: For additional information on this EIS and the tribal, agency and...

185

ch_1  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy (DOE) and its predecessor agencies reprocessed spent nuclear reac- tor fuel at the Idaho Chemical Processing Plant, located on the Snake River Plain in the desert...

186

ch_4  

NLE Websites -- All DOE Office Websites (Extended Search)

1998, INEEL 1998, INEEL contracts paid $1.4 million to the State of Idaho in Idaho sales taxes and an additional $0.9 million in Idaho franchise tax. 4.4 Cultural Resources 4.4.1 CULTURAL RESOURCE MANAGEMENT AND CONSULTATION AT INEEL Cultural resources at INEEL include archaeolog- ical and historic resources, such as prehistoric camp sites and historic buildings and trails, as well as the plants, animals, physical locations, and other features of INEEL environment impor- tant to the culture of the Shoshone-Bannock Tribes and to national, regional and local history. Several Federal laws, which are described in Chapter 6, govern the protection of archaeologi- cal and historic resources on lands managed by Federal agencies. These and other laws also require consultations among Federal agencies,

187

Determining the CH{sub 3}SO{sub 2}{yields}CH{sub 3}+SO{sub 2} barrier from methylsulfonyl chloride photodissociation at 193 nm using velocity map imaging  

Science Conference Proceedings (OSTI)

These imaging experiments study the formation of the methylsulfonyl radical, CH{sub 3}SO{sub 2}, from the photodissociation of CH{sub 3}SO{sub 2}Cl at 193 nm and determine the energetic barrier for the radical's subsequent dissociation to CH{sub 3}+SO{sub 2}. We first state-selectively detect the angular and recoil velocity distributions of the Cl({sup 2}P{sub 3/2}) and Cl({sup 2}P{sub 1/2}) atoms to further refine the distribution of internal energy partitioned to the momentum-matched CH{sub 3}SO{sub 2} radicals. The internal energy distribution of the radicals is bimodal, indicating that CH{sub 3}SO{sub 2} is formed in both the ground state and low-lying excited electronic states. All electronically excited CH{sub 3}SO{sub 2} radicals dissociate, while those formed in the ground electronic state have an internal energy distribution which spans the dissociation barrier to CH{sub 3}+SO{sub 2}. We detect the recoil velocities of the energetically stable methylsulfonyl radicals with 118 nm photoionization. Comparison of the total recoil translational energy distribution for all radicals to the distribution obtained from the detection of stable radicals yields an onset for dissociation at a translational energy of 70{+-}2 kcal/mol. This onset allows us to derive a CH{sub 3}SO{sub 2}{yields}CH{sub 3}+SO{sub 2} barrier height of 14{+-}2 kcal/mol; this determination relies on the S-Cl bond dissociation energy, taken here as the CCSD(T) predicted energy of 65.6 kcal/mol. With 118 nm photoionization, we also detect the velocity distribution of the CH{sub 3} radicals produced in this experiment. Using the velocity distributions of the SO{sub 2} products from the dissociation of CH{sub 3}SO{sub 2} to CH{sub 3}+SO{sub 2} presented in the following paper, we show that our fastest detected methyl radicals are not from these radical dissociation channels, but rather from a primary S-CH{sub 3} bond photofission channel in CH{sub 3}SO{sub 2}Cl. We also present critical points on the ground state potential energy surface of CH{sub 3}SO{sub 2} at the //CCSD(T)/aug-cc-pV(Q+d)ZCCSD(T)/6-311++G(2df,p) level. We include harmonic zero-point vibrational corrections as well as core-valence and scalar-relativistic corrections. The CCSD(T) predicted barrier of 14.6 kcal/mol for CH{sub 3}SO{sub 2}{yields}CH{sub 3}+SO{sub 2} agrees well with our experimental measurement. These results allow us to predict the unimolecular dissociation kinetics of CH{sub 3}SO{sub 2} radicals and critique the analysis of prior time-resolved photoionization studies on this system.

Ratliff, Britni J.; Tang Xiaonan; Butler, Laurie J. [Department of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637 (United States); Szpunar, David E. [Department of Biological, Chemical, and Physical Sciences, Roosevelt University, Schaumburg, Illinois 60173 (United States); Lau, Kai-Chung [Department of Biology and Chemistry, City University of Hong Kong (Hong Kong)

2009-07-28T23:59:59.000Z

188

Division/ Interest Area Information  

Science Conference Proceedings (OSTI)

Learn more about Divisions and Interest areas. Division/ Interest Area Information Membership Information achievement application award Awards distinguished division Divisions fats job Join lipid lipids Member member get a member Membership memori

189

DOE Designates Southwest Area and Mid-Atlantic Area National...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Designates Southwest Area and Mid-Atlantic Area National Interest Electric Transmission Corridors October 2, 2007 DOE Designates Southwest Area and Mid-Atlantic Area National...

190

DOE Designates Southwest Area and Mid-Atlantic Area National...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Designates Southwest Area and Mid-Atlantic Area National Interest Electric Transmission Corridors DOE Designates Southwest Area and Mid-Atlantic Area National Interest Electric...

191

Geothermal br Resource br Area Geothermal br Resource br Area...  

Open Energy Info (EERE)

Brady Hot Springs Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region MW K Coso Geothermal Area Coso Geothermal Area Walker Lane...

192

Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc. - EA-2006-06  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inc. - Inc. - EA-2006-06 Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc. - EA-2006-06 November 16, 2006 Preliminary Notice of Violation issued to CH2M Hill Hanford Group, Inc., related to Radiological Contamination Events at the Hanford Site Tank Farms This letter refers to the recent investigation at the Hanford Tank Farms by the Department of Energy's (DOE) Office of Enforcement, now within the Office of Health, Safety and Security. The investigation involved (1) the September 2005 Tank C-202 Mobile Retrieval System (MRS) multi-personnel contamination event, (2) the March 2006 ER-311 catch tank camera removal radiological event, and (3) additional radiological contamination events that occurred between 2003-2006 as they relate to quality improvement

193

STATEMENT OF CONSIDERATIONS REQUEST BY MlCH..t\EL BROCKWELL (INVENTOR) FOR THE W .AJVER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MlCH..t\EL BROCKWELL (INVENTOR) FOR THE W .AJVER MlCH..t\EL BROCKWELL (INVENTOR) FOR THE W .AJVER OF DOM ESTIC N'l'D FOREIGN RJG HTS TO AN IDENTIFIED INVENTION ENTITLED ''EXOTEN SIONED STRU CTURE AND METHOD FOR CONSTRUCTION," DEVELOPED UNDER DOE CONTRACT NO. DE-AC5-- 06N..-.\25396; DOE INVENTION DISCLOSU RE NO. S- H 2,784; DOE \V"ATVER NO. W(l) 201 1-005 The Petitioner, Midmel BrockweH (Inventor), has requested a waiver of the Government' s domestic and _oreig:n patent rights in an invention entitled "Exotensioned Structure and Method for Construction." The subject invention was conceived by the Inventor (an employee of Los Alamos National Security, LLC). Los Alamos N ational Security, LLC (L.f\:"'\jS) is the M&O Contractor for the Los Alamos Natjonal Laboratory (LANL), a govemment~ovroed, contractor-

194

Preliminary Notice of Violation, CH2M-Washington Group Idaho, LLC -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

M-Washington Group Idaho, LLC - M-Washington Group Idaho, LLC - EA-2007-03 Preliminary Notice of Violation, CH2M-Washington Group Idaho, LLC - EA-2007-03 June 14, 2007 Preliminary Notice of Violation issued to CH2M-Washington Group Idaho, LLC, related to Radiation Protection Program Deficiencies at the Radioactive Waste Management Complex - Accelerated Retrieval Project at the Idaho National Laboratory This letter refers to the investigation of events at the Radioactive Waste Management Complex - Accelerated Retrieval Project (ARP) by the Department of Energy's (DOE) Office of Enforcement. The investigation summary report, Multiple Radiological Protection Program Deficiencies and Safety Culture Concerns, was provided to you in a letter dated February 20, 2007. An enforcement conference to discuss these findings was held on March

195

DOE Cites CH2M Hill Hanford Group, Inc. for Price-Anderson Violations |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Group, Inc. for Price-Anderson Group, Inc. for Price-Anderson Violations DOE Cites CH2M Hill Hanford Group, Inc. for Price-Anderson Violations June 5, 2008 - 12:51pm Addthis WASHINGTON, DC - The Department of Energy (DOE) today issued a Preliminary Notice of Violation (PNOV) to CH2M Hill Hanford Group, Inc. (CHG) for nuclear safety violations. CHG is the tank operations contractor for the tank farms located at DOE's Hanford Site in southeastern Washington State. The PNOV cites a series of violations that occurred on July 27, 2007, when waste being pumped out of tank S-102 spilled in the vicinity of the tank's retrieval pump. During waste transfer operations, a supply line became over-pressurized with tank waste, causing a rupture in the dilution water supply line and resulted in a spill of approximately 85 gallons of

196

DOE Cites CH2M-Washington Group Idaho for Price-Anderson Violations |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

M-Washington Group Idaho for Price-Anderson Violations M-Washington Group Idaho for Price-Anderson Violations DOE Cites CH2M-Washington Group Idaho for Price-Anderson Violations June 14, 2007 - 1:40pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today notified CH2M-Washington Group Idaho (CWI) that it will fine the company $55,000 for violations of the Department's nuclear safety requirements. CWI is the prime contractor responsible for managing the Idaho Cleanup Project at the Idaho National Laboratory site. The Preliminary Notice of Violation (PNOV) cites violations associated with radiation safety and quality improvement deficiencies identified during a DOE Idaho Operations Office May 2006 assessment of radioactive waste processing activities at the Accelerated Retrieval Project (ARP). The

197

Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc - March 10,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inc - Inc - March 10, 2005 Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc - March 10, 2005 March 10, 2005 Preliminary Notice of Violation issued to CH2M Hill Hanford Group, Inc., related to Radiological and Operational Events at the Hanford Tank Farms This letter refers to the recent investigation by the Department of Energy's (DOE) Office of Price-Anderson Enforcement (OE) at the Hanford Tank Farms of four radiological and operational events occurring during 2003 and 2004. The events included (1) the June 2003 multiple personnel contamination event at the [ ]; (2) the November 2003 Technical Safety Requirement violation during a cross-site waste transfer; (3) the November 2003 valve positioning error during S-112 waste retrieval operations; and

198

Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc - EA-2005-01  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inc - Inc - EA-2005-01 Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc - EA-2005-01 March 10, 2005 Preliminary Notice of Violation issued to CH2M Hill Hanford Group, Inc., related to Radiological and Operational Events at the Hanford Tank Farms This letter refers to the recent investigation by the Department of Energy's (DOE) Office of Price-Anderson Enforcement (OE) at the Hanford Tank Farms of four radiological and operational events occurring during 2003 and 2004. The events included (1) the June 2003 multiple personnel contamination event at the [ ]; (2) the November 2003 Technical Safety Requirement violation during a cross-site waste transfer; (3) the November 2003 valve positioning error during S-112 waste retrieval operations; and (4) the July 2004 extremity exposure during hermocouple removal activities.

199

DOE Cites CH2M Hill Hanford Group for Price-Anderson Violations |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Group for Price-Anderson Violations Group for Price-Anderson Violations DOE Cites CH2M Hill Hanford Group for Price-Anderson Violations November 17, 2006 - 9:25am Addthis WASHINGTON, DC - The Department of Energy (DOE) today notified CH2M Hill Hanford Group (CHG) that it will fine the company $82,500 for violations of the Department's nuclear safety requirements. CHG is the prime contractor responsible for managing the storage and retrieval of highly radioactive and hazardous waste at the DOE Hanford Tank Farm site. The Preliminary Notice of Violation (PNOV) issued today cited a series of violations associated with two separate events involving the radioactive contamination of multiple CHG employees. The first event occurred on September 21, 2005, during disassembly and removal of auxiliary equipment

200

New directions for QA in basic research: The Fermilab/DOE-CH experience  

SciTech Connect

This paper addresses the underlying problems involved in developing institution-wide QA programs at DOE funded basic research facilities, and suggests concrete ways in which QA professionals and basic researchers can find common ground in describing and analyzing those activities to the satisfaction of both communities. The paper is designed to be a springboard into workshop discussions which can define a path for developing institution-wide QA programs based on the experience gained with DOE-CH and Fermilab.

Bodnarczuk, M.

1989-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "area bir ch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Charge-Separation in Uranium Diazomethane Complexes Leading to C-H Activation and Chemical Transformation  

E-Print Network (OSTI)

Charge-Separation in Uranium Diazomethane Complexes Leading to C-H Activation and Chemical of diphenyldiazomethane with [((t-Bu ArO)3tacn)UIII ] (1) results in an 2 -bound diphenyldiazomethane uranium complex-shell ligand, [((t-Bu ArO)3tacn)UIV (2 -NNCPh2)] (2). Treating Ph2CN2 with a uranium complex that contains

Meyer, Karsten

202

Instructor's Name Email Address Office Hours Allen, Chris christopherallen@pdx.edu W 3:00-4:00pm CH 366  

E-Print Network (OSTI)

Instructor's Name Email Address Office Hours Office Location Allen, Chris christopherallen CH 361 Fall 2011 Instructor Office Hours #12;Pickett-Cooper, Patty pickettp@pdx.edu F 11:30-1:30pm CH

203

Instructor's Name Email Address Office Hours Alvarado, Jimena jimena@pdx.edu W 9:00-10:00am CH 368  

E-Print Network (OSTI)

:00-5:30pm CH 366 Olmsted, John (TA - Chris Harper) olmstedj@pdx.edu M 4:30-5:30pm CH 311 Spring 2011 Instructor Office Hours #12;Patka, Mazna (TA - Colleen Kidney) mpatka@pdx.edu TR 10:00-11:00am CH 367 Pickett

204

Material Disposal Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Disposal Areas Material Disposal Areas Material Disposal Areas Material Disposal Areas, also known as MDAs, are sites where material was disposed of below the ground surface in excavated pits, trenches, or shafts. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Material Disposal Areas at LANL The following are descriptions and status updates of each MDA at LANL. To view a current fact sheet on the MDAs, click on LA-UR-13-25837 (pdf). MDA A MDA A is a Hazard Category 2 nuclear facility comprised of a 1.25-acre, fenced, and radiologically controlled area situated on the eastern end of Delta Prime Mesa. Delta Prime Mesa is bounded by Delta Prime Canyon to the north and Los Alamos Canyon to the south.

205

[(CH3)4N][(C5H5NH)0.8((CH3)3NH)0.2]U2Si9O23F4 (USH-8): An Organically Templated Open-Framework Uranium Silicate  

E-Print Network (OSTI)

-Framework Uranium Silicate Xiqu Wang, Jin Huang, and Allan J. Jacobson* Department of Chemistry, Uni pyramids we obtained also a number of open-framework uranium silicates.18,19 These new compounds were-framework uranium fluorosilicate [(CH3)4N][(C5H5NH)0.8((CH3)3NH)0.2]U2Si9O23F4 (USH- 8) that has been synthesized

Wang, Xiqu

206

NIST Aperture area measurements  

Science Conference Proceedings (OSTI)

... particularly critical, for example, in climate and weather applications on ... of aperture areas used in exo-atmospheric solar irradiance measurements; ...

2011-11-03T23:59:59.000Z

207

Naval applications study areas  

SciTech Connect

This memorandum discusses study areas and items that will require attention for the naval studies of the utilization of nuclear propulsion in a submarine-based missile system.

Hadley, J. W.

1962-06-20T23:59:59.000Z

208

Boulder Area Transportation  

Science Conference Proceedings (OSTI)

... NIST does not endorse or guarantee the quality or services provided by these businesses. All Denver/Boulder area transportation companies. ...

2011-11-16T23:59:59.000Z

209

Radioactive effluent reduction from 200 Area facilities  

SciTech Connect

Results are reported from a comprehensive study of radioactive wastes discharged to the environment in the 200 Area (chemical processing area) of the Hanford Reservation. Guides for the emission of gaseous waste were being met for the discharge of /sup 131/I, /sup 90/Sr, mixed fission products, and /sup 239/Pu. Treat ment systems for reduction of NO/sub 2/ from several stacks were proposed, and a prototype system for the removal of UOs from stack gases was developed and tested. Significant reductions of radioactivity in soil were achieved during a three to four year period by changes in operating procedures and minor expenditure of funds for process and equipment improvements. Emphasis was placed on the treatment of liquid wastes for the removal of /sup 137/Cs, /sup 90/Sr, and /sup 239/P u, from those streams prior to discharge to the environs. Improved methods for the monitoring and cycling of radioactive wastes, cooling waters, and steam condensates from process vessels were also developed. (CH)

Hanson, G.L.

1971-01-29T23:59:59.000Z

210

U.S. Department of Energy, Oak Ridge Office and URS/CH2M Oak Ridge, LLC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy, Oak Ridge Office and URS/CH2M Oak Ridge, U.S. Department of Energy, Oak Ridge Office and URS/CH2M Oak Ridge, LLC (UCOR) East Tennessee Technology Park (ETTP) Contract Partnering Agreement U.S. Department of Energy, Oak Ridge Office and URS/CH2M Oak Ridge, LLC (UCOR) East Tennessee Technology Park (ETTP) Contract Partnering Agreement The Partnering Team will complete the cleanup, reindustrialize ETTP and continue Environmental Management (EM) activities currently ongoing at ORNL and Y-12. This work will be accomplished in a safe and quality manner with a goal of completion under budget and ahead of schedule. U.S. Department of Energy, Oak Ridge Office and URS/CH2M Oak Ridge, LLC (UCOR) East Tennessee Technology Park (ETTP) Contract Partnering Agreement More Documents & Publications Contractor Fee Payments - Oak Ridge Operations

211

Joint Test Plan to Identify the Gaseous By-Products of CH3I Loading on AgZ  

SciTech Connect

The objective of this test plan is to describe research to determine the gaseous by-products of the adsorption of CH3I on hydrogen reduced silver exchanged mordenite (AgZ).

R. T. Jubin; N. R. Soelberg; D. M. Strachan; T. M. Nenoff; B. B. Spencer

2012-12-01T23:59:59.000Z

212

A description of NUEXS, an upgrade of the code FCUP used to compute proton recoil current from CH{sub 2} foils  

SciTech Connect

A computer code, FCUP, developed by A. Craft computes currents of recoil protons from a time- and energy-dependent neutron flux striking a CH{sub 2} foil. Three problem areas need to be addressed to extend the code`s usefulness. First, FCUP computes a response that is not time dependent; that is, only the input time bin is broadened to account for the finite time distribution of protons from a single neutron energy; second, the time coordinate of the signal predicted is translated arbitrarily rather than absolutely relative to the time of maximum neutron production in the source; and third, the code does not account for electron pickup by protons at low proton energies in the target and absorber foils. This report describes the changes in calculational method used to overcome these problems.

Stelts, M.L.; Wood, B.E.

1982-08-01T23:59:59.000Z

213

Stability of metal nanowires at ultrahigh current densities C.-H. Zhang, J. Brki, and C. A. Stafford  

E-Print Network (OSTI)

. Stafford Department of Physics, University of Arizona, 1118 E. 4th Street, Tucson, Arizona 85721, USA by an effective one-dimensional potential C.-H. ZHANG, J. B?RKI AND C. A. STAFFORD PHYSICAL REVIEW B 71, 235404 of the wire. C.-H. ZHANG, J. B?RKI AND C. A. STAFFORD PHYSICAL REVIEW B 71, 235404 2005 235404-4 #12;GS = G0 k

Stafford, Charles

214

Thermal decomposition of CH{sub 3}CHO studied by matrix infrared spectroscopy and photoionization mass spectroscopy  

Science Conference Proceedings (OSTI)

A heated SiC microtubular reactor has been used to decompose acetaldehyde and its isotopomers (CH{sub 3}CDO, CD{sub 3}CHO, and CD{sub 3}CDO). The pyrolysis experiments are carried out by passing a dilute mixture of acetaldehyde (roughly 0.1%-1%) entrained in a stream of a buffer gas (either He or Ar) through a heated SiC reactor that is 2-3 cm long and 1 mm in diameter. Typical pressures in the reactor are 50-200 Torr with the SiC tube wall temperature in the range 1200-1900 K. Characteristic residence times in the reactor are 50-200 {mu}s after which the gas mixture emerges as a skimmed molecular beam at a pressure of approximately 10 {mu}Torr. The reactor has been modified so that both pulsed and continuous modes can be studied, and results from both flow regimes are presented. Using various detection methods (Fourier transform infrared spectroscopy and both fixed wavelength and tunable synchrotron radiation photoionization mass spectrometry), a number of products formed at early pyrolysis times (roughly 100-200 {mu}s) are identified: H, H{sub 2}, CH{sub 3}, CO, CH{sub 2}=CHOH, HC{identical_to}CH, H{sub 2}O, and CH{sub 2}=C=O; trace quantities of other species are also observed in some of the experiments. Pyrolysis of rare isotopomers of acetaldehyde produces characteristic isotopic signatures in the reaction products, which offers insight into reaction mechanisms that occur in the reactor. In particular, while the principal unimolecular processes appear to be radical decomposition CH{sub 3}CHO (+M) {yields} CH{sub 3}+ H + CO and isomerization of acetaldehyde to vinyl alcohol, it appears that the CH{sub 2}CO and HCCH are formed (perhaps exclusively) by bimolecular reactions, especially those involving hydrogen atom attacks.

Vasiliou, AnGayle K. [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215 (United States); National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, Colorado 80401 (United States); Piech, Krzysztof M.; Reed, Beth; Ellison, G. Barney [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215 (United States); Zhang Xu [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109-8099 (United States); Nimlos, Mark R. [National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, Colorado 80401 (United States); Ahmed, Musahid; Golan, Amir; Kostko, Oleg [Chemical Sciences Division, LBNL MS 6R-2100, Berkeley, California 94720 (United States); Osborn, David L. [Combustion Research Facility, Sandia National Laboratories, P.O. Box 969 MS 9055, Livermore, California 94551-0969 (United States); David, Donald E. [Integrated Instrument Design Facility, CIRES, University of Colorado, Boulder, Colorado 80309-0216 (United States); Urness, Kimberly N.; Daily, John W. [Center for Combustion and Environmental Research, Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309-0427 (United States); Stanton, John F. [Institute for Theoretical Chemistry, Department of Chemistry, University of Texas, Austin, Texas 78712 (United States)

2012-10-28T23:59:59.000Z

215

Competition between C-C and C-H Activation in Reactions of Neutral Yttrium Atoms with Cyclopropane and Propene  

E-Print Network (OSTI)

Biology, Cornell UniVersity, Ithaca, New York 14853 ReceiVed: February 22, 2003; In Final Form: August 25, 2003 Branching ratios between C-C and C-H bond activation were measured for reactions of ground-state Y to or even lower than those for C-H insertion.8 For example, reactions of Fe+, Co+, and Ni+ with propane led

Davis, H. Floyd

216

Effects of Natural Recharge on Gas Composition in the Larderello - Castelnuovo Area  

SciTech Connect

A study of the temporal behaviour of gas compsition in the Larderello-Castelnuovo area shows that this behaviour varies, depending on whether the wells are affected or not by natural recharge. Where no natural recharge exists, gas composition seems to be governed by chemical equilibria. The recharge water, and the steam it produces, mix with the fluid already existing in the reservoir. At Larderello (far from absorption areas) the gas composition resulting from this mixing does not undergo further changes by chemical reaction. This is due either to a lack of reactivity where there is no liquid phase or to an ineffective fluid-rock interaction. At Castelnuovo (close to absorption areas) the H{sub 2}S and CH{sub 4} contents in the gas have gradually decreased with the increase in recharge effects. The decrease in H{sub 2}S can be attributed to dissolution in liquid water and oxidation. Various hypotheses have been forwarded for the methane. The correlation existing between CH{sub 4} and N{sub 2} concentrations, even when methane decreases in the areas affected by recharge, suggests that CH{sub 4} may be governed by more than just the Fisher-Tropsch reaction.

D'Amore, Franco; Celati, Romano; Calore, Claudio; Bertrami, Rino

1983-12-15T23:59:59.000Z

217

Vibrational relaxation of matrix-isolated CH/sub 3/F and HCl  

SciTech Connect

Kinetic and spectroscopic studies have been performed on CH/sub 3/F and HCl as a function of host matrix and temperature. Temporally and spectrally resolved infrared fluorescence was used to monitor the populations of both the initially excited state and the lower lying levels which participate in the relaxation process. For CH/sub 3/F, relaxation from any of the levels near 3.5 ..mu.., i.e. the CH stretching fundamentals or bend overtones, occurs via rapid (< 5 ns) V ..-->.. V transfer to 2..nu../sub 3/ with subsequent relaxation of the ..nu../sub 3/ (CF stretch) manifold. Lifetimes of 2..nu../sub 3/ and ..nu../sub 3/ were determined through overtone, ..delta..V = 2, and fundamental fluorescence. These lifetimes show a dramatic dependence on host lattice, an increase of two orders of magnitude in going from Xe and Ar matrices. Lifetimes depend only weakly on temperature. The relaxation of 2..nu../sub 3/ and ..nu../sub 3/ is consistent with a model in which production of a highly rotationally excited guest via collisions with the repulsive wall of the host is the rate limiting step. For HCl, lifetimes of v = 1,2,3 have been determined. In all hosts, the relaxation is non-radiative. For a given vibrational state, v, the relaxation rate increases in the series k(Ar) < k(Kr) < k(Xe). The dependence of the relaxation rate; on v is superlinear in all matrices, the deviation from linearity increasng in the order Ar < Kr < Xe. The relaxation rates become more strongly temperature dependent with increasing vibrational excitation. The results are consistent with a mechanism in which complex formation introduces the anisotropy necessary to induce a near resonant V ..-->.. R transition in the rate limiting step.

Young, L.

1981-08-01T23:59:59.000Z

218

Ed Jascevsky Safety Division ChIcago Operations Office MIT CONTFACT INFCE"ATION  

Office of Legacy Management (LM)

;/:4,4 (; . 1.; ;/:4,4 (; . 1.; e octo: ' J : 18, 1976 Ed Jascevsky Safety Division ChIcago Operations Office MIT CONTFACT INFCE"ATION During the discussions on October 8, 1976, you iquired about information relative to work done by MIT as background infomation for survey planning. The enclosed information is parephrased frorc an unpublished history of program work carried out by the Process Eevclopncnt Group of the Dl.ti,si.on of Raw Katerids, I believe this work was done under contract nuder AT(30-1)956. Robert IE. Allen Process Facilities Safety Branch Division of Safety, Standards, and Compliance Fnclosure: As stated I I . ..--@q$?.. .... ............................................ ........ ..- .......................... . ... ... .- ................... .._ ................ .... ..__ ..............

219

The Radiative Transfer Of CH{sub 4}-N{sub 2} Plasma Arc  

Science Conference Proceedings (OSTI)

Any physical modelling of a circuit-breaker arc therefore requires an understanding of the radiated energy which is taken into account in the form of a net coefficient. The evaluation of the net emission coefficient is performed by the knowledge of the chemical plasma composition and the resolution of the radiative transfer equation. In this paper, the total radiation which escapes from a CH{sub 4}-N{sub 2} plasma is calculated in the temperature range between 5000 and 30000K on the assumption of a local thermodynamic equilibrium and we have studied the nitrogen effect in the hydrocarbon plasmas.

Benallal, R. [Theoretical physics Laboratory, Physics Department of University Aboubekr Belkaied Tlemcen 13000 (Algeria); Liani, B. [Science Faculty, Hassiba Benbouali University, Chlef 02000 (Algeria)

2008-09-23T23:59:59.000Z

220

The kaon mass in 2+1+1 flavor twisted mass Wilson ChPT  

E-Print Network (OSTI)

We construct the chiral low-energy effective theory for 2+1+1 flavor lattice QCD with twisted mass Wilson fermions. In contrast to existing results we assume a heavy charm quark mass such that the D mesons are too heavy to appear as degrees of freedom in the effective theory. As an application we compute the kaon mass to 1-loop order in the LCE regime. The result contains a chiral logarithm involving the neutral pion mass which has no analogue in continuum ChPT.

Bar, Oliver

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "area bir ch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Fueling area site assessment  

SciTech Connect

This report provides results of a Site Assessment performed at the Fuel Storage Area at Buckley ANG Base in Aurora, Colorado. Buckley ANG Base occupies 3,328 acres of land within the City of Aurora in Arapahoe County, Colorado. The Fuel Storage Area (also known as the Fueling Area) is located on the west side of the Base at the intersection of South Powderhorn Street and East Breckenridge Avenue. The Fueling Area consists of above ground storage tanks in a bermed area, pumps, piping, valves, an unloading stand and a fill stand. Jet fuel from the Fueling Area is used to support aircraft operations at the Base. Jet fuel is stored in two 200,000 gallon above ground storage tanks. Fuel is received in tanker trucks at the unloading stand located south and east of the storage tanks. Fuel required for aircraft fueling and other use is transferred into tanker trucks at the fill stand and transported to various points on the Base. The Fuel Storage Area has been in operation for over 20 years and handles approximately 7 million gallons of jet fuel annually.

1996-08-15T23:59:59.000Z

222

area | OpenEI  

Open Energy Info (EERE)

area area Dataset Summary Description These estimates are derived from a composite of high resolution wind resource datasets modeled for specific countries with low resolution data originating from the National Centers for Environmental Prediction (United States) and the National Center for Atmospheric Research (United States) as processed for use in the IMAGE model. The high resolution datasets were produced by the National Renewable Energy Laboratory (United States), Risø DTU National Laboratory (Denmark), the National Institute for Space Research (Brazil), and the Canadian Wind Energy Association. The data repr Source National Renewable Energy Laboratory Date Released Unknown Date Updated Unknown Keywords area capacity clean energy international National Renewable Energy Laboratory

223

NSTB Summarizes Vulnerable Areas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NSTB Summarizes Vulnerable Areas NSTB Summarizes Vulnerable Areas Commonly Found in Energy Control Systems Experts at the National SCADA Test Bed (NSTB) discovered some common areas of vulnerability in the energy control systems assessed between late 2004 and early 2006. These vulnerabilities ranged from conventional IT security issues to specific weaknesses in control system protocols. The paper "Lessons Learned from Cyber Security Assessments of SCADA and Energy Management Systems" describes the vulnerabilities and recommended strategies for mitigating them. It should be of use to asset owners and operators, control system vendors, system integrators, and third-party vendors interested in enhancing the security characteristics of current and future products.

224

Geographic Area Month  

Gasoline and Diesel Fuel Update (EIA)

Fuels by PAD District and State (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month No. 1 Distillate No. 2 Distillate a No. 4 Fuel b Sales to End Users Sales for...

225

3. Producing Areas  

U.S. Energy Information Administration (EIA)

The OCS area provides surplus capacity to meet major seasonal swings in the lower 48 States gas requirements. The ... Jun-86 9,878 17,706 1,460 19,166 9,288 51.5

226

300 AREA URANIUM CONTAMINATION  

SciTech Connect

{sm_bullet} Uranium fuel production {sm_bullet} Test reactor and separations experiments {sm_bullet} Animal and radiobiology experiments conducted at the. 331 Laboratory Complex {sm_bullet} .Deactivation, decontamination, decommissioning,. and demolition of 300 Area facilities

BORGHESE JV

2009-07-02T23:59:59.000Z

227

Decontamination & decommissioning focus area  

Science Conference Proceedings (OSTI)

In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

NONE

1996-08-01T23:59:59.000Z

228

Western Area Power Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Loveland Area Projects November 29-30, 2011 2 Agenda * Overview of Western Area Power Administration * Post-1989 Loveland Area Projects (LAP) Marketing Plan * Energy Planning and Management Program * Development of the 2025 PMI Proposal * 2025 PMI Proposal * 2025 PMI Comment Period & Proposal Information * Questions 3 Overview of Western Area Power Administration (Western) * One of four power marketing administrations within the Department of Energy * Mission: Market and deliver reliable, renewable, cost-based Federal hydroelectric power and related services within a 15-state region of the central and western U.S. * Vision: Provide premier power marketing and transmission services Rocky Mountain Region (RMR) is one of five regional offices 4 Rocky Mountain Region

229

APS Area Emergency Supervisors  

NLE Websites -- All DOE Office Websites (Extended Search)

Area Emergency Supervisors BUILDING AES AAES 400-EAA Raul Mascote Debra Eriksen-Bubulka 400-A (SPX) Tim Jonasson 400-Sectors 25-30 Reggie Gilmore 401-CLO Steve Downey Ed Russell...

230

Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Print Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Print Two of the major challenges for humanity in the next 20 years are the shrinking availability of fossil fuels and the global warming and potential climate changes that result from their ever-increasing use. One possible solution to these problems is to use an energy carrier such as hydrogen, and ways to produce and store hydrogen in electric power plants and vehicles is a major research focus for materials scientists and chemists. To realize hydrogen-powered transport, for example, it is necessary to find ways to store hydrogen onboard vehicles efficiently and safely. Nanotechnology in the form of single-walled carbon nanotubes provides a candidate storage medium. A U.S., German, and Swedish collaboration led by researchers from the Stanford Synchrotron Radiation Laboratory (SSRL) used ALS Beamline 11.0.2 and SSRL Beamline 5-1 to investigate the chemical interaction of hydrogen with single-walled carbon nanotubes (SWCNs). Their findings demonstrate substantial hydrogen storage is both feasible and reversible.

231

Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage in Carbon Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Print Wednesday, 28 June 2006 00:00 Two of the major challenges for humanity in the next 20 years are the shrinking availability of fossil fuels and the global warming and potential climate changes that result from their ever-increasing use. One possible solution to these problems is to use an energy carrier such as hydrogen, and ways to produce and store hydrogen in electric power plants and vehicles is a major research focus for materials scientists and chemists. To realize hydrogen-powered transport, for example, it is necessary to find ways to store hydrogen onboard vehicles efficiently and safely. Nanotechnology in the form of single-walled carbon nanotubes provides a candidate storage medium. A U.S., German, and Swedish collaboration led by researchers from the Stanford Synchrotron Radiation Laboratory (SSRL) used ALS Beamline 11.0.2 and SSRL Beamline 5-1 to investigate the chemical interaction of hydrogen with single-walled carbon nanotubes (SWCNs). Their findings demonstrate substantial hydrogen storage is both feasible and reversible.

232

Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Print Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Print Two of the major challenges for humanity in the next 20 years are the shrinking availability of fossil fuels and the global warming and potential climate changes that result from their ever-increasing use. One possible solution to these problems is to use an energy carrier such as hydrogen, and ways to produce and store hydrogen in electric power plants and vehicles is a major research focus for materials scientists and chemists. To realize hydrogen-powered transport, for example, it is necessary to find ways to store hydrogen onboard vehicles efficiently and safely. Nanotechnology in the form of single-walled carbon nanotubes provides a candidate storage medium. A U.S., German, and Swedish collaboration led by researchers from the Stanford Synchrotron Radiation Laboratory (SSRL) used ALS Beamline 11.0.2 and SSRL Beamline 5-1 to investigate the chemical interaction of hydrogen with single-walled carbon nanotubes (SWCNs). Their findings demonstrate substantial hydrogen storage is both feasible and reversible.

233

Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Print Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Print Two of the major challenges for humanity in the next 20 years are the shrinking availability of fossil fuels and the global warming and potential climate changes that result from their ever-increasing use. One possible solution to these problems is to use an energy carrier such as hydrogen, and ways to produce and store hydrogen in electric power plants and vehicles is a major research focus for materials scientists and chemists. To realize hydrogen-powered transport, for example, it is necessary to find ways to store hydrogen onboard vehicles efficiently and safely. Nanotechnology in the form of single-walled carbon nanotubes provides a candidate storage medium. A U.S., German, and Swedish collaboration led by researchers from the Stanford Synchrotron Radiation Laboratory (SSRL) used ALS Beamline 11.0.2 and SSRL Beamline 5-1 to investigate the chemical interaction of hydrogen with single-walled carbon nanotubes (SWCNs). Their findings demonstrate substantial hydrogen storage is both feasible and reversible.

234

Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Print Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Print Two of the major challenges for humanity in the next 20 years are the shrinking availability of fossil fuels and the global warming and potential climate changes that result from their ever-increasing use. One possible solution to these problems is to use an energy carrier such as hydrogen, and ways to produce and store hydrogen in electric power plants and vehicles is a major research focus for materials scientists and chemists. To realize hydrogen-powered transport, for example, it is necessary to find ways to store hydrogen onboard vehicles efficiently and safely. Nanotechnology in the form of single-walled carbon nanotubes provides a candidate storage medium. A U.S., German, and Swedish collaboration led by researchers from the Stanford Synchrotron Radiation Laboratory (SSRL) used ALS Beamline 11.0.2 and SSRL Beamline 5-1 to investigate the chemical interaction of hydrogen with single-walled carbon nanotubes (SWCNs). Their findings demonstrate substantial hydrogen storage is both feasible and reversible.

235

Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Print Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Print Two of the major challenges for humanity in the next 20 years are the shrinking availability of fossil fuels and the global warming and potential climate changes that result from their ever-increasing use. One possible solution to these problems is to use an energy carrier such as hydrogen, and ways to produce and store hydrogen in electric power plants and vehicles is a major research focus for materials scientists and chemists. To realize hydrogen-powered transport, for example, it is necessary to find ways to store hydrogen onboard vehicles efficiently and safely. Nanotechnology in the form of single-walled carbon nanotubes provides a candidate storage medium. A U.S., German, and Swedish collaboration led by researchers from the Stanford Synchrotron Radiation Laboratory (SSRL) used ALS Beamline 11.0.2 and SSRL Beamline 5-1 to investigate the chemical interaction of hydrogen with single-walled carbon nanotubes (SWCNs). Their findings demonstrate substantial hydrogen storage is both feasible and reversible.

236

The Interfacial-Area-Based Relative Permeability Function  

SciTech Connect

CH2M Hill Plateau Remediation Company (CHPRC) requested the services of the Pacific Northwest National Laboratory (PNNL) to provide technical support for the Remediation Decision Support (RDS) activity within the Soil & Groundwater Remediation Project. A portion of the support provided in FY2009, was to extend the soil unsaturated hydraulic conductivity using an alternative approach. This alternative approach incorporates the Brooks and Corey (1964), van Genuchten (1980), and a modified van Genuchten water-retention models into the interfacial-area-based relative permeability model presented by Embid (1997). The general performance of the incorporated models is shown using typical hydraulic parameters. The relative permeability models for the wetting phase were further examined using data from literature. Results indicate that the interfacial-area-based model can describe the relative permeability of the wetting phase reasonably well.

Zhang, Z. F.; Khaleel, Raziuddin

2009-09-25T23:59:59.000Z

237

Operational Area Monitoring Plan  

Office of Legacy Management (LM)

' ' SECTION 11.7B Operational Area Monitoring Plan for the Long -Term H yd rol og ical M o n i to ri ng - Program Off The Nevada Test Site S . C. Black Reynolds Electrical & Engineering, Co. and W. G. Phillips, G. G. Martin, D. J. Chaloud, C. A. Fontana, and 0. G. Easterly Environmental Monitoring Systems Laboratory U. S. Environmental Protection Agency October 23, 1991 FOREWORD This is one of a series of Operational Area Monitoring Plans that comprise the overall Environmental Monitoring Plan for the DOE Field Office, Nevada (DOEINV) nuclear and non- nuclear testing activities associated with the Nevada Test Site (NTS). These Operational Area Monitoring Plans are prepared by various DOE support contractors, NTS user organizations, and federal or state agencies supporting DOE NTS operations. These plans and the parent

238

Bay Area | Open Energy Information  

Open Energy Info (EERE)

Bay Area Bay Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Bay Area 1.1 Products and Services in the Bay Area 1.2 Research and Development Institutions in the Bay Area 1.3 Networking Organizations in the Bay Area 1.4 Investors and Financial Organizations in the Bay Area 1.5 Policy Organizations in the Bay Area Clean Energy Clusters in the Bay Area Products and Services in the Bay Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

239

Texas Area | Open Energy Information  

Open Energy Info (EERE)

Area Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Texas Area 1.1 Products and Services in the Texas Area 1.2 Research and Development Institutions in the Texas Area 1.3 Networking Organizations in the Texas Area 1.4 Investors and Financial Organizations in the Texas Area 1.5 Policy Organizations in the Texas Area Clean Energy Clusters in the Texas Area Products and Services in the Texas Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

240

Rockies Area | Open Energy Information  

Open Energy Info (EERE)

Rockies Area Rockies Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Rockies Area 1.1 Products and Services in the Rockies Area 1.2 Research and Development Institutions in the Rockies Area 1.3 Networking Organizations in the Rockies Area 1.4 Investors and Financial Organizations in the Rockies Area 1.5 Policy Organizations in the Rockies Area Clean Energy Clusters in the Rockies Area Products and Services in the Rockies Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

Note: This page contains sample records for the topic "area bir ch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

10 CFR Ch. III (1-1-11 Edition) Pt. 851, App. B  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 CFR Ch. III (1-1-11 Edition) Pt. 851, App. B must meet the applicable electrical safety codes and standards referenced in § 851.23. 11. NANOTECHNOLOGY SAFETY-RESERVED The Department has chosen to reserve this section since policy and procedures for nano- technology safety are currently being devel- oped. Once these policies and procedures have been approved, the rule will be amended to include them through a rulemaking con- sistent with the Administrative Procedure Act. 12. WORKPLACE VIOLENCE PREVENTION- RESERVED The Department has chosen to reserve this section since the policy and procedures for workplace violence prevention are currently being developed. Once these policies and pro- cedures have been approved, the rule will be amended to include them through a rule-

242

MASSACHUSETTS AVENUE ChMBRIDGE'39, MASSACHUSETTS TELEPHONE UNrvn.,,r,  

Office of Legacy Management (LM)

2, .* 2, .* -' .l-.; . . *' ,. .:, ,-i&CLEAR METALS, INC. MA ,y 155 MASSACHUSETTS AVENUE ChMBRIDGE'39, MASSACHUSETTS TELEPHONE UNrvn.,,r, 4-5200 blr. Saul Strauch Technical Liason Division United States Atomic Energy Commission New York Operations Office 70 Columbus Avenue New York 23, New York SUBJECT:- Program for Uranium Recovery (Ref: S. Strauch to A. R. Kaufmnnn, B/30/55) Dear Mr. Strauch: With reference to Mr. K. E. Field's confidential memorandum of August 22, 1956, this is to advise tha.t Nuclea,r l,':etals, Inc., has no facilities for scrap recovery. Also, our reply to Section III of the memorandum must be based .on our operations during the fiscal year recently ended. During that period, normal uranium 3cra.p material3 were returned to the i\'ational Lead Company of Ohio, and enriched scrap materials

243

Ch P cage Operations and Regional Office 9800 South Cass Avenue  

Office of Legacy Management (LM)

artment of Energy artment of Energy Ch P cage Operations and Regional Office 9800 South Cass Avenue Argonne, Illinois 60439 OCT 2 1 1980 Ki.lliam E. Mott, Director Environmental Cinttol Technology Division, KC! SUBJECT I PREHIER MANUFACTURING - SPRINGDALE, PEhVSYLVA?UA A visit to Premier Manufacturing, 644 Garfield, Springdalc, Pennsylvania, was made en October 6, 1980, by Edward J. Jascewsky and Art Whitman, Department of Energy, and Walter R. Smith, Argonne National Laboratory. The group met with Edward McClesky, Premier Manufacturing and Bud Schnoor, PPG Industries, Inc. The purpose of the visit was to perform a cursory radiological survey of the facility at the above location. In addition, discussions were held with Mr. Schnoor whose family previously owned the facility and performed the

244

Final Report for DOE Project DE-FC07-99CH11010  

DOE Green Energy (OSTI)

Department of Energy award number DE-FC07-99CH11010, Enhanced Utilization of Corn Based Biomaterials, supported a technology development program sponsored by Cargill Dow LLC from September 30, 1999 through June 30, 2003. The work involved fundamental scientific studies on poly lactic acid (PLA), a new environmentally benign plastic material from renewable resources. DOE funds supported academic research at the Colorado School of Mines and the National Renewable Energy Laboratory (NREL), and industry cost share was directed towards applied research into new product development utilizing the fundamental information generated by the academic partners. Under the arrangement of the grant, the fundamental information is published so that other companies can utilize it in evaluating the applicability of PLA in their own products. The overall project objective is to increase the utilization of PLA, a renewable resource based plastic, currently produced from fermented corn sugar.

Jed Randall; Robert Kean

2003-10-22T23:59:59.000Z

245

Quantitative Visualization of ChIP-chip Data by Using Linked Views  

SciTech Connect

Most analyses of ChIP-chip in vivo DNA binding have focused on qualitative descriptions of whether genomic regions are bound or not. There is increasing evidence, however, that factors bind in a highly overlapping manner to the same genomic regions and that it is quantitative differences in occupancy on these commonly bound regions that are the critical determinants of the different biological specificity of factors. As a result, it is critical to have a tool to facilitate the quantitative visualization of differences between transcription factors and the genomic regions they bind to understand each factor's unique roles in the network. We have developed a framework which combines several visualizations via brushing-and-linking to allow the user to interactively analyze and explore in vivo DNA binding data of multiple transcription factors. We describe these visualization types and also provide a discussion of biological examples in this paper.

Huang, Min-Yu; Weber, Gunther; Li, Xiao-Yong; Biggin, Mark; Hamann, Bernd

2010-11-05T23:59:59.000Z

246

PU34CH10-Frumkin ARI 13 February 2013 23:28 Energy and Human Health  

E-Print Network (OSTI)

in the level of drilling, fracking and production in a given area. The second wave of gas employees includes

247

Focus Area Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

information provided was consolidated from the original five focus areas for the EM information provided was consolidated from the original five focus areas for the EM Corporate QA Board. The status of QAP/QIP approvals etc. was accurate at the time of posting; however, additional approvals may have been achieved since that time. If you have any questions about the information provided, please contact Bob Murray at robert.murray@em.doe.gov Task # Task Description Status 1.1 Develop a brief questionnaire to send out to both commercial and EM contractors to describe their current approach for identifying the applicable QA requirements for subcontractors, tailoring the requirements based upon risk, process for working with procurement to ensure QA requirements are incorporated into subcontracts, and implementing verification of requirement flow-down by their

248

Focus Area 3 Deliverables  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 - Commercial Grade item and Services 3 - Commercial Grade item and Services Dedication Implementation and Nuclear Services Office of Environmental Management And Energy Facility Contractors Group Quality Assurance Improvement Project Plan Project Focus Area Task # and Description Deliverable Project Area 3-Commercial Grade Item and Services Dedication 3.1-Complete a survey of selected EM contractors to identify the process and basis for their CGI dedication program including safety classification of items being dedicated for nuclear applications within their facilities Completed Survey Approvals: Yes/No/NA Project Managers: S. Waisley, D. Tuttel Yes Executive Committee: D. Chung, J. Yanek, N. Barker, D. Amerine No EM QA Corporate Board: No Energy Facility Contractors Group

249

Argonne area restaurants  

NLE Websites -- All DOE Office Websites (Extended Search)

area restaurants area restaurants Amber Cafe 13 N. Cass Ave. Westmont, IL 60559 630-515-8080 www.ambercafe.net Argonne Guest House Building 460 Argonne, IL 60439 630-739-6000 www.anlgh.org Ballydoyle Irish Pub & Restaurant 5157 Main Street Downers Grove, IL 60515 630-969-0600 www.ballydoylepub.com Bd's Mongolian Grill The Promenade Shopping Center Boughton Rd. & I-355 Bolingbrook, IL 60440 630-972-0450 www.gomongo.com Branmor's American Grill 300 Veterans Parkway Bolingbrook, IL 60440 630-226-9926 www.branmors.com Buca di Beppo 90 Yorktown Convenience Center Lombard, IL 60148 630-932-7673 www.bucadibeppo.com California Pizza Kitchen 551 Oakbrook Center Oak Brook, IL 60523 630-571-7800 www.cpk.com Capri Ristorante 5101 Main Street Downers Grove, IL 60516 630-241-0695 www.capriristorante.com Carrabba's Italian Grill

250

borrow_area.cdr  

Office of Legacy Management (LM)

information information at Weldon Spring, Missouri. This site is managed by the U.S. Department of Energy Office of Legacy Management. developed by the former WSSRAP Community Relations Department to provide comprehensive descriptions of key activities that took place throughout the cleanup process The Missouri Department of Conservation (MDC) approved a plan on June 9, 1995, allowing the U.S. Department of Energy (DOE) at the Weldon Spring Site Remedial Action Project (WSSRAP) to excavate nearly 2 million cubic yards of clay material from land in the Weldon Spring Conservation Area. Clay soil from a borrow area was used to construct the permanent disposal facility at the Weldon Spring site. Clay soil was chosen to construct the disposal facility because it has low permeability when

251

EA-1177: Salvage/Demolition of 200 West Area, 200 East Area, and 300 Area  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Salvage/Demolition of 200 West Area, 200 East Area, and 7: Salvage/Demolition of 200 West Area, 200 East Area, and 300 Area Steam Plants, Richland, Washington EA-1177: Salvage/Demolition of 200 West Area, 200 East Area, and 300 Area Steam Plants, Richland, Washington SUMMARY This EA evaluates the environmental impacts for the proposal to salvage and demolish the 200 West Area, 200 East Area, and 300 Area steam plants and their associated steam distribution piping equipment, and ancillary facilities at the U.S. Department of Energy Hanford Site in Richland, Washington. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD October 21, 1996 EA-1177: Finding of No Significant Impact Salvage/Demolition of 200 West Area, 200 East Area, and 300 Area Steam Plants October 21, 1996 EA-1177: Final Environmental Assessment

252

C-C and C-Heteroatom Bond Dissociation Energies in CH3R?C(OH)2: Energetics for Photocatalytic Processes of Organic Diolates on TiO2 Surfaces  

SciTech Connect

The bond energies of a range of gem-diols, CH3R?C(OH)2 (R? = H, F, Cl, Br, CN, NO2, CF3, CH3CH2, CH3CH2CH2, CH3CH2CH2CH2, ((CH3)2)CH, (CH3)3C, ((CH3)2CH)CH2, (CH3CH2)(CH3)CH, C6H5 (CH3CH2)(CH3)CH) which serve as models for binding to a surface have been studied with density functional theory (DFT) and the molecular orbital G3(MP2) methods to provide thermodynamic data for the analysis of the photochemistry of ketones on TiO2. The ultraviolet (UV) photon-induced photodecomposition of adsorbed acetone and 3,3-dimethylbutanone on the rutile TiO2 (110) surface have been investigated with photon stimulated desorption (PSD) and temperature programmed desorption (TPD). The C-CH3 and C-C(R?) bond dissociation energies in CH3R?C(OH)2 were predicted, and our calculated bond dissociation energies are in excellent agreement with the available experimental values. We used a series of isodemic reactions to provide small corrections to the various bond dissociation energies. The calculated bond dissociation energies are in agreement with the observed photodissociation processes except for R? = CF3, suggesting that these processes are under thermodynamic control. For R? = CF3, reaction dynamics also play a role in determining the photodissociation mechanism. The gas phase Brnsted acidities of the gem-diols were calculated. For three molecules, R? = Cl, Br, and NO2, loss of a proton leads to the formation of a complex of acetic acid with the anion Cl-, Br-, and NO2-. The acidities of these three species are very high with the former two having acidities comparable to CF3SO3H. The ketones (R?RC(=O)) are weak Lewis acids except where addition of OH- leads to the dissociation of the complex to form an anion bonded to acetic acid, R' = NO2, Cl, and Br. The X-C bond dissociation energies for a number of X-CO2- species were calculated and these should be useful in correlating with photochemical reactivity studies.

Wang, Tsang-Hsiu; Dixon, David A.; Henderson, Michael A.

2010-08-26T23:59:59.000Z

253

PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073  

E-Print Network (OSTI)

contract DE-AC02-76-CH03073. #12;03/26/01 External Distribution Plasma Research Laboratory, Australian, Reports Library, MTA KFKI-ATKI, Hungary Dr. P. Kaw, Institute for Plasma Research, India Ms. P.J. Pathak, Librarian, Insitute for Plasma Research, India Ms. Clelia De Palo, Associazione EURATOM-ENEA, Italy Dr. G

254

Plasma 2D modeling and diagnostics of DLC deposition on PET E. Amanatides, P. Gkotsis, Ch. Syndrevelis, D. Mataras *  

E-Print Network (OSTI)

dimensional (2D) emission spectra of short-lived excited species for estimating the uniformity of production substrates was investigated. Images of the a- balmer line of atomic hydrogen in CH4/H2 discharges were and fast way control and optimization of such processes. In this direction, the present work is focused

255

Assessment of kinetic modeling for lean H2/CH4/O2/diluent flames at high pressures  

E-Print Network (OSTI)

: Hydrogen; Methane; Syngas; Flame speed; Chemical mechanism 1. Introduction The H2/O2 reaction system CO, CO2, H2O, CH4 and other small hydrocarbons (synthetic gas or "syngas") from coal or biomass gasification [2]. Typical syngas mixtures can contain significant amounts of small molecular weight

Ju, Yiguang

256

Physical and chemical properties of dust produced in a N{sub 2}-CH{sub 4} RF plasma discharge  

Science Conference Proceedings (OSTI)

Titan's atmospheric chemistry is simulated using a Capacitively Coupled Plasma discharge produced in a N{sub 2}-CH{sub 4} mixture. The produced solid particles are analysed ex-situ. Chemical properties are deduced from: elemental composition, FTIR and LTQ-Orbitrap mass spectrometer. Optical properties are deduced from reflectivity in visible and IR range.

Ouni, F.; Alcouffe, G.; Szopa, C.; Carrasco, N.; Cernogora, G. [Universite de Versailles St Quentin, Service d'Aeronomie, BP 3-91371 Verrieres le Buisson (France); Adande, G.; Thissen, R.; Quirico, E.; Brissaud, O. [LPG-BP 5338041 Grenoble Cedex 9 (France); Schmitz-Afonso, I.; Laprevote, O. [ICSN-CNRS Avenue de la Terrasse, 91198 Gif sur Yvette (France)

2008-09-07T23:59:59.000Z

257

Large area bulk superconductors  

DOE Patents (OSTI)

A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

Miller, Dean J. (Darien, IL); Field, Michael B. (Jersey City, NJ)

2002-01-01T23:59:59.000Z

258

DOE-STD-1128-98 CH 1; Guide of Good Practices for Occupational...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

areas. For example, reducing noise, reducing heat stress conditions, or improving lighting may facilitate the completion and accuracy of work performed in radiological...

259

Western Area Power Administration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

v*Zy- i , . v*Zy- i , . r ,v * -i S # Af [, (e- . - o -A tl }r- 0 v-" l^~4~S J l ^-)^ I^U^ck iM clti ^ Area Power Administration Follow-up to Nov. 25, 2008 Transition Meeting Undeveloped Transmission Right-of-Way Western has very little undeveloped transmission right-of-way. There is a 7-mile right- of-way between Folsom, CA and Roseville, CA where Western acquired a 250' wide right-of-way but is only using half of it. Another line could be built parallel to Western's line to relieve congestion in the Sacramento area. In addition, Western has rights-of- way for many transmission lines that could be rebuilt to increase transmission capacity. For example, Western's Tracy-Livermore 230-kV line is a single circuit line but the existing towers could support a double circuit line. These rights-of-way would have to

260

Geothermal Areas | Open Energy Information  

Open Energy Info (EERE)

Geothermal Areas Geothermal Areas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Areas Geothermal Areas are specific locations of geothermal potential (e.g., Coso Geothermal Area). The base set of geothermal areas used in this database came from the 253 geothermal areas identified by the USGS in their 2008 Resource Assessment.[1] Additional geothermal areas were added, as needed, based on a literature search and on projects listed in the GTP's 2011 database of funded projects. Add.png Add a new Geothermal Resource Area Map of Areas List of Areas Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":2500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

Note: This page contains sample records for the topic "area bir ch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Call for Proposals for SystemsX.ch Projects In the Messages on Education, Research and Innovation for 2008-2011 and 2012, the Fed-  

E-Print Network (OSTI)

of the SystemsX.ch initiative. The Mes- sage on Education, Research and Innovation for 2013-2016 envisages- view, for the period of 2013-2016. Teams of scientists from all SystemsX.ch partner institu- tions ................................................................................................12 3.1.10 Annual Scientific and Financial Reporting

Glinz, Martin

262

Remote Sensing D/H Ratios in Methane Ice: Temperature-Dependent Absorption Coefficients of CH3D in Methane Ice and in Nitrogen Ice  

E-Print Network (OSTI)

The existence of strong absorption bands of singly deuterated methane (CH3D) at wavelengths where normal methane (CH4) absorbs comparatively weakly could enable remote measurement of D/H ratios in methane ice on outer solar system bodies. We performed laboratory transmission spectroscopy experiments, recording spectra at wavelengths from 1 to 6 \\mum to study CH3D bands at 2.47, 2.87, and 4.56 \\mum, wavelengths where ordinary methane absorption is weak. We report temperature-dependent absorption coefficients of these bands when the CH3D is diluted in CH4 ice and also when it is dissolved in N2 ice, and describe how these absorption coefficients can be combined with data from the literature to simulate arbitrary D/H ratio absorption coefficients for CH4 ice and for CH4 in N2 ice. We anticipate these results motivating new telescopic observations to measure D/H ratios in CH4 ice on Triton, Pluto, Eris, and Makemake.

Grundy, W M; Bovyn, M J; Tegler, S C; Cornelison, D M

2011-01-01T23:59:59.000Z

263

Quantum computing applied to calculations of molecular energies: CH2 benchmark  

E-Print Network (OSTI)

Quantum computers are appealing for their ability to solve some tasks much faster than their classical counterparts. It was shown in [Aspuru-Guzik et al., Science 309, 1704 (2005)] that they, if available, would be able to perform the full configuration interaction (FCI) energy calculations with a polynomial scaling. This is in contrast to conventional computers where FCI scales exponentially. We have developed a code for simulation of quantum computers and implemented our version of the quantum full configuration interaction algorithm. We provide a detailed description of this algorithm and the results of the assessment of its performance on the four lowest lying electronic states of CH2 molecule. This molecule was chosen as a benchmark, since its two lowest lying 1A1 states exhibit a multireference character at the equilibrium geometry. It has been shown that with a suitably chosen initial state of the quantum register, one is able to achieve the probability amplification regime of the iterative phase estimation algorithm even in this case.

Libor Veis; Ji? Pittner

2010-08-20T23:59:59.000Z

264

Supported Room Temperature Ionic Liquid Membranes for CO{sub 2}/CH{sub 4} Separation  

SciTech Connect

Room temperature ionic liquids (RTILs) are organic salts which are liquid at or around room temperature. These compounds exhibit many outstanding physical properties such as great thermal stability and no measurable vapor pressure. In this work supported ionic liquid membranes (SILMs) were prepared by impregnating pores of ?-alumina inorganic supports with various ionic liquids. In addition to membranes prepared with pure RTILs we were able to synthesize membranes with RTIL mixtures using 1-aminopyridinium iodide dissolved in 1-butyl-4-methylpyridinium tetrafluoroborate or methyltrioctylammonium bis(trifluoromethylsulfonyl)imide. This combination of an RTIL with an organic salt containing an amine group dramatically improved the membrane separation properties. The SILMs displayed CO{sub 2} permeance on the order of 5 10{sup ?10} to 5 10{sup ?9} mol m{sup ?2} s{sup ?1} Pa{sup ?1} combined with CO{sub 2}/CH{sub 4} selectivity of 530. Although these values are comparable with the current systems for CO{sub 2} purification, CO{sub 2} permeance is still rather low for these compounds.

Iarikov, D. D.; Hacarlioglu, P.; Oyama, S. T.

2011-01-01T23:59:59.000Z

265

Western Area Power Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Western Area Power Administration Customer Meeting The meeting will begin at 12:30 pm MST We have logged on early for connectivity purposes Please stand-by until the meeting begins Please be sure to call into the conference bridge at: 888-989-6414 Conf. Code 60223 If you have connectivity issues, please contact: 866-900-1011 1 Introduction  Welcome  Introductions  Purpose of Meeting ◦ Status of the SLCA/IP Rate ◦ SLCA/IP Marketing Plan ◦ Credit Worthiness Policy ◦ LTEMP EIS update ◦ Access to Capital  Handout Materials http://www.wapa.gov/crsp/ratescrsp/default.htm 2 SLCA/IP Rate 3 1. Status of Repayment 2. Current SLCA/IP Firm Power Rate (SLIP-F9) 3. Revenue Requirements Comparison Table 4.SLCA/IP Rate 5. Next Steps

266

AREA RADIATION MONITOR  

DOE Patents (OSTI)

S>An improved area radiation dose monitor is designed which is adapted to compensate continuously for background radiation below a threshold dose rate and to give warning when the dose integral of the dose rate of an above-threshold radiation excursion exceeds a selected value. This is accomplished by providing means for continuously charging an ionization chamber. The chamber provides a first current proportional to the incident radiation dose rate. Means are provided for generating a second current including means for nulling out the first current with the second current at all values of the first current corresponding to dose rates below a selected threshold dose rate value. The second current has a maximum value corresponding to that of the first current at the threshold dose rate. The excess of the first current over the second current, which occurs above the threshold, is integrated and an alarm is given at a selected integrated value of the excess corresponding to a selected radiation dose. (AEC)

Manning, F.W.; Groothuis, S.E.; Lykins, J.H.; Papke, D.M.

1962-06-12T23:59:59.000Z

267

Recharge Data Package for Hanford Single-Shell Tank Waste Management Areas  

Science Conference Proceedings (OSTI)

Pacific Northwest National Laboratory (PNNL) assists CH2M HILL Hanford Group, Inc., in its preparation of the Resource Conservation and Recovery Act (RCRA) Facility Investigation report. One of the PNNL tasks is to use existing information to estimate recharge rates for past and current conditions as well as future scenarios involving cleanup and closure of tank farms. The existing information includes recharge-relevant data collected during activities associated with a host of projects, including those of RCRA, the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), the CH2M HILL Tank Farm Vadose Zone Project, and the PNNL Remediation and Closure Science Project. As new information is published, the report contents can be updated. The objective of this data package was to use published data to provide recharge estimates for the scenarios being considered in the RCRA Facility Investigation. Recharge rates were estimated for areas that remain natural and undisturbed, areas where the vegetation has been disturbed, areas where both the vegetation and the soil have been disturbed, and areas that are engineered (e.g., surface barrier). The recharge estimates supplement the estimates provided by PNNL researchers in 2006 for the Hanford Site using additional field measurements and model analysis using weather data through 2006.

Fayer, Michael J.; Keller, Jason M.

2007-09-24T23:59:59.000Z

268

Enforcement Letter, September 6, 2007, CH2M Hill Hanford Group Potential Violations of Nuclear Safety Requirements  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2007 6, 2007 Mr. John Fulton Chief Executive Officer CH2M Hill Hanford Group, Inc. 2440 Stevens Drive Richland, Washington 99352 Dear Mr. Fulton: The Department of Energy (DOE) held an Enforcement Conference on August 29, 2006, with CH2M Hill Hanford Group (CHG) to discuss potential violations of nuclear safety requirements described in our Investigation Summary Report dated July 26, 2006. At that time, DOE elected to defer a decision on a potential quality improvement violation related to recurring radiological events and deficiencies in the identification and control of radiological hazards at the Tank Farms. This decision was based upon the fact that CHG senior management had initiated radiological work improvements but insufficient data was available to assess their effectiveness. On July 12, 2007, Office of Enforcement

269

Review of the Hanford Site CH2M Hill Plateau Remediation Company Implementation Verification Review Processes, November 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Oversight Review Independent Oversight Review of the Hanford Site CH2M Hill Plateau Remediation Company Implementation Verification Review Processes November 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................... 1 2.0 Background ............................................................................................................................................ 1 3.0 Scope...................................................................................................................................................... 2

270

Review of the Hanford Site CH2M Hill Plateau Remediation Company Implementation Verification Review Processes, November 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Independent Oversight Review Independent Oversight Review of the Hanford Site CH2M Hill Plateau Remediation Company Implementation Verification Review Processes November 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................... 1 2.0 Background ............................................................................................................................................ 1 3.0 Scope...................................................................................................................................................... 2

271

Description of the FCUP code used to compute currents due to recoil protons from CH/sub 2/ foils  

Science Conference Proceedings (OSTI)

A computer code, FCUP, was developed at EG and G during the period from 1973 to the present to compute proton currents produced by a time- and energy-dependent neutron flux striking a CH/sub 2/ foil and knocking protons into a detector placed at an angle with respect to the target foil and the neutron beam. This report describes the methods of calculation used and the physical assumptions and limitations involved and suggests possibilities for improving the calculations.

Stelts, M.L.; Glasgow, D.W.; Wood, B.E.; Craft, A.D.

1982-07-01T23:59:59.000Z

272

Polyacetylene, (CH){sub x}, as an Emerging Material for Solar Cell Applications. Final Technical Report, March 19, 1979 - March 18, 1980  

DOE R&D Accomplishments (OSTI)

Despite great theoretical and technological interest in polyacetylene, (CH){sub x}, the basic features of its band structure have not been unambiguously resolved. Since photoconductivity and optical absorption data have frequently been used to infer information on the band structure of semiconductors, such measurements were carried out on (CH){sub x}. The main results of an extensive study of the photoconductivity (..delta.. sigma{sub ph}) and absorption coefficient (..cap alpha..) in (CH){sub x} are presented. The absence of photoconductivity in cis-(CH){sub x}, despite the similarity in optical properties indicates that ..delta.. sigma/sub ph/ in trans-(CH){sub x} is induced by isomerization. It is found that isomerization generates states deep inside the gap that act as safe traps for minority carriers and thereby enhance the photoconductivity. Compensation of trans-(CH){sub x} with ammonia appears to decrease the number of safe traps, whereas acceptor doping increases their number. Thus, chemical doping can be used to control the photoconductive response. The energy of safe traps inside the gap is independent of the process used to generate them; indicative of an intrinsic localized defect level in trans-(CH){sub x}. A coherent picture based on the soliton model can explain these results, including the safe trapping.

Heeger, A. J.; MacDiarmid, A. G.

1980-06-05T23:59:59.000Z

273

Program Areas | National Security | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Programs Initiatives Facilities Events and Conferences Supporting Organizations National Security Home | Science & Discovery | National Security | Program Areas SHARE Program...

274

Body Area Networks: A Survey  

Science Conference Proceedings (OSTI)

Advances in wireless communication technologies, such as wearable and implantable biosensors, along with recent developments in the embedded computing area are enabling the design, development, and implementation of body area networks. This class of ... Keywords: body area networks, survey, wireless sensor networks

Min Chen; Sergio Gonzalez; Athanasios Vasilakos; Huasong Cao; Victor C. Leung

2011-04-01T23:59:59.000Z

275

Geothermal resource area 9: Nye County. Area development plan  

DOE Green Energy (OSTI)

Geothermal Resource area 9 encompasses all of Nye County, Nevada. Within this area there are many different known geothermal sites ranging in temperature from 70/sup 0/ to over 265/sup 0/ F. Fifteen of the more major sites have been selected for evaluation in this Area Development Plan. Various potential uses of the energy found at each of the resource sites discussed in this Area Development Plan were determined after evaluating the area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities, and comparing those with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories certain subdivisions were considered separately. The findings about each of the 15 geothermal sites considered in this Area Development Plan are summarized.

Pugsley, M.

1981-01-01T23:59:59.000Z

276

Modern Methods for Lipid AnalysisCh 6 Regiospecific Analysis of Triacylglycerols using Hi Performance Liquid Chromatography/AtmosphericPressure Chemical Ionization Mass Spectrometry  

Science Conference Proceedings (OSTI)

Modern Methods for Lipid Analysis Ch 6 Regiospecific Analysis of Triacylglycerols using Hi Performance Liquid Chromatography/AtmosphericPressure Chemical Ionization Mass Spectrometry Methods and Analyses eChapters Methods - Analyses Books

277

Dietary Fats and Risk of Chronic DiseaseCh 10 Suppression of Leukotriene B4 Generation by ex vivo Neutrophils Isolated from Asthma Patients  

Science Conference Proceedings (OSTI)

Dietary Fats and Risk of Chronic Disease Ch 10 Suppression of Leukotriene B4 Generation by ex vivo Neutrophils Isolated from Asthma Patients Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry Press ...

278

Industrial Utilization of Surfactants: Principles & PracticeCh 4 Chemical Structure and Microenvironmental Effects on Surfactant Fundamental Properties/Related Performance Properties  

Science Conference Proceedings (OSTI)

Industrial Utilization of Surfactants: Principles & Practice Ch 4 Chemical Structure and Microenvironmental Effects on Surfactant Fundamental Properties/Related Performance Properties Surfactants and Detergents eChapters Surfactants - Dete

279

Dry etching of CoFe films using a CH{sub 4}/Ar inductively coupled plasma for magnetic random access memory application  

Science Conference Proceedings (OSTI)

In this study, the CoFe thin film was studied using an inductively coupled plasma system in CH{sub 4}-based gas chemistries. The etch rate of the CoFe thin film was systemically studied by the process parameters including the gas mixing ratio, the rf power, the dc-bias power, and the process pressure. The best gas composition for etching was in CH{sub 4} (20%)/Ar (80%) ratio. As the rf power and the dc-bias voltage were increased, the etch rate of the CoFe thin film increased in a CH{sub 4}/Ar inductively coupled plasma system. The best process pressure condition for etching was 10 mTorr in the CH{sub 4}/Ar inductively coupled plasma system. The changes in the components on the surface of the CoFe thin film were investigated with energy dispersive x ray.

Um, Doo-Seung; Kim, Dong-Pyo; Woo, Jong-Chang; Kim, Chang-Il; Lee, Sung-Kwon; Jung, Tae-Woo; Moon, Seung-Chan [School of Electrical and Electronics Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 156-756 (Korea, Republic of); Hynix Semiconductor Inc., San 136-1, Ami-ri, Bubal-eub, Icheon-si, Kyoungki-do 467-701 (Korea, Republic of)

2009-07-15T23:59:59.000Z

280

Lipid Analysis and Lipidomics: New Techniques & Application-Ch 6Structural Analysis of Unsaturated Fatty Acid Methyl Ester Isomers with Acetonitrile Covalent Adduct Chemical Ionization  

Science Conference Proceedings (OSTI)

Lipid Analysis and Lipidomics: New Techniques & Application-Ch 6 Structural Analysis of Unsaturated Fatty Acid Methyl Ester Isomers with Acetonitrile Covalent Adduct Chemical Ionization Methods and Analyses eChapters Methods - Analyses Book

Note: This page contains sample records for the topic "area bir ch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Re-evaluation of the lifetimes of the major CFCs and CH[subscript 3]CCl[subscript 3] using atmospheric trends  

E-Print Network (OSTI)

Since the Montreal Protocol on Substances that Deplete the Ozone Layer and its amendments came into effect, growth rates of the major ozone depleting substances (ODS), particularly CFC-11, -12 and -113 and CH[subscript ...

O'Doherty, S.

282

Designing Soybeans for the 21st Century MarketsCh 15 High-Oleic, Low-Saturate Soybeans Offer a Sustainable and Nutritionally Enhanced Solution for Food Applications  

Science Conference Proceedings (OSTI)

Designing Soybeans for the 21st Century Markets Ch 15 High-Oleic, Low-Saturate Soybeans Offer a Sustainable and Nutritionally Enhanced Solution for Food Applications Biofuels and Bioproducts and Biodiesel Food Science Health Nutrition Bi

283

Property:AreaGeology | Open Energy Information  

Open Energy Info (EERE)

AreaGeology AreaGeology Jump to: navigation, search Property Name AreaGeology Property Type String Description A description of the area geology This is a property of type String. Subproperties This property has the following 22 subproperties: A Amedee Geothermal Area B Beowawe Hot Springs Geothermal Area Blue Mountain Geothermal Area Brady Hot Springs Geothermal Area C Chena Geothermal Area Coso Geothermal Area D Desert Peak Geothermal Area D cont. Dixie Valley Geothermal Area E East Mesa Geothermal Area G Geysers Geothermal Area K Kilauea East Rift Geothermal Area L Lightning Dock Geothermal Area Long Valley Caldera Geothermal Area R Raft River Geothermal Area Roosevelt Hot Springs Geothermal Area S Salt Wells Geothermal Area Salton Sea Geothermal Area San Emidio Desert Geothermal Area

284

MonChER: Monte-Carlo generator for CHarge Exchange Reactions. Version 1.1. Physics and Manual  

E-Print Network (OSTI)

MonChER is a Monte Carlo event generator for simulation of single and double charge exchange reactions in proton-proton collisions at energies from 0.9 to 14 TeV. Such reactions, $pp\\to n+X$ and $pp\\to n+X+n$, are characterized by leading neutron production. They are dominated by $\\pi^+$ exchange and could provide us with more information about total and elastic $\\pi^+ p$ and $\\pi^+\\pi^+$ cross sections and parton distributions in pions in the still unexplored kinematical region.

R. A. Ryutin; A. E. Sobol; V. A. Petrov

2011-06-10T23:59:59.000Z

285

Characterization of Vadose Zone Sediments from C Waste Management Area: Investigation of the C-152 Transfer Line Leak  

Science Conference Proceedings (OSTI)

The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in January 2007. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc., tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within waste management area (WMA) C. Specifically, this report contains all the geologic, geochemical, and selected physiochemical characterization data compiled on vadose zone sediment recovered from direct-push samples collected around the site of an unplanned release (UPR), UPR-200-E-82, adjacent to the 241-C-152 Diversion Box located in WMA C.

Brown, Christopher F.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Valenta, Michelle M.; Lanigan, David C.; Vickerman, Tanya S.; Clayton, Ray E.; Geiszler, Keith N.; Iovin, Cristian; Clayton, Eric T.; Kutnyakov, Igor V.; Baum, Steven R.; Lindberg, Michael J.; Orr, Robert D.

2008-09-11T23:59:59.000Z

286

Transforming Parks and Protected Areas  

E-Print Network (OSTI)

areas Lisa M. Campbell, Noella J. Gray; and Zoe A. Meletis In many countries, parks and protected areas construction of nature, conservation and development narratives, and alternative consumption - and what World' or 'developing' countries. One feature of political ecology has been an overriding emphasis

Bolch, Tobias

287

Data Administration Area: Date Issued  

E-Print Network (OSTI)

Policy Data Administration Policy Area: Date Issued: April, 1994 Title: Data Administration Last. INTRODUCTION The President established the Committee on Data Administration (CODA) in May, 1992, to advise him on policies in the area of data administration (attached as references Policy ADC 011 and TOR for CODA

Brownstone, Rob

288

Area 410 status and capabilities  

SciTech Connect

This memo is distributed to acquaint personnel with (a) the status of the various 410 areas, (b) time and personnel required to do optic experiments in the ``Dog`` area, and (c) status of the timing and firing system and conditions of cables from Able to Dog.

Bennett, W. P.

1962-10-01T23:59:59.000Z

289

Report Wildland Fire Area Hazard  

NLE Websites -- All DOE Office Websites (Extended Search)

Report Wildland Fire Area Hazard Report Wildland Fire Area Hazard Report Wildland Fire Area Hazard Report wildland fire area hazards or incidents that are non-life threatening only. Call 911 for all emergencies that require immediate assistance. How to report wildland fire hazard Use the following form to report any wildland fire area hazards or incidents that are non-life threatening only. Call 911 for all emergencies that require immediate assistance. Fill out this form as completely as possible so we can better assess the hazard. All submissions will be assessed as promptly as possible. For assistance with a non-emergency situation, contact the Operations Support Center at 667-6211. Name (optional): Hazard Type (check one): Wildlife Sighting (check box if animal poses serious threat) Trails (access/egress)

290

Tech Area II: A History  

E-Print Network (OSTI)

This report documents the history of the major buildings in Sandia National Laboratories' Technical Area II. It was prepared in support of the Department of Energy's compliance with Section 106 of the National Historic Preservation Act. Technical Area II was designed and constructed in 1948 specifically for the final assembly of the non-nuclear components of nuclear weapons, and was the primary site conducting such assembly until 1952. Both the architecture and location of the oldest buildings in the area reflect their original purpose. Assembly activities continued in Area II from 1952 to 1957, but the major responsibility for this work shifted to other sites in the Atomic Energy Commission's integrated contractor complex. Gradually, additional buildings were constructed and the original buildings were modified. After 1960, the Area's primary purpose was the research and testing of high-explosive components for nuclear weapons. In 1994, Sandia constructed new facilities for work on hi...

Rebecca Ullrich; Rebecca Ullrich

1998-01-01T23:59:59.000Z

291

li Aone+amth arfumionto itu%illti&% p?e~6a'&ionofthoChOmiQo  

Office of Legacy Management (LM)

li Aone+amth arfumionto itu%illti&% p?e~6a'&ionofthoChOmiQo li Aone+amth arfumionto itu%illti&% p?e~6a'&ionofthoChOmiQo SinaL report, pattisulerly dfh, raqmot b dto evaluation. 8. A eixdtoirth~atension primarily to inauro havlrg Chealeo &&able . fbroowultationonWtj0 ~itoevaluation~rkforthet&wto Bsddw Timoveoy ?lant, but 980 to keep Chemioo avsilable for dmelopm~t ark on the alternate oatbanatie mtoolaw leaoh proosa80 DIECDBfiIOH Be are requesting anamndcmntto o&end CoatmotAT(W&-1489 with the Chmaloal Qonstruobloon Cor;orhlon. 455 L(adloonAve., !JewYork, P, York. This lr a CPFF Coatmot primarily for reaenrgh and devolopnmt to prorLdo l proossr for our 'IFas% Reeldues Reomery Program. VIWZ haa beenpo3Qo~~urderbhllCo~tatthsLin&rm, RuuJerseylabomt.ory of the Cheaical ConatruotionCorporation mad at Chctnioal Construotlon

292

Thermal energy storage application areas  

DOE Green Energy (OSTI)

The use of thermal energy storage in the areas of building heating and cooling, recovery of industrial process and waste heat, solar power generation, and off-peak energy storage and load management in electric utilities is reviewed. (TFD)

Not Available

1979-03-01T23:59:59.000Z

293

Accelerating Observers, Area and Entropy  

E-Print Network (OSTI)

We consider an explicit example of a process, where the entropy carried by radiation through an accelerating two-plane is proportional to the decrease in the area of that two-plane even when the two-plane is not a part of any horizon of spacetime. Our results seem to support the view that entropy proportional to area is possessed not only by horizons but by all spacelike two-surfaces of spacetime.

Makela, J

2005-01-01T23:59:59.000Z

294

Accelerating Observers, Area and Entropy  

E-Print Network (OSTI)

We consider an explicit example of a process, where the entropy carried by radiation through an accelerating two-plane is proportional to the decrease in the area of that two-plane even when the two-plane is not a part of any horizon of spacetime. Our results seem to support the view that entropy proportional to area is possessed not only by horizons but by all spacelike two-surfaces of spacetime.

Jarmo Makela

2005-06-16T23:59:59.000Z

295

Variable area fuel cell cooling  

DOE Patents (OSTI)

A fuel cell arrangement having cooling fluid flow passages which vary in surface area from the inlet to the outlet of the passages. A smaller surface area is provided at the passage inlet, which increases toward the passage outlet, so as to provide more uniform cooling of the entire fuel cell. The cooling passages can also be spaced from one another in an uneven fashion.

Kothmann, Richard E. (Churchill Borough, PA)

1982-01-01T23:59:59.000Z

296

Geothermal resource area 3: Elko County. Area development plan  

DOE Green Energy (OSTI)

Geothermal Resource Area 3 includes all of the land in Elko County, Nevada. There are in excess of 50 known thermal anomalies in this area. Several of the more major resources have been selected for detailed description and evaluation in this Area Development Plan. The other resources are considered too small, too low in temperature, or too remote to be considered for development in the near future. Various potential uses of the energy found at each of the studied resource sites in Elko County were determined after evaluating the area's physical characteristics; the land ownership and land use patterns; existing population and projected growth rates; transportation facilities and energy requirements. These factors were then compared with resource site specific data to determine the most likely uses of the resource. The uses considered in this evaluation were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories several subdivisions were considered separately. It was determined that several of the geothermal resources evaluated in the Area Development Plan could be commercially developed. The potential for development for the seven sites considered in this study is summarized.

Pugsley, M.

1981-01-01T23:59:59.000Z

297

Geothermal resource area 11, Clark County area development plan  

DOE Green Energy (OSTI)

Geothermal Resource Area 11 includes all of the land in Clark County, Nevada. Within this area are nine geothermal anomalies: Moapa Area, Las Vegas Valley, Black Canyon, Virgin River Narrows, Roger's Springs, Indian Springs, White Rock Springs, Brown's Spring, and Ash Creek Spring. All of the geothermal resources in Clark County have relatively low temperatures. The highest recorded temperature is 145{sup 0}F at Black Canyon. The temperatures of the other resources range from 70 to 90{sup 0}F. Because of the low temperature of the resources and, for the most part, the distance of the resources from any population base, the potential for the development of the resources are considered to be somewhat limited.

Pugsley, M.

1981-01-01T23:59:59.000Z

298

Hydrogeology of the Hanford Site Central Plateau A Status Report for the 200 West Area  

Science Conference Proceedings (OSTI)

The Remediation Decisions Support (RDS) function of the Soil and Groundwater Remediation Project (managed by CH2M HILL Plateau Remediation Company [CHPRC]) is responsible for facilitating the development of consistent data, parameters, and conceptual models to resolve technical issues and support efforts to estimate contaminant migration and impacts (i.e., the assessment process). In particular, the RDS function is working to update electronic data sources and conceptual models of the geologic framework and associated hydraulic and geochemical parameters to facilitate traceability, transparency, defensibility, and consistency in support of environmental assessments. This report summarizes the efforts conducted by Pacific Northwest National Laboratory (PNNL) scientists in fiscal year 2008 (FY08) that focused primarily on the 200 West Area, as well as a secondary effort initiated on the 200 East Area.

Last, George V.; Thorne, Paul D.; Horner, Jacob A.; Parker, Kyle R.; Bjornstad, Bruce N.; Mackley, Rob D.; Lanigan, David C.; Williams, Bruce A.

2009-08-27T23:59:59.000Z

299

Laboratory Investigations of a Low-swirl Injector withH2 and CH4 at Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigations of a Low-swirl Injector withH2 and CH4 at Gas Investigations of a Low-swirl Injector withH2 and CH4 at Gas Turbine Conditions Title Laboratory Investigations of a Low-swirl Injector withH2 and CH4 at Gas Turbine Conditions Publication Type Journal Article Year of Publication 2009 Authors Cheng, Robert K., David Littlejohn, P. A. Strakey, and T. Sidwell Journal Science Direct Abstract Laboratory experiments were conducted at gas turbine and atmospheric conditions (0.101 < P0 < 0.810 MPa, 298 < T0 < 580K, 18 < U0 < 60 m/s) to characterize the overall behaviors and emissions of the turbulent premixed flames produced by a low-swirl injector (LSI) for gas turbines. The objective was to investigate the effects of hydrogen on the combustion processes for the adaptation to gas turbines in an IGCC power plant. The experiments at high pressures and temperatures showed that the LSI can operate with 100% H2 at up to f = 0.5 and has a slightly higher flashback tolerance than an idealized high-swirl design. With increasing H2 fuel concentration, the lifted LSI flame begins to shift closer to the exit and eventually attaches to the nozzle rim and assumes a different shape at 100% H2. The STP experiments show the same phenomena. The analysis of velocity data from PIV shows that the stabilization mechanism of the LSI remains unchanged up to 60% H2. The change in the flame position with increasing H2 concentration is attributed to the increase in the turbulent flame speed. The NOx emissions show a log linear dependency on the adiabatic flame temperature and the concentrations are similar to those obtained previously in a LSI prototype developed for natural gas. These results show that the LSI exhibits the same overall behaviors at STP and at gas turbine conditions. Such insight will be useful for scaling the LSI to operate at IGCC conditions.

300

Bir Umm Fawakhir: Insights into Ancient Egyptian Mining  

Science Conference Proceedings (OSTI)

In particular, no written evidence has yet been recovered from the site aside from the dipinti, which are dockets painted in red on the shoulders of wine jars.

Note: This page contains sample records for the topic "area bir ch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Mixing Ratios of CO, CO2, CH4, and Isotope Ratios of Associated 13C, 18O,  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Samples, Niwot Ridge, Colorado Air Samples, Niwot Ridge, Colorado Mixing Ratios of CO, CO2, CH4, and Isotope Ratios of Associated 13C, 18O, and 2H in Air Samples from Niwot Ridge, Colorado, and Montaña de Oro, California, USA (January 2004) image Abstract graphics Graphics data Data Investigator Stanley C. Tyler Department of Earth System Science University of California Irvine, CA DOI: 10.3334/CDIAC/atg.db1022 Description and Methods Air samples from Niwot Ridge, Colorado (41°N, 105°W) and Montaña de Oro, CA (35°N, 121°W) have been collected at approximately semi-monthly to monthly intervals since the mid 1990s. The beginning dates for each gas and isotope analyzed are as follows: GASLAB Flask Sampling Network Data Available (April 2003) Gas or isotope Niwot Ridge Montaña de Oro

302

Focus Areas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission » Focus Areas Mission » Focus Areas Focus Areas Safety With this focus on cleanup completion and risk reducing results, safety still remains the utmost priority. EM will continue to maintain and demand the highest safety performance. All workers deserve to go home as healthy as they were when they came to the job in the morning. There is no schedule or milestone worth any injury to the work force. Project Management EM is increasing its concentration on project management to improve its overall performance toward cost-effective risk reduction. This will involve review of validated project baselines, schedules, and assumptions about effective identification and management of risks. Instrumental in refining the technical and business approaches to project management are the senior

303

100 Areas CERCLA ecological investigations  

SciTech Connect

This document reports the results of the field terrestrial ecological investigations conducted by Westinghouse Hanford Company during fiscal years 1991 and 1992 at operable units 100-FR-3, 100-HR-3, 100-NR-2, 100-KR-4, and 100-BC-5. The tasks reported here are part of the Remedial Investigations conducted in support of the Comprehensive Environmental Response, compensation, and Liability Act of 1980 studies for the 100 Areas. These ecological investigations provide (1) a description of the flora and fauna associated with the 100 Areas operable units, emphasizing potential pathways for contaminants and species that have been given special status under existing state and/or federal laws, and (2) an evaluation of existing concentrations of heavy metals and radionuclides in biota associated with the 100 Areas operable units.

Landeen, D.S.; Sackschewsky, M.R.; Weiss, S.

1993-09-01T23:59:59.000Z

304

ELECTRON IRRADIATION OF KUIPER BELT SURFACE ICES: TERNARY N{sub 2}-CH{sub 4}-CO MIXTURES AS A CASE STUDY  

Science Conference Proceedings (OSTI)

The space weathering of icy Kuiper Belt Objects was investigated in this case study by exposing methane (CH{sub 4}) and carbon monoxide (CO) doped nitrogen (N{sub 2}) ices at 10 K to ionizing radiation in the form of energetic electrons. Online and in situ Fourier transform infrared spectroscopy was utilized to monitor the radiation-induced chemical processing of these ices. Along with isocyanic acid (HNCO), the products could be mainly derived from those formed in irradiated binary ices of the N{sub 2}-CH{sub 4} and CO-CH{sub 4} systems: nitrogen-bearing products were found in the form of hydrogen cyanide (HCN), hydrogen isocyanide (HNC), diazomethane (CH{sub 2}N{sub 2}), and its radical fragment (HCN{sub 2}); oxygen-bearing products were of acetaldehyde (CH{sub 3}CHO), formyl radical (HCO), and formaldehyde (H{sub 2}CO). As in the pure ices, the methyl radical (CH{sub 3}) and ethane (C{sub 2}H{sub 6}) were also detected, as were carbon dioxide (CO{sub 2}) and the azide radical (N{sub 3}). Based on the temporal evolution of the newly formed products, kinetic reaction schemes were then developed to fit the temporal profiles of the newly formed species, resulting in numerical sets of rate constants. The current study highlights important constraints on the preferential formation of isocyanic acid (HNCO) over hydrogen cyanide (HCN) and hydrogen isocyanide (HNC), thus guiding the astrobiological and chemical evolution of those distant bodies.

Kim, Y. S.; Kaiser, R. I., E-mail: ralfk@hawaii.edu [Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

2012-10-10T23:59:59.000Z

305

Influence of the Particle Formation and Behavior on the Electrical Parameters in Low Pressure Radio-Frequency CH{sub 4}/N{sub 2} Discharges  

Science Conference Proceedings (OSTI)

The particle formation in low pressure radio-frequency (13.56 MHz) CH{sub 4}/N{sub 2} discharges results from the gas decomposition and from the sputtering of the powered electrode. The particle formation and behavior are strongly modified with the nitrogen amount increase in the mixture. The observation of the particles in the CH{sub 4}/N{sub 2} mixture containing 70% of N{sub 2} reveals a particular particle behavior. The particle behavior is correlated with the electrical parameters of the discharge.

Pereira, J.; Massereau-Guilbaud, V.; Geraud-Grenier, I.; Plain, A. [LASEP, Faculte des Sciences, Universite d'Orleans, Site de Bourges, rue G. Berger, BP 4043, 18028 BOURGES CEDEX (France)

2008-03-19T23:59:59.000Z

306

Manhattan Project: Tech Area Gallery  

Office of Scientific and Technical Information (OSTI)

TECH AREA GALLERY (LARGE) TECH AREA GALLERY (LARGE) Los Alamos: The Laboratory Resources > Photo Gallery All of the photographs below are of the "Tech Area" at Los Alamos during or shortly after the wartime years. If this page is taking a long time to load, click here for a photo gallery with smaller versions of the same images. There is a map of the Tech Area at the top and again at the bottom. The first image below is courtesy the Los Alamos National Laboratory. All of the other photographs are reproduced from Edith C. Truslow, with Kasha V. Thayer, ed., Manhattan Engineer District: Nonscientific Aspects of Los Alamos Project Y, 1942 through 1946 (Los Alamos, NM: Manhattan Engineer District, ca. 1946; first printed by Los Alamos Scientific Laboratory as LA-5200, March 1973; reprinted in 1997 by the Los Alamos Historical Society). This is a reprint of an unpublished volume originally written in 1946 by 2nd Lieutenant Edith C. Truslow, a member of the Women's Army Corps, as a contribution to the Manhattan Engineer District History.

307

RHIC | New Areas of Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

A New Area of Physics A New Area of Physics RHIC has created a new state of hot, dense matter out of the quarks and gluons that are the basic particles of atomic nuclei, but it is a state quite different and even more remarkable than had been predicted. Instead of behaving like a gas of free quarks and gluons, as was expected, the matter created in RHIC's heavy ion collisions is more like a liquid. Quarks Gluons and quarks Ions Ions about to collide Impact Just after collision Perfect Liquid The "perfect" liquid hot matter Hot Nuclear Matter A review article in the journal Science describes groundbreaking discoveries that have emerged from RHIC, synergies with the heavy-ion program at the Large Hadron Collider, and the compelling questions that will drive this research forward on both sides of the Atlantic.

308

CENTRAL NEVPJJA SUPPLEMENTAL TEST AREA  

NLE Websites -- All DOE Office Websites (Extended Search)

r r r r r t r r t r r r * r r r r r r CENTRAL NEVPJJA SUPPLEMENTAL TEST AREA ,FACILITY RECORDS 1970 UNITED STATES ATOMIC ENERGY COMMlSSION NEVADA OPERATIONS OFFICE LAS VEGAS, NEVADA September 1970 Prepared By Holmes & Narver. Inc. On-Continent Test Division P.O. Box 14340 Las Vegas, Nevada 338592 ...._- _._--_ .. -- - - - - - - .. .. - .. - - .. - - - CENTRAL NEVPJJA SUPPLEMENTAL TEST AREA FACILITY RECORDS 1970 This page intentionally left blank - - .. - - - PURPOSE This facility study has been prepared in response to a request of the AEC/NVOO Property Management Division and confirmed by letter, W. D. Smith to L. E. Rickey, dated April 14, 1970, STS Program Administrative Matters. The purpose is to identify each facility, including a brief description, the acquisition cost either purchase and/or construction, and the AE costs if identi- fiable. A narrative review of the history of the subcontracts

309

Variable area light reflecting assembly  

DOE Patents (OSTI)

Device is described for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles. 9 figs.

Howard, T.C.

1986-12-23T23:59:59.000Z

310

Variable area light reflecting assembly  

DOE Patents (OSTI)

Device for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles.

Howard, Thomas C. (Raleigh, NC)

1986-01-01T23:59:59.000Z

311

Carlsbad Area Office Executive Summary  

NLE Websites -- All DOE Office Websites (Extended Search)

June 1998 June 1998 Carlsbad Area Office Executive Summary The mission of the Carlsbad Area Office (CAO) is to protect human health and the environment by opening and operating the Waste Isolation Pilot Plant (WIPP) for safe disposal of transuranic (TRU) waste and by establishing an effective system for management of TRU waste from generation to disposal. It includes personnel assigned to CAO, WIPP site operations, transportation, and other activities associated with the National TRU Program (NTP). The CAO develops and directs implementation of the TRU waste program, and assesses compliance with the program guidance, as well as the commonality of activities and assumptions among all TRU waste sites. A cornerstone of the Department of Energy's (DOE) national cleanup strategy, WIPP is

312

Blackfoot Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Blackfoot Reservoir Geothermal Area Blackfoot Reservoir Geothermal Area (Redirected from Blackfoot Reservoir Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blackfoot Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Idaho Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

313

Wister Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Wister Geothermal Area Wister Geothermal Area (Redirected from Wister Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Wister Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

314

Truckhaven Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Truckhaven Geothermal Area Truckhaven Geothermal Area (Redirected from Truckhaven Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Truckhaven Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

315

Mokapu Penninsula Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mokapu Penninsula Geothermal Area Mokapu Penninsula Geothermal Area (Redirected from Mokapu Penninsula Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mokapu Penninsula Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

316

Kilauea Summit Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kilauea Summit Geothermal Area Kilauea Summit Geothermal Area (Redirected from Kilauea Summit Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kilauea Summit Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (12) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

317

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area (Redirected from Flint Geothermal Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

318

Teels Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Teels Marsh Geothermal Area Teels Marsh Geothermal Area (Redirected from Teels Marsh Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Teels Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

319

Innovation investment area: Technology summary  

Science Conference Proceedings (OSTI)

The mission of Environmental Management`s (EM) Office of Technology Development (OTD) Innovation Investment Area is to identify and provide development support for two types of technologies that are developed to characterize, treat and dispose of DOE waste, and to remediate contaminated sites. They are: technologies that show promise to address specific EM needs, but require proof-of-principle experimentation; and (2) already proven technologies in other fields that require critical path experimentation to demonstrate feasibility for adaptation to specific EM needs. The underlying strategy is to ensure that private industry, other Federal Agencies, universities, and DOE National Laboratories are major participants in developing and deploying new and emerging technologies. To this end, about 125 different new and emerging technologies are being developed through Innovation Investment Area`s (IIA) two program elements: RDDT&E New Initiatives (RD01) and Interagency Agreements (RD02). Both of these activities are intended to foster research and development partnerships so as to introduce innovative technologies into other OTD program elements for expedited evaluation.

Not Available

1994-03-01T23:59:59.000Z

320

Books and book chapters (last 10 years only) 16. Clark, E. Ann. 2009. Ch. 5 (invited). Forages in Organic Crop-Livestock Systems. pp. 85-  

E-Print Network (OSTI)

Books and book chapters (last 10 years only) 16. Clark, E. Ann. 2009. Ch. 5 (invited). Forages, Agriculture, and Engineering Service, Cooperative Extension, Ithaca, N.Y. (Peer-reviewed book chapter) 12 Service, Cooperative Extension, Ithaca, N.Y. (Peer-reviewed book chapter) 11. Clark, E. Ann. 2004 . GM

Clark, E. Ann

Note: This page contains sample records for the topic "area bir ch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The European land and inland water CO2, CO, CH4 and N2O balance between 2001 and 2005  

SciTech Connect

Globally, terrestrial ecosystems have absorbed about 30% of anthropogenic greenhouse gas emissions over the period 2000-2007 and inter-hemispheric gradients indicate that a significant fraction of terrestrial carbon sequestration must be north of the Equator. We present a compilation of the CO{sub 2}, CO, CH{sub 4} and N{sub 2}O balances of Europe following a dual constraint approach in which (1) a land-based balance derived mainly from ecosystem carbon inventories and (2) a land-based balance derived from flux measurements are compared to (3) the atmospheric data-based balance derived from inversions constrained by measurements of atmospheric GHG (greenhouse gas) concentrations. Good agreement between the GHG balances based on fluxes (1294 {+-} 545 Tg C in CO{sub 2}-eq yr{sup -1}), inventories (1299 {+-} 200 Tg C in CO{sub 2}-eq yr{sup -1}) and inversions (1210 {+-} 405 Tg C in CO{sub 2}-eq yr{sup -1}) increases our confidence that the processes underlying the European GHG budget are well understood and reasonably sampled. However, the uncertainty remains large and largely lacks formal estimates. Given that European net land to atmosphere exchanges are determined by a few dominant fluxes, the uncertainty of these key components needs to be formally estimated before efforts could be made to reduce the overall uncertainty. The net land-to-atmosphere flux is a net source for CO{sub 2}, CO, CH{sub 4} and N{sub 2}O, because the anthropogenic emissions by far exceed the biogenic sink strength. The dual-constraint approach confirmed that the European biogenic sink removes as much as 205 {+-} 72 Tg C yr{sup -1} from fossil fuel burning from the atmosphere. However, This C is being sequestered in both terrestrial and inland aquatic ecosystems. If the C-cost for ecosystem management is taken into account, the net uptake of ecosystems is estimated to decrease by 45% but still indicates substantial C-sequestration. However, when the balance is extended from CO{sub 2} towards the main GHGs, C-uptake by terrestrial and aquatic ecosystems is offset by emissions of non-CO{sub 2} GHGs. As such, the European ecosystems are unlikely to contribute to mitigating the effects of climate change.

Luyassaert, S [CEA-CNRS-UVSQ, LSCE; Abril, G [Laboratoire EPOC, CNRS; Andres, Robert Joseph [ORNL; Bastviken, D [Linkoping University; Bellassen, V [CEA-CNRS-UVSQ, LSCE; Bergamaschi, P [European Commission Joint Research Centre; Bousquet, P [CEA-CNRS-UVSQ, LSCE; Chevallier, F [CEA-CNRS-UVSQ, LSCE; Ciais, P. [LSCE/CEA, Gif-sur-Yvette, France; Corazza, M [European Commission Joint Research Centre; Dechow, R [Johann Heinrich von Thnen Institute; Erb, K-H [Alpen-Adria Universitaet Klagenfurt-Vienna-Graz; Etiope, G [Istituto Nazionale di Geofisica e Vulcanologia; Fortems-Cheiney, A [CEA-CNRS-UVSQ, LSCE; Grassi, G [European Commission Joint Research Centre; Hartmann, J [University of Hamburg; Jung, M. [Max Planck Institute for Biogeochemistry; Lathiere, J [CEA-CNRS-UVSQ, LSCE; Lohila, A [Finnish Meteorological institute; Mayorga, E [University of Washington; Moosdorf, N [University of Hamburg; Njakou, D [University of Antwerp; Otto, J [CEA-CNRS-UVSQ, LSCE; Papale, D. [University of Tuscia; Peters, W [Wageningen University and Research Centre, The Netherlands; Peylin, P [CEA-CNRS-UVSQ, LSCE; Raymond, Peter A [Yale School of Forestry and Environmental Studies; Rodenbeck, C [Max Planck Institute for Biogeochemistry; Saarnio, S [University of Eastern Finland; Schulze, E.-D. [Max Planck Institute for Biogeochemistry; Szopa, S [CEA-CNRS-UVSQ, LSCE; Thompson, R [CEA-CNRS-UVSQ, LSCE; Verkerk, P [European Forest Institute; Vuichard, N [CEA-CNRS-UVSQ, LSCE; Wang, R [Peking University; Wattenbach, M [Helmholtz Centre Potsdam GFZ German Research Centre For Geosciences; Zaehle, S [Max Planck Institute for Biogeochemistry

2012-01-01T23:59:59.000Z

322

Tanks focus area. Annual report  

SciTech Connect

The U.S. Department of Energy Office of Environmental Management is tasked with a major remediation project to treat and dispose of radioactive waste in hundreds of underground storage tanks. These tanks contain about 90,000,000 gallons of high-level and transuranic wastes. We have 68 known or assumed leaking tanks, that have allowed waste to migrate into the soil surrounding the tank. In some cases, the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in the safest possible condition until their eventual remediation to reduce the risk of waste migration and exposure to workers, the public, and the environment. Science and technology development for safer, more efficient, and cost-effective waste treatment methods will speed up progress toward the final remediation of these tanks. The DOE Office of Environmental Management established the Tanks Focus Area to serve as the DOE-EM`s technology development program for radioactive waste tank remediation in partnership with the Offices of Waste Management and Environmental Restoration. The Tanks Focus Area is responsible for leading, coordinating, and facilitating science and technology development to support remediation at DOE`s four major tank sites: the Hanford Site in Washington State, Idaho National Engineering and Environmental Laboratory in Idaho, Oak Ridge Reservation in Tennessee, and the Savannah River Site in South Carolina. The technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank. Safety is integrated across all the functions and is a key component of the Tanks Focus Area program.

Frey, J.

1997-12-31T23:59:59.000Z

323

Standort Treibstoff Abteilung Inverkehrssetzung Verantwortlich E-Mail Telefon Einstellhalle Chemie Nr. 95 Benzin Synkologie 01.11.2000 Alexander Strauss alex.strauss@iee.unibe.ch 031 631 3035  

E-Print Network (OSTI)

Chemie Nr. 95 Benzin Synökologie 01.11.2000 Alexander Strauss alex.strauss@iee.unibe.ch 031 631 3035 3035 Einstellhalle Chemie Nr. 92 Diesel Evolutionsökologie 8.02 Eduard Jutzi eduard.wymann@iee.unibe.ch 031 631 9135 Einstellhalle Chemie ? Populationsgenetik ?? 13.9.05 Susanne Tellenbach susanne

Richner, Heinz

324

History of 100-B Area  

SciTech Connect

The initial three production reactors and their support facilities were designated as the 100-B, 100-D, and 100-F areas. In subsequent years, six additional plutonium-producing reactors were constructed and operated at the Hanford Site. Among them was one dual-purpose reactor (100-N) designed to supply steam for the production of electricity as a by-product. Figure 1 pinpoints the location of each of the nine Hanford Site reactors along the Columbia River. This report documents a brief description of the 105-B reactor, support facilities, and significant events that are considered to be of historical interest. 21 figs.

Wahlen, R.K.

1989-10-01T23:59:59.000Z

325

Carlsbad Area Office strategic plan  

SciTech Connect

This edition of the Carlsbad Area Office Strategic Plan captures the U.S. Department of Energy`s new focus, and supercedes the edition issued previously in 1995. This revision reflects a revised strategy designed to demonstrate compliance with environmental regulations earlier than the previous course of action; and a focus on the selected combination of scientific investigations, engineered alternatives, and waste acceptance criteria for supporting the compliance applications. An overview of operations and historical aspects of the Waste Isolation Pilot Plant near Carlsbad, New Mexico is presented.

1995-10-01T23:59:59.000Z

326

White Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

White Mountains Geothermal Area White Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: White Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: New Hampshire Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

327

Honokowai Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Honokowai Geothermal Area Honokowai Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Honokowai Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

328

Blackfoot Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Blackfoot Reservoir Geothermal Area Blackfoot Reservoir Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blackfoot Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Idaho Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

329

Wister Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Wister Geothermal Area Wister Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Wister Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

330

Lualualei Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Lualualei Valley Geothermal Area (Redirected from Lualualei Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lualualei Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content

331

Area Science Park | Open Energy Information  

Open Energy Info (EERE)

Area Science Park Jump to: navigation, search Name Area Science Park Place Italy Sector Services Product General Financial & Legal Services ( Government Public sector )...

332

Southwest Area Corridor Map | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Map DOE Designates Southwest Area and Mid-Atlantic Area National Interest Electric Transmission Corridors October 2, 2007 FACT SHEET: Designation of National Interest Electric...

333

Southwest Area Corridor Map | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Map DOE Designates Southwest Area and Mid-Atlantic Area National Interest Electric Transmission Corridors October 2, 2007 Proposed Energy Transport Corridors: West-wide energy...

334

Redevelopment of Areas Needing Redevelopment Generally (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

Local redevelopment commissions may be established to oversee areas needing redevelopment (previously known as blighted, deteriorated, or deteriorating areas). The clearance, replanning, and...

335

Geothermal Literature Review At International Geothermal Area...  

Open Energy Info (EERE)

Latera area, Tuscany, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

336

Geothermal Literature Review At International Geothermal Area...  

Open Energy Info (EERE)

Hvalfjordur Fjord area, re: Heat flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

337

Hydrogen, Fuel Cells, & Infrastructure - Program Areas - Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel cell Welcome> Program Areas> Program Areas Hydrogen, Fuel Cells & Infrastructure Production & Delivery | Storage | Fuel Cell R&D | Systems Integration & Analysis | Safety...

338

Aquifer Protection Area Land Use Regulations (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations describe allowable activities within aquifer protection areas, the procedure by which such areas are delineated, and relevant permit requirements. The regulations also describe...

339

Truckhaven Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Truckhaven Geothermal Area Truckhaven Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Truckhaven Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

340

THE DETECTION OF INTERSTELLAR ETHANIMINE (CH{sub 3}CHNH) FROM OBSERVATIONS TAKEN DURING THE GBT PRIMOS SURVEY  

SciTech Connect

We have performed reaction product screening measurements using broadband rotational spectroscopy to identify rotational transition matches between laboratory spectra and the Green Bank Telescope PRIMOS radio astronomy survey spectra in Sagittarius B2 North (Sgr B2(N)). The broadband rotational spectrum of molecules created in an electrical discharge of CH{sub 3}CN and H{sub 2}S contained several frequency matches to unidentified features in the PRIMOS survey that did not have molecular assignments based on standard radio astronomy spectral catalogs. Several of these transitions are assigned to the E- and Z-isomers of ethanimine. Global fits of the rotational spectra of these isomers in the range of 8-130 GHz have been performed for both isomers using previously published mm-wave spectroscopy measurements and the microwave measurements of the current study. Possible interstellar chemistry formation routes for E-ethanimine and Z-ethanimine are discussed. The detection of ethanimine is significant because of its possible role in the formation of alanine-one of the twenty amino acids in the genetic code.

Loomis, Ryan A.; Zaleski, Daniel P.; Steber, Amanda L.; Neill, Justin L.; Muckle, Matthew T.; Harris, Brent J.; Pate, Brooks H. [Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, VA 22904 (United States); Hollis, Jan M. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Jewell, Philip R.; Remijan, Anthony J. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22904-2475 (United States); Lattanzi, Valerio; Martinez, Oscar Jr.; McCarthy, Michael C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Lovas, Frank J. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Corby, Joanna F. [Department of Astronomy, University of Virginia, McCormick Road, Charlottesville, VA 22904 (United States)

2013-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "area bir ch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Polarization effects in low-energy electron-CH sub 4 elastic collisions in an exact exchange treatment  

Science Conference Proceedings (OSTI)

We have investigated the polarization effects in very-low-energy (below 1 eV) electron- CH{sub 4} collisions in an exact-exchange treatment. The two models of the parameter-free polarization potential are employed; one, the {ital V}{sub pol}{sup JT} potential, introduced by Jain and Thompson (J. Phys. B 15, L631 (1982)), is based on an approximate polarized-orbital method, and two, the correlation-polarization potential {ital V}{sub pol}{sup CP}, first proposed by O'Connel and Lane (Phys. Rev. A 27, 1893 (1983)), is given as a simple analytic form in terms of the charge density of the target. In this rather very low-energy region, the polarization effects play a decisive role, particularly in creating structure in the differential cross section (DCS) and producing the Ramsauer-Townsend minimum in the total cross section. Our DCS at 0.2, 0.4, and 0.6 eV are compared with recent measurements. We found that a local parameter-free approximation for the polarization potential is quite successful if it is determined under the polarized-orbital-type technique rather than based on the correlation-polarization approach.

Jain, A.; Weatherford, C.A. (Department of Physics, Box 981, Florida A M University, Tallahassee, Florida 32307 (USA)); Thompson, D.G.; McNaughten, P. (Department of Applied Mathematics and Theoretical Physics The Queen's University, Belfast, BT7 1NN, Northern (Ireland))

1989-12-01T23:59:59.000Z

342

Photochemistry in a dense manifold of electronic states: Photodissociation of CH{sub 2}ClBr  

Science Conference Proceedings (OSTI)

We report electronically nonadiabatic dynamics calculations including spin-orbit coupling for the photodissociation of CH{sub 2}ClBr to yield Cl({sup 2}P{sub 3/2}), Cl({sup 2}P{sub 1/2}), Br({sup 2}P{sub 3/2}), and Br({sup 2}P{sub 1/2}). The potential energy is a 24 Multiplication-Sign 24 matrix (divided up here into four 6 Multiplication-Sign 6 blocks in a first approximation to the problem), in a spin-coupled fully diabatic representation obtained by combining the spin-free fourfold way with single-center spin-orbit coupling constants. The spin-free calculations are carried out by multiconfiguration quasidegenerate perturbation theory, and the fully diabatic potentials including spin-orbit coupling are fit to a matrix reactive force field. The dynamics are carried out by the coherent switches with decay of mixing method in the diabatic representation. The results show qualitative agreement with experiment.

Valero, Rosendo [Department of Chemistry, University of Coimbra, Coimbra (Portugal); Truhlar, Donald G. [Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431 (United States)

2012-12-14T23:59:59.000Z

343

Photoelectron imaging of atomic chlorine and bromine following photolysis of CH{sub 2}BrCl  

Science Conference Proceedings (OSTI)

Photoionization of chlorine and bromine atoms following photodissociation of CH{sub 2}BrCl was studied in the wavelength range of 231-238 nm by photoelectron imaging technique. Final state-specific speed and angular distributions of the photoelectron were recorded. Analysis of relative branching ratios to different levels of Cl{sup +} and Br{sup +} revealed that the final ion level distributions are generally dominated by the preservation of the ion-core configuration of the intermediate resonant state. Some J{sub c} numbers of the intermediate states were newly assigned according to this regulation. The configuration interaction between resonant states and the autoionization in the continuum were also believed to play an important role in the ionization process since some ions that deviate from the regulation mentioned ahead were observed. The angular distributions of the electrons were found to be well characterized by {beta}{sub 2} and {beta}{sub 4}, although the ionization process of chlorine and bromine atoms involves three photons.

Hua Linqiang; Shen Huan; Hu Changjin; Zhang Bing [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China) and Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China)

2008-12-28T23:59:59.000Z

344

Characterization of Vadose Zone Sediment: Borehole 299-E33-45 Near BX-102 in the B-BX-BY Waste Management Area  

Science Conference Proceedings (OSTI)

This report was revised in September 2008 to remove acid-extractable sodium data from Table 4.22. The data was removed due to potential contamination introduced during the acid extraction process. The remaining text is unchanged from the original report issued in 2002. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area B-BX-BY. This report is the first in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from borehole 299-E33-45 installed northeast of tank BX-102.

Serne, R. Jeffrey; Last, George V.; Gee, Glendon W.; Schaef, Herbert T.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Orr, Robert D.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Brown, Christopher F.; Valenta, Michelle M.; Vickerman, Tanya S.

2008-09-11T23:59:59.000Z

345

Manhattan Project: Tech Area Gallery  

Office of Scientific and Technical Information (OSTI)

SMALL) SMALL) Los Alamos: The Laboratory Resources > Photo Gallery All of the photographs below are of the "Tech Area" at Los Alamos during or shortly after the wartime years. If you have a fast internet connection, you may wish to click here for a photo gallery with larger versions of the same images. There is a map of the Tech Area at the top and again at the bottom. The first image below is courtesy the Los Alamos National Laboratory. All of the other photographs are reproduced from Edith C. Truslow, with Kasha V. Thayer, ed., Manhattan Engineer District: Nonscientific Aspects of Los Alamos Project Y, 1942 through 1946 (Los Alamos, NM: Manhattan Engineer District, ca. 1946; first printed by Los Alamos Scientific Laboratory as LA-5200, March 1973; reprinted in 1997 by the Los Alamos Historical Society). This is a reprint of an unpublished volume originally written in 1946 by 2nd Lieutenant Edith C. Truslow, a member of the Women's Army Corps, as a contribution to the Manhattan Engineer District History.

346

Chena Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Chena Geothermal Area Chena Geothermal Area (Redirected from Chena Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Chena Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Technical Problems and Solutions 8 Geology of the Area 9 Heat Source 10 Geofluid Geochemistry 11 NEPA-Related Analyses (1) 12 Exploration Activities (9) 13 References Map: Chena Geothermal Area Chena Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Fairbanks, Alaska Exploration Region: Alaska Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

347

Mapping Population onto Priority Conservation Areas  

E-Print Network (OSTI)

areas and (in every case except Mesoamerican Reef and Namib-Karoo) are higher in areas within aggregated. Rural areas in Namib-Karoo have the highest total fertility rates (mean rate of 6.2). Areas inside / Namib Karoo (p

Lopez-Carr, David

348

Boulder Area Directions and Transportation Information  

Science Conference Proceedings (OSTI)

Boulder Area Directions and Transportation Information. NIST Boulder Visitor Check-In & Parking. Transportation. ...

2013-02-27T23:59:59.000Z

349

Geothermal resource evaluation of the Yuma area  

DOE Green Energy (OSTI)

This report presents an evaluation of the geothermal potential of the Yuma, Arizona area. A description of the study area and the Salton Trough area is followed by a geothermal analysis of the area, a discussion of the economics of geothermal exploration and exploitation, and recommendations for further testing. It was concluded economic considerations do not favor geothermal development at this time. (ACR)

Poluianov, E.W.; Mancini, F.P.

1985-11-29T23:59:59.000Z

350

Ashland Area Support Substation Project  

Science Conference Proceedings (OSTI)

The Bonneville Power Administration (BPA) provides wholesale electric service to the City of Ashland (the City) by transferring power over Pacific Power Light Company's (PP L) 115-kilovolt (kV) transmission lines and through PP L's Ashland and Oak Knoll Substations. The City distributes power over a 12.5-kV system which is heavily loaded during winter peak periods and which has reached the limit of its ability to serve peak loads in a reliable manner. Peak loads under normal winter conditions have exceeded the ratings of the transformers at both the Ashland and Oak Knoll Substations. In 1989, the City modified its distribution system at the request of PP L to allow transfer of three megawatts (MW's) of electric power from the overloaded Ashland Substation to the Oak Knoll Substation. In cooperation with PP L, BPA installed a temporary 6-8 megavolt-amp (MVA) 115-12.5-kV transformer for this purpose. This additional transformer, however, is only a temporary remedy. BPA needs to provide additional, reliable long-term service to the Ashland area through additional transformation in order to keep similar power failures from occurring during upcoming winters in the Ashland area. The temporary installation of another 20-MVA mobile transformer at the Ashland Substation and additional load curtailment are currently being studied to provide for sustained electrical service by the peak winter period 1992. Two overall electrical plans-of-service are described and evaluated in this report. One of them is proposed for action. Within that proposed plan-of-service are location options for the substation. Note that descriptions of actions that may be taken by the City of Ashland are based on information provided by them.

Not Available

1992-06-01T23:59:59.000Z

351

Obsidian Cliff Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Obsidian Cliff Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Obsidian Cliff Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

352

269_CH06.indd  

Science Conference Proceedings (OSTI)

AOCS Press, Urbana, IL 61802 2013 by AOCS Press. All rights reserved. No part of this PDF may be reproduced or transmitted in any form or by any means without written permission of the publisher. To order more AOCS prod-

353

CH Packaging Maintenance Manual  

SciTech Connect

This procedure provides instructions for performing inner containment vessel (ICV) and outer containment vessel (OCV) maintenance and periodic leakage rate testing on the following packaging seals and corresponding seal surfaces using a nondestructive helium (He) leak test. In addition, this procedure provides instructions for performing ICV and OCV structural pressure tests.

Washington TRU Solutions

2002-01-02T23:59:59.000Z

354

CH Packaging Program Guidance  

SciTech Connect

The purpose of this document is to provide the technical requirements for preparation for use, operation, inspection, and maintenance of a Transuranic Package Transporter Model II (TRUPACT-II), a HalfPACT Shipping Package, and directly related components. This document complies with the minimum requirements as specified in TRUPACT-II Safety Analysis Report for Packaging (SARP), HalfPACT SARP, and Nuclear Regulatory Commission (NRC) Certificates of Compliance (C of C) 9218 and 9279, respectively. In the event there is a conflict between this document and the SARP or C of C, the SARP and/or C of C shall govern. C of Cs state: ''each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application.'' They further state: ''each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application.'' Chapter 9.0 of the SAR P charges the WIPP Management and Operation (M&O) contractor with assuring packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with 10 CFR 71.11. Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. CBFO will evaluate the issue and notify the NRC if required. This document details the instructions to be followed to operate, maintain, and test the TRUPACT-II and HalfPACT packaging. The intent of these instructions is to standardize these operations. All users will follow these instructions or equivalent instructions that assure operations are safe and meet the requirements of the SARPs.

Washington TRU Solutions LLC

2002-03-04T23:59:59.000Z

355

CH Packaging Operations Manual  

Science Conference Proceedings (OSTI)

This document provides the user with instructions for assembling a payload. All the steps in Subsections 1.2, Preparing 55-Gallon Drum Payload Assembly; 1.3, Preparing "Short" 85-Gallon Drum Payload Assembly (TRUPACT-II and HalfPACT); 1.4, Preparing "Tall" 85-Gallon Drum Payload Assembly (HalfPACT only); 1.5, Preparing 100-Gallon Drum Payload Assembly; 1.6, Preparing SWB Payload Assembly; and 1.7, Preparing TDOP Payload Assembly, must be completed, but may be performed in any order as long as radiological control steps are not bypassed.

Washington TRU Solutions LLC

2005-02-28T23:59:59.000Z

356

CH Packaging Program Guidance  

Science Conference Proceedings (OSTI)

The purpose of this document is to provide the technical requirements for preparation for use, operation, inspection, and maintenance of a Transuranic Package Transporter Model II (TRUPACT-II), a HalfPACT shipping package, and directly related components. This document complies with the minimum requirements as specified in the TRUPACT-II Safety Analysis Report for Packaging (SARP), HalfPACT SARP, and Nuclear Regulatory Commission (NRC) Certificates of Compliance (C of C) 9218 and 9279, respectively. In the event of a conflict between this document and the SARP or C of C, the C of C shall govern. The C of Cs state: ''each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application.'' They further state: ''each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application.'' Chapter 9.0 of the SARP charges the WIPP management and operating (M&O) contractor with assuring packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with 10 CFR 71.11. Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. CBFO will evaluate the issue and notify the NRC if required. This document provides the instructions to be followed to operate, maintain, and test the TRUPACT-II and HalfPACT packaging. The intent of these instructions is to standardize operations. All users will follow these instructions or equivalent instructions that assure operations are safe and meet the requirements of the SARPs.

Washington TRU Solutions LLC

2003-04-30T23:59:59.000Z

357

Ch7_Appendix A  

Science Conference Proceedings (OSTI)

... enable Prototypes and pilot models of flat ... Distributed Multi-agent-based optimization Real-time Control ... a generic mathematical model of process ...

2002-07-26T23:59:59.000Z

358

CH Packaging Program Guidance  

Science Conference Proceedings (OSTI)

The purpose of this document is to provide the technical requirements for preparation for use, operation, inspection, and maintenance of a Transuranic Package Transporter Model II (TRUPACT-II), a HalfPACT shipping package, and directly related components. This document complies with the minimum requirements as specified in the TRUPACT-II Safety Analysis Report for Packaging (SARP), HalfPACT SARP, and U.S. Nuclear Regulatory Commission (NRC) Certificates of Compliance (C of C) 9218 and 9279, respectively. In the event of a conflict between this document and the SARP or C of C, the C of C shall govern. The C of Cs state: "each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application." They further state: "each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application." Chapter 9.0 of the SARP charges the Waste Isolation Pilot Plant (WIPP) management and operating (M&O) contractor with assuring packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with Title 10 Code of Federal Regulations (CFR) 71.8. Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. The CBFO will evaluate the issue and notify the NRC if required.

Washington TRU Solutions LLC

2005-02-28T23:59:59.000Z

359

Southern CA Area | Open Energy Information  

Open Energy Info (EERE)

Southern CA Area Southern CA Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Southern CA Area 1.1 Products and Services in the Southern CA Area 1.2 Research and Development Institutions in the Southern CA Area 1.3 Networking Organizations in the Southern CA Area 1.4 Investors and Financial Organizations in the Southern CA Area 1.5 Policy Organizations in the Southern CA Area Clean Energy Clusters in the Southern CA Area Products and Services in the Southern CA Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

360

Pumpernickel Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Pumpernickel Valley Geothermal Area Pumpernickel Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Pumpernickel Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Map: Pumpernickel Valley Geothermal Area Pumpernickel Valley Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

Note: This page contains sample records for the topic "area bir ch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Whiskey Flats Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Whiskey Flats Geothermal Area Whiskey Flats Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Whiskey Flats Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Map: Whiskey Flats Geothermal Area Whiskey Flats Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

362

Pacific Northwest Area | Open Energy Information  

Open Energy Info (EERE)

Pacific Northwest Area Pacific Northwest Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Pacific Northwest Area 1.1 Products and Services in the Pacific Northwest Area 1.2 Research and Development Institutions in the Pacific Northwest Area 1.3 Networking Organizations in the Pacific Northwest Area 1.4 Investors and Financial Organizations in the Pacific Northwest Area 1.5 Policy Organizations in the Pacific Northwest Area Clean Energy Clusters in the Pacific Northwest Area Products and Services in the Pacific Northwest Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

363

Chena Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Chena Geothermal Area Chena Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Chena Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Technical Problems and Solutions 8 Geology of the Area 9 Heat Source 10 Geofluid Geochemistry 11 NEPA-Related Analyses (1) 12 Exploration Activities (9) 13 References Map: Chena Geothermal Area Chena Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Fairbanks, Alaska Exploration Region: Alaska Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

364

Greater Boston Area | Open Energy Information  

Open Energy Info (EERE)

Greater Boston Area Greater Boston Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Greater Boston Area 1.1 Products and Services in the Greater Boston Area 1.2 Research and Development Institutions in the Greater Boston Area 1.3 Networking Organizations in the Greater Boston Area 1.4 Investors and Financial Organizations in the Greater Boston Area 1.5 Policy Organizations in the Greater Boston Area Clean Energy Clusters in the Greater Boston Area Products and Services in the Greater Boston Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

365

Safety analysis, 200 Area, Savannah River Plant: Separations area operations  

Science Conference Proceedings (OSTI)

The nev HB-Line, located on the fifth and sixth levels of Building 221-H, is designed to replace the aging existing HB-Line production facility. The nev HB-Line consists of three separate facilities: the Scrap Recovery Facility, the Neptunium Oxide Facility, and the Plutonium Oxide Facility. There are three separate safety analyses for the nev HB-Line, one for each of the three facilities. These are issued as supplements to the 200-Area Safety Analysis (DPSTSA-200-10). These supplements are numbered as Sup 2A, Scrap Recovery Facility, Sup 2B, Neptunium Oxide Facility, Sup 2C, Plutonium Oxide Facility. The subject of this safety analysis, the, Plutonium Oxide Facility, will convert nitrate solutions of {sup 238}Pu to plutonium oxide (PuO{sub 2}) powder. All these new facilities incorporate improvements in: (1) engineered barriers to contain contamination, (2) barriers to minimize personnel exposure to airborne contamination, (3) shielding and remote operations to decrease radiation exposure, and (4) equipment and ventilation design to provide flexibility and improved process performance.

Perkins, W.C.; Lee, R.; Allen, P.M.; Gouge, A.P.

1991-07-01T23:59:59.000Z

366

Unthinkable Rebellion and the Praxis of the Possible: Ch'orti' Campesin@ Struggles in Guatemala's Eastern Highlands  

E-Print Network (OSTI)

opposition to mining, hydroelectric dams, and other mega-teams for proposed hydroelectric dams and mines in the dryaware of anti-mining, anti-hydroelectric, and protected area

Casolo, Jennifer Jean

2011-01-01T23:59:59.000Z

367

Modeling of microwave discharges of H{sub 2} admixed with CH{sub 4} for diamond deposition  

Science Conference Proceedings (OSTI)

Microwave discharges of H{sub 2} admixed with CH{sub 4} in a moderate-pressure quartz bell jar reactor used for diamond deposition are studied numerically. Special attention was devoted to high-power densities which provide the most effective way for producing high-quality diamond films. First, a one-dimensional radial model describing the coupled phenomena of chemistry, energy transfer, as well as species and energy transport along the reactor's radial coordinate was developed. Species densities predicted with the model were compared with measurements with infrared tunable diode laser spectroscopy, resulting in validation of the model. Second, a one-dimensional axial model was used to describe the plasma flow along the reactor axis in a region between the reactor end wall and the substrate surface. This model was particularly useful for studying the plasma behavior in the vicinity of the substrate surface, where thermal and composition gradients are large. Both the radial and axial transport models are based on the same discharge model in which the plasma is described as a thermochemically nonequilibrium flow with different energy distributions for heavy species and electrons. The chemistry was described with a model containing 28 species and 131 reactions. The electron temperature, the gas temperature, and the species concentration were determined by solving a coupled set of equations. A wide range of experimental conditions used for diamond deposition was simulated, from low microwave power density (9 W cm{sup -3}, i.e., 600 W, 2500 Pa, and T{sub g}{approx}2200 K) to high-power density (30 W cm{sup -3}, i.e., 2 kW, 12 000 Pa, and T{sub g}{approx}3200 K). The main chemical paths were identified, and the major species, transport effects, and reaction pathways that govern diamond deposition plasmas are discussed.

Lombardi, G.; Hassouni, K.; Stancu, G.-D.; Mechold, L.; Roepcke, J.; Gicquel, A. [Laboratoire d'Ingenierie des Materiaux et des Hautes Pressions, Centre National de la Recherche Scientifique (CNRS) UPR 1311-Universite Paris 13-99, av. J.B. Clement, 93430 Villetaneuse (France); INP-Greifswald, Friedrich-Ludwig-Jahn-Strasse 19, 17489 Greifswald (Germany); Laser Components GmbH, 82140 Olching, Werner-von-Siemens-Strasse 15 (Germany); INP-Greifswald, Friedrich-Ludwig-Jahn-Strasse 19, 17489 Greifswald (Germany); Laboratoire d'Ingenierie des Materiaux et des Hautes Pressions, Centre National de la Recherche Scientifique (CNRS) UPR 1311-Universite Paris 13-99, av. J.B. Clement, 93430 Villetaneuse (France)

2005-09-01T23:59:59.000Z

368

Review of Richland Operations Office and CH2M Hill Plateau Remediation Company and Mission Support Alliance Conduct of Operations, April 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oversight Review of Oversight Review of Richland Operations Office and CH2M HILL Plateau Remediation Company and Mission Support Alliance Conduct of Operations April 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................... 1 2.0 Background ............................................................................................................................................ 1 3.0 Scope ...................................................................................................................................................... 2

369

Review of Richland Operations Office and CH2M Hill Plateau Remediation Company and Mission Support Alliance Conduct of Operations, April 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Independent Oversight Review of Independent Oversight Review of Richland Operations Office and CH2M HILL Plateau Remediation Company and Mission Support Alliance Conduct of Operations April 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................... 1 2.0 Background ............................................................................................................................................ 1 3.0 Scope ...................................................................................................................................................... 2

370

Carbon isotopes in peat, DOC, CO{sub 2}, and CH{sub 4} in a Holocene peatland on Dartmoor, southwest England  

Science Conference Proceedings (OSTI)

Carbon gases with younger {sup 14}C ages than those of the surrounding peat have been reported from continental boreal peatlands, a fact which suggests that significant movement of CO{sub 2}, CH{sub 4}, or DOC (dissolved organic carbon) and export of C via subsurface processes are not accounted for in most estimates of contributions to the C cycle. This paper tests the hypothesis that similar processes can occur in oceanic ombrotrophic mires where water and gas movement is theoretically minimal. Measurements of {sup 14}C and {delta}{sup 13}C in CO{sub 2}, CH{sub 4}, and DOC, and of tritium, are reported from depths to 250 cm at Tor Royal, a raised mire in southwest England. Radiocarbon ages of gases are 1,460 to 500 yr younger than those of peat from the same depths, and CO{sub 2} is consistently younger than CH{sub 4}. DOC is 1,260 to 830 yr younger than the peat, and significant amounts of tritium were found at all depths. Gas ages are mostly intermediate between the age of the peat and that of the DOC, which suggests that C is principally transported as DOC. However, some gases are younger than their associated DOC, which implies that movement of dissolved gases may also take place. {delta}{sup 13}C values in gases suggest that CO{sub 2} reduction is the major pathway for CH{sub 4} production. Transport of C in deep peats is likely to be a significant component in the overall C budget of ombrotrophic oceanic peatlands, and C export via discharge to ground or surface waters may be an important mechanism for gaseous C emissions.

Charman, D.J. [Univ. of Plymouth (United Kingdom). Dept. of Geographical Sciences; Aravena, R. [Univ. of Waterloo, Ontario (Canada). Dept. of Earth Sciences; Bryant, C.L.; Harkness, D.D. [Natural Environment Research Council Radiocarbon Lab., Glasgow (United Kingdom)

1999-06-01T23:59:59.000Z

371

Alderwood Area Service Environmental Assessment.  

SciTech Connect

Bonneville Power Administration's (BPA's) proposal to build a new 115-kV transmission line and 115-12.5-kV, 25-MW substation in the Alderwood, Oregon, area is discussed in the attached Environmental Assessment. The proposed substation site has been relocated about 500 feet east of the site outlined in the Environmental Assessment, but in the same field. This is not a substantial change relevant to environmental concerns. Environmental impacts of the new site differ only in that: Two residences will be visually affected. The substation will be directly across Highway 36 from two houses and would be seen in their primary views. This impact will be mitigated by landscaping the substation to create a vegetative screen. To provide access to the new site and provide for Blachly-Lane Cooperative's distribution lines, a 60-foot-wide right-of-way about 200 feet long will be needed. The total transmission line length will be less than originally planned. However, the tapline into the substation will be about 50 feet longer. 4 figs.

United States. Bonneville Power Administration.

1982-06-01T23:59:59.000Z

372

Gabbs Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Gabbs Valley Geothermal Area Gabbs Valley Geothermal Area (Redirected from Gabbs Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Gabbs Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

373

Salt Wells Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Salt Wells Geothermal Area Salt Wells Geothermal Area (Redirected from Salt Wells Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 9.1 Regional Setting 9.2 Stratigraphy 9.3 Structure 10 Hydrothermal System 11 Heat Source 12 Geofluid Geochemistry 13 NEPA-Related Analyses (9) 14 Exploration Activities (28) 15 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

374

Marysville Mt Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Marysville Mt Geothermal Area Marysville Mt Geothermal Area (Redirected from Marysville Mt Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Marysville Mt Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Montana Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

375

Fort Bliss Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fort Bliss Geothermal Area Fort Bliss Geothermal Area (Redirected from Fort Bliss Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fort Bliss Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (22) 10 References Area Overview Geothermal Area Profile Location: Texas Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

376

New River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

New River Geothermal Area New River Geothermal Area (Redirected from New River Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: New River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

377

Kawaihae Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kawaihae Geothermal Area Kawaihae Geothermal Area (Redirected from Kawaihae Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kawaihae Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

378

Maui Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Maui Geothermal Area Maui Geothermal Area (Redirected from Maui Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Maui Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

379

Glass Buttes Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Glass Buttes Geothermal Area Glass Buttes Geothermal Area (Redirected from Glass Buttes Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Glass Buttes Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (14) 10 References Area Overview Geothermal Area Profile Location: Oregon Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

380

Obsidian Cliff Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Obsidian Cliff Geothermal Area Obsidian Cliff Geothermal Area (Redirected from Obsidian Cliff Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Obsidian Cliff Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

Note: This page contains sample records for the topic "area bir ch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Jemez Pueblo Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Pueblo Geothermal Area Jemez Pueblo Geothermal Area (Redirected from Jemez Pueblo Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Pueblo Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

382

Socorro Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Socorro Mountain Geothermal Area Socorro Mountain Geothermal Area (Redirected from Socorro Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Socorro Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (10) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

383

Kauai Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kauai Geothermal Area Kauai Geothermal Area (Redirected from Kauai Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kauai Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

384

Amedee Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Amedee Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Amedee Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Map: Amedee Geothermal Area Amedee Geothermal Area Location Map Area Overview Geothermal Area Profile Location: California Exploration Region: Walker-Lane Transition Zone GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

385

Dixie Meadows Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dixie Meadows Geothermal Area Dixie Meadows Geothermal Area (Redirected from Dixie Meadows Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dixie Meadows Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

386

Jemez Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Mountain Geothermal Area Jemez Mountain Geothermal Area (Redirected from Jemez Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

387

Salt Wells Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Salt Wells Geothermal Area Salt Wells Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 9.1 Regional Setting 9.2 Stratigraphy 9.3 Structure 10 Hydrothermal System 11 Heat Source 12 Geofluid Geochemistry 13 NEPA-Related Analyses (9) 14 Exploration Activities (28) 15 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

388

Kilauea Summit Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kilauea Summit Geothermal Area Kilauea Summit Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kilauea Summit Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (12) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

389

Florida Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Florida Mountains Geothermal Area Florida Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Florida Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

390

Molokai Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Molokai Geothermal Area Molokai Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Molokai Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

391

Maui Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Maui Geothermal Area Maui Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Maui Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

392

Rhodes Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Rhodes Marsh Geothermal Area (Redirected from Rhodes Marsh Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Rhodes Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase:

393

Jersey Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jersey Valley Geothermal Area Jersey Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jersey Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Area Overview Geothermal Area Profile Location: near Fallon, NV Exploration Region: Central Nevada Seismic Zone Geothermal Region GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

394

Glass Buttes Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Glass Buttes Geothermal Area Glass Buttes Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Glass Buttes Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (14) 10 References Area Overview Geothermal Area Profile Location: Oregon Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

395

Separation Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Separation Creek Geothermal Area Separation Creek Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Separation Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Oregon Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

396

Areas Participating in the Reformulated Gasoline Program  

Gasoline and Diesel Fuel Update (EIA)

Reformulated Gasoline Program Reformulated Gasoline Program Contents * Introduction * Mandated RFG Program Areas o Table 1. Mandated RFG Program Areas * RFG Program Opt-In Areas o Table 2. RFG Program Opt-In Areas * RFG Program Opt-Out Procedures and Areas o Table 3. History of EPA Rulemaking on Opt-Out Procedures o Table 4. RFG Program Opt-Out Areas * State Programs o Table 5. State Reformulated Gasoline Programs * Endnotes Spreadsheets Referenced in this Article * Reformulated Gasoline Control Area Populations Related EIA Short-Term Forecast Analysis Products * Demand and Price Outlook for Phase 2 Reformulated Gasoline, 2000 * Environmental Regulations and Changes in Petroleum Refining Operations * Areas Participating in Oxygenated Gasoline Program

397

Socorro Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Socorro Mountain Geothermal Area Socorro Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Socorro Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (10) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

398

Jemez Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Mountain Geothermal Area Jemez Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

399

Augusta Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Augusta Mountains Geothermal Area Augusta Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Augusta Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (3) 9 Exploration Activities (0) 10 References Area Overview Geothermal Area Profile Location: Fallon, NV Exploration Region: Central Nevada Seismic Zone Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

400

Marysville Mt Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Marysville Mt Geothermal Area Marysville Mt Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Marysville Mt Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Montana Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

Note: This page contains sample records for the topic "area bir ch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

402

Lualualei Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lualualei Valley Geothermal Area Lualualei Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lualualei Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

403

New River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

New River Geothermal Area New River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: New River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

404

Bristol Bay Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Bristol Bay Geothermal Area Bristol Bay Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Bristol Bay Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Area Overview Geothermal Area Profile Location: Bristol Bay Borough, Alaska Exploration Region: Alaska Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

405

Teels Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Teels Marsh Geothermal Area Teels Marsh Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Teels Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

406

Haleakala Volcano Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Haleakala Volcano Geothermal Area Haleakala Volcano Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Haleakala Volcano Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

407

Fort Bliss Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fort Bliss Geothermal Area Fort Bliss Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fort Bliss Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (22) 10 References Area Overview Geothermal Area Profile Location: Texas Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

408

Jemez Pueblo Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Pueblo Geothermal Area Jemez Pueblo Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Pueblo Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

409

Desert Queen Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Desert Queen Geothermal Area Desert Queen Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Desert Queen Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

410

Global Vegetation Data: Leaf Area Index  

NLE Websites -- All DOE Office Websites (Extended Search)

Leaf Area Index Data Available The ORNL DAAC announces the availability of a global data set containing approximately 1000 estimates of leaf area index (LAI) for a variety of...

411

AREA USA LLC | Open Energy Information  

Open Energy Info (EERE)

AREA USA LLC Jump to: navigation, search Name AREA USA LLC Place Washington, DC Zip 20004 Sector Services Product Washington, D.C.-based division of Fabiani & Company providing...

412

For the B-Area Operable Unit  

NLE Websites -- All DOE Office Websites (Extended Search)

3 April 16, 2013 Notice of Availability Record of Decision For the B-Area Operable Unit The Record of Decision (ROD) Remedial Alternative Selection for the B-Area Operable Unit...

413

Kauai Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kauai Geothermal Area Kauai Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kauai Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

414

Rhodes Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Rhodes Marsh Geothermal Area Rhodes Marsh Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Rhodes Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

415

Kawaihae Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kawaihae Geothermal Area Kawaihae Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kawaihae Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

416

Mokapu Penninsula Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mokapu Penninsula Geothermal Area Mokapu Penninsula Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mokapu Penninsula Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

417

Dixie Meadows Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dixie Meadows Geothermal Area Dixie Meadows Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dixie Meadows Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

418

Lester Meadow Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lester Meadow Geothermal Area Lester Meadow Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lester Meadow Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Washington Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

419

Mt Ranier Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mt Ranier Geothermal Area Mt Ranier Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mt Ranier Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Washington Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

420

Cryptographic Challenges for Smart Grid Home Area ...  

Science Conference Proceedings (OSTI)

Page 1. Cryptographic Challenges for Smart Grid Home Area Networks Secure Networking Author Apurva Mohan, Honeywell ACS Labs ...

2012-05-09T23:59:59.000Z

Note: This page contains sample records for the topic "area bir ch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Optimization Online - All Areas Submissions - February 2011  

E-Print Network (OSTI)

... Optimization for Power System Configuration with Renewable Energy in Remote Areas ... Robust Energy Cost Optimization of Water Distribution System with...

422

Optimization Online - All Areas Submissions - October 2013  

E-Print Network (OSTI)

All Areas Submissions - October 2013. Network Optimization Optimization Models for Differentiating Quality of Service Levels in Probabilistic Network Capacity...

423

Local control of area-preserving maps  

E-Print Network (OSTI)

We present a method of control of chaos in area-preserving maps. This method gives an explicit expression of a control term which is added to a given area-preserving map. The resulting controlled map which is a small and suitable modification of the original map, is again area-preserving and has an invariant curve whose equation is explicitly known.

Cristel Chandre; Michel Vittot; Guido Ciraolo

2008-09-01T23:59:59.000Z

424

Environmental performance summary ChAPTer 6 mAnAGinG reSOUrCeS  

E-Print Network (OSTI)

for all students'. While prior to the Initiative we were undertaking various energy, water and waste and project approval and monitoring. Activity is structured into six areas: waste, transport, energy, water.g. electricity) 54,432 Transport energy (excluding flights) 12,923 Wastewater treatment 1,588 Waste disposal 1

University of Technology, Sydney

425

Geothermal br Resource br Area Geothermal br Resource br Area Geothermal  

Open Energy Info (EERE)

Geothermal Area Brady Hot Springs Geothermal Area Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region MW K Coso Geothermal Area Coso Geothermal Area Walker Lane Transition Zone Geothermal Region Pull Apart in Strike Slip Fault Zone Mesozoic Granitic MW K Dixie Valley Geothermal Area Dixie Valley Geothermal Area Central Nevada Seismic Zone Geothermal Region Stepover or Relay Ramp in Normal Fault Zones major range front fault Jurassic Basalt MW K Geysers Geothermal Area Geysers Geothermal Area Holocene Magmatic Geothermal Region Pull Apart in Strike Slip Fault Zone intrusion margin and associated fractures MW K Long Valley Caldera Geothermal Area Long Valley Caldera Geothermal Area Walker Lane Transition Zone Geothermal Region Displacement Transfer Zone Caldera Margin Quaternary Rhyolite MW K

426

EA-1177: Salvage/Demolition of 200 West Area, 200 East Area,...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

demolish the 200 West Area, 200 East Area, and 300 Area steam plants and their associated steam distribution piping equipment, and ancillary facilities at the U.S. Department of...

427

Redfield Campus Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Redfield Campus Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Redfield Campus Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate

428

Gabbs Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Gabbs Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Gabbs Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

429

Category Key Area Sub Area Do?an, .N., "Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Papers funded by the Fuels Program (2013) Category Key Area Sub Area Doan, .N., "Materials Development for Fossil Fueled Energy Conversion Systems," Materials Science...

430

Characterization of Vadose Zone Sediment: RCRA Borehole 299-E33-338 Located Near the B-BX-BY Waste Management Area  

SciTech Connect

This report was revised in September 2008 to remove acid-extractable sodium data from Table 4.8. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in June 2003. The overall goals of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., are: 1) to define risks from past and future single-shell tank farm activities, 2) to identify and evaluate the efficacy of interim measures, and 3) to aid via collection of geotechnical information and data, future decisions that must be made by the U.S. Department of Energy (DOE) regarding the near-term operations, future waste retrieval, and final closure activities for the single-shell tank waste management areas. For a more complete discussion of the goals of the Tank Farm Vadose Zone Project, see the overall work plan, Phase 1 RCRA Facility Investigation/Corrective Measures Study Work Plan for the Single-Shell Tank Waste Management Areas (DOE 1999). Specific details on the rationale for activities performed at the B-BX-BY tank farm waste management area are found in CH2M HILL (2000).

Lindenmeier, Clark W.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Gee, Glendon W.; Schaef, Herbert T.; Lanigan, David C.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Brown, Christopher F.; Valenta, Michelle M.; Vickerman, Tanya S.; Royack, Lisa J.

2008-09-11T23:59:59.000Z

431

Chocolate Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Chocolate Mountains Geothermal Area Chocolate Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Chocolate Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Map: Chocolate Mountains Geothermal Area Chocolate Mountains Geothermal Area Location Map Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: Phase II - Resource Exploration and Confirmation Coordinates: 33.352°, -115.353° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.352,"lon":-115.353,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

432

Activity of tungsten and rhenium filaments in CH sub 4 /H sub 2 and C sub 2 H sub 2 /H sub 2 mixtures: Importance for diamond CVD  

DOE Green Energy (OSTI)

The resistance R, spectral emissivity {epsilon}, and power consumption of W and Re filaments heated to 2500 {degree}C in mixtures of CH{sub 4} or C{sub 2}H{sub 2} in H{sub 2} have been measured in a series of experiments focusing on the state of the filament activity, i.e., its ability to dissociate the reactant gases. It has been found that these properties of the filaments, as well as the partial pressures of CH{sub 4} and C{sub 2}H{sub 2} in the reaction chamber, depend critically on both the filament temperature and the reactant ratio, e.g., C{sub 2}H{sub 2}/H{sub 2}. Specifically, both W and Re filaments show sharp jumps in power consumption at essentially the same temperature, signaling strong increases in filament activity and, hence, production of atomic hydrogen. These results are proposed to be due to the removal of non-reactive carbon from the surface of the filament via etching by atomic hydrogen and are consistent with the predictions of our thermodynamic model for the C-H system. Evidence for gas phase reactions is presented and the role of thermal diffusion is discussed. The emissivities of the W and Re filaments are observed to have significantly different temperature dependences which are attributed to differences in the phase diagrams for the W-C and Re-C systems. The implications of these results for hot-filament diamond CVD are discussed.

Sommer, M.; Smith, F.W. (Department of Physics, The City College of the City University of New York, New York, NY (USA))

1990-11-01T23:59:59.000Z

433

Characterization of Vadose Zone Sediment: Slant Borehole SX-108 in the S-SX Waste Management Area  

Science Conference Proceedings (OSTI)

This report was revised in September 2008 to remove acid-extractable sodium data from Table 4.17. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in February 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is the fourth in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from a slant borehole installed beneath tank SX-108 (or simply SX-108 slant borehole).

Serne, R. Jeffrey; Last, George V.; Schaef, Herbert T.; Lanigan, David C.; Lindenmeier, Clark W.; Ainsworth, Calvin C.; Clayton, Ray E.; Legore, Virginia L.; O'Hara, Matthew J.; Brown, Christopher F.; Orr, Robert D.; Kutnyakov, Igor V.; Wilson, Teresa C.; Wagnon, Kenneth B.; Williams, Bruce A.; Burke, Deborah S.

2008-09-11T23:59:59.000Z

434

Characterization of Vadose Zone Sediment: Borehole 41-09-39 in the S-SX Waste Management Area  

Science Conference Proceedings (OSTI)

This report was revised in September 2008 to remove acid-extractable sodium data from Table 5.15. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in February 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is one in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from borehole 41-09-39 installed adjacent to tank SX-109.

Serne, R. Jeffrey; Last, George V.; Schaef, Herbert T.; Lanigan, David C.; Lindenmeier, Clark W.; Ainsworth, Calvin C.; Clayton, Ray E.; Legore, Virginia L.; O'Hara, Matthew J.; Brown, Christopher F.; Orr, Robert D.; Kutnyakov, Igor V.; Wilson, Teresa C.; Wagnon, Kenneth B.; Williams, Bruce A.; Burke, Deborah S.

2008-09-11T23:59:59.000Z

435

Nitrogen effect on the dust presence and behavior in a radio frequency CH{sub 4}/N{sub 2} discharge  

Science Conference Proceedings (OSTI)

In this paper, we have studied the effects of the nitrogen percentage on particles generated in low pressure radio frequency CH{sub 4}/N{sub 2} discharges. The particle behavior has been analyzed by laser beam extinction and scattering. The nitrogen percentage in the mixture influences the particle presence, behavior, and size in the discharge. For nitrogen percentages greater than 50%, we have evidenced a particle multigeneration and oscillations in particle clouds. These oscillations have been correlated with the discharge electrical parameters.

Pereira, Jeremy; Massereau-Guilbaud, Veronique; Geraud-Grenier, Isabelle; Plain, Andre [LASEP, Faculte des Sciences, Universite d'Orleans, Site de Bourges, rue G. Berger, BP 4043, 18028 Bourges Cedex (France)

2008-02-01T23:59:59.000Z

436

Crane Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Crane Creek Geothermal Area Crane Creek Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Crane Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.3064,"lon":-116.7447,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

437

Mother Goose Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mother Goose Geothermal Area Mother Goose Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mother Goose Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.18,"lon":-157.0183,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

438

Fireball Ridge Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fireball Ridge Geothermal Area Fireball Ridge Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fireball Ridge Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.92,"lon":-119.07,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

439

Newcastle Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Newcastle Geothermal Area Newcastle Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Newcastle Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.66166667,"lon":-113.5616667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

440

Klamath Falls Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Klamath Falls Geothermal Area Klamath Falls Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Klamath Falls Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.23333333,"lon":-121.7666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "area bir ch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Clear Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Geothermal Area Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Clear Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.85,"lon":-162.3,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

442

Heber Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Heber Geothermal Area Heber Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Heber Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Heat Source 8 Geofluid Geochemistry 9 NEPA-Related Analyses (0) 10 Exploration Activities (2) 11 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.71666667,"lon":-115.5283333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

443

South Brawley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

South Brawley Geothermal Area South Brawley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: South Brawley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.90607,"lon":-115.54,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

444

Medicine Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Medicine Lake Geothermal Area Medicine Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Medicine Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (9) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.57,"lon":-121.57,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

445

Fernley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fernley Geothermal Area Fernley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fernley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.598803,"lon":-119.110415,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

446

Lakeview Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lakeview Geothermal Area Lakeview Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lakeview Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.2,"lon":-120.36,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

447

Drum Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Drum Mountain Geothermal Area Drum Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Drum Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.544722222222,"lon":-112.91611111111,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

448

The Needles Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

The Needles Geothermal Area The Needles Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: The Needles Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (15) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.15,"lon":-119.68,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

449

Mt Signal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Signal Geothermal Area Signal Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mt Signal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.65,"lon":-115.71,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

450

Carson River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

River Geothermal Area River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Carson River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.77,"lon":-119.715,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

451

Harney Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lake Geothermal Area Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Harney Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.18166667,"lon":-119.0533333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

452

Maazama Well Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Maazama Well Geothermal Area Maazama Well Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Maazama Well Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8965,"lon":-121.9865,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

453

False Pass Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

False Pass Geothermal Area False Pass Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: False Pass Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":54.93,"lon":-163.24,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

454

Okpilak Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Okpilak Springs Geothermal Area Okpilak Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Okpilak Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":69.3,"lon":-144.0333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

455

Hot Pot Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hot Pot Geothermal Area Hot Pot Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hot Pot Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.922,"lon":-117.108,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

456

Stillwater Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Stillwater Geothermal Area Stillwater Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Stillwater Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.51666667,"lon":-118.5516667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

457

Willow Well Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Well Geothermal Area Well Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Willow Well Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.6417,"lon":-150.095,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

458

Area Guide - National Transportation Research Center (NTRC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Area Guide Area Guide Recreational & Cultural Opportunities Some Things To Do In and Around the NTRC Area Area Attractions Big South Fork The following links offer general information about parks, cultural events, and recreational opportunities available. All locations listed are within a few hours' drive. Big South Fork National River and Recreation Area of the U.S. National Park Service, located near Oak Ridge. Biltmore Estate- A 250-room historical chateau in located in Asheville, North Carolina (about 3 hours from Oak Ridge); open all year Knoxville, Tennessee Women's Basketball Hall of Fame, Knoxville Star of Knoxville Riverboat Ice Rinks Ice Chalet Icearium Korrnet - Website for area nonprofit organizations Big South Fork Park - Canoeing, fishing, camping, hiking; located near

459

Akutan Fumaroles Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Akutan Fumaroles Geothermal Area Akutan Fumaroles Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Akutan Fumaroles Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":54.1469,"lon":-165.9078,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

460

Fallon Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fallon Geothermal Area Fallon Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fallon Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"